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Abstract

The basic theory of fibrations is generalized to a context in which
fibres, and maps on fibres, are constrained to lie in any preassigned cate-
gory of spaces % . .Hr.mu axioms are placed on ¥ to allow the development
of a theory of associated principal fibrations and, under several choices of
additional hypotheses on .%. , a classification theorem is proven for such
fibrations. The same proof applies to the classification of bundles and
generalizes to give a classification theorem for fibrations or bundles with
additional structure, such as a reduction of the structural monoid, or a
trivialization with respect to a coarser type of fibration, or an orientation
with respect to an extraordinary cohomology theory. The proofs are con-
structive and are based on use of the two-sided geometric bar construction,
the topological and homological properties of which are analyzed in detail.
Related topics studied include the classification of fibrations by transports,
the Eilenberg-Moore and Serre spectral sequences, and the group completion

theorem.
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Introduction

"The theory of fibrations is thus fairly complete and well worked
out on a conceptual level; the rest should be applications and computations.”
So ended Stasheff's 1970 survey article [35] on the classification of fibrations.

At the time, the conclusion seemed not unreasonable. The basic
outlines of a2 complete theory were visible, and this theory did seem ade-
quate for most applications. Even in Stasheff's very clear summary, the
theory appeared nmngwnwtw to be extremely complicated, but this was felt
to be intrinsic to the subject.

However, recent developments make this sanguine view of the ade-
quacy of the theory untenable and, in the process of obtaining a theory which
is adequate for the new applications, we shall also see how to avoid most of
the previous technical complications.

A brief account of the existing classification theorems will be
necessary in order to place our contribution in perspective.

The simplest and most conceptual method of classification is based
on the observation n.rwn if ﬂ\ is a small topological category and if a space
mwﬂ is appropriately constructed from the associated simplicial space
(technically, by use of face but not degeneracy operators in forming the
geometric realization), then ﬁn classifies the functor defined on para-~
compact spaces X as the quotient obtained from the cohomology set

1
H (X; mwv by identifying homotopic cohomology classes. This method is due




Introduction

to Segal [30], and an exposition has also been given by Stasheff [2, p. 86-94].
B¢ is a generalization of Milnor's classifying space for ﬂomuopommnmp. groups
[24], and this method of classification is a generalization of one found for
bundles by tom Dieck [6]. It is particularly appropriate to the study of
foliations via the classification of Haefliger structures (e.g. [2]). While
this approach is very general, it is only useful when the structures one
wishes to study are obtained by patching together local coordinates by means
of cocycles with values in some category AU B Hﬁ.vwwnﬁwamu this means that
the morphisms of ﬁ must at least be homeomorphisms, so that n_w is a
topological groupoid, and this approach is inapplicable to the classification
of fibrations or of bundles with globally defined additional structure.

A second conceptual method of classification is based on appeal to
Brown's representability theorem [4]. It has two defects., First , as applied
to fibrations, there is no completely rigorous treatment in the literature. .
The point is that if one wishes to represent a set-valued functor, then one
must first verify that one's proposed functor does indeed take well-defined
sets as values. This is by no means obvious for the functors of interest in
the theory of fibrations, and this set-theoretical question has been totally
ignored in the literature. Second, and probably more mCdmwgmﬁnww. the basic
purpose of a classification theorem is to enable one to calculate the repre-
sented functor, or at least to calculate invariants of the structures under

study. A space constructed by appeal to Brown'stheorem can generally be
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studied only by reverting to analysis of the originally given functor and is
therefore of very limited use for purposes of computation.

The bulk of Stasheff's survey is devoted to the various alternative
methods of classification, and we shall not give references here. In con-
trast to the general methods described in the previous two paragraphs,
these alternative methods appear to be specific to particular types of fibra-
tion, or at least to require nosm,wamu.m&ww reworking to be made applicable to
varying types. Technically, with one exception, each such method involves
at least one of the theory of simplicial sets, a combinatorial theory of
cellular monoids, careful local pasting arguments, or the use of higher
homotopies. The exception is Stasheff's original proof [32] of the classifi-
cation theorem for fibrations with fibres of the homotopy type of a finite
CW-complex.

Why are these results not adequate ? First, fibrations with
,Honwwwmmm or completed spheres as fibres Em.< a key role in Sullivan's
beautiful proof of the Adams conjecture [39]. Such spaces are not finite
CW-complexes, and one source of technical difficulty in Sullivan's argument
is the absence of a good model for the relevant classifying spaces. Our
Corollary 9.5 will rectify this, and we shall return to this point in [21]
where a new theory of localization and completion of topological spaces will
be given. m

Second, spherical fibrations and bundles oriented with respect to an

extraordinary cohomology theory are central to many applications, and there

vii
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is no proof of a classification theorem for such structures in the literature.
As we shall show in [19] and [20], Theorem 11.1 implies such a classifica-
tion theorem, and its use allows easy derivations of some of the results of
Adams on vector bundles and of mc.ET\m.B on topological sphere bundles.

Third, for the study of orientations, it is very convenient to have
a variant of Stasheff's theorem in which fibrations are given with a cross-
section which is a cofibration. Corollary 9.8 will give such a result,

Beyond these explicit applications, there is an evident need for a
single coherent theory of fibrations and their classification which will
simultaneously yield the various classification theorems desired in practice
as special cases of one general result, or at least as consequences of one
general pattern of proof. Moreover, such a theory should if possible avoid
techniques, such as those listed a few paragraphs earlier, which, roémfww
great their interest within the theory of fibrations, are irrelevant to the
actual computations based on the theory. Needless to say, our theory does
meet these criteria.

We should say a bit more about two of the techniques we avoid.
Much has been written about the inevitability of the appearance of higher
homotopies in any complete theory of fibrations, and we freely admit that
they are indeed implicitly present., Nevertheless, at each place where it is
generally felt they ought to appear, we shall find that some conceptual trick
leads to an equivalent solution with no such notion visible. Thus we shall

classify principal G-fibrations for arbitrary grouplike topological monoids

viii
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G in Corollary 9.4, we shall show the independence of the choice of fibre
in the classification of fibrations with fibres of a given homotopy type in
section 12, and we shall classify such fibrations by use of associative trans-
ports (which are actions on fibres by the Moore loop space of the base) in
section 14. In each case, the actual details are very much simpler than
would be the case if higher homotopies were explicitly introduced.

Similarly, .Sw have chosen to work with Hurewicz, rather than with
Dold {or weak) fibrations, throughout. We freely admit that Dold fibrations
have important technical advantages and are implicit in the notion of fibre
homotopy equivalence. However, since the local pasting arguments for
which they are essential are unnecessary in our work, their use would
introduce considerable additional complexity while adding nothing of signifi-
cance to our theory. Although the most important results concerning the
local nature of fibrations are valid in our general context, local considera-
tions will only play a role in those instances of our classification theorems
which involve bundle theory.

The paper consists of fifteen sections, with logical interrelation-

ships as indicated in the following chart:

10,11 @
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Introduction

The first three sections are devoted to a redevelopment of the
theory of fibrations, including the basic ;nwmou..mam of Dold [7,3.3 and 6.3]
and Hurewicz [11], for fibrations with fibres constrained to lie in any pre-
assigned category .\* . Technically, the main point here is that the section
extension property which Dold takes as fundamental does not generalize to
our context, hence we have been forced to find alternative proofs. While
these are still based on the ideas of Dold, they are shorter and may seem
simpler even in the classical case.

The special properties required of am.» in OHm.mu. to classify

% -fibrations wwm discussed in sections 4 and 5, and examples of cate-
gories which satisfy these properties are given in section 6. The relevant
properties ensure that associated principal fibrations can be constructed
and that quasifibrations can be replaced by fibrations; for the latter, the
point of interest is that the standard procedure is inadequate for the study
of fibrations with cross-section.

In sections 7 and 8, we summarize the topological properties of
the two-sided geometric bar construction. Most of the proofs have already
been given, in a more general setting, in [17, §9-11 (which are independent
of §1-8)] or [18, Appendix]. This construction is a straightforward
generalization, implicit in Stasheff's paper [34], of the standard Milgram-
Steenrod _Hmqu 38] classifying space functor. The generalization, despite its

simplicity, transforms the bar construction from an invariant of topological

monoids to an extremely flexible tool in the theory of fibrations and their

classification,

23 e e e
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We reach our basic classification theorems for fibrations and
bundles in section 9. The method of proof is to write down an explicit uni-
versal fibration (or bundle) and to verify that it classifies by explicitly con-
structing a classifying map for any given fibration (or bundle). In section
12, we generalize the standard Segal [30] classifying space functor on small
topological categories to a two-sided bar construction (technically, using
both face and degeneracy operators). This generalization allows us to re-
work our basic theory, in favorable cases, so as not to give any particular
choice of fibre a privileged role.

A general notion of additional global structure on a fibration or
bundle is introduced in section 10. Special cases include reductions of the
structural monoid, trivializations with respect to a coarser type of fibration,
and orientations (of spherical fibrations or bundles) with respect to an extra-
ordinary cohomology theory. We demonstrate in section 11 that the proof of
our classification theorems directly generalizes to a proof of classification
theorems for such fibrations or bundles with additional structure.

The last three sections are primarily concerned with homological
properties of the geometric bar construction. In section 13, after
generalizing results of Milgram [23] and Steenrod [38] concerning the cellu-
lar properties of classifying spaces, we obtain a technical result (Theorem
13.9) which relates the two-sided algebraic and geometric bar constructions
by mixed use of singular and cellular chain groups. This result, which

should be regarded as a generalization of a special case of a result of

Stasheff [31], gives the Eilenberg-Moore and Rothenberg-Steenrod spectral
xi
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sequences [26, 29], with their products,

and shows that the two are in fact
the same. In secti i
ection 14, we introduce the notion of a transport, u it t
» use it to

Stasheff [33]), and combine it wi

of the Serre spectral se uence, with its roducts. inally, in section 1 3
q P F 1 ectio 5

we give a brief proof of the *®

group completion theo rem", due to Barratt

riddy _ ~ an 1lien _ _ wiich an yze € homologic avior
Pridd 1 d Quill 28 3 hich al s the h 1 gical beh 1 f th
(s} e

natural ma G - QBG for appropriate non-connected to OHONHQW monoids
G. This result WHN%M a Mgnwm.ﬁumﬁnm.w role in the n-OOH< of infinite HOOmu spaces

and its application to algebraic K-theory [18]
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1.7 wﬁumvmnmm and Quswvm

We take the position that types of fibrations ought to be specified by
assigning structure to the fibres and that this is most sensibly done by
specifying a category in which the fibres must lie. We here develop a frame-
work in which to define such fibrations and generalize to this framework a
theorem of Dold [7, 3.3] to the effect that a local fibre homotopy equivalence
is a fibre homotopy equivalence.

We shall work in the ow»mmo».<~\~ of compactly generated weak Haus-
dorff spaces [37;22,§2]; thus products, function spaces, etc. are always to
be given the compactly generated topology. Throughout the first five sections
m will denote a category with a faithful "underlying space" functor rﬂ |v.:\
Thus each object of «“‘ is a space and the set 4% (F,F') of morphisms
F —-F' in ..\a.\ is a subset of .\;.Am,“”m._v. We agree either to insist that u“\
contain with each F e :ﬂ the spaces FX * and * X F and the evident homeo-
morphisms between these spaces and F or to identify these spaces with F,

where * is any one~point space.

Definition 1.4. An .mmumvmnm is a map mE -~ B in WU such that

dl»ﬁuv ¢J for each be B; B and E are the base space and total space

of w. An hﬂuawv (g,f): v =7 is a commutative diagram




m
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.9 -1 -1
in U - such that g: v (a)—=w (f(a)) is in .%‘ for each ae A; if A=B
and f is the identity map, then g is said to be an % -map over B. An

|mn ~-homotopy is an ¥ -map (H, h) of the form

Dx1—2 &

vX1 ™

AxI—2 538

Thus it is required that each Ammgkmv be an M?:um.mr ImEv = H(d, s); if
A =B and Wweuv = b, then H is said to be an ¥ -homotopy over B. An

mm -map g:D -~ E over B is an ,mﬂntoduoﬁowva equivalence if there is an

.\u‘. -map g':E -~ D over B suchthat g'g and gg' are 4 -homotopic over
B to the respective identity maps. An Q -space wE — B is said to be

q ~-homotopy trivial if it is 7 ~homotopy equivalent to the projection

dganH.,..yw for some M.mh\\. .

By restriction to one-point base spaces, the definition specializes
to define W\yroaoﬁovwmm and % -homotopy equivalences between spaces in 4 .
We can form induced Mﬁxmvmnmw precisely as usual. The following

lemma fixes notations.

Lemma 1.2. Let m:E - B be an % -space and let f:A - B be a
* ~ %
map in J\f . Define a space f E and maps i f*E - A and f:f E - E by

£E = {(a,e} | f(a) =w(e)} CAXE , m*dﬁmu e)=a, and Wﬁw. e) =e.

Classifying spaces and fibrations 3

r N * 3 . .
Then f w is an % -space and (f,f) is an mﬂngmv. Moreover, if
v:D— A is an J -space and (g,f):v = w is an ¥ -map, then the unique
map g:D —~ f*E which makes the following diagram commutative, namely

g(d) = (v(a), g()), is an 4 -map over A:

D—8& g

|5,

g
* 'E -,
fw

"

A—m—* 5B

The remainder of this section will be devoted to the promised
generalization of Dold's thearem. We assume given ,mm -spaces v:D -+ B
and w:E -~ B and an /mm -map g:D - E over B. We require some nota-

tions and a lemma.

Notations 1.3. Let G denote the subspace of D X mH consisting of
all pairs (d,€) suchthat g(d)= E€(0) and E(I)C ﬂ«»ﬁ v(d)). Define
maps a:G =~ D and man -~ E for sel by afd,e)=4 and mmmm. &)= g(s).
By an 4 -section of g, we understand a map o !E = G such that u»e o =1
on E and such that, for all b e B, each of the maps Rq".qnp?v - <n»?v and
Umoo.udn»cuv nwdng.?v isin F . Thus an F-section of g consists of an
Imﬂ -map g'= a.:E > D over B together with an M -homotopy Em =Boc

s

over B from gg' to the identity map of E.
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If A is a subspace of B, we let Hb. G, , etc., denote the part of

E, G, etc., over A; explicitly, G, ={(de) | fd) ¢ A} c G.

Lemma 41.4. Assume that g is an s -homotopy equivalence. Let

-1 -
#:B ~1 beamap, let A=g (1), andlet V=¢ :e. 1]. Then, for any
Mﬂw ~-section o “m“< - Q<. of g, there exists an - -section p:E—>G of ¢

such that p = ¢ on Hb.

Proof. Tet g'E —D be an % -homotopy inverse of g andlet
H:gg' o~ ‘.—m“ and H':g'g ~ AU be F -homotopies over B. Define an
Mw -section T:E > G of g by v(e) = (g'(e), Hle)), where H(e)(s) = Hfe, s).
Define a homotopy L:GX I -+ G from the nongmwn.m T o uw to the identity

map of G by the formula

(g's(1-2t), HE{1- 2t)) ift < 1/2

L{(d,e),t) =
(H'(q, 2t-1); 7(d, e, 2t-1)) if 1/2<t

where IJ(q, £,t)(s) = jk(s,t) for some chosen retraction

KIXI - (I1X0)u (0XI) U(Ix 1)
and where j(s, 0) = H(e(0), s), j(0,t) = gH'(d,t), and j(s,1) = E(s).
The desired _F -section p of g is then defined by the formula

v(e) if gnle)<1/2
ple) =
L(o(e), 2fm(e)-1) if 1/2 < fule)

Classifying spaces and fibrations 5

Recall that a cover NM of a space B is said to be numerable if it

is locally finite and if for each U ¢ n there is a map rcn B -1 such

-1
that U = VG (0,1]. Recall too that a space B WU s paracompact if
and only if every open cover of B admits a numerable refinement and that

any CW-complex is paracompact,

Theorem 1.5. Let v:D ~B and m:E - B be Qumwmnmm. Let
g:D > E be an Uéugwmv over B such that g restricts to an n«\ -homotopy
equivalence over each set of a numerable cover ﬁu of B. Then g is an
\.% -homotopy equivalence.

Proof. It suffices to construct an F-section ¢ :E—~G of g.
Indeed, this will give a right MN -homotopy inverse g' of g. g' will re-
strict to an F -homotopy equivalence over each U e & since if mG is an

.mﬁ -homotopy inverse to By » then f_=~f{

Voo gt ~
- uEuE'y = 8y (where = means

nis F -homotopic to"). Therefore g' will itself have a right 4 -homotopy

inverse g", and g = gg'g"~ g". For Ue ﬂu , choose a map rduw|vH

-1 3
such that U= \;(0,1]. For a union V= ,Cq U, of sets U e ¢ define
Je
Ny = WJ..\._. Vdu. ., sothat V= {x| 7<¢& >0} . We assume that € is

irredundant, and then VC W if andonly if x_ < )\ Let (1 denote the

v = twe

set of pairs (V,s ) suchthat V is a union of sets in & and q“mu< - O<

is an ¥ -section of g. Partial order (L by (V,¢) < (W,7) if VC W and

oc(e) = v(e) forall ec .=,|u< such that V<;imv = rédﬁmv (thus, ¢ (e) # r(e)
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implies w(e) ¢ U for some Ue (& suchthat UC W but dﬂ V). Any

totally ordered subset :)\._m. o.w: ke K} of (L has the upper bound
- -1
(V, ¢) defined by V = C V., and ofe)= o, (e) for eew V andall
KK X k

sufficiently large k. Here o is well-defined and continuous and

V,ao) > ?\X. mnv for all ke K since if be V and V(b) denotes the union

of those Ue (C suchthat be UC V, then V(b)C <Hn?v
over V(b) for all

for some k(b)e K
(because { is locally finite) and therefore o = o‘W?v

k > k(b). By Zorn's lemma, (L contains a maximal element (V,s). We
claim that V= B . Suppose not; choose Ue AM such that U ﬂ V and
let W= UUYV. Define f: W—1 by

1 if rc?v < 7<?v (hence y<?v > 0)
#(b) =
w<?<ya?v if rcE WViE (hence rc?v > 0)

. . . -1
@(b) > 0 if and only if 74?& > 0, hence o is defined over f# (0,1]. By

the lemma, there is an %|wmnnwou nnmd - Od of g suchthat p= ¢ over

-1 . . N
g (1) n U. Define TiEy Oﬁ\ by
o (e) if Vd.imv MV»\.:TWV
{e) =

ple) if Nywle) 22 me)

Clearly (W,-)> (V,v); which is the desired contradiction.

Classifying spaces and fibrations 7

2. |% -fibrations

Definition 2.1. An m -space mE —+ DB is an ,% -fibration if it
satisfies the following hﬂ -covering homotopy property (abbreviated
¥ -CcHP): for every J -space v:D—>A and g -map (g,f): v 7 and
every homotopy h:AXI—~ B of f, there exists a homotopy H:DXI —~E

of g such that the pair {(H,h) is an 4 ~homotopy.

A QL -fibration is.clearly just an ordinary (Hurewicz) fibration.
We here generalize the elementary theory of fibrations to (%» -fibrations
and generalize Dold's theorem [ 7 , 6.3] to the effect that a map of'fibra-
tions is a fibre homotopy equivalence if it restricts to a homotopy equivalence
on each fibre. We observe first that the 7 -homotopy (H,h) asserted to

exist by the % -CHP is itself unique up to %\ -homotopy.

Lemma 2.2. Let (H,h),(H",h"), and (J,j) be .F -homotopies with
domain v X 1:DX I~ AXI and range w:E - B, where v is an w\« -space
and w is an \U.ﬁum.uu.m.ewob. Assume that (J,j) is an :ﬂ. ~homotopy from

Amourov to (H!, rwv and assume given kiA X IX I - B such that
k(a, s,0) = h{a,s), kla,s, 1) = h'(a, s), and k(a,0,t) = j(a,t).
Let C=(IX0)w (IX41)w (0XI)C IXI and define g:DXC ~E by
g(d, s,0) = H(d, s), g(d,s,1) = H(d, s), and g(d,0,t) = J(4,t).

Then there exists K:DXIXI—=E such that HA_U X C = g and the pair

(K,k) is an ,mh\uﬁosonom«ﬁ
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Proof. (g,f) is an ¥ -map, where f=k|A X GC. Since the pairs
(IXLC) and (IXI,IXO0) are homeomorphic, the conclusion follows

directly from the  -CHP,
The following result is an easy consequence of the lemma.

Proposition 2,3. An m“. -fibration w:E - B determines a functor

L from the fundamental groupoid of B to the Wogonom.w category of F by
L(b) = a-»?v for be B and L[h]= Et for a path h:I —~ B, where

H: ﬂ..wwﬁov X I-E is any homotopy of the inclusion dn»Eon —~ E such that

(H,h) is an F -homotopy. In particular, if B is connected, then any two

fibres of w have the same 4% ~homotopy type.

We shall find it convenient to compose paths in the reverse of the
usual order; with this convention, the functor L is covariant.

We show next that induced ,mh -fibrations behave properly.

Lemma 2.4, Let m:E > BXI be an %umﬂuﬁmﬁov and let w:E° - B

denote the part of = over BX{s} . Then .=o and .:n are n%.urogoﬁov.&

equivalent.

Proof. Define hi:BXIXIXI-=BXI by hlb,r,s,t) = (b, (1-t)r+ts).
By the § -CHP, there exists H: EXIXI—~E such that He,s,0) = e and
(H,h) isan J -homotopy. Define K:EXI-—E by Ke,s) = Hle, s, 1).

Observe that if w":E =B and «":E -~ 1 are defined by w(e) = (w'(e), w"(e)),
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then wK(e,s) = (v'(e), s) and traversal of H(e,w"(e),t), 0<t< 1, gives

an ,N ~-homotopy over B X1 from the identity of E to the F ~map

k:E - E over B X I defined by k(e) = K(e,w"({e)). Define W»n B - W»

0

and K:E' > E by W»T& = K(x,1) and Woni = K(y, 0). Via the homo-

1.0
topies K(K(y,s),1) and K(K(x,1-s),0), 0<s <4, the maps k k and

WDW» are .% -homotopic over B to En_m» and Eﬂ_ﬁo. respectively.

1 0
Therefore k and k are inverse M -homotopy equivalences.

Proposition 2.5. Let mE —~ B be an J -fibration. Then

m*ﬂum*m —~ A is an -J-fibration for any map f:A = B and homotopic maps

A - B induce ‘mﬁ -homotopy equivalent A -fibrations over A. In particular,

any F -fibration over a contractible base space is F -homotopy .uumdwm&.
Proof. The first half follows from Definition 2.1 and Lemma 1.2,

and the second half follows by application of the previous lemma to

*
w*.quw E - A for any homotopy hi:A XI— B.
Dold's theorem [ 7,6.3] now generalizes readily to our context.

Theorem 2.6. Let v:D-B and mE ~B be % -fibrations.
Let g:D = E be an % -map over B such that g: <|»?v - d:»?v is an
m“ -homotopy equivalence for each be B. Assume tlet B admits a numer-
able cover mw such that the inclusion map U ~ B is null-homotopic for
each Ue . Then g is an ,% ~homotopy equivalence.

Proof. Let Ue& andlet h:UXI— B be a null-homotopy,

—_ % 3 N
ro?v =u and T»?v =b. Define g:h D -~ »'E by the universal property of
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T*N and let Mm denote the restriction of m to the part of r*U over . Notations 3.1. For B mpfr , let NIB denote the set of paths (B, s)
UX{s}. Then Mo = g3 v iU+ 71U ana M» =4Xg:U X<-»?v - UXx ﬂc»?v. g:[0,s] - B. When convenient, we let B(t) = B(s) for t>s; a point
Construct maps WMW»W» and Wo for h™r and u.?m;.» and uo for h*v by . (B,s) € IB is then specified by Pf:[0,0] > B and se [0,©), and OB is
the proof of Lemma 2.4. Then Mo is J -homotopic over UX {0} to . topologized as a subspace of W([0, ], B) X {0, ). Define the composite
WMo.w and, via the homotopy Nﬁum..mu.?nu s),0), 0 £s< 1, WMo.w is ,m~ -horno- . (@B, T+s) of paths (@, r) and (B,s) such that «(0) = B(s) by

0_1.1 '

_ topic over U X{0} to the composite of m-rogoﬁov< equivalences k g j . (@B)t) = B(9) if 0<t<s and (ap)(t) = alt-s) if s<t<rts.

Thus g is an % -homotopy equivalence over each U ¢ ﬂ , and the result

We shall abbreviate B= (B,s), and we shall write £(B)=s and p(B) = B(s)
follows from Theorem 1. 5.

for the length map and end-point projection. We shall consider B to be con-

Observe that the assumption on B is invariant under homoto s
7 & . tained in IIB as the subspace consisting of all paths of length zero.

equivalence and is satisfied by spaces, such as CW-complexes, which are

Definition 3.2, ILet w:E — B be an 1.% -space. Define a space TE
paracompact and locally contractible. In[ 7, 6.7], Dold has given a direct :

and maps I't :I'E - B, n:E~TE, and p:ITE ~TE by
construction of a cover of the required type for any CW-complex B. Of
course, if B is connected, the assumption on g: <|»?v - dx»?v will be TE = {(B,e) | p(0) = w(e)} CIBXE and Iw(B,e)=p(p),
satisfied for all b ¢ B if it is satisfied for any one b e B. ne) = (w(e).e) and ule, (B, e)) = (@B, e).

An ¥ -lifting function £ for w is a map £:TE-— E such that

cpes - -1 - P
3. F -lifting functions wof = Tw, £om =1, and the map E£ofim B(0) ~= 1p(p) isin ¥ for

We here generalize to our context the relationship between fibrations . each Pe IIB, where mud:»onv — ﬁ;.i..»v:wv is given by B(e) = (B, e).
and lifting functions and Hurewicz's theorem [ 11] to the effect that a local . £ is said to be transitive if, whenever B(0) = w(e) and «(0) = p(B),
fibration is a fibration. We first fix notations for Moore paths; use of such E(x,E(B,e)) = E(a B, e).

paths will simplify proofs here and will be essential in later sections.

For example, p is a transitive ﬁuﬁmﬂbm function for I'm:TE— B.
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Lemma 3.3, If £ is a (transitive) :\“ -lifting function for an

F-space mE - B and f: A~ B isa map, then ¥t isa (transitive)

.%” -lifting function for f* R > B, where f*f is defined by
x
(EE)(a (2, 2)) = (pla), & (£-a, €))
for @eIlA, 2ae A, and e E suchthat (0) = a and f(a) = n(e).

Proposition 3. 4. An 4 -space mE -~ B is an ¥ -fibration if and

only if 7 has an % -lifting function £

Proof, If mcumm — B is the initial projection, then TE = UMH as

a space and Amv..o.vov" vM..:. —~ w is an - -map. Define a homotopy
h:MB X [0, @] - B of Py by B(B,t) = B(t). If w is an ¥ -fibration,
there is a homotopy H:TE X [0, 0] — E of ‘W\o such that (H,h) is an
),M -homotopy, and an Mﬁ..wwmﬁ.bm function £ is then given by

£(B,e) = H{(B, e), £ (). Conversely, assume given £. For an .%..wbmm
(g, £)iv - w,v :D > A, and a homotopy h of f, let rnﬁwv denote the
path of length tin B given by ﬁﬁﬁmv (a) = h{a, MY a e A, and define
H(d,t) = ¢ ?nc?d. g(d)). Clearly H is a homotopy of g such that (H,h)

is an ¥ -homotopy.
The following immediate consequence should be noted.

!
Corollary 3.5. Let F - u. be a functor over ﬁ (that is, the

) /
underlying space mcbnﬂou. %nv 1L is the composite % - m\ - :v Then an

7
% ~-fibration w is an M. -fibration; in particular, = is a fibration.
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When =W , Definition 3.2 describes the standard procedure for
replacing a map by a fibration. We note the following facts about this pro-

cess.

Remarks 3.6. Let mE - B be a map (that is, a U -space).

(i) I £ is a lifting function for =, then 41 =~ nf over B via the homotopy
v(B.e) = (B (B, e)), where
2(g) = t1(p) and By(w) = pla)

and

2py) = (1-t)2(p) and Bi(a) = Plu+te(p)).

Therefore n and £ are inverse fibre homotopy equivalences.
(ii) =m(E) is a strong deformation retract of I'E via the homotopy
w—nﬁu. e) = Amn‘ e). Thus n restricts to a weak homotopy equivalence on each

fibre if w is a quasi-fibration (so that =

-1

o 4_.,Amu«ﬁ|»‘a.mv @dWAm.,Uv is a

bijection, i > 1, and ._._.o?.
be B and ec d:»dv.

b,e) -~ ﬂoﬁwu e) -~ .aoAm:Gv - % is exact for all

Remarks 3.7. Fora A-map (g,f): v+ m, viD—> A and mE - B, define
a WU-map T'{g,f):Tv -~ Tr by I'(g,f) = (g, f), where I'giI'D > TE is
given by T'g(a,d) = (fea, g(d)). Then T is a functor from the category
of W -spaces to itself. The W-maps m:E - T'E and p:I'TE ~TE over
B define natural transformations n:4 =T and p:I’'T" =TI  such that the.

following diagrams of “U-maps over B are commutative for each mE - B:
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rE -0 ITE «—31—TE and ITTE —% = rT'E
o

T T

TE rtre—F o rE

In categorical language, (I', 1, 7) is a monad in the category of ﬁumvmnmm
[17,2.4]. A transitive lifting function § for w isa 9 [-map £:TE —E
over B such that the following diagrams of A -maps over B are com-

mutative:

E—nn TE and ITE—2 > rE

E TE lllv.m E

Thus the pair (w,£) is a I'-algebra in the sense of [17,2.2]. Moreover,
by [17,2.9], for any U-space =, (Tm,p) is the free I'-algebra generated

by .

The observation above was also noted by Malraison| 15 1.
The rest of this section is devoted to the proof of the following

generalization of Hurewicz's theorem [ 11].

Theorem 3.8. Let mE - B bean .mm -space and assume that B

admits a numerable cover Wv such that w: HC - U is an umw ~-fibration

for each U e W . Then w is an M\nmw.uwwﬁou. Therefore an Hﬁum@mnm
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over a paracompact base space is an ‘% ~-fibration if and only if it is a

local F -fibration.
Proof. Our argument is a corrected version of Brown's modification

[ 3 ]of Hurewicz's original proof. We shall construct an % -lifting func-

tion £ for w. For any finite ordered set s= {U duv of not

EETEE

necessarily distinct sets in {© , define

W_o={p|8(t) e U, if (i-1)£(pn<t<iL(p)/n} C TB.

By hypothesis, there exists an QN -lifting function mwn H.HC - MG for
i i

each i. For 0<u<v<41 andapath f e IB, define the sub-path

Blu,v] of B by £p[u,v]= (v-u)i(p) and
Blu,vi(t) = plt +ur(p)).

Let (i-1)/n <u<i/n and (j-1)/n<v < j/n for integers 0<i<j< n.

For ee qn»m?.a.zov and e Sm. define

(1) & (Bl vl ) = £ (012 L vLg, (ISR I,

n

et B g (B, 11,0)) L))

Let A.:B =1 be such that r.wxou: = U,

i and define rwumm -1 by

A (B) = .EIJmE_ (i-1)2(B)/n <t<ifg(B)/n and 41<i<n}.

1 .
Then ,<<mu A (0,11 .:a.mw is a cover of B, but it is not locally finite.

Let c(s) =n if s has n elements and note that Asmﬁ c(s)<n} isa
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_locally finite set for each fixed n. Define 05 on IIB by

odAE = M VmAE. Then define Y, on NB by
c(s)<n

V(8 = max(o,\ (B) -n0_(B) if c(s)=n.

Define v, = {s] <w2wv > 0} ﬂ#«m. It is easily verified that {V_} isa
locally finite cover of IB. Total order the set m of finite ordered sets

of sets in . For (B,e) ¢ TE, define

(2)  Elpe) = o (Flrq ot h 8, Ot e Bt (gt o).,
where mH < .o < mm are all elements s ¢ \.ﬂ such that Be <m
j q
and where t. = S Vg AEV\M Yo ® .
LR S = S

£ is the desired lifting function. It is clear from (1) and (2) that £

restricts to a finite composite of maps in 4 for each fixed B.
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4. Categories of fibres

In order to classify 7} -fibrations, we must of course place severe
restrictions on the category F# . We here define the notion of a “"category
of fibres, " which is essentially a category with just enough structure to allow
the development of a theory of associated principal fibrations. Such a theory
is essential in our approach to nmemwmmnwﬁos/ theorems and is an obvious de-
sideratum of any general theory of fibrations.

We topologize 4(X,X') as a subspace of the function space W(X,X'),

with the Aoosuwnﬁ% generated) compact-open topology.

Definition 4.1. Let # have a distinguished object F. Then (#,F7)
is said to be a category of fibres if every map in F is a weak homotopy
equivalence, #(F,X) is non-empty for each X ¢%, and composition with §

F,9): F(FF) ~ FF,X)
is a weak homotopy equivalence for each e F(F,X). % is saidto be a

homogeneous category of fibres if (F,F) is a category of fibres for every

object F.

Recall that a topological monoid is an associative H-space G with a
two-sided identity element e and that a left G-space is a space X with an
associative and unital action map G XX -~ X. G is said to be grouplike if
.aoO is a group under the product induced by that of G. This holds if each
right translation map g: G >~ G induces an isomorphism on doﬂ: and then

translation by g on any (left or right) G-space is necessarily a homotopy

equivalence,
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Definition 4.2. A category of fibres (§,G) is said to be principal
if G is a grouplike topological monoid, each object Y ¢ \w is a (non-empty)
right G-space, and the space &A‘&, Y') coincides with the space of right
G-maps from Y to Y'. Identify the space \mﬁﬂ. Y) with Y via § <>(e)
and note that B (1,§):G — Y is given by g — f(e)g and is required to be a
weak homotopy equivalence. This condition already implies that all maps in
Mu N.mm weak homotopy equivalences (as on.m sees by composing a map Y >Y'

in M with any map G~ Y in 8 ).

Observe that to specify a principal category of fibres, we need only

specify an appropriate collection of right G-spaces.

Definition 4.3. Let (F ,F) be a category of fibres. Define the
associated principal category of fibres (4,G) by letting \u have objects
F(F,X) for X eF , with G= F(F,F); the producton G and the action of
G on 3%(F,X) are given by composition. For an 9 -space q"H. - B,
define a T u.m_um.nm Pm:PE -~ B by letting PE be the subspace of U(F, E)
which consists of those maps i F —~ E such that ((F) C .=.L.qu for some
be B and :F - ﬂs»?v is a map in F and by letting (Pw)($) = my(F). For
an ¥ -map (g,f): v ~w, v:D = A, define a E -map P(g,f):Pv =Pr by
Plg, f) = (Pg, f), where (Pg)(l) = gey for e PD. Then P is a functor

from the category of g -spaces to the category of il -spaces.

The definition of P is based on ideas of Dold and Lashof [ 8 ], who

called P Prin.
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-Remark 4.4. A principal category of fibres A,w ,G) may be identified with

its associated principal n.m:“mwo“.< of fibres. Let mE - B be a Enmvmnm.
Define a bijection of sets a:E -~ PE by oa(x)(g) =xg for xe¢ E and ge G;

Q..»?Su&Amv for :G—=E in PE. Rn»

is always continuous and « is con-
tinuous provided that the given right actions of G on the fibres of w define
a continuous mcu...nﬂod E X G- E. Henceforward, by a \@xmwmnm. we under-
stand one for which E X G - E is continuous; this is a reasonable restriction
since, inthe contrary case, we can retopologize E by requiring a to be a
homeomorphism and so make the action continuous. With this convention,

we can identify E and PE via « and regard P as the identity functor on

y&:mvwnmm.

The following pair of lemmas record obvious properties of the
"associated principal )] -space" functor P for a fixed category of fibres
(4.7).

Lemma 4.5. I mE B is an 7 -space and f:A —~ B is a map,
then there is a unique .m“vgm@ ._.uHuM%H — {*PE over A such that the

following diagram is commutative:

Pi'E > PE
l/._.’ Y‘
. *
Pfw | fpp— L TF P
A d B
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Lemma 4.6. Let w:E—~ B be an # -fibration with (transitive)

# -lifting function £:TE —E. Then Pm:PE ~ B is a M -fibration with
(transitive) vm_..ummﬂwbm function P£:TPE — PE defined by

~

(PE)(B, )(x) = £(B, b(x)) , hence (PE)(B,y) = £oBed:F ~= 'p(p) ,

for xe F, Be IB, and ¢ ¢ PE such that B(0) = (Pr)(y).
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.5, ¥ ~quasifibrations and based fibres

Our explicit classifying space constructions will yield universal
quasifibrations. Since pullbacks of quasifibrations need not be quasifibra-
tions, we shall sometimes have to use the functor I' to replace
3 ~-quasifibrations, by which we understand F -spaces w: E - B such that
; 7 is a quasifibration, by ¥ -fibrations. The following definition records

the minimum amount of information that will suffice for this purpose.

Definition 5.1. A category of fibres (J,F) is I'-complete in a full
subcategory b of Wif Fc4 , Hec ], and the following statements are valid
for J -quasifibrations m: E + B with B and E in .

(1) Tm:TE - B is a 7 -fibration with %-lifting function p.
. (2) :E~>TE is an # -map over B.

; (3) T takes J -maps between 7 -quasifibrations in 4 to 7 -maps.

Let J denote the category of nondegenerately based spaces in W ana
basepoint preserving maps. In some very important examples, the functor
‘ m., - factors through T . In the definition just given, there is clearly
no way to give the fibres of I'r basepoints such that each
a -1 -1 . . ; : al :
pp:(Tw) "p(0) = (Tw) "p(B) is basepoint preserving (since pf(a,e) = (Ba, e)).

We need a few more definitions in order to circumvent this difficulty,

Definition 5.2. When given a category 5 with a faithful functor
F T , redefine an 5 -space to be a map w:E - B such that not only is

-1
7 (b) in F forall be B but also the function o :B -~ E specified by

I
i
i

: -1
sending b to the basepoint of w (b) is continuous and is a fibrewise
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cofibration, in the sense that there exists a representation (h,u) of (E,oB)
as an NDR-pair [17,A.1] such that ht EXI—E isa 7J - homotopy over B
(so that (h,u) restricts to a representation of ?L?Y ob) as an NDR-pair).
All other definitions and results obtained so far in this paper apply verbatim
to these F -spaces with a canonical cross-section (because 7 -maps are
automatically section preserving). We refer to a category of fibres (3,F)
such that F maps faithfully to T as a category of based fibres.

Definition 5.3. Let mtE —~ B bea [J -space. Define a # -space
TC'w:T'E~ B and maps n:E -~ T'E and p:I'T'E = T''E as follows. I''E
is obtained by growing a long whisker on each fibre of I'n. Formally, I''E
is the quotient space obtained from the disjoint union of TE and B X [0, 0]
by identifying (b, ¢b) ¢ TE with (b,0) e B X[0,0] for each be B. I'm
coincides with I'm on T'E and with the projection to the first coordinate on
B X [0, ®]. The cross-section T'c:B - I''E is defined by (I'¢)(b) = (b, ®)
and is clearly a fibrewise cofibration. With (h,u) as in the previous defini-

tion, define n' by ;
(w(e), »\Eﬁm.v.w! 2) if 0<ule) < 1/2

n'(e) =
(w{e), ble, 2 - 2ule)) if 42<ule) <1

Then 7' is a J -map over B and a homotopy equivalence. Define p' by
p'=p on I'TE ¢ I'T''E and by
(81, oB(0)  if 0<t< 1(p)

1P, (b,t)) =
(p(p), t-£(p)) if £(B)Lt=< oo
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. where B(0) = b, hghv = #(B) -t, and _w..uﬁmv = B(s+t). Then p' is easily veri-

fied to be a J-lifting function for I''w., With the evident definition on

J -maps, T'' becomes a functor from J -spaces to mﬁumvwmnwodm.
Definition 5. 4. A category of based fibres (F,F) is I''-complete

in a full subcategory d of W if Fe p s Nn N , and the following statements

are valid for J -quasifibrations mE - B with B and E in & .

(1) TI''mI'E ~B is an J-fibration with F-lifting function TR

(2) 7% E~>T'E is an J-map over B,

(3) T' takes ZF-maps between JF -quasifibrations in MN to J-maps.

A five lemma argument gives the following observation.

Lemma 5. 5. Let (3,F) be I'-complete {or I''-complete) in o)
and let mE- B bean ¥ - quasifibration with B and E in b| . I
Pm: PE —~ B is again a quasifibration, then the \#uamv Pn: PE ~ PT'E (or
Py': PE —~ PI''E) over B is a weak homotopy equivalence.

We record the following remarks for use in [19].

Remarks 5.6, Let v:D - A and n:E > B be u¢|m@wnmm. Define a J -

space v Am DAE —~ A X B, the fibrewise smash product of v and w, as
follows. Let Da E = D X E/(=), where the equivalence identifies the wedge
(oa, 5...»5 v T\lwm, ob) to the point (va, ob) for each (a,b)e¢ A X B, and let
v AT be induced from v X w; the cross-section of ¥ A7 is induced from
oXo, If v and w are ulxmwvﬂwnwodm. then so is v A 7 since Vv A m
clearly inherits the T -CHP from v and w. There is a natural

T -map g:I'DAT'E > T'(Da E) over AX B specified for (e, d) e I'D,
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(B.e) ¢ TE, (a,s)e AX[0,] and (b,t) ¢ BX[0,00] by 6. Examples of categories of fibres
We here define the functors to which our classification theorem will
glla,d)n(p,e)) = (axp,dre) apply (in favorable cases) and discuss various examples of categories of
gl(a,s)alb,t)) = (2 Xb, max (s,t)) fibres.
’ Definition 6.1. Let A . Defi A) to be the collecti
AQWXU.QQMAOV>QE it t < 1(e) efinition e e W efine mm_a ) to be the collection
gl(a, @)a(b,t)) = (assumed to be a set) of equivalence classes of % -fibrations over A under
(pa X b, t - () if £(a) <t .
i the equivalence relation generated by the E -maps over A. For a map
! (axBL ,ocarcpl(0)) if s < £(B) £:A > A', define £': £J(A") ~EJ(A) by £{v}={f*v}, where {v} de-
- and gl(a,s)r(Bse)) = . notes the equivalence class of v By Proposition 2.5, £} is a contra-
(X pp,s -£(B) if £(B) < 4 . "
variant functor from the homotopy category of W to the category of sets.
I
i
= | By Le as4.5and 4.6, P induces a natural transformation - he
where £(af) = £{a) - t, aj(u) = alttu), 2(B}) = £(p)-s, and B (a) = P(s+u). y Lemmas 4.5 indue meformation £F={f when

It is not hard to see that g restricts to a weak homotopy equivalence on (#.F) is a category of fibres. By Corollary 3.5, any functor § = J' over

! each fibre if v and w are quasifibrations with connected fibres. ‘ AU induces a natural transformation EF~EF.

, Note that the assumption that our equivalence relation leads to a set
of equivalence classes is non-trivial, It will hold in our classification

theorem because our constructive proof will display a set of F -fibrations

over A such that any given ¥ -fibration over A is equivalent to an ele-

ment of the displayed set.

At first sight, our choice of equivalence relation may seem less

natural than the obvious (and more restrictive ) one of ¥ ~-homotopy
equivalence. In the classical examples, every map in ¥ is an 3 -homotopy

equivalence. In such cases, Theorem 2.6 ensures that our equivalence

relation coincides with F -homotopy equivalence (over good base spaces).
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In the contrary case, it is very hard to verify that a given F -map is in fact
an H -homotopy equivalence. Our equivalence relation allows us to ignore
this mﬁo.mwmg and to freely use arbitrary mcgm_uw over A. It is this free-
dom which enables us to avoid both local pasting arguments and higher
homotopies.

We now turn to examples., We first consider the principal case.

Examples 6.2. Let G be a grouplike topalogical monoid. Specify four

successively smaller categories H such that (4.G) is a principal category
of fibres by lettinga right G-space Y be an object of H if ana only if the
maps y:G ~ Y defined for yeY by «va = yg are all

(i) weak homotopy equivalences; write (§,G) =Gl .

(ii) homotopy equivalences; write (4, G) = GW .

(iii) G-equivariant homotopy equivalences.

(iv) homeomorphisms, where G is a topological group. .

Let X denote the full subcategory of W of spaces having the homo-
topy type of CW-complexes. Clearly, (i) and (ii) are appropriate to U and
W, respectively, but are conceptually similar. Case (iii) is most
refractory, and we shall not study it. The point is that, in general, there is
no effective way of telling when a G-equivariant n.ﬂww which is a homotopy
equivalence is a G-equivariant homotopy equivalence. In particular, we have

no analog of the following lemma.

Lemma 6.3. Let G be a grouplike topological monoid. Then G1L

is T-complete in W and, if GeW , GW is T'-complete in W~ .,
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Proof. Write 4 for GWU or GW andlet mE ~B bea

b -quasifibration, with B and E in L or A . Via (B,e)g = (B, eg), the
right action of G on E induces a right action of G on TE such that
M:E—=~TE, p:ITE -~TE, and the B are all maps of right G-spaces. We
must show that Cﬂ.i(»?v e M forall be B. Let y=(B,x) be a typical
point in ?.iu»?? so that B(0) = w(x) and p(B) = b. We must verify that
the map V: G —~ AH,.:.V:»AE is a weak homotopy equivalence; when H= GN§
and G ¢ , the Whitehead theorem and the theorem of Stasheff [ 32] quoted
just below will imply that C,Jin»?v ¢ W and will thus complete the proof,

Consider the following commutative diagram:

N ="8(0)

kS /

G B (rm) " p(0) ,

«/» (re) L) \%

where B(y,w) = (By,w) for ye IB andwe E such that v(0) = w(w) and
py = B(0). Since 7, B, and ¥ are weak homotopy equivalences by Remarks
3.6, Proposition 2.3, and hypothesis, w\ and ¥ are also weak homotopy

equivalences.

The required result of mnwmwwmmu can be stated as follows.

Theorem 6.4. Let v : D~ A be a fibration with Ae¢)V . Then

. . . -1
(i) DeW ifandonlyif v (2) e forall ae A; and

(i) If A'eW , £21A' ~ A is a map, and D ¢V, then De .

1. The proof in [32] is not correct, but can be patched.
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For the next example, recall the following m»mdmmam.wmmsﬁm about the
relationship between U and W (e.g. [21,2.9 and 3.10]). Let [X,Y]
denote the set of homotopy classes of maps X = Y.

Theorem 6.5. (i) If @:Y - Z .is a weak homotopy equivalence and
X e, then f:[X,Y]~[X, Z] is an isomorphism.

(ii) There are a functor and natural transformation on the homotopy cate-
gory of W which assign a CW-complex X' and a homotopy class of weak

homotopy equivalences X' - X to a space X.

Example 6. 6. ~Let F ¢ . Define two categories of fibres FlL and FN
with distinguished object F as follows.
(i) X e FlU if X is of the same weak homotopy type as F; the maps in FU

are the weak homotopy equivalences X — X',
(ii) X ¢ FW if X is of the same homotopy type as F; the maps in FW are

the homotopy equivalences X — X!'; thus F/ = n FU .
In (i), FU(F,X) is non-empty by Theorem 6. 5(ii) and the fact that F e Wv.
For §:F - X in FW and any CW-complex K,

g ilBRxF,F]>[KXF,X]
is an isomorphism, by Theorem 6. 5(i), and therefore
WD KAUE,F)] ~ [KUE,X)]

is an isomorphism. Since FU(F,F) and FU(F,X) are unions of com-
ponents of W (F,F) and U(F,X), because a map homotopic to a weak homo-

topy equivalence is a weak homotopy equivalence, it follows that FU(1, #) is
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.a.weak homotopy equivalence and thus that (i) and (ii) do indeed define cate-
gories of fibres.
Recall the following result of Milnor [ 25].

Theorem 6.7. If X ¢/ and C ¢W is compact, then U(C,X) e Jy.

For this reason, case (ii) is adequate when F is compact. When F
is not compact, for example when F is a localization or completion of the
n-sphere at a set of primes, we shall have to use fibres not in W, as
allowed in case (i).

Theorem 6.4 and a proof similar to, but simpler than, that of
Lemma 6.3 give the following result,

Lemma 6.8, Let F e . Then FIL is I'-complete in UL and,
if F is compact, Fy is I'-complete in j/.

There is a based variant of the preceding example. "Let c_\ =TnW,
the category of nondegenerately based spaces in W, and recall that
Theorems 6.5 and 6.7 remain valid if all maps and homotopies in sight are

required to preserve basepoints.

Example 6.9. Let F ¢}/ . Define two categories of based fibres F7T

and FV with distinguished object F as follows.
(i) XeFJ ifXeT is of the same based weak homotopy type as F;
the maps in FJ are the based weak homotopy equivalences,

(ii) X e FV if XV is of the same based homotopy type as F; the

maps in FV are the based homotopy equivalences; thus FV =Vn FT,
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Lemma 6.10. Let F ey . Then F7J is I''-complete in
W and, if F is compact, FV is I''-complete in )y .
Note that we impose basepoints only on fibres, not on base spaces

or total spaces.

Example 6.11. Let G be a topological group and let F be a left O:mvwwm

on which G acts effectively. Define a category 7+ as follows. Let F
have objects all pairs (X,x) such that X is a left G-space and x:F - X

is a homeomorphism of left G-spaces. Let the set of morphisms from

(X,x) to (X',x') be Tw.munlp_ ge G}, with the evident operation of composi-
tion. 3 has the distinguished object (F,1), and we call (J ,F) a cate-
gory of bundle fibres. ¥ (H,G) is the associated principal category of
fibres, then G is the given group retopologized with its possibly coarser
topology as a subspace of Y (F,F); we insist nENW G, so topologized, again
be a topological group. Of course, in practice, the two topologies usually
agree. By Theorem 3.8, a Steenrod fibre bundle with group G (with either
topology) and fibre ¥ which is trivial over each set of a numerable cover
of its base space is an # -fibration. Following Dold [7], we say that such a

bundle is numerable,
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.7. The geometric bar construction

We here review the definition and properties of the two-sided geo-
metric bar construction introduced in [17, §9-11]. Let G be a topological
monoid such that its identity element e is a strongly nondegenerate base-
point (in the sense that (G, e) is a strong NDR-pair [17,A.1]). Let X and
Y be left and right G-spaces. Define a simplicial topological space
W*A&. G,X) by letting the space of j~simplices be YX 0u XX, with typical
elements written in the form i”m». e mu.u_N. and letting the face and de-

generacy operators be given by

<m~mmmi...mmx if i=0
8;(vleys . ngl) = <F.i:..mw-p.mwmwi.mi%::mux H 1<i<]
vl org o= i i=j
and mw?ﬁmﬁ::m@?v = ,\F».....mﬂm.mwit.:mux

Let B(Y,G,X) denote the geometric realization of W*A%.Q.NV as defined
in[17,11.1]. Then B is a functor to UL from the category (QU(UL) of
triples (Y,G,X); the morphisms of (X(l) are triples (k, £,3):(Y,G,X) -
(Y',G"',X") where £:G > G' is a map of topological monoids and j: X — X!
and k:Y - Y! are f-equivariant maps, j(gx) = £(g)j(x) and k(yg) = k(y)f(g).
The functor B was first defined (implicitly) by Stasheff [34 ]. Let * de-

note the one-point G-space and define

BG = B(*,G,*) and EG = B(*, G, G).
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BG is the standard classifying space of G, namely the normalized version
of the Dold-Lashof [ 8 ] construction, as defined by Stasheff [31, p. 289],
exploited by Milgram [ 23], and analyzed in detail by Steenrod [38 ].

Many of the results of this section and the next are due to the authors
cited above, but our explicit use of simplicial ,mﬁmnmm simplifies nearly all of
the proofs by reducing them to trivial verifications on the level of simplicial
spaces followed by quotations of general results about geometric realization.
The following series of propositions give the basic facts about the topological

behavior of the functor B.

Proposition 7. 1, B.(Y,G,X) is a proper simplicial space.

B(Y,G,X) is n-connected if G is (n-1)-connected and X and Y are

n-~connected.

Proof. The first statement means that (Y, #) X (G, e} X (X,0) isa
strong NDR-pair (where § is the empty set) and holds by [ 17, A.3]. The
second statement follows by [17 , 11.12] (its extra hypothesis of strict

propriety being unnecessary by [ 18, A, 5]).
Now [18,A.6 and A. 4] imply the following two results.

Proposition 7.2. If Y,G, and X are in J , then so is B(Y, G,X).

Proposition 7.3. Let (k,f,j):(Y,G,X) ~ (Y',G',X') bea morphism

in QL ().

(i) I k,f, and j induce isomorphisms on integral homology, then so does

B(k, 1, j).
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“(ii) If k,f, and j are homotopy equivalences, then so is B(k,f, j).

Note in (ii) that no equivariance conditions are required of the given
homotopy inverses and homotopies.
Since B, preserves products by [17,10.1] and geometric reali-

zation preserves products by [17 11.5], the following result holds,

mvu.ovomwm.cd 7.4. For (¥,G,X) and (Y¥',G',X') in ([(U), the

projections define a natural homeomorphism
BYXY',GXG', XXX') - B(Y,G,X)X B(Y',G',X").

We shall often write

+=7(p):Z >~ B(Y,G,X) and £ =£(\):B(Y,G,X)~2Z

for the maps induced via [17,9.2 and 11.8] from a map p:Z —~ Y XX and
from a map X\ :Y¥ XX - Z such that \(yg,x) = \(y, gx); the intended choice
of p and X should be clear from the context. Clearly € factors through
Y XON“ the quotient of ¥ X X bythe equivalence relation generated by
(vg,x) =(y,gx). Note that B(G,G,X) is a left G-space (again, because

realization preserves products). The following result is a consequence

of [17,9.8,9.9, and 11. 10].

Proposition 7. 5, €:B(G,G,X) - X is a map of left G-spaces and a

strong deformation retraction (with right inverse ). The symmetric con-

clusion holds for €:B(Y,G,G) -~ Y.

We shall always write
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p:B(Y,G,X) - B(Y,G,% and q:B(Y,G,X) - B(*G,X)

for the maps induced from the trivial G-maps X - * and Y -~ %,

Theorem 7.6, If G is grouplike, then p and q are quasi-

fibrations.
Proof. Consider p, the case q being handled symmetrically. As
realizations of simplicial spaces, B(Y,G,*) and B(Y,G,X) are filtered

spaces [17,11.1] and ﬂ.m?,m,ﬁ = m-»ﬁ.wﬁb.i. Visibly,
Mmmﬁﬂuﬂ.us = YXX and, if j >0,
E(B(Y,G.X) - F,_ B(Y,G,X) = (FB(Y,G, % - F;_,;B(Y,G, %) xX.

By [17,A.3 and A. 4], any representations of (G,e) and QJ. mDuv as strong
NDR-pairs determine a representation (k,v) of (G, wvu X ADQ.. mDu.v asa
strong NDR-pair. Together with the obvious representations of (X, ff) and
(Y,¥) as strong NDR-pairs (namely, the constant homotopies and the trivial

maps onto {1}€ I), (k,v) determines representations (h,u) and (H,up) of
Amwwa«m. G, #), m..,w uw?ﬂ G, *) and AMWWQJ G,X), mw..»ﬁ?.. G, X))

as strong NDR-pairs such that H covers h. Let U= sn;ogs. Then h
restricts to a deformation of U onto ”m..w:ﬂ“m?.. ﬂ: *¥). (It is for this that
strong NDR-pairs, rather than just NDR-pairs, are needed.) By results of
Dold and Thom [ 9 ] (as formulated in [17, 7. 2]), it suffices to verify that,
for all z e U, m»n mLANV - @n»f.?v is a weak homotopy equivalence. If

*
Z € m,uuuwAaN.Qu ), H.H»

is the identity. Thus let z = _«%m». eee, mu.uu al e U,

ﬁtm&m g ¢ O:mwwmbmmm Du.. wDuL wﬁﬂwmn _<._”m_»v..._ww”_.w._ uwAu..Um
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‘the non-degenerate representative for UHANV [17,11.3]. Since G is group-

like, it suffices to show that there exists ge G such that the diagram

x —B > x

commutes, where . and ' are the homeomorphisms

v = Iylgy.oglnal and oG = |ylels. . gl at].
Let w»Am»“ e g a) = Am_p. seees m.w_ ,a"). The reduction of the point
Hu (x) = _i”m__». cens m.w_ Jx,2"| to non-degenerate form by use of [17, 11. 3]
will yield a point '(gx), where g results from last face operators and is
independent of x since the particular face and degeneracy operators re-
quired for the reduction are independent of x.

p: EG - BG should be thought of as the universal clU- quasifibration.

The following corollary asserts its essential uniqueness.

Corollary 7.7. Let G be grouplike and let p:E' —~ B' be a

GU-quasifibration such that E' is aspherical. Then the maps € and q are

weak homotopy equivalences in the following commutative diagram:

El«—E&  B[E, GG —2t > EG
p' p P
| p— B(E',G,*) —L 5 BG




|
3
I
i
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p: B(Y,G,X) - B(Y, G, *) should be thought of as the quasifibration
with fibre X associated to the principal quasifibration
p:B(Y, G, G) ~ B(Y,G, *). According to the following result, it can be thought

of as classified by q.

Proposition 7.8. Let (k,f,1):(Z,H, X) - (Y,G,X) be a2 morphism

in (1 {W). Then the following diagrams are pullbacks:

B(z,1,x) 2L o By G,X) and B(Y,G,X) ——> B(,G,X)

p _w P P

ENum,illlllm?.r: > B(Y, G, %) B(Y,G, *) —2 s &G

Proof. The second diagram is the case k:Y —* and £= 1 of the
first, Since geometric realization preserves pullibacks [17,11.6 1, the
result follows from the observation that the diagrams

pxmxx EXEXL v civx

P P

. 3 .
2 %H XL o yxd

are pullbacks for all j> 0.

Proposition 7.9. I G is grouplike and Y is a right G-space, then

G~ vy —X—> B(Y, G, *) ——> BG

is a quasifibration sequence, where (g) = Vo8 for any chosen yge Y.
Proof. We must show that T is equivalent to a quasifibration, with

v equivalent to the inclusion of the fibre. Consider the following diagram,
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in which the maps T with range B(Y,G,G) are induced from the maps
G—=>YXG and Y - Y X G specified by g~ @.o,wv and y — (y,e):

\L/

G T B(Y, G, %)

/maﬁ G, G) x

The right triangle commutes and the left triangle homotopy commutes via

the homotopy g, t) = |y lgle, (& 1-1)] -
Our final result strengthens the analogy with bundle theory.

Proposition 7.10. Let (¥ ,F) be a category of fibres with
associated principal category of fibres A& ,G). Let f:H— G be a map of
topological monoids and let Y be a right H-space. Then there is a homeo-
morphism

@:B(Y,H;G) —~ PB(Y,HF)
of E\ -spaces over B(Y,H,*). In particular, if H is grouplike,
Pp:PB(Y,H,F) -~ B(Y,H, %) is a quasifibration.

Proof. alyh,....hle.2[(f) = Isthy, ... .JFS.L for ye Y,

rwm H, ge G= \w:m_,m.v. ae D,ﬂ and fe F. QL is given by
ety = Iylhy. ... bl 2],

where (Pp)( ) = _<T.J. - .wL. a|, in non-degenerate form, and where

g:F =~ F is defined by ¢ (f) = _«.?i..:{mﬁrm_.
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8. Groups, homogeneous spaces, and Abelian monoids

We here give special properties of BG and EG when G is a topolo-
gical group or Abelian topological monoid. We also develop a generalized
concept of "homogeneous space" for use in section 10.

The following theorem is due to Steenrod [38].

Theorem 8.1. Let G be a topological group. Then EG admits a
natural structure of topological group such that the following statements hold,
(i) G is a closed subgroup of EG and the action EG X G -~ EG agrees with

the product in EG.
(ii) BG is the homogeneous space EG/G of right cosets and p: EG -~ BG is
the natural projection.
(iii) The natural homeomorphism E(G X G') = EG X EG' is an isomorphism
of groups when G and G' are groups.

Proof. A product-preserving functor D, from spaces to simplicial
spaces was constructed in [17, 10.2]; of course, D, necessarily takes topo-
logical groups to simplicial topological groups. A homeomorphism
Q*HM*O - U%O of simplicial right G-spaces was defined in [17,10.3]. Thus,
by [17,11.7], EG inherits a natural structure of topological group from
Ip,Gl. G= DG, and (i) and (ii) hold by inspection of [17,10.2 and 10.3].

Part (iii) is clear.

Steenrod's construction of a group structure on EG is rather different

from ours, and I have b.o.“ tried to compare definitions. The following
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. EuWOH@g is an improvement due to McCord [22,§4] of a result due to

Milgram and Steenrod [23,38].

Theorem 8.2. Let G be a topological group (with identity element a

nondegenerate basepoint). Then p:EG - BG is a numerable principal
G-bundle.

Proof. Write E= EG and Hb = m,ﬂmwﬂ. The representation of
qu. H.T»v as an NDR-pair defined inthe proof of Theorem 7.6 is G-
equivariant. As observed by Steenrod [38,4.2], [37,7.1 and 9.4] imply
that each Gw.m..ﬂv also admits a representation , ?5» c.uv say, as a2 G-NDR
pair. For n 20, define 2 G-map 1§um,. - I (where G acts trivially on I)

Y p(x) = t-ugle) and, if n>0, p ()= (t-u (a6 1)),

Let r.:E — E be the G-map defined by Hm?nv = Fw?n. 1). Then
1

-1 -1
cp l(0,]cx] (B -E ).

n n-

-1 -1
E,C g, (0,1]1¢c x,

E _ and, ifn>0, E -E
0 0 n n

-1
Define further G-maps du"uw -1, n>0, by

n-1

w_(x) = max (0,p_(x) - u.xMc p;(x))

and define W_ = ﬂlpAo.: and V_= pW_C BG. Then {V } is a numerable
n n n n n

open cover of BG. We have a G-homeomorphism

E = FBGXG or, if n>0, E -E
0 n n

0 1 = AM,UWO - m.d...

 BG) X G,

and we define .<ﬁu S«blv G to be the composite of Tl <<o - mo or, if n>0,

r:W —~—E -E 1 and the second coordinate of this homeomorphism. De-
n" n n n-

fine mﬂu ivx G <<1ﬂ by

£ (v, g) = v, e




40 J.P. May

Then £ inducesamap { :V. XG> W , and { is a homeomorphism
n n' n n n

with inverse p X Yo by direct calculation. Now p:EG — BG is a princi-

pal G-bundle by [36,7.4], since the product structure on W_ gives a local

0
cross-section of G in EG, and the result is proven.

The theorem and Proposition 7.8 give the following result.

Corollary 8.3. For any right G-space Y, p:B(Y,G,G) ~ B(Y, G, %)

is a principal G-bundle classified by q:B[Y,G,¥) ~"BG.
We can see the following complement in two ways.

Corollary 8.4. For any right G-space Y and left G-space F on
which G acts effectively, p:B(Y,G,F) > B(Y,G, *) is the G-bundle with
fibre F associated to p:B(Y,G,G) > B(Y,G, *).

Proof. On the one hand, it is evident that

B(Y,G,F) = B(Y,G,G) X F .

On the other hand, if H=G and PB(Y,G,F) is retopologized as the
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‘classical associated principal bundle in Proposition 7. 10, then the map «

displayed there is an equivalence of principal G-bundles.
In a sense, every bundle arises in this fashion.

Proposition 8.5. Let G act principally from the right on Y and

effectively from the left on F. Then the following diagram is a pullback in
which the maps £ are weak homotopy equivalences (and §: F — * is the

trivial map):

B(Y,G,F) —t— >y X F
. 1% 8
§ G
B(Y,G,#) ——> ¥ XO*

Proof. The bottom map £ is a weak homotopy equivalence by the
case ¥ = G of the diagram and Proposition 7.5, and the diagram implies
that the top map £ 1is also a weak homotopy equivalence. By [17,9.2,11.8,

and 11.6 ], it remains to verify that the follo ing diagram is a pullback for

jzo0: . e
Tx& xF >YX F
G
P 1% 6
. G
&xoulemllv&xm*

Write {y,x} for the image of (y,x)e YXF in Y XOH,. The map from

Y X G’ XF into the fibred product of the bottom map ¢ and 1 XOm specified

by
(yr845 s m_..i =~ y. g :m_.r IS mu.xt

is a homeomorphism with inverse specified by
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-1

-1 '
: g, 8x')s

, t ot -
zﬁmﬁ....mu.v.?hxi (v.gy00-0088
where g is theunique element of G such that y'= yg.
When Y = G', where G is a closed subgroup with a local cross-
section in G, Q.XO% is the homogeneous space of right cosets of G in G'.

With Stasheff [34], we define generalized homogeneous spaces as follows.

Definition 8.6. Let f:H —~ G be any map of topological monoids.

Define
G/H = B(G,H, *) and m/o = B(*, H, G),

where H acts on G (from the left and right) through f.

We shall compare O\m to the fibre of Bf, but we must first insert
the standard comparison of G to 9BG (where BG has the basepoint
*= | L] = H.)OWOV. Write 7 (I,X) for the path space of a based space X
and write p: J (I,X) - X for the endpoint projection. Write X for the
standard inverse map QX —~QX. Fora based map k: Y ~ X, write Fk for

the homotopy theoretic fibre of k,
Fk = {(By)] Be T (LX), ye ¥, B(1) = k(y)},

and write . : QX > Fk and m:Fk - Y for the natural inclusion and pro-
jection, u(B) = (B,*) and w(B,y)=y. With these notations, the proofs of
the following two propositions are straightforward verifications from the
definition, [17,11.1], of geometric realization and the form of the face and

degeneracy operators on the relevant simplicial spaces.

Classifying spaces and fibrations 43

Proposition 8. 7.

For a topological monoid G, define

T:EG ~ J(I, BG) by

ﬁ:m»~ ....mu. H_m.u.+».m_ﬁﬁv = :m». ....m.i.»u .?W~»|n:

mou.. g€ ﬂ: Nmb.u; and te I. Define {:G - QBG by

Ye)(t) Ilg]. (e, 1-8)].

Then the following diagram is commutative, hence { is a weak homotopy

equivalence if G is grouplike:

c —Z EG P BG

~

4 14

c
QBG —=—> J{I, BG) ——> BG

The behavior of ¢ when G is not grouplike will be studied in
section 15,

Proposition 8.8. Let f:H -~ G be a map of topological monoids.

Define §:G/H=FBf by () = (B(x), alx)), where
Blelhy,..nlal® = [[gfh), .., 0], (1t ta)|

fo
T ge G, rwm H, ac Dxﬂ and te I. Then the following diagram is com-

mutative, hence i is a weak homotopy equivalence if H and G are both

grouplike:

H ‘G

o\m,lailv 2L Sgg
$

oBH —2BE 2BG —X

—> FBf—T . By —DBL _ ,pg
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By symmetry, an analogous result is valid for H\G, and it follows
that G/H and H\G are weakly homotopy equivalent when H and G are

grouplike. We shall use the following observations in section 10,

Remarks 8.9. Let f:H -~ G be a morphism of monoids. Then the following

two diagrams are commutative!

. G —— > B(H\G, G, G) —E—> B(H\G, G, ¥)
: : € &(p)
G T > H\G —F—> BH
and
<80 pinG,G, ¥ —3—> BG
Bf Bt

mmfmﬁln'vli B(G\G, G, ¥) ——~—> BG

where, in the middle, Bf is short for B(B(1,f,1),1,1). Let H and G be
grouplike. Then, by Proposition 7.5 and Theorem 7.6, the first diagram
shows that £(p): B(H\G, G, ¥) - BH is a weak homotopy equivalence. In
the second diagram, G\G = EG and the bottom maps g(p) and g are weak
homotopy equivalences by Corollary 7.7. The last step of the proof of

-1
Theorem 9. 2 below will give that, for A ¢}y, the automorphism q,g(p),

of [A,BG] is the identity. We conclude that, from the point of view of
s
representable (or rather, nomﬂmmmnnm& functors on h W, the maps

q:B(H\G, G, *) - BG and Bf:BH -~ BG can be used interchangeably.
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The following pair of remarks summarize properties of BG and

EG when G is an Abelian topological monoid and relate the functors B and

E to the infinite symmetric product . These results are due to Milgram [23].

Remarks 8.10. If G is Abelian, its product is a morphism of monoids and

therefore EG and BG are Abelian topological monoids by Proposition 7.4

and naturality. If, in addition, G is a topological group, then its inverse

map is also a morphism of monoids and EG and BG are topological groups
by naturality, The group structure so defined on EG coincides with that
obtained in Theorem 8.1 since a trivial verification shows that this is true
on the level of simplicial spaces. Of course, BG is the quotient group

EG/G when G is an Abelian group.

Remarks 8.11. Let NX denote the infinite symmetric product of a space

X e ..,\_l and let n :X = NX denote the natural inclusion [ 9 or 17,§3].

Then there is a commutative diagram

X L cx —X X,
M W n
NX —L ENX —E BNX

where CX and ZX are the (reduced) cone and suspension on X, . and

are the natural inclusion and quotient map, 1 is determined by commutativity

of the diagram, and

\iﬁu\v. wv = _ HJAvnv”_m. Awu .._.lﬁvm

for xe X and te I; here the left square commutes since
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w(x) = |[ In@), ()] = |[n@)]le, (1,0)] = T ().

Since NX is the free Abelian topological monoid generated by X, there
result maps @(%) and @(7) of topological monoids such that the following

diagram is commutative:

N
NX — NCX —X% NEZX
__ 4 6(7) #(7)
NX T ENX P BNX

As noted by Milgram [23 ,p.245], §(7) and §(7) are in fact homeo-

morphisms .

Classifying spaces and fibrations 47

" 9. The classification theorems

It is now an easy matter to use the bar construction to prove a
general classification theorem for fibrations, and ancther for bundles. We
shall only classify over base spaces in W'; greater generality would be use-
less for purposes of calculation. Nevertheless, for some important
examples, we cannot insist that all spaces in sight be in W3 ww such cases,

we shall rely on the following consequences of the Whitehead theorem.

Remarks 9.1. Let f:B - A be a weak homotopy equivalence, where Ae .

Since £ :[A,B]~[A, A] is an isomorphism, there exists one and, up to
homotopy, only one map g:A - B such that fg =1, Moreover, g is

natural in the sense that, given a homotopy commutative diagram

B > A

L ) T

Bl ————— > Al

in which A,A'e¢ W and fand f' are weak homotopy equivalences, the

following diagram is also homotopy commutative:

A—2E s g
; T
1
Al g > B!

(since flg'j =~ j =~ jfg~ f'kg and ﬁn is an isomorphism ).
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To avoid cluttering up the statement and proof of the following
theorem with minor technicalities, we tacitly assume that the identity ele-
ments of all monoids are (strongly) nondegenerate basepoints and that all
cross-sections are fibrewise cofibrations. These assumptions will be

discussed in Remarks 9.3 and 9.7 below.

Theorem 9.2. Assume one of the following hypotheses.
(a) (%,F) is a category of fibres which is either
(i) T'-complete in U4 or
(ii) I'-complete in W .
(b) (F,F) is a category of based fibres which is either
(i) I''-complete in U or
(ii) T''-complete in J .
(¢) (3,F) is a category of bundle fibres.
Let (H4,G) be the associated principal category of fibres of (% ,F). Then,
for A eN , the set &Z (A) of equivalence classes of # -fibrations over
A is naturally isomorphic to [A, BGl.

Proof. In the cases (ii), Theorems 6.4 and 6.7 and Proposition 7.2
will ensure that all spaces in sight are in J¥. By abuse, let us agree to
write (I',n) for (I'',n') in case (b) and to write (T',n) for the identity
functor and identity natural transformation in case {c). With this uniform

notation, let

w=Tp:IB(*G,F) =~ BG
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"'in all cases. By Definitions 5.1 and 5.4 and Theorem 7.6 in cases Am.v and

(b) and by Example 6. 11 and Theorem 8. 2 in case (c), @ is an F-fibration.

Define

v:[A,BG] - £3(A)

t 3
by w[f]={fw}. ¥ is well-defined and natural by Proposition 2.5, In

the other direction, define

2. £3(a) ~ [A,BG]

as follows. Given an mﬂ -fibration v:D - A, consider the following com-

mutative diagram, where Y:PD X G~ PD is given by composition:

pp (N B(PD,G,G) —3 = EG

Pv |3 P

P
A m:um.huhnd.wamo.o.i —2 s BG

€(vy) is a homotopy equivalence by Proposition 7.5 and it restricts to a
weak homotopy equivalence on each fibre since (2(y), &(Pv)) is a H-map.
Since p and Pv are @swm»m,vu.m»wopamu g(Pv ) is a weak rogog—u% equiva-
lence by the five lemma. Let g be a right homotopy inverse to £(Pv) and
define ®{v} =[qg]. @ is well-defined and natural by the evident naturality
of the diagram above, before insertion of g, and by Remarks 9.1, ¥® js the
identity nﬁwwmmowamnwod on M%?& Indeed, with the notations above, the

following diagram displays a chain of % -maps over A which connects v to
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m*ﬂ. where f= gg, and thus displays an equivalence (in the sense of

Definition 6.1) between these J -fibrations over A:

I'q
I'B(PD, G, F) TB(*, G,F)
~
% = i
Te(N) Tp g w=Tp
H K 2
D —21 571D < 1 m*ﬁmﬂvbb.ﬂ > T'B(*, G,F)
E3
H g I'P g h s
. £
v Tv B(PD, G, %) > BG ;
£(ev) e ™~ |}
A A A A

i i i lication of
Here M:PDXF — D is the evaluation map, mw is obtained by appli
the J-CHP tothe F-map (T e(\)eg, £(Pv)og) and any homotopy
h:AXI— A from &(Pv)eg to the identity, and K is given by the universal
* 3 . - 4
property of £ . Finally, to analyze &¥ , assume given f:A ~ BG an

consider the following diagram:

* * - 9
A A!ummwuwu-$ B(Pf I'B(*,G,F),G, %) > BG
g
: B(PL 1,1)
q
" IR
nG «—E&®T porRs, G, F), G, %) BG

The argument used to define & demonstrates that &(Pw) is a weak homotopy
equivalence (although it need not have a right inverse since BG need not be
in J). By Lemma 5.5 and Propositions 7.5 and 7.10, PT'B(*,G,F) is of
the ‘'same weak homotopy type as EG and is thus aspherical. Since the

bottom map g is a quasifibration with aspherical fibre, it is a weak homo-
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..topy equivalence. By Theorem 6.5 and the diagram, 8% is an auto-
morphism of [A,BG]. But then ¥ is a bijection and

T = (¥@)¥ = ¥(3¥) , hence 8F is the identity transformation.

Remarks 9,3,

In case (c), the requirement that (G,e) be an NDR-

pair appears to be an essential hypothesis, In cases (2) and (b), such an

hypothesis can be eliminated as follows. Let G' be the monoid obtained

from G by growing a whisker from e [17,A.8]. Via the retraction G' ~ G
(which is a homotopy equivalence) any left or right G-space is also a G'-
space. Replace each B(Y,G,X) in the statement and proof of the theorem

by B(Y,G',X). Then, with trivial modifications, the argument goes through

R

to give £ HA) = [A,BG']. Note in particular that B(Y,G',G") is homotopy

equivalent to B(Y,G',G) by Proposition 7.3 and that B(Y,G',G) is homeo~-
morphic to PB(Y,G',F) by Proposition 7.10.

In all of the following corollaries, we agree to read BG' for BG if

the basepoint of G happens to be degenerate.
In view of Example 6. 2 and Lemma 6.3, we have the following
classification theorem for principal fibrations.,

Corollary 9.4,

Let G be a grouplike topological monoid and let
Ae N.

(1)  &£GWA) is naturally isomorphic to [A, BGL.
(i) ¥Gel, EGH(A) is naturally isomorphic to [A, BG], hence the

natural map @ EGMW(A) -~ £GU(A) is a bijection.
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mwg.ﬁwﬁf in view of Example 6.6, Theorem 6.7, and Lemma 6.8,
we have the following generalization of Stasheff's classification theorem [32]

for fibrations with fibres of the homotopy type of a given finite CW-complex.

Corollary 9.5 . Let F e}/ , let¢ HF dénote the topological

monoid of homotopy equivalences of F, and let A e i .
(i) EFQL(A) is naturally isomorphic to [A, BHF].
(ii) If F is compact, EF W (A) is naturally isomorphic to [A, BHF],

hence the natural map : EFM(A) - EFU(A) is a bijection.

Of course, in (ii), the equivalence relation used to define EF W (A)
coincides with fibre homotopy equivalence,

The compatibility of the previous two corollaries is immediate
from our construction of classifying maps. Thus we have the following
result.

Corollary 9.6. For F e W and Aecl ,P: EFU(A) » EHFU(A)

and, if F is compact, P: {FW(A) >~ EHFW(A) are bijections of sets.

Remarks 9.7. In case (b), we assumed in the proof of Theorem 9.2 that

the cross-section of p:B(Y,G,F) -~ B(Y,G,*) is a cofibration for certain Y.
Let F' be the G-space obtained from F by growing a2 whisker from the
given basepoint and letting G act trivially on the whisker. The basepoint

1 e F' is the endpoint of the whisker,and (F',1) is a G-equivariant NDR-

pair. The cross-section of p:B{Y,G,F') = B(Y,G, ¥) is thus a fibrewise co-

fibration. Provided that F'e F and the retraction F'—=F is a map in %,
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“the proof of Theorem 9. 2 goes through, with trivial modifications, with F
replaced by F!'.

In view of Example 6.9, Theorem 6.7, and Lemma 6.10, we have
the following new variant of Stasheff's theorem. In [19], this result will

play a key role in the study of E-oriented spherical fibrations for a com-

mutative ring spectrum E.

Corollary 9.8. Let F m< ; let JF denote the topological monoid

of based homotopy equivalences of F, andlet A e W .
(i) EF T (A) is naturally isomorphic to [A,BJIF].
(ii) If F is compact, £FV (A) is naturally isomorphic to [A, BJF],

hence the natural map , : EFV/(A) > €F T(A) is a bijection.

In (ii), the equivalence relation used to define £3V(A) coincides
with section preserving fibre homotopy equivalence, where homotopies are

required to be section preserving for each parameter value t ¢ I

GCorollary 9.9. For m,mv_\ and A el ,P: §F T (A) -~ EIFU(A)

and, if F is compact, P: {FV (A) - EJFW(A) are bijections of sets.

Theorem 9.10.

Let a topological group G act effectively from the
left on a space F andlet BJ(A) denote the set of equivalence classes of
numerable G-bundles with fibre F over A. Assume that (G,e) is an NDR-

pair. Then, for A e} , #F(A) is naturally isomorphic to [A, BG].
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Proof. Numerable Steenrod fibre bundles are known to
satisfy the bundle-CHP (which is formulated precisely as was the 4 -cHP
but with ¥ -maps replaced by bundle maps) and the obvious analog of
Lemma 2.4 [36,§11 and 7]. With P the classical associated principal
bundle functor, the proof is formally identical to that of case (c) of
Theorem 9. 2.

Corollary 9.11. Let a topological group G act effectively from

the left on a space F and let (# ,F) denote the corresponding category of
bundle fibres. For spaces A e ), let p:8F(A)~ € % (A)
denote the natural transformation obtained by regarding a G-bundle with
fibre F as an 7 -fibration. Then p is a bijection of sets provided that
the identity map from G, with its given topology, to F (F,F), with the com-
pact-open topology, is a weak homotopy equivalence and (G, e) is an
NDR-pair in both topologies.

Proof. By our construction of classifying maps, the following

diagram of natural transformations is commutative:

63(a) —— £3(a)

J‘ W
B(1),

[A,BG] — %> [A,BF(F,F)]

The conclusion follows, since B(l) is a weak homotopy equivalence if 1 is
(by a comparison of quasifibrations).

We thus have a precise comparison between bundle theory and fibra-

tion theory.
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10, The definition and examples of Y-structures

Until otherwise specified, let (¥ ,F) be a category of fibres which
satisfies one of the hypotheses of Theorem 9.2, let (},G) be its
associated principal category of fibres, andlet Y be any right G-space.
Consider q:B(Y,G,*) ~ BG. B(Y,G,*) can be thought of as the classifying
space for ¥ -fibrations together with a "Y-structure®. In many important
special cases, Y-structures can be described intrinsically, without refer-
ence to the classification theorem, and can then be proven to be classified
by B(Y,G,*). We give a general intrinsic definition and several examples
in this section and prove such a classification theorem in the next. The
motivating example of E-oriented spherical fibrations will be treated in

[19]; it will in fact be a special case of Example 10, 6 below.

Definition 40.1. Assume given an auxiliary space Z and an inclu-

sion of Y in the function space U(F,Z) such that the right action of G on Y
is induced by restriction from the action of G= #(F,F) on T(F, Z) given
by composition. Define a Y-structure 6 onan F-space v:D - A to be a
map 6:D —~ Z such that the composite 8oy:F — Z is an element of Y for
every element {xF -~ D of PD. Define an F-map (v,8) ~ (v',0') of
mnmmm.amw with Y-structure to be an ¥ -map (g,f): v = v* such that 6'g is
homotopic to 8 via a homotopy h:D X I = Z such that wn%uwﬂ -~ Z is an

element of Y for every ye PD and te I (thatis, viaa homotopy through

Y-structures). Define € J(A;Y) to be the set of equivalence classes of
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F-fibrations with Y-structure under the equivalence relation generated by ) mmv T takes F-maps (w,8) - (', 8') to F-maps (T, T8) -~ (C'x', Te').

the % -maps over A. If (#,F)is a category of bundle fibres, any pair (Y, Z) such that Y is a sub

. right G-space of (F, Z) will be said to be admissible.
Our notions of %-maps and of equivalence suggest thata
X The following two examples give generalized versions of familiar
Y-structure on a given F-space should be reinterpreted as a homotopy
. X ‘ types of Y-structures.
class of Y-structures, and we adopt this terminology henceforward.

Although the definition may seem artificial, at first sight, we shall see that Example 40.3. Let ( ¥',F) be a second category of fibres, with associated

it does satisfactorily account for the most important types of additional " PFincipdl category (47, G", and let s I - .%. ! be a functor over U (or

structure on F-fibrations.

over 7J if N and J' are based). Then j defines a morphism of monoids

When (F,F) satisfies hypothesis (a) or (b) of Theorem 9.2, we shall G+ G'= FYF,F). In Definition 10.4, set Y=G' and Z =F. Thena G'-

need further conditions on Y and Z in order to ensure that #5-quasifibra- structure 8:D - F on an UA. -fibration v:D = A is just the second

R tions with Y-structure in . (2 =W or b\ u§v can be replaced coordinate of an F'-map D - AXF over A (at least if afe F' and

functorially by F -fibrations with Y-structure in J . As in the proof of Be }' implies a e F'). Inother words, a G'-structure is precisely an

Theorem 9.2, we agree to write (I, n) for (T',q), ("', n'), or the identity Jt_trivialization of the F -fibration v. Of course, B(G', G, *) is the

functor and identity natural transformation according to whether (¥ ,F) generalized homogeneous space GYG of Definition 8. 6. In the interesting

satisfies hypothesis (a), (b), or (c) of that theorem. The following definition applications, (¥,F) will be a category of bundle fibres, hence the question

should be compared with Definitions 5.1 and 5. 4. of admissibility will not arise,

Definition 10.2. Let (% ,F) be I'-complete in ) [that is, T or I''

Example 10.4. TLet f:H —~ G be any morphism of monoids and set

complete], and let Y be a sub right G-space of U(F, Z). The pair (Y, Z) Y =H\G=B(*,H,G) and Z = I'B(*,H,F). Y is homeomorphic to

will be said to be admissible if Y e aN and the following statements are PB(*, H,F), by Proposition 7.40, and the inclusion of Y in nc'ﬁm.. Z) is the

valid for ¥ -quasifibrations mE ~ B in . with (homotopy class of ) composite of this homeomorphism and the inclusion Pr of PB(¥,H,F) in

Y ~structure 8:E — Z, PZ. Let v :D~A be an .\Q« -space and let 8:D —> Z be a Y-structure.

(1) TI'mTE—>TIB admits a Y-structure I'8:TE ~ Z, Because 6y isin Y for ¢ in PD, 6 is fibrewise with respect to v and

(2) mE —~ T'E defines an F-map (w,8) =~ (I'nr,I'8) over B.

Tp:I'B(*,H,F) - BH (at least if every point of D is in the image of some 4y,
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as always holds in practice). We agree to strengthen the notion of an H\G~
structure by insisting that the induced function A -~ BH be continuous. Then
T'9:I'D —~ I'Z is defined, by Remarks 3.7, and the composite

o +8% rz = rrB(*, HF) —E= IB(*HF) = 2

is an H\ G-structure for T'v:I'D - A such that peI'8cn = 8. Thus n,rm pair
(Y, Z) will always be admissible when (F,F) satisfies hypothesis (a) or
(b), provided only that He W if N = W. We call an H\G-structure
8:D~Z onan % -fibration v : D =+ A a reduction of the structural monoid
of v to H. If H is a topological group and v admits such a reduction 8,
then Vv is equivalent to the m -fibration induced from p: B(*, H,F) -~ BH by
the map A — BH derived from 6; of course, this .ﬂnmwvu.m.ﬂoﬁ is an H-
bundle with fibre F if H acts effectively on F. As explained in Remarks
8.9, B(H\G, G, *) is weakly homotopy equivalent to BH (when H is group-
like) in such a way that the maps q:B(H\G, G, *) - BG and Bf: BH - BG
are equivalent.

We also have the following generic types of Y-structures, the
second of which will be central to [19].
Example 10.5. Let F ¢ W be compact, let Z ¢ /Y, and let Y be the union
of any set of components of U\ (F, Z) which is invariant under composition
with homotopy equivalences of F. Then (Y, 2) is an admissible pair for
FW'. Indeed, let m:E > B be an F } -quasifibration with B and E in
W and with Y-structure 6:E —~ Z, Choose a homotopy wa.zmu.mm {:TE - E

to 7m and define T'8=0f( :TE —~ Z. For {(aF — AH,.qu:E in PT'E (that is,

y
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-2 homotopy equivalence), consider the following diagram, in which n(b)
s s -1
denotes the restrictionof n to = (b) and £ (b) is a chosen homotopy

inverse to 7(b) (which need not be the restriction of § since { need not

be fibrewise):

n) o)

K

F n(b) || 4b) nlle z

sz_/r o1

Here T'8oy =T8on(b) o L(b)oy= 6efonol(bloy = 8o tb)ey and, since

(b) = E

t(b)y e PD, it follows that T'@o{ is an element of Y. Clearly

n:(m, 8) > (Cn,T'6) is an FW -map over B and T is functorial,

Example 10.6. Let F <V be compact, let Z ¢V , andlet Y be the

union of any set of components of QAM.“ Z) which is invariant under com-
position with based homotopy equivalences of F. Then (Y,Z) is an ad-
missible pair for FV . Indeed, retaining the notations of the previous
example (with (I', n) interpreted as (I, 1')), we note that { can be chosen
to be section preserving (although not fibre preserving) and that {7 is then
homotopic to the identity via a homotopy through section preserving maps
(because the sections of m and I'm are cofibrations). These facts, and the
nondegeneracy of the basepoints of the fibresof w and I'w, allow the re-
quired use of based maps and homoétopies in the verification that I'8ey is in
Y for ¢ in PTE. Observe that a Y-structure 8:D — Z on an Y -

fibration v:D — A factors through the "Thom complex" D/¢A since
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8y e Y for Ye PD implies that 8 carries the basepoint of each fibre of v
to the basepoint of Z.

Of course, Definition 10,1 admits a bundle theoretic analog.

Definition 10.7. Let G be a topological group which acts

effectively on a space F and let m' be the derived category of bundle fibres
(Example 6.11). Let Y be a right G-space and let Y —~ W(F,Z) be a con-
tinuous one-to-one map under which the right action of G on’Y agrees {(as a
function) with the right action of F(F,F) on 7U(F,Z) given by composi-
tion;the pair (Y,Z) is then said to be admissible. Define anmﬁ.conchV 4]

on a G-bundle v :D — A with fibre F to be a map 6:D — Z such that the
composite 8(:F - Z is an element of Y for every element uF —~ D of

PD and such that the function 8:PF — Y specified by B(y) = 8o is con-
tinuous (where the associated principal bundle PD has its standard topology).
Define a bundle map (v,8) — (v, 8') of bundles with Y-structure to be a
bundle map (g,f): v v' such that €'g is homotopic to 8 by a homotopy
through Y-structures. Define ®$J(A;Y) to be the set of equivalence classes

of G-bundles with fibre ¥ and with Y-structure over A.

Example 410.3 applies directly to bundles, with (# ,F) interpreted
as the category of bundle fib res derived from F and G. There is also an
obvious bundle theoretic analog of Example 10.3 in which G' is taken to be a

group which contains G and also acts effectively on F.
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In Example 10, 4, mwnmﬂvwm»ma bundle theoretically, if H is also a
group and if v :D = A is a G-bundle with fibre ¥ and H\G-structure
8:D ~ B(*,H,F), then ® determines an equivalence of G-bundles from D
to the bundle E Xmm,. where E is the principal H-bundle induced from the
universal bundle EH - BH by A — BH. Thus our notion of a reduction of
the group of a bundle agrees with the standard one. (Compare Lashof [12,§1],

where the term lifting is used to emphasize that H -~ G is not assumed to be

an inclusion. )




62 J.P. May ’ ) Classifying spaces and fibrations 63

44. The classification of Y-structures

an: .%.n?OEOnO@% over A which starts at the identity map of ».*H;m?w. G,F)

The following fundamental result should be regarded as an elabora- and is obtained by application of the 3 -CHP to the identity map of AX I
tion of Theorem 9.2 (to which it reduces when Y = * and Z = *). We again (regarded as a homotopy):
tacitly assume that the identity elements of all monoids are strongly non- I T

£ 3 E3
« f*TB(Y,G,F) X1 —~> h'TB(Y,G,F) -2 I'B(Y,G,F) 2w z.

int d that all -sections are fibrewise cofibrations. .
degenerate basepoints an at all cross-sections ar Therefore ¥ is well-defined. The same argument shows that ﬁamk»b.uw.v

X . ints i .3 and 9.7 appl batim t o
The discussions of these points in Remarks 9.3 and 9.7 apply verbatim to is in fact a functor of A, and ¥ is clearly natural, Define

i ion. W bb iat f the b st -
the present situation e shall often abbreviate maps o ar construc 5 N.W.?Ié - [A,B(Y, G, *)] as follows. Let v:D— A be an g -

tion of the form B(f,1,1) to Bf here.

fibration with Y-structure 6:D -~ Z and let \mcu PD -~ Y be the map of right
Theorem 11.1. Let (%,F) be a category of fibres which satisfies

G-spaces specified by \m:_ } =8y . Consider the maps
one of the hypotheses (a), (b), or (c) of Theorem 9.2 and let (},G) be its

i £(Pv) BY
-—
associated principal category of fibres. Let Y be a sub right G-space of ASTTo= = B(PD,G,*) ———— B(Y,G, %),

W(F, Z) such that the pair (Y,Z) is admissible. Then, for A ey, the choose a right homotopy inverse g to &(Pv) (as in the proof of Theorem

set €F(A;Y) of equivalence classes of F-fibrations with Y -structure 9.2), and define &{(v,8)} = [B§.gl. Given (v',8'), an J-map

over A is naturally isomorphic to [A, B(Y, G, ¥)]. k:D—~ D' over A, and a homotopy h:DX1I - Z through Y-structures from

Proof. As usual, write (I",n) ambiguously for (T',n),(T', '), and 6 to 8'k, define Ph:PD X1~ Y by Amugnﬁﬁvnw—no% . For {e G,

the identity functor and identity natural transformation in cases (a), (b), or ﬁmd.onzk o @) = ﬁuwvﬁ?r )ef, hence Ph is a G-equivariant homotopy. It

(c). Let N:Y XF — Z be adjoint to the inclusion Y - WU(F, Z). Then therefore induces a homotopy from B6 to BE°BPk. Thus & is well-

E(N\):B(Y,G,F) ~ Z is a Y-structure on p:B(Y,G,F) ~ B(Y, G, ¥). Define defined, and a similar argument shows that & is natural. ¥® is the identity

an F -fibration with Y-structure (w,w ) by transformation on :.:bu.&v. Indeed, with (v,8) as in the definition of ®
w = Tp:TB(Y,G,F) - B(Y,G, %) and w=T&e(\):TB(Y,G,F)~ Z. set f=BBog and replace g by B8, BG by B(Y,G,*), and B(*,G,F) by
B(Y,G F) in the diagra d £ i
% ~ , G, gram used for the corresponding st 1 th
Now define ¥:[A,B(Y, G, %]~ €F(A;Y) by ¥[fl= {(fw,uf)}. I ¢ p g step of the proof of
. Theorem 9. 2.

Then the resulting diagram displays an equival bet
h:AXI—~ B(Y,G,*) is a homotopy from f to f', then the following com- g play quivalence between

%

v and f , and it is immediate from an argument like that used
. . g =4 . ’ to pro
posite is a homotopy through Y-structures from wf to «f'J,, where J is & prove




i
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that ¥ is well-defined and, in cases (a) and (b), from the functoriality of T’
such that n is an ¥ -map given by Definition 10. 2 that the constructed
equivalence is one of J _fibrations with Y-structure. For the verification
that ®¥ is an automorphism and therefore also the identity, construction of
a diagram just like that used for the corresponding step of Theorem 9. 2
shows that we need only check that

BWLBPTBY,G,F),G,*) =~ B(Y,G*
is a weak homotopy equivalence. By comparison of the quasifibrations q
from the displayed spaces to BG, it suffices to check that
$:PI'B(Y,G,F) - Y is a weak homotopy equivalence, and this follows from

Lemma 5.5, Propositions 7.5 arid 7.10, and the fact that wen = €(\), so

that
WoPn ~ € :PB(Y,G,F) = B(Y,G,G)~> Y.
Under the hypotheses of the theorem, consider the quasifibration ,
sequence
G ——ey = B(Y, G, *) —X— BG

obtained in Proposition 7.9. The following remarks interpret the cor-

responding sequence of represented functors on A .

Remarks 141.2. (i) q.:[A,B(Y,G,*)] ~ @Q represents the forgetful trans-
> 7

formation m.w?y"ﬁ —~ E£J(A) obtained by sending {(v,8)} to {v} since

there is an F -map j over B(Y,G, *) such that the following diagram com-
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mutes and since &{v} = [q]&{(v,8)} by the proofs of Theorems 9.2 and 11.4:

T'B(Y,G,F) ra I'B(*,G,F)
T . ¢ TB(*, G, F) o
=
B(Y,G, *) 1 +~ BG

(ii) [A, Y] is naturally isomorphic to the set of {homotopy classes of)
Y-structures on the trivial .% -fibration &€:AXTF —~ A, Indeed, given

f: A+ Y, its adjoint AXF = Z gives the corresponding Y-structure.

(iii) Tl [A, Y] ~[A,B(Y,G,*)] represents the transformation which sends

a Y-structure @ on £ to the equivalence class {(g,8)}, by inspection of

the proof of Theorem 41.1.

(iv) [A,G] is naturally isomorphic to the set of F -homotopy classes of

m -maps over A from € to itself. Indeed, given f: A — G, its adjoint

A XF - F gives the second coordinate of the corresponding ,%qdam.ﬁ over A,
&) L [A,G] > [A,Y] represents the transformation which sends an #-map
g:AXF -~ AXF to the Y-structure 000 g, where mou.y XF = Z is the

Y-structure on & with adjoint the trivial map A — J_H«muw e Y, Vg = b (e).

Observe that if Y happens to admit a delooping, or classifying
space, BY and if v deloops to a map B. : BG -~ BY with fibre equivalent
to q:B(Y,G,*) — BG, then B. defines the obstruction to the existence of a

Y -structure on an ¥ -fibration v ; that is, Vv admits a Y-structure if and

only if (Bu v%mv.m v} is the trivial homotopy class. For example, when Y =G'
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is as in Example 10. 3, the quasifibration sequence above extends to

. B
G—2= g ——»G/G—1—>BG—)

BG!

by Proposition 8.8, and Bj defines the obstruction to the existence of an

/ - .
4 -trivialization of an J-fibration.

Remark 11.3. In the applications, one is often interested in two (or more)

types of structure on 4 -fibrations. The theorem already handles such
situations since, if Y and Y' are right G-spaces, then the square

W.:‘»

B(YX Y, G, %) w?m. G, *)

W\_._.N q

B(Y',G,¥) ———2t—> BG

is a pullback and since, in cases (a) or (b), if (Y,Z) and (Y',Z') are ad-
missible pairs, then so also is (Y X Y',ZX Z'Y. When Y'= H\G for some
morphism of monoids f: H —~ G, the pullback above can be used interchange-~

ably with the pullback

1
B(Y, H, %) _B.LY) B(Y, G, %)
q . S 1
BH Bt BG

in view of Remarks 8.9 and the following commutative diagram, in which all

vertical arrows are weak homotopy equivalences:
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B q q
B(H\G, G, *) > BG B(Y, G, ¥)
: - q BE
. B
B(H\G, G, *) B(G\ G, G, %) = B(B(Y, G, G), G, %)
e(p) Am‘ e(p) £(p)
Bf q
BH BG B(Y, G, *)

The proof of the following bundle theoretic analog is formally

identical to the proof of Theorem 44.4. Recall Definition 10.7.

Theorem 411.4. Let a topological group G act effectively from the

left on a space F and assume that (G,e) is an NDR-pair. Let the
pair (Y,Z) be admissible. Then, for A e W , the set

B J(a; Y) is naturally isomorphic to [A, B(Y, G, #)].

Of course, Remarks 11.3 apply verbatim to Theorem 141. 4, and the
obvious bundle theoretic analogs of Remarks 11, 2 are valid.

We have an evident natural transformation : BHAY) > £F(A;Y)
where, on the right, Y has its topology as a subspace of UL(F, Z). If the
identity map from Y, with its given topology, to Y, with its function space
topology, is a weak homotopy equivalence and if the hypotheses of

Corollary 9.11 are satisfied, then { is a bijection of sets,
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12, A _categorical generalization of the bar construction

We here introduce an amusing categorical construction which allows
us to generalize the material of section 9 to a context in ianw., any set of
fibres, rather than just a single fibre, is given a privileged role. This re-
working of the theory yields an analysis of the effect of changing the choice
of privileged fibre.

Let (J be a fixed set {of objects) regarded for our purposes as a
discrete topological space. Define an o ~-graph to be a space Q (of arrows)
together with continuous maps S:(A—~ 0 and T: L= O (called source and
target). Let OGr denote the category of anmdwmvm“ its morphisms are
continuous maps f:(A—= QL' suchthat Sef=S and Tef=T. Regard (]
itself as that O -graph with arrow space  and with S and T the identity
map . Define the product over  of -graphs (L and Q! to be the
& -graph LB Q' with arrow space {(a,a') | sa=Ta'Y ¢ (L X ' and with
source and target defined by S(a,a') = Sa' and T(a,a')= Ta. Clearly @ is
associative, up to the evident natural isomorphism, and is unital with
respect to the natural isomorphisms \: - 0o (& and pr L-QAal
specified by A(a) = (Ta,a) and p(a) = (a,Sa) for ae (] .

Thus (Gr is a monoidal category with product @ and unit (.
We can therefore define the notion of 2 monoid (4,C,I) in OGr. Here
C:Hali~} ana 1. © > H are maps of (F-graphs (called composition and
identity) such that C -is associative and I is a two-sided unit for C.

In other words, m‘ is just a small topological category with object space (.
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So far we bave followed Mac Lane [14, p, 40 and 48], but we must
now take cognizance .OM the assymmetry of [1. Define a right G...mﬂwmw to
be a space a&‘ together witha map S: mm -0 . Similarly, for a left (% -
graph .p\\: only T: \\N..lv O is to be given. Observe that, for an (O-graph
(L, we can define i o (. and O ng as right and left QcmHWmeu and we
can define A&D\N. as a space. Now let H be a monoid in Gr. Define
a right U -graph over H tobea right & -graph J&s together with a map
W"Q&u i ..v.\,&‘ of right @nmﬁmvw_m which satisfies the evident associativity
and unit formulas R(41B C) = R(RT1) and R(1% I)=p u\._. The notion of a
left (& ..mu..mwﬁ over ¥ is defined by symmetry.

At this point we can generalize the definition of the two-sided geo-
metric bar construction to triples QM. H .xKL. where § is a monoid in (9Gr
and A&. and R are right and left (% -graphs over W . Indeed, we need only
replace X by DO in the definition of section 7 to obtain a simplicial topo-
logical space w%?% L H,YL), and we define mq&.. 4,X) to be its geometric
realization. To ensure that the construction has good topological properties,
we insist that (H,10) be a strong NDR-pair [17,A.1]. When (% is a
singleton set, this two-sided bar construction reduces to that in section 7.

The Q:mHmvS O is itself a right and left @fwu.mmmu over w@ via
9 -1 T -1
o £, E. —= & and Ono ﬁllrl.l' r IM!.Y v

BH =B(O,H,0) is the standard classifying space of the categary M (e.g.

Segal [30] or [1&, §4]), and we write EM = B(O,4,Hk).
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All of the results of section 7 and some of the results of section 8
generalize to m.asml B ,X). Indeed, this is apparent from the fact that most
of the proofs depended only on general properties of geometric realization
and elementary properties of the simplicial bar construction. Note for
Proposition 7.4 that the product Ax Q' of an O-graph (X and an (@'-graph
('is an O X Q..nmu..wm:u and that there are evident natural isomorphisms of ]
simplicial spaces

B, (7Y x Au_. Bx 1, AxYAY

n

B (Y., KX B Y, B XD
for triples A;m_‘ ,H,X) over § and :.&.“ H4', A") over (§'. For Theorem
7.6, we say that K is grouplike if its homotopy category is a groupoid- (so
that m<mu<\n~0nboﬁ0mu< class of maps in R is invertible); here p and q are
induced mu.oa .Hn.x.lv & and mun¥¢9\ and are quasifibrations. Theorem
8.1 and Remarks 8.10 wholly fail to generalize; el is clearly not a group
(or groupoid) if & is a groupoid, and commutativity in K only makes sense
on subcategories with one object.

Now suppose given a homogeneous category of fibres. Call it =t

rather than %, to accord with our present emphasis on the morphism spaces

rather than the object spaces, but continue to speak of 4 -spaces and %-
fibrations. (Note that, in our previous notations, the object spaces of the
associated principal category were certain of the morphism spaces of the
original category.) Let ( denote the collection of objects of K, assume
that O is a set, and give (O the discrete topology; explicitly, (O is to have

one point {F} for each object space F. Let F denote the left

Q.umH.wﬁw over H which, as a space, is the disjoint union of the object
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vwmmomm of &u T:F~0O is the map which collapses a space F of the dis-
joint union to the point {F}, and the left action Hu F — F is defined by
the evaluation maps Y (F,F') XF —~ F!,

Let viD—~A bean 5 -space. Define a right (O-graph &D
over H as follows. As a space, (PD is the disjoint union over F of the sub-
spaces of “UW(F,D) which consist of the maps in K from F to a fibre of v,
5: %0~ 0O wmmwmum the point {F} toall {:F =D in D, and the right
action ®Du M ->H isinduced by the composition maps
WUF,D)x H(F,F') - UF,D).

We can now formally replace all bar constructions B(Y,G,X) which
occur in the proof of Theorem 9. 2 by corresponding bar constructions
mm-&,. Y .ﬁ\v. In cases (a) and (b), the proof goes through without the slight-
est change. We must avoid case (c), because Theorem 8.2 is not available,
but here all fibres are homeomorphic and the present elaboration would be
uninteresting in any case, In practice, we must also avoid case (i) of (a)
and (b), since here ¥ is usually not homogeneous. This leaves case (ii),
and here the categories u.c‘w and .%\<\ of Examples 6.6 and 6.9 are
homogeneous,

We have .wm.:on.mm one difficulty:  was assumed to be a set, where-~
as the categories of interest are large, Probably the best solution to this
problem is to restrict the constructions above fo the various small full sub-

categories of a . For example, Theorem 9.2 as originally developed is

the case when Ww is replaced by its full subcategory with one object F
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Thus reinterpret O above to be a given set of objects of our
original category. Now note that the bar construction is functorial in (3.
! ooty s N /
Indeed, if © is a subsetof O andif 3&_. H',X") is defined over (9, then

2% ,H,X) is defined over 0, where

.;mn st0cyY' | kb= sl n ok, amaX=1"'0 c X
and the inclusions induce a-well-defined map
By K X))~ mﬁmg..&_.*.v.

In practice, by comparisons of quasifibrations, these maps will all be weak
homotopy equivalent to BHX'.

For example, to show that BHX is homotopy equivalent to BHX'
when_X and X' are spaces of the homotopy type of a given compact space
F ¢ W , we need only map the quasifibrations EHX - BHX and
EHX' -~ BHX' to the quasifibration E E - m& , where E‘ is thé full sub-
category of FW with objects X and X'. Indeed, by use of larger sets of
objects, we actually obtain a coherent system of homotopy equivalences con-
necting the BHX as X ranges through the given homotopy type. Of course,
these remarks apply equally well to any other homogeneous category of
fibres and can easily be elaborated to a precise comparison of the natural
transformations ® and ¥ (of the proof of Theorem 9.2) obtained by use of

different choices of privileged fibre.
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13. The algebraic and geometric bar constructions

Let R be a commutative ring and take all homology with coeffi-

cients in R throughout the last three sections,

Just as the two-sided geometric bar construction is obtained by
composing the simplicial bar construction on appropriate triples of spaces

with geometric realization, so the two-sided algebraic bar construction is

obtained by composing the simplicial bar construction m* on appropriate

triples of differential R-modules with the condensation functor C from

simplicial differential R-modules to differential R-modules. The reader is

referred to the Appendix of [10] for the details of the definition. Write

B(M, U,N) for the algebraic bar construction, where U is a differential

R-algebra and M and N are right and left differential U-modules. Write

EU = B(R, U, U) and BU = B(R, U, R), rather than the standard notations of

[10], in conformity with the notations for the geometric bar construction.

In view of the similarity between their definitions, it is natural to

expect there to be a close relationship between the geometric and algebraic

bar constructions. In the case of BG, this relationship was first made pre-

cise by Stasheff [31], singularly, and later by Milgram [23], cellularly.

Let nu denote the subcategory of Wl which consists of the CW-

complexes and cellular maps. There is a derived subcategory D\Aﬂv of

Q\A‘C(v. with objects those triples (Y, G,X) suchthat Y,G,Xe ! and the

product and unit of G and its actions on Y and X are cellular maps. The

component maps of morphisms in g.zwv are also required to be cellular.
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We shall write Om for cellular chains and G for normalized
singular chains (both with coefficients in R). The product of CW -complexes
X and Y is a CW-complex (since we are «EQHW...EW in L) with a natural cell
structure such that O*AN X Y) can be identified with O*N@O%%.

In order to get the right signs, we agree to write simplices to the
left, _N_ = .:. Dv X Nv\AR ), when forming the geometric realization of
simplicial spaces.

Proposition 13.1. Let (Y,G,X)e D,.Aﬂv Then B(Y,G,X) is a

CW -complex with a natural cell structure such that O#W?ﬂ G,X) is
naturally isomorphic to WAO#MU O*O. O*Nv.

Proof. Give W@A%. G,X)=YX GP X X the product cell structure,
Then, by [17, 11.4], B(Y¥,G,X) is a CW -complex with one (ntp)-cell

A X g for eachn-cell o=g X o X... X0 X o of &X?wumvvxx. Let

P ] P ptl
Dvx ¢ correspond to the element qoﬂqH. vens qvuqmiH of
WAO%UN,O#O. O*Nv. The pieces wD@X ¢ and Dwx 3¢ of the boundary of

D.MX ¢ give rise to the simplicial (or external) and internal components of
P .
the differential d= > Auswmw + T:@m in the bar construction (see [10,
’ i=0
A.z]).
We require the following addendum to __.w‘f 11.15] in order to

describe the behavior of products under the jsomorphism of chains given in

the proposition.
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Lemma 13.2. Let X and Y be simplicial objects in NM. Then
th 1 i ,
@ natural homeomorphism f£: [X X Y| -~ |X]| x |Y| is naturally homotopic
to a cellular map f and the natural homeomorphism g = Q...v|~ is itself

cellular,

Proof. f = where the G. are the A exander-Whitne
AAWOX:‘H:-. h t! i t 1 it y
ﬁ<T0 WOBOWO@% NQ.C.WCN.HQHHOWW wﬂmﬂwhwmm in the MVHOOM of _”H 7,11 wmu and the
> . 3

requisite verifications are the same as there
We also write f and g for the maps of the geometric bar con-
struction derived via the identifications (of [17,10.,1])
m*?. G,X) X w*?..m_.x.v = w%?x%: GX G XXX"),
In precise analogy, [10, A. 3] gives natural chain homotopy
equivalences, the Alexander-Whitney and shuffle maps
£:C(M®N) ~ CM®CN and m:CM®CN - C(M®N)

for simplicial differential R-modules M and N. We also write £ d
. and n

for the i
maps of the algebraic bar construction derived via the identifications

(again, of [17,10.1])

B, (M, U,N)®B (M, U',N') = B, (MM, URU', NON').

Proposition 13.3. Let (Y,G,X) and (Y',G',X') be objects of
gAﬂ ). Then,under the isomorphism of Proposition 13,1, C,f coincides
n

with £ and O%m coincides with 1.
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Proof. This is verified by explicit calculations. We omit the

. : ise
details (which really amount only to checks of signs) since the preci

definitions of £ and n were motivated by the present result.

i i EG.
The following results give special properties of BG and

Proposition 13.4. I G isa cellular topological monoid, then BG
o . e

i i i C,BG is
admits a cellular diagonal approximation with respect to which "

i i ifferential coalgebra.
naturally isomorphic to WOWO as a differ

= X G,)A 1is the
Proof., f'eBA = A:BG -~ BG X BG, and fo<BA Aﬂo wv

desired @HNNOﬂNH N@@HOM&.ENHHOﬁu it is cellular U% wu~ 11, wm_- The chain
level statement does not follow U< uuN.nC.HN.HHﬂ% from the previous result, since

i i i from
BA need not be cellular, but instead requires an easy direct calculation

the explicit coproduct

Ummuu L] m.mv”_ = M AIMVAﬁlwv@wﬁmH. e mu..“_@mmw.:.. e mmuu ? ‘

3
= de [N
q u.MuW g g

. pen yp P .
on BC,G Note that D is independent of an ossible coproduct on C,G

Proposition 13.5. If G is a cellular topological group, then so

is EG.

Proof. This follows by naturality from the identification of EG

with _U*Q_ in the proof of Theorem 8.1.
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Proposition 13.6. If G isa cellular Abelian topological monoid,

then so are BG and EG. O*mo is naturally isomorphic to NO%O as a

differential Hopf algebra.

Proof. The first part is immediate by naturality and the second

part follows from Propositions 13. 4 and 13.3 since the product on BC, G is

#

derived from the shuffle map by naturality.

Remarks 13.7. Let w be an Abelian group regarded as a discrete CW-

complex. As noted by Milgram [23], if we define K(m,n) = B r by iteration,
then X(w,n) is a cellular Abelian noonomwnmu group such that

O*W?. n) = wdﬁydv as a differential Hopf algebra, where Rt denotes the
group ring of w. This gives an alternative derivation to the classical one
(given in detail in [10, Appendix]) of the geometric preliminaries necessary

*
for Cartan's calculations of H K(mw, n).

In order to apply the above results in full generality, we note the
following result, Although it surely ought to be well-known, it seems not to
appear in the literature. Let S denote the total singular complex functor
from spaces to simplicial sets, let T denote the geometric realization
functor from simplicial sets to spaces, and let & :TSX - X denote the
natural weak homotopy equivalence, &|u,f| = f(u) for ue A and

P

m" Dv .vNAmmmm.m.Tw..C.Om course, T takes values in W .

Proposition 13.8. The normalized singular chains O*N are

naturally isomorphic to the cellular chains O&HMN.. The Alexander-Whitney
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and shuffle maps £ and N agree under this isomorphism with the

respective composites

C,f
C,TS(XXY) = C,T(SKX5Y) —4, C,(TSX X TSY) = o*emx®o*am<

and
C,g
O%me ®O%.Hm% = O*A.H.mNX.HmMJ l..wlv O*.H_AMN X 8Y) = O%HMANXM.V .

Proof. Leta non-degenerate simplex f: D@ = X correspond to the

cell Dvx f C TSX, where the p-simplex f is regarded as a vertex of the

discrete CW-complex mmuN. This correspondence sets up the required

isomorphism, (Note that, by the paragraph after [10,A.7], ¢ ana n on

singular chains are special cases of the maps € and 7nof[10,A. 3].)

Thus the geometry of simplices provides a rigorous construction
of the bwmchmmﬂncﬁumnam< and shuffle maps on singular chains, rather than
just the motivation for an algebraic definition,

The following theorem is the main technical result on the relation-

ship between the geometric and algebraic bar constructions,

Theorem 13.9. TFor (Y.G,X) ¢ Qw), B(TSY, TSG, TSX) admits
—=orem 23. 9.
a cellular diagonal approximation with respect to which O*wﬁwmwﬂ TSG, TSX)
is naturally isomorphic to WAO*AF O*OV C.X) as a differential coalgebra.

*
Therefore H B(Y,G,X) is naturally isomorphic as an algebra to the

homology of the dual of WAOL«%. C.G, C.X).

Proof. On the level of differential Hﬂsgom:Hmm. Propositions 13.1

and 13.8 establish the required isomorphism. For the statement about the
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diagonal, consider the moc.ocﬁbw diagram (in which the wmoudOHvagm are

given by the results just cited):

14

C,B(Ts
4B(TSY, TsG, Tsx) Eo*w.n*m.o*ﬁ

C4B(TSA, TsA, Tsa) B(C,A,C 4, c,a)

CyB(TS(Y xY), T5(Gx G), TSXXX)) = B(C, (Y xY), Cx(Gxa), ¢ (x x x))
O%w? £, 1) B(t, ¢,¢)
C,B(TSYXTS =
#B( ¥, TSGX TSG, TSX X TsX) =B(C,Y®cC,v, C.G®c,q, C,X®C_X)

O%m ¢

o*wﬁmw.ﬂmm.emxv@o%w?mﬁHmo.amuc =B(CY,cq, o%c@wﬂo*ﬁo*o.n*ﬁ

so that B(¢, ¢, £) is defined, follows from the commutative diagram dis.
played in [10,4.3]. Since ¢ = Omm and 7= O*m. the same combinatorial
pProof shows that the analogous diagram with condensation replaced by
geometric realization also commutes, hence that (£, £, f) is a morphism in
0AC). The UPPer two squares of our diagram commute by naturality (from
Proposition 13.1), and the bottom Square comrnutes by Proposition 13.3,

The map feB(foTSA, foTSA, fo T8A) is homotopic to the diagonal, and the

coproduct on WAO%;&V C4G, O%VC is defined to be £ B(£ uO*D. £ °CLAE0C A)
, 4.
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The last statement {(which is given in cohomology solely in order to avoid

flatness hypotheses for coproducts) follows since the map
B(®, ®, 8): B(TSY, TSG, TSX) ~ B(Y, G,X)
induces an isomorphism on homology by Proposition 7.3.
We complete this section with a discussion of the following theorem.

Theorem 13.10. et {Y,G,X) e A{U) =andiet - R -beafield. Then

there is a natural spectral sequence of differential coalgebras which con-
2 HyG
verges from the coalgebra E = Tor Am*a&wm*u& to the coalgebra
H *m? , G, X).
R is taken to be a field to avoid awkward flatness hypotheses.
There are two conceptually different proofs. First, following
Rothenberg and Steenrod [29], we can construct an exact couple by passage
to homology from the filtration by successive cofibrations of the space
B(Y,G,X). This approach is analyzed in [17,11. 14], where the mwwémﬂdu
is computed. Because of its geometric nature, this approach makes it
simple to put Steenrod operations into the spectral sequence when R = va
and is applicable to any homology theory with an appropriate Kunneth
theorem.

Second, following Eilenberg and Moore [26], we can filter the

algebra bar construction B(M, U, N) by

p
mm..mhz. U, N) = Image >, B.(M,U,N)
i=0

1
and observe that E B(M, U, N) = B(HM, HU, HN), which is a suitable

-to the-calculationof -H B{Y, G,X)
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differential R-module (or R-coalgebra if HU is a Hopf algebra and HM and
HN are right and left coalgebras over HU) for the computation of
T HU R

or " (HM, HN). This approach is analyzed in [10, A.9 and §1,2,5]. Be-

cause of its algebraic nature, it gives maximal information on the internal

structure of the spectral sequence.

Theorem 13.9 demonstrates the applicability of the second approach

and proves that both approaches yield the
same spectral sequence. Indeed, the map B(®, &, 8) certainly induces an

isomorphism of Rothenberg-Steenrod spectral sequences, and the isomorph-

ism betw C i
een *E.Hm%. TSG, TSX) and WAO%MJ C,G, O*Nv implies that the

Rothenberg-Steenrod spectral sequence for the triple (TSY, TSG, TSX) is

isomorphic to the Eilenberg-Moore spectral sequence for the triple

AO*M\. O*O.~ O%Nv. Note that our chain level isomorphism yields a particular-

1y conceptual proof that the obvious algebraic coproduct in HN converges to

the correct geometric coproduct in the limit.
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14, Transports and the Serre spectral sequence

As in section 1, assume given a category 4 with a faithful under-
lying space functor to UL. Recall that ] denotes-the category of non-
mmm@bmHmwmw% based spaces in U. For A J ., let AA and PA denote
the Moore loop space and path space on A and let p: PA ~ A denote the
end-point projection. The associated principal fibration functor previously
denoted by P will be denoted by Prin here.

Definition 14.1. An % -transport over a space A ¢ J isa space

Xe3 together with an (associative and unital) action T:AA XX =X such
that t(A, )i1X =X is a mapin J for each N e AA. Define J3J(A) to be
the collection, assumed to be a set, of equivalence classes of %‘uﬁumdwvou.em
over A under the equivalence relation generated by T & 7' if there exists

J

a map g:X -+ X' in 4 such that the following’ diagram is commutative:

AA XX ——r——w X

18 g

x_

AA X X!

For a map f:A'—= A in u and an @.xnﬁmdwvou.n T over A, define an
m-nﬂwdm@oﬂn *r over A' by Q%i?ﬁ.xv = im or',x) for A'e AA' and
x ¢ X. Then J7F is a contravariant functor from J to sets.
Observe that the adjoint AA —~ F X,X) of an Y -transport T is a
dam.v of topological monoids and that, conversely, such a map has adjoint an
3 -transport over A. Clearly uw\ﬁbv is isomorphic to the set of equiva-

lence classes of maps of monoids y: A - F(%,X), XeF , under the
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equivalence relation generated by vy & y' if there exists a map f:X - X!

in J such that F(yA)(x) = (y' )(fx) forall X ¢ AA and x ¢ X.

While the proof of the following theorem works somewhat more gener-
ally,we shall restrict attention to the categories of Example 6.6 for simpli-
city. The idea of the result, and the term "transport",are due to Stasheff [33].

Theorem 14,2, Let Fe W andlet ¥ be FU or, if F is com-

pact, FW . Then, for A %Y , {F(A) is naturally isomorphic to  J J(A).

Proof. £3(A) =[A,BHF] is a well-defined set, and it will follow

from the rest of the proof that J J(A) is also well-defined. Define

®: £J(A) =~ JJ(A) as follows. Givenan J -fibration v:D - A, let

Fv =(IT'v v..:*v C I'D andlet 1:AA XFv - Fv be obtained by restriction
from w:TTD~TID . Thenlet #{v} = {r}. Define ¥: JF(4) - £F(a)
as follows., Given an N. ~transport T:AA XX = X, use it and the natural

right action of AA on PA to construct the quotient space PA X X ; itis
AA

weak Hausdorff because of the nondegeneracy of the basepoint * ¢ A, Define

w:PA X.P>um > A by w(B,x) = p(B) and note that .:.-H

(*) = X. Define a
transitive lifting function

£ A X ind
£ (P ?%c PAX, X

for w by £(e,(B.x))= («B,x). Then define ¥{<} = {v}. If = is derived.

from v :D =~ A as in the definition of &, then

p:PAXF C I'T'D - I'D

induces an .m*:wbm.mu PA X>>m,< - I'D over A which restricts on Fv to

the identity map. Since {I'v } = {v }, it follows that ¥& is the identity
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transformation of ¢3(A). Conversely, if m is derived as above from a

h, -transport T,so that
Fr = {(e, (B,x)) | 2 ¢ |_|_u.>, (p,x) e PA X»>>um.u a(0) = p(p), pla) = *},

define f:Fw = X by f#la, (B,x)) = 7(ep,x). Then the diagram

>.>Xm..=..|.l||FI|I.IV Fr
1x¥ 14

.>.>Xual!l|‘._.l|||'. X

is commutative, because T(\, (ep,x)) = 7(\ap,x), and therefore ®¥ is the
identity transformation of JJ(a).

Since, up to equivalence, a fibration determines and is determined
s

by a transport, it is plausible that the Serre spectral sequence can be de-

rived by use of a differential R-module whith depends only on a transport.

We shall show that this is the case. We first note the following fact.
Lemma 14.3. If A e¢J is connected, then the diagram
A <EB) ppa,aa,®) —3 > BAA

displays a weak homotopy equivalence between A and BAA.

Proof. Since A is connected, the fibration p:PA - A maps

onto A and is thus a quasifibration.

Recallthat homology and cohomology are to be taken cqw.nr coefficients

in R.

The result follows from Corollary 7.7,
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Theorem 14.4. Let A e¢J be connected andlet v:D - A be a

ces . . -1
quasifibration with F = Vv "(%)., Then there is a natural spectral sequence

*
.Cwu.tw of differential algebras such that ch = H (A: u**ﬁm.vv as an algebra
and ANH.; converges to the algebra H'D.

Proof. The result is stated in cohomology to avoid flatness

hypotheses for coproducts, and we shall work in homology. Replacing v by

Tv :ID - A if necessary, we may assume without loss of generality that

v has a transitive lifting function £:T'D - D, By restriction of £ , we

obtain
E:PAXTF -~ D and TIAAXF -~ F ,

The following diagram is commutative:

p<fE) B(PA, AA,F) ——3L 4 p(x, AAF)
v Mv v
€(p) q

As———— B(PA,AA,¥)——3 o BAA

E(£) restricts to the identity mapon F = vL

(*), hence, by the lemma and
Theorem 7.6, the upper row displays a weak homotopy equivalence between
D and B(*, AA,F). By Theorem 13.9, we conclude that

H,D = HB(R, CyAA,C F). Filter this algebraic bar construction by writ-

ing, additively,
B(R, O*g.ﬂ%m.v = WG*E®O*M
and then defining

FB =
b (R,C AA,CF) ?Mn BCAARCF .

r
Let {E"v} denote the derived spectral sequence. The degree i referred
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0
to in the filtration is the total degree, hence, visibly, the differential d is

1
just 1@®d. Thus, additively, m“m:mc
theorem. We may rewrite Hpt = wAW.O&iym*m.vn this equality holds as

=B C,AA®H F by the Kinneth
p ¥ qg 7

differential R-modules, the point being that the last face operator depends on

the action of O*>> on E*m; induced by the transport 7. Since

BC AA = O*.W.P». by Theorem 13.9 again, we conclude that

mwc o O&Gw\ff H,F). The reader is referred to Steenrod [36, §31] for a
thorough treatment of cellular chains with local coefficients. Thus

m“N< = m*?{ E*H.v. For the coproducts, merely note that Theorem 13.9

implies both that B(R, C ANA, O*m.v is a filtered differential coalgebra iso-
morphic to O*wﬂ*«i.m& and that mww_\ is isomorphic to O#ﬁm.im I*m,v as
a differential coalgebra.

A comparison to the standard construction of the Serre spectral
sequence from a filtration on O*U can easily be obtained by means of a
chain level elaboration of the geometric diagram displayed in the proof. Our
construction is similar in philosophy, but not in detail, to that given by
Brown[3] in terms of twisted tensor products.

There is more than just a formal similarity between the diagram

used in the previous argument and those used inthe proof of Theorem 9. 2.

Indeed, with the notations of the proof just given, the following diagram is

commutative (where T and £ denote the adjoints of T and £ ):
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D=5t
B(PrinD, HF, F) Ill.fvw? HF,F)
; /A,W - //ﬂ 1)
j) -—E
. ] AX, F B(PA, AA,F) et B(*,AA, F)
P
pX1 P P
Ae—n = B(PrinD, HF , *) —9 ., BHF p
/ B(E,%,1) >
BT
< &
A B(PA, AA, %) 1 BAA

This diagram displays a connection between the classification theorems of

Corollary 9.5 and Theorem 14.2. For A e UV, the classifying map

A = BHF for v is transported to B¥ : BAA - BHF via the canonical

homotopy equivalence between A and BAA. Of course, since Corollary 9.5

refers to a fixed chosen space F ¢J whereas Theorem 14, 2 refers to ar-

bitrary spaces in % , it would be necessary to use the theory of section 12

to make a more systematic comparison between the cited results
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15, The group completion theorem

We say that an H-space X is admissible if it is homotopy
associative and if left translation by any given element is homotopic to
right translation by the same element; the latter condition certainly holds
if X is homotopy commutative.

Let f:X =Y be an H-map between admissible H-spaces, where Y
is grouplike. We say that { is a group completion if m*“m*N g H.H*M is a
localization of the ring m*un at its multiplicative submonoid .=.oN for every
commutative coefficient ring R. This condition will hold if it does so for
all prime fields R = NmU and for R = Q [28 or 18, 1.4], hence we assume
that R is a field below.

The purpose of this section is to prove the following result, which

is a version due to Quillen [28] of a theorem of Barratt“nd Priddy [1].

Theorem 15.1. Let G be a topological monoid such that G and

QBG are admissible H-spaces. Then the natural inclusion L :G =~ QBG is a

group completion.

According to Quillen, the admissibility of QBG need not be
assumed. The argument in [28] seemed unconvincing on this point, and
Quillen subsequently obtained a quite different proof [private communication].
However, this hypothesis is usually satisfied in practice and allows the
present technically simplified version of Quillen's original argument.

We begin the proof with the following lemma.
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Lemma 15. 2,

.aowu .:.oO g ._._.obwo is a group completion; that is,
.qow is universal with respect to morphisms of monoids from w G to
0

groups.

P - . R R
roof. ™ BG mu (BG; Z2) since T,92BG is commutative by the

admissibility of QBG. B
vy y Theorem 13.9, we may use WO*O to compute

H BG. We find that it i i i
1 ind that it is the quotient of H,G by the image of H,G® H,G

under the m d= -
ap mo mH + ww. or

dx®y) = E@)y - xy + E(y)x,
wh [ - i i
ere : moO Z is the augmentation and Xy is the Pontryagin product,
I : .
n other words, mw BG is the quotient of the free Abelian group generated by

the set doQ by the subgroup generated by {x+y - xy Tn. y e .qo.uw . Clearly

T { agrees with the natural map, and the conclusion follows.

To proceed further, we need Segal's (unpublished) analog for
"special®" simplicial spaces of the total singular complex. Let §J denote

the category of proper simplicial based spaces.

Definition 15.3. An object Y e 37 is said to be reduced if

/Nc = * and to be special if, in addition, the map Amo mvuu

P
seee, Y -
- i v v &H
is a homotopy equivalence for all p, where & = 3 _...8, 9 9

0 i-17i42""" p
example, B,G is special for any topological monoid Ge [J. Let \%._..Q

. For

denote the full subcategory of 417 whose objects are special. Let

: 4% -7 a i
: enote the geometric realization functor. Define a right

i +
adjoint 5: J = 4] to T by letting S X be the s
P

pace of maps
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M denotes the set of vertices of Dq and letting

i f A just as for
the face and degeneracy operators be induced from those o P j

(& ~Do } =~ (X, #), where A
P P

i X = 0X, and it is trivial
the total singular complex [16, p. 2]. Obviously S,

to verify that SX 1is special. The adjunction

g

A T (x,s%) II%ItS,:.ﬁ

is given by (#9)|y, ul = (fy)(v) and (We)(y)(@) = gly,n| for £:Y ~SX and

isely as in the classical case
gi TY = X, where ye Ammv and ue Pmn precisely

[16, p.62]. Write
&= @(1): TSX =X and ¥ = §(1):Y = STY.

We shall need the following variant of Lemma 14.3. Its proof re-

quires only trivial verifications and use of Proposition 8.7.

Lemma 15.4. Let X ¢ J and define §£:BAX =X by the formula

P
m:VHu...quu.ﬁ_ = OJ...V@X»M Ewh?w:

, where Cwun + ... +t, 1 Then the

for N, e AX and u =(t,..,t_)e A o i
i 0 P

P

. . ‘
following composite is the identity map, hence £ is a weak homotopy
equivalence if X is connected:

X C AX b . 9BAX

28 Qx .

Proposition 15.5. ®:TSX -~ X is a weak homotopy equivalence

for any connected space X ¢ J and TY :TY -~ TSTY is a weak homotopy

. - s v \%.*.I\N
equivalence for any special simplicial space € .
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Proof. On purely categorical grounds, £:BAX - X

is the com-
posite
-]
BAX = .H.W*\Um Eﬂmum — X .

A glance at the definitions shows that, on 1-simplices, %Hﬁmvubun - QX
agrees with the natural retraction. Since B, AX and SX are special, it

follows that _,wvmm ): wv\wum - mmN is a homotopy equivalence for all p.

Therefore TY(£) is a homotopy equivalence by [18,A.3]. This implies the
first clause, and the second clause follows since the composite

T -]
TY ——— TSTY ——» TY

is the identity map and since TY is connected by [17,11.11].

As a final preliminary, we require the following variant of the com-

parison theorem (which is similar to Quillen's formulatim [27,3.8]).

Lemma 15, 6. Let AMHHT AHHV - mmmtu.v be a morphism of first

quadrant spectral sequences., Assume that

) E¥=5%, E®°-£%, ana ¢ - 2% for filtered graded Abelian

groups A and A and a filtration preserving isomorphism f;A - A

of graded Abelian groups;

2 =2

i - - >0

(ii) Mom 0 and m”om 0 for ¢>0; and
. 2

(iii) Fora given n >0, f is an isomorphism for gq<n and all p.

P
2 2
Then mwb is an isomorphism and mNs is an epimorphism.
Proof. By the argument in [13, p. 356 and 357}, (iii) implies
(iv) £

pq is a2 monomorphism if q < n and an isomorphism if gq<n+l-r.

By induction on q (for fixed p+q), (iv) and (i) imply
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(v) m_,unM is an isomorphism if q < n and an epimorphism if gq=n.
{o o)

-~ 0.) By downwards
pX*

(Use the exact sequences 0 = m.mTw

induction on 1, (ii), (iv), and (v) imply

A-FA—-FE
P

(vi) £ g , T>Dp, is an isomorphism if q<n and an epimorphism if gq=n,
P4 -
a* T T+l .
¥ —E —=0.) With
(Use the exact sequences m..v+u.. g-r+1 —_— H—u@ pq

r . o
r = p="2, the second vonclusion fclivws. ~Finally, fhﬂﬂ As.an isomorphism

for r>2 by an argument just like that at the bottom of [13, p.357].
We can now use a variant of Quillen's argument [28, §4] to prove
the theorem. For Y e R+u‘ , consider the Segal spectral sequence

{ETY} [30;17,11.14]. {7Y} converges to H, TY. Since we are taking

. 1, _
coefficients in a field R and Y is special, E'Y = wmuﬁ&w and

HY 2 2
* = = >0. From
,Hﬂmw. R). Clearly m“oa% =R and mo@& 0 for gq

r .
¥:B,G~STB,G = SBG we derive ,ﬁ.mwﬁlmnm%mw ~ {E"SBG}. Since T¥

NNM = Tor

is a weak homotopy equivalence, by Proposition 15.5, hypothesis (i) of
Lemma 15, 6 is satisfied. Definition 15.3 shows that, on l-simplices,
2 Ex g
ﬂnwnOlQWQ.Hfmwmmo.nmmﬁu.ﬁoaﬁrv
“..

For brevity of notation, we agree to write

g= ouxm.naomwo_ A=HG, B=HOBG.
Let  :A —~ A denote the localization of A at its submonoid g. Note that
= A
A is A-flat (as a limit of free A-modules [18,1.2]) and that R Hﬂ®>

; A elements of m
(because the augmentation E:A -~ R takes the value one on

regarded via Lemma 15. 2 as elements of A). Therefore
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Tor' (1,1): Tor’(R,R) -~ Tor’(R,R)

is an isomorphism by [5, VI 4.1.1]. Thus, if L:A -~ B denotes the unique

- 2
ring homomorphism such that Lt = L. then E"¥ can be identified with
Tor w? ,1): .HOH.> (R,R) ~ Howwﬂf R) .

A, hence also N». and B are Hopf algebras which, as coalgebras,are direct

sums of connected coalgebras. T.et .Mm and B, denote the components of

the identity elements of A and B. If Rg denotes the group ring of g,

then A = Mm@WM and B = wm®H~M as R-algebras because g is central

inboth A and B by the admissibility of G and QBG, Clearly £ = o1,

where ﬁm is the restriction of § to >m. By the Kunneth theorem for

torsion products [5,XI 3.1],

A >m Ry,
Tor™(R,R) = Tor °(R,R)® Tor  5(R,R)

T 4
and similarly for B, hence .H.OH.wQ.. 1) = Tor %(1,1)®1. We shall prove

the following statement by induction on n.

P: wmnwm - wm is an isomorphism in degrees < n

. s 2
ﬁo is trivial and we assume u.ub 1 Then Hvﬂ@ is an isomorphism for
. 2
q < n and therefore, by Lemma 15.6, HHDG is an isomorphism and HM r
n
is an epimorphism. This means (e.g., by [40, §7]) that T induces a bi-
e

jection between minimal sets of generators and a surjection between minimal

sets of defining relations in degrees < n and thus implies P. Alter-
n
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