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Abstract

Let S be the sphere spectrum. We construct an associative, commutative, and unital smash
product in a complete and cocomplete category g of “S-modules” whose derived category Zg
is equivalent to the classical stable homotopy category. This allows a simple and algebraically
manageable definition of “S-algebras” and “commutative S-algebras” in terms of associative, or
associative and commutative, products RAg R — R. These notions are essentially equivalent
to the earlier notions of Axs and E ring spectra, and the older notions feed naturally into
the new framework to provide plentiful examples. There is an equally simple definition of
R-modules in terms of maps RAg M — M. When R is commutative, the category .#g of
R-modules also has an associative, commutative, and unital smash product, and its derived
category 2 has properties just like the stable homotopy category.

Working in the derived category 2 g, we construct spectral sequences that specialize to give
generalized universal coefficient and Kunneth spectral sequences. Classical torsion products
and Ext groups are obtained by specializing our constructions to Eilenberg-Mac Lane spectra
and passing to homotopy groups, and the derived category of a discrete ring R is equivalent
to the derived category of its associated Eilenberg-Mac Lane S-algebra.

We also develop a homotopical theory of R-ring spectra in 2g, analogous to the classical
theory of ring spectra in the stable homotopy category, and we use it to give new constructions
as MU-ring spectra of a host of fundamentally important spectra whose earlier constructions
were both more difficult and less precise.

Working in the module category .#r, we show that the category of finite cell modules over
an S-algebra R gives rise to an associated algebraic K-theory spectrum KR. Specialized to
the Eilenberg-Mac Lane spectra of discrete rings, this recovers Quillen’s algebraic K-theory of
rings. Specialized to suspension spectra $°°(Q2X),. of loop spaces, it recovers Waldhausen'’s
algebraic K-theory of spaces.

Replacing our ground ring S by a commutative S-algebra R, we define R-algebras and
commutative R-algebras in terms of maps A AR A — A, and we show that the categories
of R-modules, R-algebras, and commutative R-algebras are all topological model categories.
We use the model structures to study Bousfield localizations of R-modules and R-algebras.
In particular, we prove that KO and KU are commutative ko and ku-algebras and therefore
commutative S-algebras.

We define the topological Hochschild homology R-module THHT(A; M) of A with coef-
ficients in an (A, A)-bimodule M and give spectral sequences for the calculation of its ho-
motopy and homology groups. Again, classical Hochschild homology and cohomology groups
are obtained by specializing the constructions to Eilenberg-Mac Lane spectra and passing to
homotopy groups.

vii
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Introduction

The last thirty years have seen the importation of more and more algebraic
techniques into stable homotopy theory. Throughout this period, most work in
stable homotopy theory has taken place in Boardman’s stable homotopy category
[6], or in Adams’ variant of it [2], or, more recently, in Lewis and May’s variant
[38]. That category is analogous to the derived category obtained from the
category of chain complexes over a commutative ring k by inverting the quasi-
isomorphisms. The sphere spectrum S plays the role of k, the smash product
A plays the role of the tensor product, and weak equivalences play the role of
quasi-isomorphisms. A fundamental difference between the two situations is that
the smash product on the underlying category of spectra is not associative and
commutative, whereas the tensor product between chain complexes of k-modules
is associative and commutative. For this reason, topologists generally work with
rings and modules in the stable homotopy category, with their products and
actions defined only up to homotopy. In contrast, of course, algebraists generally
work with differential graded k-algebras that have associative point-set level
multiplications.

We here introduce a new approach to stable homotopy theory that allows one
to do point-set level algebra. We construct a new category .#s of S-modules
that has an associative, commutative, and unital smash product Ag. Its derived
category g is obtained by inverting the weak equivalences; Zs is equivalent
to the classical stable homotopy category, and the equivalence preserves smash
products. This allows us to rethink all of stable homotopy theory: all previous
work in the subject might as well have been done in 25. Working on the point-
set level, in .#g, we define an S-algebra to be an S-module R with an associative
and unital product R As R — R; if the product is also commutative, we call R
a commutative S-algebra. Although the definitions are now very simple, these
are not new notions: they are refinements of the A, and E ring spectra that
were introduced over twenty years ago by May, Quinn, and Ray [48]. In general,
the latter need not satisfy the precise unital property that is enjoyed by our new
S-algebras, but it is a simple matter to construct a weakly equivalent S-algebra
from an Ay, ring spectrum and a weakly equivalent commutative S-algebra from
an FE, ring spectrum.
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It is tempting to refer to (commutative) S-algebras as (commutative) ring
spectra. However, this would introduce confusion since the term “ring spectrum”
has had a definite meaning for thirty years as a stable homotopy category level
notion. Ring spectra in the classical homotopical sense are not rendered obsolete
by our theory since there are many examples that admit no S-algebra structure.
In any case, the term S-algebra more accurately describes our new concept.
With our theory, and the new possibilities that it opens up, it becomes vitally
important to keep track of when one is working on the point-set level and when
one is working up to homotopy. In the absence (or ignorance) of a good point-set
level category of spectra, topologists have tended to be sloppy about this. The
dichotomy will run through our work. The terms “ring spectrum” and “module
spectrum” will always refer to the classical homotopical notions. The terms “S-
algebra” and “S-module” will always refer to the strict point-set level notions.

We define a (left) module M over an S-algebra R to be an S-module M with
an action RAg M — M such that the standard diagrams commute. We obtain
a category .#g of (left) R-modules and a derived category Zg. There is a smash
product M Agr N of a right R-module M and a left R-module N, which is an S-
module. For left R-modules M and N, there is a function S-module Fr(M, N)
that enjoys properties just like modules of homomorphisms in algebra. Each
Fp(M,M) is an S-aigebra. If R is commutative, then M Ag N and Fr(M, N)
are R-modules, and in this case .#r and Zpr enjoy all of the properties of s
and Zg. Thus each commutative S-algebra R determines a derived category of
R-modules that has all of the structure that the stable homotopy category has.
These new categories are of substantial intrinsic interest, and they give powerful
new tools for the investigation of the classical stable homotopy category.

When we restrict to Eilenberg-Mac Lane spectra, our topological theory sub-
sumes a good deal of classical homological algebra. For a discrete ring R and
R-modules M and N, we have

Torf(M,N) = n,(HM Ayr HN) and Ext}(M,N) = n_,Fyr(HM, HN).

Here Ag and Fr must be interpreted in the derived category; that is, HM must
be a CW H R-module. Moreover, the algebraic derived category Zg is equivalent
to the topological derived category Zyg.

In general, for an S-algebra R, approximation of R-modules M by weakly
equivalent cell R-modules is roughly analogous to forming projective resolutions
in algebra. There is a much more precise analogy that involves developing the
derived categories of modules over rings or, more generally, DGA’s in terms of
cell modules. It is presented in [35], which gives an algebraic theory of A, and
E k-algebras that closely parallels the present topological theory.

When we restrict to the sphere spectrum S, the derived smash products
M Ag N and function spectra Fs(M,N) have as their homotopy groups the
homology and cohomology groups N.(M) and N*(M). This suggests the alter-
native notations

Tor?(M,N) = n,(M Ag N) = NE(M)

and
Extp(M,N) =nm_nFr(M,N) = Ng(M)
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for R-modules M and N. When R is connective, there are ordinary homology and
cohomology theories on R-modules, represented by Eilenberg-Mac Lane spectra
that are R-modules, and there are Atiyah-Hirzebruch spectral sequences for the
computation of generalized homology and cohomology theories on R-modules.

The realization of algebraic Tor and Ext groups via Eilenberg-Mac Lane spec-
tra generalizes to spectral sequences

2 R R
Ep‘q = Torpyq(M*, N,) = Tor,' o

(M, N)

and
Ep? = BxtRI(M", N*) = Extl (M, N).

These specialize to give Kiinneth and universal coefficient spectral sequences in
classical generalized homology and cohomology theories. There are also Eilenberg
Moore type spectral sequences for the calculation of E.(M Agr N) under appro-
priate hypotheses on R and E.

Thinking of Zr as a new stable homotopy category, where R is a commutative
S-algebra, we can realize the action of an element z € R, on an R-module M as
a map of R-modules z : ¥"M — M. We define M/zM to be the cofiber of z,
and we define the localization M [z~!] to be the telescope of a countable iterate of
desuspensions of z, starting with M — ™" M. By iteration, we can construct
quotients by sequences of elements and localizations at sequences of elements.
We define R-ring spectra, associative R-ring spectra, and commutative R-ring
spectra in the homotopical sense, with products AAr A — A defined via maps
in the derived category Zg, and it turns out to be quite simple to study when
quotients and localizations of R-ring spectra are again R-ring spectra.

When we take R = MU, we find easy direct constructions as MU-modules
of all of the various spectra (MU/X)[Y 1] that are usually obtained by means
of the Baas-Sullivan theory of manifolds with singularities or the Landweber
exact functor theorem. When their homotopy groups are integral domains con-
centrated in degrees congruent to zero mod 4, these MU-modules all admit
canonical structures of associative and commutative MU-ring spectra. Remark-
ably, it is far simpler to prove the sharper statements that apply in the derived
category of MU-modules than the much weaker stable homotopy category level
analogs that were obtainable before our theory.

Thinking of .#r as a new category of point-set level modules, where R is
again a commutative S-algebra, we can define R-algebras A via point-set level
products A Ag A — A such that the appropriate diagrams commute. For
example, Fr(M, M) is an R-algebra for any R-module M. These have all of the
good formal properties of S-algebras. We repeat the dichotomy for emphasis:
The terms “R-ring spectrum” and “R-module spectrum” will always refer to the
homotopical notions defined in the derived category Pr. The terms “R-algebra”
and “R-module” will always refer to the strict, point-set, level notions.

We shall construct Bousfield localizations of R-modules at a given R-module
E. In principle, this is a derived category notion, but we shall obtain precise
point-set level constructions. Using different point-set level constructions, we
shall prove that the Bousfield localizations of R-algebras can be constructed to
be R-algebras and the Bousfield localizations of commutative R-algebras can be
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constructed to be commutative R-algebras. In particular, the localization Rg of
R at E is a commutative R-algebra, and we shall see that the category of Rg-
modules plays an intrinsically central role in the study of Bousfield localizations.

As a very special case, this theory will imply that the spectra KO and KU
that represent real and complex periodic K-theory can be constructed as com-
mutative algebras over the S-algebras ko and ku that represent real and complex
connective K-theory. Therefore KO and KU are commutative S-algebras, as
had long been conjectured in the earlier context of E, ring spectra. Again, it is
far simpler to prove the sharper ko and ku-algebra statements than to construct
S-algebra structures directly.

For an R-algebra A, we define the enveloping R-algebra A® = A Agp A%,
and we define the topological Hochschild homology of A with coefficients in an
(A, A)-bimodule M to be the derived smash product

THHR(A; M) = M Aye A.

This is the correct generalization from algebra to topology since, if R is a discrete
commutative ring and A is an R-algebra that is flat as an R-module, then the
algebraic and topological Hochschild homology are isomorphic:

HHE(A; M) = Tor”" (M, A) = Tor?4" (HM, HA) = =,(THHE(4; M)).

In general, for a commutative S-algebra R, an R-algebra A, and an (A4, A)-
bimodule M, there is a spectral sequence

E? = HHF- (M., A.) = 7peo(THHR(4; M))

under suitable flatness hypotheses. More generally, there are similar spectral
sequences converging to E,(THHF(A; M)) for a commutative ring spectrum E.

There is also a point-set level version thh®(A; M) of topological Hochschild
homology. It is obtained by mimicking topologically the standard complex for the
calculation of algebraic Hochschild homology. When M = A, this construction
has particularly nice formal properties, as was observed in [54] and as we shall
explain: it is isomorphic to the tensor A ® S. A key technical point is that the
derived category and point-set level definitions become equivalent after replacing
R and A by suitable weakly equivalent approximations.

Our S-algebras and their modules are enough like ordinary rings and modules
that we can construct the algebraic K-theory spectrum KR associated to an
S-algebra R by applying Waldhausen’s S -construction to the category of finite
cell R-modules. Applied to the Eilenberg-Mac Lane spectrum HR of a discrete
ring R, this gives a new construction of Quillen’s algebraic K-theory. Applied
to the suspension spectrum X°°(QX),, this gives a new construction of Wald-
hausen’s algebraic K-theory of the space X. The resulting common framework
for topological Hochschild homology and Quillen and Waldhausen algebraic K-
theory opens up several new directions and appears to bring a number of standing
conjectures within reach. We merely lay the foundations here.

The technical heart of our theory is the problem of keeping our formal point-
set level constructions under homotopical control. While we shall show by es-
sentially formal categorical arguments that our various categories of R-modules,
R-algebras, and commutative R-algebras are cocomplete and complete, tensored
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and cotensored, topological model categories, this formal structure does not in
itself address the problem: forgetful functors from more to less structured spectra
rarely preserve cofibrant objects, and may well not do so even up to homotopy
type. The problem requires deeper analysis, and a crucial aspect of our work is
that our discussion of model categories gives sufficient control on the underlying
homotopy types of cofibrant R-algebras and cofibrant commutative R-algebras
to allow the calculational use of bar constructions and topological Hochschild ho-
mology complexes. This is also crucial to our proof that Bousfield localizations
of R-algebras can be constructed as R-algebras.

Another tool in keeping homotopical control is the category of “tame” spec-
tra. It is an intermediate category between the ground category of spectra,
which is well-designed for formal point-set level work but not for homotopical
analysis, and the category of CW spectra, which is well-designed for homotopi-
cal analysis but not for formal work. The homotopy category of tame spectra
is symmetric monoidal under the smash product, and we can approximate any
structured spectrum by a weakly equivalent tame structured spectrum by means
of a “cylinder construction” defined using homotopy colimits. Actually, this tool
will only be needed in Chapter I, since the smash product of S-modules turns out
to better behaved under weak equivalences than the smash product of spectra.

The basic construction underlying all of our work is the “twisted half-smash
product” A x E of a suitable space A and a spectrum E. This construction is
defined with respect to a given map « from A to an appropriate space of linear
isometries. After the penultimate draft of this book was completed, Michael
Cole came up with a new construction of twisted half-smash products, one that
is much easier to understand than the original construction of Lewis and May
and that allows much simpler proofs of some of our main technical results. In
particular, we proved and Cole reproved that a homotopy equivalence A’ — A,
with homotopy inverse unrelated to «, induces a homotopy equivalence A’ x
E — Ax E when FE is tame. This invariance statement is the technical lynchpin
of our theory. We have discarded our original proof in favor of Cole’s, and he
will present his new treatment of twisted half-smash products in the Appendix
of this book.

The construction of thh, of bar constructions needed in our work, and of
functorial homotopy colimits of spectra all require geometric realizations of sim-
plicial spectra. This raises another technical problem. To understand geometric
realization homotopically, the given simplicial spectra must satisfy certain cofi-
bration conditions, and it is hard to verify that a map of spectra is a cofibration
(satisfies the homotopy extension property). The solution to this problem is ba-
sic to the homotopical understanding of cofibrant R-algebras and commutative
R-algebras.

The reader interested in using our theory need not be concerned with these
matters, and most of the technical proofs are deferred until the last few chapters
and the appendix. The first three chapters explain the foundations needed for
the applications of the next three, which are independent of one another. Chap-
ter VII explains the foundations needed for Chapters VIII and IX, which are
independent of each other. Each chapter has its own brief introduction. Ref-
erences within a chapter are of the form “Lemma 3.4”; references to results in
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other chapters are of the form “I.3.4” or, in the case of the Appendix, A.3.4.

Our work is not independent of earlier work: the groundwork was laid in [38],
and all of our ring, module, and algebra spectra are spectra in the sense of Lewis
and May with additional structure. In view of Cole’s new treatment of twisted
half-smash products, only the first 75 pages or so of [38] are relevant, and we
have given much more readable expositions of this background material in (23]
and [52]. In [38], the focus was on equivariant stable homotopy theory, the study
of spectra with actions by compact Lie groups G. We have chosen to write this
book nonequivariantly in the interests of readability. However, we have kept
a close eye on the equivariant generalization, and we have been careful to use
only arguments that directly generalize to the equivariant setting. We state a
metatheorem.

THEOREM 0.1. All of the definitions and all of the general theory in this paper
apply to G-spectra for any compact Lie group G.

This has been used by Greenlees and May [28] to prove a completion theorem
for the calculation of M, (BG) and M*(BG) for any MU-module spectrum M.
Some of that work, together with some of ours, was described in the announce-
ment [22]. The recent series of expository papers [23, 26, 27] gives a descriptive
account of some of the present theory and its equivariant applications, including
both equivariant and non-equivariant applications of the theory to localizations
and completions of R-modules at ideals in 7, (R). The survey volume [52], which
is a companion volume to this one, gives a more leisurely and thorough expos-
itory account, together with full details of the definitional framework in the
equivariant setting.

We warn the knowledgeable reader that this material has undergone several
major revisions, and the final definitions and terminology are not those of earlier
announcements and drafts. In particular, our S-modules enjoy a unital property
that was not imposed on the S-modules, here called IL-spectra, of the earlier
versions written by Elmendorf, Kriz, and May alone. The fact that one can
impose this unital property and still retain homotopical control is one of many
new insights contributed by Mandell. This substantially sharpens and simplifies
the theory. Paradoxically, however, one cannot impose such a unital property in
the parallel algebraic theory of [35]. Therefore, to facilitate a comparison of the
algebraic and topological theories, we run through a little of the previous variant
of our theory in the last chapter.

The chapter on algebraic K-theory has not been previously announced and
is entirely work of Mandell; it is part of his Chicago PhD thesis in preparation.
Similarly, the Appendix is entirely work of Cole and is part of his Chicago PhD
thesis in preparation.

Two other Chicago students deserve thanks. Maria Basterra has carefully
read several drafts and caught numerous soft spots of exposition; her Chicago
PhD thesis in preparation will give a thorough treatment of the André-Quillen
cohomology of commutative S-algebras. Jerome Wolbert has made many help-
ful comments, and his Chicago PhD thesis in preparation will analyze the new
derived categories associated to the various K-theory spectra.
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CHAPTER 1

Prologue: the category of L-spectra

In this prologue, we construct a category whose existence was previously thought
to be impossible by at least two of the authors: a complete and cocomplete
category of spectra, namely the L-spectra, with an associative and commutative
smash product. This contrasts with the category constructed by Lewis and
the fourth author in [48, 38], whose smash product is neither associative nor
commutative (before passage to homotopy categories), and with the category
constructed by the first author in [20], which is neither complete nor cocomplete.
We will also give a function L-spectrum construction that is right adjoint to the
new smash product. The category of L-spectra has all of the properties that we
desire except that its smash product, denoted by Ag, is not unital. It has a
natural unit map A : SAg M — M, which is often an isomorphism and always
a weak equivalence.

The curtain will rise on our real focus of interest in the next chapter, where
we will define an S-module to be an L-spectrum M such that A : SAe M — M
is an isomorphism. Restricting Ae to S-modules and renaming it Ag, this will
give us a symmetric monoidal category in which to develop stable topological
algebra.

1. Background on spectra and the stable homotopy category

We begin by recalling the basic definitions in Lewis and May’s approach to
the stable category. We first recall the definition of a coordinate-free spectrum;
see [38, 1§2], [20, §2], or [52, Ch.XII] for further details. A coordinate-free
spectrum is a spectrum that takes as its indexing set, instead of the integers, the
set of finite dimensional subspaces of a “universe”, namely a real inner product
space U & R*™. Thus, a spectrum E assigns a based space EV to each finite
dimensional subspace V' of U, with (adjoint) structure maps

dvw : EVSQY-VEW

when V C W. Here W —V is the orthogonal complement of V in W and QW X is
the space of based maps F(SW, X), where SV is the one-point compactification
of W. These maps are required to be homeomorphisms and to satisfy an evident

9
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associativity relation. A map of spectra f : E — E’ is a collection of maps
of based spaces fy : EV — E'V for which each of the following diagrams

commutes:
fv

EV E'V

&V,wl l& viw

QW—VfW

QW-VEW —— QW -V E'Ww.
We obtain the category U of spectra indexed on U. If we drop the requirement
that the maps 6v,w be homeomorphisms, we obtain the notion of a prespectrum
and the category 22U of prespectra. The forgetful functor U — U has a
left adjoint L, details of which are given in [38, App]. Functors on prespectra
that do not preserve spectra are extended to spectra by applying the functor L.
For example, for a based space X and a prespectrum E, we have the prespectrum
E A X specified by (EAX)(V) = EVAX. When E is a spectrum, the structure
maps for this prespectrum level smash product are not homeomorphisms, and we
understand the smash product EAX to be the spectrum L(EAX). For example,
YE = E A S'. Function spectra are easier. We set F(X,E)(V) = F(X,EV)
and find that this functor on prespectra preserves spectra. For example, QF =
F(S,E). The following result is discussed in 38, p.13].

PROPOSITION 1.1. The category LU is complete and cocomplete.

PROOF. Limits and colimits are computed on prespectra spacewise. Limits
preserve spectra, and colimits of spectra are obtained by use of the functor L. O

A homotopy in the category of spectra is a map E A I+ — E’, and we let
h&U denote the homotopy category of spectra; its objects are spectra and its
morphisms are homotopy classes of maps between them. We have cofiber and
fiber sequences that behave exactly as in the category of spaces. The cofiber Cf
of a map f : E — E’ of spectra is the pushout E' Uy CE, where CE = EA L.
A cofibration of spectra is a map ¢ : E — E’ that satisfies the homotopy
extension property (HEP: a homotopy h : EAI; — F of a restriction of a map
f: B' — F extends to a homotopy h : E'AI, — F of f). The canonical maps
E — CFE and E' — Cf are examples. The fiber Ff ofamap f: E' — E is
the pullback E’ xy PE, where PE = F(I,E). A fibration of spectra is a map
p: E — E’ that satisfies the covering homotopy property (CHP: a homotopy
h:FAIL — E’ of a projection po f, f: F — E, is covered by a homotopy
h:FAI, — E of f). The canonical maps PE — E and Ff — E' are
examples.

A map f of spectra is a weak equivalence if each of its component maps fy is a
weak equivalence of spaces. The stable homotopy category h.#U is constructed
from the homotopy category h#U by adjoining formal inverses to the weak
equivalences, a process that is made rigorous by CW approximation.

The V'th space functor from spectra to spaces has a left adjoint that we shall
denote by X¢P, or ° when V = R™ (38, I84]. Its definition will be recalled
in X.4.5. When V = {0}, this is the suspension spectrum functor X*°. For
n 2> 0, the sphere spectrum S™ is the suspension spectrum %S5 of the sphere
space S™. For n > 0, the sphere spectrum S~ is ¥3°8%. There are canonical
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isomorphisms £™S$" = S™+" for m > 0 and integers n and there are canonical
isomorphisms £28™ 2 §%~™ for ;m > 0 and n > 0. Sphere spectra are used
to define the homotopy groups of spectra, m,(E) = h?U(S™, E), and a map
of spectra is a weak equivalence if and only if it induces an isomorphism of
spectrum-level homotopy groups.

Although we shall not introduce different notations for space level and spec-
trum level spheres, we shall generally write S for the zero sphere spectrum,
reserving the notation S° for the two-point space.

The theory of cell and CW spectra is developed by taking sphere spectra as
the domains of attaching maps [38, I§5]. The stable homotopy category AU is
equivalent to the homotopy category of CW spectra. It is important to remember
that homotopy-preserving functors on spectra that do not preserve weak equiv-
alences are transported to the stable category by first replacing their variables
by weakly equivalent CW spectra.

2. External smash products and twisted half-smash products

The construction of our new smash product will start from the external smash
product of spectra. This is an associative and commutative pairing

FU x FU — FU U’

for any pair of universes U and U’. It is constructed by starting with the pre-
spectrum level definition

(EAEYV@V)=EVAEV.

The structure maps fail to be homeomorphisms when E and E’ are spectra, and
we apply the spectrification functor L to obtain the desired spectrum level smash
product. This external smash product is the one used in [20].

There is an associated function spectrum functor

F. (FUNYP x U U — FU
and an adjunction
SFSUsUYENE E" > SUE,F(E E"))

for E€ U, E' € #U', and E" € (U @ U’); see [38, p. 69].

Now let # denote the category whose objects are universes U and whose
morphisms are linear isometries. Universes are topologized as the unions of their
finite dimensional subspaces, and the set .# (U, U’) of linear isometries U — U’
is given the function space topology; it is a contractible space [38, I1.1.5]. The
category % constructed in [20] augments to the category .#. Since .# fails to
have limits and colimits (it even fails to have coproducts), % suffers from the
same defects.

In order to obtain smash products internal to a single universe U, we shall
exploit the “twisted half-smash product”. The input data for this functor consist
of two universes U and U’ (which may be the same), an unbased space A with a
given structure map o : A — #(U,U’), and a spectrum E indexed on U. The
output is the spectrum A x E, which is indexed on U’. It must be remembered
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that the construction depends on « and not just on A. When A has CW homo-
topy type, different choices of a lead to equivalent functors on the level of stable
categories, by A.7.6. The intuition is that the twisted half-smash product is a
generalization to spectra of the “untwisted” functor Ay A X on based spaces X.
This intuition is made precise by the following “untwisting formula” that relates
twisted half-smash products and suspension spectra. A proof will be given in
A.5.5, where the result will be generalized to shift desuspension functors 3¢5.

PROPOSITION 2.1. For any map A — F(U,U’) and any n > 0, there is an
isomorphism of spectra

A EXX 2 E®(AL ANX)
that is natural in spaces A over #(U,U’) and based spaces X.

Observe that the functor ¥°° implicitly refers to the universe U on the left
and to the universe U’ on the right. The twisted half-smash product enjoys
the following formal properties, among others; their analogs for the space level
functor A, A X are trivial. Proofs will be given in A.5.3 and A§6.

PROPOSITION 2.2. The following statements hold.

(i) There is a canonical isomorphism {idy} x E = E.
(ii)) Let A — #(U,U’) and B — F(U',U") be given, let B x A have the
structure map given by the composite

Bx A—— 2 (U, U") x (U, U")—— £ (U,U").
Then there is a canonical isomorphism
(BxAx EXBx (Ax E).

(iii) Let A — SF(U1,Uy) and B — F (U, Uy) be given; let A x B have the
structure map given by the composite

Ax B—s F(Uy,U}) x (U, U) 2> 2 (U, @ Uy, U, & Uj).

Let Ey and E5 be spectra indezed on Uy and Uy respectively. Then there
is a canonical isomorphism

(Ax B)x (Ey AEy) = (Ax Ey) A (B x Ey).

(iv) For A — £ (U,U"), E € U, and a based space X, there is a canonical
isomorphism
Ax (EANX)2 (AX E)NX.

The functor A x (—) is a left adjoint. Its right adjoint will be used in our
construction of function S-modules.

PROPOSITION 2.3. For any space A over Z(U,U’), the functor Ax (=) has a
right adjoint, which is denoted by F[A, —) and called a twisted function spectrum.
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The functor A x E is homotopy-preserving in F, and it therefore preserves
homotopy equivalences in the variable E. However, it only preserves homotopies
over £ (U,U’) in A. Nevertheless, it very often preserves homotopy equivalences
in the variable A. This fact will be essential in keeping control over the ho-
motopical behavior of our point-set level constructions. To state it in proper
generality, we need the following notion of a well-behaved spectrum.

DEFINITION 2.4. A prespectrum D is L-cofibrant if each of its structure maps
o: WDV — D(V @ W) is a cofibration of based spaces. A spectrum E is
3-cofibrant if it is isomorphic to one of the form LD, where D is a X-cofibrant
prespectrum. A spectrum FE is tame if it is homotopy equivalent to a X-cofibrant
spectrum.

We shall discuss such spectra in X§4, where we shall see that all shift desus-
pensions of based spaces are ¥-cofibrant and that all CW spectra are tame. It
follows that any spectrum is weakly equivalent to a tame one. We shall show in
X85 that structured ring or module spectra can be approximated functorially by
weakly equivalent X-cofibrant spectra with the same structure. The following
result will be restated and proven as A.7.4. It is central to our theory.

THEOREM 2.5. Let E € U be tame and let A be a space over £ (U,U’). If
¢ : A — A is a homotopy equivalence, then ¢ x id : A’ x E — Ax E is a
homotopy equivalence.

Here, for a general spectrum E, we do not know whether or not ¢ K id is even
a weak equivalence. By A.7.3, the result has the following consequence.

COROLLARY 2.6. Let E € U be a spectrum that has the homotopy type of
a CW spectrum and let A be a space over £ (U,U’) that has the homotopy type
of a CW complex. Then A x E has the homotopy type of a CW spectrum.

3. The linear isometries operad and internal smash products

For the rest of the paper, we restrict attention to a particular universe U; the
reader is welcome to consider it as notation for R*®°. We agree to write .% instead
of LU for the category of spectra indexed on U. Except where explicitly stated
otherwise, all given spectra, whatever extra structure they may have, will be in
&. We are especially interested in twisted half smash products defined in terms
of the following spaces of linear isometries.

NoOTATIONS 3.1. Let U7 be the direct sum of j copies of U and let Z(j) =
F(U?,U). The space £(0) is the point i, where 1 : {0} — U, and £(1)
contains the identity map 1 = idy : U — U. The left action of £; on U7 by
permutations induces a free right action of X; on the contractible space .2 (j).
Define maps

v: LK) x Z(1) x - x L(jk) — L1+ + k)

by
(g5 f1r-- - fr) =90 (LD @ fr).
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The spaces Z(j) form an operad [45, p.1] with structural maps +, called
the linear isometries operad. Points f € £(j) give inclusions {f} — Z(j).
The corresponding twisted half-smash product is denoted f.; it sends spectra
indexed on U7 to spectra indexed on U. Applied to a j-fold external smash
product Eq A---AEj, it gives an internal smash product fy(E1A---AE;). All of
these smash products become equivalent in the stable homotopy category h.%,
but none of them are associative or commutative on the point set level. In fact,
the following sharper version of this assertion holds.

THEOREM 3.2. Let % C % be the full subcategory of tame spectra and let
h#, be the category of tame spectra and homotopy classes of maps. The internal
smash products f.(E N E') determined by varying f € £(2) are canonically
isomorphic in h%, and h% is symmetric monoidal under the internal smash
product. For based spaces X and tame spectra E, there is a natural isomorphism
ENX >~ f,(EANZ®X) in h%;.

PrOOF. The external and internal smash products of 3-cofibrant spectra are
3-cofibrant by results in X§4. By Theorem 2.5, for any f € £(j) and any
spectra E; € %, the map

fo(By N NEj) — Z(j) x (BEy N+ NEj)

induced by the inclusion {f} ~— 2(j) is a homotopy equivalence. Taking
Jj = 2, this shows that the internal smash products obtained from varying f are
homotopy equivalent. Replacing f by f o o, where o € %3 is the transposition,
we obtain a natural homotopy equivalence

f«(Ea N E1) — Z(2) x E1 A Ea,

and this shows that the internal smash product is commutative up to homotopy.
Similarly, for associativity, the inclusions of the points {f(1 & f)} and {f(f ® 1)}
in Z(3) induce natural homotopy equivalences

f*(El A f*(EQ A Eg)) —_— .?(3) X (El NEy N E3) — f*(f,,.(El N E2) AN E3)

It is natural to think of based spaces as spectra indexed on the universe {0}.
Then 4. and the suspension spectrum functor are both left adjoint to the zeroth
space functor, hence i,X = £°X. The map Z(2) — £(1) that sends f to
fo(1®1) and the inclusion {1} — £(1) induce natural homotopy equivalences

F(EAT®X) — £()x (EAX) «— EAX.

Thus, up to natural isomorphisms, the internal smash product determined by f
becomes commutative, associative, and unital with unit § = 3°°5° on passage
to h#. The commutativity of coherence diagrams that is required for the as-
sertion that h.%; is symmetric monoidal (see [43, p. 180]) can be checked by an
elaboration of these arguments. [

The following consequence strengthens the assertion [38, 1.6.1} that the stable
homotopy category really is a stable category, in the sense that the suspension
and loop functors ¥ and Q pass to inverse self-equivalences of h..
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COROLLARY 3.3. For tame spectra E and f € £(2), there is a natural ho-
motopy equivalence between QE and fu(E A S™1), and the unit n: E — QLE
and counit € : QFE — E of the (X,Q)-adjunction are homotopy equivalences.

PROOF. For based spaces X, X°° X is naturally isomorphic to X(2X¢°X) since
the structural homeomorphism FEq — QFE; gives a natural isomorphism be-
tween their right adjoints. Therefore, for E € %, there is a natural homotopy
equivalence

E=EANS’~ f,(EAZ®SY) = f(EAZ(EPSY) 2 X(f.(EASTY),

where the last isomorphism is given by Proposition 2.2(iv). It follows that, on
h%%, the functor ¥ is an adjoint equivalence with inverse given by the functor
f«(EAS~1). The rest is a formal consequence of the uniqueness of adjoints. [

Note that only actual homotopy equivalences, not weak ones, are relevant to
these results. For this and other reasons, h.%; will be a technically convenient
halfway house between h.% and the stable homotopy category h.%, which is
obtained from either of these homotopy categories by inverting the weak equiv-
alences.

We can deduce that cofiber sequences give rise to long exact sequences of
homotopy groups.

COROLLARY 3.4. Any cofiber sequence ELEp Cf of tame spectra gives
rise to a long ezact sequence of homotopy groups

+ = g (E) — mg(E') — 7g(Cf) — mg-1(E) — -+~ .
Therefore the natural map Ff — QCf is a weak equivalence.

ProoF. Consider the diagram

5;‘1 id . g9 C?gq gigq id 59
=1y ia 18 1y lza

Y ) \ \J

E—Llsp—iscf SE—L>vp

Here a is given such that ¢ o @ ~ 0. A homotopy induces a map § such that
the second square commutes. The usual cofiber sequence argument gives v such
that the right two squares homotopy commute. Since ng : E — QX F is a weak
equivalence, there is a map ¥~!v: S9 — E, unique up to homotopy, such that

nE o L1y ~ Qv o nga.
Therefore
Npofol ly=Q8fong oLy 2 QL foQyong ~ QTaong. =g 0.

Since ng is a weak equivalence, this implies that f o =14 ~ a. The long exact
sequence follows by extending the given cofiber sequence to the right, as usual.
The last statement follows by the five lemma and a comparison of our cofiber
sequence with the fiber sequence associated to f. Details of this may be found
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in [38, pp 128-130]. For later use, observe that we only used that the maps 1 are
weak equivalences, not that they are homotopy equivalences, in this proof. [

It follows that cofiber sequences are essentially equivalent to fiber sequences.
More precisely, the cofibrations and fibrations give “triangulations” of the stable
homotopy category such that the negative of a cofibration triangle is a fibration
triangle, and conversely (38, pp 128-130].

COROLLARY 3.5. Pushouts of tame spectra along cofibrations preserve weak
equivalences. That is, for a commutative diagram of tame spectra

f

E<*—D—1sF

|k

EI<T_D’_T>F’
7

in which i and i are cofibrations and a, (B, and v are weak equivalences, the
induced map § : EUp F — E' Up: F’ of pushouts is a weak equivalence.

PROOF. As for spaces, Ci is homotopy equivalent to E/D, the induced map
F — E Up F is a cofibration, and the induced map E/D — E Up F/F is an
isomorphism. The conclusion follows from the previous corollary by a diagram
chase and the five lemma. [

PRrOPOSITION 3.6. If E is a CW spectrum and ¢ : F — F' is a weak equiv-
alence between tame spectra, then f.(idAP) : fL(EAF) — f.(EANF') is a weak
equivalence.

PRrROOF. The functor f.((—) A F) preserves cofiber sequences. Therefore, by
Corollary 3.5 and induction up the sequential filtration of E (see II1.2.1), the
result will hold for general E if it holds for E = S™. When E = S, the conclusion
holds by the unit equivalence f.(S A F) ~ F of Theorem 3.2. For n > 0, we
easily deduce isomorphisms

F(SPAF)XENf(SAF) and IMf(ST"AF)Xf.(SAF)

from Proposition 2.2(iv). In view of Corollary 3.3, the result for E = §~™ and
E = 8™ therefore follows from the result for S. [

It follows that for general spectra F and tame spectra F', the smash product
E AF in the stable homotopy category h.% is represented by f.(T'E A F), where
I'E is a CW spectrum weakly equivalent to E. That is, we do not also have to
apply CW approximation to F. The mild restriction to tame spectra serves to
avoid pathological point-set behavior.
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4. The category of L-spectra

We think of Z(j) x (E1 A --- A Ej) as a canonical j-fold internal smash
product. It is still not associative, but we shall construct a commutative and
associative smash product by restricting to L-spectra and shrinking the fat out
of the construction. To define I-spectra, we focus attention on a small part of
the operad Z. Recall the notion of a monad in a category from [43, ch.VI] or
45, 2.1).

NOTATIONS 4.1. Let L. denote the monad in the category . that is specified
by LE = £(1) x E; the product

p:LLE=(Z(1)x Z(1))x E— Z(1)x E=LE
is induced by the product v : £(1) x £(1) — £(1) and the unit
n:E2{1}x F— Z(1)x E=LE
is induced by the inclusion {1} — Z(1) of the identity element.

DEFINITION 4.2. An L-spectrum is an L-algebra M, that is, a spectrum M
together with an action £ : LM — M by the monad L. Explicitly, the following
diagrams are required to commute:

LLM —*—>LM M—">1M
L{l lé and X 15
]LM'—E——>M M.

A map f: M — N of LL-spectra is a map of spectra such that the following
diagram commutes:

LM > LN
EMl lEN
We let .#[LL] denote the category of L-spectra.

There is a dual form of the definition that will occasionally be needed. It is
based on the following standard categorical observation.

LEMMA 4.3. Let T be a monad in a category €, and suppose that the functor
T has a right adjoint T#. Then T# is a comonad such that the categories of
T-algebras and of T#-coalgebras are isomorphic.

We shall consistently use the notation T# for the comonad associated to a
monad T that has a right adjoint. In particular, by Proposition 2.3, we now have
a comonad IL# such that an L#-coalgebra is the same thing as an L-spectrum.
This implies the following result.
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PROPOSITION 4.4. The category of L-spectra is complete and cocomplete, with
both limits and colimits created in the underlying category . If X is a based
space and M is an L-spectrum, then M AX and F(X, M) are LL-spectra, and the
spectrum level fiber and cofiber of a map of LL-spectra are IL-spectra.

PRrROOF. Since #[L] is the category of algebras over the monad L, the for-
getful functor #[IL] — & creates limits [43, V1.2, ex. 2]. Since .% is complete,
this implies the statement about limits. The statement about colimits follows
similarly by use of the comonad L#. The last statement is immediate from the
canonical isomorphism

LOUOx (MAX)2(ZU)xM)AX
of Proposition 2.2(iv) and its analog (A.6.1)
Fl&(1),F(X,M)) 2 F(X,FlZ(1),M)). O

LEMMA 4.5. The sphere spectrum S is an LL-spectrum. More generally, for
based spaces X, XX = S A X is naturally an LL-spectrum.

PROOF. Recall from the proof of Theorem 3.2 that a based space X may be
viewed as a spectrum indexed on {0} and that ¥*°X =4, X, i: {0} — U. We
may rewrite this as ¥°X = 2(0) x X. Then the structure map is given by

yxid: (1) x (Z(0) x X) 2 (Z(1) x Z(0) x X — Z(0) x X.

In the middle, £ (1) x £(0) is regarded as a space over £ (0) via v, and the
isomorphism is given by an instance of Proposition 2.2(ii). Of course, + here is
just the unique map from Z(1) to the one-point space Z(0), and our structure
map is just the composite

L)k EPX 2L (1) AX) — T®(SOAX) 2 TX,
where the first isomorphism is given by Proposition 2.1. O

A homotopy in the category of IL-spectra is a map M AIL — N. A map of -
spectra is a weak equivalence if it is a weak equivalence as a map of spectra. The
stable homotopy category h.[LL] of I-spectra is constructed from the homotopy
category h[L] by adjoining formal inverses to the weak equivalences; again,
the process is made rigorous by CW approximation. Since the theory of cell and
CW L-spectra is exactly like the theory of cell and CW spectra developed in [38,
185], we shall not give details. The reader who would like to see an exposition
is invited to look ahead to II11§2. The theory of cell R-modules to be presented
there applies (with minor simplifications) to give what is needed. It is formal
that the monad L. may be viewed as specifying the free functor from spectra
to L-spectra. The sphere L-spectra that we take as the domains of attaching
maps when defining cell L-spectra are the free L-spectra LLS™ = 2 (1) x S™. A
weak equivalence of cell .-spectra is a homotopy equivalence, any L-spectrum is
weakly equivalent to a CW L-spectrum, and h%[L] is equivalent to the homotopy
category of CW L-spectra. We warn the reader that, although S itself is an IL-
spectrum, it does not have the homotopy type of a CW L-spectrum (see Warning
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6.8 below). The following comparison between CW spectra and CW IL-spectra
establishes an equivalence between h# and hZ[L].

THEOREM 4.6. The following conclusions hold.

(i) The free functor L : & — L] carries CW spectra to CW L-spectra.
(ii) The forgetful functor #[.] — & carries L-spectra of the homotopy
types of CW LL-spectra to spectra of the homotopy types of CW spectra.
(iii) Every CW L-spectrum M is homotopy equivalent as an L-spectrum to
ILE for some CW spectrum E.
(iv) The unit n: E — LE of the adjunction

FIL)(LE, M) = #(E, M)

is a homotopy equivalence if E € %, for example if E is a CW spectrum.

(v) The counit & : LM — M of the adjunction is a homotopy equivalence
of spectra if M is tame and is a homotopy equivalence of LL-spectra if M
has the homotopy type of a CW LL-spectrum.

The free and forgetful functors establish an adjoint equivalence between the stable
homotopy categories h.# and hZ[L].

PROOF. Part (i) is immediate by induction up the sequential filtration (see
I11.2.1). Part (iv) is immediate from Theorem 2.5 and, applied to sphere spectra,
it implies (ii). Since {on =id: M — M for any M, (iv) and the Whitehead
theorem in the category of L-spectra imply (v). Part (iii) follows from (i) and
(v) since there is a CW spectrum FE and a homotopy equivalence of spectra
E — M. It is a formal consequence of (i) that we have an induced adjunction

hFL)(LE, M) = hs(E, M)
(see [38, 1.5.13]), and its unit and counit are natural isomorphisms. [J

Observe that, dually, we can interpret IL# as specifying the “cofree” functor
from spectra to LL-spectra. That is, we have an adjunction

(4.7) SL)M,L¥E) = ¥ (M, E).
By part (ii) of the theorem and (38, 1.5.13], there results an induced adjunction
hF|L|(M,L*E) =~ b (M, E).

It is an easy categorical observation that, in any adjoint equivalence of categories,
the given left and right adjoints are also right and left adjoint to each other.

COROLLARY 4.8. The functors L : h¥ — hF[L] and L# : h.¥ — hZ[L]
are naturally isomorphic.
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5. The smash product of L.-spectra

Via instances of the structural maps - of the operad £, we have a left action of
the monoid £ (1) and a right action of the monoid £ (1) x £(1) on .#(2). These
actions commute with each other. If M and N are LL-spectra, then £ (1) x Z(1)
acts from the left on the external smash product M A N via the map

£:(L(1) x L)) x (MAN) 2 (L(1) x M)A (L1) x N) L a1 A N.

To form the twisted half smash product on the left, we think of £ (1) x £ (1) as
mapping to £ (U?,U?) via direct sum of linear isometries. The smash product
over .Z of M and N is simply the balanced product of the two £ (1) x £ (1)-
actions.

DEFINITION 5.1. Let M and N be L-spectra. Define the operadic smash
product M Ag N to be the coequalizer displayed in the diagram

(2(2) x 2(1) x 2(1)) x (M AN) %2(2) % (M AN)—> M Ag N.

Here we have implicitly used the isomorphism
(ZR)xZ1)xZQ)x (MAN)=2Z2)x [(ZL(1) x Z(1)) x (M AN)]

given by Proposition 2.2(ii). The left action of 2(1) on £(2) induces a left
action of Z(1) on M Ag N that gives it a structure of L-spectrum.

We may mimic tensor product notation and write
MAg N =2(2) Xeqyxz1) (M AN).

We will freely use such notations for coequalizers below. The commutativity of
this smash product is immediate.

PROPOSITION 5.2. There is a natural commutativity isomorphism of lL.-spec-
tra

T:MANe N— N Ag M.

PROOF. The permutation ¢ € ¥; acts on £(2) by fo = fot, where t :
U? — U? is the transposition isomorphism. We may regard ¢ as a map of
spaces over Z(2) from id : £(2) — £(2) to o : Z(2) — £(2). We have an
evident isomorphism ¢ : t.(M A N) =2 N A M on external smash products and,
by Proposition 2.2(ii), there results a canonical isomorphism

XL LXK MANZLR2)xt.(MAN)= Z(2)x NAM.
There is an analogous isomorphism

(oxt) e (L(2)xL1)xL(1)x (MAN) — (L(2)xL(1)xL(1))x (NAM).



Copyright 1996 by the American Mathematical Society. Not for distribution.

5. THE SMASH PRODUCT OF L-SPECTRA 21

These maps induce an isomorphism of coequalizer diagrams

(L2) x L(1) x 2(1)) x (M A N) %}2(2) % (MAN)—>MAg N

(axt)ml lam lT
d

(£(2) x 2(1) x Z(1)) x (N A M) %2(2) w (N AM)—= N Ag M.

O

To show that this smash product is associative, we need some preliminary
material on coequalizers. We first recall a standard categorical definition [43,
VI1.6).

DEFINITION 5.3. Working in an arbitrary category, suppose given a diagram
A _>—f—> B—>cC
in which ge = gf. The diagram is called a split coequalizer if there are maps
h:C— B and k:B— A

such that gh = id¢, fk = idp, and ek = hg. It follows that g is the coequalizer
of e and f.

Observe that, while covariant functors need not preserve coequalizers in gen-
eral, they clearly do preserve split coequalizers. The next observation is crucial;
we learned it from Hopkins [32]. Note that, via structural maps vy, Z(1) acts
from the left on any £ (%), hence £ (1) x (1) acts from the left on 2 (i) x £ (7).

LEMMA 5.4 (HOPKINS). Fori>1 and j > 1, the diagram
Z(2)x Z(1) x ZL(1) x Z(1) x Z(j)
id x-ﬂuvxid
Z(2)x ZL() x Z(5)
lw
ZL(i+7)
is a split coequalizer of spaces. Therefore,
L(i+7) =2 ZQ2) xz@yxzq) L) x L)
PROOF. Choose isomorphisms s : U* — U and ¢t : U7 — U and define
h(f) = (fo(s@t)™!,s,t)
and

k(f;9,9) = (figos g ot™!;s,t).
It is trivial to check the identities of Definition 5.3. [
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THEOREM 5.5. There is a natural associativity isomorphism of LL-spectra
(MAg NYNee P2 M Ne (N Ag P).

PROOF. Note that, for any L-spectrum N, N = 2£(1) x 1) N since £(1) x
N =LN and, as with any monad [43, p. 148], we have a split coequalizer

LLN —LN—>N.
We have the isomorphisms
(M Ng N) Neg P 2(2) X 2 (1)2 (2(2) X ¢ (1)2 (M/\N)) A (2(1) X (1) P)
2 (Z(2) xe)2 Z(2) x Z(1)) xg1)s (M AN AP)
= 2(3) X ¢ (1)3 MANAP.
The symmetric argument shows that this is also isomorphic to M Ag¢ (N Ag
P). O
In view of the generality of Lemma 5.4, the argument iterates to prove the

following statement.

THEOREM 5.6. For any j-tuple My, ..., M; of L-spectra, there is a canonical
isomorphism of LL-spectra

MiNg - Ne M; = 2(j) ey (My A A M),

where the iterated smash product on the left is associated in any fashion.

6. The equivalence of the old and new smash products

We here show that the smash product A¢ does in fact realize the classical
smash product of spectra up to homotopy, in the sense that the equivalence
between h.# and h.%[L] preserves smash products.

Fix a linear isometric isomorphism f : U? — U (not just an isometry) and
use it to define the internal smash product of spectra in this section. We begin
the comparison of smash products of IL-spectra with smash products of spectra
with the following observation.

PROPOSITION 6.1. For spectra X and Y, there are isomorphisms of L-spectra
LX N LY 2 Z2(2)x X ANY 2L (X AY).

For CW LL-spectra M and N, M Ae N is a CW L-spectrum with one (p+ q)-cell
for each p-cell of M and q-cell of N.

PROOF. The first isomorphism is immediate from the definition of Age. Re-
garding f as a point in Z(2), we see that v : £(1) x {f} — Z(2) is a
homeomorphism since f is an isomorphism. It follows from Proposition 2.2(ii)
that

L (XAY)=21)x i XAY) 2 ZL(2)x (X AY).
When X and Y are sphere spectra, so is f«(X AY) [38, I1.1.4]. The second
statement now follows exactly as for the smash product of CW complexes or
CW spectra. [
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The crux of our comparison of smash products is the following proposition,
which implies that LS is the unit for the smash product in the stable homotopy
category h.#[L]. We defer the proof to XI§3.

PROPOSITION 6.2. For LL-spectra N, there is a natural weak equivalence of
L-spectraw : ILSAg N — N, and ¥ : 7, (N) — mp11(EN) is an isomorphism
for all integers n.

If we knew a priori that ¥ preserved weak equivalences, we could derive the
second clause from the first and the natural isomorphism of [L-spectra

LSAg N=S(LS" ! Ag N)

by a formal uniqueness of adjoints argument (compare Corollary 3.3). It is
a pleasant and surprising technical feature of our theory, immediate from the
proposition, that ¥ preserves weak equivalences of L-spectra. That is, the L
structure somehow has the effect of eliminating point-set pathology. Since ¥ on
homotopy groups is induced by n : N — QXN, the proposition also has the
following immediate consequence.

COROLLARY 6.3. For LL-spectra N, the unit n: N — QXN and counit € :
YQN — N of the (X, Q)-adjunction are weak equivalences.

COROLLARY 6.4. Any cofiber sequence NLN Cf of L-spectra gives
rise to a long exact sequence of homotopy groups

+ = Tg(N) — mg(N') — mg(Cf) — mg_1(N) — -+
Therefore the natural map Ff — QCf is a weak equivalence of LL-spectra.

ProoF. This follows from Corollary 6.3 via the proof of Corollary 3.4. [

COROLLARY 6.5. Pushouts along cofibrations of IL-spectra preserve weak equi-
valences.

PROOF. Since a cofibration of LL-spectra is a cofibration of spectra, by the
retraction of mapping cylinders criterion, this follows from Corollary 6.4 via the
proof of Corollary 3.5. O

PROPOSITION 6.6. If M is a CW L-spectrum and ¢ : N — N’ is a weak
equivalence of IL-spectra, then idAged: M Ay N — M Ay N’ is a weak equiv-
alence of LL-spectra.

PROOF. The functor (—) Ag N preserves cofiber sequences, hence the result
for general M follows from Corollary 6.4 and the result for M = LS™. Here the
result for n = 0 follows from Proposition 6.2 and the result for n and —n, n > 0,
follows from the result for n = 0 as in the proof of Proposition 3.6. [
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Thus, for L-spectra M and N, the smash product M A¢ N in the stable
homotopy category h.”[L] is represented by 'M Ag N, where TM is a CW
LL-spectrum weakly equivalent to M; here we do not need to assume that N is
tame. This is analogous to the situation in algebra. When transporting tensor
products to algebraic derived categories, we need only apply cell approximation
to one of the tensor factors, without any condition on the other [35].

THEOREM 6.7. For LL-spectra M and N, there is a natural map of spectra
a: fu(MAN) — M Ag N, and o is a weak equivalence when M is a CW
LL-spectrum and N is a tame spectrum. For any LL-spectrum N, the composite
of the derived functor (=) Ag N : hS[L] — hF[L] and the forgetful functor
hS([L] — hS computes the derived internal smash product with N.

PROOF. Define « to be the composite
ff(MAN) — ZL2)x MAN — M Ae N

given by the the inclusion of {f} in £ (2) and the definition of Ay. Let M be
a CW L-spectrum throughout the proof. We first show that o is an equivalence
when N is also a CW L-spectrum. In this case, M and N have the homotopy
types of CW spectra by Theorem 4.6 and are therefore tame by X.4.3. Thus the
first map is a homotopy equivalence by Theorem 2.5. By Theorem 4.6(iii), we
may assume without loss of generality that M = £(1) x X and N = (1) x YV
for CW spectra X and Y. The second arrow then reduces to the homotopy
equivalence

L) (LA) x X)AN(LA)KY) — L2)x XAY

induced by the homotopy equivalence v : £(2) x .Z(1) x Z(1) — £(2) via
Theorem 2.5. For a general [-spectrum N, choose a weak equivalence y : ’N —
N, where I' N is a CW L-spectrum. If N is tame, then Propositions 3.6 and 6.6
imply that the vertical arrows are weak equivalences in the commutative diagram

fo(M ATN)—2> M Age TN
id/\'yl lid/\’y
f«(MAN)—5— M Ag N.

Thus the bottom arrow « is a weak equivalence since the top one is. For the last
statement, simply note that the right-hand composite

(idAy)oca: fu(M ATN) — M Ag N
in the diagram is a weak equivalence even when N is not tame. [

WARNING 6.8. As said before, the sphere spectrum S does not have the ho-
motopy type of a CW L-spectrum. To see this, assume that it did. Then the
action £ : LS — S would be a homotopy equivalence of L-spectra, by the
Whitehead theorem, and the ¥s-equivariant map

ENg E:LSNe LS — SNAge S
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would be a Y-equivariant homotopy equivalence of I-spectra and thus of spec-
tra. By Propositions 6.1 and 2.1, LS Ag LS is isomorphic to X®°(£(2)+), with
Y,-action induced by that on .#(2). By Proposition 8.2 below, § Ag S is iso-
morphic to § = X®80 and has trivial action by ¥5. Under these isomorphisms,
€ N € coincides with X°°m, where m : £ (2), — S® sends all of Z(2) to the
non-basepoint. Since £ (2)/Ty ~ B(3;), our assumption implies that we obtain
a homotopy equivalence ¥ B(X2)+ — £°°S° on passage to orbits from £ Ag €,
which is absurd. A different perspective on this warning will be given in II.1.10.

7. Function [L~spectra

We here construct a functor F on L-spectra that is related to the smash
product Ag by an adjunction of the usual form and comnsider its homotopical
behavior.

THEOREM 7.1. Let M, N, and P be LL-spectra. There is a function LL-spectrum
functor Fe (M, N), contravariant in M and covariant in N, such that

SFILIM Ag N, P) = F[L|(M, Fo (N, P)).

Given the adjunction, we can deduce the homotopical behavior of Fl¢ from
that of A¢. We run through this before turning to the construction. The
following result is a formal consequence of Proposition 6.1; see [38, 1.5.13].

PROPOSITION 7.2. If M is a CW L-spectrum and ¢ : N — N' is a weak
equivalence of IL-spectra, then

Fe(id,¢) : F(M,N) — Fo(M,N')
is a weak equivalence of L-spectra. There is an induced adjunction
hF[L)(M Ag N,P) = hS[Ll(M,Fe (N, P)).

As in Section 6, we fix a linear isometric isomorphism f : U? — U and use the
isomorphism f, : #U? — #U to define internal smash products f,(M A N).
Recall the external function spectrum F(M, —) and the adjunction displayed for
it at the start of Section 2. We use the inverse isomorphism f* = f/!: U —
SU? to define internal function spectra F(M, f*N), as in [38, I11.3.11].

THEOREM 7.3. For L-spectra M and N, there is a natural map of spectra
&:Fe(M,N)— F(M, f"N),

ang & 1s a weak equivalence if M is a CW LL-spectrum. Therefore the equivalence
of categories h#[L] — A induced by the forgetful functor from L-spectra
to spectra carries the function LL-spectrum functor Fe to the internal function
spectrum functor F.
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PROOF. In the category h.#[L], F(M,N) means Fe(I'M,N) where IM
is a CW L-spectrum weakly equivalent to M, hence the second statement will
follow from the first. The desired map & is the adjoint of the composite

fx(Fe(M,N)AM)-25Fo(M,N) Ag M~—=5N,

where «a is given by Theorem 6.7. By that result, if M is a CW L-spectrum and
X is a CW spectrum, then o : fu(LX AM) — LX Ae M is a weak equivalence
of spectra, and it induces a weak equivalence of I-spectra

L(fs(LX AM)) — LX Aee M.
Diagram chases show that the map
@y : hF(X,Fe(M,N)) — hS#(X,F(M, f*N))
coincides with the composite of the following chain of natural isomorphisms:
h(X,Fe(M,N)) = hF[L|(LX, Fe (M, N))
J(LX Ay M,N) =2 AZ[LIL(f.(LX A M)),N)

(L
~ hS#(f(LX AM),N) = h#(LX A M, f*N)
e (LX,F(M, f*N)) = h(X,F(M, f*N)). O

LEMMA 7.4. The adjoint N — F¢(ILS, N) of the unit weak equivalence w :
LS Ag N — N 1is a weak equivalence.

Proor. This is immediate from the natural isomorphisms
RFLYM,N) = hF[L)(LS A M,N) =2 h&[L)(M, Fe(LS,N)). O

We must still prove Theorem 7.1. The desired adjunction dictates the defi-
nition of F¢, and the reader is invited to skip to the next section. It will be
simplest to construct F¢ in two steps. Remember that

In the first step we consider general spectra indexed on U? and acted upon by
£ (1) x £(1), thought of as a space over £ (U?,U?) via direct sum of isometries.
We call these .2 (1) x £ (1)-spectra and denote the category of such spectra by
L (1)xZ(1)]. Of course, the examples we have in mind are of the form MAN.
We use the twisted function spectrum construction F|[A, —) of Proposition 2.3.

LEMMA 7.5. Let N be an LL-spectrum. There is an Z(1) x Z(1)-spectrum
Few)[£(2),N) € #(U?) such that

FLINL2) xe@yxeq) BN) = F[2(1) x L)|(P, Fe)[£(2),N))
for £(1) x £(1)-spectra P.
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PROOF. We construct Fg(1)[£(2), N) as the equalizer of two maps
F[2(2),N) =3 F[Z(1) x £(2),N).
The first is induced by v : Z(1) x £(2) — £(2). The second is the composite
Fl£(2),N) — FI2(1) x £(2), 2(1) x N) 228, Fleq) x £(2), N);
here the unlabelled arrow is adjoint to
(1) x Z(2)x FIZ(2),N) >~ Z(1)x Z(2) x F[£(2),N) ddwe, Z(1)x N,

where € is the counit of the adjunction. The left action of £ (1) x £(1) on
Fe1)[£(2), N) is induced by its right action on £ (2). 0O

The second step lands us back in the category of L-spectra.

LEMMA 7.6. Let N be an L-spectrum and P be an Z(1) x £(1)-spectrum.
There is an L-spectrum F(N, P) such that

F1£1) x Z(V)|(M AN, P) 2 L[LJ(M, E(N, P))
for LL-spectra M.
PROOF. Again, we construct F(N , P) as an equalizer, this time of two maps
F(N,P)=3 F(LN,P).

The first is induced by the structure map LN — N. The second is the com-
posite

F(N,P) —s F(LN, ({1} x £(1)) x P) — F(LN, P),

where the second arrow is induced by the structure map of P as an £ (1) x £ (1)-
module and the first arrow is adjoint to

F(N,P)ALN = ({1} x £(1)) x F(N, P) AN 2%, ({1} x £(1)) x P.

The structure of F'(N, P) as an L-spectrum is induced by the action on P of the
first factor of £ (1) in £ (1) x £(1); more precisely, the action LF(N, P) —
F(N, P) is adjoint to the composite

(LF(N, P))AN = (£(1)x{1})x (F(N, P)AN) 2425 () x{1})xP S P. O

We combine these two functorial constructions to define Fle.

DEFINITION 7.7. For I-spectra M and N, define

Fe(M,N) = F(M, Fe1)[£(2),N)).

The adjunction of Theorem 7.1 is just the composite of the two adjunctions
already obtained.
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8. Unital properties of the smash product of L-spectra

As we have already seen, IS is a unit for the smash product Ag on h#[L].
However, for precision in the consideration of algebraic structures, we wish to
work in a category of spectra that is actually symmetric monoidal under its smash
product, with a point-set level unit isomorphism. The appropriate candidate for
a unit object is not LS but S itself, and at this point another special, and
surprising, property of the linear isometries operad comes into play.

Consider the diagram

id
Z(2) x Z(1) x Z(1) x Z(0) x 2(0)1—_;.?(2) x 2(0) x £(0) L— 2(0).
id x~?
This is not a split coequalizer, but it turns out to be a coequalizer. The coequal-
izer of the parallel pair of arrows is the orbit space .Z(2)/£(1) x £(1).
LEMMA 8.1. The orbit space £(2)/.Z (1) x Z(1) consists of a single point.

This is far from obvious, and it is only possible because £ (1) is a monoid but
not a group. We defer its proof to XI§2. It has the following implication. Recall
Lemma 4.5.

PROPOSITION 8.2. There is an isomorphism of L-spectra A : SAg S — S
such that AT = \. For based spaces X and Y, there is a natural isomorphism of
LL-spectra

A:I®X Ag IV 2 E®(X AY).

PRrROOF. The second statement follows from the first, or directly: -« induces
the isomorphism

Z2)xexe1) (ZO)x X)AN(ZL0)xY) — ZL(0) x X AY.
The relation A7 = A: SAg S — S is clear since y7 = ~.

This formalizes our intuition that the smash product should be a stabilized
generalization of the smash product of based spaces. It is natural to try to
generalize the resulting isomorphism A : S Ay ¥°X = ¥°X to arbitrary L-
spectra, and the map does generalize.

PROPOSITION 8.3. Let M and N be LL-spectra. There is a natural map of
L-spectra A : S Ag N — N. The symmetrically defined map M N S — M
coincides with the composite A1. Moreover, under the associativity isomorphism,

MApid=idAgA: MAe SAg N — M Ae N,
and, under the commutativity isomorphism, these maps also agree with

AiSNg (MAg N) — M Ag N.
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PROOF. When N is the free L-spectrum LX = Z(1) x X generated by a
spectrum X, A is given by the map

She LX = 2(2) x e yxz() (Z(0) x §%) A (£(1) x X)
= (Z(2) xzq)xezq) Z(0) x Z(1)) x (S° A X)

29, (1) X =LX.
For general N, the map just constructed induces a map of coequalizer diagrams

SAg LLN —ZSAg LN—>SAe N

1 L

LLN —/—————=I1LN N.

The symmetry is clear when M is free and follows in general by an easy compar-
ison of coequalizer diagrams. Similarly, suppose that M =1LX and N =LY for
spectra X and Y. Then, under the associativity isomorphisms of their domains
given in the proof of Theorem 5.5, the two unit maps defined on LX A SA¢ LY
agree with the map

L3) xeayp (L) x X)A(£L(0)x SO A (L(1) xY))
> (L3) xza)y L(1) x Z(0) x L(1)) x (X ASOAY)

yxid
—_

L(2)x (XAY)2LX Ag LY.

The conclusion for general M and N follows by another comparison of coequalizer
diagrams. The last statement can be proven similarly. [

Any attempt to show that S is a strict unit for general L-spectra founders on
the fact that Lemma 5.4 fails if ¢ =0 or j =0 and ¢ + j > 0. However, we shall
prove the following up to homotopy version of that lemma in XI.2.2.

LEMMA 8.4. The space
2Z(1) = 2(2) x ez Z(0) x £(1)
is contractible. Therefore v: £ (1) — £(1) is a homotopy equivalence.

Again, this assertion is far from obvious. It leads us to the following crucial
result.

THEOREM 8.5. Let M be an LL-spectrum and consider A : SANe M — M.

(i) If M = 1LX for a tame spectrum X, then X is a homotopy equivalence
of spectra and thus a weak equivalence of LL-spectra.
(ii) If M is a CW L-spectrum, then X is a homotopy equivalence of IL-spectra.
(iif) For any M, X is a weak equivalence of LL-spectra.
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PROOF. Since A = v K id on free I-spectra LX, Theorem 2.5 and the lemma
give (i). By Theorem 4.6(iii), (i) applies to show that A : SAe M — M is a
weak equivalence of L-spectra when M is a CW L-spectrum. By the Whitehead
theorem for CW L-spectra, there is a map of L.-spectra £ : M — S A M such
that Ao ¢ ~ id. To complete the proof of (ii), we must show that £ o A ~ id, and
the following commutative diagram identifies this composite with id Ag (A 0 £):

S/\ngS/\gS/\gMMS/\gM

| b~

M—‘—E—>S/\g M.

The rectangle commutes by the naturality of A and the triangle commutes by
Proposition 8.3. For (iii), let M be arbitrary and consider the diagram

Tn(S N M) 2 hF[L)(LS™, S Ay M) 2> h#[L)(S Ay LS™, S Ay M)

| -

(M) 2 hF[L)(LS™, M) ———— hF[L)(S Ag LS™, M),

By (ii), A : SA£LS™ — LLS™ is a homotopy equivalence of IL-spectra, hence the
horizontal arrows are isomorphisms. The right vertical arrow is an isomorphism
since, for L-spectra K,

A FIL(SAe K, SAg M) — ZL|(SAe K, M)
is a natural isomorphism; its inverse sends f : S A¢ K — M to the composite

S/\_sti\_—l/\ES/\gS/\gKﬂS/\gM

(Compare I1.1.3 below). Therefore the left vertical arrow is an isomorphism. [

REMARK 8.6. The weak equivalence w : LS Ay M — M of Proposition 6.2
is just the composite

LS Ae M5 S ng M—25 7.
Therefore £ Aid is also a weak equivalence for all L.-spectra M.

COROLLARY 8.7. For any L-spectrum M, X\ : M — Fg(S,M) is a weak
equivalence of LL-spectra.

PRoOOF. For a spectrum X, Aot L (X, M) — F(X,Fe (S, M)) can be iden-
tified with A, : L[LI(LX, M) — F[LJ(LX, Fe (S, M)). In turn, by naturality
and adjunction, this can be identified with

M FILYLX, M) — FILI(S Aw LX, M) = F[L(LX, Fe (S, M),

If X is a CW spectrum, then A : S Ag LX — LLX is a homotopy equivalence
of LL-spectra, hence the displayed maps all induce isomorphisms on passage to
homotopy classes of maps. The conclusion follows by letting X run through the
sphere spectra. [
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CHAPTER 1II

Structured ring and module spectra

We can now define and study our basic algebraic objects. We begin with the
S-modules, which we think of as analogs of modules over a fixed commutative
ring k. Since the category of S-modules is symmetric monoidal under its smash
product, we can define S-algebras and commutative S-algebras exactly as we
define (associative and unital) k-algebras and commutative k-algebras. Intu-
itively, S-algebras are as close as one can get to k-algebras in stable homotopy
theory, and commutative S-algebras are as close as one can get to commutative
k-algebras. These basic definitions are established in the first three sections,
and the material of the rest of the chapter will not be used again until Chapter
VII. The reader is invited to skip directly from Section 3 to the applications in
Chapters III-VI.

By analyzing free objects, we demonstrate that our new definitions are uni-
tal sharpenings of the definitions of Ay and E. ring spectra that were first
given in [48]. This allows us to use [48, 50] to supply examples and is there-
fore fundamentally important to the theory. We give a parallel analysis of the
definitions of modules over S-algebras and over A, and F ring spectra. Our
new definitions drastically simplify the study of these algebraic structures. For
example, in a final categorical section, we prove that the new definitions lead to
elementary categorical proofs that the categories of S-algebras and of commu-
tative S-algebras are cocomplete, as was first proven by Hopkins and McClure
[32] for the categories of Ax and Ey ring spectra.

1. The category of S-modules

Here, finally, is the promised definition of S-modules.

DEFINITION 1.1. Define an S-module to be an L-spectrum M which is unital
in the sense that A : SAe M — M is an isomorphism. Let .#s denote the full
subcategory of &[] whose objects are the S-modules. For S-modules M and
N, define

MAsN=MAg N and Fs(M,N)=SAg Fe(M,N).

31
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The justification for the name “S-module” is given by the commutative dia-
grams

S A S Ag M 2285 5 A M M2 8As M
id/\Al J,\ and x l,\
SAsM——>M M.

For the definition to be useful, we need examples, and 1.8.2 and 1.8.3 provide
many. We consistently retain the notation M Age N when the given L-spectra
M and N are not restricted to be S-modules.

PROPOSITION 1.2. For any based space X, ¥X°X is an S-module, and
NOX Ag Y 2 E®(X AY).

For any S-module M and any L-spectrum N, M Ae N is an S-module. In
particular, S A N is an S-module for any L-spectrum N.

PRrROOF. For the second statement, 1.8.3 gives that A for M A N is determined
by A for M and is therefore an isomorphism. O

We have the following categorical relationship between (L] and .#s.

LEMMA 1.3. The functor S Ag (—) : F|L] ~—— Ms is left adjoint to the
functor Fe (S, ~) : Ms — F|L] and right adjoint to the inclusion £ : Mg —
FIL].

PRrROOF. The first adjunction is immediate from 1.7.1. For the second, let M
be an S-module and NV be an L-spectrum. A map f: M — SAg N of §5-
modules determines a map Aof : M — N of L-spectra, andamapg: M — N
of L-spectra determines a map (id Ag)oA™! : M — SA g N of S-modules. Using
1.8.3, we see that these are inverse bijections. [

This implies that to lift right adjoint functors from &[] to .#s, we must first
forget down to &[], next apply the given functor, and then apply the functor
S Ag (—). For example, limits in .#s are created in this fashion.

PROPOSITION 1.4. The category of S-modules is complete and cocomplete.
Its colimits are created in S|L). Its limits are created by applying the functor
S Ag (—) to limits in S[L]. If X is a based space and M is an S-module, then
M A X is an S-module, and the spectrum level cofiber of a map of S-modules is
an S-module. For a based space X and S-modules M and N,

AMs(MANX,N)= HMs(M,S Ng F(X,N)).
Moreover,

MAX2MAsS®X and SAg F(X,M)= Fs(X°X,M).
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REMARK 1.5. By the path S-module of an S-module N we must understand
SAg PN. By the fiber of amap f : M — N of S-modules, we must understand
SAg Ff. Lemma 1.3 implies that the following square of S-modules is a pullback
and that its vertical arrows satisfy the CHP in the category of S-modules.

SAg Ff——SA¢ PN

| |

The resulting fiber sequences of S-modules behave in exactly the same fashion
as fiber sequences of spaces or spectra.

Lemma 1.3 also explains our definition of function S-modules. Its second
adjunction and the adjunction of Theorem 7.1 compose to give the adjunction
displayed in the following theorem. ’

THEOREM 1.6. The category Ms is symmetric monoidal under Ng, and
Ms(M Ng N, P) = #s(M,Fs(N, P))
for S-modules M, N, and P.

A homotopy in the category of S-modules is a map MAI, — N. A map of S-
modules is a weak equivalence if it is a weak equivalence as a map of spectra. The
derived category Zs of S-modules is constructed from the homotopy category
h#s by adjoining formal inverses to the weak equivalences; again, the process is
made rigorous by CW approximation. The free L-spectra ILX are not S-modules,
and we define sphere S-modules by

(1.7) S% = S Ag LS™

and use them as the domains of attaching maps when defining cell and CW
S-modules. Observe that, by 1.8.7 and Lemma 1.3, we have

(1.8)  mn(M) = h#(S™, M) = h[L)(LS™, Fe (S, M)) & h.#s(S%, M)

for S-modules M. From here, the theory of cell and CW S-modules is exactly
like the theory of cell and CW spectra and is obtained by specialization of the
theory of cell R-modules to be presented in Chapter III. A weak equivalence of
cell S-modules is a homotopy equivalence, any S-module is weakly equivalent
to a CW S-module, and Zs is equivalent to the homotopy category of CW S-
modules. Again, as we shall explain in Remark 1.10, the S-module S does not
have the homotopy type of a CW S-module. When working homotopically, we
replace it with Sg = S3.

The following comparison between CW S-modules and CW L-spectra estab-
lishes an equivalence between s and h#[L] and thus between 95 and h.%.

THEOREM 1.9. The following conclusions hold.

(i) The functor S Ae (=) + FL[L] — s carries CW L-spectra to CW
S-modules.
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(ii) The forgetful functor Mg — F|L] carries S-modules of the homotopy
types of CW S-modules to L-spectra of the homotopy types of CW L.-
spectra.

(iii) Every CW S-module M is homotopy equivalent as an S-module to S Ag
N for some CW LL-spectrum N.

(iv) The unit A: S Ae M — M is a weak equivelence for all L-spectra M
and is a homotopy equivalence of IL-spectra if M has the homotopy type
of a CW L-spectrum.

The functors S Ag (—) and the forgetful functor establish an adjoint equivalence
between the stable homotopy category hZ L] and the derived category Ds. This
equivalence of categories preserves smash products and function spectra.

PRrROOF. Part (i) is immediate by induction up the sequential filtration since
the functor S Ay (—) preserves spheres, cones, and colimits. Part (iv) is a
recapitulation of 1.8.5 and, applied to sphere S-modules, it implies part (ii).
Part (iii) follows from (i) and (iv) since there is a CW L-spectrum M’ and a
homotopy equivalence of I-spectra M’ — M. The claimed adjoint equivalence
of categories is immediate from part (iv). For smash products, the last statement
is clear from (ii) and the fact that the smash product M Ag N of S-modules is
their smash product as L-spectra. The statement for function spectra follows
formally. O

When doing classical homotopy theory, we can work interchangeably in h.%,
hSL}, or Ds. These three categories are equivalent, and the equivalences pre-
serve all structure in sight. When working on the point set level, we have reached
a nearly ideal situation with our construction of .#s5. We pause to comment on
Lewis’ observation [37] that there is no fully ideal situation.

REMARK 1.10. Suppose given a symmetric monoidal category of spectra with
a suspension spectrum functor > such that § = £°°59 is the unit for the smash
product, denoted Ag, and there is a natural isomorphism

T®X Ag EXV 2 E°(X AY)

that is suitably compatible with the coherence isomorphisms for the unity, as-
sociativity, and commutativity of the respective smash products. Our category
of S-modules satisfies all of these properties, and many other desiderata not
included among Lewis’s axioms. Suppose further that X% has a right adjoint
“Q°" and let QX = colim Q"X X. Then Lewis observes that there cannot be
a natural weak equivalence

6: “QE®X — QX

such that fon: X — QX is the natural inclusion, where 1 is the unit of the
adjunction. In our context, we have the two adjunction homeomorphisms

Ms(S Ay LE®X, M) = T (X, Q% Fe (S, M))

and
Ms(Z°X, M) 2 T(X, Ms(S,M)),
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where 7 is the category of based spaces; see VII§2 for discussion of these topolo-
gized Hom sets and of the second of these adjunctions. It is a standard property
of any symmetric monoidal category that the self-maps of the unit object form
a commutative monoid under composition. In our situation .#s(S, S) is there-
fore a commutative topological monoid. It cannot be weakly equivalent to QS°,
but Q™ F (S, S) is weakly equivalent to QS® Therefore the weak equivalence
S Ag LS — S cannot be a homotopy equivalence of S-modules and S cannot
be of the homotopy type of a CW S-module.

2. The mirror image to the category of S-modules

The categorical picture becomes clearer when we realize that the category of
S-modules has a “mirror image” category to which it is naturally equivalent. We
find this material quite illuminating, but it will not be used until our discussion
of Quillen model categories. The reader may prefer to skip it on a first reading.

DEFINITION 2.1. Define .#5 to be the full subcategory of .#[L] whose objects
are those L-spectra N that are counital, in the sense that A : N — F& (S, N)
is an isomorphism.

Looking through the mirror at Lemma 1.3 and noting that mirrors interchange
left and right, we see the following reflection.

LEMMA 2.2. The functor Fe(S,—) : Z[L] — #5 is right adjoint to the
functor S Ag (=) : M5 — F|L] and left adjoint to the inclusion v : M5 —
CIL).

We agree to write
(2.3) f=Fg(S,—): L] — #° and s=SAg (-): F[L] — Ms

in the rest of this section. With this notation, Lemmas 1.3 and 2.2 give the
following mirrored pairs of adjunctions, the upper arrow being left adjoint to the

lower arrow in each case.
/4 T
(24 FUTZ A== and FIL] L= s —><_‘f SIL).

The display makes new information visible. The composite of the first two left
adjoints is just the functor S Ag (—) and the composite of the second two right
adjoints is just the functor F¢ (S, —). Since these two endo-functors of [L]
are left and right adjoint, they must be equivalent to their displayed composite
adjoints.

LEMMA 2.5. For LL-spectra M, the maps
id/\_g_ﬂ;\ S Ag M — SNy Fe(S,M)

and

are natural isomorphisms.

We now see that the reflection of a reflection is equivalent to the original.
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PROPOSITION 2.6. The functors
fl: Mg — M5 and sr: M5 — Mg
are inverse equivalences of categories. More precisely,
e:57flM = S Ng Fo(S,M) — M
s an isomorphism for M € Mg, and
n:N — Fe(S,SAg N) = flsrN

is an isomorphism for N € #°, where € and 1 are the unit and counit of the
(SAg (=), Fe(S,-)) adjunction.

ProoOF. The functor sf : #s — #s is an equivalence, and it is left adjoint
to the composite srf¢ : .#s — Ms. The functor fr : M5 — #S is an
equivalence, and it is right adjoint to the composite f€sr. Therefore these two
composites are natural equivalences. A little diagram chase from the previous
lemma gives the more precise statement. [

PROPOSITION 2.7. The category .4, hence also the category Ms, is equiv-
alent to the category of algebras over the monad rf in S[L] determined by the
adjunction (f,r). The category #s, hence also the category M5, is equivalent
to the category of coalgebras over the comonad £s in [L| determined by the
adjunction (£, s).

PROOF. The unit of the monad 7f is A : M — Fe(S,M) = rfM and its
product is the natural isomorphism

pirfrfM = Fe (S, Fe(S,M)) = Fe(S,M) =rfM

implied by the isomorphism S Ay S = S. Clearly, if X is an isomorphism, then
M is an r f-algebra with action A!. Conversely if € : 7fM — M is an action,
then £ o A = id and the following is a split coequalizer diagram in &[L].

rirfM 2 M S 0,

Applying f, we obtain a split coequalizer diagram in .#5. Since the counit
fr — id of the adjunction is an isomorphism, it induces an isomorphism of
diagrams

(frirfM —= frfM) — (frfM — fM).

Applying r, 7fM is the (split) coequalizer of the first and M is the (split)
coequalizer of the second. The resulting isomorphism rfM — M is just the
map &, hence is an isomorphism of r f-algebras. [J
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3. S-algebras and their modules

Let ¥ be any symmetric monoidal category, with product O and unit object
I. Then a monoid in ¥ is an object R together with maps n : I — R and
¢ : ROR — R such that the evident associativity and unity diagrams commute;
R is a commutative monoid if the evident commutativity diagram also commutes.
A left R-object over a monoid R is an object M of € with a map u: ROM — M
such that the evident unity and associativity diagrams commute, and right R-
objects are defined by symmetry. These definitions apply to our symmetric
monoidal category #s.

DEFINITION 3.1. An S-algebra is a monoid in .#s. A commutative S-algebra
is a commutative monoid in .#g. For an S-algebra or commutative S-algebra
R, a left or right R-module is a left or right R-object in .#s. Modules will mean
left modules unless otherwise specified, and we let .#r denote the category of
left R-modules.

Observe that if R is a commutative S-algebra, then an R-module is just a
module over R regarded as an S-algebra, as in module theory in algebra. For
this reason, even though our main interest is in the much richer commutative
context, we work with general S-algebras wherever possible.

We insert the following lemma for later reference. It records specializations
of observations that apply to monoids in any symmetric monoidal category.

LEMMA 3.2. Let R be an S-algebra and M be an R-module. Then the follow-
ing diagrams of S-modules are split coequalizers:
dAid

RASRASR_TKT_9RASR¥L+R
1

and

id Ap u
RAg RAg M——_¢_T___>;——>R/\s M —- M.
1

While we have given the most conceptual form of the definitions, it is worth-
while to write out the relevant diagrams explicitly. We find that they make
perfect sense for L-spectra that might not be S-modules, and this leads us back
to the earlier notions of Ao, and E, ring spectra and their modules.

DEFINITION 3.3. An A ring spectrum is an L-spectrum R with a unit map
n:S — R and a product ¢ : R Ae R — R such that the following diagrams
commute:

SAg RS RAy REM RAL S

S

R
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and
RAy RAg R4 RAL R

= |

RAg R—7__>R;

R is an E, ring spectrum if the following diagram also commutes:

RA¢ R———>RAy R

A

A module over an Ay, or Ey ring spectrum R is an L-spectrum M with a map
p:RAe M — M such that the following diagrams commute:

SAheg MY RAe M RAg RAg M2 RAy M
\ lu and W\idl lu
M RAe M —E—s 1.

LEMMA 3.4. An S-algebra or commutative S-algebra is an Ao, or Eo ring
spectrum which is also an S-module. A module over an S-algebra or commutative
S-algebra R is a module over R, regarded as an Ay or Eo, Ting spectrum, which
is also an S-module.

In view of Proposition 1.2, this leads to the following observations.

PROPOSITION 3.5. The following statements hold.

(i) S is a commutative S-algebra with unit id and product .
(ii) If R and R’ are Aw or Ey ring spectra, then so is R Ax R'; if either
R or R’ is an S-algebra, then so is RNg R'.
(iv) If R and R’ are A, Ting spectra, M s an R-module and M’ is an R'-
module, then M Ne M' is an R Ay R'-module.

In particular, we have a functorial way to replace Ay, and E ring spectra
and their modules by S-algebras and commutative S-algebras and their modules.

COROLLARY 3.6. For an Ay ring spectrum R, S Age R is an S-algebra and
A: SAg R — R is a weak equivalence of Ax Ting spectra, and similarly in
the Eo case. If M is an R-module, then S Ay M is an S Ng R-module and
A SAeg M — M is a weak equivalence of R-modules and of modules over
S Ag R regarded as an Ay Ting spectrum.

Recall that the tensor product of commutative rings is their coproduct in the
category of commutative rings. The proof consists of categorical diagram chases
that apply to commutative monoids in any symmetric monoidal category.

PRoOPOSITION 3.7. If R and R’ are commutative S-algebras, then R Ag R’ is
the coproduct of R and R’ in the category of commutative S-algebras.
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We shall construct coproducts in the category of S-algebras in Section 7, where
we show more generally that the categories of S-algebras and of commutative
S-algebras are cocomplete.

There is a version of the proposition that is true for Eo, ring spectra, but this
is not obvious. We shall return to this point in Chapter XIII, where we show
that the category of [-spectra under S is symmetric monoidal under a modified
smash product xg and that Ay, and E, ring spectra are exactly the monoids
and commutative monoids in that symmetric monoidal category. This was the
starting point for the earlier version of the present theory announced in [23].

4. Free A, and E ring spectra; comparisons of definitions

We focus on Ay, and Eo, ring spectra here. It was proven in [48, 50] that
various Thom spectra, Eilenberg-Mac Lane spectra, and connective algebraic and
topological K-theory spectra are F, ring spectra. Using the results stated in
the previous section, we can convert these E., ring spectra to weakly equivalent
commutative S-algebras. However, on the face of it, the original definitions of
A and E, ring spectra appear to be different from those that we have given
here. As in algebra, it is important to understand free Ay, and E. ring spectra,
and we shall use this understanding to verify that our present definitions agree
with the original ones.

There is no difficulty in constructing the relevant monads. In fact, we shall
construct two pairs of monads and then relate them. The first is defined on the
ground category of spectra and is transparently related to the earlier definitions.
The second is defined on the ground category of S-modules and is transparently
related to the present definitions. The connection between them will establish
the required equivalence of definitions. In effect, our new definition of E, ring
spectra is obtained from the old one simply by factoring the original defining
monad C in & through a new defining monad P in the more highly structured
category Z[LJ.

CONSTRUCTION 4.1. Construct monads B and C in the category of spectra
as follows. Let X be a spectrum and let X7 be its j-fold external smash power,
with X = 89, Define

BX = \/ 2(j) x X
j20
and
CX \/ 2(j) xx, X7,
Jj20

where Z(j) x5, X7 is the orbit spectrum (£(j) x X7)/Z;. The units of these
monads are induced by the unit maps X & {1} x X — .Z(1) x X. Their
products are induced by wedge sums of maps induced by the structure maps vy
of the linear isometries operad Z.

The notion of an Z-spectrum was defined in {38, VII.2.1]. The definition used
permutations, and there is a corresponding notion of a non-Y #-spectrum. An
immediate comparison of definitions gives the following result.
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PROPOSITION 4.2. The category of B-algebras is isomorphic to the category
of non-¥ £ -spectra. The category of C-algebras is isomorphic to the category of
& -spectra.

Actually, @-spectra were defined in [38, VII.2.1] for any operad & that is
augmented over .¢. An E,, operad is one such that each €(j) is X;-free and
contractible. In earlier work, F., ring spectra were understood to mean &-
spectra for any E., operad € augmented over .. The present theory is based
on properties that are special to .Z. The following result, which will be proven
in XI1§1, shows that restriction to .Z results in no loss of generality. There is an
analogue for Ay ring spectra that is obtained by forgetting about permutations.

PROPOSITION 4.3. Let € be an Ey operad over &. There is a functor V
that assigns a weakly equivalent £ -spectrum V R to an €-spectrum R.

CONSTRUCTION 4.4. Construct monads T and P in the category of L-spectra
as follows. Let M be an L-spectrum and let M7 be its j-fold power with respect
to Ag, with M® = S. Define

T™ = \/ M?

720
and
PM = \/ MI/5;.
720
Here passage to orbits preserves L-spectra since it is a finite colimit. The unit
is the inclusion of M = M. The product is induced by the maps

M Ng -+ A M — Mot ik

that are given by the evident identifications if each j, > 1 and by use of the unit
map A if any j, = 0. Observe that T and PP restrict to monads in the category
of S-modules.

The letters T and P are mnemonic for “tensor algebra” and “polynomial”
(or symmetric) algebra. As is clear for S-modules and will be made explicit
in Definition 7.1, the definitions fit into a general categorical framework that
includes those constructions. The following result is an easy direct consequence
of our definitions.

PROPOSITION 4.5. The categories of A Ting spectra and of S-algebras are
isomorphic to the categories of T-algebras in #[L] and of T-algebras in Mg. The
categories of Eo, Ting spectra and of commutative S-algebras are isomorphic to
the categories of P-algebras in F[L] and of P-algebras in Ms.

To relate the monads B and C to the monads T and P, recall from 1.4.2 that
the category of L-spectra is the category of LL-algebras in . Together with
Propositions 4.2 and 4.5, the following result gives the promised comparison
between the old and new definitions of A, and E., ring spectra.
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PROPOSITION 4.6. The monads B and TIL are isomorphic, hence the cate-
gories of non-X & -spectra and of Axo Ting spectra are isomorphic. The monads
C and PL are isomorphic, hence the categories of £ -spectra and of E, ring
spectra are tsomorphic.

ProOF. The isomorphisms on objects are immediate from 1.5.6 applied to
IL-spectra M; = ILX;. Since these isomorphisms are induced from the structure
maps v of ., the comparison of monad structures is immediate. In both state-
ments, the second clause is a categorical consequence of the first, as we shall
show in Lemma 6.1 below. O

REMARK 4.7. Observe that we have quotient maps of monads B — C and
T — P. In Section 6, we shall give categorical definitions that show how
to exploit these maps to construct an Eo ring spectrum C ®p R (or P ®1 R)
from an A ring spectrum R by “passage to quotients”, just as we construct
commutative algebras as quotients of associative algebras; see Lemma 6.7 and
Corollary 7.3. Formally, C ®g R is a coequalizer of a right action of B on C and
the given action of B on R.

REMARK 4.8. Passage to orbits and passage to coequalizers are often hard to
analyze homotopically. We show how to deal with the first difficulty in ITI§5,
where we show that symmetric powers and extended powers of S-modules (and,
more generally, R-modules) are essentially equivalent. One often circumvents
the second difficulty by replacing a construction like C ®p R with its associated
bar construction B(C,B, R), which we shall introduce in XII§1.

REMARK 4.9. There are reduced monads B and C in the category #\S of
spectra under S and T and PP in the category [L]\S of L-spectra under S.
They are constructed from the unreduced monads by unit map identifications
similar to the basepoint identifications in the James construction or the infinite
symmetric product. Observe that #\S is the category of algebras over the
monad U that is specified by UX = X VS, with product given by the folding map
SV S — 8, and similarly for #[LL]\S. In all four cases, the unreduced monad
is the composite of the reduced monad with U, hence, by Lemma 6.1 below,
the reduced and unreduced monads have the same algebras. The difference is
that, when considering the reduced monad, one is considering the unit map
S — R as preassigned and then ensuring that the unit map created by the
monad action coincides with it. It follows that the monad U acts from the right
on the unreduced monads, and it is easy to write down this action directly. The
reduced monad C can then be constructed from C by setting CX = C ®y X for
a spectrum X under S, with structure maps induced by passage to coequalizers,
and similarly for our other monads. A more explicit description is given in (38,
VII§3], where C is denoted by C. While the monad C is more convenient for
formal work, the monad C is of far greater homotopical interest.
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5. Free modules over A and E, ring spectra

There is an analogue for modules of the original explicit definition of Ay, and
E ring spectra in terms of twisted half-smash products, and there is an analo-
gous comparison of definitions.

PROPOSITION 5.1. The category of modules over an £ -spectrum R is isomor-
phic to the category of spectra M together with associative, unital, and, in the
E, context, equivariant systems of action maps

ZLG)x (RFTIAM) — M.

Since we shall not need the details, we shall not write out the relevant di-
agrams. They make sense for any operad & augmented over £, and they are
exact analogs of diagrams that are written out in the context of algebraic operads
in [35, 1.4.1]. Remarkably, with this alternative form of the definition, it is far
from obvious that a module over an F, ring spectrum R is the same thing as
a module over R regarded as an Ay ring spectrum. In fact, this appears to be
false in the context of modules over an &-spectrum R for a general E, operad €&
augmented over -Z. However, we have the following analogue of Proposition 4.3,
which will be proven in XII§1. Again, there is an analogue for A, ring spectra
and modules that is obtained by forgetting about permutations.

PROPOSITION 5.2. Let & be an E., operad over £ and R be an € -spectrum.
There is a functor V that assigns a weakly equivalent V R-module to an R-module
M, where VR is the £ -spectrum of Proposition 4.5.

There is a conceptual monadic proof of Proposition 5.1 that is based on
analogs of Propositions 4.2, 4.5, and 4.6. To carry out this argument, we need
to know that there is a free R-module functor. This is obvious enough when
we are considering S-modules: R Ag M is then the free R-module generated by
an S-module M. For a general A, ring spectrum R and an L-spectrum M,
R Ae M is an R-module but, since M need not be isomorphic to S Ag M, it is
not the free R-module generated by M.

DEFINITION 5.3. For an Ay ring spectrum R and an L-spectrum M, define
an [L-spectrum RM and maps of L.-spectra 7 : RAg M — RM and n: M —
RM by the pushout diagram

She M-S RAy M
)\l lvr
M ———>RM.

Dually, define an L-spectrum R# M by the pullback diagram

R* M M

| ;

Fz(R,M)sz(S,M)
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These are special cases of general constructions to be studied in Chapter XIII.
Such constructions permeated earlier versions of the present theory. Of course,
7 is an isomorphism if M is an S-module. As will be generalized in XIII.1.4, we
deduce the following homotopical property by applying the functor SAg (=) to
the defining pushout diagram.

PROPOSITION 5.4. The map w: RAe M — RM 1is a weak equivalence for
any LL-spectrum M.

The unit diagram of an R-module M ensures that its product factors through
a map RM — M. More formally, elementary inspections of definitions give the
following result.

PROPOSITION 5.5. Let R be an Ay, ring spectrum. Then R is a monad in
Z[L] with unit n : M — RM and with product p : RR — R induced from
the product ¢ : R Agy R — R. A left R-module is an algebra over the monad
R and, for an LL-spectrum M, RM is the free R-module generated by M. The
functor R¥ is right adjoint to R and is therefore a comonad in (L] such that
an R-module is a coalgebra over R¥.

It is logical to denote the category of R-modules by [L][R], reserving the
notation .#g for the case when R is an S-algebra and R-modules are required
to be S-modules. We have freeness and cofreeness adjunctions

CL|[R|(RM,N) = Z[L|(M,N)

and
SL)R)(N,R* M) = S#[L)(N, M)

for L-spectra M and R-modules N.
Clearly there results a composite adjunction that starts with spectra.

PROPOSITION 5.6. For a spectrum X, define FX = RLX. Then FX 1is the
free R-module generated by X. Thus

FIL[R)(FX, N) = .#(X, N)

for an R-module N. Dually, define F#X = R¥IL#X. Then F#X is the cofree
R-module generated by X, so that

F[L][R](N,F#¥X) =~ #(N, X).

In Construction 6.2, we shall show how to combine the monads of the previous
section with these free module constructions to obtain monads B[1] and C[1] in
the category of pairs of spectra such that a B[1]-algebra or C[1]-algebra (R; M) is
an Ay or Ey, ring spectrum R together with an R-module M in the alternative
operad action sense described in Proposition 5.1. The construction will also give
monads T[1] and P[1] in the category of pairs of L-spectra such that a T[1]-
algebra or P[1]-algebra (R; M) is an Ay or Eo ring spectrum R together with
an R-module M in the sense of Definition 3.3. The monad B[1] has the general
form

B[1](X;Y) = (BX;B(X;Y)),
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and similarly in the other three cases. Propositions 4.6 and 5.5, together with
inspection of the cited construction, directly imply the following analogue of
Proposition 4.6. By Lemma 6.1, this in turn implies Proposition 5.1.

PROPOSITION 5.7. The monads B[1] and T[1] o (L,L) are isomorphic. The
monads C[1] and P[1]o(LL, L) are isomorphic. The second coordinates of the four
monads are given explicitly as follows. Applied to a pair of spectra (X;Y),

=\ £0) x (X771 AY)
ji>1

and
=\ Z0) xz,_, (X771 AY).
§>1

Applied to a pair of L-spectra (M; N),

T(M;N) = \/ M?=* Ag N
j21
and
P(M;N) = \/ (M?7'/;_1) As N.
j21
If N is an S-module, then so are T(M;N) and P(M;N).

REMARK 5.8. Construction 6.2 applies equally well to give reduced versions
of our four monads, giving monads in the category of pairs (of spectra or L-
spectra), the first coordinate of which lies under S. The monad B[1] has the
form

BA)(X;Y) = (BX;B(X;Y))
and similarly in the other three cases. Inspection of definitions shows that
BS=CS=S and B(S;Y)=C(S;Y)=2(1)xY.

This fact dictates our original definition of I-spectra and is thus the conceptual
starting point of our entire theory.

6. Composites of monads and monadic tensor products

In this section and the next, we collect a number of purely categorical obser-
vations and constructions that are needed in our work. We shall return to these
topics in Chapter VII, but we shall make no further use of this material until
then. The reader may prefer to skip these sections on a first reading. We here
give the description of algebras over composite monads that was at the heart
of our comparisons of definitions and formalize the tensor product construction
that appeared briefly in Section 4.

LEMMA 6.1. Let S be a monad in a category € and let T be a monad in the
category €S| of S-algebras. Then the category €[S][T] of T-algebras in €[S] is
isomorphic to the category €|TS] of algebras over the composite monad TS in €.
Moreover, the unit of T defines a map S — TS of monads in €. An analogous
assertion holds for comonads.
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PROOF. Strictly speaking, in constructing TS, we are regarding S as the free
S-algebra functor ¥ — ¥[S], applying the functor T, and then applying the
forgetful functor back to ¥. We continue to neglect notation for forgetful functors
and to write S and T ambiguously for both the given monads and the resulting
free functors. The unit of TS is given by the composite of unit maps

X — SX — TSX.
The product of TS is given by the composite maps
TSTSX — TTSX — TSX,

where the second arrow is given by the product of T and the first is obtained
by application of T to the action STSX — TSX given by the fact that T takes
S-algebras to S-algebras. If R is a T-algebra in %[S], with action £ by S and
action x by T, then it is a TS-algebra with action the composite

TSR —>TR—X> R.

If Q is a TS-algebra with action w, then @ is a T-algebra in %[S] with actions
the composites

SQ —1>TSQ —~—>Q and TQ —2> TSQ —“— Q.

These correspondences establish the required isomorphism of categories. Easy
diagram chases show that S — TS is a map of monads. O

When applying this to modules, we used the following construction.

CONSTRUCTION 6.2. For a category ¥, let ¥[1] be the category of pairs
(X;Y) in € and pairs of maps. Let S be any of the monads B, C, T, or P,
and let € be its ground category ., L], or .#s. Construct a monad S[1] in
%[1] as follows. On a pair (X;Y), the functor S[1] is given by

SAN(X;Y) = (SX;S(X;Y)),

where S(X;Y) is the free SX-module generated by Y. This functor factors
through the evident category of pairs

(S-algebra; object of %)

as the composite of (S;id) and (id; free module), where the free module functor
is that associated to the algebra in the first variable. Since the identity functor
is a monad in a trivial way, each of these functors is a monad. Therefore, by
Lemma 6.1, their composite S[1] is a monad such that an S[1]-algebra (R; M) is
an S-algebra R together with an R-module M.

We used the following definition in our construction of E., ring spectra from
Ao ring spectra.
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DEFINITION 6.3. Let (S, u,n) be a monad in a cocomplete category €. A
(right) S-functor in a category € is a functor F' : ¥ — ¥’ together with a
natural transformation v : F'S — F’ such that the following diagrams commute:

FS<1_F FSS 5> FS
Vl % and F,Ll lu
F FS —“%—F

Given an S-algebra (R, ¢), define F ®g R to be the coequalizer displayed in the
diagram

FSR _>T"€> FR——> F ®s R.

Given a monad S’ in ¥’ and a left action A : S'F — F, we say that F is an
(§', S)-bifunctor if the following diagram commutes:

S'Fs 22> Fs

SF—2>F

EXAMPLE 6.4. The functor S is an (S, S)-bifunctor, with both left and right
action p. If 7 : S — §' is a map of monads in ¥, then §' is an (§/,S)-
bifunctor with right action v = y’ o 8’7 : §’S — §’. Observe that, for X € €,
S’ ®s SX 2 §'X.

When %" in Definition 6.3 has a forgetful functor to the category of spectra, we
shall construct a bar construction B(F,S, R) that will give the appropriate ho-
motopical version of F'®g R in XII§1. Assuming that F is an (§', S)-bifunctor for
one of the monads constructed earlier in this chapter, we will find that B(F, S, R)
is an S'-algebra. It is natural to ask whether or not F' ®g R is itself an §’-algebra.
To answer this, we need another categorical definition.

DEFINITION 6.5. In any category ¥, a coequalizer diagram
A=—%B—>C.
is said to be a reflexive coequalizer if there is a map h : B — A such that
eoh =1id and foh =id.

The following categorical observation is standard and easy. Although their
stated hypotheses are different, the proofs of similar results in {43, p. 147] and [4,
pp- 106-108] apply to give the first statement, and the second statement follows.

LEMMA 6.6. Let S be a monad in € such that S preserves reflexive coequaliz-
ers. If

A:T;_;’B——g->(]

is a reflexive coequalizer in € such that A and B are S-algebras and e and f are
maps of S-algebras, then C has a unique structure of S-algebra such that g is a
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map of S-algebras, and g is the coequalizer of e and f in the category F[S]. If,
further, T is a monad in €[S] such that T preserves reflexive coequalizers, then
T oS also preserves reflexive coequalizers.

Since the coequalizer diagram used to define F ®g R is reflexive, via the map
Fn : FR — FSR, the first statement implies an answer to the question we
asked originally.

LEMMA 6.7. LetS be a monad in €, S’ be a monad in €’, R be an S-algebra,
and F : € — €' be an (Y, S)-bifunctor. If S’ preserves reflezive coequalizers,
then F ®s R is an S'-algebra.

7. Limits and colimits of S-algebras

We here prove that the categories of Ay, and E ring spectra and of S-
algebras and commutative S-algebras are complete and cocomplete. In fact,
completeness follows immediately from Proposition 4.5. All four of our categories
are categories of algebras over a monad in a complete category, and it follows that
they are complete, with their limits created in their respective ground categories
[43, V1.2, ex.2]. The first statement of Lemma 6.6 applies to construct colimits,
but to explain this properly we need some preliminary definitions that put our
definitions of Ay, and E ring spectra in perspective.

DEFINITION 7.1. A weak symmetric monoidal category ¥ with product O
and unit object I is defined in exactly the same way as a symmetric monoidal
category [43, p.180], except that its unit map A : 70 X — X is not required
to be an isomorphism; ¥ is said to be closed if the functor (=) OY has a right
adjoint Hom(Y, —) for each Y € ¥. Monoids and commutative monoids in €
are defined in terms of diagrams of the form displayed in Definition 3.3. As in
Construction 4.4 and Proposition 4.5, if € is cocomplete, then there are monads
T and P in ¥ whose algebras are the monoids and commutative monoids in €.
For X € %,

TX = [[X? and PX]]X7/3;

j20 720

The proof of the following result is abstracted from an argument that Hopkins
gave for the monad C [32]. He proceeded by reduction to a proof that the j-
fold symmetric powers of based spaces preserve reflexive coequalizers. With our
new associative smash products, an abstraction of the latter proof makes the
reduction unnecessary.

PROPOSITION 7.2. Let € be any cocomplete closed weak symmetric monoidal
category. Then the monads T and P in € preserve reflexive coequalizers.

PRroOF. For T, it suffices to prove that the j-fold product X; O --- O X
preserves reflexive coequalizers. Thus let
X, —=2Y, %>z

1
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be reflexive coequalizer diagrams in ¥, 1 < ¢ < j, and let h; : Y; — X satisfy
e;oh; =id and f; o h; = id. Let

e=e0---Oe;, ¢=f0---0f;, and ~vy=g,0---0Og;.

Let #:Y10---0Y; — Z be the coequalizer of € and ¢. Since ye = v¢, there
is a unique map ¢ : Z — Z, 0 -.-0 Z; such that { o § = . We claim that £ is
an isomorphism, and we proceed by induction on j. Let

g = (id)" ' Oe,0(d)y~*: ¥;0---0Y,-,0X,0Y;, 0---0Y; — Y,0--.0Y;

and, similarly, define ¢; = (id)*~'0f;0(id)?~*. We observe first that Z;0- - -0.Z;
is the colimit of the diagram given by the j pairs of maps {e;, ¢;}. Indeed, for
any map o : Y1 O:--0Y; — W such that aog; = ao¢; for 1 <3 < 7,
we obtain unique maps & and & that make the following diagram commute by
the induction hypothesis and the fact that the O-product preserves colimits and
epimorphisms:

yllj...Dy._lgx.g_l_m'”u—,g"midzlD...Dz._lgx.
j 5 j j

idmejuiduf,» idDejuide,-
v,0...-0Y,_,0Y; 2809108 7 0. g0z _,0v
j j j j

al — /a/ - lid ng

Now let k; = hy O ---Oh;—; OidOhiy1 O --- O hy. Visibly
gg=¢cok; and ¢;=¢ok,.

Since fe = B¢, Pe; = B¢; for 1 < ¢ < j and the universal property gives a
map ¢(: Z,0---0Z; — Z. It is easy to check from the universal properties
that ¢ and & are inverse isomorphisms. In the symmetric case, we may take
our j given coequalizer diagrams to be the same and compose the j-fold power,
regarded as a functor to the category of ¥;-objects in €, with the orbit functor.
The latter is constructed as a coequalizer in % and is a left adjoint, so preserves
coequalizers. [J

COROLLARY 7.3. The functors T and P on &[], their restrictions to functors
T and P on As, and the functors B and C on & preserve reflexive coequalizers.

Proor. This is immediate since B = TLL, C = PL, the functor LL : ¥ —
&[] preserves colimits, and colimits in &[] and in .#g are created in &#. O

Our claim that the categories of Ay, and E ring spectra and of S-algebras
and commutative S-algebras are cocomplete is now an immediate corollary of
the following known result, which we also learned from Hopkins.

PROPOSITION 7.4. Let S be a monad in a cocomplete category €. If S pre-
serves reflexive coequalizers, then €S| is cocomplete.
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PRrROOF. Consider a diagram {R;} of S-algebras. Let colim R; be its colimit
in € and let ¢; : R; — colim R; be the natural maps. Let

a : colimSR; — Scolim R;

be the unique map in ¥ whose composite with the natural map SR; — colim SR;
is S¢; for each ¢. Define colimg R; by the following coequalizer diagram in €
S(colim &;)
S(colim SR;) ? S(colim R;) — colimg R;.
poSa

This is a reflexive coequalizer, via S(colim7;). Thus, by Lemma 6.6, colimg R; is
an S-algebra such that the displayed diagram is a coequalizer in F[S]. It follows
easily that colimg R; is the colimit of {R;} in ¥[S]. O

This result is closely related to the following standard result of Linton [41]
(see also [4, Thm 2, p. 319]).

THEOREM 7.5 (LINTON). Let S be a monad in a cocomplete category €. If
€[S] has coequalizers, then F[S| is cocomplete.
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CHAPTER III

The homotopy theory of R-modules

We here develop the homotopy theory of modules over an S-algebra R. The
classical theory of cell spectra generalizes to give a theory of cell modules over
R. The derived category Zr of R-modules is constructed from the category of
R-modules by formally adjoining inverses to the weak equivalences, and it is
equivalent to the homotopy category of cell R-modules. We define the smash
product over R, Ag, and the function R-module functor, Fr, by direct mimicry of
the definitions of tensor product and Hom functors for modules over an algebra.
When specialized to commutative S-algebras, our smash product of R-modules
is again an R-module, and similarly for Fr. Here the category of R-modules
has structure precisely like the category of S-modules, and duality theory works
exactly as it does for spectra. We assume familiarity with I1§§1,3 and work in
the ground category s of S-modules.

1. The category of R-modules; free and cofree R-modules

Fix an S-algebra R. We understand R-modules to be left R-modules unless
otherwise specified. We first observe that the category .#r of R-modules is
closed under various constructions in the underlying categories of spectra and
S-modules. As in algebra, an R-module is the same thing as an algebra over the
monad R Ag (—) in #g or, equivalently, a coalgebra over the adjoint comonad
Fs(R,—) in .#g. The functors R Ag (—) and Fg(R, —) from .#g to .#gr are left
and right adjoint to the forgetful functor. That is, R Ag (—) and Fg(R,—) are
the free and cofree functors from S-modules to R-modules. Together with II1.1.4
and formal arguments exactly like those in algebra, this leads to the following
result.

THEOREM 1.1. The category of R-modules is complete and cocomplete, with
both limits and colimits created in the underlying category Mg. Let X be a based
space, K be an S-module, and M and N be R-modules. Then the following
conclusions hold, where the displayed isomorphisms are obtained by restriction
of the corresponding isomorphisms for S-modules.

(i) M A X is an R-module and the spectrum level cofiber of a map of R-
modules is an R-module.

51
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(ii)) S Ag F(X,N) is an R-module and
MM NX,N)= H#r(M,S ANe F(X,N)).
(iii) M As K and Fs(K,N) are R-modules and
Mr(M Ns K,N) = #r(M,Fs(K,N)).

(iv) Fs(M,K) is a right R-module.
(v) As R-modules,

MAX2MAsE®X and SAg F(X,N)=F5(S°X,N).

The cofiber and fiber of a map of R-modules are R-modules, where the fiber is
understood to be obtained by application of the functor S Ag (=) to the fiber
constructed in the category of spectra.

PRrROOF. The only point that might need comment is the R-module structure
on S Ag F(X,N). The evaluation map ¢ : F(X,N)AX — N is a map of
LL-spectra. The adjoint of R Ag € is a map of L-spectra

§:RAg F(X,N) — F(X,RAg N),

and we obtain the desired action upon applying S Ag € and using the given
action of R on N. This leads to the R-module structure on the specified fiber of
a map of R-modules; compare I1.1.5. O

The free R-module functor on spectra is the starting point of cellular theory.
DEFINITION 1.2. Define the free R-module generated by a spectrum X to be
FrX = RAsFsX,
where Fs X = S Ag LX. Equivalently, since R Ag S = R,
FrX = RAg LX.
We abbreviate FX = FgrX when R is clear from the context.

The term “free” is technically a misnomer, since F is not left adjoint to the
forgetful functor. However, it is nearly so.

PROPOSITION 1.3. The functor F : ¥ — #Rg is left adjoint to the functor
that sends an R-module M to the spectrum Fe (S, M), and there is a natural
map of R-modules £ : FM — M whose adjoint M — Fe (S, M) is a weak
equivalence of spectra. Therefore

(M) 2 ho#p(FS™, M).
PRrROOF. In view of II.1.3, we have the chain of isomorphisms
Mp(FrX,N) =2 Hs(FsX,N) 2 LILI(LX,Fe(S,N)) =2 F(X,Fe(S,N)).

By 1.8.7, we have a natural weak equivalence A : M — Fg (S, M) of Z[L]-
spectra. Thought of as a map of spectra, its adjoint is the required R-map
&. The statement about the homotopy groups m,(M) = hS(S™, M) is clear;
compare I11.1.8. [
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The following central theorem shows that we have homotopical control on FX
without any hypotheses (such as tameness or CW homotopy type) on R.

THEOREM 1.4. In the stable homotopy category h%, FX is naturally isomor-
phic to the internal smash product R A X. Moreover, the composite

¢ :FSILFRER
is a weak equivalence of R-modules.

PROOF. The first statement is clear from II.1.9 and 1.6.7, but we point out
a variant proof that makes clear that the weak equivalence is one of R-module
spectra (in the homotopical sense). In X85, we shall construct a tame A, ring
spectrum KR and a weak equivalence of Ay ring spectra r : KR — R. Since
we are working in the stable homotopy category, we may take X to be a CW
spectrum. Then, by 1.4.6 and 1.6.6,

rAgid: KRAe LX — RAeLX =FX
is a weak equivalence. By 1.4.6 and 1.6.7, there are natural weak equivalences
KRANX — KRALX — KRN LX.

For the second statement, observe that ¢ is the common composite in the diagram

RAe LS RAy S

id /\]Lnl id /\nl \

R/\ijLRWR/\g RT—)R

By 1.8.6, the top map id A¢ is a weak equivalence. [

COROLLARY 1.5. If X is a wedge of sphere spectra, then m.(FX) is the free
T« (R)-module with one generator of degree n for each wedge summand S™.

We shall need one further fundamental property of free R-modules.

DEFINITION 1.6. A compact spectrum is one of the form X X for a compact
space X and an indexing space V C U. A compact R-module is one of the form
FK for a compact spectrum K.

PROPOSITION 1.7. Let L be a finite colimit of compact R-modules and let
{M;} be a sequence of R-modules and (spacewise) inclusions M; — M.
Then

Ar(L, colim M;) = colim #r(L, M;).

The generalization from compact R-modules to their finite colimits is imme-
diate. The compact case would be elementary if the free functor were left adjoint
to the forgetful functor, and we shall show in XI§2 that this is near enough to
being true to give the conclusion.

While they play a less central role, we shall also make use of cofree R-modules.
Recall from I§4 that L# : ¥ — .# is the right adjoint of IL and gives a comonad
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whose coalgebras are the L-spectra. In particular, L# X is an L-spectrum for
any spectrum X.

DEFINITION 1.8. Define the cofree S-module generated by a spectrum X to
be IFﬁX = S Ag L#¥ X. Then define the cofree R-module generated by X to be

F%X = Fs(R,F%X)

with left action of R induced by the right action of R on itself. We abbreviate
F#X = FgX when R is clear from the context.

The term “cofree” is not a misnomer, since here we do have the expected
adjunction.

PROPOSITION 1.9. The functor ]Fﬁ 1 — Mg is right adjoint to the for-
getful functor #Mr — &.

PROOF. Let M be an R-module and X be a spectrum. Lemma 5.5(ii) below
gives the first of the following isomorphisms, and I1.1.3 and 1.4.7 give the others:

Mp(M,FLEX) = Ms(M,FEX) = Z[L)(M,L*X) = #(M,X). O

THEOREM 1.10. In the stable homotopy category h.%”, F#X is naturally iso-
morphic to the internal function spectrum F(R, X).

PRrROOF. This is immediate from 11.1.9, 1.7.3, and 1.4.8. O

2. Cell and CW R-modules; the derived category of R-modules

To develop cell and CW theories for R-modules, we think of the free R-
modules S§ = FS™ as “sphere R-modules”. This is consistent with the sphere
S-modules of I1.1.7. For cells, we note that the cone functor CX = X AT
commutes with [F, so that CIFS™ 2 FCS™. Since F has a right adjoint, maps out
of sphere R-modules and their cones are induced by maps on the spectrum level;
the fact that the right adjoint is not the obvious forgetful functor will create no
difficulties. In fact, we can simply parrot the cell theory of spectra from [38,
185], reducing proofs to those given there via adjunction.

DEFINITIONS 2.1. We define cell and relative cell R-modules.

(i) A cell R-module M is the union of an expanding sequence of sub R-
modules M, such that My = * and M, +; is the cofiber of a map ¢, :
F, — M, where F, is a (possibly empty) wedge of sphere modules
S% (of varying dimensions). The restriction of ¢, to a wedge summand
S% is called an attaching map. The induced map

CS% — n+1 C M

is called a cell. The sequence {M,} is called the sequential filtration of
M.

(ii) For an R-module L, a relative cell R-module (M, L) is an R-module M
specified as in (i), but with My = L.

(iii) A map f: M — N between cell R-modules is sequentially cellular if
f(M,) C N, for all n.
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(iv) A submodule L of a cell R-module M is a cell submodule if L is a cell
R-module such that L,, C M,, and the composite of each attaching map
S% — Ly, of L with the inclusion L, — M, is an attaching map of
M. Thus every cell of L is a cell of M. Observe that (M, L) may be
viewed as a relative cell R-module.

(v) A cell R-module is finite dimensional if it has cells in finitely many
dimensions. It is finite if it has finitely many cells.

The sequential filtration is essential for inductive arguments, but it should
be regarded as flexible and subject to change whenever convenient. It merely
records the order in which cells are attached and, as long as the cells to which
new cells are attached are already present, it doesn’t matter in what order cells
are attached.

LEMMA 2.2, Let f: M — N be an R-map between cell R-modules. Then M
admits a new sequential filtration with respect to which f is sequentially cellular.

PROOF. Assume inductively that M,, has been given a filtration as a cell R-
module M,, = UM such that f(M;) C N, for all . Let x : S — M, be an
attaching map for the construction of M,,1; from M, and let ¥ : CSf — Mp,41
be the corresponding cell. By Proposition 1.7, there is a minimal g such that
both

Im(x) C M, and Im(fox) C Ngy1.

Extend the filtration of M, to My, by taking x to be a typical attaching map
ofacellof My,,. O

We shall occasionally need the following two reassuring results. Their proofs
are similar to those of their spectrum level analogs [38, pp 494-495] and depend
on Proposition 1.7 and its proof.

LEMMA 2.3. A map from a compact R-module to a cell R-module has image
contained in a finite subcomplex, and a cell R-module is the colimit of its finite
subcomplezes.

If K and L are subcomplexes of a cell R-module M, then we understand their
intersection and union in the combinatorial sense. That is, K N L is the cell
R-module constructed from the attaching maps and cells that are in both K and
L and K UL is the cell R-module constructed from the attaching maps and cells
that are in either X or L. However, we also have their categorical intersection
and union, namely the pullback of the inclusions of K and L in M and the
pushout of the resulting maps from the categorical intersection to K and to L.

LEMMA 2.4. For subcomplezes K and L of a cell R-module M, the canonical
map from the combinatorial intersection to the categorical intersection and from
the categorical union to the combinatorial union of K and L are isomorphisms
of R-modules.
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DEFINITION 2.5. A cell R-module M is said to be a CW R-module if each
cell is attached only to cells of lower dimension. The n-skeleton M™ of a CW
R-module is the union of its cells of dimension at most n. Amap f: M — N
between CW R-modules is cellular if f(M™) C N™ for all n. We do not require
that f also be sequentially cellular but, by Lemma 2.2, that can always be
arranged by changing the order in which cells are attached. Relative CW R-
modules (M, L) are defined similarly, with each cell attached only to the union
of L and the cells of lower dimension.

PROPOSITION 2.6. The collection of cell R-modules enjoys the following clo-
sure properties.

(i) A wedge of cell R-modules is a cell R-module.

(ii) The pushout of a map along the inclusion of a cell submodule is a cell
R-module.

(iii) The union of a sequence of inclusions of cell submodules is a cell R-
module.

(iv) The smash product of a cell R-module and a based cell space (with based
attaching maps) is a cell R-module.

(v) The smash product over S of a cell R-module and a cell S-module is a
cell R-module.

The same statements hold with “cell” replaced by “CW”, provided that, in (i),
the given map ts cellular.

PRrROOF. In (ii), we apply Lemma 2.2 to ensure that the given map is sequen-
tially cellular. Part (v) follows from I1.6.1, which implies that the smash product
of a sphere R-module and a sphere S-module is a sphere R-module. Otherwise
the proofs are the same as for cell and CW spectra [38, 1§5]. O

The following result is the “Homotopy Extension and Lifting Property”.

THEOREM 2.7 (HELP). Let (M,L) be a relative cell R-module and let e :
N — P be a weak equivalence of R-modules. Then, given maps f : M — P,
g:L — N, and h: LAIL — P such that f| = hip and eg = hi; in
the following diagram, there are maps § and h that make the entire diagram
commute.

L___iO__>L/\]+<__.i_1_._L

/ /
P N
A AN
f AN
AN P
N N

PROOF. This is proven for (M, L) = (CS%,S%) by reduction to the spectrum
level analog. Technically, we use that the fact that our spheres are obtained from
sphere spectra by applying a functor that is left adjoint to a functor that preserves
weak equivalences (even though it is not the obvious forgetful functor). The
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general case follows by induction up the sequential filtration, and the inductive
step reduces directly to the case of (CSE, S}) already handled. O

The Whitehead theorem is a formal consequence.

THEOREM 2.8 (WHITEHEAD). If M is a cell R-module and e : N — P
is a weak equivalence of R-modules, then e, : h#r(M,N) — h.#r(M,P)
is an isomorphism. Therefore a weak equivalence between cell R-modules is a
homotopy equivalence.

Recall that a spectrum is “connective” if it is (—1)-connected. When R is
connective, mg(N/N?) = 0 for any CW R-module and we can prove the following
cellular approximation theorem exactly as in [38, 1.5.8]. For non-connective
R, this result fails and we must content ourselves with cell R-modules. For
connective R, there is no significant loss of information if we restrict attention
to CW R-modules.

THEOREM 2.9 (CELLULAR APPROXIMATION). Assume that R is connective
and let (M,L) and (M',L’) be relative CW R-modules. Then any map f :
(M,L) — (M', L") is homotopic relative to L to a cellular map. Therefore, for
cell R-modules M and M', any map M — M' is homotopic to a cellular map,
and any two homotopic cellular maps are cellularly homotopic.

THEOREM 2.10 (APPROXIMATION BY CELL MODULES). For any R-module
M, there is a cell R-module TM and a weak equivalence v : TM — M. If
R is connective, then I'M can be chosen to be a CW R-module.

ProOOF. Choose a wedge of sphere R-modules Ny and a map vy : No — M
that induces an epimorphism on homotopy groups. Given v, : N, — M, we
construct Np4; from N, as a homotopy coequalizer of pairs of representative
maps for all pairs of unequal elements of any 7,(N,) that map to the same
element in mq(M). We have homotopies that allow us to extend v, to Yn4+1. We
let I'M be the union of the N,, and the ~, give a map v : ’'M — M. We
deduce from Proposition 1.7 that v is a weak equivalence, and we deduce from
Proposition 2.6 that I' M is a cell R-module. If R is connective, we may take our
representative maps to be cellular, and I' N is then a CW R-module. O

CONSTRUCTION 2.11. For each R-module M, choose a cell R-module I'M
and a weak equivalence v : 'M — M. By the Whitehead theorem, for a map
f: M — N, there is a map I'f : M — I'N, unique up to homotopy, such
that the following diagram is homotopy commutative:

M —L>TN
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Thus T is a functor h.#p — h.#g, and -y is a natural transformation from I" to
the identity. The derived category Zr can be described as the category whose
objects are the R-modules and whose morphisms are specified by

9r(M,N) = h#g(TM,TN),
with the evident composition. When M is a cell R-module,
Dr(M, N) = hdlr(M,N).

Using the identity function on objects and I' on morphisms, we obtain a functor
i : ha#r — Dr that sends weak equivalences to isomorphisms and is universal
with this property. Let %¥r be the full subcategory of .#r whose objects are
the cell R-modules. Then the functor I' induces an equivalence of categories
9Pr — h%r with inverse the composite of 7 and the inclusion of h%r in ho#g.

Therefore the derived category and the homotopy category of cell R-modules
can be used interchangeably. Homotopy-preserving functors on R-modules that
do not preserve weak equivalences are transported to the derived category by
first applying I, then the given functor.

The category Zr has all homotopy limits and colimits. They are created
as the corresponding constructions on the underlying diagrams of S-modules;
equivalently, homotopy colimits are created on the spectrum level and homotopy
limits are created from spectrum level homotopy limits, which are #[L]-spectra,
by applying the functor SA ¢ (—). Explicit functorial constructions will be given
in X§3. We have enough information to quote the categorical form of Brown'’s
representability theorem given in [13)].

THEOREM 2.12 (BROWN). A contravariant functor k : Dr — Sets is repre-
sentable in the form k(M) = 9r(M, N) for some R-module N if and only if k
converts wedges to products and converts homotopy pushouts to weak pullbacks.

REMARK 2.13. There is a variant of Brown’s theorem, due to Adams [3],
that applies to functors that are defined only on finite CW spectra. Working
in an algebraic context, Neeman [56] observed that Adams’ variant does not
generalize so readily. Rather, it requires a countability hypothesis that is satisfied
automatically in the classical context of finite CW spectra. In our context,
Adams’ variant applies provided that each homotopy group 7, (R) is countable.

3. The smash product of R-modules

We mimic the definition of tensor products of modules over algebras.

DEFINITION 3.1. Let R be an S-algebra and let M be a right and N be a
left R-module. Define M Ar N to be the coequalizer displayed in the following
diagram of S-modules:

pAsid

MAs RAg N M As N—— M Agr N,

idAgv

where p and v are the given actions of R on M and N.
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When R = 3, we are coequalizing the same isomorphism (see 1.8.3). Therefore
our new M Ag N coincides with our old M Ag N.

We shall shortly construct function R-modules satisfying the usual adjunction.
It will follow that the functor Ag preserves colimits in each of its variables. It is
clear that smash products with spaces commute with Ag, in the sense that

(XAMYARNZXAMARN)> (MAgN)AX = MAg (N A X).

Therefore the functor Ap commutes with cofiber sequences in each of its vari-
ables. We also have the following adjunction, which complements Theorem
1.1(iv). '

LEMMA 3.2. For an S-module K,
Ms(M Nr N,K) = Mp(N, Fs(M, K)).

The commutativity, associativity, and unity properties of the smash product
over S and comparisons of coequalizer diagrams give commutativity, associativ-
ity, and unity properties of the smash product over R, exactly as in algebra. We
state these properties in the generality of their algebraic counterparts.

An S-algebra R with product ¢ : R As R — R has an opposite S-algebra
R°P with product ¢ o7, and a left R-module with action y is a right R°P-module
with action po 7.

LEMMA 3.3. For a right R-module M and left R-module N,
M Ap N = N Ago»r M.

For S-algebras R and R’, we define an (R, R')-bimodule to be a left R and
right R’-module M such that the evident diagram commutes:

RAs M Ag R ——> M Ag R’

| |

RAgM ———— M.
As in algebra, an (R, R')-bimodule is the same thing as an (RAg (R')°P)-module.

PROPOSITION 3.4. Let M be an (R, R')-bimodule, N be an (R', R")-bimodule,
and P be an (R", R"")-bimodule. Then M Ag' N is an (R, R")-bimodule and

(M /\RI N) /\R// P gM/\R/ (N /\Ru P)
as (R, R"")-bimodules.

The unity isomorphism has already been displayed, in the guise of a split
coequalizer diagram, in I1.3.2. We restate the conclusion.

LEMMA 3.5. The actionv: RAs N — N of an R-module N factors through
an isomorphism of R-modules \: RAg N — N.
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For an S-module K, RAg K & K Ag R is an (R, R)-bimodule. In particular,
this applies to the free left R-module Fr X = RAsFgX generated by a spectrum
X, which may be identified with the free right R-module generated by X. The
following instances of the isomorphisms above will be used in conjunction with
the weak equivalences of 1.6.7 and II.1.9. They allow us to deduce homotopical
properties of Ag from corresponding properties of Ag.

PROPOSITION 3.6. Let K and L be S-modules and let N be an R-module.
There is a natural isomorphism of R-modules

(K/\sR)/\RN%’K/\sN.
There is also a natural isomorphism of (R, R)-bimodules
(KAs R)AR (RNAs L) = RAg (K As L).

Using 1.6.1, we obtain the following consequence, in which we use an iso-
morphism of universes f : U @ U — U to define the internal smash product
f (X AY).

COROLLARY 3.7. Let X and Y be spectra and let N be an R-module. There
s a natural isomorphism of R-modules

FrX Arp N 2FsX Ag N.
There is also a natural isomorphism of (R, R)-bimodules

FrX ARFRY 2 Frf (X AY).

THEOREM 3.8. If M is a cell R-module and ¢ : N — N’ is a weak equiva-
lence of R-modules, then

idAR¢:MARN———>M/\RN,
is a weak equivalence of S-modules.

PrROOF. When M = [FgrX for a CW spectrum X, the conclusion is immediate
from the corollary and 1.6.6. The general case follows from the case of sphere
R-modules by induction up the sequential filtration and passage to colimits. O

We construct Ag as a functor

T@R X Z@R — 9,5'

by approximating one of the variables by a cell R-module; here “r” and “¢”

indicate right and left R-modules. That is, the derived smash product of M and
N is represented by 'M Ag N.

The following technical sharpening of Corollary 1.5 will be the starting point
for our later construction of a spectral sequence for the calculation of m.(MAgN).

PROPOSITION 3.9. Let X be a wedge of sphere spectra and let N be a cell
R-module. Then there is an isomorphism

T.(FrRX Ar N) = (m.(R) ® H. (X)) Or.(R) s (N)
that is natural in the R-modules FrX and N.
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PROOF. The point is that naturality on general maps g : FrRX — FrX’,
with their induced maps m«(R) ® Hi(X) — 7« (R) ® H.(X'), and not just
on maps of the form g = Frf, f : X — X', will be essential in the cited
application. The diagram

FrRX As RAs N—=FrX As N——=FrX Ag N

is a split coequalizer in .#g and thus in %/, and it is visibly natural in both FpX
and N. It remains a coequalizer on applying ., and the required naturality
follows. O

Finally, we record an analogue of the behavior of tensor products of modules
with respect to tensor products of algebras.

PROPOSITION 3.10. Let R and R’ be S-algebras, M and N be right and left
R-modules, and M' and N’ be right and left R'-modules. Then there is a natural
isomorphism of S-modules

(M As M') Arasr (N Ag N') = (M Ag N) As (M’ Ag: N').

If M is a cell R-module and N’ is a cell R'-module, then M Ag N' is a cell
R Ag R'-module.

PRrROOF. The first statement is a comparison of coequalizer diagrams. The
second statement holds since, on spheres, 1.6.1 implies isomorphisms

(LSY Ag R) As (R N LS™) = (RAg R') Ag LS. 0O

4. Change of S-algebras; g-cofibrant S-algebras
In this section, we assume given a map of S-algebras
¢:R— R,

and we study the relationship between the categories of R-modules and of R'-
modules. By pullback along ¢, we obtain a functor ¢* : #r — Ag. It
preserves weak equivalences and thus induces a functor ¢* : Pp — Pg. It is
vital to the theory that this functor is an equivalence of categories when ¢ is a
weak equivalence. As we explain, this allows us to replace general S-algebras by
better behaved “g-cofibrant” ones whenever convenient, without changing the
derived category.
Regard R’ as a right R-module via the composite

R'As RS R A R >,
Observe that R’ is an (R’, R)-bimodule with the evident left action by R’ and
that, for an R-module M, R’ Agp M is an R’-module.

PROPOSITION 4.1. Define ¢y : Mg — Mp by ¢.M = R' A M. Then ¢,
is left adjoint to ¢*, and the adjunction induces a derived adjunction

Dr (M, M') = Dp(M,¢*M').

Moreover, the functor ¢. preserves cell modules.
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PROOF. The required isomorphism
Mp (M, M") = Hp(M,¢*M')

is proven exactly as in algebra. It sends an R-map M — M’ to the induced
composite
RAgRM — RARM' — R Ap M' = M’,

and it sends an R’-map R’ AR M — M’ to its restriction along the canonical
map M — R’ Ag M. Since the functor ¢* preserves weak equivalences, it
is formal that the functor ¢, carries R-modules of the homotopy types of cell
modules to R’-modules of the homotopy types of cell modules and induces an
adjunction on derived categories [38, 1.5.13]. Clearly

R AR(RAsL)X R As L

for an S-module L. Therefore the functor ¢. carries sphere R-modules to sphere
R’-modules. Since, as a left adjoint, ¢, preserves colimits, this implies that ¢,
preserves cell modules and not just homotopy types of cell modules.

THEOREM 4.2. Let ¢ : R — R’ be a weak equivalence of S-algebras. Then
b : Drn — Dr and ¢* : Dn — Dr are inverse adjoint equivalences of
categories.

PROOF. If M is a cell R-module, then the unit
pARid: M 2XRARM — R Ag M

of the adjunction is a weak equivalence by Theorem 3.8. Now let M’ be an
R’-module. In the derived category, the composite ¢,¢* M’ means R’ Ag T M’,
where ['M’ is a cell R-module for which there is a weak equivalence of R-modules
v: M’ — ¢*M’'. The counit of the adjunction is given by

idAgy: R ARTM' — R'Ap M' =2 M'.
An easy diagram chase shows that the composite map of R-modules

id Agy

IM' 2= RARTM'®28S R A TM! 22 R gy MY = MY
coincides with 7. Since ¢ Ag id is a weak equivalence, so is id Agy. O

We shall give the category of S-algebras a Quillen (closed) model category
structure in Chapter VII. We will then have the notion of a “g-cofibrant S-
algebra”, which is a retract of a “cell S-algebra”. For any S-algebra R, there
is a weak equivalence A : AR — R, where AR is a cell S-algebra. By the
previous result, A induces an adjoint equivalence between the categories Zr and
Dar. Actually, we will have two quite different model categories, one for S-
algebras and another for commutative S-algebras. The comments that we have
just made apply in either context. As we shall explain in VII§6, the forgetful
functor from R-algebras to R-modules is better behaved homotopically in the
non-commutative case than in the commutative case. In fact, VII.6.2 will give
the following result.



Copyright 1996 by the American Mathematical Society. Not for distribution.

4. CHANGE OF S-ALGEBRAS; ¢-COFIBRANT S-ALGEBRAS 63

THEOREM 4.3. If R is a q-cofibrant S-algebra, then (R, S) is a retract of a
relative cell S-module, the inclusion S — R being the unit of R. Therefore
(R, S) has the homotopy type of a relative CW S-module.

Since we can approximate a commutative S-algebra by a non-commutative cell
S-algebra without changing the derived category of modules (up to equivalence),
we can use the previous result to obtain homotopical information about the
derived categories of commutative S-algebras.

We illustrate the force of these ideas by using them to obtain a complementary
adjunction to the case of Proposition 4.1 that is obtained by specializing to the
unit : S — R of an S-algebra R:

@R(RAS M’N) = @S(Mﬂ?*N)

for S-modules M and R-modules NNV.

PROPOSITION 4.4. The forgetful functor n* : 95 — Ds has a right adjoint
n# : Ds — Dg, so that

@R(Nan#M) = @S(W*N»M)
for S-modules M and R-modules N.

PROOF. On the point set level, we have the adjunction
//{S("?*N, M) = ‘/”R(Na FS(R, M))

Here we regard R as an (S, R)-bimodule, and the right action of R on itself
induces a left action of R on Fs(R, M) (as with Hom functors in algebra). How-
ever, there is no reason to believe that the functor Fg(R, M) of M preserves
weak equivalences, so that it is not clear how to pass to derived categories. Let
A: AR — R be a weak equivalence of S-algebras, where AR is a cell S-algebra.
It follows easily from the previous theorem that the functor

Fs(AR, M) : ./ﬂs — -/ﬂAR
of M does preserve weak equivalences. We therefore have an adjunction
Ds((n')"N', M) = Drr(N', Fs(AR, M))

for AR-modules N’ and S-modules M, where 7’ is the unit of AR. Theorem 4.2
implies that we also have an adjunction

DAr(A\*N,N') = @p(N,\.N').
Since n = Aon’ : § — R and these forgetful functors all preserve weak equiv-

alences, n* = ()* o A* : 95 — Ds. We define n# (M) = M\,Fs(AR, M) and
obtain the desired adjunction as the composite of the adjunctions just given. [
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5. Symmetric and extended powers of R-modules

Let R be a commutative S-algebra and M be an R-module. The jth sym-
metric power of M is defined to be M7/, and the jth extended power of M is
defined to be

D;M = (EZ;)4 As, M?.
In both notions, M7 denotes the j-th power of M with respect to Ag. One of
the most striking features of our smash product of R-modules is that, in the
derived category Zg, these are essentially equivalent notions. This fact will
give us homotopical control on free commutative R-algebras and will play an
important role in our study of Bousfield localizations of commutative R-algebras
in Chapter VIII; it will not be needed before then.

To explain this fact, observe that 1.5.6 implies that, for a spectrum K, we
have an equivariant isomorphism

(LK) = £(j) x K7,

where the j-th power is taken with respect to Ag on the left and with respect
to the external smash product on the right. Therefore

(LKY/S; % 2(5) xz, K.

This is the core of the claimed equivalence between symmetric and extended
powers of R-modules. However, to retain suffficient homotopical control on our
constructions to prove the equivalence, we must assume that R is a g-cofibrant
commutative S-algebra and apply results to be proven in VII§6. Note that, as the
initial object in the category of commutative S-algebras, S itself is g-cofibrant.

THEOREM 5.1. Let R be a g-cofibrant commutative S-algebra. If M is a cell
R-module, then the projection

m: (ESj)4+ Ag; M? — MY /%
is a homotopy equivalence of spectra.

PRrROOF. The conclusion is trivial for j = 1 and we may assume inductively
that it holds for ¢ < j.

We first prove the result for any 7 when M is the free R-module generated by
a CW-spectrum X. Expanding definitions and commuting the smash product
with (EX;) through our constructions, we find that

M7 = RAs S he (Z(5) x X7),

(EX;)+ AM? 2 RAg S he (EZ; x Z(5)) x X7),
and 7 is induced from the ¥;-equivalence EY; x Z(j) — Z(j) by passage
to orbits. When R = S, 7 is a homotopy equivalence of spectra by 1.8.5 and
the equivariant version of 1.2.5. For general R, VII.6.5 and VII.6.7 imply that
the functor R Ag (—) carries this homotopy equivalence to a weak equivalence.
However, the domain and target have the homotopy types of CW spectra, by
VIL.6.6.

Next, let M be a subcomplex of a cell R-module N and assume that the
conclusion holds for M and N/M. As explained for the (external) smash power
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of spectra in [14, pp 37-38] and works equally well for the (internal) smash power
of R-modules, we have a filtration of N7 by £;-cofibrations of R-modules

M} = F;N7 C F;_1N? C .- C F{N7 C FyN? = N7,

Here F;N7 is the union of the subcomplexes M; AR --- AR M, where each My
is either M or N and 4 of the M} are M. The subquotients can be identified
equivariantly as

F,N? JFi1N? 2 55 x5.5,_, (M* A (N/M)'™Y).

As a (Z; x X;_;)-space, EX; is homotopy equivalent to EX; x EX;_;, and there
result homotopy equivalences

(EZj)+ Ax,; FsNTJFip i N7 ~ ((EZ)4 Ag, MY AR ((EZj-:)+ As,_; (N/M)Y™H).

Applying the original induction hypothesis on j and inducting up the filtration,
we deduce the conclusion for N.

Finally, turning to the general case, let { M, } be the sequential filtration of M,
with My = . By the first step, the conclusion holds for each M,,11/M,. By the
second step, the conclusion for M,, implies the conclusion for M, ;. Since M7 is
the colimit of the sequence of ¥;-cofibrations of R-modules (M,)? — (Mp41)?,
the conclusion for M follows. O

6. Function R-modules

Let R be an S-algebra. We have a function R-module functor Fg to go with
our smash product. Its definition is dictated by the expected adjunction.

DEFINITION 6.1. Let M and N be (left) R-modules. Define Fr(M, N) to be
the equalizer displayed in the following diagram of S-modules:

Fp(M,N) — Fs(M,N) =% Fs(R As M, N).
Here p* = Fs(u,id) and w is the adjoint of the composite
R Ag (M Ns Fs(M,N))MR/\S N Y- N.

When R = S, our new and old function S-modules Fg(M, N) are identical.
We state the expected adjunction in a general form, but we are most interested
in the case R/ = S.

LEMMA 6.2. Let M be an (R, R')-bimodule, N be an R'-module, and P be an
R-module. Then

‘/”R(MAR' N:P) g‘/ﬂR'(]Vv-FR(Ma-F)))'

PROOF. The general case follows from the case R = S of Lemma 3.2 by use
of the coequalizer definition of Ags and the equalizer definition of Fg. [

As in algebra, this leads to a function module analogue of Proposition 3.4.
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PROPOSITION 6.3. Let M be an (R, R')-bimodule, N be an (R', R")-bimodule,
and P be an (R, R"')-bimodule. Then Fr(M, P) is an (R’, R"")-bimodule, and

Fr(M Ag' N, P) & Fr. (N, Fr(M, P))
as (R", R"")-bimodules.
Similarly, the unit isomorphism of Lemma 3.5 implies a counit isomorphism.
LEMMA 6.4. The adjoint A : M — Fr(R, M) is an isomorphism.

We also have analogs of Proposition 3.6 and Corollary 3.7. While we are
interested primarily in the versions relating Fg to the functor Ag, there are
also versions relating Fr to the functor Fis. The following lemma is needed for
the latter versions. Its algebraic analogue is proven by a formal argument that
applies equally well in topology.

LEMMA 6.5. Let R and R’ be S-algebras.

(i) Let M be an R-module, M' be an R'-module and P be an RAgR'-module.
Then there is a natural bijection

%R(M,FRI(M’,P)) g‘//{R/\sR'(M Ns M/,P).

. (ii) Let M be a left R-module, N be a right R-module, and K be an S-module.
Then there is a natural bijection

Mp(M,Fs(N,K)) 2 #s(N A\g M, K).

PRrOOF. It suffices to check (i) when M = RAg L and M’ = R’ Ag L' are the
free modules generated by S-modules L and L’. Similarly, it suffices to check (ii)
when M = R Ag L. These cases are easy consequences of our adjunctions. [

PROPOSITION 6.6. Let K be an S-module and M be a left R-module. There
s a natural isomorphism of left R-modules

Fr(K As R,M) = Fs(K,M)
and a natural isomorphism of right R-modules
Fr(M,Fs(R,K)) 2 Fs(M, K).

PROOF. The first isomorphism is immediate from the following chain of iso-
morphisms of represented functors on left R-modules N, which result from
Proposition 6.3, Proposition 3.6, and Theorem 1.1(iii), respectively.

%R(NvFR(K/\SRyM)) E‘ﬂR((I{ As R) AR N7M)

> #r(K A N, M)
=~ .//[R(N, Fs(K, M))
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The second isomorphism results from the following chain of isomorphisms of
represented functors on right R-modules N:

Mpor (N, FrR(M,Fs(R, K))) = Mrrsror (M Ns N, Fs(R, K))
=~ -/”S(R/\R/\SR"P (M Ns N),K)
= Ms(M Npor N, K) = Mpor (N, Fs(M, K)).

The first two isomorphisms are instances of isomorphisms of the lemma. The
third follows from the fact that there is a natural isomorphism

R AR/\sR"P (M /\S N) o M /\Rop N’
as is easily checked when M and N are free R-modules and follows in general. [J

COROLLARY 6.7. Let X be a spectrum and M be an R-module. There is a
natural isomorphism of left R-modules

FR(IFRX, M) = Fs(]FsX, ]\/[)
and a natural isomorphism of right R-modules
Fr(M,F%X) =~ Fs(M,F% X)).

The functor Fr(M, N) converts colimits and cofiber sequences in M to limits
and fiber sequences and it preserves limits and fiber sequences in N, as we see
formally on the spectrum level (compare [38, II1.2.5]) and deduce in order on
the levels of I-spectra, S-modules, and R-modules (compare I1.1.5 and Theorem
1.1). Using the previous corollary to deal with sphere R-modules and proceeding
by induction up the sequential filtration of M, we obtain the analogue of Theorem
3.8.

THEOREM 6.8. If M is a cell R-module and ¢ : N — N’ is a weak equiva-
lence of R-modules, then

FR(ld,¢) . FR(M,N) —_— FR(M,NI)
is a weak equivalence.

In the derived category g, Fr(M, N) means Fr(I'M, N), where ' M is a cell
approximation of M. We are entitled to conclude that

Dr(M As N, P) = 95(N, Fr(M, P)).

As in Proposition 3.9, we have the following calculational sharpening of Corol-
lary 6.7. It will be the starting point for our later construction of a spectral
sequence for the calculation of m.(Fr(M, N)).

COROLLARY 6.9. Let X be a wedge of sphere spectra and N be an R-module.
Then there is an isomorphism

m(FR(FX, N)) 2 Hom,_ () (m.(R) ® H.(X), m.(N))
that is natural in the R-modules FX and N.
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We end this section by recording a composition pairing that is a formal im-
plication of Lemma 6.2 and Proposition 6.3. This works exactly as with tensor
products and Hom in algebra and, as there, it is convenient for this purpose to
use the commutativity of the smash product over S to rewrite our adjunctions
and isomorphisms with their variables occurring in the same order on both sides,
returning to our original conventions of I§7. Thus, for an S-module L and for
R-modules M and N, we have the natural isomorphism of S-modules

(6.10) Fr(LAs M,N) & Fs(L, Fr(M, N)).

Let P be another R-module. Using the evaluation R-map
e: Fr(M,N)Ags M — N,

we obtain a composite R-map

idAse

Fr(N,P)As FR(M,N) As M —=5> Fgr(N,P) As N—=—>P.
Its adjoint is a composition pairing of S-modules
(6.11) TFZFR(N,P)AsFR(M,N)—>FR(M,P).

This pairing is unital and associative in the sense that the following diagrams
commute; let n: S — Fr(M, M) be the adjoint of A : SAg M — M:

FR(N,P) Ng S
idAsn AT

Fg(N,P) As FrR(N,N) —— Fg(N, P),
S As Fr(M,N)

nAsid A

Fr(N,N)As Fr(M,N) —— Fr(M, N),

and, for another R-module L,

FR(N,P) Asg FR(M,N) Ns FR(L,M)MFR(N,P) Ns FR(L,N)

™ /\sidl lﬂ'

FR(M,P) AsFR(L,M) s FR(L,P)

This leads to a host of examples of S-algebras and their modules.

PROPOSITION 6.12. Let R be an S-algebra and let M and N be (left) R-
modules. Then Fgr(N,N) is an S-algebra with product © and unit . More-
over, FR(M,N) is an (Fr(N,N), Fr(M, M))-bimodule with left and right ac-
tions given by 7.
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7. Commutative S-algebras and duality theory

We assume that R is a commutative S-algebra in this section, and we show
that the study of modules over R works in exactly the same way as the study
of modules over commutative algebras. If u: RAg M — M gives M a left
R-module structure, then por1 : M Ag R — M gives M a right R-module
structure such that M is an (R, R)-bimodule. As in the study of modules over
commutative algebras, this leads to the following important conclusion.

THEOREM 7.1. If M and N are R-modules, then M Agr N and Fr(M,N)
have canonical R-module structures induced from the R-module structure of M
or, equivalently, N. The smash product over R is commutative, associative and
unital. There is an adjunction

(7.2) AMr(LANg M,N) = Ag(L, Fr(M, N)).
Moreover, the adjunction passes to derived categories.
We have the following consequence of Corollary 3.7.

PROPOSITION 7.3. If M and M’ are cell R-modules, then M Agr M’ is a cell
R-module with one (p + q)-cell for each p-cell of M and g-cell of M'.

For R-modules L, M and N, we have a natural isomorphism of R-modules
(7.4) Fr(L Ar M,N) = Fg(L, Fr(M, N))

because both sides represent the same functor. Exactly as in the previous section,
but working entirely with R-modules, we obtain a natural associative and R-
unital composition pairing

(7.5) : Fr(M,N) Ag Fg(L, M) —s Fg(L,N).

The formal duality theory explained in [38, Ch. III] applies to the stable
category of R-modules. Define the dual of M to be DgM = Fgr(M,R). We
have an evaluation map € : DRM Ag M — R and a map : R — Fr(M, M),
namely the adjoint of A : RArp M — M. There is also a natural map

(7.6) V:FR(L,M)/\RN—+FR(L,M/\RN).
By composition with the isomorphism Fg(id, \), v specializes to a map
(7.7) v:DrRM ANg M — Fr(M,M).

We say that M is “strongly dualizable”, if it has a coevaluation map 7 : R —
M Agr DrM such that the following diagram commutes in Zg:

R—2 > M Ag DrM

(7.8) nl l

FR(M,M)'*—V—DRM/\RM.

The definition has many purely formal implications. The map v of (7.6) is
an isomorphism in Py if either L or N is strongly dualizable. The map v of
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(7.7) is an isomorphism in Zg if and only if M is strongly dualizable, and the
coevaluation map 7 is then the composite 7v =17 in (7.8). The natural map

p: M — DrDrM
is an isomorphism in Zg if M is strongly dualizable. The natural map
A:Fr(M,N)Ag FR(MI,N’) — FR(M Ar M',N Ag N’)

is an isomorphism in Zg if M and M’ are strongly dualizable or if M is strongly
dualizable and N = R.

Say that a cell R-module N is a wedge summand up to homotopy of a cell
R-module M if there is a homotopy equivalence of R-modules between M and
N V N’ for some cell R-module N’. In contrast with the usual stable homotopy
category, if M is finite it does not follow that N must have the homotopy type
of a finite cell R-module. Via Eilenberg-Mac Lane spectra, finitely generated
projective modules that are not free give rise to explicit counterexamples. Define
a semi-finite R-module to be an R-module that is a wedge summand up to
homotopy of a finite cell R-module, and note for use in Chapter VI that this
notion makes sense even when R is not commutative.

THEOREM 7.9. A cell R-module is strongly dualizable if and only if it is semi-
finite.

PROOF. Observe first that SF is strongly dualizable with dual Sz?, hence any
finite wedge of sphere R-modules is strongly dualizable. Observe next that the
cofiber of a map between strongly dualizable R-modules is strongly dualizable.
In fact, the evaluation map € induces a natural map

oNTI @R(L,N/\R DRM) — @R(L AR M,N),

and M is strongly dualizable if and only if €4 is an isomorphism for all L and
N (38, II1.1.6]. Since both sides convert cofiber sequences in the variable M
into long exact sequences, the five lemma gives the observation. We conclude by
induction on the number of cells that a finite cell R-module is strongly dualizable.
It is formal that a wedge summand in 2 of a strongly dualizable cell R-module
is strongly dualizable. For the converse, let N be a cell R-module that is strongly
dualizable with coevaluation map 7 : R — N Ar DgrN. Since 7j is determined
by its restriction to S and S is compact, 77 factors through M Ap DrN for some
finite cell subcomplex M of N. By [38, II1.1.2], the bottom composite in the
following commutative diagram is the identity (in Pg):

M Ag DN Ag N 825 M AR R—=> )1

| |

NgR/\RNWN/\RDRN/\RNWN/\RRT)N.

Therefore N is a retract up to homotopy and thus, by a comparison of exact tri-
angles, a wedge summand up to homotopy of M: retractions split in triangulated
categories. [
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CHAPTER IV

The algebraic theory of R-modules

We define generalized Tor and Ext groups as the homotopy groups of derived
smash product and function modules, and we interpret these groups in terms of
generalized homology and cohomology theories on R-modules. Specializing to
Eilenberg-Mac Lane spectra, these groups give the classical Tor and Ext groups,
and we show how to topologically realize classical algebraic derived categories of
complexes of modules over a ring. Starting with a connective S-algebra R, rather
than an Eilenberg-Mac Lane spectrum, the discussion generalizes to give ordi-
nary homology and cohomology theories on R-modules, together with Atiyah-
Hirzebruch spectral sequences for the computation of generalized homology and
cohomology theories on R-modules.

In Sections 4 and 5, we construct “hyperhomology” spectral sequences for the
calculation of our generalized Tor and Ext groups in terms of ordinary Tor and
Ext groups, and we show that these specialize to give universal coefficient and
Kiinneth spectral sequences for homology and cohomology theories defined on
spectra. In Sections 6 and 7, we generalize to Eilenberg-Moore spectral sequences
for the computation of E.(M Agr N) under varying hypotheses on R and E. In
particular, we give a bar construction approximation to M Ar N that allows us
to view the classical space level Eilenberg-Moore-Rothenberg-Steenrod spectral
sequence as a special case.

Except that his theory was intrinsically restricted to the A, context, Robin-
son’s series of papers [59, 60, 61, 62, 63] gave earlier versions of many of the
results of this chapter. Of course, with the earlier technology, the proofs were
substantially more difficult.

As usual, for a spectrum E, we shall often abbreviate notations by setting

E, = (E) = E™™,

1. Tor and Ext; homology and cohomology; duality

DEFINITION 1.1. Let R be an S-algebra. For a right R-module M and a left
R-module N, define

Tor®(M,N) = 7,(M Ag N).

71
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For left R-modules M and N, define
Exth(M,N) = m_,(Fr(M, N)).

Here the smash product and function modules are understood to be taken in
the derived category Zg. For Tor, this means that M or N must be replaced by
a weakly equivalent cell R-module before applying the module level functor Ag.
For Ext, this means that M must be approximated by a cell R-module before
applying Fg. At this point in our work, however, we act as traditional topolo-
gists, taking it for granted that all spectra and modules are to be approximated
as cell modules, without change of notation, whenever necessary. We will point
out explicitly any places where this gives rise to mathematical issues.

Clearly Tor®(M, N) and Exth(M,N) are R,-modules when R is commuta-
tive. Various properties reminiscent of those of the classical Tor and Ext functors
follow directly from the definition and the results of the previous chapters. The
intuition is that the definition gives an analogue of the differential Tor and Ext
functors (alias hyperhomology and cohomology functors) in the context of dif-
ferential graded modules over differential graded algebras. In particular, the
grading should not be thought of as the resolution grading of the classical tor-
sion product, but rather as a total grading that sums a resolution degree and
an internal degree; this idea will be made precise by the grading of the spectral
sequences that we shall construct for the calculation of these functors.

PROPOSITION 1.2. Torf(M, N) satisfies the following properties.

(i) If R, M, and N are connective, then Torf(M, N)=0 forn <0.
(ii) A cofiber sequence N' —» N — N" gives rise to a long ezact sequence

. — Tor®(M, N') — Tor?(M,N) —
Torf(M,N") — Tor®_(M,N') — --. .
(iii) Tor®(M,R) = m,(M) and, for a spectrum X,
Tor®(M,FX) = m, (M A X).
(iv) The functor Tor®(M, ) carries wedges to direct sums.

ProoF. In (i), M and N can be approximated by CW R-modules with cells
of non-negative dimension, hence it suffices to check the conclusion for N = S%,

r > 0, in which case it is immediate from (iii). Part (iii) follows from III.1.4 and
II1.3.7. O

The commutativity and associativity relations for the smash product imply
various further properties. We content ourselves with the following specializa-
tion.

PROPOSITION 1.3. If R is commutative, then
Tor®(M, N) = Tor®(N, M)

and
Tor®(M Ag N, P) = Tort®(M, N Ag P).
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Say that a spectrum N is coconnective if 7,V =0 for ¢ > 0.

PROPOSITION 1.4. Exty(M, N) satisfies the following properties.

(i) If R and M are connective and N is coconnective, then Extg(M,N) =0
forn <O0.
(if) Fiber sequences N' — N — N" give rise to long ezact sequences

- — Ext%(M,N’) — Ext}(M,N) —
Ext%(M,N") — Extp ™ (M,N') — -+ ;
cofiber sequences M' — M — M" give rise to long exact sequences
-+ — Extj(M",N) — Ext{(M,N) —
Extk(M',N) — Extp™ ' (M",N) — .- .
(iii) Extk(R,N) 2 m_,(N) and, for a spectrum X,
ExtRr(FX,N) 2 n_,(F(X,N))

and
Exth(M,F#¥X) = 1_,(F(M, X)).
(iv) The functor Extp(—,N) carries wedges to products and the functor
Extr(M, —) carries products to products.

ProOF. It suffices to check (i) for M = S§, r > 0, in which case the conclusion
is immediate from (iii). Part (iii) follows from III.1.4, II1.1.10, and II1.6.7. O

Passing to homotopy groups from the pairings of IT1.6.11 and II1.7.5, we obtain
the following further property.

PROPOSITION 1.5. There is a natural, associative, and unital system of pair-
ings
T : Extp(M,N) ®r-(s)y Extp(L, M) — Extp(L, N).
If R is commutative, then these are pairings of R.-modules, and the tensor prod-
uct may be taken over R..

PrOOF. The first statement is clear. The second uses the the fact that
7q(M) = Dr(S%, M), together with the equivalences of R-modules
S} AR Shp = SET
given by II1.3.7; the system becomes associative and unital on passage to Zr. [

The formal duality theory of III§7 implies the following result, together with
various other such isomorphisms.

PROPOSITION 1.6. Let R be commutative. For a finite cell R-module M and

any R-module N,
Tor?(DrM, N) = Extp"(M, N).

We think of the derived category Zg as a stable homotopy category. Changing
notations, we may reinterpret the functors Tor and Ext as prescribing homology
and cohomology theories in this category.
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DEFINITION 1.7. Let E’ be aright and F a left R-module. For left R-modules
M and N, define

E'®(M) = n.(E' Ag M) and ER(M) = n_n(Fr(M, E)).

The properties of Tor and Ext translate directly to statements about homology
and cohomology. All of the standard homotopical machinery is available to us,
and the previous result now takes the form of Spanier-Whitehead duality.

COROLLARY 1.8. Let R be commutative. For a finite cell R-module M and
any R-module E,

ER(DrM) = EZ™(M).

Since the equivalence between the classical stable homotopy category and the
derived category of S-modules preserves smash products and function spectra,
we obtain versions of all of the usual homology and cohomology theories on
spectra by taking R = S. Moreover the following reinterpretation of Propositions
1.2(iii) and 1.4(iii) shows that the specializations to R-modules of all of the usual
homology and cohomology theories on spectra are given by instances of our new
homology and cohomology theories on R-modules.

COROLLARY 1.9. For a spectrum E and a (left) R-module M,
E.(M) = (FE)R(M) and E*(M)= (F*E)R(M).

2. Eilenberg-Mac Lane spectra and derived categories

In this section, we change notation and let R denote a discrete ring. Apply-
ing multiplicative infinite loop space theory [50] to obtain an A ring spectrum
and then applying the functor S A¢ (—), we obtain an Eilenberg-Mac Lane spec-
trum HR = K(R,0) that is an S-algebra and is a commutative S-algebra if
R is commutative. An elaboration of multiplicative infinite loop space theory,
followed by application of the functor S A (—), can be used to realize passage
to Eilenberg-Mac Lane spectra as a point-set level functor H from R-modules
in the sense of algebra to H R-modules. We shall shortly use the present the-
ory to give two different homotopical constructions of such Eilenberg-Mac Lane
H R-modules. Granting this for the moment, we have the following result.

THEOREM 2.1. For a ring R and R-modules M and N,
Tor®(M, N) = Tor?R(HM, HN)

and
Extp(M,N) 2 Extyr(HM,HN).

If R is commutative, then these are isomorphisms of R-modules. Under the
second isomorphism, the topologically defined pairing

Extl r(HM, HN) ® Ext}p(HL, HM) — Ext};z(HL, HN)

coincides with the algebraic Yoneda product.
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ProOOF. If 0 — N’ — N — N” — 0 is a short exact sequence of
R-modules, then HN' — HN — HN" is equivalent to a cofiber sequence.
The conclusion is now immediate from Propositions 1.2 and 1.4, together with
the axioms for algebraic Tor and Ext functors. It should be noted that right
exactness and proper behavior on free modules together imply algebraically that

Torf(M,N)~* M ®r N and Ext%(M,N)= Homg(M,N).

It is important to remember that the axioms for Ext require verifications about
free or injective modules, but not both. The last statement follows from Yoneda’s
axiomatization [73], which only requires proper behavior in degree zero and
proper behavior relating connecting homomorphisms to products. The last fol-
lows topologically from commutation with cofiber sequences, which is easily de-
rived from the adjoint construction of our pairings in III§6. [

We can elaborate this result to an equivalence of derived categories. We shall
restrict attention to morphisms of degree zero since the extension to graded mor-
phisms is formal. Recall from [69] or [35, Ch.III] that the derived category Zr
is obtained from the homotopy category of chain complexes over R by localizing
at the quasi-isomorphisms, exactly as we obtained the category Zgg from the
homotopy category of H R-modules by localizing at the weak equivalences. The
algebraic theory of cell and CW chain complexes over R in (35, Ch.III] makes
the analogy especially close. The proof of the equivalence is quite simple. The
category Yy is equivalent to the homotopy category of CW H R-modules and
cellular maps. We will see that CW H R-modules have associated chain com-
plexes. This gives a functor Zyr — Zg, and we will obtain an inverse functor
directly from Brown’s representability theorem.

DEFINITION 2.2. Let M be a CW HR-module. Define the associated chain
complex C,(M) of R-modules by letting C,(M) = m,(M™, M™~!) and letting
the differential dy, : Cp(M) — Cr—1(M) be the connecting homorphism of the
triple (M™, M™~1, M™~2). Observe that a cellular map of H R-modules induces a
map of chain complexes and that a cellular homotopy induces a chain homotopy.
Observe too that, since M™/M™~! is a wedge of free modules S%, ~ HRA S™,
Crn(M) is a free R-module.

LEMMA 2.3. For CW HR-modules M, the homology groups H.(C.(M)) are
naturally isomorphic to the homotopy groups of M.

PROOF. Since HR is connective, the inclusion M™ — M induces a bijection
on 7, for ¢ < n and a surjection on 7,. By induction up the sequential filtration
of M"~1  mg(M™ 1) = 0 for ¢ > n. Therefore the quotient map M —s M/M"~!
induces a monomorphism on 7,. The conclusion follows by a simple diagram
chase. O

THEOREM 2.4. The cellular chain functor C« on HR-modules induces an
equivalence of categories Dyr — Pr. The inverse equivalence @ satisfies

H.(X) 2 m.(8(X)).
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ProoF. The functor C, carries wedges to direct sums and carries homotopy
colimits of cellular diagrams to chain level homotopy colimits. For a fixed chain
complex X, the functor k on Pyg specified by k(M) = Dg(C.(M),X) there-
fore satisfies the wedge and Mayer-Vietoris axioms. By Brown’s representability
theorem, 111.2.12, k is represented by an H R-module spectrum ®(X). By the
functoriality of the representation, this gives a functor ® : Zr — Zygr and an
adjunction

Ir(Cu(M), X) = Drr(M, (X))

Since Hp(X) & 9r(X"R, X ), where ™R is the free R-module on one generator
of degree n and C.(S%y) = X™R, this implies that H,(X) = m(®(X)). We
claim that the unit n : M — ®(C,(M)) and counit € : Cyx(P(X)) — X of
the adjunction are natural isomorphisms. On hom sets, the functor C, coincides
with

M : Dur(L, M) — Dur(L, ®(Cx(M))) & Zr(Ci(L),Cu(M)).
As L runs through the S% g, 7. runs through the isomorphisms
(M) — Hn(C.(M))

of the previous lemma. Therefore 7 is an isomorphism in Zgg for all M. Since
the composite

X180, (BX) 250X
is the identity, it follows that ®e is an isomorphism in Zyg for all X. The
following natural diagram commutes:

Dur(L,®C.(®X)) 2 Dr(C.(L),C(®X))

(@5).1 ls.

@HR(L’ (I)X> = @R(C*(L)vX)

As L runs through the sphere modules S%; g, the resulting isomorphisms ¢, show
that € induces an isomorphism on all homology groups and is therefore an iso-
morphism in Zg. O

In the commutative case, we have the following important addendum to the
theorem. See [35, III] for a discussion of tensor product and Hom functors in
the derived category Zg. As in topology, they are constructed by first applying
CW approximation of R-modules and then taking the point-set level functor.

PROPOSITION 2.5. Assume that R ts commutative. If M and N are CW
H R-modules, then M Nggr N is a CW HR-module such that

Cy(M Agr N) =2 Cu(M) ®r C«(N).

Therefore such an isomorphism holds in the derived category Pr for general
HR-modules M and N. Moreover, in Dr,

C.(Fyr(M,N)) = Homg(C\ (M), C.(N)).
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If X and Y are chain complezxes, then
d(X ®r Y) 2 dX Aygr ®Y

and
®Homp(X,Y) = Fyr(®X, ®Y)

mn QHR-

PROOF. The first statement is implied by III.7.3, and the last three derived
category level isomorphisms are all formal consequences of the first. O

Regarding R-modules as chain complexes concentrated in degree zero, we see
that the functor ® restricts to a functor H that assigns an Eilenberg-Mac Lane
H R-module spectrum HM to an R-module M. We give a more explicit con-
struction.

CONSTRUCTION 2.6. (i) For an R-module M, we construct HM = K(M,0)
as a CW module L with sequential filtration {L,} and skeletal filtration {L™}
related by L"~! = L,,. Choose a free resolution

s Fy S F g — o o Bp= M — 0

of M. Let K, be a wedge of 0-spheres, with one sphere for each basis element
of Fy. For n > 1, let K,, be a wedge of (n — 1)-spheres, with one sphere for
each basis element of F,,. Define L; = FKy. For n > 2, L, will have two non-
vanishing homotopy groups, namely no(L,) = M and 7,_1(L,) = Im d,, and
the inclusion ¢, : L, — Lp4+; will induce an isomorphism on my. By freeness,
we can realize d; by a map of HR-modules FK; — FK{. Let Ly be its cofiber.
Then the resulting map FKy — Lo realizes € on my and the resulting map
L, — YFK; realizes the inclusion Im dy C F; on m;. Inductively, given L,
we can realize d,, : F,, — Im d,, on the (n — 1)st homotopy group by a map of
HR-modules FK,, — L,,. We let L, be its cofiber. The claimed properties
follow immediately. The union L = UL, is the desired CW H R-module HM.
(ii) Given a map f : M — M’ of R-modules, we construct a cellular map
Hf : HM — HM' of CW HR-modules that realizes f on my. Construct
L' = HM' as above, writing F, etc. As usual, we can construct a sequence of
R-maps f, : F, — F that give a map of resolutions. We can realize f, on
homotopy groups by an HR-map FK,, — FK],. Starting with L; = FK, and
proceeding inductively, we can use a standard cofibration sequence argument,
carried out in the category of HR-modules, to construct HR-maps L, — L,
such that the middle squares commute and the left and right squares commute
up to homotopy in the following diagrams of H R-modules:

FK i1 Ln L1 YFK i
FK7 Ly, n+1 YFKp -

On passage to unions, we obtain the desired cellular map Hf : HM — HM'.
A similar argument works to show that if we choose another map g, : F, — F.
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of resolutions over f and repeat the construction, then the resulting H R-maps
are homotopic.

REMARK 2.7. Since they are HZ-module spectra, the underlying spectra of
the H R-module spectra studied in this section all have the homotopy types of
Eilenberg-Mac Lane spectra.

3. The Atiyah-Hirzebruch spectral sequence

We assume given a connective S-algebra R in this section, and we let & =
mo(R). Since R is connective, its derived category Pp is equivalent to the homo-
topy category h€#r of CW R-modules and cellular maps. We shall see that the
Eilenberg-Mac Lane spectrum Hk is an R-module that plays a role in the study
of R-modules analogous to the role played by HZ in the category of spectra. We
use this insight to construct Atiyah-Hirzebruch spectral sequences and prove a
Hurewicz theorem in the category of R-modules. Although we shall not assume
this, the theory is most useful when R is commutative; of course, k may well be
commutative even when R is not. Remember that modules mean left modules
unless otherwise specified.

PROPOSITION 3.1. There is a map of S-algebras m : R — Hk that realizes
the identity homomorphism on mo(R) = k.

PROOF. We sketch two proofs. The first is an application of multiplicative
infinite loop space theory. By [48, VIL.2.4], the zeroth space Ry of R is an
A ring space. Modulo some point-set care to ensure continuity (e.g, we could
replace R by a weakly equivalent “g-cofibrant” S-algebra, which is of the homo-
topy type of a CW spectrum by VII.6.5 and VII.6.6), we obtain a discretization
map 6 : Ry — k, and it is immediate from the definitions that it is an A ring
map. By [48, VII§4], there is a functor E from A ring spaces to A, ring
spectra, hence there results a map of Ay ring spectra ERy — Ek. By [48,
VIL.3.2 and 4.3] and the connectivity of R, there is a natural weak equivalence
of A ring spectra between ERy and R, and the homotopical properties of E
immediately imply that Ek is an Hk. Now apply the functor S Ay (—) to re-
place A, ring spectra by S-algebras, and replace R by the weakly equivalent
S-algebra S Ay ERg.

The second proof makes more serious use of the Quillen model category struc-
ture on the category of S-algebras that we construct in VII§§4,5. Using it, we
can mimic the classical space level argument of killing higher homotopy groups,
successively attaching cell S-algebras to kill the higher homotopy groupsof R. O

It follows that Hk is an (R, R)-bimodule. If R and therefore also Hk are com-
mutative S-algebras, then Hk is a commutative R-algebra in the sense of VII§1
below. If j is a k-module, then the Hk-module Hj is an R-module by pullback
along m. We consider the homology and cohomology theories represented by the
Hj as ordinary homology and cohomology theories defined on the derived cat-
egory of R-modules: they clearly satisfy the analogs of the Eilenberg—Steenrod
axioms for ordinary homology and cohomology theories; here the R-module R
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plays the role of a point in the dimension axiom. We agree to alter the notations
of Definition 1.7 by setting

(3.2) HE(M;j') = (Hj)} (M) and  Hp(M;j) = (Hj)Rp(M)

for a left R-module M, a right k-module ;' and a left k-module j. We have
symmetric definitions with left and right reversed.

These theories can be calculated as the homology and cohomology of the cel-
lular chain complexes of CW R-modules. In fact, the definition of the associated
chain complex of a CW R-module M is formally identical to Definition 2.2.

DEFINITION 3.3. Let M be a CW R-module. Define the associated chain
complex CE(M) of k-modules by letting CZ(M) = m,(M™, M™~1) and letting
the differential d,, : CE(M) — CE_,(M) be the connecting homorphism of the
triple (M™, M™~1, M™~2). Observe that a cellular map of R-modules induces a
map of chain complexes and that a cellular homotopy induces a chain homotopy:.
Observe too that, since M™/M™~! is a wedge of free modules S% ~ R A S™,
CE(M) is a free k-module. For right and left k-modules j’ and j, define chain
and cochain complexes of abelian groups

CR(M;j') =7 @ CHM) and Cg(M;j) = Homk(CF(M), ).

Clearly these chain and cochain functors induce covariant and contravari-
ant functors from the derived category Zg to the derived category 2z of chain
complexes over Z, interpreted as homologically or cohomologically graded, re-
spectively. When k is commutative, these functors take values in 2. We have
the following analogue of Proposition 2.5.

PROPOSITICN 3.4. If R is a commutative S-algebra and M and N are CW
R-modules, then M Ag N is a CW R-module such that

CE(M AR N) = CE(M) @, CR(N).

Therefore such an isomorphism holds in the derived category 9y for general R-
modules M and N. Moreover, in Yy, there is a natural map

€ : CH(Fp(M,N)) — Hom,(CF(M),CE(N)),
and € is an isomorphism if M is a finite CW R-module.

PROOF. The first statement is implied by II1.7.3. For the second, the evalu-
ation map Fr(M,N) Ag M — N induces a map

CE(Fr(M,N)) ® CE(M) = CR(Fg(M,N) Ag M) — C.(N)

in 9, and its adjoint is the required map €. Clearly £ is an isomorphism when
M is a sphere R-module. It is therefore an isomorphism for all finite CW R-
modules since the functors Fr and Homy both convert cofibration sequences in
the first variable to fibration sequences. [J
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We cannot expect the derived chain complex functor to preserve function
objects in general, as the case R = S makes clear.

By checking the Eilenberg-Steenrod axioms, as in the classical case R = S,
we reach the following conclusion. Alternatively, we could use the Atiyah-
Hirzebruch spectral sequence below.

THEOREM 3.5. For R-modules M and right and left k-modules j' and j, there
are natural isomorphisms

HF(M;j') = H(CHM; ")) and  Hp(M;j) = H(CR(M;J)).

The map t Aid : M 2 RAgr M — Hk Ag M induces the Hurewicz homo-
morphism h : m,(M) — HE(M;k), and the proof of the Hurewicz theorem is
exactly the same as in the classical case.

THEOREM 3.6 (HUREWICZ). Let M be an (n— 1)-connected R-module. Then
HE(M;k) =0 fori<n and h : 1,(M) — HE(M;k) is an isomorphism.

PRrROOF. We may replace M by a weakly equivalent cell R-module with no
g-cells for ¢ < n. Then the n-skeleton of M is a wedge of sphere R-modules
% and, for ¢ > n, the quotients M9/M?~! are wedges of sphere R-modules
S%. The proof is an easy inductive comparison of the long exact homotopy and
homology exact sequences of the pairs (M9, M971). O

Applying a generalized homology or cohomology theory to the skeletal fil-
tration of a CW R-module M, we obtain an exact couple and thus a spectral
sequence that generalizes the chain and cochain description of the ordinary rep-
resented homology and cohomology of M.

THEOREM 3.7 (ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE). For a homo-
logy theory ER and a cohomology theory E} on R-modules, there are natural
spectral sequences of the form

2 R(\f. ER R
E, ., =H (M;E;) = E,.,

(M)

and
E$? = HY(M; E}) = E%H(M).

Convergence is as in the classical case, and we refer the reader to Boardman
[7, §14] (see also [25, App B]) for discussion. If M is bounded below, then the
homology spectral sequence converges strongly to EX(M) and the cohomology
spectral sequence converges conditionally to E%(M). If, further, for each fixed
(p,q) there are only finitely many 7 such that d” is non-zero on Ej ;, then the
cohomology spectral sequence converges strongly.

The multiplicative properties of the spectral sequences are as one would expect
from Proposition 3.4.



Copyright 1996 by the American Mathematical Society. Not for distribution.

4. UNIVERSAL COEFFICIENT AND KUNNETH SPECTRAL SEQUENCES 81

4. Universal coeflicient and Kiinneth spectral sequences

There are spectral sequences for the calculation of our Tor and Ext groups that
are analogous to the Eilenberg-Moore (or hyperhomology) spectral sequences
in differential homological algebra. Compare [19, 29, 35]. They specialize to
give universal coefficient and Kiinneth spectral sequences in the homology and
cohomology theory of spectra. We state our results in this section and give the
construction in the next. Fix an S-algebra R.

THEOREM 4.1. For right R-modules M and left R-modules N, there is a nat-
ural spectral sequence of the form

(4.2) E} = Torf:(M,,N,) = Torf}

B, (M, N).

For left R-modules M and N, there is a natural spectral sequence of the form
(4.3) EP? = Ext%I(M*, N*) = Exth (M, N).
If R is commutative, then these are spectral sequences of differential R..-modules.

The Tor spectral sequence is of standard homological type, with

dpq Epg — Eporgir-1-
It lies in the right half-plane and converges strongly. The Ext spectral sequence
is of standard cohomological type, with

. P4 p+r,g—r+1
dy : EP? — EF .

It lies in the right half plane and converges conditionally. We have the following
addendum.

PROPOSITION 4.4. The pairing Fr(M,N)AsFr(L, M) — Fg(L, N) induces
a pairing of spectral sequences that coincides with the algebraic Yoneda pairing

Extpl (M*,N*) ®g+ Extpr (L*, M*) — Extgi(L*, N*)
on the Es-level and that converges to the induced pairing of Ext groups.

The rest of the results of this section are corollaries of the results already
stated. With the specializations of variables that we cite, the conclusions are
immediate from the properties of our free and cofree functors and properties
of Tor and Ext recorded in Section 1. Recalling Definition 1.7, we see that
our spectral sequences can be viewed as universal coefficient spectral sequences
for the computation of homology and cohomology theories on R-modules. Via
Corollary 1.9, they specialize to give universal coefficient spectral sequences for
the computation of homology and cchomology theories on spectra. Thus, setting
M =TFX in the two spectral sequences of Theorem 4.1, we obtain the following
result. We have written the stars to indicate the way the grading is usually
thought of in cohomology.
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THEOREM 4.5 (UNIVERSAL COEFFICIENT). For an R-module N and any spec-
trum X, there are spectral sequences of the form

Torf: (R,(X),N,) = N,(X)

%k %

and
Ext}‘if(R_*(X),N*) = N*(X).

Of course, replacing R and N by Eilenberg-Mac Lane spectra HR and HN for
a ring R and R-module IV, we obtain the classical universal coefficient theorem.
Here we are thinking of the module NV as defining theories acting on general
spectra. By instead taking N = FE and N = F#E in the two spectral sequences
of Theorem 4.1, we obtain spectral sequences that are suitable for calculating
the E-homology and cohomology of M.

THEOREM 4.6. For an R-module M and any spectrum E, there are spectral
sequences of the form

Tor*: (My, Eu(R)) => E.(M)

and
Exty: (M*, E*(R)) = E*(M).

When F is also an R-module, we can take M = E and so obtain spectral
sequences that converge to the E-Steenrod algebra E*(E) and its dual E.(E).
For example, when R = § and M = E = HZ,, the cohomology spectral sequence
is a backwards Adams spectral sequence that converges from Extg.(Zy,Zy) to
the mod p Steenrod algebra A. Such a spectral sequence was first studied in
(40].

Replacing N by FY and by Fr(FY, R) in the two universal coefficient spectral
sequences, we arrive at Kiinneth spectral sequences.

THEOREM 4.7 (KUNNETH). For any spectra X and Y, there are spectral se-
quences of the form

Torf:

*, %

(Ru(X), Ru(Y)) = R (X AY)

and
Exth(R_*(X),R*(Y)) = R*(X AY).

A reference to Adams [1] is mandatory. He was the first to observe that
one can derive Kiinneth spectral sequences from universal coefficient spectral
sequences, and he observed that, by duality, the four spectral sequences of The-
orems 4.5 and 4.7 imply two more universal coefficient and two more Kiinneth
spectral sequences. He derived spectral sequences of this sort under the hypoth-
esis that his given ring spectrum FE is the colimit of finite subspectra E, such
that H*(E,; E*) is E*-projective and the Atiyah-Hirzebruch spectral sequence
converging from H*(Eq; E*) to E*(E,) satisfies E; = Eo,. Of course, this is an
ad hoc calculational hypothesis that requires case-by-case verification. It covers
some cases that are not covered by our results, and conversely.
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5. The construction of the spectral sequences

The construction is similar to the construction of Eilenberg-Mac Lane spec-
tra at the end of Section 2. For a right R-module M, we choose a m,(R)-free

resolution
(5.1) —»Fpin_l — o — Fp-Sm (M) — 0.

Let Qo = kere and Qp, = kerd,, for p > 1, so that d, defines an epimorphism
Fp, — Qp—1. For p > 0, let K, be the wedge of one (p+ s)-sphere for each basis
element of F}, of degree s and let My = M. Proceeding inductively, we can use
freeness to construct cofiber sequences of right R-modules

(5.2) FK,2 M, %M, 2 TFK,

for p > 0 that satisfy the following properties:

(i) ko realizes € on 7.

(il) me(Mp) = XPQp-1 for p > 1.
(iii) kp realizes ¥?d, : ¥PF, — XPQ,_; on , for p > 1.

(iv) ip induces the zero homomorphism on 7, for p > 0.

(V) Jp+1 realizes the inclusion £P*+1Q, — TP+1F, on 7, for p > 0.
Observe that (iii) implies the case p + 1 of (ii) together with (iv) and (v).
To obtain the spectral sequence for Tor, we define

(5.3) D, , = Tprq+1(Mps1 AR N) and E, = mpio(FK, AR N).
The maps displayed in (5.2) give maps

i=(ip)x : D}y o410 — Dp 4

j = (jp+1)* : DglJ,q - E;,q
k=(kp)«: E';,q — D;l,_lyq.
These display an exact couple in standard homological form. We see from I11.3.9
that E} | = (F, ®r. N.), and that d; agrees under the isomorphism with d® 1.
This proves that
2 R.
E .= Torp’q(M*,N*).

Observe that k : Ej , — DL, ; can and must be interpreted as
7qg(FKo AR N) — mg(M AR N).
On passage to EZ, it induces the edge homomorphism
(5.4) E},=M,®g, N. — m.(M Ar N).

The convergence is standard, although it appears a bit differently than in most
spectral sequences in current use. Write ig p for both the evident composite map
M — M, and its smash product with N. We filter 7,(M Ag N) by letting
E,m.(M Ag N) be the kernel of

(iO,P+1)* : W*(M AR N) — W*(Mp+1 AR N)
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By (iv) above, we see that the telescope tel M), is trivial. Since the functor
(=) Ar N commutes with telescopes, tel(M, Ar N) is also trivial. This implies
that the filtration is exhaustive. Consider the (p,¢)th term of the associated
bigraded group of the filtration. It is defined as usual by

ES (M AR N) = FyTtpsg(M Ag N)/Fpipiq(M AR N),

and the definition of the filtration immediately implies that this group is isomor-
phic to the image of

(t0,p)x : Tptq(M AR N) — Tpiq(Mp AR N).

The target of (i0,p)« is D}_; ., and of course E} ; = Tpyq(FK, Ag N) also maps
into D},_Lq, via k. It is a routine exercise in the definition of a spectral sequence
to check that k& induces an isomorphism

Eg, — Im(io ).

(We know of no published source, but this verification is given in [7, §6].)

To see the functoriality of the spectral sequence, suppose given a map f :
M — M’ of R-modules and apply the constructions above to M’, writing Fy,
etc. Construct a sequence of maps of R,-modules f, : F, — F, that give
a map of resolutions. We can realize the maps f, on homotopy groups by R-
module maps FK, — FK. Starting with f = fo and proceeding inductively,
a standard cofiber sequence argument allows us to construct a map Mp.1 —

M;,_,,l such that the following diagram of R-modules commutes up to homotopy:
FK, M, Mpi1 YFK,
FK, M, My TFK,.

There results a map of spectral sequences that realizes the induced map
Tor%:; (M., N.) — Torf, (M., N,)

on E? and converges to (f Ag id),. Functoriality in N is obvious.
To obtain the analogous spectral sequence for Ext, we switch from right to

left modules in our resolution (5.1) of M, and its realization by R-modules. We
define

(5.5) DY =m_p_o(Fr(Mp,N)) and EP? = 71_p,_o(Fr(FK),, N)).
The maps displayed in (5.1) give maps
i = (ip)*: DYTHI™1 — pha
j=(kp)* : DY — EP?

k= (jps1)* : ED? — DM
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These display an exact couple in standard cohomological form. We see by I11.6.9
that ED'? & Hom%. (F,, N*), where F,, is regraded cohomologically, and that d;
agrees with Hom(d, 1) under the isomorphism. This proves that

E%? = ExtBI(M*,N*).
Observe that j : D97 — E? can and must be interpreted as
T—qg(FrR(M,N)) — m_q(Fr(FKy, N)).
On passage to FEg, it induces the edge homomorphism
(5.6) 7—q(Fr(M,N)) — Hom%.(M*,N*) = EY°.
To see the convergence, let
L Fr(Mp,N) — Fgr(M,N)

be the map induced by the evident iterate M — M), and filter 7,(Fr(M,N))
by letting FPm,(Fr(M, N)) be the image of

(09 s 7 (Fr(My, N)) — m.(Fr(M, N)).
The (p, q)th term of the associated bigraded group of the filtration is
B3, (Fa(M, N)) = FPn_y_o(F(M, N))/FP*'n_,_o(Fr(M, N)).
The group EPJ is defined as the subquotient Z2:9/BP:? of ET*?. where
B = j(ker(:"P),),

and a routine exercise in the definition of a spectral sequence shows that the
additive relation (:%P), o j~! induces an isomorphism

EL = Efm (Fr(M, N)).
Since tel M, is trivial, so is the homotopy limit, or “microscope”,
mic Fr(Mp, N) = Fr(tel Mp, N).

By the lim" exact sequence for the computation of 7, (mic Fr(M,, N)), we con-
clude that

lim 7, (Fp(Mp,N)) =0 and lim 7. (Fr(Mp, N)) =0.

This means that the spectral sequence {EP:?} is conditionally convergent. The
functoriality of the spectral sequence is clear from the argument for torsion prod-
ucts already given.

Finally, turning to the proof of Proposition 4.4, consider the pairing

Fr(M,N) Ag Fr(L, M) — Fg(L, N).

Construct a sequence {L,} as in (5.2). Then the maps M — M, induce a
compatible system of pairings

FR(MP,N) AR FR(LPI,M)—éFR(M,N) AR FR(LPI,M)—>FR(LPI,N).
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These induce the required pairing of spectral sequences. The convergence is
clear, and the behavior on E» terms is correct by comparison with the axioms
or by comparison with the usual construction of Yoneda products.

6. Eilenberg-Moore type spectral sequences

Let R be an S-algebra and let M be a right and N a left R-module. Let F
be an associative ring spectrum in the sense of classical stable homotopy theory.
By 1.6.7 and II.1.9, we may assume without loss of generality that E is an
associative S-ring spectrum (in the sense to be defined formally in V§2). Under
several different further hypotheses, we shall construct a spectral sequence of the
form

(6.1) TorZ: B (E. (M), E.(N)) = Ep1o(M AR N).
The simplest version of this spectral sequence is the following one.

THEOREM 6.2. A spectral sequence of the form (6.1) exists if E.(R) is a flat
right R.-module.

PROOF. By a standard comparison of homology theories argument, the flat-
ness hypothesis implies that, for left R-modules N, the natural map

E.(R) ®g. N. — m.((E As R) Ag N) 2 m,(E Ag N) = E,(N)

is an isomorphism. It also ensures that the functor E,(R) ®g, (—) carries the
exact sequence (5.1) to an exact sequence of E,(R)-modules. We now apply
the functor E.(—) = m.(E Ag —), rather than the functor ., to the sequence
of cofibrations obtained from (5.2) by smashing over R with N and find that
the rest of the proof of Theorem 4.1 carries over verbatim. In fact, if R is
commutative, then the spectral sequence (6.1) results from the first spectral
sequence of Theorem 4.1 by applying the exact functor E.(R) ®g, (=). O

This flatness hypothesis is generally unrealistic. By assuming that E is also
an S-algebra and exploiting the S-algebra E Ag R, we can obtain a theorem like
this without flatness hypotheses. We need a lemma.

LEMMA 6.3. Let R be an S-algebra such that (R,S) has the homotopy type
of a relative CW S-module and let M and N be right and left cell R-modules.
Then M, N, and M Ag N have the homotopy types of cell S-modules.

Proor. Up to homotopy, S — R is a cofibration of S-modules and R/S is
a CW S-module. Since FrX = R AsFsX, it follows from the cofiber sequence

FsX — RAgFsX — R/SA5F3X

that Fgr X has the homotopy type of a CW S-module if X has the homotopy
type of a CW spectrum. Therefore sphere R-modules and, by II1.3.7, their
smash products are of the homotopy types of CW S-modules. The conclusion
follows. [
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THEOREM 6.4. Let E and R be S-algebras and assume that (R, S) is of the
homotopy type of a relative CW S-module. Let M be a right and N a left R-
module. Then there is a spectral sequence of the form

TorZ: ) (E.(M), E«(N)) => Ep4q(M Ag N).
PROOF. Replace the triple (R; M, N) in Theorem 4.1 by the triple
(Ens R, ENg M,E Ag N).
The E? term of the resulting spectral sequence is
TorENsB)+ (B Ag M), (E As N)).
It converges to 7. ((E As M) Agasr (E As N)) and, by II1.3.10, we have
(ENs M) Agnsr (E As N) =2 EAs (M AR N).

Since we are working in derived categories, we may assume that M and N are
cell R-modules. Then M, N, and M Ar N are of the homotopy types of CW
S-modules, and 1.6.7 and II.1.9 imply that their smash products over S with E
are isomorphic in h.% to the corresponding internal smash products. This is also
true for R/S, and of course E Ag S = E ~ E AS. We conclude that

(Ens R). X ELR), (EAs M), 2E (M) and (EAgN).=E,(N),
so that the E? term of the spectral sequence is as stated, and
T«((E As M) Ngasr (E As N)) = E.(M Ag N),
so that the target of the spectral sequence is also as stated. [

The hypothesis that (R, S) is of the homotopy type of a relative CW S-module
results in no loss of generality since, as discussed in I1I§4, the model category
theory of Chapter VII implies that, for any S-algebra R, there is a g-cofibrant
S-algebra AR and a weak equivalence A : AR — R. The map A induces an
equivalence of categories 9 ~ Pag, and (AR, S) is of the homotopy type of a
relative CW S-module.

REMARK 6.5. To deal with multiplicative structures, it is important to work
with commutative S-algebras. As we shall see in Chapter VII, the category of
commutative S-algebas also admits a model category structure. However, we
do not believe that its g-cofibrant objects are of the homotopy types of relative
CW S-modules. This is a significant technical difference between the theories of
S-algebras and of commutative S-algebras. One way of getting around this diffi-
culty is to approximate commutative S-algebras by g-cofibrant non-commutative
S-algebras. We shall find a more satisfactory solution in VII§6, where we examine
the homotopical properties of g-cofibrant commutative S-algebras. The results
there show that the proofs of Theorem 6.4 and of Theorem 7.7 below work in
the commutative context provided that we assume that our given commutative
S-algebras are g-cofibrant.
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7. The bar constructions B(M,R,N) and B(X,G,Y)

The spectral sequence (6.1) is reminiscent of the Rothenberg-Steenrod-Eilen-
berg-Moore spectral sequence

(7.1) Tor?,®)(E,(X), E.(Y)) = E.B(X,G,Y),

where G is a topological monoid, X is a right G-space, Y is a left G-space, and
B(X,G,Y) is the two-sided bar construction [51]. We here describe a spectrum
level two-sided bar construction B(M, R, N) that explains the analogy. We will
use the bar construction to derive a version of (6.1) for general commutative ring
spectra, E that applies under different, and more realistic, flatness hypotheses
than those of Theorem 6.2, and we will show that the classical spectral sequence
(7.1) is a special case.

DEFINITION 7.2. For an S-algebra (R, ¢,7), a right R-module (M, ), and a
left R-module (N, v), define a simplicial S-module B.(M, R, N) by setting

B,(M,R,N) = M Ag RP Ag N,

where RP is the p-fold Ag-power, interpreted as S if p = 0. The face and
degeneracy operators on By(M, R, N) are

;L/\(idR)p—l/\idN ifi=0
di = Sidy A(IdR) AP A (idr)P "1 Aldy ifO<i<p
idpy A(dR)P~t AV ifi=p

and s; = idp A(idgr)*AnA(idg)P*Aidy if 0 < i < p. If M is an (R, R)-bimodule,
then B,(M, R, N) is a simplicial R'-module.

We will discuss the geometric realization of simplicial spectra in X§§1-2, and
we agree to write

B(M,R,N) = |B.(M,R,N)|.

By X.1.5, geometric realization carries simplicial R-modules to R-modules. By
XII.1.2 and X.1.2, there is a natural map

(7.3) ¥:B(R,R,N) — N

of R-modules that is a homotopy equivalence of S-modules. More generally, by
use of the product on R and its action on the given modules, we obtain a natural
map of S-modules

(7.4) v:B(M,R,N) — M Ag N.
PROPOSITION 7.5. For a cell R-module M and any R-module N,
Y:B(M,R,N) — M Agr N

15 a weak equivalence of S-modules.
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PROOF. If M is the constant simplicial R-module at M, then, by X.1.3 and
the isomorphism M Ag R & M, we have

M Ag B(R,R,N) = |M Ag B.(R,R,N)| = B(M, R, N).

Moreover, under this isomorphism, id Ay agrees with 1. Since ¥ of (7.3) is a
weak equivalence of R-modules, the conclusion follows from II1.3.8. [

For the bar construction to be useful calculationally, the simplicial spectrum
B.(M, R, N) must be proper, in the sense of X.2.1 and X.2.2. By the following
result, which is part of IX.2.8, we lose no generality by assuming this.

PROPOSITION 7.6. If R is a q-cofibrant S-algebra, then B,(M,R,N) is a
proper simplicial S-module.

By X.2.9, when B,(M, R, N) is proper, we can use the simplicial filtration
of B(M, R, N) to construct a well-behaved spectral sequence that converges to
E.B(M, R, N) for any spectrum FE. When E is a commutative ring spectrum,
we can use flatness hypotheses to identify the Ey term. Recall that, in algebra, if
A is an algebra over a commutative ring k, then there is a notion of a relatively
flat A-module F', for which the functor (=) ® 4 F is exact when applied to k-split
exact sequences. The obvious examples are the relatively free A-modules A®y L
for k-modules L. There is a concomitant relative torsion product Tor{**) (M, N),
and similarly for graded algebras over commutative graded rings. When k is a
field, these reduce to ordinary absolute torsion products.

THEOREM 7.7. Let E be a commutative ring spectrum. Let R be an S-algebra
such that (R, S) is of the homotopy type of a relative CW S-module. Let M be a
right and N a left cell R-module such that B.(M, R, N) is proper. If E.(R) and
either E.(M) or E.(N) is E.-flat, then the bar construction spectral sequence
converging to

E.B(M,R,N) > E,(M Agr N)

satisfies
E? = Tor{Z-(R1E)(E, (M), EL(N))

PROOF. Our hypotheses ensure that we can use smash products over S and
internal smash products interchangeably when computing homology and homo-
topy groups. Our flatness hypotheses ensure that

E.(M As RP As N) = E,(M) ®. E.(R)®? ®p. E.(N),

where the p-fold tensor power is taken over E,. This determines the E-homology
of the spectrum of p-simplices of B.(M, R, N). Since B.(M, R, N) is proper,
it follows that the complex that computes E? (see X.2.9) is the standard bar
complex for the computation of the relative torsion product. [

Intuitively, interchanging the roles of M and N in the proof of Proposition
7.5, we see that the filtration quotients

F,B(M,R,R)/F,—1B(M,R,R)
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play a role similar to that played by the terms FK,, in the construction of the
spectral sequence of Theorem 6.2.

As promised, we have the following result, which shows that the spectral
sequence of (7.1) is a special case.

THEOREM 7.8. Let G be a topological monoid, X a right G-space, and Y a
left G-space. Then X°G, is an S-algebra, *° X, is a right ¥*°G-module,
and LY, is a left ¥°G-module. Moreover, there is a natural isomorphism
of S-modules

Y®B(X,G,Y)+ & B(X*°X4,X°G,4,Z%Y,),
and B, (E®° X, LG, 2°Y, ) is proper if G is nondegenerately based.

PROOF. The first statement is immediate from 1.8.2 and I1.1.2, together with
the obvious identification

X NY, = (X xY);
for spaces X and Y. The product on ¥*°G, is induced from the product on G,
Y®G4 Ag TG4 2 X®°(G x G)y — XG4,

and similarly for the actions on ¥*° X and £°°Y,. The second statement follows
from the fact that the functors ©°° and geometric realization commute, by X.1.3,
and that 3°° preserves properness; see X.2.1. We obtain an identification of
simplicial spectra

Y®B(X,G,Y)s = B, (2 X, LG4, XY,)
by applying 2°° to the spaces
(X xGPxY);y 2 XL AN(G4)PAY,

where (G4)P is the p-fold smash power. If G is non-degenerately based, then
B.(X,G,Y), is a proper simplicial based space. [J
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CHAPTER V

R-ring spectra and the specialization to MU

In this chapter, we think of the derived category of R-modules as an analog of
the stable homotopy category. From this point of view, we have the notion of an
R-ring spectrum, which is just like the classical notion of a ring spectrum in the
stable homotopy category. We shall study such homotopical structures in this
chapter.

We first show how to construct quotients M/IM and localizations M[X 1] of
modules over a commutative S-algebra R. We then study when these construc-
tions inherit a structure of R-ring spectrum from an R-ring spectrum structure
on M.

When specialized to MU, our results give more highly structured versions of
spectra that in the past have been constructed by means of the Baas-Sullivan
theory of manifolds with singularities or the Landweber exact functor theorem.
At least at odd primes, we obtain an entirely satisfactory, and surprisingly simple,
treatment of M U-ring structures on the resulting MU-modules.

1. Quotients by ideals and localizations

Let R be a commutative S-algebra. We assume that all given R-modules M
are of the homotopy types of cell R-modules, but we must keep in mind that
R itself will not be of the homotopy type of a cell R-module. By III.1.4, we
have a canonical weak equivalence of R-modules ( : Sg — R, where the sphere
R-module Sg = FgS is the free R-module generated by S, and we implicitly
replace R by Sg when performing constructions on R regarded as an R-module.
Concomitantly, we must sometimes replace the unit isomorphism RAg M = M
by its composite with the weak equivalence ¢ Aid. This is consistent with the
standard practice of replacing spectra by weakly equivalent CW spectra without
change of notation.

We shall work throughout in the derived category 2 of R-modules. To de-
duce S-module or spectrum level conclusions from our R-module level arguments,
we must apply the forgetful functors 2 — @5 and 25 — h.#. The process
is routine, but it does entail reapproximating cell R-modules by CW S-modules
or CW spectra since, in general, cell R-modules need not be of the homotopy

91
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types of CW S-modules or of CW spectra.
We are interested in homotopy groups, and we make use of the isomorphisms

(1.1) (M) = hS(S™, M) = htts(S2, M) = htlp(SE, M)

to represent elements as maps of R-modules, where, as usual, S§ = FrS™. We
write M, = m. (M), and we do not distinguish notationally between a repre-
sentative map of spectra S®™ — M and a representative map of R-modules
S — M.

By III.3.7 and standard properties of spectrum level spheres ([38, pp 386-389)),
we have a system of equivalences of R-modules

(1.2) S% AR S~ ST

that is associative, commutative, and unital up to a coherent system of homotopy
equivalences and is compatible with suspension as ¢ and r vary. For a pairing of
R-modules L Ag M — N, we therefore obtain a pairing of homotopy groups

L* ®R. M* — N*-

Of course, L A M is an R-module since R is commutative.

For z € R, thought of as an R-map S — R, we have the R-map
(1.3) S% AR MR AR M = M.
This map of R-modules realizes multiplication by z on M,. We agree to write
X" M for S Agp M and to write z : ¥"M — M for the map (1.3) throughout
this chapter. By II1.3.7, S Agr M is isomorphic as an R-module to S% Ag M
and, by 1.6.7 and I1.1.9, S5 As M is weakly equivalent as a spectrum to S™ A M.
Therefore, on passage to h.¥, the R-module "M is a model for the spectrum
level suspension of M.

DEFINITION 1.4. Define M/zM to be the cofiber of the map (1.3) and let
p: M — M/xzM be the canonical map. Inductively, for a finite sequence
{z1,...,zn} of elements of R,, define

M/(z1,... ,zy)M = N/z,N, where N =M/(z1,...,Zn-1)M.

For a (countably) infinite sequence X = {z;}, define M/XM to be the tele-
scope of the M/(x1,... ,z,)M, where the telescope is taken with respect to the
successive canonical maps p.

We have the following analogue of the universal property of quotients by
principal ideals in algebra.

LEMMA 1.5. Let N be an R-module such that x : ¥"N — N 1is zero and
let 1 M — N be a map of R-modules. Then there is a map of R-modules
&: M/zM — N such that Go p = a, and & is unique if [T M, N]g = 0.
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Proor. This is obvious from the diagram
£ M ~E—> M~ M/zM ——grti Mg
"N —— N,
in which the row is the cofiber sequence that defines M/zM. O
Clearly we have a long exact sequence
(1.6) -+ — 7rq—n(l\/f)i”rquw)““i”rq(]\/I/:’?A/I) — Mg—n-1(M) — -

If z is not a zero divisor for m.(M), then p, induces an isomorphism of R.-
modules

(1.7) mo(M)Jzm (M) & 1, (M/zM).

If {z1,...,z,} is a regular sequence for 7,(M), in the sense that z, is not a zero
divisor for m,(M)/(x1, ... ,Zi—1)m(M) for 1 < ¢ < n, then

(1.8) Te(M)) (@1, .. Ta)Te (M) = 1o (M/(21, ... ,z0)M),

and similarly for a possibly infinite regular sequence X = {z;}. We shall see
in a moment that M/XM is independent of the ordering of the elements of
the set X. If I denotes the ideal generated by a regular sequence X, then, by
Corollary 2.10 below, M/X M is independent of the choice of regular sequence
(under reasonable hypotheses) and it is reasonable to define

(1.9) M/IM = M/XM.

However, this notation must be used with caution since, if we fail to restrict
attention to regular sequences X, the homotopy type of M/X M will depend on
the set X and not just on the ideal it generates. For example, quite different
modules are obtained if we repeat a generator x; of I in our construction.

As in algebra, we can describe the construction on general R-modules M as
the smash product of M with the construction on R regarded as an R-module.
We write R/X or R/I instead of R/XR or R/IR.

LEMMA 1.10. For a sequence X of elements of R, there is a natural isomor-
phism in Dgr

(R/X)Ag M — M/XM.
In particular, for a finite sequence X = {z1,... ,zn},
R/(z1,...,2n) =~ (R/z1) AR -+ AR (R/Z4),

and R/X is therefore independent of the ordering of the elements of X.
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Proor. Working on the point-set level, we have an isomorphism of cofiber
sequences :
St AR RAr M 284 R Ap M 289 (R/2R) AR M

I

SEARM z M—2 M/zM.

We only claim an isomorphism in Zg since, working homotopically, we should
replace R by Sgr and use the weak equivalence (Aid: SgAR M — RAr M
to obtain a composite weak equivalence (Sg/xSg) A M — (R/zR)AR M —
M/xM. The rest follows by iteration and use of the commutativity of Ag. O

We turn next to localizations of R-modules at subsets X = {z;} of R,. We
restrict attention to countable sets for notational convenience, but this restriction
can easily be removed. Let {y;} be any cofinal sequence of products of the z;,
such as that specified inductively by y; = z1 and y; = z1 - - - z;%i-1. If y; € Ry,
we may represent y; by an R-map S% — Sr™, which we also denote by y;. Let
qo = 0 and, inductively, ¢; = ¢;—1 + n;. The map of R-modules

iNid
S% Ar MYEEES2™ Ap M

represents y;. Smashing over R with S,}q""‘ and using equivalences (1.2), we
obtain a sequence of maps of R-modules

(1.11) S;cqi—l AR M — S‘Eqi Ar M.

DEFINITION 1.12. Define the localization of M at X, denoted M[X~!], to
be the telescope of the sequence of maps (1.11). Since M ~ S% Ar M in g,
we may regard the inclusion of the initial stage S% Ar M of the telescope as a
natural map A\ : M — M[X~1].

Again, we have an analogue of the standard universal property of localization
in algebra.

LEMMA 1.13. Let N be an R-module such that z; : Y5 N — N, degz; = k;,
is an equivalence for each i and let « : M — N be a map of R-modules. Then
there is a unique map of R-modules & : M[X~!] — N such that Go X = a.

PROOF. Passage to telescopes gives & : M[X '] — N[X~1] ~ N. The lim*
term is zero in the exact sequence

0 — lim! [Z17% M, N]p — [M[X~!],N]g — lim[£~%M,N]gp — 0
since the maps of the inverse system are isomorphisms. Therefore & is unique. [J

Since homotopy groups commute with localization, by III.1.7, we see imme-
diately that A induces an isomorphism of R,-modules

(1.14) m(M[X ) & m (M)[X Y.

Arguing as in Lemma 1.10, we see that the localization of M is the smash
product of M with the localization of R.



Copyright 1996 by the American Mathematical Society. Not for distribution.

2. LOCALIZATIONS AND QUOTIENTS OF R-RING SPECTRA 95

LEMMA 1.15. For a set X of elements of R., there is a natural weak equiva-
lence
RX N ArM — M[X7Y).
Moreover, R[X '] is independent of the ordering of the elements of X. For sets
X andY, R[(XUY)~1 is equivalent to the composite localization R[X~1][Y ~1].

PRrROOF. The independence of ordering is shown by use of the union of any
two given cofinal sequences. The last statement is shown by use of the usual
Fubini type theorem for iterated homotopy colimits. O

2. Localizations and quotients of R-ring spectra

Again, fix a commutative S-algebra R. Since Zg is a symmetric monoidal
category under Ar with unit R, we have the notion of a monoid or a commu-
tative monoid in 5. These are the analogs of associative or of associative and
commutative ring spectra in classical stable homotopy theory. As there, we must
allow weaker structures.

DEFINITION 2.1. An R-ring spectrum A is an R-module A with unit n: R —
A and product ¢ : AAgr A — A in Pg such that the following left and right
unit diagram commutes in Zg:

RARADY Ang A8 AngR

SIS

A.

Of course, by neglect of structure, an R-ring spectrum A is a ring spectrum
in the sense of classical stable homotopy theory; its unit is the composite of the
unit of R and the unit of A and its product is the composite of the product of
A and the canonical map

ANA~ANg A— ANRA.

Similarly, for an R-ring spectrum A, we have the evident homotopical notion of
an A-module spectrum M. Here, in conformity with the definition just given,
we only require that the action p : A Ag M — M satisfy the unit condition
po(nAid) =id in 2. When A is associative, it is conventional to insist that
M also satisfy the evident associativity condition. These structures play a role
in the study of our new derived categories of R-modules that is analogous to the
role played by ring spectra and their module spectra in classical stable homotopy
theory. When R = §,1.6.7 and I1.1.9 imply that S-ring spectra and their module
spectra are equivalent to classical ring spectra and their module spectra.

LEMMA 2.2. If A and B are R-ring spectra, then so is AANg B. If A and B
are associative or commutative, then so is A Ar B.

We ask the behavior of quotients and localizations with respect to R-ring
structures. For localizations, the answer is immediate. We shall give a sharper
point-set level analogue of the following result in VIII§2.
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PROPOSITION 2.3. Let X be a set of elements of R.. If A is an R-ring spec-
trum, then A[X 1] is an R-ring spectrum such that A\ : A — A[X~!] is a map
of R-ring spectra. If A is associative or commutative, then so is A[X 1.

PROOF. Since A[X~!] ~ R[X~!] AR 4, it suffices to prove that R[X 1] is an
associative and commutative R-ring spectrum with unit A. Lemma 1.15 gives
an equivalence

RIX YArRX Y ~RX X ~RX™
under R, and this equivalence is the required product. O

This doesn’t work for quotients since (R/X)/X is not equivalent to R/X.
However, we can analyze the problem by analyzing the deviation, and, by Lemma
1.10, we may as well work one element at a time. We have a necessary condition
for R/x to be an R-ring spectrum that will be familiar from classical stable
homotopy theory. We generally write 7 and ¢ for the units and products of R-
ring spectra; as stated before, we write X" for the module theoretic suspension
functor S% Ar (—).

LEMMA 2.4. Let A be an R-ring spectrum. If A/xA admits an R-ring spec-
trum structure such that p : A — A/zA is a map of R-ring spectra, then
z:A/zA — A/zA is null homotopic as a map of R-modules.

PROOF. We have the following commutative diagram (where we omit suspen-
sion coordinates from the labels of maps):

SR A (A/zA) 225 w1 (A/zA) AR (A/zA) Z (4/2A4) AR (A/zA)

Tk )

E(A/zA) = A/zA.

In view of the following commutative diagram, its top composite is null homo-
topic:
TrA—E—— A
/ lp 1/)
Y"R—> L (A/zA) —— A/TA.
O

Thus, for example, the Moore spectrum S/2 is not an S-algebra since the map
2:8/2 — 8§/2 is not null homotopic.

We need a lemma in order to obtain an R-ring spectrum structure on R/z in
appropriate generality.

LEMMA 2.5. Let p: R — M be any map of R-modules. Then
(pAid)op=(idAp)op: R— M Ag M.
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PROOF. Since A = Ao7: RAgr R — R, the following diagram commutes:

RARR

y \
RA

M AgR R

R
N %

M Ag M.

THEOREM 2.6. Let ¢ € R,, where m,41(R/z) = 0 and map+1(R/z) = 0.
Then R/x admits a structure of R-ring spectrum with unit p : R — R/z.
Therefore A/ XA admits a structure of R-ring spectrum such that p : A —
A/X A is a map of R-ring spectra for every R-ring spectrum A and every sequence
X of elements of R, such that mp4+1(R/z) =0 and man4+1(R/z) =0 forallx € X,
where degz = n.

ProOOF. Consider the following diagram in the derived category Zg:

(2.7)

22n+1R
.
yrtlR—*—>7%R
v - p p

£"(R/z) 2> R/z L% (R/2) Ar (R)2) <= 24 (R/2) > S(R/)

e

22n+2R'

The map z is that specified by (1.3). The bottom row is the cofiber sequence
that results from the equivalence

(R/z) Ar (R/z) ~ (R/T)/z

of Lemma 1.10, and the column is also a cofiber sequence. The composite zop is
null homotopic since poz is null homotopic and the square commutes. Therefore
there is a map v such that mov = p, and v is unique since 7,1 (R/z) = 0. Since
movoz = pozx = 0, voz factors through a map £?"*'R — R/z. Since
Ton+1(R/z) = 0, such maps are null homotopic. Thus v o z is null homotopic.
Therefore there is a map o such that cop = v. Now rocop =mov = p,
hence (m oo —id)p = 0. Therefore 7 o o — id factors through a map £?"*2R —
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Y+l (R/x). Again, such maps are null homotopic. Therefore m o o = id. Thus
the bottom cofiber sequence splits (proving in passing that z : ¥"(R/z) — R/z
is null homotopic, as it must be). A choice ¢ of a splitting gives a product on
R/z. The unit condition ¢o(pAid) = id is automatic. To see that ¢o(id Ap) = id,
we observe that, by the lemma,

(po(idAp) —id)op=¢o(idAp—pAid)op=0.

Therefore ¢ o (id Ap) — id factors through a map ¥"*'R — R/z. Again, such
maps are null homotopic, hence ¢ o (id Ap) = id. This completes the proof that
R/x is an R-ring spectrum with unit p. The rest follows from Lemmas 1.10 and
22. O

The product on R/z can be described a little more concretely. The wedge
sum

(2.8) (pAid) Vo : (R/z)VE"TY(R/z) — (R/z) AR (R/T)

is an equivalence. The product ¢ restricts to the identity on the first wedge sum-
mand and to the trivial map on the second wedge summand. Thus the product
is determined by the choice of o, and two choices of o differ by a composite

(2.9) Zn+1<R/x)_7‘J_>E2n+2R——>(R/:1;) Ar (R/z).

By the splitting (2.8) and the assumption that 7,41 (R/z) = 0, we can view the
second map as an element of man12(R/z). If z is not a zero divisor, then 7, =0
on- homotopy groups and any two products have the same effect on homotopy
groups.

Before continuing our discussion of these R-ring spectra, we insert the follow-
ing easy consequence of the mere existence of the R-ring structure.

COROLLARY 2.10. Assume that R; = 0 if i is odd. Let X and Y be regular
sequences in R, that generate the same ideal. Then there is an equivalence of
R-modules £ : R/X — R/Y under R.

ProoOF. It suffices to construct a map £ under R since it will automatically
induce an isomorphism on homotopy groups. Each z; is an R.-linear combination
of the y; and each y; : R/Y — R/Y is zero. By Lemma 1.5, we obtain a unique
map §; : R/x; — R/Y under R. Since R/Y is an R-ring spectrum, we may
first take the smash product of these maps and then use the product (associated
conveniently) on R/Y and passage to telescopes (if X is infinite) to obtain £&. [

3. The associativity and commutativity of R-ring spectra

We assume given an R-ring spectrum A. For z € R, as in Theorem 2.6,
we give A/zxA ~ (R/z) Ar A the product induced by one of our constructed
products on R/z and the given product on A. We refer to any such product as a
“canonical” product on A/zA. Of course, we do not claim that every product on
A/zA is canonical. Observe that, by first using the product on A, the product
on A/zA can be factored through

¢ Arid: (R/z)Ar (R/z) Ag A — (R/z) AR A.
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This allows us to smash any diagram giving information about the product on
R/z with A and so obtain information about the product on A/zA. Obviously
any diagram so constructed is a diagram of right A-module spectra via the prod-
uct action of A on itself. This smashing with A can kill obstructions. Clearly, a
map of A-modules 94 — M is determined by its restriction S — M along
the unit of A regarded as a map of spectra (or S-modules), which is just an
element of 74(M). These considerations lead to the following result.

THEOREM 3.1. Let z € R, where mo41(R/z) = 0 and man+1(R/x) = 0. Let
A be an R-ring spectrum and assume that Ton12(A/zA) = 0. Then there is a
unique canonical product on A/zA. If A is commutative, then A/zA is commu-
tative. If A is associative and msn43(A/zA) =0, then A/zA is associative.

PROOF. The second arrow of (2.9) becomes zero after smashing with A since
it is then given by an element of o, 4+2(A/xA) = 0. This proves the uniqueness
statement. The commutativity statement follows since if ¢ is a canonical product
on A/zA, then sois ¢7. However, it may be worth displaying the obstruction that
lies in map42(A/xzA). Looking at the splitting (2.8), we see that ¢ is commutative
on the wedge summand R/z by the unit property. For the summand ¥"*!R,
consider the diagram

yntlp LA En+1(R/:I:) (¢—¢°T)°Ur R/z.
E2n+2R/

The horizontal composite is null homotopic since 7p+1(R/z) = 0. Thus there
exists 7 such that the triangle commutes. It is the obstruction to the commuta-
tivity of R/x, and smashing with A gives the obstruction to the commutativity
of A/zA.

For the associativity, consider the splitting displayed in the following diagram:

(R/z) VEHY(R/z) vEHY(R/z) V S 2(R /1)
[(R/x) VEM(R/z)] vV Z"[(R/z) v Z"T(R/z)]
[(pAid)Va]vErH1[(pAid) Vo]
[(R/z) Ar (R/z)] vV Z"*1[(R/z) AR (R/T)]
(R/z) AR [(R/z) vV E"*1(R/x)]

id A[(pAid) Vo]

(R/z) Ar (R/z) AR (R/z).

The question of associativity can be considered separately on the restrictions of
the iterated product to the four wedge summands. Via easy diagram chases, we
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see that, under the splitting (2.8) and unit isomorphisms, the natural maps
pAidAld: RAg (R/z) Ar (R/z) — (R/z) Ar (R/x) AR (R/Z)
and
idAapAid : (R/z) AR RAg (R/z) — (R/z) AR (R/z) AR (R/Z)

correspond to the inclusions of the first and third and first and second wedge
summands, respectively. Therefore the unital property of ¢ and the unital and
associativity properties of Ag imply that the restriction of ¢ to the first three
wedge summands is associative. Let w denote the displayed inclusion of the
fourth wedge summand and consider the diagram

n2nt2p _r 5 22n+2(R/5E) [po(pAid)—go(id Ad)]ow R/z

’
™

E3n+3R

Call the horizontal composite . If « is nullhomotopic then the deviation from
associativity [po (¢ Aid) — po(id A¢)]ow factors through a map 3" +3R — R/z.
Thus if 73, +3(R/x) = 0, then the element & € ma,42(R/x) is the obstruction to
the associativity of R/z. If both relevant homotopy groups become zero after
smashing with A, we can conclude that A/z A is associative if A is associative. [J

We can iterate the argument to arrive at the following fundamental conclusion.

THEOREM 3.2. Assume that R; = 0 if ¢ is odd and let X be a sequence of
non zero divisors in R. such that m.(R/X) is concentrated in degrees congruent
to zero mod 4. Then R/X has a unique canonical structure of R-ring spectrum,
and it is commutative and associative.

PROOF. We first observe that for an element z € 74(R), an R-module M,
and an R-module N such that r : 24N — N is null homotopic, the map
p: M — M/zM induces an epimorphism

p* : [M/.’L‘M,N}R -— [M,N]R

since the action z* : [M, N]gp — [E9M, N|g can be computed from the action
on N and is therefore zero. Let X,, be the subsequence consisting of the first
n elements of the sequence X. Then R/X is defined to be the telescope of
the R/X,, and Lemma 2.4 implies that multiplication by z, is null homotopic
on R/X for each n. Since R/X Agr R/X is equivalent to the telescope of the
R/X, Ar R/ Xy, we obtain a product on R/X from a canonical product on the
R/X, by passage to telescopes. Moreover, by the Mittag-LefHler criterion, our
first observation implies that all relevant lim! terms are zero. Thus it suffices
to show that any two products on X, become equal and the commutativity and
associativity diagrams for R/X, become commutative upon composition with
the map R/X, — R/X, and we may proceed by induction on n. The conclusion
follows since the obstructions to uniqueness, commutativity, and associativity of
each R/x, become trivial when we map to R/X. O
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4. The specialization to M U-modules and algebras

It was observed in [48] that MU can be constructed as an E, ring spectrum,
and we apply S Ag (—) to convert it to a commutative S-algebra. Of course, its
homotopy groups are concentrated in even degrees, and every non-zero element
is a non zero divisor. Thus Proposition 2.3, Theorem 2.6, and Theorem 3.2
combine to give the following result.

THEOREM 4.1. Let X be a regular sequence in MU,, let I be the ideal gen-
erated by X, and let Y be any sequence in MU,. Then there is an MU-ring
spectrum (MU/X)[Y 1] and a natural map of MU -ring spectra (the unit map)

n: MU — (MU/X)[Y ™}

such that
M : MU, — m.((MU/X)[Y ™))

realizes the natural homomorphism of MU, -algebras
MU, — (MU,/DY™!].

If MU, /I is concentrated in degrees congruent to zero mod 4, then there is a
unique canonical product on (MU/X)[Y 1], and this product is commutative
and associative.

In comparison with constructions of this sort based on the Baas-Sullivan the-
ory of manifolds with singularities or on Landweber's exact functor theorem
(where it applies), we have obtained a simpler proof of a substantially stronger
result. We emphasize that an M U-ring spectrum is a much richer structure than
just a ring spectrum and that commutativity and associativity in the MU-ring
spectrum sense are much more stringent conditions than mere commutativity
and associativity of the underlying ring spectrum. Observe that the assumption
that X is regular is used only to obtain the calculational description of 7,.

We illustrate by explaining how BP appears in this context. Fix a prime p
and write (—), for localization at p. Let BP be the Brown-Peterson spectrum
at p. We are thinking of Quillen’s idempotent construction, and we have the
splitting maps ¢ : BP — MU, and e : MU, — BP. These are maps of
commutative and associative ring spectra such that e o4 = id. Let I be the
kernel of the composite

MU, — MU,, — BP,.

Then I is generated by a regular sequence X, and our MU/X is a canonical
integral version of BP. For the moment, let BP' = (MU/X),. Let £ : BP —
BP' be the composite

BP—i>MU,~%- pp.

It is immediate that £ is an equivalence. In effect, since we have arranged that
(p has the same effect on homotopy groups as e, £ induces the identity map
of (MU, /I), on homotopy groups. By the splitting of MU, and the fact that
self-maps of MU, are determined by their effect on homotopy groups [2, I11.9.3],
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maps MU, — BP are determined by their effect on homotopy groups. This
implies that { o e = {, : MU, — BP’. The product on BP is the composite

BP A BP i MU, A MU, —*—> MU, —~> BP.

Since (, is a map of M U-ring spectra and thus of ring spectra, a trivial diagram
chase now shows that the equivalence £ : BP — BP’ is a map of ring spectra.

We conclude that our BP' is a model for BP that is an M U-ring spectrum,
commutative and associative if p > 2. The situation for p = 2 is interesting.
We conclude from the equivalence that BP’ is commutative and associative as
a ring spectrum, although we do not know that it is commutative or associative
as an MU-algebra.

Recall that m,(BP) = Z)[vildeg(v;) = 2(p* — 1)], where the generators v;
come from 7,(MU) (provided that we use the Hazewinkel generators). We list
a few of the spectra derived from BP, with their coeflicient rings. Let F,, denote
the field with p elements.

BP(n) Zglve,-..,vn) E(n) Zpylvr, ... vn,v; 1
P(n)  Fplvn,Vnt1,---]  B(n) Fplvsl,vn,vntr,. -]
k(n)  Fplva] K(n) TFplvn,v;!]

By the method just illustrated, we can construct canonical integral versions of
the BP{n) and E(n). All of these spectra fit into the context of Theorem 4.1.
If p > 2, they all have unique canonical commutative and associative M U-ring
spectra structures. Further study is needed when p = 2, but we leave that to the
interested reader. In any case, our theory makes it unnecessary to appeal to Baas-
Sullivan theory or to Landweber’s exact functor theorem for the construction and
analysis of spectra such as these.

We have started with MU because it appears in nature with a canonical
structure as a commutative S-algebra. However, it is also possible to start with
BP, using the second author’s result that BP admits a commutative S-algebra
structure; in fact, it admits uncountably many different ones [34].
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CHAPTER VI

Algebraic K-theory of S-algebras

In this chapter we apply the basic constructions of algebraic K-theory to the new
categories of modules over S-algebras. We show how to construct a K-theory
spectrum KR for each S-algebra R in such a way that K becomes a functor
from the category of S-algebras to the stable category. When R is a connective
commutative S-algebra, so is K R. We prove that weakly equivalent S-algebras
have equivalent K-theories, and we prove a Morita invariance result. When R is
connective we are able to give an alternate description of this K-theory in terms
of Quillen’s plus construction, a “plus equals S,” theorem. When R = Hk is
an Eilenberg-Mac Lane S-algebra, this K-theory is essentially Quillen’s algebraic
K-theory of the ring’k. When R = ¥*°|GSX|; is the suspension spectrum of
the space obtained by adjoining a disjoint basepoint to the geometric realization
of the loop group of the singular complex of a topological space X, this K-theory
is Waldhausen’s algebraic K-theory of the space X.

1. Waldhausen categories and algebraic K-theory

We first review the basic definitions of Waldhausen [71] that we shall use.

DEFINITION 1.1. A category with w-cofibrations ¥ is a (small) category with
preferred zero object “x”, together with a chosen subcategory co(%’) that satisfies
the following three axioms:

(i) Any isomorphism in % is a morphism in co(%); in particular, co(%)
contains all the objects of ¥.
(i1) For every object A in €, the unique map * — A is in co(%¥).
(iii) If A — B is a map in co(%), and A — C is a map in ¥, then the
pushout BII4 C exists in ¥ and the canonical map C — BIl4 C is in
co(%¥); in particular, € has finite coproducts.

We call the morphisms in co(%) w-cofibrations, and often use the feathered
arrow ‘“—” to denote them in diagrams. Although Waldhausen called these
arrows “cofibrations” we will consistently use the term “w-cofibration” so that
there will be no confusion with our standard use of the word “cofibration” to
mean those maps that satisfy the homotopy extension property (HEP).

103
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DEFINITION 1.2. A Waldhausen category (in [71], “a category with cofibra-
tions and weak equivalences”) is a category with w-cofibrations % and a chosen
subcategory w(%) of € that satisfies the following axioms:

(i) Any isomorphism in ¥ is a morphism in w(%); in particular, w(%)
contains all the objects of %.
(ii) Given any commutative diagram in €

C<—A——>B

L

C! <—— Al>—> B!

in which the vertical maps are in w(%) and the feathered arrows are in
co(%), the induced map BIl4 C — B’ Il 4 C' is in w(%).

We call the morphisms in w(%) weak equivalences, and often use the arrows
—5” to denote them. We say that the weak equivalences are saturated or
that € is a saturated Waldhausen category if whenever f and g are composable
arrows in % and any two of f, g, and gf are weak equivalences then so is the
third.

143

DEFINITION 1.3. A functor between Waldhausen categories is exact if it pre-
serves all of the above structure; i.e. it must send w-cofibrations to w-cofibra-
tions, weak equivalences to weak equivalences, the preferred zero object to the
preferred zero object, and it must preserve the pushouts along a w-cofibration.

We now have all the necessary ingredients to describe Waldhausen’s S, con-
struction [71]. Let % be a Waldhausen category. For each n > 0, define a
category S,% as follows. An object of S, % consists of n composible arrows in
co(%) starting from the preferred zero object *,

o a Qn—1
* = Ap>——> Ap>—— -+ Ay,

together with objects A;; for 0 < i < j < n and maps a;;: Aj — A;; such
that A;; = %, A; = Ag; with ag ; the identity map, and the diagrams

Q@j_10-0Q;
AT A

-

* > Aiyj

are pushouts for 0 <4 < j < n. A morphism of S, % from {4;, A, ;,a;,a;;} to

{A}, A; j,j,a; ;} is a sequence of maps f;: A; — A} such that the diagram

[o] o Qn—1
AO 0 Al 1 ... An

T

/ /
AO ’ Al ’ ey

ay ) a
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commutes. Observe that by the universal property of pushouts, we have induced
maps A;; — A} ; making all the appropriate diagrams commute. We give
S, % the structure of a Waldhausen category by defining a map {fo,..., fn} to
be a w-cofibration (resp. weak equivalence) if each f; is a w-cofibration (resp.

weak equivalence) of €. Observe that when {fo,..., fu} is a w-cofibration (resp.
weak equivalence) all the induced maps A; ; — A} ; are w-cofibrations (resp.

weak equivalences). Notice that Sy% is the trivial category and that $1¥ is
isomorphic to €.

For 0 < i < n, define di: S, ¢ — S,_1% to be the functor that drops the
k-th row and k-th column from the matrix {4;;}. More precisely, do sends the
object {A;, A; j, 5, 0,5} of S, € to the object {Bj, B; ;, B;j,b: 5} of Sn_1% where
Bj = A1j+1, Bij = Aiy1,j41, and the maps 8; and b; ; are the maps induced
from a;4; and a;41,;41 by the universal property of the pushout. For k > 0,
the functor di is defined similarly. For 0 < k < n, define sx: S, — Sp11%
to be the functor that repeats the k-th row and k-th column in the matrix
{Ai;}. More precisely, si sends the object {A;, A; ;,0;,a;;} of S,€ to the
object {Bja B;,;,j,ﬂj, b,,;’j} of Sn+1(g where

B, = A; ifj<k
7 Ajio ifi>k
Aij ifj <k

B,; = CAij-1 ifj>kandi<k
A¢_1,j_1 fi>k
o7 lf] <k
Qaj.q ifj >k
@i, ifj<k

bi; = Saij-1 ifj>kandi<k

Ai—1,j—1 ifi > k.

Observe that the functors di and s; satisfy the simplicial identities and the
collection {S,%} assembles into a simplicial category, which we denote S,%.
Furthermore, the functors dy and si are exact and S, has the structure of a
simplicial Waldhausen category. In particular, we can iterate this construction
to form the bisimplicial Waldhausen category S@‘f = 5,S,%, and the polysim-
plicial Waldhausen categories sMe = Se - S,€. We abbreviate the notation
for the category of weak equivalences in 5\ to wSME. We are interested
in the classifying spaces of these categories, the spaces ]wSﬁ")‘fl. Since Sp%
is the trivial category, we see that |/wS,%| is connected, and it is not much
harder to see that in general IwSS") %| is (n — 1)-connected. Observe that the
identifications of ¥ with S;% and more generally SMe with SlSSn)‘f induce
maps S|wé| — |wS,%| and SjwSME| — |wS" V% which are inclusions
of subcomplexes. It is a fundamental observation of (71, §1.3, 1.5.3] that in the
sequence

W€ — QS €| — Q2 |wSPE| —
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all maps beyond the first are homotopy equivalences. This motivates the follow-
ing definition.

DEFINITION 1.4. The algebraic K-theory of the Waldhausen category % is the
spectrification of the X-cofibrant prespectrum {|w%|, |{wS.%|, |wS£2) él,...}. We
denote this spectrum by the symbol K%. The algebraic K-groups of € are the
homotopy groups of this spectrum, K,,4 = 7, K% = mp4+1|wSe€|. In particular,
K,% =0forn<0.

Waldhausen observes that in the special case when % is an exact category
(where the w-cofibrations are the admissible monos, and the weak equivalences
are the isomorphisms) the algebraic K-groups defined above agree with those
defined by Quillen [58]. In fact, the basic properties of the Q-construction are
all easily provable in terms of the S, construction [67] (see also [53]).

Observe that an exact functor ¥ — 2 induces an exact functor S, —
S.2 and hence exact functors Sﬁ")‘f — Sﬁ")g. This induces a map of pre-
spectra {stn)‘g} — {wSS")@} and hence a map of spectra K€ — K2. If
the map (WS, €| — |wSe 2| is a weak equivalence, then the maps |wS£")‘€l —
[wSS")QI are weak equivalences and therefore homotopy equivalences. Since
these prespectra are X-cofibrant, maps between them that are spacewise ho-
motopy equivalences induce homotopy equivalences of their spectrifications. In
other words, an exact functor that induces a weak equivalence on |wS, —| induces
a homotopy equivalence of K-theory spectra. For this reason, although Wald-
hausen defines the algebraic K-theory of a Waldhausen category % to be the
space QwS, %], all the results we use from [71] apply to the K-theory spectra,
even when they are stated only for the K-theory spaces, and we will use them
this way without further comment; moreover, whenever we assert a result about
K-theory, we mean the result about the K-theory spectra unless otherwise noted.

2. Cylinders, homotopies, and approximation theorems

Let MoR % be the category whose objects are the morphisms of € and whose
morphisms are the commutative diagrams. For A, A’, B, B’ objects of ¥ and
a: A — A" and b: B — B’ maps of %, a and b are objects of MOR%. If
f:A— Band f': A’ — B’ are maps in ¥ that make the diagram

A—L>B

b

A/ ? BI
commute, then (f, f') is a map in MOR¥. When ¥ is a Waldhausen category,
we can give MOR % the structure of a Waldhausen category by saying that a
map (f, f') is a w-cofibration (resp. weak equivalence) of MOR ¥ if both f and
f' are w-cofibrations (resp weak equivalences) of ¥. We shall also need to define
a Waldhausen category C MoOR %, the underlying category of which is the full
subcategory of MOR % of objects a: A — A’ that are morphisms in co(%). The
weak equivalences in C MOR % are the weak equivalences of MOR € that lie in
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CMoOR%. A map (f,f') from a: A A’ to b: B — B’ is a w-cofibration of
CMor% if f is a w-cofibration of ¥ and the induced map A'II4 B — B’ isa
w-cofibration in %. Verification that C MoR % is a Waldhausen category can be
found in (71, 1.1.1].

DEFINITION 2.1. (cf. [71, 1.6]) Let ¥ be a Waldhausen category. A cylinder
functor is a functor T': MOR% — ¥ together with natural transformations ¢,

12, and p that make the following diagram commute for a morphism f: A — B
in %

A—-Tf<2<B
P74
B
and that satisfies the following properties:
(i) 49 0ép: AUB — Tf is in co(¥).
(ii) The functor (A — B) (AHBi—‘E?T f) is an exact functor MORE —
CMoRr¢¥.
(iii) T(x — B) = B, with p and i, the identity map.
We say that the cylinder functor satisfies the cylinder axiom if in addition

p: Tf — B is in w(%) for all morphisms f. We will often refer to ¢; and i, as
face maps and to p as the collapse map.

The importance of cylinder functors is shown by Waldhausen’s approximation
theorem (71, 1.6.7].

THEOREM 2.2 (APPROXIMATION THEOREM). Let & and # be saturated Wald-
hausen categories, where 2/ has a cylinder functor that satisfies the cylinder
aziom. Let F: of — % be an exact functor such that

(1) If f is a morphism in & such that F(f) is in w(&), then f is in w().
(ii) For any object A € & and any map f: FA — B, there exists a map

g: A— A in & and a weak equivalence h: FA' — B in w(#) such
that f = ho F(g):

F(A)—L 5B
F(y)l -
F(A

Then F induces a homotopy equivalence K&/ — KA.

REMARK 2.3. In [71] it is required that g be a w-cofibration, but [68] points
out that this requirement is unnecesary since we can use cylinders to replace an
arbitrary map with a w-cofibration.

Often, we have the situation where it is easy to make the diagram in 2.2(ii)

commute up to some kind of homotopy. By integrating the idea of homotopy
into Waldhausen’s language of K-theory, we can prove two easy but extremely
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useful corollaries of Waldhausen’s approximation theorem. To this end, we offer
the following definitions.

DEFINITIONS 2.4. Let € be a Waldhausen category with cylinder functor 7.
Observe that T' gives an exact functor [: € — % by restriction along the
exact functor 1: ¥ — MOR% that sends an object to its identity morphism.
We call (W, j1,72,9) a cylinder object of the object X if W = IX, ¢ = p (the
collapse map) and either j; = 1; and jo = i, or j1 =iy and jp = i;. We say that
(W, 41, J2, Q) is a generalized cylinder object of the object X, if W is the pushout
over alternate face maps of a sequence of cylinder objects, j1,j2: X — W are
the two unused face maps, and ¢: W — X is the gluing of the collapse maps; in
particular observe that g o j; = 1x for i = 1,2. We call two maps fi, fo: X —
Y homotopic if there exists a generalized cylinder object W of X and a map
¢: W — Y such that ¢oj; = f; for ¢ = 1,2. It is easy to see that this specifies
an equivalence relation.

Let us say that an exact functor F': € — 2 between Waldhausen categories
with cylinder functors preserves cylinder objects if there is a natural isomorphism
a: Flg = IoF such that a o F(i;) = i, and po a = F(p):

FIA FIA
Fy F(i2) W
FA o FA @ FA
IFA IFA

Observe that a functor that preserves cylinder objects also preserves generalized
cylinder objects, in the sense that a gives an isomorphism of FFW to a generalized
cylinder object W’ with a o F(ji) = j;, and ¢’ o a = F(q). It is easy to see that
when F preserves cylinder objects, F' also preserves the relation of homotopy of
morphisms.

THEOREM 2.5 (HOMOTOPY APPROXIMATION THEOREM). Let & and & be
small saturated Waldhausen categories with cylinder functors satisfying the cylin-
der aziom. Let F': &f — % be an exact functor that preserves cylinder objects
and such that

(i) If f ts a morphism in & such that F(f) is in w(&B), then f is in w(&).

(ii) For any object A € &/ and any map f: FA — B, there exists a map
a: A — X in & and a weak equivalence e: FX — B in w(#) such
that f is homotopic to e o F(a).

Then F induces a homotopy equivalence Ko/ — K3.

Proor. We produce an object A’ and maps g, h that satisfy condition (ii) of
Waldhausen’s approximation theorem.

We have assumed that f is homotopic to eo F'(a), so there exists a generalized
cylinder object (W', ji,74,q¢’) of FA and a map ¥: W — B with o j] = f
and 9 o j5, = e o Fa. We can construct in &/ the generalized cylinder object W
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with the same gluings of faces; then we have a: FW = W’ with a o F(j;) = 3,
since F' preserves cylinder objects.

Let A’ = W I, X, and let g be the evident map A — A’ induced by
ji: A— W. Then a induces an isomorphism FA" — W' Il F X, which we
will denote by &. Consider the map h=v Hp@y e: W llpe) FX — B. The
inclusion FX — W'Ilp,) FX is a weak equivalence by property 1.2.(ii), since
it is the pushout of the following weak equivalence of diagrams

Fx < pa-ids gy
~lid ~|id ~lj{

FX<—FA——>W'.
F(a) J1

The composite of this inclusion with h is the weak equivalence e, so we conclude
that h is a weak equivalence since # is saturated by assumption. Choosing h to
be the weak equivalence h o & makes diagram 2.2(ii) commute. [

The next corollary of Waldhausen’s approximation theorem requires some
preliminary definitions.

DEFINITIONS 2.6. We say that a map f: X — Y is a homotopy equivalence
if there exists a morphism g: Y — X so that f o g and g o f are homotopic to
the respective identity morphisms. In this case, we call g a homotopy inverse to
f. We say that % is a category with w-cofibrations and homotopy equivalences
or a Waldhausen homotopy category (WH category for short) if € is a saturated
Waldhausen category with cylinder functor satisfying the cylinder axiom such
that the weak equivalences are the homotopy equivalences.

We need to make an observation about the “derived” category of a WH cat-
egory, the category formed by inverting the homotopy equivalences. First note
that if f is a homotopy equivalence and g a homotopy inverse to f, then go f
and f o g are both identity morphisms in the derived category. From this, it is
easy to see that every map in the derived category of ¥ is represented by a map
in €.

One can ask when two maps give the same map in the derived category.
First observe that for homotopic maps fi, fo and homotopic maps g;, g2, the
compositions f; o g; and f2 o g2 are homotopic; so we can form the homotopy
category, h®, whose objects are the objects of ¥ and whose maps are homotopy
classes of maps. It is straightforward to verify that homotopic maps represent
the same map in the derived category, and that if two maps represent the same
map in the derived category then they are homotopic. We conclude that the
natural map from % to its derived category factors through A%, and that the
map from A% to the derived category is actually an isomorphism (not merely
equivalence) of categories.

The next result is now an immediate corollary to Theorem 2.5.
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COROLLARY 2.7. Let & and # be WH categories. Suppose F: & — R is
an ezact functor that preserves cylinder objects and that passes to an equivalence
on the derived categories. Then F induces a homotopy equivalence K&/ — K.

PROOF. We reduce to Theorem 2.5: Condition (i) is clear. For condition (ii),
choose X € & so that FX is isomorphic to B in the derived category of &.
Since every map in the derived category of & is represented by an actual map
in #, we can choose e: FX — B that represents this isomorphism. Then e is
a homotopy equivalence; let €’ be a homotopy inverse. Now there exists a map
a: A — X so that Fa: FA — FX represents the same map as €’ o f in the
derived category of &. We conclude that f is homotopic to eo Fa. [J

3. Application to categories of R-modules

For an S-algebra R, let €r be the full subcategory .#g consisting of the cell
R-modules, and €#r the category of CW R-modules and cellular maps. We
denote by f%r the full subcategory of €r of finite cell R-modules and f€#r
the full subcategory of €#r of finite CW R-modules; more precisely, we must
choose small full subcategories containing at least one object of each isomorphism
class, but the fact that the category of spectra has canonical colimits allows a
strict interpretation of the definition of cell and CW R-modules under which the
categories f€r and fE# g are already small. When ¥ is one of the categories
fbr or f€# R, we can give € the structure of a WH category as follows. We
define the category of w-cofibrations, co(%€), to consist of those maps which
are isomorphic (in MOR %) to the inclusion of a subcomplex, and the category
of weak equivalences w(%) to consist of those maps in % which are homotopy
equivalences. We take as our cylinder functor the ordinary mapping cylinder.

PROPOSITION 3.1. These definitions specify structures of WH-categories on
fEr and fE€#r and the inclusion f€HWr — [BCr is an exact functor which
preserves cylinder objects. Furthermore, when R is connective, this inclusion
induces a homotopy equivalence of K-theory spectra.

PROOF. We check the definitions directly. Let & be either fér or f€#r
with co(%) and w(%) as above.

First we check that co(%) is a category. Let f: A — B and g: B — C be
arrows in %. These are isomorphic to inclusions of subcomplexes, and without
loss of generality we can assume that f is the inclusion of a subcomplex and
that g is isomorphic to an inclusion ¢’: B’ — C with the isomorphism on the

codomain C the identity:
b

B——Dp'
gl g’
C===C.
By choosing different sequential filtrations if necessary we can assume that the
map B — C is sequentially cellular and therefore so is the map B — B’ (we

adjust the sequential filtration on A as well if necessary so that it remains a
subcomplex of B). Since C is built from B’ by attaching cells, we can form an
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isomorphic complex D by attaching the same cells to B via b~!. In the CW
case, D is CW and the isomorphisms to and from C are cellular because we have
assumed that the isomorphisms b and b~! are cellular. Now A4 is a subcomplex
of B, which is a subcomplex of D and the map A — D is isomorphic to the
map A — C.

Properties 1.1(i) and (ii) and 1.2(i) are clear as will be 1.2(ii) once we show
1.1(iii). Given a diagram in %

A—L-B

!

with f an arrow in co(%), we show that we can find a pushout in € so that
the map from C is the inclusion of a subcomplex. We can assume without loss
of generality that f is the inclusion of a subcomplex and that the map g is
sequentially cellular. Since B is built from A by attaching cells, we can form a
cell complex D by attaching these cells to C via g: A — C. In the CW case, D
will be a CW complex since we have assumed that g is cellular. For categorical
reasons, D must be a pushout of the above diagram, and by construction the
map from C is the inclusion of a subcomplex.

If R is connective, we can approximate any finite cell R-module by a finite
CW R-module, and the last statement follows by Theorem 2.5. [J

DEFINITION 3.2. We define the algebraic K-theory of the S-algebra R to be
the spectrum K f%gr, and we denote it by K R. We define the algebraic K-groups
of R to be the homotopy groups of this spectrum, K,R = 7, KR = K,, f6R.

Although the categories f€r and f€# r seem the most natural choices for
K-theory, there are many other possibilities. Indeed, since pushouts along cofi-
brations in g preserve weak equivalences, it is easy to see that any subcategory
of g that is a category with w-cofibrations such that all of the w-cofibrations
are cofibrations becomes a Waldhausen category by taking the weak equiva-
lences to be the ordinary weak equivalences. In particular, when % is a small
full subcategory of .#gr that contains the trivial R-module and is closed under
pushouts along cofibrations, then % is a category with w-cofibrations the set
of all cofibrations in %2, and in this way £ becomes a Waldhausen category.
We shall call the resulting Waldhausen category structure on & the standard
Waldhausen structure. If % is a full subcategory of €r that is small, contains
the trivial R-module, and is closed under pushouts along maps isomorphic to
inclusions of subcomplexes, then % is a category with w-cofibrations the set of
maps in € isomorphic to the inclusion of a subcomplex and in this way becomes
a Waldhausen category. We shall call the resulting Waldhausen category struc-
ture on ¥ the standard cellular Waldhausen structure. If Z or % is closed under
smashing with I, then the mapping cylinder gives a cylinder functor satisfying
the cylinder axiom, which we shall call the standard cylinder functor. Since a
standard cellular Waldhausen category with the the standard cylinder functor is
a WH category, we shall call such a category a standard WH category. It might
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at first appear that the standard Waldhausen structures are somewhat rare, but
the following remark demonstrates that they are actually quite common.

REMARK 3.3 (SMALLEST STANDARD WALDHAUSEN CATEGORIES). If &/ isa
set of objects of .#g that is not necessarily closed under pushouts along cofibra-
tions, we can form a small category & containing & that is. We let & be the
union of an expanding sequence of small categories & — & — &l — -+,
where Ob(#p) = & and @41 is the full subcategory of .#r of objects that are
pushouts of diagrams (with one leg a cofibration) in &, (one choice of object for
each such diagram). Since the set of all maps in &}, is small (by induction), @/, +1
is a small category. It is easy to see that & has a kind of universal property:
whenever a standard Waldhausen category contains a full subcategory equivalent
to & (regarded as a full subcategory of .#R), it must contain a full subcategory
compatibly equivalent to %. For this reason, we will refer to & as the smallest
standard Waldhausen category containing /. Observe that when all the objects
of & have the weak homotopy types of finite cell complexes then so do all the
objects of #Z (by Corollary 1.6.5).

Often we will want our standard Waldhausen categories to have the standard
cylinder functor. In forming 4,1 from &, above we could also include X A I
for each X € &,. In this case, &1 will still be small, but now & will be
closed under smashing with I, and hence have the standard cylinder functor.
It is easy to see that & will now have a similar universal property with respect
to standard Waldhausen categories with the standard cylinder functor. For this
reason we will refer to the category constructed in this way as the smallest
standard Waldhausen category with standard cylinder functor containing .
Again, when all the objects of &/ have the weak homotopy types of finite cell
complexes then so do all the objects of Z.

If & C g, we can do a similar construction but using maps isomorphic to
inclusions of subcomplexes in place of cofibrations. Then the resulting category
% C Fr is astandard cellular Waldhausen category (a WH category if we include
smashes with I ) and has a similar universal property with respect to standard
cellular Waldhausen categories. We shall not actually use this construction, but
we could call & in this case the smallest standard cellular Waldhausen category
containing & (or if we include smashes with I, smallest standard WH category
containing &). Furthermore, observe that if all the objects of & have the
homotopy types of finite cell complexes, then so do all the objects of #.

One advantage of the standard Waldhausen structures is that inclusions of
subcategories are exact functors.

PROPOSITION 3.4. Suppose & is a subcategory of #. If Z and ¥ are both
standard Waldhausen categories or both standard cellular Waldhausen categories,
then the inclusion & — ¥ is an exact functor. If Z is a standard cellular
Waldhausen category and % is a standard Waldhausen category, then the inclu-
sion & — ¥ is an ezxact functor.

Many standard Waldhausen categories have K-theory equivalent to f%z. The
following proposition follows directly from Theorem 2.5 (and the Whitehead
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Theorem) and will often apply to the smallest standard categories constructed
above.

PROPOSITION 3.5. Let 2 be a standard Waldhausen category with standard
cylinder functor or a standard WH category. If Z contains f6r, and if fur-
thermore each object of Z is weakly equivalent to a finite cell complex, then the
induced map of K-theory spectra is a homotopy equivalence.

The K-theory we consider, the K-theory of f%r, is best thought of as analo-
gous to the K-theory of finitely generated free modules: indeed, since all ob-
jects are constructed from the sphere R-modules by a finite number of ex-
tensions by spheres, it follows immediately that the obvious homomorphism
K{mR — KoR (induced by [n] — V7_,Sg) is surjective, where “K{mR”
denotes Ky of the finitely generated free modules of the ring mgR. When R
is connective this homomorphism is an isomorphism whose inverse is given by
the Euler characteristic of a CW object X, the alternating sum of the classes
of C,(X), where C, is the chain functor of IV§3. For this reason, categories
that could be reasonable alternatives to the categories f%r and f€#r would
be those small categories of semi-finite cell R-modules that are standard WH
categories. When such a category contains f%g, it follows from [68, 1.10.1],
[71, 1.5.9] and the argument of [24, §1] (as observed in [68, 1.10.2]) that the
inclusion will induce an isomorphism of homotopy groups of K-theory spectra
except in dimension zero. Intuitively, whereas the K-theory of f%r or f€#r
is like the K-theory of the finitely generated free modules, we might think of
the K-theory of semi-finite objects as analogous to the K-theory of the finitely
generated projective modules.

We conclude this section by remarking that when R is an A, ring spectrum
but not an S-algebra, we can make analogous observations about the K-theory
of categories of its modules. However the functor S Ag (—) is an exact functor
that converts such a category to the corresponding category of S A» R-modules
and induces a homotopy equivalence of K-theory spectra by Theorem 2.5. Thus,
results about the K-theory of A, ring spectra follow from results about the
K-theory of S-algebras.

4. Homotopy invariance and Quillen’s algebraic K-theory of rings

In this section we prove some properties of the K-theory of the category f%r
and compare with the K-theory of (discrete) rings.

We observe that K-theory as defined above gives a functor from the category
of S-algebras to the stable category which has nice homotopical properties.

PRroPOSITION 4.1. If ¢: A — B is a map of S-algebras, then the functor
BAg(=): f€s — f€B (or f€#4 — fE€H#B) is exact and preserves cylinder
objects. This association makes K into a functor from the category of S-algebras
to the stable category.

PROOF. The first statement follows from I1I1.4.1, the second from the isomor-
phisms CAg (BAs (=) =2 CAs(=)and ANa(—)=id. O
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PROPOSITION 4.2. If ¢: A — B is a map of S-algebras that is a weak equiv-
alence, then K¢ is a homotopy equivalence.

PRrROOF. From II1.4.2, B A4 (—) induces an equivalence of derived categories
94 — Dp, which restricts to an equivalence of the derived categories of finite
cell complexes by an easy application of the Whitehead theorem. The result
follows from Corollary 2.7. O

We compare this K-theory with Quillen’s algebraic K-theory. Let k be a ring,
and let Hk denote the Eilenberg-Mac Lane S-algebra of k. We shall use the
symbol K/k for the algebraic K-theory of the finitely generated free modules of
k, a covering spectrum of Kk.

THEOREM 4.3. K Hk is homotopy equivalent to Kfk, naturally up to homo-
topy in k.

PROOF. We can identify Kk with the K-theory of the WH category of finite
free k-chain complexes with w-cofibrations the split monics, weak equivalences
the quasi-isomorphisms, and the cylinder functor given by the usual mapping
cylinder. (see, for example, (68, 1.11.7].) We will denote this WH category as
fEWs.

The functor C,: fE# yr — fEW of IV§2 is exact and preserves cylinder
objects. By the Hurewicz theorem IV.3.6, a map between finite CW modules
is a weak equivalence if and only if its image under C, is a quasi-isomorphism,
hence the theorem will follow from Theorem 2.2 if we can show that condition
(ii) holds.

Given a finite free chain complex M,, we can actually construct a CW Hk-
module X whose cellular chain complex C,(X) is isomorphic to M,. We proceed
by induction. Since M, is finite, M; is zero below some m, and we take the i-
skeleton of X, X* to be the trivial Hk-module for i < m. Now assume that
we have constructed X™ and an isomorphism C,(X") — MS", where M="
denotes the brutal n-truncation of M,, i.e. Mf" = M, for i <n and M5" =0
for i > n. By IV.2.3, mp(X") = H,(MS"), which is the kernel of the differential
dn—1, i.e. the cycles of M,,. Via this isomorphism and a choice of basis for
Mp+1, the differential d,, specifies a homotopy class of maps from a wedge of
S%,. to X™. Choose a representative of this homotopy class, and let X! be the
CW complex formed by attaching (n + 1)-cells along this map. By construction
Cnt1(X™*1) = M, 11, compatibly with the differentials.

Given an Hk-module A and a map f: C.(A) — M., we show that we can
find a map a: A — X such that C.(a) agrees with f via the isomorphism
contructed above. Assume we have constructed this map as far as the n-skeleton
of A4, i.e. we have a, : A” — X such that C.(a,) = f<". Now A"*! is formed
from A™ by attaching a finite wedge VCSY;, along a map a: V S§, — A",
The map fp41: Cry1(A) — My41 specifies a homotopy class of maps

(VCSE, VL) — (X", X™) — (X, X™),

whose class on VS}, agrees with [a, 0 a], since 7, (X,) coincides with the cycles
of M,. We choose a representative in the homotopy class whose restriction to
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S is an 0 a. This extends to a map
Qny1: AV — XL X,
and by construction C,(an1) agrees with f<7+1. [

REMARK 4.4. For a connective S-algebra R with k = mo(R), the functor C.,
of IV§3 is an exact functor f€#r — f€#%. The induced map of K-theory
can be thought of as “discretization” and factors as KR — KHk — K'k.

REMARK 4.5. Another question one may ask is how the K-theory of k com-
pares with the K-theory of k regarded as an Ay ring, i.e. the K-theory of the
category of finite cell Ay, k-modules (as constructed in [35]). In fact, Proposi-
tions 4.1 and 4.2 have exact analogs in the theory of discrete Ao, rings (with
close analogs of the proofs). In particular, it follows from Corollary 2.7 that the
natural quasi-isomorphism of the ring k with its A, enveloping algebra induces
a homotopy equivalence from the free K-theory of k to its Aoo-K-theory.

5. Morita equivalence

Next, we discuss Morita equivalence, the relationship of the category of R-
modules to the category of modules over the analogue of a matrix ring of R. We
introduce the shorthand notation v, X for VI ; X, and we define

M,R = FR(VnRa VnR)a
M1 = Fp(R,VnR) & V, R,

and
My, = Fp(VaR,R) =[] R.

By I11.6.12, we see that M, R is an S-algebra, M,; an (M, R, R)-bimodule, and
M, an (R, M, R)-bimodule. Classical Morita equivalence is the theorem that
for a (discrete) ring R, tensoring with these two bimodules gives an equivalence
between the category of R-modules and the category of M, R-modules. The
observation that this restricts to an equivalence between the categories of finitely
generated projective modules proves that Quillen’s algebraic K-theory is Morita
invariant.

In the case we consider, it is unreasonable to hope for an equivalence between
M and Ay, g since products and coproducts are not isomorphic, but we can
ask for an equivalence of 25 and %, g. Furthermore, because our K-theory
is really the K-theory of free modules, we cannot expect the induced map of
K-theory to give an isomorphism on Kj in general (since, for a discrete ring,
the image of the free module of rank one is a projective but not free module
for n > 1), but we can ask for an isomorphism of the higher K-groups. In this
section we find affirmative answers to each of these questions in the following
theorems.

THEOREM 5.1 (MORITA EQUIVALENCE). The derived functors of Mp1Ar(—)
and My, Ay, r(—) give an equivalence of categories Dg ~ D, g, Which restricts
to an equivalence of the derived categories of semi-finite objects.
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THEOREM 5.2 (MORITA INVARIANCE OF K-THEORY). The point-set functor
Min Ay, r (=) tnduces a map of K-theory KM, R — KR, which on homotopy
groups (K -groups) sends a generator in dimension zero to n times a generator,
and gives an isomorphism on the higher groups.

We prove Theorem 5.1 by imitating as much as possible the proof of classical
Morita equivalence. The following lemma gives a good start in this direction.

LEMMA 5.3. The (R, R)-bimodules R and My, Ap, r Mn1 are isomorphic.

PROOF. By a comparison of colimits, using the map of S-algebras R —
M,R, it is not hard to see that the following diagram is a coequalizer (cf.
VIL.1.9):

My Ap MpR AR My ——% Mip, AR My —— Min Am, R M.

The evaluation map My, Ag M,; — R coequalizes this diagram, so induces a
map My, Ap,r Mp1 — R, which is evidently an (R, R)-bimodule map. We
show that this is an isomorphism by observing that

Min Ar MR Agp Mp1 — Mip AR Mp1 —>R

is a split coequalizer of S-modules. The splitting is given by maps analogous to
those in the discrete case: The map R 2 R Ar R — Mi, AR M, is the smash
product of the map R — V,R that includes it as the first wedge summand
with the map R — Fgr(V,R, R) that is induced by the map V,R — R that
collapses onto the first summand. The map

Mln AR Mnl = Mln AR Mnl AR R — Mln AR MnR AR Mnl

is the smash product of the identity on M;,, the map M,,; — M,R induced by
the map V,, R — R collapsing onto the first summand in the first variable, and
the inclusion of R as the first summand in M,;. It is straightforward to verify
that the composites are as required to split the diagram.

PRrRoOOF OF THEOREM 5.1. We verify that the composite Ir — D, r —
9r is naturally isomorphic to the identity. Let X be a cell R-module, and let Y
be a cell M,, R-module approximation to M, Ag X; we must show that the map

Min A, RY — Min Ap, R Mni AR X =2 X

is a weak equivalence. Observe that the obvious map V,M,; — M, R is a weak
equivalence and a map of (M, R, R)-bimodules. Since X is a cell R-module, the
map V,Mp1 Ag X — M,R Ar X is a weak equivalence and the composite
map V,Y — M,R Ar X is a homotopy equivalence. Now we conclude that
Min Ay, r VoY — VX must be a weak equivalence, since the map V,X —
(I, R) Ar X = My, Ar X is, but the induced map on homotopy groups is just
the direct sum of n copies of the map we are interested in, so this map must also
be a weak equivalence.

The reverse composite @i, g — Pr — D r is simpler. Let X be a cell
M, R-module. Since M, Ar (—) preserves weak equivalences, the composite
functor can be represented by X — Mp1 Agr M1, A, r X. Observe that the
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evaluation map M,; Ar M1, — M_,R is a weak equivalence of (M, R, M, R)-
bimodules. On the underlying R-modules it is a map V][], R — [],VaR
inducing an isomorphsim &[] R, — [] ®R,. This induces the natural isomor-
phism (in 2, r) to the identity.

Since the derived categories of semi-finite objects are full subcategories of the
derived categories Yr and D), r, we see that this equivalence restricts, since
both functors send wedge summands of finite objects to wedge summands of
finite objects. O

Let € be the smallest standard Waldhausen category with standard cylin-
der functor containing f%g and the image of f%),, r. By Proposition 3.5, the
K-theory of % is homotopy equivalent to K R. Let .# be the full subcategory
of ¥ of objects weakly equivalent to objects in the image of f@um,r. Since
pushouts along cofibrations are homotopy equivalent to homotopy pushouts,
which My, Ap, r(—) preserves, it is easy to check that # is closed under pushouts
along cofibrations and is therefore a standard Waldhausen category with stan-
dard cylinder functor; moreover, the functor My, Ay, g (=): fEMm,r — £ is
exact.

LEMMA 5.4. The ezact functor My, A, r (—): fCum,r — £ induces a ho-
motopy equivalence of K-theory.

PrOOF. We apply Theorem 2.5: given A € f%u, g, B € £, and a map
fiMin A, r A — B, we find X € f6um,r, a weak equivalence e: M1, Ay, R
X — B and a map a: A — X, such that e o My, Ay, r a is homotopic to
f. By assumption, B is weakly equivalent to the image of some X € féum,r,
so Mpn1 Ag B is an M,R-module weakly equivalent to Mp; Ar Min Am,r X,
which in turn is weakly equivalent to X. Thus, by the Whitehead Theorem,
there exists a weak equivalence €: X — M, Ar B. Since the natural map
i: Mp1 Ag Min AR A — MR ApM, r A= A is a weak equivalence, it has a
homotopy retraction r, and there exists a map a: A — X such that eoa is
homotopic to (Mn1 Ar f) o7, again by the Whitehead theorem. Thus the solid
line part of the following diagram commutes up to homotopy.

Mp1 AR Min Ay, A

1T

v

A M1 A\gr B.

l 2

X

We apply the functor M1, Aps, g (—). The isomorphism constructed in Lemma
5.3 induces a natural transformation p: id — My, Am,r Mp1 Ar (=), from
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which we get the diagram

My, Am,R A
(MynAd)ou %TMIN
v
Min Am.R A B.
Min =
! Aal lO(Mln/\E)
Mln /\MnR X

By the associativity of the multiplication pairing, the diagram
Min AM.R Mp1 Ar Min —‘E_>R AR Min
MinNi le

My, AM.R MnR—_E—> M,

must commute, and we conclude that (My, Ap, g ¢) o p is the identity. Now,
letting e = u=! o My, A, g €, We see that e o My, A, g a is homotopic to f as
required. O

LEMMA 5.5. £ is closed under extensions in €.

PROOF. We need to show that for a cofibration sequence A — B — C in
%, if A and C are in £, then B is also in #. It suffices to consider the case
when A, B, and C are celluar R-modules, since any cofibration sequence can be
replaced by a weakly equivalent one of this form. Using the proof of the last
lemma, the map * — C allows us to find X in f%, g together with a weak
equivalence e: M1, Ay, r X — C. Composing with the map ¢: C — T A
implied by the cofibration sequence, and applying once again the proof of the
last lemma, we find an object Y in f%, g, a map a: X — Y, and a weak
equivalence f: M1, Ay, r Y — LA that make the following square homotopy
commute:

Min A X 222 M Ap R Y

elz 'zlf
C 3 YA

We conclude that the induced map on cofibers C(Mi,Apr, ra) — C(c) is a weak
equivalence. The functor My, Apr, g (—) commutes with smashing over S on the
right with Sgl and smashing on the right with the space S, both composites
of which are homotopic to the identity in f%u, r. We conclude that the map
C(MinAm,ra)AsSgt — C(c)As S5 is a weak equivalence. But C(c)AgS5" is
homotopy equivalent to B and C(M, /\MnRa)/\SSgl (= Mln/\MnR(C’(a)/\gSgl)
is in the image of f%um, g, hence Bisin £. O

PROOF OF THEOREM 5.2. The inclusion # — ¥ is an exact functor. It
is easy to see that on Ky it sends a generator (Sps, g) to n times a generator
(M1n AM R MR Ng Ss = My, As Ss ~ V,Sr). We want to see that it induces
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an isomorphism of the higher K-groups. Let _# be the full subcategory of % of
all objects whose class in K% is in the image of Ko.# (so in particular & C _#).
It follows from the relations that define Ky that _# inherits the structure of a
standard Waldhausen category with standard cylinder functor. By Proposition
3.4, the inclusions # — £ and _# — ¥ are exact functors.

We use the argument of [24, §1] to show that & is strictly cofinal in _# (in
the sense of 71, 1.5.9]). We define an equivalence relation on the objects of &
by letting A and A’ be equivalent if there exists some X € # such that AV X
is weakly equivalent to A’ V X. Let G be the set of equivalence classes under
this relation. Then G is a group under the operation “v” with the inverse of A
represented by V,_1A. We have an obvious homomorphism G — K% /Ky.#;
we construct an inverse to this homomorphism. If A — B — C is a cofibration
sequence in %, then VoA — BV (Vp_14) V (Vn-1C) = V,C is a cofibration
sequence. But V, A4 and V,,C arein £, s0 BV (V,_14) V (V,-1C) is in £ since
J is closed under extensions in %’; therefore, BV (Vp_14)V (Vn—1C) represents
the identity in G and hence B represents the same element as AV C in G. If A
is weakly equivalent to A’ then they represent the same element in G. We see
that the association of an object to its class in G satisfies the universal relations
that define K% and so specifies a map Kq4% — G. This map clearly factors
through a map Ky%/Ko# — G that is evidently inverse to the map above.
Thus, we see that _# consists of the objects whose class in G is the identity, so
we conclude that for any X € _#, there exists Y € £ such that X VY is weakly
equivalent to an object of # and hence X VY is an object of .#.

Now by [71, 1.5.9], # — _# induces a homotopy equivalence of K-theory,
but by [68, 1.10.1}, K; ¢ — K% is an isomorphism for ¢ > 0. [J

6. Multiplicative structure in the commutative case

In this section, we prove the following theorem (cf. [65]).

THEOREM 6.1. If R is a connective commutative S-algebra then KR is ho-
motopy equivalent to an Ey ring spectrum and therefore weakly equivalent to a
commutative S-algebra.

This result and the results of the next section depend on the following technical
lemma, which the reader may recognize as a simple application of the theory of
[71, §1.6-1.8] to our new categories. Although we believe that Theorem 6.1 may
generalize to non-connective commutative S-algebras, this lemma is peculiar to
the connective case and relies on the existence of the ordinary homology theories
of IV§3. For this lemma, we need R to be a connective but not necessarily
commutative S-algebra. Let € be a standard Waldhausen category of R-modules
that contains f%g and that only contains objects of the weak homotopy type of
finite cell R-modules. We see by Proposition 3.5 that K% is homotopy equivalent
to KR. We denote by €™ the full subcategory of objects weakly equivalent to a
finite wedge of S7. Observe that for each m, the category of weak equivalences
of €™ is a symmetric monoidal category under the operation of wedge, and
denote the associated spectrum as k™. Suspension induces a system of maps
of spectra k€™ — k€™,
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LEMMA 6.2. The homotopy colimit of the system {k€™} is homotopy equiv-
alent to K6.

ProoOF. The Hurewicz theorem IV.3.6 allows us to identify ™ with the
full subcategory of € of objects whose ordinary homology HE is zero in all
dimensions except m, and in dimension m is a finitely generated free module.
Let €™ be the full subcategory of ¥ of objects whose ordinary homology HE
is zero in all dimensions except m and in dimension m is a finitely generated
stably free module, i.e. is isomorphic to the kernel of a surjective map of finitely
generated free modules. Let €2™ be the full subcategory of € of those objects
which are (n — 1)-connected. By the Hurewicz theorem IV.3.6 these are exactly
the objects whose homology is zero in dimensions less than n. We give the
categories €™ and ™ Waldhausen structures by defining the w-cofibrations to
be the w-cofibrations of ¥ whose quotients lie in the subcategory in question.
The categories €=" have the structure of standard Waldhausen categories with
the standard cylinder functor.

Suspension gives exact functors €™ — €™*! and ¥2" — ¥2". For
m > n, the inclusion of %™ in €2" is an exact functor; for fixed n, these
inclusions induce a map

hocolim |wS, ™| — hocolim (WS F2",

where the colimit on the right is taken over repeated application of suspension.
Next observe that ordinary homology HE restricted to 2" is a homology theory
in the sense of [71, §1.7] (at least after shifting the indexing), and that the cate-
gories €™ form categories of “spherical objects” for €2™ for the class of finitely
generated stably free modules. Since this theory satisfies the “Hypothesis” of
[71, 1.7.1], we conclude that the map above is a weak equivalence. On the other
hand the inclusions 2" — %2"*! are exact functors which induce cofibra-
tions |wSeF2"| — |wS.€2"+1|, whose colimit is |wS,%|. Taking the colimit
(over n) of the homotopy equivalence above, we get a homotopy equivalence
hocolim (u)S.‘%ml — hocolim |wS,¥|.
m—o0 b

The maps on the right are all homotopy equivalences (by [71, 1.6.2]), so we
conclude that there exists a homotopy equivalence hocolim K™ — K%.

We apply the Strict Cofinality Theorem [71, 1.5.9] to conclude that K™ is
homotopy equivalent to K€™. Now we are reduced to comparing K™ with
k®™. According to [71, 1.8.1], it suffices to observe that cofibrations in €™ are
“splittable up to weak equivalence”. Given a cofibration A »— B, we can find
a basis of the free module H,,(B) that represents the union of bases for H,, A
and H,,(B/A). The Hurewicz theorem IV.3.6 now specifies homotopy classes
of weak equivalences from the wedge of A and a wedge of spheres to B and to
AV B/A, relative to the maps from A. O

PrOOF OF THEOREM 6.1 Let € be the smallest standard Waldhausen cat-
egory with standard cylinder functor containing R, S% for all n, and all finite
smash products over R of these. It is easy to check that the bifunctor (—)Ag (-)
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restricts to € (up to equivalence), so € is a symmetric bimonoidal category un-
der coproduct and smash product over R. Let 4° be as in the lemma above.
Then €° is the full subcategory of € of objects weakly equivalent to a finite
wedge of Sg. Since smash product over R with R and with S% preserve weak
equivalences, so do smash products over R with any object of %, and the smash
product over R of objects in €° is weakly equivalent to a finite wedge of Sg
and therefore is an object of ¥°. Thus the smash product over R restricts to a
bifunctor on €° that makes €° a symmetric bimonoidal category. By the work
of [50], we can construct k%° functorially as an E,, ring spectrum.

Next observe that suspension and Sg' Ag(—) give functors €™ — €™*! and
@™+l — €™ for which both composites are weakly equivalent to the identity.
We conclude that suspension gives a homotopy equivalence k6™ — k€™T1,
and that k% is homotopy equivalent to K% by the previous lemma. [J

7. The plus construction description of KR

We have observed that the category f%gr gives a K-theory K f%g that has
some right to be called the algebraic K-theory of R. This section is devoted
to a comparison with another possible definition, based on Quillen’s plus con-
struction. In what follows, R is a fixed connective S-algebra, and k = myR.
We shall make use of classifying spaces of the topological monoids #r(X, X).
Unfortunately even when X = Sg, we cannot guarantee that the inclusion of
the identity element is a cofibration. There are well-known ways of overcoming
this difficulty, e.g. whiskering the monoids [45] or using thickened realizations
[66]. In this and the next section, we shall take advantage of such techniques
implicitly wherever necessary without further comment.

Let M, R be the topological space f‘fR(V Sr,V,, Sr); then moMpR = M,(k),
the ordinary matrix ring of the ring k. Let GL R be the space consisting of those
connected components of M, R whose image in M, (k) is invertible. Then GL.R
is a topological monoid; indeed, it is the monoid of homotopy equivalences in
M,R. We can consider its classifying space BGL,R. We have the inclusion
in: GL,R — GL,;1 R obtained by sending the last wedge summand to the
last wedge summand via the identity map, and it induces Bi,: BGL R —
BGLp1R. Let BGLR be the telescope of these maps.

Now 7r1BGLR = GL(k) has a perfect normal subgroup, so we can form
BGLR* (Quillen’s plus construction). We shall see shortly that K 'k x BGLR*
is an infinite loop space. Define KR to be the connective spectrum obtained
by delooping K 'k x BGLR*. We prove the following “plus equals S,” theorem.

THEOREM 7.1. Kt R is weakly equivalent to KR.

First we need to specify the infinite loop space structure on KJ 'k x BGLR*.
For this, we observe that K [kx BGLR* is the group completion of the classifying
space of the topological category # whose (discrete) set of objects is the finite
wedges of Sg and whose space of morphisms is the set of homotopy equivalences
topologized as a subspace of the space of morphisms of .#g. Call this group
completion B. In the case when K{; k is the integers, the classifying space of #
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is the disjoint union of the BEE R and we may apply the remarks of [66, §4]
to conclude that we have a homology isomorphism to B from the telescope of
maps HBGL R to itself induced by the maps Biy,: BGL,R — BGL,+1R.
This telescope is easily seen to be K({ k x hocolim, BGL,R. We conclude that
B ~ K{k x (hocolim,, BGL,R)*.

In the pathological case when K({ k is not the integers, i.e. when there exists
a homotopy equivalence V;Sr ~ ViSg for j # k, we still have a homology
isomorphism to the group completion B from the telescope 7" of maps from
B% to itself induced by addition of an identity map on the wedges of sphere R-
modules. Proposition 7.2 below allows us to see that B% is homotopy equivalent
to a disjoint union of of some of the BGL R, one choice for each isomorphism
class of finitely generated free moR-modules. Now we see that the telescope
T is homotopy equlvalent to K !’k x hocolimy, BG’L R, and we conclude that

~ K[k x (hocolim, BGL,R)*.

To identify the homotopy type of B%# in the pathological case above, we
need the following proposition. We will need a similar result again later, and
we have written this proposition in the minimal possible generality necessary to
handle both cases. The proposition says essentially that if the morphisms in a
category are all homotopy equivalences (in a certain sense), then the classifying
space of the monoid of endomorphisms of any object is homotopy equivalent to
its connected component in the classifying space of the category. Because this
proposition has obvious generalizations with more general scope than its use
in. this section, we break our rule of not mentioning the necessary cofibration
assumptions. As always the reader has the choice of deleting the cofibration
assumption by using a whiskering technique or employing the thickened realiza-
tion.

PROPOSITION 7.2. (cf. (71, 2.2.7]) Let € be a topological category with dis-
crete set of objects such that the identity morphism (from objects to morphisms)
s a cofibration. Let X be an object of € and denote by €x the full subcategory
of € containing X. Suppose that for each morphism f: Y — Z in €, there is
some f': Z — Y so that f'o f and f o f' each lie in the same path component
of €(Y,Y) and €(Z,Z) as the respective identity elements. Then the inclusion
Ex — € induces a homotopy equivalence of the classifying space of €x with
the connected component of its image in the classifying space of the category €.

PROOF. First observe that Quillen’s “Theorem A” [58] holds with essentially
the same proof for continuous functors between topological categories with dis-
crete object sets whose identity map (objects to morphisms) is a cofibration.

Since the connected component of the image of ¥x in the classifying space
of ¥ is the classifying space of the connected component (as a graph) of € that
contains X, we can reduce to this smaller category and assume without loss
of generality that % is connected (as a graph). Applying Quillen’s Theorem
A (dual formulation), we are reduced to showing that for every Y in €, the
topological category ¥x /Y is contractible. But if f: Y — Z is morphism in
%, then we have f': Z — Y and paths v: f'of ~ 1y andv': fo f' ~ 1. We
can interpret the morphisms f and f’ as continuous functors ¥x /Y — €x/Z,



Copyright 1996 by the American Mathematical Society. Not for distribution.

7. THE PLUS CONSTRUCTION DESCRIPTION OF KR 123

€x/Z — €x/Y, and the paths v and v as continuous functors €x /Y x I —
Cx]Y, €x/Z x I — €x/Z. Passing to the classifying spaces we see that the
paths represent homotopies B(¥x/Y) x I — B(%x/Y) and B(¥x/Z) x I —>
B(%¥x/Z) from the composites Bf'oBf and Bf o Bf’ to the repective identities.
In short, ¥x /Y and €x/Z are homotopy equivalent. Since we have reduced to
the case when ¥ is connected (as a graph), we see that ¥x/Y is homotopy
equivalent to ¥x/X. The lemma is established by the observation that ¥x /X
has a final object and therefore is contractible. [

We begin to compare Kt R to K f%r. One obvious obstacle is that we have
defined K™ R in terms of a topological category and K f%r in terms of a discrete
one. Let w%° denote the (discrete) full subcategory of w(f%g) whose objects
are homotopy equivalent to wedges of Sg; the set of morphisms is the set of
homotopy equivalences. Using arguments similar to [71, 2.2], we relate w%° to
both # and wS, f%kr.

LEMMA 7.3. (c¢f. [71, 2.2.5]) There is a chain of weak equivalences relating
the classifying spaces of the categories W and w%°. Each map in the chain is a
map of Ex spaces.

PROOF. For each k, let # Ay be the (discrete) category whose objects are the
objects of w%° and whose morphisms # Ax(X,Y) consist of the set of continu-
ous maps A[k] — f€r(X,Y) whose image lands in the component of a weak
equivalence, where A[k] denotes the standard topological k-simplex. In light of
the adjunction Z(A[k]4, fEr(X,Y)) = fEr(X A A[k]+,Y), we see that this is
the same as the set of weak equivalences X A A[k]; — Y. This is a simplicial
category. Let Nj be the nerve of this category.

If we realize N; in the k direction, we obtain a simplicial space that is the
nerve of a topological category with a discrete set of objects. We denote this
category as |# A|. In particular, the objects of |# A| are the objects of w%®
and the morphism space |# A|(X,Y) is the geometric realization of the total
singular complex of the subspace of f€r(X,Y) consisting of those components
which contain homotopy equivalences. For each' X € ¥, let |# A|x be the
full subcategory of |# A| consisting of the single object X. By the previous
proposition, the inclusion |# A|x — |# A| induces a homotopy equivalence
from the classifying space of |[# A|x to its connected component in the classifying
space of |[#'A]. On the other hand we have a natural weak equivalence of monoids
[#A|(X,X) — #(X,X), giving a weak equivalence of their classifying spaces.
Let |# ASg| be the full subcategory of |# A| consisting of the finite wedges of
Sr. Then we have weak equivalences || N; x| < ||# ASg|—|#|.

Next we produce a weak equivalence between w%° and # A,. The map
Alkly — S° induces a functor F: w¢® — # A that is the identity on
objects. Let G: # Ay — w%° be the functor induced by the map S — Al[k]+
that sends the non-basepoint to the zeroth vertex of A[k]. Then GF is the
identity functor on w%°. We show that F'G is homotopic to the identity. Let
H: WA — W Ag be the functor that takes X to X Al and that on morphisms
is induced by a map I x A[k] — A[k] that is the identity on the bottom face
{0} x Alk] and sends the whole top face {0} x A[k] to the zeroth vertex of
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A[k]. There are obvious natural transformations id — H and FG — H
given by the inclusion of bottom face and the inclusion of top face, from which
we conclude that FG is homotopic to the identity. We may regard w%° as a
simplicial category constant in the £ direction. The functors F' are compatible
with the faces and degeneracies (in k), and therefore assemble to a simplicial
functor w€® — # A, that induces a homotopy equivalence upon passage to
classifying spaces.

It is easy to see that the simplicial maps above realize to maps of E., spaces
as they are induced by functors that preserve wedges. [

PROOF OF THEOREM 7.1. If we let € be the category f%r, then w%?° is
exactly the subcategory of weak equivalences of the category ¥° defined above
Lemma 6.2, the associated spectrum of which we denoted k€°. Again suspen-
sion and Si' Ag (=) give functors €™ —s ¥™*! and €™+ — ¥™ whose
composites are weakly equivalent to the identity. We conclude that the maps
in the homotopy colimit are homotopy equivalences and that k%° is homotopy
equivalent to KR. On the other hand, the previous proposition shows that K+t R
is weakly equivalent to k6°. O

REMARK 7.4. Note that we only needed the connectivity hypothesis to show
the relationship between k%€° and K f€r. More generally we do have a homotopy
equivalence k% ~ K+ R (the spectrum whose zeroth space is K()f k x BGLRY),
but there is no reason to expect that the map k%% — K f%r will be a homotopy
equivalence. In particular k%° cannot see any relationships between spheres of
different dimensions. For example, if ng =Z, but Sg ~ S}, then |wS, fR| is
contractible but |wN,%?°| is not.

REMARK 7.5. We should also observe that this allows another interpretation
of the discretization map: mo applied to the simplicial space N#  gives an E
map KR(0) ~ K{k x BGLR* — K{k x BGLk* ~ K/k(0), which evidently
coincides with the discretization map and is a weak equivalence in the case when
R = Hk.

REMARK 7.6 (MONOMIAL MATRICES). Let ¥ be the subcategory of # of
those maps V,Sg — V,Sg that are wedges of n maps Sg — Sg in any order.
Thinking of #(V,Sr,VnSRr) as analogous to GL,R, then ¥(V,Sg,V,Sg) is
analogous to the subgroup of monomial matrices, those matrices with a single
non-zero entry in each row and column. Let R* denote the monoid ¥ (Sg, Sg) =
# (Sr,Sr). Then ¥ (V,Sgr, V,Sg) is isomorphic to the monoid £,, [ R* and the
classifying space of ¥ is isomorphic to the disjoint union of the classifying spaces
of these monoids; moreover, under this isomorphism the F,, space structure
induced by wedge sums becomes the E, space structure induced by block sums.
We conclude that the group completion of the classifying space of ¥ is homotopic
to QBR* 4, and that ¥ — % induces a map of spectra X°BR*, — KR.

REMARK 7.7. (Naturality) Let A — B be a map of S-algebras. We saw
in Propostion 4.1 that the functor B A4 (—) induces a map of K-theory spectra
KA — K B. This also restricts to a continuous functor of topological categories
W4 — Wp that induces a map of the plus contruction spectra above. We
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conclude that these two maps represent the same map in the stable category,
since this functor commutes up to natural isomorphism with the functors used
in comparing K+ with K.

8. Comparison with Waldhausen’s K-theory of spaces

Now we compare the new algebraic K-theory with Waldhausen’s algebraic K-
theory of spaces. For this, let X be a connected pointed topological space, and
let G = |GSX]|, the geometric realization of the Kan loop group of the based
singular complex of X. This is a topological group with non-degenerate identity.
We let R = ¥°°(G ) (where the plus subscript is union with a disjoint basepoint)
and we note that R is an S-algebra (IV.7.8) with k = moR = Z[mG].

DEFINITION 8.1. Let HJ denote the topological monoid of pointed G-equi-
variant homotopy equivalences of \/_ ™G with itself, and let BH]* denote its
classifying space. We have monoid maps HT — H7*!, and H* — H,
which are induced by suspension and by addition of an identity map on the last
wedge summand and which are cofibrations. The algebraic K-theory of the space
X is defined to be the space A(X) = K{Z[roG] x (colim, , BH™)*. This is
obviously equivalent to Waldhausen’s definition [71, 2.2.1]. We shall also use the
symbol A(X) to denote the spectrum associated to its delooping, and under this
interpretation we will prove the following result.

THEOREM 8.2. The spectra KX G, and A(X) are homotopy equivalent, nat-
urally in X.

Observe that the functors 50 give maps of topological monoids

which are easily seen to be compatible with suspension and addition of an iden-
tity map. Composing with the functors L. and S A (—), we obtain maps of
topological monoids

H™ — Ms(\V, S Ae LE®G,,V, S Ay LE®G,).

We denote this composite functor by L7*. The observation that the functor
G+ A (—) is naturally isomorphic to the functor R Ag (—) immediately implies
that LT sends G-equivariant maps to R-module maps; therefore, we can interpret
LT as a map of topological monoids H* — M, R. Since for m > 2, ‘H consists
of the subspace of those connected components of Maps(\/,, XG4, V, L™G)
which mo maps to GLn(R), we see that L7 restricts to a map of monoids ;" —
GL,R. We will show that in the colimit this map is a homotopy equivalence.

PRrOPOSITION 8.3. The map of topological monoids
L,: colim,, H? — GL,R

15 a homotopy equivalence.
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PrOOF. We have defined L] via a composition of functors so that it would
be easy to see that it is a map of monoids; we rewrite this composition to make
it easier to analyze homotopically.

Consider the map of spaces

fm: ZNV, 8™V, E"Gy) — #s(\,, Ss,V,, Sr)

(for fixed n) induced by the composite of the functors £, I, and S Ag (—). The
colimit of the f,, is the composite of the maps

colimp, Z(V, 5™V, 2"G;) — (V.S V,E°GC)
— L)V, LS, V, LE®Gy)
I '//{S(vn Ss, Vn SR)’

each of which is a homotopy equivalence. Via the obvious isomorphisms, the
map L, agrees with the restriction of this map to the connected components
that consist of weak equivalences, and so it is also a homotopy equivalence. O

Since the inclusion of the identity in G is a cofibration, we see that induced
map colim,, BH — BGL,R is a homotopy equivalence, and hence the in-
duced map on the plus constructions of the telescopes is a homotopy equivalence.

PROOF OF THEOREM &8.1. We need to show that we have a map of spectra.
But the infinite loop space structure on A(X) comes from the operation wedge
on the colimit of the topological categories whose objects are finite wedges of
Y™Gy (for each m) and whose maps are the H". The functors LT assemble to
a continuous functor from this colimit to the category # which commutes with
wedges and which coincides with the above homotopy equivalence on the plus
constructions. We conclude that the map constructed above

K{Z[roG) x (colimp, o BH™)*Y — K{Zm,G] x BGLR*
is a map of Fy spaces. 3 ~ _
ﬂnce Gis a/(\?/VV space, L°G, is a CW spectrum, so M, R, GL,R, BGL,R,
BGLR, and BGLR* have the homotopy type of CW spaces; therefore, the plus

construction of the previous section produces a spectrum homotopy equivalent to
K R. We conclude that the spectrum A(X) is homotopy equivalent to KR. O

REMARK 8.4 (LINEARIZATION). The map R — HZ Ag R is a map of S-
algebras and a rational equivalence. The map

HZ As (=): Wr(VnSR, VmSR) — WrzasR(VaSHZAsR, VmSHZASR)

induces an equivalence on rational homology. We conclude that the induced map
KR — K(HZ As R) is a rational equivalence. A comparison of the categories
of modules for the S-algebra HZ Ag R and the simplicial ring Z[GSX] would
then give a linearization result. We save this and other observations along these
lines for a future paper.
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CHAPTER VII

R-algebras and topological model categories

In Chapter II, we set up the ground category of S-modules, and we developed the
theory of S-algebras and their modules by exploiting the good formal properties
of that category. In Chapter III, we set up a ground category of modules over a
commutative S-algebra R that enjoys the same formal properties as the category
of S-modules, and the previous three chapters gave applications of that theory.
As we discuss in Section 1, we can go on to define R-algebras and their modules
simply by changing ground categories from .#s to .#g.

At this point, we face a homotopical problem. We want to use point-set
level constructions, such as bar constructions and constructions of topological
Hochschild homology, that involve taking smash powers of a commutative R-
algebra A. To make homotopical use of these constructions, we need to know
that the underlying R-modules of these smash powers represent their smash
powers in the derived category of R-modules. However, A need not have the
homotopy type of a cell R-module, so we must approximate it by a weakly
equivalent R-algebra with better properties. We first attacked this problem by
use of the bar construction of Chapter XII, but we'shall here deal with it by use
of Quillen model categories.

Thus we shall prove that all of our various categories of A, and E. ring
spectra, R-algebras, commutative R-algebras, and modules over any of these
are complete and cocomplete, tensored and cotensored, topologically enriched
categories that admit canonical (closed) model structures in the sense of Quillen
[57]. Since cofibrations and fibrations in the classical sense are important in
our theory, we shall use the terms g-cofibration and g-fibration for the model
category concepts.

The proofs that our categories are so richly structured are almost entirely
formal, and these formal structures do not solve or even address the motivat-
ing homotopical problem since forgetful functors need not preserve g-cofibrant
homotopy types. However, we shall see that the problem can be solved by com-
bining the formal theory with the homotopical analysis of the linear isometries
operad.

Much of the formal theory in this chapter is based on ideas and results orig-
inally due to Hopkins and McClure (in part in [32], but we have also benefited

127
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from many profitable conversations) or to McClure, Schwinzl and Vogt [54].

1. R-algebras and their modules

We fix a commutative S-algebra R and work in the symmetric monoidal cat-
egory .#p of R-modules.

DEFINITION 1.1. An R-algebra is a monoid in .#r. A commutative R-algebra
is a commutative monoid in #g.

As in algebra, we obtain free R-algebras by “extension of scalars” from S to R.
To show this, we use an alternative description of R-algebras and commutative
R-algebras, which again is the same as in algebra. Say that amapn: R — A
of R-algebras is central if the following diagram commutes:

RAsA————> ANAsR

'r;/\idl lid An

A/\sA—a——>A<—¢A/\sA

We learned the following interpretation of this definition from McClure.

REMARK 1.2. The center of an associative k-algebra A with product ¢ can
be written as the equalizer displayed in the diagram
é
C(A) —> A——3xHom (4, A);
o7

here ¢(a)(b) = ab and Q’S;(a)(b) = ba. This suggests that the center C'(A4) of an
S-algebra A should be defined as the equalizer displayed in the diagram

¢
C(A)——> A—Z Fs(A, A).
¢t

The definition of a central map n : R — A then says precisely that n factors
through C(A4).

LEMMA 1.3. An R-algebra A is an S-algebra with a central map R — A of

S-algebras. A commutative R-algebra A is a commutative S-algebra with a map
R — A of S-algebras.

ProOOF. Trivially, if A is an R-algebra, then its unit n: R — A is a central
map of R-algebras. Conversely, if A is an S-algebra and n: R — A is a map of
S-algebras, then A is a left R-module via the composite

RAs A Ang A2 > 4.

There is a symmetrically defined right action of R on A that makes A an (R, R)-
bimodule. Centrality ensures that the left and right actions agree under the
commutativity isomorphism of their domains. The product of A therefore factors
through A Ag A to give the required R-algebra structure. [
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We leave the proofs of the next few results as exercises; as in the proofs above,
one first writes down the proof of the algebraic analogue and then replaces tensor
products with smash products.

PROPOSITION 1.4. If Q is an S-algebra, then R Ag Q is the free R-algebra
generated by QQ, hence R As TM 1is the free R-algebra generated by an S-module
M. If Q is a commutative S-algebra, then R Ag Q s the free commutative
R-algebra generated by Q, hence R As PM is the free commutative R-algebra
generated by M.

REMARK 1.5. We may think of R Ag (S Ag BX) as the “free” R-algebra
generated by a spectrum X and RAg (S Ag CX) as the “free” commutative R-
algebra generated by a spectrum X. However, in view of 11.1.3 (see also III§1),
this is a misnomer since the right adjoints of these functors from the category
of spectra to the category of R-algebras or commutative R-algebras are weakly
equivalent rather than equal to the obvious forgetful functors.

PROPOSITION 1.6. Let f : R — R’ and g : R — R be maps of commu-
tative S-algebras. Then R' Ap R" is both the coproduct of R' and R" in the
category of commutative R-algebras and the pushout of f and g in the category
of commutative S-algebras. More generally, let f : A — A’ and g: A — A”
be maps of commutative R-algebras. Then A’ Ag A" is the pushout of f and g
in the category of commutative R-algebras.

As in algebra, we can define the notion of a module over an R-algebra A, but
it turns out to be equivalent to the notion of a module over A regarded just as
an S-algebra. Recall I11.3.1.

DEFINITION 1.7. Let A be an R-algebra. A left or right A-module is a left or
right A-object in .#g.

The free A-module generated by an S-module M is
AAgp(RAs M) = ANg M.
This gives an isomorphism of monads that implies the following result.

LEMMA 1.8. Let A be an R-algebra. A module over A regarded as an S-
algebra is the same thing as a module over A regarded as an R-algebra. That is,
an action ANg M — M necessarily factors through an action ANg M — M.

Similarly, if M and N are A-modules, then M A4 N is the same whether
defined using a coequalizer diagram in the category of R-modules or in the
category of S-modules.

LEMMA 1.9. Let A be an R-algebra, and let M be a right and N a left A-
module. Then MA4N can be identified with the coequalizer M N4, gy N displayed
in the diagram

ARrid
1 RV

The analogous result holds for function A-modules.
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PROOF. The proof is a formal categorical chase of the following schematic
diagram:

MAgRAg N

|

MAs AN N——ZMAgN—MAs4 N

| |

M AR AAgR N——3M Ag N——> M Aa,r) N.

Here the left vertical arrow is an epimorphism, and this implies that the diagonal
dotted arrow factors through the dotted right vertical arrow. O

Although we have only one notion of an A-module, it is helpful to think of
its study as divided into an “absolute theory”, in which we take the ground
ring to be S, and a “relative theory”, in which we take the ground ring to be
R. The absolute theory is a special case of the study of modules over algebras
that we developed in Chapter III. In particular, II1.1.4 shows that F 4 X is weakly
equivalent to AAX for a CW spectrum X. Here the free functor IF 4 is isomorphic
to the composite functor AAg (RAgFg) from spectra to A-modules. Again, the
term free is a misnomer since the right adjoint of Fg is only weakly equivalent to
the forgetful functor. The theory of cell and CW A-modules and the definition
of the derived category of A-modules are part of the absolute theory.

The previous lemma shows that the absolute smash product A4 and function
module functors F4 are isomorphic to the relative functors, so that M Ay N
and F4(M,N) are R-modules. Of course, if A is a commutative R-algebra,
then these are A-modules and duality theory applies. In the relative theory, if
we replace (R, S) by (A, R), with concomitant changes of notations for various
functors, then all of the statements in Chapter III which make sense remain true.
Note, for example, that we have relative versions of 111.3.10 and of the pairings
discussed in III§6. The results on pairings give the following generalization of
111.6.12.

PROPOSITION 1.10. Let R be a commutative S-algebra, A be an R-algebra,
and M and N be A-modules. Then Fa(M,M) is an R-algebra and Fa(M,N) is
an (F4(N,N), Fs(M, M))-bimodule.

Of course, the case A = R is of particular interest.

2. Tensored and cotensored categories of structured spectra

As in I§1, consider the categories & and % of prespectra and spectra indexed
on a universe U. It was proven in [38, p.17-18] that these categories are topo-
logically enriched, in the sense that their Hom sets are based topological spaces
such that composition is continuous. For prespectra D and D', #(D,D’) is
topologized as a subspace of the product over indexing spaces V of the function
spaces F(DV,D'V). Since maps between spectra are just maps between their
underlying prespectra, this fixes the topology on #(E, E’). It was also observed
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in [38, p.18] that all of the functors introduced in that volume are continuous
and all of the adjunctions proven in it are given by homeomorphisms of Hom
sets.

For example, by [38, 1.3.3], there are natural homeomorphisms

(2.1) F(ENX,E)= I (X,#E,E)) = #(E F(X,E))

for spaces X and spectra E and E’, where & denotes the category of based
spaces. In categorical language [33, §3.7], (2.1) states that % is tensored with
tensors E A X and cotensored with cotensors F(X, E). Adjoining disjoint base-
points to unbased spaces X, we obtain similar homeomorphisms involving the
category % of unbased spaces. We give a formal definition in the unbased con-
text.

DEFINITION 2.2. Let & be a category enriched over the category % of unbased
spaces. Then & is tensored if there is a functor ®¢ : & x  — &, continuous
in both variables, together with a natural homeomorphism

S(E®s X,E') =% (X,6(E,E))

for spaces X and objects E and E’ of &. We write ® for ® ¢ when & is clear from
the context. Dually, & is cotensored if there is a functor Fg : Z°P x & — &,
continuous in both variables, together with a natural homeomorphism

u (X,8(E, E')) = &(E, Fe(X, E')).

As in the motivating example (2.1), Fg will always admit an explicit descrip-
tion. The tensors are more interesting and less familiar. We will give a way of
describing them for many spaces X in the next section.

Again, by the argument illustrated in [38, p.18-19], colimits and limits of
spectra are continuous (a better term would be topological). This means that
the isomorphisms

(2.3) & (colim E;, F) = lim & (E;, F)
and
(2.4) S (F,limE;) & lim & (F, E;)

are homeomorphisms.

The continuity can also be deduced categorically. There are valuable general
notions of indexed colimits and limits in enriched categories, which are defined
and discussed in Kelly [33, §3.1]. Indexed colimits include tensors with spaces
and continuous colimits as special cases, and dually for limits. We shall not
repeat the general definition, since we shall not have occasion to use it, and we
shall rely on the following result of Kelly (33, 3.69-3.73] to deduce the existence
of indexed colimits and limits.

DEFINITION 2.5. A category & enriched over % is topologically cocomplete if
it has all indexed colimits and topologically complete if it has all indexed limits.
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THEOREM 2.6 (KELLY). Let & be a category enriched over the category of
based or unbased spaces. Then & is topologically cocomplete if it is cocomplete and
admits tensor products and is topologically complete if it is complete and admits
cotensor products. In particular, the given colimits and limits are continuous.

Our various categories of structured ring, module, and algebra spectra inherit
subspace topologies on their Hom sets. Thus they are all topologically enriched.
All of the functors and adjunctions that we have constructed in this paper are
continuous, by the cited arguments of [38, p.18-19]. We claim that our vari-
ous categories of rings, modules, and algebras are topologically cocomplete and
complete.

For modules, this is immediate from II.1.4, III.1.1, and inspection. If R is an
S-algebra, M is an R-module, and X is a based space, then

(2.7) Mp(MANX,M') = T(X, Mp(M, M) = Mr(M,S Ng F(X,M")).

We deduce the first isomorphism from the first isomorphism of (2.1) by first writ-
ing #s(M,M') as the equalizer of a pair of maps (M, M') — (LM, M’)
and then writing .#g(M, M') as the equalizer of a pair of maps Ag(M,M') —
Ms(R Ns M, M'"). We deduce the second isomorphism from the first by use of
the isomorphisms

MAXZ2MAsE®X and SAg F(X,M)=Fg(X*°X,M).

PROPOSITION 2.8. For any S-algebra R, .#g is topologically cocomplete and
complete. Its tensors M A X and all other indezed colimits are created in Ms
or, equivalently, in . Its cotensors Fg(X°X, M) and all other indezed limits
are created in Mg or, equivalently, by applying the functor S Ay (=) to indezed
limits created in &.

Now consider the categories of R-algebras and of commutative R-algebras.
We agree to denote these categories by &g and ¥ /g, respectively. We must
enrich these categories over %/, since there are no “trivial maps” to take as
basepoints of Hom sets. We have already observed in 1I§7 that the categories
&g and €r are complete and cocomplete. Continuing that discussion, we
obtain the following result. The proof works equally well in the categories of
A and E ring spectra, where the result is due to Hopkins and McClure [32]
and, in the E,, case, is the main technical result of McClure, Schwanzl, and
Vogt [54, Thm A].

THEOREM 2.9. For any commutative S-algebra R, the categories 2/r of R-
algebras and €/r of commutative R-algebras are topologically cocomplete and
complete. Their cotensors and all other indezed limits are created in #g or,
equivalently, by applying the functor S Ag (=) to indexed limits created in .

Proor. By II.7.1 (compare I1.4.5), we have monads T and P in the category
of R-modules whose algebras are the R-algebras and commutative R-algebras,
and these monads are continuous (e.g., by inspection when R = S and use
of Proposition 1.4). Now I1.7.2 and I1.7.4 apply to show that &/ and Fwg
are cocomplete. In the commutative case, the construction of colimits is quite
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simple since Proposition 1.6 gives coproducts and pushouts, and it is trivial to
construct coequalizers from them. Moreover, by an easy bootstrap argument
from the continuity of colimits in the ground category of spectra, coequalizers
in o/r and ¥R are continuous. Now I1.7.2 and the following categorical result
complete the proof. [

PROPOSITION 2.10. Let T : € — ¥ be a continuous monad defined on a
topologically enriched category € and let €[T| be the category of algebras over
T. Assume that € is topologically cocomplete and complete.

(1) The forgetful functor €|T] — € creates all indezed limits.
(ii) If T preserves reflexive coequalizers, then €[T] has all indezed colimits.

PROOF. Part (i) is the enriched version of [43, V1.2, Ex 2]. Our version of
(ii) seems to be new, although part of the proof is due to Hopkins [32]. Reflexive
coequalizers are defined in I11.6.5. By I1.7.4, we know that %’[T] is cocomplete in
the ordinary sense. By Kelly’s theorem (Theorem 2.6), we need only construct
tensors in €[T]. Thus let (C,&) be a T-algebra and X be a space. Let C ® X
denote their tensor in €. Define v: TC ® X — T(C ® X) to be the adjoint of
the composite map of spaces

X —%(C,C ® X) X %(TC,T(C ® X)),

where the first arrow is adjoint to the identity map C ® X — C ® X. Define
C ®«¢1) X to be the coequalizer in ¢ displayed in the following diagram:

T(¢{®id)
T(TC ® X) _.._>““T—>'JI‘(C® X) ——C ®¢r) X.
poTv

Clearly the parallel arrows are both maps of T-algebras. We claim that this
diagram is a reflexive coequalizer in €. It will follow from I1.6.6 that the diagram
is a coequalizer in F[T]. We check the adjunction homeomorphism

required of a tensor by using the fact that €[T](C,C’) is the equalizer in % of

z(c,c)E ¢ (To, ¢

and
%(C,c") L= (TC, TC" 298¢ (TC, ).

To see that the displayed coequalizer is reflexive, as claimed, consider the map
T(n®id) : T(C® X) — T(TC ® X).

Clearly T(€ ® id) o T(n ® id) = id. Less obviously, u o Tv o T(n ® id) = id. This
follows by adjunction from the commutative diagram

X—"1 € TC®X))

l /j@ﬁ// Imwm

%(C,C ® X) —— B(T, T(C ® X)).
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Here the commutativity of the upper left triangle defines the adjoint 7, and the
lower right triangle commutes by the naturality, no f = Tf o n, of 7 on maps
f:C — C®X. Thus T(n ®id) gives the required reflection. 0O

In particular, Fs(X®X,, A) is the cotensor of a space X and an R-algebra
or commutative R-algebra A. The diagonal on X and the product on A induce
the product on Fs(X*°X,,A). The following instance of a general categorical
observation explains the relationship between the smash product A A X in the
category of R-modules and the tensor A ® X in the category of R-algebras or
commutative R-algebras.

PROPOSITION 2.11. For R-algebras A and spaces X there is a netural map of
R-modules

wiAANXy — A®X

such that w is the canonical isomorphism if X = {*} and the following transitivity
diagrams commute:

(ANX ) AY, A (U@ X)AY, —“>(AQX)RY

N X

AAN(X xY), _ AR (X xY).

Forze X, leti, : A — ANX, be the map induced by the inclusion {z}, —
Xy Amap f: ANXy — B of spectra into an R-algebra B such that each
composite f oiz : A — B is a map of R-algebras uniquely determines a map of
R-algebras f : A® X — B such that f = f ow. The same statement holds for
commutative R-algebras.

PRrROOF. We have a natural map
Fr(A® X, B) 2 % (X, 9r(A,B)) — % (X, #r(A,B)) =2 Mr(ANX,, B),

and w is the image of the identity map of A ® X. The rest is easy diagram
chasing, using the natural map .#p(AA X, , B) — (AN X, B) for the last
statement. O

REMARK 2.12. For R-algebras A and B, the previous result says that a map
A®X — B of R-algebras determines and is determined by a map AAX, — B
of spectra that is pointwise a map of R-algebras. A similar construction and
result apply whenever one has a tensored category & with a continuous forgetful
functor to spectra. For objects A and B in &, we define a homotopy to be a
map h: A®I — B. Then h is induced by a homotopy A A I, — B through
maps in &.
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3. Geometric realization and calculations of tensors

To prepare for our construction of model structures and our study of thh,
we explain how to calculate tensors E ® X for certain spaces X, and we use
this calculation to study pushouts and cofibrations in the context of R-algebras.
Our main tool is geometric realization, and the reader is urged to read the first
two sections of Chapter X, which give a down to earth study of the geometric
realization of simplicial spectra, before reading this section.

Fix a topologically complete and cocomplete category & with a continuous
forgetful functor to spectra. We have the notion of a simplicial object E, in
&. There are two notions of the geometric realization of such an object. We
can first forget down to the category of simplicial spectra and take the geometric
realization | E,| there, or we can rework the definition and carry out the construc-
tion entirely in &, obtaining the internal geometric realization |E,|s. Explicitly,
|Ex|s is the coend

A
(3.1) |E*|é-=/ E, ®s A,

The following relationships between these two kinds of geometric realization
generalize and clarify observations of McClure, Schwénzl, and Vogt [54, 4.3, 4.4]
about the category of E, ring spectra. We defer the proofs to the end of the
section.

PROPOSITION 3.2. Let X, be a simplicial space and let A € &. Then there is
a natural isomorphism

A®s | Xu| 2 |AQRs Xils,
of objects of &.

The realization of underlying simplicial spectra is more amenable to homo-
topical analysis than the internal realization. In favorable cases, the realization
|E.| will again be an object of &, but this is not formal. We shall prove in X§1
that this holds for all of the categories of interest to us. In such cases, the two
geometric realizations are isomorphic. In particular, the following result holds.

PROPOSITION 3.3. Let R be any commutative S-algebra, such as R = S. For
simplicial R-algebras A, there is a natural isomorphism of R-algebras

\A*‘ = ‘A*ldn’
and similarly for simplicial commutative R-algebras.

COROLLARY 3.4. For R-algebras A and simplicial spaces X,, there is a nat-
ural isomorphism of R-algebras

A®ﬂ}z |X*| = \A P Xul,

and similarly for commutative R-algebras.
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In the following discussion, we let & denote either &/r or ¥ 2/ and write ® for
®s. We use the term R-algebra in either case. The computation of A®|X,| just
given applies particularly effectively to simplicial sets X, regarded as discrete
simplicial spaces. We have a categorical coproduct IT in &. This is Ag in the
commutative case, but it is the “free product” in the non-commutative case. In
the commutative case, the codiagonal map v : AIl A — A is the product on
A. In both cases, the unit n: R — A is the unique map from the initial object.
Since a discrete set n with n points is the coproduct of its elements and the
functor A ® (—) preserves coproducts, A ® n is the coproduct of n copies of A.
To calculate A ® |X.|, we need only identify the induced face and degeneracy
operators on coproducts of copies of A in terms of the structure maps v and 7.

In order to understand homotopy theory in &, we need to understand A ® I.
We shall describe it in terms of a bar construction that is defined on R-algebras.
Recall that we defined the bar construction B(M, R, N) for a commutative S-
algebra R and R-modules M and N in IV.7.2. We shall later use the evident
generalization in which we replace R and its modules by a commutative R-
algebra A and its modules. We here introduce a variant that applies equally
well to either commutative or non-commutative R-algebras. In the commutative
case, it is just the specialization of the cited generalization in which the given
A-modules are restricted to be commutative A-algebras.

DEFINITION 3.5. Let A be an R-algebra, andlet f: A — A’ andg: A —
A” be maps of R-algebras. These maps and the identity maps of A’ and A"
determine maps of R-algebras

p:AITA— A and v:AOA" — A"

Define a simplicial R-algebra 8%(A’, A, A”) by replacing As and ¢ by IT and Vv
in IV.7.2. Then define an R-algebra g%(A’, A, A”) by

BR(A, A, A") = |BR(A, A, A")).
There is an evident natural map of R-algebras
,w . ,@R(A’,A,A”) —_ A/ HA AII

from the bar construction to the displayed pushout.
Define the double mapping cylinder R-algebra M(A’, A, A”) by

(3.6) M(A A A=A T4 (A®I)114 A"
and observe that the map I -— {pt} induces a collapse map

v M(A A A" — AL, A",
We have the following identification of these two constructions.

PROPOSITION 3.7. Let A be an R-algebra with given maps to R-algebras A’
and A”. Then there is a natural isomorphism

BR(A A A =AQT
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of R-algebras over A and under AUl A, and there is a natural isomorphism
BR(A A A" = M(A',AA)
of R-algebras over A’ 114 A” and under A’ 11 A”.

PROOF. Let I, be the standard simplicial 1-simplex with realization I. It has
p+ 2 p-simplices, and a simple comparison of its face and degeneracy operations
(e.g., [44, p.14]) with those of the bar construction shows that we have a natural
identification of simplicial R-algebras

BR(A,AA) = AL

In fact, one can see this quite directly, since the only non-degenerate simplices
of I, are a 1-simplex A; and its faces, and similarly for BF(A, A, A). The rest
follows. [

We use this to obtain a result about cofibrations that will be at the heart of
our construction of model structures on & in Section 6. Let T : .#r — & be the
free R-algebra functor; thus T must be interpreted as [P in the commutative case.
We shall prove in XII1.2.3 that the functor T preserves cofibrations of R-modules.
Since T preserves tensors and pushouts and since R = T(*), we have

TCM = Rlry (TM ®I).

PROPOSITION 3.8. For an R-module M and a map of R-algebras TM — A,
the natural map of R-algebras

% : M(TCM,TM, A) — TCM Ilgp A

is homotopic rel A to an isomorphism.

PRrROOF. For a based space X, it is trivial to see that the map
CXUx (XANI)—CX
that retracts the cylinder onto the base of the cone is homotopic to a homeomor-
phism. Working in the category of R-modules, the same argument works with
X replaced by M. Applying the functor T, the cited map then becomes the map
p: RUpp (TM QI) Upp (TM ®I) — RUppy (TM ®I)
that retracts the second copy of TM ® I onto the base of the first. We have
M(TCM,TM,A) = R1pps (TM@ I) 7 (TM@ I) Lrar A,

and ¢ is obtained by applying the functor (=) Lrp A to p. The conclusion
follows. [0
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PROPOSITION 3.9. For any pushout diagram of R-algebras

™ ——A

L

TCM — B,

the map i is a cofibration of R-modules and therefore of spectra.

PROOF. The essential point is just that the unit map n : R — TCM is
the inclusion of a wedge summand of R-modules and a retract of R-algebras.
From this, we find that the induced map A — TCM II A of R-algebras is also
the inclusion of a wedge summand of R-modules and a retract of R-algebras.
By the previous lemma and proposition, the pushout is isomorphic under A
to the bar construction BR(TCM,TM, A). All of the degeneracy operators of
BE(TCM, TM, A) are inclusion of wedge summands of R-modules, and it follows
that BF(TCM,TM, A) is proper in the sense of X.2.2. This implies that the map
from the zero skeleton TCM 11 A into B3%(TCM,TM, A) is a cofibration, and the
conclusion follows. [J

We shall also need the following elementary complement.

LEMMA 3.10. Let {A;} be a sequence of maps of R-algebras that are cofibra-
tions of spectra. Then the underlying spectrum of the colimit of the sequence
computed in the category of R-algebras is the colimit of the sequence computed
in the category of spectra.

PROOF. The colimit in the category of spectra computes the colimit in the
category of R-modules and satisfies

(colim A;) Ag (colim A;) = colim (A; Ar A;).

Therefore the spectrum level colimit inherits an R-algebra structure from the
A;, and the universal property in the category of R-algebras follows from the
universal property in the category of R-modules. O

We must still prove Propositions 3.2 and 3.3. Let s% denote the category of
simplicial objects in a category %.

PROOF OF PROPOSITION 3.2. For a space Y, let % (A,,Y) be the evident
simplicial space with g-simplices % (Ag4,Y). This functor of Y is right adjoint
to geometric realization,

(3.11) U(X.,Y) 2 s% (X, % (A, Y)).

Similarly, for an object F of &, let Fg(A., F) be the evident simplicial object of
& with g-simplices Fig(Aq, F'). This functor of F is right adjoint to the internal
geometric realization,

(3.12) &(|E.|s, F) & s€(E., Fs(As, F)).
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These adjunctions, together with tensor and cotensor adjunctions, give the chain
of natural isomorphisms

&(E ®s |X.|, F) = % (X4, £(E, F))

% (X, % (A, &(E, F))
% (X, 6(E, Fo(As, F))
Sé’(E Rs Xx, Fg(A*,F))
E(E®s Xuls, F).

R IR R

R

The conclusion follows. [

PRrROOF OF PROPOSITION 3.3. Our interest is in the examples & = @&/ and
& = €%/r, but the argument works more generally. In fact, it applies whenever
realizations | E,| inherit structure present in &, with the induced structure “aris-
ing pointwise”. To explain what this means, note that we have an adjunction
like those of (3.11) and (3.12) for simplicial spectra K, and spectra L, namely

(3.13) F (K|, L) = s&(Ki, F((AL)+, L)),

where F((A)+,L) has g-simplices F((Aq)+,L). Now let E, be a simplicial
object of & and F be an object of €. When |E,| is again an object of &, we
have the subspace

S(|E|, F) C L(|Bul, F)

of maps in &. We say that the induced structure on |E,| arises pointwise
if this subspace coincides under the adjunction (3.13) with the subspace of
s (Ex, F((Ax)+, F)) consisting of those points f = {f;} such that the ad-
joint fy : Eg A (Ag)y — F of fy : E; — F((Ag)+, F)) restricts to a map
E; — F in & on the copy of E; in Eg A (A4)4 determined by each point of A,.
By Proposition 2.11 and Remark 2.12, such a map 'fq extends uniquely to a map
gq : Eq®s Aq — F in &. In turn, under the tensor-cotensor adjunction, g,
corresponds to a map gq : E; — Fg(Ag, F) in &. The function {fq} — {94}
determines an adjunction

(3.14) &(|E,|, F) & s&(Ey, Fs (A, F)).

Comparison of (3.12) and (3.14) gives the conclusion. An alternative argument
based on the properties of the monads T and P is also possible. The adjunctions
above can be used to check that

T|Au| = | T(As)|arp-

The functor T commutes with |-| on simplicial R-modules, the functor ||,
preserves coequalizers, and a comparison of coequalizer diagrams gives the re-
sult. O
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4. Model categories of ring, module, and algebra spectra

We shall prove that our various categories of structured spectra admit model
structures. A more general, axiomatic, framework is possible; compare Blanc
[6]. We assume familiarity with the language of model categories, by which
we understand closed model categories in Quillen’s original sense [57]. A good
exposition is given in [18]. We explain our results in this section and prove them
in the next.

In this paper, cofibrations and fibrations in any of our categories mean maps
that satisfy the homotopy extension property (HEP) or covering homotopy prop-
erty (CHP) in that category. Cofibrations in this sense will play a central role
in the work of the next section. It is a pity that the language of model cate-
gories has, in the literature, been superimposed on the classical language, with
resulting ambiguity. We shall use g-cofibrations and g-fibrations for the model
theoretic terms.

In all of our model categories, the weak equivalences in the model sense will be
those maps in the category which are weak equivalences of underlying spectra.
We say that the weak equivalences are created in .. Observe that a retract of a
weak equivalence is a weak equivalence. Recall that a g-fibration or g-cofibration
in a model category is said to be acyclic if it is a weak equivalence.

Implicitly or explicitly, we must constantly think in terms of diagrams

E—>X

7
i Y ip
/

FTY,

where the square is given to be commutative and we seek a lift g that makes
both triangles commute. We say that ¢ has the left lifting property (LLP) with
respect to a class of morphisms &2 if there exists such a lift g for any square
in which p € &. We say that p satisfies the right lifting property (RLP) with
respect to a class of morphisms # if there exists such a lift g for any square in
which i € £.

For example, a Serre fibration of spectra is a map that satisfies the CHP with
repect to the set of “cone spectra”

{2;’°CS"[ ¢>0 and n>0}.

This means that it is a map that satisfies the RLP with respect to the set of
inclusions
ig : X°CS™ — B PCS™ A .
Again, a retract of a Serre fibration is a Serre fibration. The g¢-fibrations in &
will be the Serre fibrations.
The following definition will allow us to give succinct statements of our results.

DEFINITION 4.1. Let ¥ be a model category with a forgetful functor to .
that creates weak equivalences and let & be a category with a forgetful functor
to €. We say that € creates a model structure in & if & is a model category
whose weak equivalences are created in % and whose g-fibrations are created in
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%. That is, a map in & is a g-fibration if it is a g-fibration when regarded as a
map in ¥. The g¢-cofibrations in & must then be those maps which satisfy the
left lifting property with respect to the acyclic g-fibrations.

Our categories are enriched, and our model structures will reflect this. Quillen
defined the notion of a simplicial model category in [57, 11§2], and the appropriate
topological analogue of his definition reads as follows.

DEFINITION 4.2. A model category & is topological if it is topologically com-
plete and cocomplete and if, for any g-cofibration ¢ : £ — F' and ¢-fibration
p: X — Y, the induced map

(43) (i*,p.) : €(F, X) — &(E, X) x (g, E(E,Y)
is a Serre fibration of spaces which is acyclic if either i or p is acyclic.

THEOREM 4.4. The category & is a topological model category with respect
to the weak equivalences and Serre fibrations. If T : &/ — % is a contin-
wous monad that preserves reflexive coequalizers and satisfies the “Cofibration
Hypothesis”, then % creates a topological model structure in &[T)].

We think of the first statement as the specialization to the identity monad
of the second. We shall specify the “Cofibration Hypothesis” shortly. It will
obviously be satisfied by the identity monad and by the monad IL, and arguments
like those of the previous section verify it for the monads TIL and PL that define
Ao and E, ring spectra.

COROLLARY 4.5. The categories of IL-spectra and of Aw and Eo Ting spectra
are topological model categories.

Of course, we are far more interested in our categories of modules and algebras.
The crux of the proof of Theorem 4.4 is the adjunction

Z[T)(TX, 4) = (X, A)

for spectra X and T-algebras A. By the adjunction, the g-fibrations in #[T] are
the maps that satisfy the RLP with respect to the set of inclusions

Tip : TSP CS™ — TEPCS™ A L.

That is, they satisfy the CHP with respect the set of “cone T-algebras” TE°CS™.
These maps deserve to be called Serre fibrations of T-algebras.

Similarly, we define a Serre fibration of S-modules to be a map that satisfies
the CHP with respect to the “cone S-modules” S A¢ ]LE;"CS". For S-modules,
the adjunction above must be replaced by the adjunction

Ms(S A LX, M) = (X, Fe (S, M))

that we obtain by composing the first adjunction of 11.2.2 with the freeness
adjunction for the monad IL. Thus, when interpreting Definition 4.1 for S-
modules, we must change our forgetful functor from the obvious one to the
functor F'¢ (S, —). Since Fi¢ (S, M) is naturally weakly equivalent to M, by 1.8.7,
the weak equivalences are unchanged. However, the g-fibrations are changed.
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THEOREM 4.6. The category #s is a topological model category with weak
equivalences created in . Its q-fibrations are the Serre fibrations of S-modules,
which are the maps f : M — N of S-modules such that

F(id, f) : F¢(S,M) — F¢(S,N)
is a Serre fibration of spectra.

Although the functor TX = S Ag LX from spectra to S-modules is not
a monad, the proof of Theorem 4.4 nevertheless applies. To understand this,
we think in terms of the “mirror image” category .#° of counital L-spectra
specified in 11.2.1. By I1.2.7 and composition (see II.6.1), we have a continuous
monad Fe (S,L(—)) on % whose algebras are the counital L.-spectra. We have a
topological equivalence of categories .#° — .#s that carries N to SA¢ N. By
I1.2.5, S Ay Fe (S, M) is naturally isomorphic to S Ay M for any LL-spectrum
M. Thus the monad that defines counital [.-spectra is transported under the
equivalence to the functor T relevant to the construction of the model structure
on #gs. The equivalence has the effect of changing the forgetful functor.

The proof of Theorem 4.4 will apply equally well if we change our ground
category to .

THEOREM 4.7. If T : Ms —> Mg is a continuous monad that preserves
reflexive coequalizers and satisfies the “Cofibration Hypothesis”, then .#s creates
a topological model structure in #s[T).

Of course, the description of the g-fibrations as maps f such that Fe (S, f)
is a Serre fibration persists. Again, the Cofibration Hypothesis will be specified
shortly and holds in our examples.

COROLLARY 4.8. The categories of S-algebras, commutative S-algebras, and
modules over an S-algebra R are topological model categories.

Now that we have a model structure on .#g, we can generalize Theorem 4.7
by changing its ground category to .#g.

THEOREM 4.9. Let R be a commutative S-algebra. If T : #Mr — MR is a
continuous monad that preserves reflexive coequalizers and satisfies the “Cofi-
bration Hypothesis”, then g creates a topological model structure in #g[T).

COROLLARY 4.10. The categories of algebras and commutative algebras over
a commutative S-algebra R are topological model categories.

In fact, Theorems 4.7 and 4.9 both apply, and they give the same model
structures since they give the same g¢-fibrations and weak equivalences. We
prefer to think of the model structure as created in .#g, since that makes visible
more information about the g¢-cofibrations. While the model category theory
dictates what the g-cofibrations must be, the proofs of the theorems will lead to
explicit descriptions.
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DEFINITION 4.11. Let T be a monad in . as in Theorem 4.7. A relative cell
T-algebra Y under a T-algebra X is a T-algebra Y = colimY,,, where Yy = X and
Yn+1 is obtained from Y;, as the pushout of a sum of attaching maps TS? — Y,
along the coproduct of the natural maps TS? — TCS9. When X is an initial T-
algebra, we say that Y is a cell T-algebra. Relative and absolute cell T-algebras
are defined in precisely the same way for a monad T in g as in Theorem 4.9,
except that the sphere spectra S? are replaced by the sphere R-modules S%.

REMARK 4.12. The functor T : ¥ — [T, being a left adjoint, preserves
coproducts. Thus, when attaching a coproduct of cells TCS? to Y, to obtain
Y, +1, we are considering a pushout in &[T] of the general form

TE——A

(413) l li

TCE — B,

where E is a wedge of spheres, and similarly when the ground category is #s
or Ag.

The Cofibration Hypothesis is just the minimum condition necessary to obtain
homotopical control over these pushout diagrams and their colimits. It holds in
our examples by Proposition 3.9 and Lemma 3.10.

COFIBRATION HYPOTHESIS. The map ¢ in any pushout of the form (4.13) is
a cofibration of spectra (for Theorem 4.4) or of S-modules (for Theorem 4.7)
or of R-modules (for Theorem 4.9). The underlying spectrum of the T-algebra
colimit of a sequence of cofibrations of T-algebras is their colimit as a sequence
of maps of spectra.

Actually, for the model structure in Theorems 4.7 and 4.9, we only need the
maps ¢ to be cofibrations of spectra, or even just spacewise closed inclusions of
spectra. However, the stronger R-module cofibration condition holds in practice
and is important in the applications.

THEOREM 4.14. Under the hypotheses of Theorems 4.4, 4.7, and 4.9, a map
of T-algebras is a g-cofibration if and only if it is a retract of a relative cell T-
algebra. Moreover, any q-cofibration is a cofibration of underlying spectra (in
Theorem 4.4) or of underlying S-modules (in Theorem 4.7) or of underlying
R-modules (in Theorem 4.9).

By the Cofibration Hypothesis, the second statement will follow from the first.
In all of our categories of T-algebras, the trivial spectrum is a terminal object and
every T-algebra is ¢-fibrant. By the previous result, a T-algebra is g-cofibrant if
and only if it is a retract of a cell T-algebra. Note in particular that the unit
R — A of a g-cofibrant R-algebra or commutative R-algebra is a cofibration of
R-modules.

As in our discussion of Theorem 4.6, the proof of the previous theorem will
apply to give the following expected conclusion.
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THEOREM 4.15. For an S-algebra R, such as R = S, a map of R-modules is
a g-cofibration if and only if it is a retract of a relative cell R-module.

Thus, in the case of R-modules, model category theory just brings us back to
the cell theory that we took as our starting point. We can turn this around. We
certainly want the weak equivalences and g-cofibrations in .#g to be the weak
equivalences of underlying spectra and the retracts of relative cell R-modules.
Since the weak equivalences and g-cofibrations determine the g-fibrations, we see
that the g¢-fibrations specified in Theorem 4.6 are in fact forced on us by the cell
theory that we began with.

Returning to the general context of Theorem 4.14, we also have that the
natural notion of homotopy in any of our categories of T-algebras, namely that
discussed in Remark 2.12, agrees with the notion of homotopy that is dictated
by our model category structures.

LEMMA 4.16. If A is a g-cofibrant T-algebra, then A® I is a cylinder object
for A in the sense of Quillen. That is, the folding map id+id: AIA — A
factors as the composite of a q-cofibration ALIA — A®I and a weak equivalence
AR — A.

5. The proofs of the model structure theorems

We must prove Theorems 4.4, 4.6, 4.7, 4.9, 4.14, and 4.15 and Lemma 4.16.
For uniformity of treatment, let € be either & or .#g for a commutative S-
algebra R. Logically, of course, we should treat the case R = S before going on
to the general case. Let T be a continuous monad in ¥ that preserves reflex-
ive coequalizers. By Proposition 2.10, we already know that %[T)] is complete,
cocomplete, tensored and cotensored, and indeed has all indexed limits and col-
imits. It is clear that if g o f is defined and two of f, g, and go f are weak equiv-
alences, then so is the third. It is also clear that the collections of g-fibrations,
g-cofibrations, and weak equivalences are closed under composition and retracts
and contain all isomorphisms. It remains to prove that arbitrary maps factor
appropriately and that the g-fibrations satisfy the right lifting property (RLP)
with respect to the acyclic g-cofibrations. The essential point is that Quillen’s
“small object argument” applies to construct the required factorizations. A gen-
eral version of Quillen’s original argument is given in [18, §6], and we shall give
a modified version of that argument.

DEFINITION 5.1. For the purposes of this section, define a finite pair of spectra
to be a pair of the form (33°B,£°A), where B is a finite based CW complex, A
is a subcomplex, and ¢ > 0. Define a finite pair of L-spectra to be a pair obtained
by applying L to a finite pair of spectra. Define a finite pair of R-modules to be
a pair obtained by applying Fg to a finite pair of spectra.

As a matter of esoterica, we actually only need A, not B, to be finite in our
arguments.
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LEMMA 5.2. Let Z be a set of maps in F[T], each of which is of the form
TE — TF for some finite pair (F,E) in €. Then any map f : X — Y in
€|T) factors as a composite

X —tx'—25y,

where p satisfies the RLP with respect to each map in F and i satisfies the LLP
with respect to any map that satisfies the RLP with respect to each map in Z.

PROOF. Let X = Xy. We construct a commutative diagram

Xo—2> X, e Xp —2> Xpi1
(5.3) f=pol lpl lpn lpn+1
Y—>Y o Y—3—>Y

as follows. Suppose inductively that we have constructed p,,. Consider all maps
from a map in & to p,. Each such map is a commutative diagram of the form

(5.4) l lpn

TF—5—>Y.

Summing over such diagrams, we construct a pushout diagram of the form

]_[TE&»X,L

|k

HTF—>X7L+1.

The maps (3 induce a map pp41 : Xny1 — Y such that p,y1 04, = p,. Let
X' = colim X,, let i : X — X’ be the canonical<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>