MATH 327: FOURTH PROBLEM SET

Due Monday, April 25

1. Let \(R = k[x,y,s,t]/(xs - yt) \) and \(S = R/(x,y) \cong k[s,t] \). Let \(P = (s,t) \subset R \) and let \(Q \) be its image in \(S \). Show that \(ht(P) = 1 \) but \(ht(Q) = 2 \).

2. Let \(R = k[x,y,z]/(xz - z) \) and consider the set \(\{ x, xy - y \} \). Notice that the ideal \((x, xy - y) \) in \(R \) is \((x, y) \). Show that \(\{ x, xy - y \} \) is a regular sequence but \(\{ xy - y, x \} \) is not a regular sequence: permutations of regular sequences need not be regular.

3. Let \(\{ a, b \} \) be non-zero elements in an integral domain \(R \).
 (a) Show that the ideal \((ax - b) \) of \(R[x] \) is prime if and only if \(H_1(K(a,b)) = 0 \) (which holds if \(\{ a, b \} \) is a regular sequence).
 (b) When \((ax - b) \) is prime, show that \(R[x]/(ax - b) \) is isomorphic to the subring \(R(b/a) \) of the quotient field of \(R \).

Recall that an associated prime of an \(R \) module \(M \) is a prime ideal that is the annihilator of a nonzero element of \(M \). An associated prime \(P \) of an ideal \(I \) is defined (confusingly!) to be an associated prime of the \(R \)-module \(R/I \), so that there is an \(x \in R - I \) such that \(P = \{ r | rx \in I \} \). Notes on these notions are posted.

All given rings \(R \) are local (and Noetherian) in the rest of the problems.

4. Let \(\{ a_1, \ldots, a_n \} \) be elements of the maximal ideal of \(R \).
 (a) Show that \(\{ a_1, \ldots, a_n \} \) is a regular sequence if and only if \(a_i \) is not in any associated prime ideal of \((a_1, \ldots, a_{i-1}) \) for \(1 \leq i \leq n \).
 (b) Show that \(\{ a_1, \ldots, a_n \} \) is part of a system of parameters of \(R \) such that each \((a_1, \ldots, a_i) \) is of height \(i \) if and only if \(a_i \) is not in any minimal prime ideal of \(R/(a_1, \ldots, a_{i-1}) \) for \(1 \leq i \leq n \).

5. Let \(M \) be a finitely generated \(R \)-module, \(P \) a prime ideal.
 (a) Show that \(\text{depth}_P(M) \leq \text{depth}_{PR_P}(M_P) \).
 (b) Show that the inequality can be strict. Hint: Consider \(R = k[x,y,z], M = (xy, y^2, yz), \) and \(P = (x,y) \). Note that this is not an esoteric example.

6. Let \(\dim(R) = 0 \). Show the following.
 (a) \(R \) is a Cohen Macaulay (CM) ring.
 (b) \(R \) is regular if and only if \(R \) is a field.
7 and 8. Let $\dim(R) = 1$.

(a) If R has no nilpotent elements, show that R is CM.
(b) Construct an R such that $\dim(R) = 1$ but R is not CM.
(c) If R is regular, then R is a DVR.
(d) For a field k, show that the subring of the DVR $k[[x]]$ generated by x^2 and x^3 is CM of dimension 1 but is not regular.

9. Let $R = S/I$, where S is a regular local ring and I is generated by a regular sequence in S. Show that any localization of R is also a quotient of a regular local ring by an ideal generated by a regular sequence.

A local ring R is called a “complete intersection” if its completion at its maximal ideal is the quotient of a regular local ring by an ideal generated by a regular sequence. The rings of problem 9 are examples.

10. Let $a = (a_1, \ldots, a_n)$ be any sequence of elements in R, let $S = R[x_1, \ldots, x_n]$ and let $f: S \rightarrow R$ be the ring homomorphism that sends x_i to a_i. Let M be an R-module and regard M as an S-module by pullback along f, $sm = f(s)m$. Regard R as the quotient $S/(x_1, \ldots, x_n)$. Prove that

$$H_*(K(a) \otimes_R M) \cong \text{Tor}_*^S(R, M).$$