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Abstract

The Brownian loop measure is a conformally invariant measure
on loops that also satisfies the restriction property. In studying the
Schramm-Loewner evolution (SLE), a quantity that arises is the mea-
sure of loops in a domain D that intersect both V1 and V2. If V1, V2

are nonpolar, and D = C this measure is infinite. We show the ex-
istence of a finite normalized quantity that can be used in its place.
The motivation for studying this question comes from bulk SLE with
boundary conditions, but this paper only discusses the loop measure.

1 Introduction

The Brownian loop measure [4] in C is a sigma-finite measure on unrooted
loops in C that satisfies two important properties: conformal invariance and
the restriction property. It arose in the study of the Schramm-Loewner
evolution (SLE). An important quantity for SLE is

Λ(V1, V2;D),

which denotes the measure of the set of loops in a domain D that intersect
both V1 and V2. This quantity comes up in comparison of SLE in two
different domains. If µD(z1, z2) denotes the chordal SLEκ (κ ≤ 4) measure
for z1 to z2 in a domain D and D̃ ⊂ D is a subdomain that agrees with D
in neighborhoods of z1 and z2, then

dµD̃(z1, z2)

dµD(z1, z2)
(γ) = exp

{c

2
Λ(γ,D \ D̃;D)

}

,
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where

c =
(3κ − 8)(6 − κ)

2κ

denotes the central charge.
If V1, V2 are nonpolar disjoint closed subsets of the Riemann sphere and

D is a domain whose boundary is nonpolar, then this quantity is positive
and finite (see Corollary 4.6). It is also conformally invariant in the sense
that if f : D → f(D) is a conformal transformation, then

Λ(f(V1), f(V2); f(D)) = Λ(V1, V2;D).

In trying to generalize these ideas to SLE in the bulk, see [2], one is
tempted to write similar quantities of the form

Λ(V1, V2; C).

However this quantity as defined is infinite. The purpose of this note is to
prove the existence of a normalized quantity Λ∗(V1, V2) that has many of
the properties one wants.

Theorem 1.1. If V1, V2 are disjoint nonpolar closed subsets of the Riemann
sphere, then the limit

Λ∗(V1, V2) = lim
r→0+

[Λ(V1, V2;Or) − log log(1/r)], (1)

exists where
Or = {z ∈ C : |z| > r}.

Moreover, if f is a Möbius transformation of the Riemann sphere,

Λ∗(f(V1), f(V2)) = Λ∗(V1, V2).

We could write the assumption “disjoint nonpolar closed subsets of the
Riemann sphere” as “disjoint closed subsets of C, at least one of which is
compact, such that Brownian motions hits both subsets at some positive
time”.

Invariance of Λ∗ under Möbius transformations implies that the defini-
tion (1) does not change if we shrink down at a point on the Riemann sphere
other than the origin. In other words if Or(z) = z +Or and DR denotes the
open disk of radius R about the origin,

Λ∗(V1, V2) = lim
r→0+

[Λ(V1, V2;Or(z)) − log log(1/r)], (2)

2



Λ∗(V1, V2) = lim
R→∞

[Λ(V1, V2; DR) − log log R]. (3)

The goal of this paper is to prove Theorem 1.1. Theorem 4.7 establishes
the existence of the limit in (1). Theorem 4.11 proves the alternate forms
(2) and (3). If f is a Möbius transformation, then conformal invariance of
the loop measure implies

Λ(V1, V2;Or) = Λ(f(V1), f(V2); f(Or)).

Invariance of Λ∗ under dilations, translations, and inversions can be deduced
from this and (1), (2), and (3), respectively.

The proof really only uses standard arguments about planar Brownian
motion but we need to control the error terms. In order to make the paper
easier to understand, we have split it into three sections. The first section
considers estimates for planar Brownian motion. Readers who are well ac-
quainted with planar Brownian motion may wish to skip this section and
refer back as necessary. This section does assume knowledge of planar Brow-
nian motion as in [1, Chapter 2]. The next section discusses the Brownian
(boundary) bubble measure and gives estimates for it. The Brownian loop
measure is a measure on unrooted loops, but for computational purposes it
is often easier to associate to each unrooted loop a particular rooted loop
yielding an expression in terms of Brownian bubbles. The last section proves
the main theorem by giving estimates for the loop measure.

We will use the following notation:

Dr = {z : |z| < r}, D = D1,

Or = {z : |z| > r}, O = O1, Or(w) = w + Or,

Ar,R = DR ∩Or = {z : r < |z| < R}, AR = A1,R,

Cr = ∂Dr = ∂Or = {|z| = r}, Cr(w) = ∂Or(w) = {z : |w − z| = r}.

We say that a subset V of C is nonpolar if it is hit by Brownian motion.
More precisely, V is nonpolar if for every z ∈ C, the probability that a
Brownian motion starting at z hits V is positive. Since Brownian motion is
recurrent we can replace “is positive” with “equals one”. For convenience,
we will call a domain (connected open subset) D of C nonpolar if ∂D is
nonpolar.
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2 Lemmas about Brownian motion

If Bt is a complex Brownian motion and D is a domain, let

τD = inf{t : Bt 6∈ D}.

A domain D is nonpolar if and only if Pz{τD < ∞} = 1 for every z. In this
case we define harmonic measure of D at z ∈ D by

hD(z, V ) = Pz{BτD
∈ V }.

If V is smooth then we can write

hD(z, V ) =

∫

V
hD(z,w) |dw|,

where hD(z,w) is the Poisson kernel. If z ∈ ∂D \V and ∂D is smooth near
z, we define the excursion measure of V in D from z by

ED(z, V ) = E(z, V ;D) = ∂nhD(z, V ),

where n = nz,D denotes the unit inward normal at z. If V is smooth, we
can write

ED(z, V ) =

∫

V
h∂D(z,w) |dw|,

where h∂D(z,w) := ∂nhD(z,w) is the excursion or boundary Poisson kernel.
(Here the derivative ∂n is applied to the first variable.) One can also obtain
the excursion Poisson kernel as the normal derivative in both variables of
the Green’s function; this establishes symmetry, h∂D(z,w) = h∂D(w, z). If
f : D → f(D) is a conformal transformation, then (assuming smoothness of
f at boundary points at which f ′ is taken)

hD(z, V ) = hf(D)(f(z), f(V )),

hD(z,w) = |f ′(w)|hf(D)(f(z), f(w)),

ED(z, V ) = |f ′(w)| Ef(D)(f(z), f(V )),

h∂D(z,w) = |f ′(z)| |f ′(w)|h∂f(D)(f(z), f(w)).

The exact form of the Poisson kernel in the unit disk shows that there
is a c such that for all |z| ≤ 1/2, |w| = 1

|2π hD(z,w) − 1| ≤ c |z|.
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By taking an inversion, we get that if |z| ≥ 2,

|2π hO(z,w) − 1| ≤
c

|z|
. (4)

It is standard that

hAR
(z,CR) =

log |z|

log R
, 1 < |z| < R. (5)

In particular,

EAR
(1, CR) =

1

log R
, EAR

(R,C1) =
1

R log R
, (6)

If V ⊂ ∂D is smooth, let hD(z,w;V ) = hD(z,w)/hD(z, V ) for w ∈ V . In
other words, hD(z,w;V ) is the density of the exit distribution of a Brownian
motion conditioned so that it exits at V . We similarly define h∂D(z,w;V ).

Lemma 2.1. There exists c < ∞ such that the following holds. Suppose
R > 0 and D is a domain with AR ⊂ D ⊂ O. Then

|2π hD(z,w) − 1| ≤ c
log R

R
, |w| = 1, z ∈ D ∩ OR/2. (7)

Remark The conclusion of this lemma is very reasonable. If a Brownian
motion starting at a point z far from the origin exits D at C1, then the
hitting distribution is almost uniform. This uses the fact that D∩DR is the
same as AR. The important result is the estimate of the error term.

Proof. Assume |w| = 1. Let τ = τD and let ∂∗ = ∂D ∩ O. It suffices to
prove the estimate for |z| = R/2. For every |ζ| ≥ R/2, (4) gives

|2πhO(ζ, w) − 1| ≤
c

R
. (8)

Note that

hO(z,w) = hD(z,w) + Ez[hO(Bτ , w);Bτ ∈ ∂∗].

Using (8), we get

2πEz[hO(Bτ , w);Bτ ∈ ∂∗] = hD(z, ∂∗) [1 + O(R−1)].

Therefore,
2π hD(z,w) = hD(z,C1) + O(R−1). (9)
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Since hD(z,C1) is bounded below by the probability of reaching C1 before
CR, (5) implies

hD(z,C1) ≥
log 2

log R
,

and hence (9) implies

2π hD(z,w) = hD(z,C1)

[

1 + O

(

log R

R

)]

. (10)

Corollary 2.2. There exists c < ∞ such that if R ≥ 2, |z| = 1, |w| = R,
Then

∣

∣

∣

∣

h∂AR
(z,w) −

1

2πR log R

∣

∣

∣

∣

≤
c

R2
. (11)

Proof. Recall that h∂Ar(z,w) = h∂Ar (w, z). We know from (6) that
∫

C1

h∂AR
(w, ζ) |dζ| =

1

R log R
.

Also, by definition,

h∂AR
(w, z) =

h∂AR
(w, z)

R log R
.

Note that h∂AR
(w, z) is bounded by the minimum and maximum values of

hAR
(ŵ, z) over |ŵ| = R/2, and hence (7) gives

hAR
(ŵ, z) =

1

2π
+ O

(

log R

R

)

.

Corollary 2.3. Suppose R > 1,D is a domain containing DR, D̂ is a
nonpolar domain containing O with smooth boundary and D̃ = D ∩ D̂. For
w ∈ ∂D̂, let

qw =
1

2π

∫ 2π

0
hD̃(eiθ, w) dθ,

and let

q =

∫

∂D̂
qw |dw| =

1

2π

∫ 2π

0
hD̃(eiθ, ∂D̂) dθ,

Then if z ∈ D with |z| ≥ R/2 and w ∈ ∂D̃,

hD̃(z,w) =
qw

q
hD∩O(z,C1)

[

1 + O

(

log R

R

)]

.
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Remark The implicit constants in the O(·) term are uniform and do not
depend on z,w,D, D̃. The key fact is that (up to the error term) hD̃(z,w)
factors into two terms qw/q and hD∩O(z,C1).

Proof. Let τ = τD̃ and Let σ = τD∩O. Then (10) implies that if z ∈ D,
|z| ≥ R/2,

hD̃(z, ∂D̂) = q hD∩O(z,C1)

[

1 + O

(

log R

R

)]

.

Similarly,

hD̃(z,w) = qw hD∩O(z,C1)

[

1 + O

(

log R

R

)]

.

Lemma 2.4. Suppose D is a nonpolar domain containing D. If 0 < s < 1,
let Ds = D ∩ Os. Then if s < r ≤ 1/2 and |z| = r,

log r

log s
≤ hDs(z,Cs) ≤

log r

log s

[

1 −
p log 2

(1 − p) log(1/r)

]−1

,

where
p = pD = sup

|w̃|=1
hD1/2

(w̃, C1/2) < 1.

Remark The inequality pD < 1 follows immediately from the fact that D
is nonpolar and contains D.

Proof. Let T = Ts = inf{t : Bt ∈ Cs ∪ C1} and σ = σs,r = inf{t ≥ T : Bt ∈
Cr}. Then if |z| ≤ 1/2,

Pz{BτDs
∈ Cs} = Pz{BT ∈ Cs} + Pz{BT ∈ C1, BτDs

∈ Cs}.

By (5),

Pz{BT ∈ Cs} =
log r

log s
,

which gives the lower bound. Let

q = q(r, s,D) = sup
|z̃|=r

Pz̃
{

BτDs
∈ Cs

}

,

u = u(r,D) = sup
|w̃|=1

Pw̃
{

BτDr
∈ Cr

}

.
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Then,

Pz{BT ∈ C1, BτDs
∈ Cs} ≤

Pz{σ < τDs | BT ∈ C1}Pz{BτDs
∈ Cs | BT ∈ C1, σ < τDs} ≤ u q.

Applying this to the maximizing z̃, gives

q ≤
log r

log s
+ u q, q ≤

log r

(1 − u) log s
.

By (5), the probability that a Brownian motion starting on C1/2 reaches
Cr before reaching C1 is log 2/ log(1/r). Using a similar argument as in the
previous paragraph, we see that

u ≤ p
log 2

log(1/r)
+ p u, u ≤

p

1 − p

log 2

log(1/r)
. (12)

Proposition 2.5. Suppose D is a nonpolar domain containing the origin.
Then there exists c = cD < ∞ such that if 0 < r ≤ 1/2, Dr = D ∩ Or, and
z ∈ D, |z| ≥ 1,

hDr(z,Cr) ≤
c

log(1/r)
. (13)

Also, if |w| = r,

hDr(z,w) ≤
c

r log(1/r)
. (14)

Proof. Find 0 < β < 1/2 such that ∂D∩O2β is nonpolar. It suffices to prove
(13) for r < β. Since ∂D ∩ O2β is nonpolar, there exists q = qD,β > 0 such
that for every |z| ≥ 2β, the probability that a Brownian motion starting at
z leaves D before reaching Cβ is at least q. If r < β, the probability that a
Brownian motion starting at Cβ reaches Cr before reaching C2β is

p(r) = log 2/ log(2β/r) ≤
c1

log(1/r)
.

Let Q(r) = sup|z|≥2β hDr(z,Cr). Then arguing similarly to the previous
proof, we have

Q(r) ≤ (1 − q) [p(r) + [1 − p(r)]Q(r)] ≤ p(r) + (1 − q)Q(r),

which yields Q(r) ≤ p(r)/q. This gives (13) and (14) follows from

hDr(z,w) ≤ hD2r (z,C2r) sup
|ζ|=2r

hOr(ζ, w).
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Proposition 2.6. There exists c < ∞ such that the following holds. Suppose
|z| = 1/2 and 0 < s < r < 1/8. Let Ds,r = Os ∩ Or(z). Then for |w| ≥ 1,

∣

∣

∣

∣

log(rs)

log r
hDs,r(w,Cs) − 1

∣

∣

∣

∣

≤
c

log(1/r)
. (15)

Proof. Without loss of generality, we assume z = 1/2. Let L denote the
line {x + iy : x = 1/4}. Let τ = τDs,r , T the first time a Brownian motion
reaches Cr ∪ Cr(z), and σ the first time after T that the Brownian motion
returns to L. By symmetry, for every w ∈ L,

Pw{BT ∈ Cr} =
1

2
.

Using Lemma 2.4, we get

Pw{τ < σ | BT ∈ Cr} =
log r

log s

[

1 + O

(

1

log(1/r)

)]

.

Therefore, for every w ∈ L,

Pw{τ < σ;Bτ ∈ Or(z)} =
1

2
,

Pw{τ < σ;Bτ ∈ Os} =
log r

2 log s

[

1 + O

(

1

log(1/r)

)]

.

This establishes (15) for w ∈ L. If |w| ≥ 1, then the probability of reaching
Or(z) before reaching L is O(1/ log(1/r)) and the probability of reaching Os

before reaching L is O(1/ log(1/s)). Using this we get (15) for |w| ≥ 1.

Remark The end of the proof uses a well known fact. Suppose one performs
independent trials with three possible outcomes with probabilities p, q, 1 −
p − q, respectively. Then the probability that an outcome of the first time
occurs before one of the second type is p/(p + q).

3 Brownian bubble measure

If D is a nonpolar domain and z ∈ ∂D is an analytic boundary point (i.e., ∂D
is analytic in a neighborhood of D), the Brownian bubble measure mD(z)
of D at z is a sigma-finite measure on loops γ : [0, tγ ] → C with γ(0) =
γ(tγ) = z and γ(0, tγ) ⊂ D. It can be defined as the limit as ǫ → 0+ of
π ǫ−1 hD(z + ǫn, z) times the probability measure on paths obtained from
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starting a Brownian motion at z + ǫn and conditioning so that the path
leaves D at z. Here n = nz,D is the inward unit normal. If D̃ ⊂ D agrees
with D in a neighborhood of z, then the bubble measure at D̃, mD̃(z) is
obtained from mD(z) by restriction. This is also an infinite measure but the
difference mD(z)−mD̃(z) is a finite measure. We will denote its total mass
by

m(z;D, D̃) = ‖mD(z) − mD̃(z)‖.

The normalization of m is chosen so that

m(0; H, H ∩ D) = 1. (16)

Remark The factor of π in the bubble measure was put in so that (16)
holds. However, the loop measure in the next section does not have this
factor so we will have to divide it out again. For this paper, it would have
been easier to have defined the bubble measure without the π but we will
keep it in order to match definitions elsewhere.

From the definition, we see that if ∂D̃ ∩ D is smooth

m(z;D, D̃) = π

∫

∂D̃∩D
∂nhD̃(z,w)hD(w, z) |dw|.

This is also equal to π ∂nf(z) for the function f(ζ) = hD(ζ, z) − hD̃(ζ, z).
Let hD,−(V, z), hD,+(V, z) denote the infimum and supremum, respectively,
of hD(w, z) over w ∈ V . Then a simple estimate is

hD,−(∂D̃ ∩ D, z) ≤
m(z;D, D̃)

π ED̃(z, ∂D̃ ∩ D)
≤ hD,+(∂D̃ ∩ D, z). (17)

Lemma 3.1. If R > 1, let

ρ(R) = m(1;O, AR).

There exists c < ∞ such that for all R ≥ 2,

∣

∣

∣

∣

ρ(R) −
1

2 log R

∣

∣

∣

∣

≤
c

R log R
.

Remark Rotational invariance implies that m(z;O, AR) = ρ(R) for all
|z| = 1.
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Proof. By (6),

E(1;O, AR) =
1

log R
.

and by (4),
2π hO(w, 1) = 1 + O(R−1).

We now use (17).

The next lemma generalizes this to domains D with AR ⊂ D ⊂ O. The
result is similar but the error term is a little larger. Note that the q in the
next lemma equals 1 if D = O.

Lemma 3.2. Suppose R ≥ 2 and D is a domain satisfying AR ⊂ D ⊂ O.
Let q be the probability that a Brownian motion started uniformly on CR

exits D at C1, i.e.,

q = q(R,D) =
1

2πR

∫

CR

hD(z,C1) |dz|.

Then if |w| = 1,

m(w;D,AR) =
q

2 log R

[

1 +

(

log R

R

)]

, (18)

m(w;O,D) =
1 − q

2 log R
+ O

(

q log R + 1

R log R

)

. (19)

Proof. By definition,

m(w;D,AR) = π

∫

CR

h∂AR
(w, z)hD(z,w) |dz|.

By (11), we know that

h∂AR
(w, z) =

1

2π R log R

[

1 + O

(

log R

R

)]

.

By (7), we know that

hD(z,w) =
1

2π
hD(z,C1)

[

1 + O

(

log R

R

)]

.

Combining these gives (18), and (19) follows from Lemma 3.1 and

m(w;O, AR) = m(w;D,AR) + m(w;O,D).
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Corollary 3.3. There exists c < ∞ such that the following is true. Suppose
R ≥ 2 and D is a domain with AR ⊂ D ⊂ O. Suppose ∂D∩OR is nonpolar
and hence

p = pR,D := sup
|z|=R

hD\OR/2
(z,CR/2) < 1.

Then, if |w| = 1,

∣

∣

∣

∣

m(w;O,D) −
1

2 log R

∣

∣

∣

∣

≤
c

(1 − p) log2 R
.

Proof. Let q be as in the previous lemma. By (12) we see that

q ≤
p log 2

(1 − p) log R
.

and hence the result follows from (19).

Remark We will used scaled versions of this corollary. For example, if D
is a nonpolar domain containing D, r < 1/2, Dr = D ∩Or, and |w| = r,

∣

∣

∣

∣

r2 m(w;Or,Dr) −
1

2 log(1/r)

∣

∣

∣

∣

≤
c

(1 − p) log2(1/r)
,

where
p = sup

|z|=1
hD1/2

(z,C1/2).

Proposition 3.4. Suppose V is a nonpolar closed set, z 6= 0, and z, 0 6∈ V .
For 0 < r, s < ∞, let

Ds,r = Os ∩ Or(z).

Then as s, r → 0+, if |w| = s,

1

π
m(w;Ds,r,Ds,r \ V ) =

1

2πs2 log(1/s)

log r

log(rs)
[1 + O (δr,s)] ,

where δr,s = (log(1/r))−1 + (log(1/s))−1.

Remark The implicit constants in the O(·) term depend on V, z but not
on w.
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Proof. We will use (17) and write δ = δr,s. By scaling we may assume z = 2
and let d = min{2,dist(0, V ),dist(2, V )}. We will only consider r, s ≤ d/2.
By (6),

E(w,Cd;As,d) = s−1 E(w/s,Cd/s;Ad/s) =
1

s log(1/s)
[1 + O(δ)] .

Using this and (5) we can see that

E(w, V ;Ds,r \ V ) =
1

s log(1/s)
[1 + O(δ)] .

For ζ ∈ V , (15) gives

hDs,r(ζ, Cs) =
log r

log(rs)
[1 + O(δ)] . (20)

Therefore. by (7)

hDs,r(ζ, w) =
log r

2πs log(rs)
[1 + O(δ)] .

The next proposition is the analogue of Proposition 3.4 with z = ∞.

Proposition 3.5. Suppose V is a nonpolar compact set, with 0 6∈ V . For
0 < s, r < ∞, let

Ds,r = Os ∩ D1/r.

Then, for as s, r → 0+, if |w| = s,

1

π
m(w;Ds,r,Ds,r \ V ) =

1

2πs2 log(1/s)

log r

log(rs)
[1 + O (δr,s)] ,

where δr,s = (log(1/r))−1 + (log(1/s))−1.

Proof. The proof is the same as the previous proposition. In fact, it is slighly
easier because (20) is justified by (5).
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4 Brownian loop measure

The Brownian loop measure is a measure on unrooted loops. It is this
measure that is conformally invariant. For computational purposes it is
useful to write the measure in terms of the bubble measure. The following
expression is obtained by assigning to each unrooted loop the root closest
to the origin, see [2].

µ = µC =
1

π

∫ 2π

0

∫ ∞

0
mOr(re

iθ) r dr dθ. (21)

To be precise, we are considering the right hand side as a measure on un-
rooted loops. If D is a subdomain, then µD is defined by restriction. If
Dr ⊂ D, then the Brownian loop measure in D restricted to loops that
intersect Dr can be written as

1

π

∫ 2π

0

∫ r

0
mDs(se

iθ) s dr dθ, (22)

where Ds = D ∩ Os. If r1 < r, then the Brownian loop measure of loops in
Or1

that intersect Dr is given by

1

π

∫ 2π

0

∫ r

r1

mDs(se
iθ) s dr dθ.

Using this and appropriate properties of the bubble measure we can conclude
the following.

Lemma 4.1. For every 0 < s < r < ∞ and d > 0, the loop measure of the
set of loops in Os of diameter at least d that intersect Dr is finite.

Remark This result is not true for s = 0. The Brownian loop measure of
loops in C of diameter greater than d that intersect the unit disk is infinite.
See, e.g., Lemma 4.3 below.

Conformal invariance implies that the Brownian loop measure of loops
in Ar,2r that separate the origin from infinity is the the same for all r. It is
easy to see that this measure is positive and the last lemma shows that it
is finite. It follows that the measure of the set of loops that surround the
origin is infinite.

If V1, V2, . . . are closed subsets of the Riemann sphere and D is a nonpolar
domain, then

Λ(V1, V2, . . . , Vk;D)
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is defined to be the loop measure of the set of loops in D that intersect all
of V1, . . . , Vk. Note that

Λ(V1, V2, . . . , Vk;D) =

Λ(V1, V2, . . . , Vk+1;D) + Λ(V1, V2, . . . , Vk;D \ Vk+1). (23)

If V1, V2, . . . , Vk are the traces of simple curves that include the origin, then
the comment in the last paragraph shows that for all r > 0,

Λ(V1, V2, . . . , Vk; Dr) = ∞.

Lemma 4.2. Suppose V1, V2 are closed sets and D is a domain. Let

V j = Aej−1,ej , Oj = Oej , Dj = D ∩ Oj.

Then

Λ(V1, V2;D) =

∞
∑

j=−∞

Λ(V1, V2, V
j+1;Dj). (24)

Proof. For each unrooted loop, consider the point on the loop closest to the
origin. The measure of the set of loops for which the distance to the origin
is exactly ej for some integer j is 0. For each loop, there is a unique j such
that the loop is in Oj but not in Oj+1. Except for a set of loops of measure
zero, such a loop intersects V j+1 but does not intersect V k for k < j+1, and
hence each loop is counted exactly once on the right-hand side of (24).

Lemma 4.3. There exists c < ∞ such that if 0 < s < 1, R ≥ 2,
∣

∣

∣

∣

Λ(C1, CR;Os) − log

[

log(R/s)

log R

]
∣

∣

∣

∣

≤
c

R log R
.

In particular, there exists c < ∞ such that if R ≥ 2/s > 2,

∣

∣

∣

∣

Λ(C1, CR;Os) −
log(1/s)

log R

∣

∣

∣

∣

≤
c log2(1/s)

log2 R
.

Proof. By (22), rotational invariance, and the scaling rule, we get

Λ(C1, CR;Os) = 2

∫ 1

s
r m(r;Or, Ar,R) dr = 2

∫ 1

s
r−1 ρ(R/r) dr,

where ρ is as in Lemma 3.1. From that lemma, we know that

ρ(R/r) =
1

2 log(R/r)
+ O

(

r

R log(R/r)

)

,
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and hence

Λ(C1, CR;Os) = O

(

1

R log R

)

+

∫ 1

s

1

r (log R − log r)
dr.

The first assertion follows by integrating and the second from the expansion

log

[

log(R/s)

log R

]

=
log(1/s)

log R
+ O

(

log2(1/s)

log2 R

)

.

Lemma 4.4. Suppose V is a closed, nonpolar set with 0 6∈ V and α > 0.
There exists c = cV,α < ∞ such that for r < min{1,dist(0, V )}/4,

∣

∣

∣

∣

Λ(V,Oαr \ Or;Or) −
log α

log(1/r)

∣

∣

∣

∣

≤
c

log2(1/r)
.

Proof. By scaling, we may assume that dist(0, V ) = 1. It suffices to prove
the result for r sufficiently small. By (22), we have

Λ(V,Oαr \ Or;Or) =
1

π

∫ 2π

0

∫ αr

r
m(seiθ;Os,Ds) s ds dr,

where Ds = Os \ V . By Corollary 3.3, for r ≤ s ≤ αr,

m(seiθ;Os,Ds) =
1

2s2 log(1/s)

[

1 + O

(

1

log(1/r)

)]

.

Therefore,

Λ(V,Oαr \ Or;Or) =

[

1 + O

(

1

log(1/r)

)]
∫ αr

r

ds

s log(1/s)
.

Also,

∫ αr

r

ds

s log(1/s)
= log log

(

1

r

)

− log log

(

1

αr

)

=
log α

log(1/r)
+ O

(

1

log2(1/r)

)

.
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Lemma 4.5. Suppose V1, V2 are disjoint, nonpolar closed subsets of the
Riemann sphere with 0 6∈ V1. Then there exists c = cV1,V2

< ∞ such that
for all r ≤ dist(0, V1)/2,

Λ(V1, Cr; C \ V2) ≤
c

log(1/r)
. (25)

Proof. Constants in this proof depend on V1, V2. Without loss of generality
assume 0 6∈ V2 and let Dr = Or \ V2. We will first prove the result for
r ≤ r0 = [dist(0, V1) ∧ dist(0, V2)]/2. By (22), we have

Λ(V1, Cr; C \ V2) =
1

π

∫

|z|≤r
m(z;D|z|,D|z| \ V1) dA(z). (26)

By (14),

hDr(w, z) ≤
c

r log(1/r)
, w ∈ V1, |z| = r.

By comparison with an annulus, we get

ED|z|\V1
(z, V1) ≤

c

|z| log(1/|z|)
, |z| = r.

Using (17), we then have

1

π
m(z;D|z|,D|z| \ V1) ≤

c

|z|2 log2(1/|z|)
.

By integrating, we get (25) for r ≤ r0.
Let r1 = dist(0, V1)/2 and note that

Λ(V1, Cr1
; C \ V2) ≤ Λ(V1, Cr0

; C \ V2) + Λ(V1, Cr1
;Or0

\ V2).

Using Lemma 4.1 we can see that

Λ(V1, Cr1
;Or0

\ V2) < ∞.

Therefore,
Λ(V1, Cr1

; C \ V2) < ∞,

and we can conclude (25) for r0 ≤ r ≤ r1 with a different constant.

Corollary 4.6. Suppose V1, V2 are disjoint closed subsets of the Riemann
sphere and D is a nonpolar domain. Then

Λ(V1, V2;D) < ∞.

17



Proof. Assume 0 6∈ V1. Lemma 4.5 shows that Λ(V1, Ds;D) < ∞ for some
s > 0. Note that

Λ(V1, V2;D) ≤ Λ(V1, Ds;D) + Λ(V1, V2;Os).

Since at least one of V1, V2 is compact, Lemma 4.1 implies that

Λ(V1, V2;Os) < ∞.

Theorem 4.7. Suppose V1, V2 are disjoint, nonpolar closed subsets of the
Riemann sphere. Then the limit

Λ∗(V1, V2) = lim
r→0+

[Λ(V1, V2;Or) − log log(1/r)] (27)

exists.

Proof. Without loss of generality, assume that dist(0, V1) ≥ 2 and let Ok =
Oe−k . Let V̂2 ⊂ V2 be a nonpolar closed subset with 0 6∈ V̂2. Constants in
the proof depend on V1, V2. Since Λ(V1, V2;Or) increases as r decreases to
0, it suffices to establish the limit

lim
k→∞

[

Λ(V1, V2;O
k) − log k

]

.

Repeated application of (23) shows that if k ≥ 1,

Λ(V1, V2;O
k) = Λ(V1, V2;O

0) +
k

∑

j=1

Λ(V1, V2,O
j−1 \ Oj;Oj).

Similarly, for fixed k, (23) implies

Λ(V1,O
k−1 \ Ok;Ok) − Λ(V1, V2,O

k−1 \ Ok;Ok)

= Λ(V1,O
k−1 \ Ok;Ok \ V2)

≤ Λ(V1,O
k−1 \ Ok;Ok \ V̂2).

From Lemma 4.4, we can see that

Λ(V1,O
k−1 \ Ok;Ok) =

1

k
+ O

(

1

k2

)

,
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and hence the limit

lim
k→∞



− log k +
k

∑

j=1

Λ(V1,O
k−1 \ Ok;Ok)





exists and is finite. By Lemma 4.5, we see that

∞
∑

j=k

Λ(V1,O
j−1 \ Oj ;Oj \ V̂2) = Λ(V1, D

k
;D \ V̂2) ≤

c

k
,

and hence

∞
∑

j=k

[

Λ(V1,O
j−1 \ Oj;Oj) − Λ(V1, V2,O

j−1 \ Oj ;Oj)
]

≤
c

k
,

where the constant c depends on V1 and V̂2 but not otherwise on V2.

Remark It follows from the proof that

Λ∗(V1, V2) = Λ(V1, V2;O
k) − log k + O

(

1

k

)

,

where the O(·) terms depends on V1 and V̂2 but not otherwise on V2. As a
consequence we can see that if 0 6∈ V1 and V2,r = V2 ∩ {|z| ≥ r}, then

lim
r→0+

Λ∗(V1, V2,r) = Λ∗(V1, V2). (28)

The definition of Λ∗ in (27) seems to make the origin a special point.
Theorem 4.11 shows that this is not the case.

Lemma 4.8. Suppose V is a nonpolar closed subset, z 6= 0 and 0 6∈ V . Let
α > 0. There exists c, r0 (depending on z, V, α) such that if 0 < r < r0,

|Λ(V, C \ Or;Oαr(z)) − log 2| ≤
c

log(1/r)
.

Proof. We will first assume z 6∈ V . For s ≤ r, let Ds = Os ∩ Oαr(z). As in
(22),

Λ(V, C \ Or;Oαr(z)) =
1

π

∫

|w|≤r
m(w;D|w|,D|w| \ V ) dA(w).
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By Lemma 3.4, if |w| = s ≤ r,

1

π
m(w;Ds,Ds \ V ) =

1

2πs2 log(1/s)

log r

log(rs)

[

1 + O

(

1

log(1/r)

)]

,

and therefore,

Λ(V, C \ Or;Oαr(z)) = log r

∫ r

0

ds

s log(1/s) log(rs)

[

1 + O

(

1

log(1/r)

)]

.

A straightforward computation gives

log r

∫ r

0

ds

s log(1/s) log(rs)
= log 2.

This finishes the proof for z 6∈ V .
If z ∈ V and t > 0, let V1 ⊂ V be a closed nonpolar set with z 6∈ V1.

Then (23) implies

Λ(V, C \ Or;Oαr(z)) =

Λ(V1, C \ Or;Oαr(z)) + Λ(V \ V1, C \ Or;Oαr(z) \ V1).

Since the previous paragraph applies to V1 it suffices to show that

Λ(V \ V1, C \ Or;Oαr(z) \ V1) = O

(

1

log(1/r)

)

.

We can write

Λ(V \ V1, C \ Or;Oαr(z) \ V1) =
1

π

∫

|w|≤r
m(w;Ds \ V1,Ds \ V ) dA(w).

By using (18) we can see that

m(w;Ds \ V1,Ds \ V ) ≤
c

log2(1/s)
,

and hence

Λ(V \ V1, C \ Or;Oαr(z) \ V1) ≤ c

∫ r

0

ds

s log2(1/s)
≤

c

log(1/r)
.

The following is the equivalent lemma for z = ∞. It can be proved
similarly or by conformal transforamtion.
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Lemma 4.9. Suppose V is a nonpolar closed subset, and 0 6∈ V . Let α > 0.
There exists c, r0 (depending on V, α) such that if 0 < r < r0,

∣

∣Λ(V, C \ Or; Dα/r) − log 2
∣

∣ ≤
c

log(1/r)
.

We extend this to k closed sets.

Lemma 4.10. Suppose V1, . . . , Vk are closed nonpolar subsets of C \ {0}.
Let α > 0. There exists c, r0 (depending on z, α, V1, . . . , Vk) such that if
0 < r < r0,

|Λ(V1, . . . , Vk, C \ Or;Oαr(z)) − log 2| ≤
c

log(1/r)
.

∣

∣Λ(V1, . . . , Vk, C \ Or; Dα/r) − log 2
∣

∣ ≤
c

log(1/r)
.

Proof. If k = 2, inclusion-exclusion implies

Λ(V1 ∪ V2, C \ Or;Oαr(z)) + Λ(V1, V2, , C \ Or;Oαr(z)) =

Λ(V1, C \ Or;Oαr(z)) + Λ(V2, , C \ Or;Oαr(z)).

Since Lemma 4.8 applies to V1 ∪ V2, V1, V2, we get the result. The cases
k > 2 and z = ∞ are done similarly.

Theorem 4.11. Suppose V1, V2 are disjoint, nonpolar closed subsets of the
Riemann sphere and z ∈ C. Then

Λ∗(V1, V2) = lim
r→0+

[Λ(V1, V2;Or(z)) − log log(1/r)] .

Moreover,
Λ∗(V1, V2) = lim

R→∞
[Λ(V1, V2;DR) − log log R] .

Proof. We will assume 0 6∈ V1. Using (27), we see that it suffices to prove
that

lim
r→0+

[Λ(V1, V2;Or(z)) − Λ(V1, V2;Or)] = 0.

Note that

Λ(V1, V2;Or(z)) − Λ(V1, V2;Or) =

Λ(V1, V2, C \ Or;Or(z)) − Λ(V1, V2, C \ Or(z);Or).
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Lemma 4.10 implies

Λ(V1, V2, C \ Or;Or(z)) = log 2 + O

(

1

log(1/r)

)

, (29)

where the constants in the error term depend on z, V1, V2. Similarly, using
translation invariance of the loop measure, we can see that

Λ(V1, V2, C \ Or(z);Or) = log 2 + O

(

1

log(1/r)

)

.

If V1, V2, . . . , Vk are pairwise disjoint nonpolar closed sets of the Riemann
sphere, we define similarly

Λ∗(V1, . . . , Vk) = lim
r→0+

[Λ(V1, V2, . . . , Vk;Or) − log log(1/r)] .

One can prove the existence of the limit in the same way or we can use the
relation

Λ∗(V1, . . . , Vk) = Λ∗(V1, . . . , Vk+1) + Λ(V1, . . . , Vk; C \ Vk+1).
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