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1. Introduction

The theory of viscosity solutions gives a solid framework to study fully nonlinear
elliptic equations, and provides a powerful way to prove existence and uniqueness
in a very general setting. The question of regularity of the corresponding solutions
(that in principle are merely continuous) has been studied extensively in the last
decade. There are good results for interior regularity as well as for regularity up
to the boundary in the case of the Dirichlet problem. However, for the Neumann
problem, there are still not many results. We intend to work in that direction.

On the other hand there are several articles corresponding to uniqueness,
comparison theorems, Hölder and Lipschitz continuity for solutions of general fully
nonlinear second order elliptic equations with Neumann type boundary conditions.
We refer the reader interested in the viscosity solutions approach to Ishii and Lions
(1990) and Ishii (1991) where the authors investigate uniqueness results that yield
existence via an adaptation of the classical Perron’s method. A later article of Barles
(1993) gives uniqueness and Lipschitz regularity results for quite general boundary
conditions in the case where the boundary is assumed to be smooth enough and
the differential operators are basically Lipschitz. Cranny (1996) concerned with
C� regularity of solutions for less regular operators. He achieved these results
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under some mild geometric conditions upon the domain. We also refer the reader
interested in the classical solutions approach to the article of Lions and Trudinger
(1986) where the authors proved, using the continuity method, that a problem with
an oblique derivative condition at the boundary has a C2�� solution if the equation
is convex.

In the present paper we will consider the regularity for viscosity solutions of
fully nonlinear uniformly elliptic second order equations with Neumann boundary
data. We will always consider the domain to be the upper half ball, and the
Neumann boundary data to be given on its base.

We will use the following notation:

B+
1 = �x ∈ �n � �x� < 1� xn > 0�

� = �x ∈ �n � �x� < 1� xn = 0��

The vector � = 	0� � � � � 0� 1
 is the inner normal to � (the base of B+
1 ).

The article is organized as follows: The first two sections are the introduction
and preliminaries. The third section is devoted to obtaining an extension of the
Alexandroff–Backelman–Pucci (ABP) estimate to Neumann boundary conditions.
In the fourth section we prove the C� regularity up to the boundary for the solution
of the homogeneous problem {

F	D2u
 = 0 in B+
1

u� = 0 in ��
(1.1)

In section five we develop some properties for sup- and inf-convolutions and in
section six we obtain the C1�� regularity up to the boundary for the solution u of
problem (1.1). In the seventh section we get the C2�� regularity up to the boundary
for u assuming that F is convex (or concave). In sections eight and nine we extend
our results to more general problems corresponding to x dependence on F or to
inhomogeneous right hand side. At the end, there is an appendix with the proof
of a regularity result for Dirichlet boundary conditions. We expect that our results
can be extended to more general (nonflat) domains, but we have not worked in that
direction yet. It is our intention to use these results for the upper half ball in a
forthcoming article (Milakis and Silvestre, In preparation) associated with Signorini-
like obstacle problems.

We believe that it is insightful to think of the Neumann condition as part of
the equation and not as boundary data. Our results are local in the sense that we
only require a Neumann condition in a piece of the boundary, then obtain regularity
there regardless of how the function behaves far from those points. This could be
thought as an interior regularity result, if we think of the Neumann condition as
part of the equation.

2. Preliminaries

First of all, we make some remarks about our notation. When we say that a function
� touches another function u from above (or resp. from below) at a point x, we
mean that �	x
 = u	x
 and �	y
 > u	y
 (or resp. �	y
 < u	y
) for every y in a
neighborhood of x. Strictly speaking, it is not the functions themselves but their
graphs that touch each other at the point 	x� u	x

 = 	x� �	x

.
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When we say that u solves F	D2u
 = 0 in B+
1 , we always mean in the viscosity

sense, and F is always assumed to be uniformly elliptic with constants � and .
A constant is considered universal when it depends only on �, , and n (the
dimension). When we say u� ≥ 0 on � , we also refer to the viscosity sense. By this
we mean that for any smooth function � touching u from above at a point x0 in �
we have ��	x0
 ≥ 0. Similarly, when we say u� ≤ 0 in � , we mean that if � touches
u from below at a point x0 ∈ � , then ��	x0
 ≤ 0.

We also use the notation S	��� f
, S	��� f
, and S∗	��� f
 as in Caffarelli
and Cabré (1995).

For Dirichlet boundary data, the regularity up to the boundary is fairly
well understood. The following propositions are more or less well known for the
specialists. However, since we could not find any reference where these propositions
are proven, we give the proofs in the appendix of this article.

Proposition 2.1. Let u be a solution of F	D2u
 = 0 in B+
1 such that u ∈ C	B+

1 
 and
the restriction of u to � is C� for some � < 1, then u is C�	B+

1/2
 up to the boundary.
Moreover, we have the estimate

�u�
C�	B+

1/2

≤ C

(
�u�

C	B+
1 

+ �u�C�	�
 + �F	0
�

)
(2.1)

for a constant C depending only on n, �, , and � (C → � as � → 0).

Proposition 2.2. Let u be a solution of F	D2u
 = 0 in B+
1 such that u ∈ C	B+

1 
 and the
restriction of u to � is C1�� for some � > 0, then u is C1��	B+

1/2
 up to the boundary,
where � = min	�� �0
 for a universal �0. Moreover, we have the estimate

�u�
C1��	B+

1/2

≤ C

(
�u�

C	B+
1 

+ �u�C1��	�
 + �F	0
�

)
(2.2)

for a constant C depending only on n, �, , and � (C → � as � → 0).

We are going to develop corresponding results for Neumann boundary data.
In many proofs we use that a C� (or C1��, or C2��) estimate on � plus an

interior estimate implies the estimate all the way up to the bottom. This is a standard
procedure in the regularity theory that we illustrate in the following propositions.

Proposition 2.3. Let u be a continuous function in B+
1 that satisfies C� interior

estimates. By this we mean that if Br	x0
 ⊂ B+
1 ,

�u	x
− u	y
�
�x − y�� ≤ C

1
r�

osc
Br 	x0


u for every x� y ∈ Br/2	x0
� (2.3)

Let us also suppose that u is C� at the bottom boundary, i.e.,

�u	x
− u	y
� ≤ C0�x − y�� for x ∈ � and y ∈ B+
1 � (2.4)

Then u ∈ C�	B+
1/2
 and

�u	x
− u	y
� ≤ CC0�x − y�� (2.5)

for every x ∈ B+
1/2 and y ∈ B+

1 , where C depends only on the constant of (2.3).
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Similar results for C1�� and C2�� estimates are also valid. The statement for C2��

will be needed later in the article and is proven in the appendix for completeness.

Proposition 2.4. Let u ∈ C	B+
1 
 be a viscosity solution of

F	D2u
 = 0 in B+
1

for a uniformilly elliptic convex function F . We known from Caffarelli and Cabré (1995)
that solutions of such equations have interior C2�� estimates for a universal constant �.
Let us also assume that u is C2�� on � for the same �. By this we mean that for every
x ∈ � , there is a second order polynomial Px such that for any y ∈ B+

1 ,

�u	y
− Px	y
� ≤ C0�x − y�2+�� (2.6)

Then u ∈ C2��	B+
1 
 and

�u�C2�� ≤ C · C0

where C is a universal constant.

The proofs of Propositions 2.3 and 2.4 are done in the appendix.

3. An Extension of the ABP Estimate

We obtain an extension to the ABP estimate to Neumann boundary conditions
where by S class we mean the usual function space dealing with the Pucci’s extremal
operators (see Section 2.2 of Caffarelli and Cabré, 1995).

Proposition 3.1. Let u ∈ C	B+
1 
 be a function that belongs to S	��� f
 in B+

1 such
that it satisfies u� = g in � in the viscosity sense. Then

inf
�Br∩�xn>0�

u	x
− inf
B+
r

u ≤ Cr

( ∫
�u=�u�

�f+	x
�n dx
)1/n

+ Cr sup
�

g (3.1)

where �u is the convex envelope of u and C is a universal constant.

Proof. To simplify the notation we can suppose inf�Br∩�xn>0� u	x
 = 0. From
Caffarelli and Cabré (1995, Chapter 3) we know that �u ∈ C1�1	B+

r 
. Let u	x0
 =
infB+

r
u. We will follow the usual procedure of finding a subset of ��u	B

+
r 
. Let us

define the following set (see Figure 1)

� �=
{
A ∈ �n � A · � ≥ max g� �A� ≤ − infB+

r
u

2r

}
�

Take a vector A such that A · � ≥ max g and

�A� ≤ − infB+
r
u

2r
� (3.2)
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Figure 1. The set �.

Therefore A · 	x − x0
+ u	x0
 is a linear function that coincides with u at x0 and is
below u in �Br ∩ �xn > 0�. Then there is a translation A · x + b such that it touches
u from below in a point that is not in �Br ∩ �xn > 0�. Since A · � ≥ max g, then
A · x + b cannot touch u at the bottom � . Therefore it touches at an interior point
and A ∈ ��u	B

+
r 
. Thus we have:

� ⊂ ��u	B
+
r 
�

The set � is the upper cap of a ball. Let R = − inf
B+r u

2r . If max g > R, then � is
empty. If max g < R/3, then ��� ≥ CRn, where C depends only on dimension. To
summarize, one of the following two happens:

1. − infB+
r
u < 4r sup g;

2. ��� ≥ CRn.

In the second case, we follow the usual proof of the ABP-estimate to obtain∫
�u=�u�

�f+	x
�n dx ≥ CRn

for a universal constant C. And therefore, combining the two cases,

− inf
B+
r

u ≤ Crmax
(( ∫

�u=�u�
�f+	x
�n dx

)1/n

� sup g
)

which is equivalent to what we wanted to prove. �

4. Hölder Regularity

In the present section we intend to prove C� regularity for the solution up to the
boundary. We are going to use the following reflection property and the Hölder
regularity for functions in S∗ class where by S∗ class we mean the usual function
space dealing with S and S.

We point out that this regularity has been proven in a much more general
situation (see Cranny, 1996). In our case we can provide a simpler proof.
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Proposition 4.1 (Reflection Property). Let u � B+
1 → � be a function that belongs to

S∗	��� f
 in B+
1 such that it satisfies u� = 0 in � in the viscosity sense. Then the

reflected function

u∗ =
{
u	x
 when xn ≥ 0

u	x′�−xn
 when xn < 0
(4.1)

belongs to the class S∗	��� f ∗
 in B1, where f ∗ is reflected the same way as u∗.

Proof. We will show that u∗ belongs to S∗	��� f ∗
 in B1, where f is also reflected
in the same way as u.

For � ∈ �, let us consider the function v� = u∗ + ��xn�. It is clear that v� ∈
S∗	��� f ∗
 in B+

1 as well as v� ∈ S∗	��� f ∗
 in B−
1 , since the Pucci extremal

operators depend only on the second derivatives and are invariant under
symmetries.

When � > 0, then v� cannot be touched by any smooth function from above
at the points in � . Indeed, if � was such a test function, then �	x
− �xn would
touch u in the Neumann boundary, and therefore �� ≥ � at the contact point. But
�	x′�−xn
− �xn would also touch u from above at the same point in the boundary,
then �� ≤ −�, obtaining a contradiction.

Therefore, since v� can never be touched from above at any point in � , and in
the rest of B1, v� is in the S∗ class, then v� ∈ S	���−�f ∗�
 in B1, when � > 0.

Similarly, we obtain v� ∈ S	��� �f ∗�
 in B1, when � < 0.
But v� → u∗ uniformly as � → 0. Since the classes of S and S are closed under

uniform limits, then u∗ belongs to both, in other words u∗ ∈ S∗	��� f ∗
 in B1. �

Proposition 4.2. Let u � B+
1 → � be a function that belongs to S∗	��� f
 in B+

1 such
that it satisfies u� = 0 in the viscosity sense in � . Then u ∈ C�	B+

1/2
 up to the boundary,
for a universal � > 0. Moreover, we have the estimate

�u�
C�	B+

1/2

≤ C

(
�u�L�	B+

1 

+ �f�Ln	B+

1 


)
�

Proof. Since the reflected function u∗ of Proposition 4.1 is in the class S∗ across
the boundary. Then u∗ is C� in B1/2 by interior estimates (see Caffarelli and Cabré,
1995, Section 4.3). Thus u ∈ C�	B+

1/2
 up to the boundary. The estimate follows from
the C� estimates for the S∗ class (see Caffarelli and Cabré, 1995, Proposition 4.10).

�

Corollary 4.3. Let u be a solution of a fully nonlinear uniformly elliptic equation
F	D2u
 = 0 in B+

1 with Neumann data u� = 0 in � in the viscosity sense. Then
u ∈ C�	B+

1/2
 up to the boundary, for a universal � > 0. Moreover, we have the estimate

�u�
C�	B+

1/2

≤ C

(
�u�L�	B+

1 

+ �F	0
�

)
�

5. Sup- and Inf-Convolutions

In Jensen (1988), the author introduced the concept of sup- and inf-convolutions
to prove comparison principles for viscosity solutions of second order partial
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differential equations. We will see in this section, that this concept applies up to the
boundary in our situation.

Let u � B+
1 → �. We will consider the following definition of sup- and inf-

convolutions:

u�	x
 = sup
y∈B+

1−�

{
u	y
− 1

�
�x − y�2

}
(5.1)

u�	x
 = inf
y∈B+

1−�

{
u	y
+ 1

�
�x − y�2

}
� (5.2)

The following property is standard and its proof can be found in Caffarelli and
Cabré (1995, Theorem 5.1).

Proposition 5.1. The sup-convolution satisfies the following properties:

1. u� ∈ C	B+
1−�
;

2. u� → u uniformly as � → 0;
3. For any point x0 ∈ B+

1−�, there is a concave paraboloid of opening 2
�
that touches u�

from below. Hence, u� ∈ C1�1 by below.

Lemma 5.2. Suppose u satisfies u� ≥ 0 in � , in the viscosity sense. For any x ∈ B+
1 ,

the sup (resp. inf) in (5.1) (resp. (5.2)) is achieved for a y0 ∈ B+
1−�\� .

Proof. Since we consider u to be continuous and B+
1−� is a compact set, then the

supremum in (5.1) is achieved. We have to check that for the y0 that achieves this
supremum is not in � .

Suppose that y0 ∈ � ,

u�	x
 = sup
y∈B+

1−�

{
u	y
− 1

�
�x − y�2

}

= u	y0
−
1
�
�x − y0�2� (5.3)

Then

u	y0
−
1
�
�x − y0�2 +

1
�
�x − y�2 ≥ u	y
 (5.4)

for every y ∈ B+
1−�.

Therefore function v	y
 = u	y0
− 1
�
�x − y0�2 + 1

�
�x − y�2 touches u from above

at the point y = y0. By the Neumann boundary condition in the viscosity sense, we
have v�	y0
 ≥ 0. But v�	y0
 = 2

�
	y0 − x
 · � < 0 since x ∈ B+

1 and y0 ∈ � . �

Lemma 5.3. Let u be a subsolution of the equation F	D2u
 ≥ 0 and u� ≥ 0 in the
viscosity sense. Then u� is also a subsolution of the same equation (same conclusion
holds with supersolutions if we consider u� instead of u�).

Proof. Suppose that P	x
 touches u� from above at a point x0.
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If x0 ∈ B+
1−�, then u�	x0
 = u	y0
− 1

�
�x0 − y0�2 for some y0 ∈ B+

1−�. Now u�	x
 ≥
u	x + y0 − x0
− 1

�
�x0 − y0�2 in a neighborhood of x0. Therefore Q	x
 = P	x + x0 −

y0
+ 1
�
�x0 − y0�2 touches u from above at the point y0. Since u is a subsolution we

have F	D2P	x0

 = F	D2Q	y0

 ≥ 0.
If x0 ∈ � ∩ ��x� < 1− ��, then u�	x0
 = u	y0
− 1

�
�x0 − y0�2 for some y0 ∈ B+

1−�.
Now u�	x
 = u	y0
− 1

�
�x − y0�2, therefore P�	x0
 ≥ 2

�
	y0 − x0
 · � ≥ 0. �

Proposition 5.4. Let u be a subsolution of the equation F	D2u
 ≥ 0 and u� ≥ 0. Let v
be a supersolution of the equation F	D2v
 ≤ 0 and v� ≤ 0. Then u− v ∈ S	 �

n
�
 in B+

1

and 	u− v
� ≥ 0 in � .

Proof. The proof uses sup- and inf-convolutions. The proof that u− v ∈ S
(
�
n
� 

)
in

B+
1 can be found in Caffarelli and Cabré (1995, Theorem 5.3). We will concentrate

here in the boundary condition. We know that u� and u� satisfy also the same
inequality for the normal derivatives in the boundary � .

Let x0 ∈ � . Suppose that P	x
 touches u� − v� from above at a point x0. Let y0
and y1 be the point that realize the supremum and infimum respectively:

u�	x0
 = u	y0
−
1
�
�x0 − y0�2 (5.5)

v�	x0
 = v	y1
+
1
�
�x0 − y1�2� (5.6)

Then u�	x
 = u	y0
− 1
�
�x − y0�2 and v�	x
 = v	y1
+ 1

�
�x − y1�2 for any x.

Therefore,

u�	x
− v�	x
 = u	y0
−
1
�
�x − y0�2 − v	y1
−

1
�
�x − y1�2 = G	x
�

Then, P	x
 also touches G	x
 from above at x0, thus

P�	x0
 ≥
2
�
� · 	y0 − x0
+

2
�
� · 	y1 − x0
 ≥ 0� �

Remark 5.5. As the referee pointed out, it is also possible to prove Proposition 5.4
using a doubling variables type argument, as it is standard in viscosity solutions
theory. For a general description of the method see Crandall et al. (1992).

6. Hölder Estimates for the First Derivatives

The main result of this section is the following theorem.

Theorem 6.1. Let u be a solution of F	D2u
 = 0 in B+
1 and u� = 0 in � . Then u is

C1��	B+
1/2
 up to the boundary, for a universal � > 0. Moreover, we have the estimate

�u�
C1��	B+

1/2

≤ C

(
�u�

C	B+
1 

+ �F	0
�

)
(6.1)

for a universal constant C.
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Our proof of Theorem 6.1 is an adaptation of the proof of Corollary 5.7
in Caffarelli and Cabré (1995) (the interior C1�� regularity for uniformly elliptic
equations). We will use the following lemma, whose proof can be found in Caffarelli
and Cabré (1995, Lemma 5.6).

Lemma 6.2. Let 0 < � < 1, 0 < � ≤ 1, and K > 0 be constants. Let u ∈ L�	�−1� 1�

satisfy �u�L�	�−1�1�
 ≤ K. Define, for h ∈ � with 0 < �h� ≤ 1,

v��h	x
 =
u	x + h
− u	x


�h�� � x ∈ Ih�

where Ih = �−1� 1− h� if h > 0 and Ih = �−1− h� 1� if h < 0. Assume that v��h ∈
C�	Ih
 and �v��h�C�	Ih


≤ K, for any 0 < �h� ≤ 1. We then have:

1. If �+ � < 1 then u ∈ C�+�	�−1� 1�
 and �u�C�+�	�−1�1�
 ≤ CK,
2. If �+ � > 1 then u ∈ C0�1	�−1� 1�
 and �u�C0�1 ≤ CK,

where the constants C in 1. and 2. depend only on �+ �.

Proof of Theorem 6.1. Let T�	B+
r 
 be the space of functions that are C� in the

horizontal directions,

T�	B+
r 
 �=


v ∈ C	B+

r 
 � sup
x�y∈B+

r
	x−y
·�=0

�v	x
− v	y
�
�x − y�� < +�


 �

The norm in this space is given by

�v�T�	B+
r 


= �v�C	B+
r 

+ sup

x�y∈B+
r

	x−y
·�=0

�v	x
− v	y
�
�x − y�� �

Let � be any unit vector parallel to � (i.e., ��� � = 0). For any h < 1/8, from
Proposition 5.4, we have that v��h	x
 = 1

h�
	u	x + h�
− u	x

 ∈ S

(
�
n
� 

)
in B+

7/8 and
	v��h
� = 0 in � ∩ B7/8. Hence, by Proposition 4.2 properly rescaled

�v��h�C�	B+
r 


≤ C	r� s
�v��h�C	B+
	r+s
/2


≤ C	r� s
�u�
T�	B+

s 

� (6.2)

where 0 < r < s ≤ 7
8 , 0 < h < s−r

2 , � is universal and C	r� s
 depends on n, �, , r,
and s.

We can make � slightly smaller if needed so that there is an integer i such that
i� < 1 and 	i+ 1
� > 1. From Corollary 4.3, we know that

�u�
T�	B+

7/8

≤ �u�

C�	B+
7/8


≤ C
(
�u�

C	B+
1 

+ �F	0
�

)
�

Let K = (�u�
C	B+

1 

+ �F	0
�) so that �u�

T�	B+
7/8


≤ CK.

We can apply now (6.2) with � = � and r = r1 < s = 7/8 to get

�v��h�T�	B+
r1 


≤ C	r1
�u�T�	B+
7/8


≤ C	r1
K�
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We apply Lemma 6.2 with � = �. Recall that we can do this for any unit vector
� parallel to � . We obtain

�u�T 2�	B+
r1 


≤ C	r1
K�

We repeat this process with � = 2� to obtain �u�
T 3�	B+

r2 

≤ CK. If we choose

ri+1 = 5/8, at the end we obtain

�u�
T 1	B+

3/4

≤ CK�

Then we apply (6.2) with � = 1 and get

�v1�h�C�	B+
5/8


≤ C�u�
T 1	B+

3/4

≤ CK�

Since v1�h is a difference quotient of u for h and � is any vector parallel to � ,
we obtain u ∈ C1��	� ∩ B5/8
 and �u�C1��	�∩B5/8


≤ CK.

Finally, we apply Proposition 2.2 properly rescaled to obtain u ∈ C1��1	B+
1/2
 and

�u�
C1��1 	B+

1/2

≤ C

(
�u�

C	B+
5/8


+ �u�C1��	�∩B5/8

+ �F	0
�

)
≤ CK� �

7. Hölder Estimates for the Second Derivative

The following lemma was first observed by Krylov (1983). Later a simpler proof
was given by Caffarelli (to appear) in the context of viscosity solutions, but
unfortunately he did not publish it. His proof can be found in new editions of the
book of Gilbarg and Trudinger (2001, Theorem 9.31) stated in a slightly different
but equivalent way.

Lemma 7.1. Let u � B+
1 → � be such that u = 0 in � , and u ∈ S	��
 in B+

1 . Then
there is a C� function A � � → � such that for every x ∈ B+

1/2,

−C�xn�1+� ≤ u	x
− A	x′
xn ≤ C�xn�1+�

where x = 	x′� xn
, � > 0 is universal, C and �A�C� depend on n, �, , and linearly on
supB+

1
u. The function A is then the normal derivative of u at the boundary � .

We can apply this lemma to the normal derivative of a Neumann type problem
to find the following estimate.

Corollary 7.2. Let u be a solution of F	D2u
 = 0 in B+
1 and u� = 0 in � , then there is

a C� function A � � → � such that

−C�xn�2+� ≤ u	x
− u	x′� 0
− A	x′

2

x2n ≤ C�xn�2+�� (7.1)

In the previous statements we think of A	x′
 to be u��	x
′� 0
.
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Proof. The normal derivative u� is well defined since u ∈ C1�� by Theorem 6.1. We
see that u� satisfies the hypothesis of Lemma 7.1, then

−C�xn�1+� ≤ u�	x
− A	x′
xn ≤ C�xn�1+��

Therefore

u	x
− u	x′� 0
 =
∫ xn

0
u�	x

′� y
dy

≤
∫ xn

0
A	x′
y + C�y�1+� dy

≤ A	x′

2

x2n + C�xn�2+��

Similarly, we show u	x
− u	x′� 0
 ≥ A	x′

2 x2n − C�xn�2+�. �

Proposition 7.3. Let u be a solution of F	D2u
 = 0 in B+
1 and u� = 0 in � . Then if

we take its restriction to � , v	x′
 = u	x′� 0
, then v solves (in the viscosity sense) the
equation

F

(
D2v 0
0 A	x′


)
= 0�

where A � � → � is a C� function, for a universal � > 0.

Proof. Let � be a smooth function on � touching v from below in a point in �
that, for simplicity, we will consider to be the origin. We want to extend � to B1 and
translate it to turn it into a test function which touches u from below in the interior
of B+

r , for an arbitrarily small r.
Let A be the function of Corollary 7.2. For a small � > 0, let

�̃	x
 = �	x′
+ A	0

2

x2n − ��x�2�

From Corollary 7.2, we know that

u	x
 ≥ u	x′� 0
+ A	x′

2

x2n − C�xn�2+�

≥ u	x′� 0
+ A	0

2

x2n − C�x�2+� since A is C�

≥ u	x′� 0
+ A	0

2

x2n −
�

2
�x�2 for �x� small enough

≥ �̃	x
+ �

2
�x�2�

Let r > 0 be chosen so that the above computation is valid for �x� < r.
We will consider two cases: whether A	0
 ≤ 0 or not.
If A	0
 ≤ 0, we translate �̃ in the inner normal direction.

�̃h	x
 = �̃	x′� xn − h
�
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We choose h such that
(−A	0


2 + �
)
h2 ≤ �

2 	r − h
2. Therefore u	0
− �̃h	0
 ≤
u	x
− �̃h	x
 when �x� = r. The function u− �̃h cannot have a local minimum in
� ∩ Br because ��u = 0 and ���̃h > 0 in there. Therefore u− �̃h must have a local
minimum at some point x1 ∈ B+

r . Since F	D2u
 = 0 in B+
1 , then F	D2�̃h	x1

 ≤ 0.

Since we can do all this for r arbitrarily small, and then we can also take � → 0, we
obtain

F

(
D2� 0
0 A	0


)
≤ 0�

In the case A	0
 > 0, the only difference is that we translate �̃ in the outer
normal direction

�̃h	x
 = �̃	x′� xn + h


and then if we choose � < A	0
, the same reasoning as above applies.
We can do the same thing for test functions touching v from above, therefore

we obtain in the viscosity sense

F

(
D2v 0
0 A	x′


)
= 0� �

Theorem 7.4. Assume F to be a convex function and let u be a solution of F	D2u
 = 0
in B+

1 and u� = 0 in � . Then u is C2��	B+
1/2
 up to the boundary, for a universal � > 0.

Moreover, we have the estimate

�u�
C2��	B+

1/2

≤ C

(
�u�

C	B+
1 

+ �F	0
�

)
(7.2)

for a universal constant C.

Proof. By Proposition 7.3, the restriction v	x′
 = u	x′� 0
 satisfies equation

F

(
D2v 0
0 A	x′


)
= 0

where A is C�. By the C2�� estimates for elliptic equations in Caffarelli and Cabré
(1995), we conclude that v ∈ C2��	� ∩ B2/3
. By Corollary 7.2, then u is C2�� at the
boundary � ∩ B2/3, and then from Proposition 2.4 we obtain the desired estimate.

�

8. Inhomogeneous Equations

In this section we study the regularity in the case when we have a nonzero right-
hand side. The proofs are based on a perturbation of the homogeneous case. For
simplicity, in this section we keep the left-hand side independent of x. The proofs of
the corresponding results with x dependent left-hand side follow the same spirit but
are more complicated. We will outline the general case in the next section.

Theorem 8.1. Let u be a solution of F	D2u
 = f	x
 in B+
1 and u� = g in � , for a

bounded function g and f ∈ Ln	B+
1 
. Then u is C�	B+

1/2
 up to the boundary. For a
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universal � > 0. Moreover, we have the estimate

�u�
C�	B+

1/2

≤ C

(
�u�

C	B+
1 

+ �g�L� + �f�Ln + �F	0
�

)
(8.1)

for a universal constant C.

Proof. If we can show that any function u, continuous in B+
r such that F	D2u
 =

f	x
 in B+
r and u� = g in � ∩ Br satisfies

osc
B+
r/2

u ≤ 	1− �
 osc
B+
r

u+ C�F	0
�r2 + Cr	�g�L� + �f�Ln
 (8.2)

for universal constants � > 0 and C. Then applying (8.2) to translations of u we
obtain a C� modulus of continuity for u at the bottom � by a standard iterative
argument. Then (8.1) follows by interior regularity (or by Proposition 2.1). So we
are going to show (8.2).

Let u be as above. Let v be the solution of the problem:

F	D2v
 = 0 in B+

r

v� = 0 in � ∩ Br

v = u in �Br ∩ �xn > 0��

The function v is in the class S	�/n�� F	0

 in B+
r . We can reflect it using

Proposition 4.1 to get a function v∗ ∈ S	�/n�� F	0

 in Br . By simple comparison
principle,

max
B+
r

v = max
Br

v∗ ≤ max
�Br

v∗ + C�F	0
�r2 ≤ max
B+
r

u+ C�F	0
�r2�

Similarly,

min
B+
r

v ≥ min
B+
r

u− C�F	0
�r2�

Therefore,

osc
B+
r

v ≤ osc
B+
r

u+ C�F	0
�r2� (8.3)

Since v∗ ∈ S	�/n�� F	0

 in Br , we can apply Harnack inequality to obtain

osc
B+
r/2

v = osc
Br/2

v∗ ≤ 	1− �
 osc
Br

v∗ + C�F	0
�r2 = 	1− �
 osc
B+
r

v+ C�F	0
�r2� (8.4)

Combining (8.3) with (8.4) we get

osc
B+
r/2

v ≤ 	1− �
 osc
B+
r

u+ C�F	0
�r2 (8.5)

for some universal constant C.
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Let w = u− v. Then w satisfies the following relations:

w ∈ S	�/n�� f
 in B+

r

w� = g in � ∩ Br

w = 0 in �Br ∩ �xn > 0��

Applying Proposition 3.1 to w and −w, we obtain

max
B+
r

�w� ≤ Cr
(�f�Ln + �g�L�

)
�

Therefore,

osc
B+
r/2

w ≤ osc
B+
r

w ≤ Cr
(�f�Ln + �g�L�

)
� (8.6)

Adding (8.5) with (8.6), we finally get

osc
B+
r/2

u ≤ osc
B+
r/2

v+ osc
B+
r/2

w

≤ 	1− �
 osc
B+
r

u+ C�F	0
�r2 + Cr	�f�Ln + �g�L�
� (8.7)

�

Theorem 8.2. Consider g ∈ C�	B+
1 
 and f ∈ Lp	B+

1 
 for some � ∈ 	0� 1
 and p > n.
Let u be a solution of F	D2u
 = f in B+

1 and u� = g in � . Then u is C1��	B+
1/2
 where

� = min	�0� �� 1− n/p
 and �0 is a universal constant. Moreover, we have the estimate

�u�
C1��	B+

1/2

≤ C

(
�u�

C	B+
1 

+ �g�C�	�
 + �f�Lp + �F	0
�

)
� (8.8)

where C is a constant depending only on n, �, , and �.

Proof. By interior estimates (or by Proposition 2.2) it is enough to find a C1��

estimate for the points in � . Moreover, for proving (8.8) it is enough to get a
universal estimate at the origin, and then apply it to rescaling and translations of u.

Without loss of generality we can assume u	0
 = 0 and g	0
 = 0. Let M =
�u�

C	B+
1 

+ �g�C�	�
 + �f�Lp + �F	0
�. We want to show that there is a universal �0,

and a universal constant � < 1, such that for � = min	�0� �� 1− n/p
, there is a
constant C1, depending only on n, �, and  and a sequence of vectors Ak such that
Ak · � = 0 and

osc
B+
�k

	u	x
− Ak · x
 ≤ C1M�k·	1+�
 (8.9)

�Ak+1 − Ak� ≤ CM�k�� (8.10)

We will show this by induction.
We choose a C1 > 1 so that (8.9) holds for k = 0 with A0 = 0.
To complete an induction proof, we assume that we already have a sequence of

vectors Ak so that (8.9) holds for k = 0� 1� � � � � K; we have to show that there is a
vector AK+1 such that (8.9) holds for k = K + 1.



Regularity for Fully Nonlinear Elliptic Equations 1241

Let r = �K and B = AK .
Let v be the solution of the following problem (like in the proof of

Theorem 8.1):



F	D2v
 = 0 in B+

r

v� = 0 in � ∩ Br

v = u− B · x in �Br ∩ �xn > 0��

From maximum principle (Proposition 3.1) we know

osc
B+
r

v ≤ osc
B+
r

	u− B · x
+ C2�F	0
�r2� (8.11)

Now we apply the C1�� estimates to v. Theorem 6.1 tells us that �v is well
defined up to the boundary � ∩ Br . Let A = �v	0
, by the boundary conditions
A · � = 0. Rescaling of the C1�� estimate gives

oscB+
r̃
	v	x
− A · x

r̃1+�1

≤ C0

(
1

r1+�1
osc
B+
r

v+ r1−�1 �F	0
�
)

(8.12)

�A� ≤ C

(
oscB+

r
v

r
+ r�F	0
�

)
(8.13)

for any r̃ ≤ r/2. Where �1 is the � of Theorem 6.1.
We choose � small enough so that C0�

�1 = 	1− �
 < 1, for some positive
constant �. Combining (8.12) for r̃ = �r with (8.11), we get

osc
B+
�r

	v	x
− A · x
 ≤ 	1− �
� osc
B+
r

	u− B · x
+ C3�F	0
�r2 (8.14)

Let w = u− B · x − v. Recall B · � = 0. Like in the proof of Theorem 8.1, we
have 


w ∈ S	�/n�� f
 in B+

r

w� = g in � ∩ Br

w = 0 in �Br ∩ �xn > 0��

Then, by Proposition 3.1, we have

sup
B+
r

�w	x
� ≤ Cr�g�L�	�∩Br 

+ Cr

( ∫
B+
r

�f �n dx
)1/n

≤ C�g�C�	�
r
1+� + Cr�f�Lpr1−n/p� (8.15)

Adding (8.14) with (8.15) we get

osc
B+
�r

	u	x
− 	A+ B
 · x


≤ 	1− �
� osc
B+
r

	u− B · x
+ C�F	0
�r2 + C�g�C�	�
r
1+� + C�f�Lpr2−n/p� (8.16)
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By the inductive hypothesis we have oscB+
r
	u− B · x
 ≤ C1M�K·	1+�
, therefore,

osc
B+
�r

	u	x
− 	A+ B
 · x
 ≤ M
(
	1− �
�C1�

K·	1+�
 + C2

(
�2K + �K	1+�
 + �K	2−n/p


))
�

(8.17)

Now we will choose the right constants �0 and C1. We choose �0 so that
��0 = 	1− �/2
, � = min	�0� �� 1− n/p

, and C1 large enough so that ��

2 C1 ≥ 3C2.
Replacing in (8.17), we get

osc
B+
�r

	u	x
− 	A+ B
 · x


≤ M

(
	1− �/2
�C1�

K·	1+�
 + C2

(
�2K + �K	1+�
 + �K	2−n/p


)
− ��

2
C1�

K·	1+�


)

≤ M	1− �/2
�C1�
K·	1+�


≤ MC1�
	K+1
·	1+�
� (8.18)

From (8.13), (8.11), (8.9), and that r = �K , we get

�A� ≤ CM��K (8.19)

Taking AK+1 = A+ B, we finish the inductive proof of (8.9) and (8.10).
Let A� = limk→� Ak. We claim that

�u	x
− A� · x� ≤ CM�x�1+��

Indeed, from (8.9) and (8.10) we get

osc
B+
�k

	u	x
− A� · x
 ≤ osc
B+
�k

	u	x
− Ak · x
+ 2�k�Ak − A�� (8.20)

≤ C1M�k·	1+�
 + CM�k
�∑
j=k

��j (8.21)

≤ C1M�k·	1+�
 + CM�	1+�
k 1
1− ��

(8.22)

≤ CM�k·	1+�
 (8.23)

This implies the C1�� estimate at the origin, and the estimate follows by
translation and interior estimates. �

Theorem 8.3. For F a convex, let u be a solution of F	D2u
 = f in B+
1 and u� = g

in � , for a C1�� function g, and f ∈ C�
(
B+
1

)
(� > 0). Then u is C2��

(
B+
1/2

)
up to the

boundary, for � = min	�0� �
. Where �0 > 0 is a universal constant. Moreover, we have
the estimate

�u�
C2��	B+

1/2

≤ C

(
�u�

C	B+
1 

+ �g�C1��	�
 + �f�

C�	B+
1 

+ �F	0
�

)
(8.24)

for a constant C depending only on n, �, , and �.
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Proof. The proof will follow the same ideas as Theorem 8.2, but instead of
approximating with planes, we must use paraboloids, and we have to use
Theorem 7.4 instead of 6.1.

Let M = �u�
C	B+

1 

+ �g�C1��	�
 + �f�C� + �F	0
�. We want to show that there is

an � > 0, and a universal constant � < 1, such that there is a constant C1, depending
only on n, �, and , and a sequence of paraboloids Pk	x
 = 1

2x
TQkx + Ak · x +

u	0
 such that F	Qk
 = f	0
, Ak · � = 0 and 	Qk
jn = �jnPk	x
 = �jg	0
 for every
j �= n, and

osc
B
�k

	u	x
− Pk	x

 ≤ C1M�k·	2+�
 (8.25)

�Ak+1 − Ak� ≤ CM�k	1+�
 (8.26)

�Qk+1 −Qk� ≤ CM�k�� (8.27)

As before, this will show that estimate (8.24) holds punctually at x = 0; and
then this implies the full estimate (8.24) by translations and interior estimates. We
can subtract a suitable plane to u such that u	0
 = 0 and g	0
 = u�	0
 = 0. So we
suppose u	0
 = 0 and g	0
 = 0.

We will show (8.25) by induction.
We choose C1 > 1 so that (8.25) holds k = 0 with A0 = 0 and Q0 the symmetric

matrix such that �jg	0
 = Qjn for every j �= n, Qij = 0 for i� j �= n and Qnn chosen so
that F	Q
 = f	0
. Note that �Q� ≤ C	�F	0
� + �f	0
�
 ≤ CM for a universal constant
C. This is the only part where the term �F	0
� in the definition of M matters.

To complete an induction proof, we assume that we already have such a
sequence of paraboloids Pk = 1

2x
TQkx + Ak · x so that (8.25), (8.26), and (8.27) hold

for k = 0� 1� � � � � K; we have to show that there is another paraboloid PK+1 such that
(8.25)–(8.27) hold for k = K + 1.

Let r = �−K .
Let v be the solution of the following problem (like in the proof of

Theorem 8.2):



F	D2v+QK
 = 0 in B+

r

v� = 0 in � ∩ Br

v = u− Pk	x
 in �Br ∩ �xn > 0��

From maximum principle (Proposition 3.1) and that F	QK
 = 0, we know that

osc
B+
r

v ≤ osc
B+
r

	u− Pk	x

� (8.28)

Now we apply the C2�� estimates to v. Theorem 7.4 tells us that �v and D2u
are well defined up to the boundary � ∩ Br . Let B = �v	0
 and R = D2v	0
, and let
P be the paraboloid xTRx + B · x. By the boundary conditions �nP = 0 and by the
equation and the fact that D2v is continuous up to the boundary F	QK + R
 = 0.
Since F	QK
 = 0, rescaling of the C2�� estimate gives

oscBr̃
	v	x
− P	x



r̃2+�1
≤ C0

1
r2+�1

osc
B+
r

v (8.29)
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�B� ≤ C
oscB+

r
v

r
(8.30)

�R� ≤ C
oscB+

r
v

r2
(8.31)

for any r̃ ≤ r/2, where �1 is the � of Theorem 7.4.
We choose � small enough so that C0�

�1 = 	1− �
 < 1, for some positive
constant �. Combining (8.29) for r̃ = �r with (8.28), we get

osc
B+
�r

	v	x
− P	x

 ≤ 	1− �
�2 osc
B+
r

	u− PK	x

� (8.32)

Let w = u− PK	x
− v. Like in the proof of Theorem 8.2, we have



w ∈ S	�/n�� f − f	0

 in B+

r

w� = g	x
− �nPK	x
 in � ∩ Br

w = 0 in �Br ∩ �xn > 0��

Recall that �jg = 	QK
jn = �jnPK	0
 and g	0
 = 0, so g − �nPK is of order �x�1+�

around x = 0. Then, by Proposition 3.1, we have

sup
B+
r

�w	x
� ≤ Cr�g − �nPK�L�	�∩Br 

+ Cr

( ∫
B+
r

�f − f	0
�n dx
)1/n

≤ C�g�C1��	�
r
2+� + C�f�C�r2+�� (8.33)

Adding (8.32) with (8.33) we get

osc
B�r

	u	x
− PK	x
− P	x

 ≤ 	1− �
�2 osc
B+
r

	u− PK	x

+ C�g�C1��	�
r
2+� + C�f�C�r2+��

(8.34)

By the inductive hypothesis, oscB+
r
	u− PK	x

 ≤ C1M�K·	2+�
. Thus we get

osc
B�r

	u	x
− PK	x
− P	x

 ≤ M
(
	1− �
�2C1�

K·	2+�
 + C2�
K	2+�


)
� (8.35)

Now we will choose the right constants �0 and C1. We choose �0 so that ��0 =
	1− �/2
, � = min	�0� �
, and C1 large enough so that ��2

2 C1 ≥ C2. Replacing in
(8.35), we get

osc
B�r

	u	x
− PK	x
− P	x

 ≤ M

(
	1− �/2
�2C1�

K·	2+�
 + C2�
K	2+�
 − ��2

2
C1�

K·	2+�


)

≤ M	1− �/2
�2C1�
K·	2+�


≤ MC1�
	K+1
·	2+�
� (8.36)

From (8.30), (8.28), and that r = �K , we get

�B� ≤ C�	1+�
K� (8.37)
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And from (8.31) and (8.28), we get

�R� ≤ C��K� (8.38)

Taking PK+1 = PK + P, we finish the inductive proof of (8.25), (8.26), and (8.27).
Like in the proof of Theorem 8.2, this implies a C2�� estimate punctually at the

origin. Thus the estimate follows. �

9. General Equations

This section is concerned with the Hölder regularity for the first derivatives of
solutions of

F	D2u� x
 = f	x
 (9.1)

for x ∈ B+
1 and u� = g on � . In Caffarelli and Cabré (1995, Chapter 8), interior

regularity results are obtained for an equation like (9.1) by a perturbation argument
of the homogeneous case. With the results we have so far in this article, we
can extend the proof in Caffarelli and Cabré (1995) for C1�� regularity up to the
boundary in the Neumann problem. It is a key idea to think of the Neumann
condition as part of the equation and not the boundary data. After all, if the
Neumann condition is part of the equation, then we are actually talking about
interior regularity.

The results so far in this article provide us with good estimates for the equation
that we obtain when we “freeze” the value of x. We assume that the oscillation of
function F	M� x
 in x is sufficiently “small” so that the Neumann condition u� = g
has a C� right-hand side, and that the corresponding homogeneous equation “with
constant coefficients”

F	D2u� x0
 = 0 in B+
r

u� = g	y0
 in �

has C1��̄ estimates for any fixed x0, where y0 is the projection of x0 into � .
We intend to follow proof in Caffarelli and Cabré (1995, Theorem 8.3) for the

interior regularity. We realize everything follows the same way as long as we modify
two lemmas. We are just going to outline the required modifications.

The proof of Lemma 9.1 (Proposition 4.14 in Caffarelli and Cabré, 1995) is
based on the ABP estimate and C� regularity of the solution. Since we have a
corresponding result by Propositions 3.1 and 4.2, we can extend the lemma to our
case.

Lemma 9.1. Let u be continuous in B+
1 that belongs to S	��� f
 in B+

1 such that it
satisfies u� = g on � and f is a continuous function. Denote by � the restriction of u
on �B1 ∩ �xn > 0� and let �	�x − y�
 be a modulus of continuity of �; that is � is a
nondecreasing function with lim�→0 �	�
 = 0 such that

��	x
− �	y
� ≤ �	�x − y�
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for all x� y ∈ �B1 ∩ �xn > 0�. In addition let K be a positive constant such that
���L� ≤ K, �g�L� ≤ K and �f�Ln	B+

1 

≤ K. Then there exists a modulus of continuity

�∗ of u in B+
1 , i.e., �

∗ is nondecreasing, lim�→0 �
∗	�
 = 0 and

�u	x
− u	y
� ≤ �∗	�x − y�


for all x� y in B+
1 . Where �∗ depends on n, �, , K, and �.

Next we adapt Lemma 8.2 in Caffarelli and Cabré (1995) (see also Theorem 2.1
in Swiech, 1997) to our case. We consider the function

�	x
 = �F	x
 = sup
�\�O�

�F	M� x
− F	M� 0
�
1+ �M�

which measures the oscillation of F in x near the origin (recall that � denotes the
space of symmetric matrices).

Lemma 9.2. Suppose that F is continuous in x, F	0� x
 ≡ 0, and � = �F is Hölder
continuous in B+

1 (for some exponent in 	0� 1
). Let u0 be a continuous function on
�B1 ∩ �xn > 0�, has � = �	s
 as modulus of continuity on �B1 ∩ �xn > 0� and satisfy
�u0�L�	�B1∩�xn>0�
 ≤ K, for some positive constant K.

Then, given � > 0, there exists � > 0 depending only on �� n� ��� ��K such that
if f is Hölder continuous in B+

1 , g is Hölder continuous on � ,

���Ln	B+
1 


≤ �� �f�Ln	B+
1 


≤ �� and �g − g0�L�	�
 ≤ � for g0 ≤ K

then any two viscosity solutions v and w of, respectively,

F	D2v� x
 = f	x
 in B+

1

v = u0 on �B1 ∩ �xn > 0�

v� = g on �

and 

F	D2w� 0
 = 0 in B+

1

w = u0 on �B1 ∩ �xn > 0�

w� = g0 on �

satisfy

�v− w�L�	B+
1 


≤ ��

Note that it is no restriction to assume F	0� x
 ≡ 0, since F	D2u� x
 = f	x

may be written as F	D2u� x
− F	0� x
 = f	x
− F	0� x
. For the proof of the
previous lemma we refer the reader to Caffarelli and Cabré (1995, Lemma 8.2) (or
Theorem 2.1 in Swiech, 1997) the proof of which is still valid in our case due to
Lemma 9.1.

As we mentioned before, in order to prove C1�� estimates for our solution, we
would like to use the “freezing” argument as in Theorem 8.3 of Caffarelli and Cabré
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(1995). In fact if we follow the lines of the proof, we realize that all the arguments
are applied perfectly in our case, except the fact that we use domains B+

r , instead of
balls Br , with the Neumann condition on the bottom � . But this is not a problem
since we treat the Neumann conditions as a part of our equation and thus we also
apply for them the compactness method (see Lemma 9.2). To conclude we state the
main theorem.

Theorem 9.3. Assume that F	0� x
 ≡ 0, F is continuous in x ∈ B+
1 and both � = �F

and f are Hölder continuous in B+
1 and g is Hölder continuous on � . Suppose that there

is a constant 0 < �̄ < 1 such that for any u0 ∈ C	�B1 ∩ �xn > 0�
 and g0 ≤ K, there
exists a w ∈ C	B+

1 
 ∩ C1��̄	B+
1/2
 which is viscosity solution of



F	D2w� 0
 = 0 in B+

1

w = u0 on �B1 ∩ �xn > 0�

w� = g0 on ��

Assume that 0 < � < �̄, r0 > 0, and C1 > 0. Then there exists � > 0 depending on
n� ��� �� �̄, and the C1��̄ norm such that if

( ∫
B+
r 	0


/ �n

)1/n

≤ � and

( ∫
B+
r 	0


/ �f �n
)1/n

≤ C1r
�−1

for all r ≤ r0, then any viscosity solution u of

{
F	D2u� x
 = f	x
 in B+

r0
	0


w� = g on � ∩ Br0

is C1�� in the sense that there is an affine function l such that

�u− l�L�	B+
r 	0

 ≤ C2r

1+�

r−�
0 ��l� ≤ C2

for all r ≤ r0 and

C2 ≤ C
(
r
−	1+�

0 �u�L�	Br0

	0

 + �g�C� + C1

)
�

where C > 0 depends only on n� ��� �� �̄, and the C1��̄ norm of w.

10. Appendix

In this appendix, we will give a proof of Propositions 2.1, 2.2, 2.3, and 2.4.
For functions vanishing in the boundary, the C1�� regularity follows from

Lemma 7.1.

Lemma 10.1. Let u be a solution of F	D2u
 = 0 in B+
1 such that u ∈ C	B+

1 
 and u = 0
in � , then u is C1��	B+

1/2
 up to the boundary, for a universal �. Moreover, we have the
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estimate

�u�
C1��	B+

1/2

≤ C

(
�u�

C	B+
1 

+ �F	0
�

)
(10.1)

for a universal constant C.

Proof. The function u belongs to S∗( �
n
� � F	0


)
in B+

1 , and it vanishes in � ,
therefore we can apply Lemma 7.1 to obtain

�u	x
− A	x′
xn� ≤ C�xn�1+�

for all x ∈ B+
1/2, where C = C0�u�L�	B+

1 

and �A�C� ≤ C1�u�L�	B+

1 

, for universal

constants C0 and C1. Therefore

�u	x
− A	0
xn� ≤ �u	x
− A	x′
xn� + �xn��A	x′
− A	0
�
≤ C0�u�L�	B+

1 

�xn�1+� + �xn�C1�u�L�	B+

1 

�x′��

≤ C�u�L�	B+
1 

�x�1+�

for a universal C.
Then u is punctually C1�� at the origin. In the same way, we can show it is

punctually C1�� at every point in � ∩ B1/2 with a uniform bound. Now the lemma
follows using the interior C1�� estimates for the equation F	D2u
 = 0. �

Propositions 2.1 and 2.2 follow from Lemma 10.1 in the same way Theorem 8.2
follows from Theorem 6.1. We are going to give a detailed proof of Proposition 2.2,
that is the one that we actually use in this article. The proof of Proposition 2.1
is very similar. The proof is written almost with the same words as the proof of
Theorem 8.2 to stress the similarity.

Proof of Proposition 2.2. Set g	x′
 = u	x′� 0
. We are going to use an iteration
process similar to the proof of Theorem 6.1. By subtracting a suitable plane at
the origin, we can suppose that u	0
 = g	0
 = 0 and �n−1g	0
 = 0. We are going
to prove a right decay for the function at the origin, and from there the estimate
follows.

Let M = �u�L�	B+
1 

+ �F	0
� + �g�C1��	�
.

We want to show that there is a universal �0, and a universal constant � < 1,
such that for � = min	�0� �
, there is a constant C1, depending only on n, �, and 
and a sequence of real numbers ak such that

osc
B
�k

	u	x
− ak · xn
 ≤ C1M�k·	1+�
 (10.2)

�ak+1 − ak� ≤ CM�k�� (10.3)

We will show this by induction.
We choose C1 > 1 so that (10.2) holds for k = 0 with a0 = 0.
To complete an induction proof, we assume that we already have a sequence ak

so that (10.2) holds for k = 0� 1� � � � � K; we have to show that there is a real number
aK+1 such that (10.2) holds for k = K + 1.
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Let r = �K and b = aK .
Let v be the solution of the following problem


F	D2v
 = 0 in B+

r

v = 0 in � ∩ Br

v = u− b · xn in �Br ∩ �xn > 0��

From maximum principle, we know

osc
B+
r

v ≤ osc
B+
r

	u− b · x
+ C2�F	0
�r2 (10.4)

Now we apply the C1�� estimates to v. Lemma 10.1 tells us that �v is well defined
up to the boundary � ∩ Br . Let a = �nv	0
, by the boundary conditions �v	0
 =
	0� � � � � 0� a
. Rescaling of the C1�� estimate gives

oscBr̃
	v	x
− a · xn

r̃1+�1

≤ C0

(
1

r1+�1
osc
B+
r

v+ r1−�1 �F	0
�
)

(10.5)

�a� ≤ C

(
oscB+

r
v

r
+ r�F	0
�

)
(10.6)

for any r̃ ≤ r/2. Where �1 is the � of Lemma 10.1.
We choose � small enough so that C0�

�1 = 	1− �
 < 1, for some positive
constant �. Combining (10.5) for r̃ = �r with (10.4), we get

osc
B+
�r

	v	x
− a · x
 ≤ 	1− �
� osc
B+
r

	u− b · x
+ C3�F	0
�r2 (10.7)

Let w = u− b · xn − v. We have



w ∈ S	�/n�
 in B+

r

w = g in � ∩ Br

w = 0 in �Br ∩ �xn > 0��

Then, by the maximum principle,

sup
B+
r

�w	x
� ≤ C�g�L�	�∩Br 

≤ C�g�C1+�	�
r

1+�� (10.8)

Adding (10.7) with (10.8) we get

osc
B�r

	u	x
− 	a+ b
 · xn
 ≤ 	1− �
� osc
B+
r

	u− b · xn
+ C�F	0
�r2 + C�g�C�	�
r
1+��

(10.9)

By the inductive hypothesis oscB+
r
	u− b · xn
 ≤ C1M�K·	1+�
. Replacing,

osc
B�r

	u	x
− 	a+ b
 · xn
 ≤ M
(
	1− �
�C1�

K·	1+�
 + C2

(
�2K + �K	1+�


))
� (10.10)
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Now we will choose the right constants �0 and C1. We choose �0 so that ��0 =
	1− �/2
, � = min	�0� �
, and C1 large enough so that ��

2 C1 ≥ 3C2. Replacing in
(10.10), we get

osc
B�r

	u	x
− 	a+ b
 · xn
 ≤ M

(
	1− �/2
�C1�

K·	1+ �
 +C2

(
�2K + �K	1+�


)− ��

2
C1�

K·	1+�


)

≤ M	1− �/2
�C1�
K·	1+�


≤ MC1�
	K+1
·	1+�
� (10.11)

From (10.6), (10.4), and that r = �K , we get

�a� ≤ CM��K� (10.12)

Taking aK+1 = a+ b, we finish the inductive proof of (10.2) and (10.3).
Let a� = limk→� ak. We claim that

�u	x
− a� · xn� ≤ CM�x�1+��

indeed, from (10.2) and (10.3) we get

osc
B
�k

	u	x
− a� · xn
 ≤ osc
B
�k

	u	x
− a� · xn
+ �k�ak − a�� (10.13)

≤ C1M�k·	1+�
 + CM�k
�∑
j=k

��j (10.14)

≤ C1M�k·	1+�
 + CM�	1+�
k 1
1− ��

(10.15)

≤ CM�k·	1+�
� (10.16)

This implies the C1�� estimate at the origin, and the estimate follows by
translation and interior estimates. �

Now let us prove Propositions 2.3 and 2.4.

Proof of Proposition 2.3. Let x ∈ B+
1/2 and y ∈ B+

1 . Let x = 	x′� xn
, where x′ ∈ �n−1

and xn ∈ �. We consider two cases whether �x − y� ≤ �xn�/2 or not.
If �x − y� ≤ �xn�/2, we apply (2.3) for r = �xn� and x0 = x, then

�u	x
− u	y
�
�x − y�� ≤ C

1
r�

osc
Br 	x


u

but oscBr 	x

u ≤ 2C0�2xn�� by (2.4), since r = �xn�

�u	x
− u	y
�
�x − y�� ≤ C2�C0 ≤ CC0

for a constant C depending only on the constant of (2.3).
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If �x − y� > �xn�/2, we apply (2.4) to obtain

�u	x
− u	y
� ≤ �u	x
− u	x′� 0
� + �u	y
− u	x′� 0
�
≤ C0	�xn�� + �y − 	x′� 0
��

≤ C0	2

� + 3�
�x − y�� ≤ 5C0�x − y���

where for the last inequality we used that �xn� < 2�x − y�, and since �y − 	x′� 0
� ≤
�x − y� + �xn�, then �yn� ≤ 3�x − y�.

Putting the two cases together, we obtain (2.5). �

Proof of Proposition 2.4. We are going to show that for any x ∈ B+
1/2 there is a

second order polynomial Px such that for any y ∈ B1,

�u	y
− Px	y
� ≤ C · C0�x − y�2+� (10.17)

The statement of the theorem clearly follows from this.
Let us write x = 	x′� xn
 and x̄ = 	x′� 0
 be the projection of x on the

boundary � . We know from the assumptions that there is a polynomial Px̄ such
that

�u	y
− Px̄	y
� ≤ C0�y − x̄�2+�� (10.18)

The function v = u− Px̄ solves

F	D2v+ A
 = 0 in B+
1

where A is the constant matrix A = D2Px̄. From Caffarelli and Cabré (1995), this
equation has a C2�� interior estimate that does not depend on A. Applying it in the
ball Bxn/2

	x
 and recalling (10.18) we obtain that there is a polynomial R such that

�R	x
� = �v	x
� ≤ C0�xn�2+�

��R	x
� ≤ C · C0�xn�1+�

�D2R	x
� ≤ C · C0�xn��

and

�v	y
− R	y
� ≤ C
(

sup
Bxn/2	x


�v�
) 1
�xn�2+�

�y − x�2+� ≤ C · C0�y − x�2+�� (10.19)

Let us define

Px = Px̄ + R�

Now, if �y − x� < xn/2 we have

�u	y
− Px	y
� = �v	y
− R	y
� ≤ C · C0�y − x�2+��
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We are only left to prove (10.17) for the case �y − x� > xn/2. In that case,

�u	y
− Px	y
� ≤ �u	y
− Px̄	y
� + �R	y
�
≤ C0�y − x̄�2+� + �R	x
+ �R	x
 · 	y − x
+ 	y − x
tD2R	y − x
�
≤ C0�y − x̄�2+� + C · C0	x

2+�
n + �y − x�x1+�

n + �y − x�2x�n

≤ C · C0�y − x�2+�

which finishes the proof. �

Remark 10.2. The proof of a C1�� estimate up to the boundary works the same way
replacing the second order polynomials by first order ones.
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