Young Tableaux and the Representations of the Symmetric Group

Yufei Zhao†
Massachusetts Institute of Technology ’10
Cambridge, MA 02139
yufeiz@mit.edu

Abstract
We explore an intimate connection between Young tableaux and representations of the symmetric group. We describe the construction of Specht modules which are irreducible representations of S_n, and also highlight some interesting results such as the branching rule and Young’s rule. Some knowledge of basic representation theory is assumed.

4.1 Introduction
In this article, we explore a connection between representations of the symmetric group S_n and combinatorial objects called Young tableaux. We define Young tableaux in Section 4.2, but for now, it suffices to say that they are fillings of a certain configuration of boxes with entries from $\{1, 2, \ldots, n\}$, an example of which is shown below.

\[
\begin{array}{ccc}
1 & 2 & 4 \\
3 & 5 & 6 \\
7 & 8 & \\
9 & \\
\end{array}
\]

So how are representations of S_n related to Young tableau? It turns out that there is a very elegant description of irreducible representations of S_n through Young tableaux. Let us have a glimpse of the results. Recall that there are three irreducible representations of S_3. It turns out that they can be described using the set of Young diagrams with three boxes. The correspondence is illustrated below.

\[
\begin{array}{ccc}
& & \\
& & \\
& & \\
\end{array}
\quad
\begin{array}{ccc}
& & \\
& & \\
& & \\
& & \\
\end{array}
\quad
\begin{array}{c}
& \\
& \\
& \\
& \\
\end{array}
\]

trivial representation sign representation standard representation

It is true in general that the irreducible representations of S_n can be described using Young diagrams of n boxes! Furthermore, we can describe a basis of each irreducible representation using standard Young tableaux, which are numberings of the boxes of a Young diagram with $1, 2, \ldots, n$ such that the rows and columns are all increasing. For instance, the bases of the standard representation of S_3 correspond to the following two standard Young tableaux:

\[
\begin{array}{ccc}
1 & 2 & \\
3 & & \\
\end{array}
\quad
\begin{array}{ccc}
1 & 3 & \\
2 & & \\
\end{array}
\]

†Yufei Zhao, Massachusetts Institute of Technology ’10, is a mathematics and computer science major. His favorite mathematical area is combinatorics, but he also enjoys algebra and number theory. He is regularly involved with the training of the Canadian team for the International Math Olympiad.
The dimension of the irreducible representations can be easily computed from its Young diagram through a result known as the hook-length formula, as we explain in Section 4.4.

There are many other surprising connections between Young tableaux and representations of S_n, one of which is the following. Suppose we have an irreducible representation in S_n and we want to find its induced representation in S_{n+1}. It turns out that the induced representation is simply the direct sum of all the representations corresponding to the Young diagrams obtained by adding a new square to the original Young diagram! For instance, the induced representation of the standard representation from S_3 to S_4 is simply

$$\text{Ind}_{S_3}^{S_4} \equiv = \bigoplus \bigoplus .$$

Similarly, the restricted representation can be found by removing a square from the Young diagram:

$$\text{Res}_{S_2} \equiv = \bigoplus .$$

In this paper, we describe the connection between Young tableaux and representations of S_n. The goal is to attract readers to the subject by showing a selection of very elegant and surprising results. Most proofs are omitted, but those who are interested may find them in [Fu], [FH], or [Sa]. We assume familiarity with the basics of group representations, including irreducible representations and characters. Induced representations are used in Section 4.5. For references on group representations, see [FH], [Sa], or [Se].

In Section 4.2, we introduce Young diagrams and Young tableaux. In Section 4.3, we introduce tabloids and use them to construct a representation of S_n known as the permutation module M^λ. However, permutation modules are generally reducible. In Section 4.4, we construct irreducible representations of S_n known as Specht modules S^λ. Specht modules S^λ correspond bijectively to Young diagrams λ and they form a complete list of irreducible representations. In Section 4.5, we discuss the Young lattice and the branching rule, which are used to determine the induced and restricted representations of S^λ. Finally, in Section 4.6, we introduce Kostka numbers and state a result concerning the decomposition of permutation modules into the irreducible Specht modules.

4.2 Young Tableaux

First we need to settle some definitions and notations regarding partitions and Young diagrams.

Definition 1. A **partition** of a positive integer n is a sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$ satisfying $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_l > 0$ and $n = \lambda_1 + \lambda_2 + \cdots + \lambda_l$. We write $\lambda \vdash n$ to denote that λ is a partition of n.

For instance, the number 4 has five partitions: (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). We can also represent partitions pictorially using Young diagrams as follows.

Definition 2. A **Young diagram** is a finite collection of boxes arranged in left-justified rows, with the row sizes weakly decreasing. The Young diagram associated to the partition $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$ is the one that has l rows, and λ_i boxes on the ith row.

For instance, the Young diagrams corresponding to the partitions of 4 are

\[
\begin{align*}
\lambda = (4) & \quad \lambda = (3, 1) & \quad \lambda = (2, 2) & \quad \lambda = (2, 1, 1) & \quad \lambda = (1, 1, 1, 1)
\end{align*}
\]

Since there is a clear one-to-one correspondence between partitions and Young diagrams, we use the two terms interchangeably, and we will use Greek letters λ and μ to denote them.

A Young tableau is obtained by filling the boxes of a Young diagram with numbers.

1The notation used here is known as the English notation. Most Francophones, however, use the French notation, which is the upside-down form of the English notation. E.g. (3, 1) as \[\bigoplus \bigoplus .]
Definition 3. Suppose $\lambda \vdash n$. A (Young) tableau t of shape λ, is obtained by filling in the boxes of a Young diagram of λ with $1, 2, \ldots, n$, with each number occurring exactly once. In this case, we say that t is a λ-tableau.

For instance, here are all the tableaux corresponding to the partition $(2, 1)$:

$$
\begin{array}{ccc}
1 & 2 & 3 \\
& 2 & 3 \\
& 1 & 2 \\
\end{array} \quad \begin{array}{ccc}
1 & 3 & 2 \\
& 1 & 3 \\
& 2 & 1 \\
\end{array} \quad \begin{array}{ccc}
2 & 1 & 3 \\
& 1 & 2 \\
& 3 & 1 \\
\end{array} \quad \begin{array}{ccc}
3 & 2 & 1 \\
& 2 & 3 \\
& 3 & 2 \\
\end{array}
$$

Definition 4. A standard (Young) tableau is a Young tableaux whose the entries are increasing across each row and each column.

The only standard tableaux for $(2, 1)$ are

$$
\begin{array}{cc}
1 & 2 \\
& 3 \\
\end{array} \quad \begin{array}{cc}
1 & 3 \\
& 2 \\
\end{array}
$$

Here is another example of a standard tableau:

$$
\begin{array}{cccc}
1 & 2 & 4 & \\
& 3 & 5 & 6 \\
& 7 & 8 & \\
& 9 & \\
\end{array}
$$

The definitions that we use here are taken from [Sa], however, other authors have different conventions. For instance, in [Fu], a Young tableau is a filling which is weakly increasing across each row and strictly increasing down each column, but may have repeated entries. We call such tableaux semistandard and we use them in Section 4.6.

Before we move on, let us recall some basic facts about permutations. Every permutation $\pi \in S_n$ has a decomposition into disjoint cycles. For instance $(123)(45)$ denotes the permutation that sends $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ and swaps 4 and 5 (if $n > 5$, then by convention the other elements are fixed by π). The cycle type of π is the partition whose parts are the lengths of the cycles in the decomposition. So $(123)(45) \in S_5$ has cycle type $(3, 2)$. It is a basic result that two elements of S_n are conjugates if and only if they have the same cycle type. The easiest way to see this is to consider conjugation as simply a relabeling of the elements when the permutation is written in cycle notation. Indeed, if

$$
\pi = (a_1 a_2 \ldots a_k)(b_1 b_2 \ldots b_l) \cdots,
$$

and σ sends x to x', then

$$
\sigma \pi \sigma^{-1} = (a'_1 a'_2 \ldots a'_k)(b'_1 b'_2 \ldots b'_l) \cdots.
$$

This means that the conjugacy classes of S_n are characterized by the cycle types, and thus they correspond to partitions of n, which are equivalent to Young diagrams of size n. Recall from representation theory that the number of irreducible representations of a finite group is equal to the number of its conjugacy classes. So our goal for the next two sections is to construct an irreducible representation of S_n corresponding to each Young diagram.

4.3 Tabloids and the Permutation Module M^λ

We would like to consider certain permutation representations of S_n. There is the obvious one: the permutation action of S_n on the elements $\{1, 2, \ldots, n\}$, which extends to the defining representation. In this section, we construct other representations of S_n using equivalence classes of tableaux, known as tabloids.

Definition 5. Two λ-tableaux t_1 and t_2 are row-equivalent, denoted $t_1 \sim t_2$, if the corresponding rows of the two tableaux contain the same elements. A tabloid of shape λ, or λ-tabloid is such an equivalence class, denoted by $\{t\} = \{t_1 | t_1 \sim t\}$ where t is a λ-tabloid. The tabloid $\{t\}$ is drawn as the tableaux t without vertical bars separating the entries within each row.
For instance, if
\[t = \begin{array}{c}
 1 \\
 2 \\
 3
\end{array} \]
then \{t\} is the tabloid drawn as
\[\begin{array}{c}
 1 \\
 2 \\
 3
\end{array} \]
which represents the equivalence class containing the following two tableaux:
\[\begin{array}{cc}
 1 & 2 \\
 3 & 1 \\
 2 & 3
\end{array} \]

The notation is suggestive as it emphasizes that the order of the entries within each row is irrelevant, so that each row may be shuffled arbitrarily. For instance:
\[\begin{array}{ccc}
 1 & 4 & 7 \\
 3 & 6 & \ \\
 2 & 5 & \
\end{array} \]
\[\begin{array}{ccc}
 4 & 7 & 1 \\
 6 & 3 & \ \\
 2 & 5 & \
\end{array} \]
\[\begin{array}{ccc}
 4 & 7 & 1 \\
 6 & 5 & \ \\
 2 & 3 & \
\end{array} \]
\[\begin{array}{ccc}
 4 & 7 & 1 \\
 6 & 5 & \ \\
 2 & 3 & \
\end{array} \]

We want to define a representation of \(S_n \) on a vector space whose basis is exactly the set of tabloids of a given shape. We need to find a way for elements of \(S_n \) to act on the tabloids. We can do this in the most obvious manner, that is, by letting the permutations permute the entries of the tabloid. For instance, the cycle \((1 \ 2 \ 3) \in S_3 \) acts on a tabloid by changing replacing its “1” by a “2”, its “2” by a “3”, and its “3” by a “1”, as shown below:
\[(1 \ 2 \ 3) \begin{array}{c}
 1 \\
 3 \\
 2
\end{array} \]
\[\begin{array}{c}
 2 \\
 1 \\
 3
\end{array} \]

We should check that this action is well defined, that is, if \(t_1 \) and \(t_2 \) are row-equivalent, so that \(\{t_1\} = \{t_2\} \), then the result of permutation should be the same, that is, \(\pi\{t_1\} = \pi\{t_2\} \). This is clear, as \(\pi \) simply gives the instruction of moving some number from one row to another.

Now that we have defined a way for \(S_n \) to act on tabloids, we are ready to define a representation of \(S_n \). Recall that a representation of a group \(G \) on a complex vector space \(V \) is equivalent to extending \(V \) to a \(\mathbb{C}[G] \)-module, so we often use the term module to describe representations.

Definition 6. Suppose \(\lambda \vdash n \). Let \(M^\lambda \) denote the vector space whose basis is the set of \(\lambda \)-tabloids. Then \(M^\lambda \) is a representation of \(S_n \) known as the permutation module corresponding to \(\lambda \).

Let us show a few example of permutation modules. We see that the \(M^\lambda \) corresponding to the following Young diagrams are in fact familiar representations.

\[\begin{array}{c}
 1 \\
 2 \\
 \
\end{array} \]
\[\begin{array}{c}
 1 \\
 2 \\
 3
\end{array} \]
\[\begin{array}{c}
 1 \\
 2 \\
 \
\end{array} \]

Example 7. Consider \(\lambda = (n) \). We see that \(M^\lambda \) is the vector space generated by the single tabloid
\[\begin{array}{cccc}
 1 & 2 & \cdots & n
\end{array} \]

Since this tabloid is fixed by \(S_n \), we see that \(M^{(n)} \) is the one-dimensional trivial representation.

Example 8. Consider \(\lambda = (1^n) = (1, 1, \ldots, 1) \). Then a \(\lambda \)-tabloid is simply a permutation of \(\{1, 2, \ldots, n\} \) into \(n \) rows and \(S_n \) acts on the tabloids by acting on the corresponding permutation. It follows that \(M^{(1^n)} \) is isomorphic to the regular representation \(\mathbb{C}[S_n] \).
Example 9. Consider $\lambda = (n - 1, 1)$. Let $\{t_i\}$ be the λ-tabloid with i on the second row. Then M^λ has basis $\{t_1\}, \{t_2\}, \ldots, \{t_n\}$. Also, note that the action of $\pi \in S_n$ sends t_i to $t_{\pi(i)}$. And so $M^{(n-1,1)}$ is isomorphic to the defining representation $\mathbb{C}\{1, 2, \ldots, n\}$. For example, in the $n = 4$ case, the representation $M^{(3,1)}$ has the following basis:

$$
\begin{align*}
t_1 &= \begin{bmatrix} 2 & 3 & 4 \\ 1 \end{bmatrix}, \\
t_2 &= \begin{bmatrix} 1 & 3 & 4 \\ 2 \end{bmatrix}, \\
t_3 &= \begin{bmatrix} 1 & 2 & 4 \\ 3 \end{bmatrix}, \\
t_4 &= \begin{bmatrix} 1 & 2 & 3 \\ 4 \end{bmatrix}.
\end{align*}
$$

Now we consider the dimension and characters of the representation M^λ. First, we shall give a formula for the number of tabloids of each shape.

Proposition 10. If $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$,

$$
\dim M^\lambda = \frac{n!}{\lambda_1!\lambda_2! \cdots \lambda_l!}.
$$

We leave the proof of this proposition to the readers. It is a simple combinatorial exercise of counting the number of λ-tabloids.

Now we give a formula for the characters of M^λ.

Proposition 11. Suppose $\lambda = (\lambda_1, \ldots, \lambda_l), \mu = (\mu_1, \ldots, \mu_m)$ are partitions of n. The character of M^λ evaluated at an element of S_n with cycle type μ is equal to the coefficient of $x_1^{\lambda_1}x_2^{\lambda_2} \cdots x_l^{\lambda_l}$ in

$$
\prod_{i=1}^m (x_1^{\mu_i} + x_2^{\mu_i} + \cdots + x_l^{\mu_i}).
$$

To prove this formula, note that since M^λ can be realized as a permutation representation on the λ-tabloids, its character at an element $\pi \in S_n$ is equal to the number of tabloids fixed by π. The rest of the proof consists of a simple generating function argument, which we leave to the readers.

Note that Proposition 10 also follows as a corollary to the above result. Indeed, the dimension of a representation is simply the value of the character at the identity element, which has cycle type $\lambda = (1^n)$. So Proposition 11 tells us that the dimension of M^λ is the coefficient of $x_1^{\lambda_1}x_2^{\lambda_2} \cdots x_l^{\lambda_l}$ in $(x_1 + \cdots + x_n)^n$, which is equal to $\dim M^\lambda = \frac{n!}{\lambda_1!\lambda_2! \cdots \lambda_l!}$ by the multinomial expansion formula.

Example 12. Let us compute the full list of the characters of the permutation modules for S_4. The character at the identity element is equal to the dimension, and it can found through Proposition 10. For instance, the character of $M^{(2,1,1)}$ at $e \in s_4$ is $4!/2! = 12$.

Say we want to compute the character of $M^{(2,2)}$ at the permutation (12), which has cycle type $(2,1,1)$. Using Proposition 11, we see that the character is equal to the coefficient of $x_1^2x_2^2$ in $(x_1^2 + x_2^2)(x_1 + x_2)^2$, which is 2. Other characters can be similarly computed, and the result is shown in the following table.

<table>
<thead>
<tr>
<th>permutation cycle type</th>
<th>e \begin{bmatrix} 1 & 1 & 1 \ 1, 1, 1, 1 \end{bmatrix}</th>
<th>(12) \begin{bmatrix} 2 & 1 & 1 \ 2, 1, 1 \end{bmatrix}</th>
<th>(12)(34) \begin{bmatrix} 2 & 2 \ 2, 2 \end{bmatrix}</th>
<th>(123) \begin{bmatrix} 3 & 1 \ 3, 1 \end{bmatrix}</th>
<th>(1234) \begin{bmatrix} 4 \ (4) \end{bmatrix}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^{(4)}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$M^{(3,1)}$</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$M^{(2,2)}$</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$M^{(2,1,1)}$</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$M^{(1,1,1,1)}$</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that in the above example, we did not construct the character table for S_4, as all the M^λ are in fact reducible with the exception of $M^{(4)}$. In the next section, we take a step further and construct the irreducible representations of S_n.

4.4 Specht Modules

In the previous section, we constructed representations M^λ of S_n known as permutation modules. In this section, we consider an irreducible subrepresentation of M^λ that corresponds uniquely to λ.

The group S_n acts on the set of Young tableaux in the obvious manner: for a tableau t of size n and a permutation $\sigma \in S_n$, the tableau σt is the tableau that puts the number $\pi(i)$ to the box where t puts i. For instance,

$$(1 \ 2 \ 3)(4 \ 5) = \begin{array}{ccc} 1 & 2 & 4 \\ 3 & 6 & 7 \end{array} \Rightarrow \begin{array}{ccc} 2 & 3 & 4 \\ 1 & 6 & 7 \end{array}.$$

Observe that a tabloid is fixed by the permutations which only permute the entries of the rows among themselves. These permutations form a subgroup of S_n, which we call the row group. We can similarly define the column group.

Definition 13. For a tableau t of size n, the row group of t, denoted R_t, is the subgroup of S_n consisting of permutations which only permutes the elements within each row of t. Similarly, the column group C_t is the subgroup of S_n consisting of permutations which only permutes the elements within each column of t.

For instance, if

$t = \begin{array}{ccc} 4 & 1 & 2 \\ 3 & 5 \end{array}$

then

$R_t = S_{\{1,2,4\}} \times S_{\{3,5\}}$, and $C_t = S_{\{3,4\}} \times S_{\{1,5\}} \times S_{\{2\}}$.

Let us select certain elements from the space M^λ that we use to span a subspace.

Definition 14. If t is a tableau, then the associated polytabloid is

$e_t = \sum_{\pi \in C_t} \text{sgn}(\pi) \pi \{t\}$.

So we can find e_t by summing all the tabloids that come from column-permutations of t, taking into account the sign of the column-permutation used. For instance, if

$t = \begin{array}{ccc} 4 & 1 & 2 \\ 3 & 5 \end{array}$

then

$e_t = \begin{array}{ccc} 4 & 1 & 2 \\ 3 & 5 \end{array} - \begin{array}{ccc} 3 & 1 & 2 \\ 4 & 5 \end{array} - \begin{array}{ccc} 4 & 5 & 2 \\ 3 & 1 \end{array} + \begin{array}{ccc} 3 & 5 & 2 \\ 4 & 1 \end{array}$.

Now, through the following technical lemma, we see that S_n acts on the set of polytabloids.

Lemma 15. Let t be a tableau and π be a permutation. Then $e_{\pi t} = \pi e_t$.

Proof. First observe that $C_{\pi t} = \pi C_t \pi^{-1}$, which can be viewed as a “relabeling” similar to the discussion at the end of Section 4.2. Then, we have

$e_{\pi t} = \sum_{\sigma \in C_{\pi t}} \text{sgn}(\sigma) \sigma \{\pi t\} = \sum_{\sigma \in \pi C_t \pi^{-1}} \text{sgn}(\sigma) \sigma \{\pi t\}$

$= \sum_{\sigma' \in C_t} \text{sgn}(\pi \sigma' \pi^{-1}) \pi \sigma' \pi^{-1} \{\pi t\} = \pi \sum_{\sigma' \in C_t} \text{sgn}(\sigma') \sigma' \{t\} = \pi e_t.$

Now we are ready to extract an irreducible subrepresentation from M^λ.
Definition 16. For any partition \(\lambda \), the corresponding **Specht module**, denoted \(S^{\lambda} \), is the submodule of \(M^{\lambda} \) spanned by the polytabloids \(e_t \), where \(t \) is taken over all tableaux of shape \(\lambda \).

Again, let us look at a few examples. We see that the Specht modules corresponding to the following Young diagrams are familiar irreducible representations.

Example 17. Consider \(\lambda = (n) \). Then there is only one polytabloid, namely

\[
\begin{array}{cccc}
1 & 2 & \cdots & n
\end{array}
\]

Since this polytabloid is fixed by \(S_n \), we see that \(S^{(n)} \) is the one-dimensional trivial representation.

Example 18. Consider \(\lambda = (1^n) = (1, 1, \ldots, 1) \). Let

\[
t = \begin{bmatrix}
1 \\
2 \\
\vdots \\
n
\end{bmatrix}
\]

Observe that \(e_t \) is a sum of all the \(\lambda \)-tableoids multiplied by the sign of permutation it took to get there. For any other \(\lambda \)-tableau \(t' \), we have either \(e_t = e_{t'} \) if \(t' \) is obtained from \(t \) through an even permutation, or \(e_t = -e_{t'} \) if \(t' \) is obtained from \(t \) through an odd permutation. So \(S^{\lambda} \) is a one-dimensional representation. From Lemma 15 we have \(\pi e_t = e_{\pi t} = \text{sgn}(\pi) e_t \). From this we see that \(S^{(1^n)} \) is the sign representation.

Example 19. Consider \(\lambda = (n-1, 1) \). Continuing the notation from Example 9 where we use \(\{t_i\} \) to denote the \(\lambda \)-tabloid with \(i \) on the second row, we see that the polytabloids have the form \(\{t_i\} - \{t_j\} \). Indeed, the polytabloid constructed from the tableau

\[
\begin{array}{cccc}
i & a & b & \cdots \\
j
\end{array}
\]

is equal to \(\{t_i\} - \{t_j\} \). Let us temporarily use \(e_i \) to denote the tabloid \(\{t_i\} \). Then \(S^{\lambda} \) is spanned by elements of the form \(e_i - e_j \), and it follows that

\[
S^{(n-1, 1)} = \{c_1 e_1 + c_2 e_2 + \cdots + c_n e_n \mid c_1 + c_2 + \cdots + c_n = 0\}.
\]

This is an irreducible representation known as the standard representation. The direct sum of the standard representation and the trivial representation gives the defining representation, that is, \(S^{(n-1, 1)} \oplus S^{(n)} = M^{(n-1, 1)} \).

We know that the \(S_3 \) has three irreducible representations: trivial, sign, and standard. These are exactly the ones described above. Furthermore, there are exactly three partitions of \(3 \) : \((3)\), \((1, 1, 1)\), \((2, 1)\). So in this case, the irreducible representations are exactly the Specht modules. Amazingly, this is true in general.

Theorem 20. The Specht modules \(S^{\lambda} \) for \(\lambda \vdash n \) form a complete list of irreducible representations of \(S_n \) over \(\mathbb{C} \).

The proof may be found in \([Sa]\). Recall that at the end of Section 4.2 we noted that the number of irreducible representations of \(S_n \) equals the number of Young diagrams with \(n \) boxes. This Theorem gives a “natural” bijection between the two sets.
Note that the polytabloids are generally not independent. For instance, as we saw in Example 18, any pair of polytabloids in $S^{(1^n)}$ are in fact linearly dependent. Since we know that S^λ is spanned by the polytabloids, we may ask how to select a basis for vector space from the set of polytabloids. There is an elegant answer to this question: the set of polytabloids constructed from standard tableaux form a basis for S^λ. Recall that a standard tableau is a tableau with increasing rows and increasing columns.

Theorem 21. Let λ be any partition. The set

$$\{e_t : t \text{ is a standard } \lambda\text{-tableau}\}$$

forms a basis for S^λ as a vector space.

The proof may be found in Sagan [Sa]. We only sketch an outline here. First, an ordering is imposed on tabloids. If some linear combination of e_t is zero, summed over some standard tableaux t, then by looking at a maximal tabloid in the sum, one can deduce that its coefficient must be zero and conclude that $\{e_t : t \text{ is a standard } \lambda\text{-tableau}\}$ is independent. Next, to prove that the set spans S^λ, a procedure known as the **straightening algorithm** is used to write an arbitrary polytabloid as a linear combination of standard polytabloids.

Now we look at some consequences of the result. Let f^λ denote the number of standard λ-tableaux. Then the following result follows immediately from Theorem 21.

Corollary 22. Suppose $\lambda \vdash n$, then $\dim S^\lambda = f^\lambda$.

Let us end this section with a few results concerning f^λ.

Theorem 23. If n is a positive integer, then

$$\sum_{\lambda \vdash n} (f^\lambda)^2 = n!$$

where the sum is taken over all partitions of n.

Proof. Recall from representation theory that the sum of the squares of the irreducible representation is equal to the order of the group. This theorem follows from that fact and Corollary 22. \hfill \Box

Theorem 23 also has an elegant combinatorial proof using the celebrated RSK correspondence. See [Fu] or [Sa] for details.

Given the partition λ, the number $\dim S^\lambda = f^\lambda$ can be computed easily using the **hook-length formula** of Frame, Robinson, and Thrall, which we state now.

Definition 24. Let λ be a Young diagram. For a square u in the diagram (denoted by $u \in \lambda$), we define the **hook** of u (or at u) to be the set of all squares directly to the right of u or directly below u, including u itself. The number of squares in the hook is called the **hook-length** of u (or at u), and is denoted by $h_\lambda(u)$.

For example, consider the partition $\lambda = (5, 5, 4, 2, 1)$. The figure on the left shows a typical hook, and the figure on the right shows all the hook-lengths.

Theorem 25 (Hook-length formula). Let $\lambda \vdash n$ be a Young diagram. Then

$$\dim S^\lambda = f^\lambda = \frac{n!}{\prod_{u \in \lambda} h_\lambda(u)}.$$
For instance, from the above example, we get

\[\dim S^{(5,5,4,2,1)} = f^{(5,5,4,2,1)} = \frac{17!}{9 \cdot 8 \cdot 7 \cdot 6^2 \cdot 5 \cdot 4^3 \cdot 3^2 \cdot 2 \cdot 1^5} = 3403400. \]

For proof of the hook-length formula, see [Sa].

Finally, we state a formula for the characters of the representation \(S^{\lambda} \).

Theorem 26 (Frobenius formula). Suppose \(\lambda = (\lambda_1, \ldots, \lambda_l) \), \(\mu = (\mu_1, \ldots, \mu_m) \) are partitions of \(n \). The character of \(S^{\lambda} \) evaluated at an element of \(S_n \) with cycle type \(\mu \) is equal to the coefficient of \(x_1^{\lambda_1 + \mu_1 - 1} x_2^{\lambda_2 + \mu_2 - 2} \ldots x_l^{\lambda_l} \) in

\[\prod_{1 \leq i < j \leq l} (x_i - x_j) \prod_{i=1}^{m} (x_1^{\mu_i} + x_2^{\mu_i} + \cdots + x_l^{\mu_i}). \]

See [FH] for proof. Observe the similarity between the statements of Proposition 10 and the hook-length formula, and also between Proposition 11 and the Frobenius formula. The hook-length formula can also be derived from the Frobenius formula by evaluating the character at the identity element. Again, see [FH] for details.

4.5 Young Lattice and Branching Rule

Now let us consider the relationships between the irreducible representations of \(S_n \) and those of \(S_{n+1} \).

Consider the set of all Young diagrams. These diagrams can be partially ordered by inclusion. The resulting partially ordered set is known as **Young’s lattice**.

We can represent Young’s lattice graphically as follows. Let \(\lambda \not\rightarrow \mu \) denote that \(\mu \) can be obtained by adding a single square to \(\lambda \). At the \(n \)th level, all the Young diagrams with \(n \) boxes are drawn. In addition, \(\lambda \) to connected to \(\mu \) if \(\lambda \not\rightarrow \mu \). Here is a figure showing the bottom portion of Young’s lattice (of course, it extends infinitely upwards).

![Young's lattice diagram](attachment:young_lattice.png)

Now we consider the following question: given \(S^{\lambda} \) a representation of \(S_n \), how can we determine its restricted representation in \(S_{n-1} \) and its induced representation in \(S_{n+1} \)? There is a beautiful answer to this question, given by Young’s branching rule.

Theorem 27 (Branching Rule). Suppose \(\lambda \vdash n \), then

\[\text{Res}_{S_{n-1}} S^{\lambda} \cong \bigoplus_{\mu: \mu \not\rightarrow \lambda} S^{\mu} \quad \text{and} \quad \text{Ind}_{S_{n+1}} S^{\lambda} \cong \bigoplus_{\mu: \lambda \not\rightarrow \mu} S^{\mu}. \]
For instance, if \(\lambda = (5, 4, 4, 2) \), so that
\[
\lambda = \begin{array}{cccc}
\boxed{1} & \boxed{2} & & \\
\boxed{3} & & \boxed{4} & \boxed{2}
\end{array},
\]
then the diagrams that can be obtained by removing a square are
\[
\begin{array}{ccc}
\begin{array}{cccc}
\boxed{1} & \boxed{2} & & \\
\boxed{3} & & \boxed{4} & \boxed{2}
\end{array} & \begin{array}{cccc}
\boxed{1} & & \boxed{4} & \boxed{2}
\end{array} & \begin{array}{cccc}
\boxed{1} & \boxed{2} & & \\
\boxed{3} & & & \\
\boxed{4} & & \boxed{2}
\end{array}
\end{array}
\]
So
\[
\text{Res}_{S_{14}} S^{(5,4,4,2)} = S^{(4,4,4,2)} \oplus S^{(5,4,3,2)} \oplus S^{(5,4,4,1)}.
\]
Similarly, the diagrams that can be obtained by adding a square are
\[
\begin{array}{ccc}
\begin{array}{cccc}
\boxed{1} & \boxed{2} & & \\
\boxed{3} & & \boxed{4} & \boxed{2}
\end{array} & \begin{array}{cccc}
\boxed{1} & & \boxed{4} & \boxed{2}
\end{array} & \begin{array}{cccc}
\boxed{1} & \boxed{2} & & \\
\boxed{3} & & & \\
\boxed{4} & & \boxed{2}
\end{array}
\end{array}
\]
So
\[
\text{Ind}_{S_{16}} S^{(5,4,4,2)} = S^{(6,4,4,2)} \oplus S^{(5,5,4,2)} \oplus S^{(5,4,4,3)} \oplus S^{(5,4,4,2,1)}.
\]

The proof of Theorem 27 may be found in [Sa]. We shall only mention that the two parts of the branching rules are equivalent through the Frobenius reciprocity theorem.

There is an interesting way to view this result. If we consider \(S^{\lambda} \) only as a vector space, then the branching rule implies that
\[
S^{\lambda} \cong \bigoplus_{\mu : \mu \vdash \lambda} S^{\mu} \cong \bigoplus_{\nu : \nu \vdash \mu} S^{\nu} \cong \ldots \cong \bigoplus_{\emptyset = \lambda^{(0)} \vdash \lambda^{(1)} \vdash \ldots \vdash \lambda^{(n)} = \lambda} S^{\emptyset}.
\]
The final sum is indexed over all upward paths from \(\emptyset \) to \(\lambda \) in Young’s lattice. Since \(S^{\emptyset} \) is simply an one-dimensional vector space, it follows that we can construct a basis for \(S^{\lambda} \) where each basis vector corresponds to an upward path in the Young lattice from \(\emptyset \) to \(\lambda \). However, observe that upward paths in the Young lattice from \(\emptyset \) to \(\lambda \) correspond to standard \(\lambda \)-tableaux! Indeed, for each standard \(\lambda \)-tableaux, we can associate to it a path in the Young lattice constructed by adding the boxes in order as labeled in the standard tableaux. The reverse construction is similar. As an example, the following path in the Young lattice
\[
\emptyset \nearrow \begin{array}{cccc}
\boxed{1} & \boxed{2} & & \\
\boxed{3} & & \boxed{4} & \boxed{2}
\end{array} \nearrow \begin{array}{cccc}
\boxed{1} & & \boxed{4} & \boxed{2}
\end{array} \nearrow \begin{array}{cccc}
\boxed{1} & \boxed{2} & & \\
\boxed{3} & & & \\
\boxed{4} & & \boxed{2}
\end{array}
\]

corresponds to the following standard tableau
\[
\begin{array}{cccc}
1 & 2 & 4 & \\
3 & 5
\end{array}
\]

So we have recovered a basis for \(S^{\lambda} \) which turned out to be the same as the one found in Theorem 21.

Now, one may object that this argument contains some circular reasoning, namely because the proof of the branching rule (as given in [Sa]) uses Theorem 21, that a basis of \(S^{\lambda} \) can be found through standard tableaux. This is indeed the case. However, there is an alternative view on the subject, given recently by [VO], in which we start in an abstract algebraic setting with some generalized form of the Young lattice. Then, we can form a basis known as the Gelfand-Tsetlin basis by taking upward paths as we did above. We then specialize to the symmetric group and “discover” the standard tableaux. This means that the standard tableaux in some sense form a “natural” basis for \(S^{\lambda} \).
4.6 Decomposition of M^μ and Young’s Rule

First, we constructed the permutation modules M^{λ}, and from it we extracted irreducible subrepresentations S^{λ}, such that S^{λ} forms a complete list of irreducible representations of S_n as λ varies over all partitions of n.

Let us revisit M^μ and ask, how does M^μ decompose into irreducible representations. It turns out that M^μ only contains the irreducible S^{λ} if λ is, in some sense, “greater” than μ. To make this notation more precise, let us define a partial order on partitions of n. (Note that this is not the same as the one used to define Young’s lattice!)

Definition 28. Suppose that $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l)$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_m)$ are partitions of n. Then λ dominates μ, written $\lambda \succeq \mu$, if

$$\lambda_1 + \lambda_2 + \cdots + \lambda_i \geq \mu_1 + \mu_2 + \cdots + \mu_i$$

for all $i \geq 1$. If $i > l$ (respectively, $i > m$), then we take λ_i (respectively, μ_i) to be zero.

In other words, $\lambda \succeq \mu$ if, for every k, the first k rows of the Young diagram of λ contains more squares than that of μ. Intuitively, this means that diagram for λ is short and fat and the diagram for μ is long and skinny.

For example, when $n = 6$, we have $(3, 3) \succeq (2, 2, 1, 1)$. However, $(3, 3)$ and $(4, 1, 1)$ are incomparable, as neither dominates the other. The dominance relations for partitions of 6 is depicted using the following figure. Such diagrams are known as Hasse diagrams and are used to represent partially ordered sets.

Now we can precisely state what we wanted to say at the beginning of the section.

Proposition 29. M^μ contains S^{λ} as a subrepresentation if and only if $\lambda \succeq \mu$. Also, M^μ contains exactly one copy of S^μ.

We may ask how many copies of S^{λ} is contained in M^μ. It turns out that this answer has a nice combinatorial interpretation. In order to describe it, we need a few more definitions.
Definition 30. A semistandard tableau of shape \(\lambda \) is an array \(T \) obtained by filling in the boxes of \(\lambda \) with positive integers, repetitions allowed, and such that the rows weakly increase and the columns strictly increase. The content of \(T \) is the composition \(\mu = (\mu_1, \mu_2, \ldots, \mu_m) \), where \(\mu_i \) equals the number of \(i \)'s in \(T \).

For instance, the semistandard tableau shown below may be seen to have shape \((4, 2, 1)\) and content \((2, 2, 1, 0, 1, 1)\):

\[
\begin{array}{ccc}
1 & 1 & 2 & 5 \\
2 & 3 \\
6
\end{array}
\]

The number of semistandard tableau of a given type and content is known as the Kostka number.

Definition 31. Suppose \(\lambda, \mu \vdash n \), the Kostka number \(K_{\lambda \mu} \) is the number of semistandard tableaux of shape \(\lambda \) and content \(\mu \).

For instance, if \(\lambda = (3, 2) \) and \(\mu = (2, 2, 1) \), then \(K_{\lambda \mu} = 2 \) since there are exactly two semistandard tableaux of shape \(\lambda \) and content \(\mu \):

\[
\begin{array}{cc}
1 & 1 \\
2 & 3
\end{array}
\quad \text{and} \quad
\begin{array}{cc}
1 & 1 \\
2 & 2
\end{array}
\]

We are almost ready to state the result, but let us first make the following observation, whose proof we leave as a combinatorial exercise for the readers.

Proposition 32. Suppose that \(\lambda, \mu \vdash n \). Then \(K_{\lambda \mu} \neq 0 \) if and only if \(\lambda \succeq \mu \). Also, \(K_{\lambda \lambda} = 1 \).

We are now ready to state the result about the decomposition of \(M^\lambda \) into irreducible representations.

Theorem 33 (Young’s Rule). \(M^\mu \cong \bigoplus_{\lambda \succeq \mu} K_{\lambda \mu} S^\lambda \).

For instance, from the table above, we see that

\[
M^{(2,2,1)} \cong S^{(2,2,1)} \oplus S^{(3,1,1)} \oplus 2S^{(3,2)} \oplus 2S^{(4,1)} \oplus S^{(5)}.
\]

Note that Proposition 32 is a consequence of Young’s rule. We shall end with a couple of examples illustrating Young’s rule.

Example 34. Note that \(K_{(n)\mu} = 1 \) as there is only one \((n)\)-semistandard tableau of content \(\mu \), formed by filling in all the required entries in order. Then Young’s Rule implies that every \(M^\mu \) contains exactly one copy of the trivial representation \(S^{(n)} \) (see Example 17).

Example 35. Since a semistandard tableau with content \((1^n)\) is just a standard tableau, we have \(K_{\lambda(1^n)} = f^\lambda \) (the number of standard \(\lambda \)-tableaux). So Young’s rule says that \(M^{(1^n)} \cong \bigoplus_\lambda f^\lambda S^\lambda \). But from Example 8 we saw that \(M^{(1^n)} \) is simply the regular representation. By taking the magnitude of the characters of both sides, we get another proof of the identity \(n! = \sum_{\lambda \vdash n} (f^\lambda)^2 \) that we saw in Theorem 23.

References

