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Preface

Our primary purpose in this volume is to establish the foundations of
equivariant stable homotopy theory. To this end, we shall construct a stable
homotopy category of G-spectra enjoying all of the good properties one might
reasonably expect, where G 1is a compact Lie group. We shall use this category to
study eqﬁivariant duality, equivariant transfer, the Burnside ring, and related

topics in equivariant homology and cohomology theory.

This volume originated as a sequel to the volume "H_ ring spectra and their
applicatlfons" in this series [20]. However, our goals changed as work progféssed,
and most of this volume is now wholly independent of [20]. In fact, we have two
essentially disjoint motives for undertaking this study. On the one hand, we are
interested in equivariant homotopy theory, the algebraic topology of spaces with
group actions, as a fascinating subject of study in its own right. On the other
hand, we are interested in equivariant homotopy theory as a tool for obtaining
useful information in classical nonequivariant homotopy theory. This division of
motiﬁation is reflected in a division of material into two halves. The first half,
chapters I-V, is primarily addressed to the reader interested in equivariant
theory. The second half, chapters VI-X, is primarily addressed to the reader
interested in nonequivariant applications. It gives the construction and analysis
of extended powers of spectra that served as the starting point for [20]. It also
gives a systematic study of generalized Thom spectra. With a very few minor and
peripheral exceptions, the second half depends only on chapter I and the first four
sections of chapter II from the first half. The reader is referred to [105] for a

very brief guided tour of some of the high spots of the second half.

Chapter I gives the more elementary features of the equivariant stable
category, such as the theory of G-CW spectra and a desuspension theorem allowing
for desuspension of G-spectra by all representations of G in the given ambient
"indexing universe". Chapter II gives the construction of smash products and
function G-spectra. It also gives various changekof universe and change of groups
theorems. Chapter III gives a reasonably comprehensive treatment of equivariant
duality theory, including Spanier—Whitehead, Atiyah, and Poincaré duality. Chapter
IV studies transfer maps associated to equivariant bundles, with emphasis on their
calculational behavior in cohomology. Chapter V studies the Burnside ring and its
role in equivariant stable homotopy theory. It inecludes various related splitting
theorems in equivariant homology and cohomology theory.

Although we have encountered quite a few new phenomena, our main goals in the
first half have been the equivariant generalization of known nonequivariant results
and the generalization and sharpening of known equivariant results. We therefore

owe ideas and material to numerous other mathematicians. Our general debt to the




work of Boardman-[13,14] and Adems [1] in nonequivariant stable homotopy theory will
be apparent throughout. The idea for a key proof in chapter I is due to

Hauschild. The main change of groups theorems in chapter II are generalizations of
results of Wirthmuller [144] and Adams [3], and the study of subquotient cchomology
theories in II§9 is based on ideas of Costencble.

Our debts are particularly large in chapters III, IV, and V. Our treatment of
duality is largely based on ideas in the lovely paper [47] of Dold and Puppe and on
(nonequivariant) details in the papers [63,64,65] of their students Hemm and Hommel;
equivariant duality was first studied by Wirthmuller [145]. Our treatment of
transfer naturally owes much to the basic work of Becker and Gottlieb [10,11] and
Dold [46], and transfer was first studied equivariantly by Nishida [117] and Waner
[141]. Our IVS6 is a reexposition and equivariant géneralization of Feshbach's work
[53,54] on the double coset formula, and he cleared away our confusion on several
points. While our initial definitions are a bit different, a good deal of chapter V
is a reexposition in our context of tom Dieck's pioneering work [38-44] on the
Burnside ring of a compact Lie group and the splitting of equivariant stable

“homotopy. This chapter also includes new proofs and generalizations of results of
Araki [4].

A word about our level of generality is in order. We don't restrict to finite
groups since, for the most part, relatively little simplification would result. We
don't generalize beyond compact Lie groups because we believe that only the most
formal and elementary portions of equivariant stable homotopy theory would then be
available. The point is that, in all of our work, the depth and interest lies in
the interplay between homotopy theory and representation theory. Technically, part
of the point is that the cohomology theories represented by our G-spectra are RO(G)-
graded and not just Z-graded. This implies huge amounts of algebraic structure

which would be invisible in more formal and less specifie homotopicél contexts.

While a great deal of our work concerns equivariant cohomology theory, we have
not given a systematic study here. Lewis, MeClure, and I have used the equivariaﬁt
stable category to invent "ordinary RO(G)-graded cohomology theories" [88], and the
three of us and Waner are preparing a more thoroﬁgh account [90]. (Hauschild,
Waner, and I are also preparing an account of equivariant infinite loop space

theory, which is less directly impinged upon by this volume.)

Chapters VI-VIII establish rigorous foundations for the earlier volume [20],
which we shall refer to as [H_] here. That volume presupposed extended powers
IﬁE = EZJ xE_E(j) of spectra with various good properties. There E was a-
nonequ;variant spectrum, but our construction will apply equally well to

G-spectfa E for any compact Lie group G.

In fact, extended powers result by specialization of what is probably the most

fundamental construction in equivariant stable homotopy theory, namely the twisted

v

_half-smash product X x E of a G-space X and a G-spectrum E. (The "twisting" is

encoded by changes of universe continuously parametrized by X.) This construction
is presented in chapter VI, although various special cases will have been

encountered earlier.

We develop a theory of "operad ring G-spectra" and in particular construect free
operad ring G-spectra in chapter VII. When G is finite, special cases give
approximations of iterated loop G-spaces ©':'X, and we obtain equivariant

géneralizations of Snaith's stable splittings of spaces X,

‘We prove some homological properties of nonequivariant extended powers-that

were used in [H,] in chapter VIII.

Chapters IX and X give a careful treatment of the Thom spectra associated to
maps into stable classifying spaces. These have been used extensively in recent
years, and many people have felt a need for a detailed foundational study. In
chapter IX, we work nonequivariantly and concentrate on technical problems arising
in the context of spherical fibrations (as opposed to vector bundles). In chapter
X, we work equivariantly but restriect ourselves to the context of G-vector bundles.
There result two specializations to the context of nonequivariant vector bundles,
the second of which is the more useful since it deals naturally with elements of

KO(X) of arbitrary virtual dimension.

We must again acknowledge our debis to other mathematicians. We owe various
details to Bruner, Elmendorf, and McClure. The paper of Tsuchiya [138] gave an
early first approximation of our definitions of extended powers and H_ ring
spectra. As explained at the end of VIIS2, Robinson's A, ring spectra [124] fit
naturally into our context. The proof of the splitting theorem in VIIS5 is that
taught us by Ralph Cohen [34]. We owe the formulations of some of our results on
Thom spectra to Boardman [12] and of others to Mahowald [93], whose work led to our
detailed study of these objects.

Each chapter of this book has an introduction summarizing its main ideas and
results. There is a preamble comparing our approach to the nonequivariant stable
category with earlier ones, and there is an appendix giving some of the more
esoteric proofs. References are generally by name (Lemma 5.4) when to results in
the same chapter and by number {(II.5.4) when to results in other chapters.

Finally, I should say a word about the genesis and authorship of this volume.
Chapter VIII and part of chapter VI are based on Steinberger's thesis [133], and
chapter VII started from unpublished 1978 notes of his. Chapter IX and the
Appendix are based on lewis' thesis [83], and the definition and axiomatization of
the transfer in chapter IV are simplifications of his work in [85]. Chapter V
incorporates material from unpublished 1980 notes of MeClure. All of the rest of

the equivariant material is later joint work of Lewis and myself.




Vi

The authorship of the several chapters is as follows.
Chapters I through IV: Lewis and May
Chapter V: Iewis, May, and McClure
" Chapters VI and VII: Lewis, May, and Steinberger
Chapter VIII: May and Steinberger
Chapter IX: Lewis

Chapter X: Lewis and May

The Appendix and the indices were prepared by Lewis.

J. Peter May
June 20, 1985

All authors acknowledge partial support from the National Seience Foundation.

Preamble:

Contents

a polemical introduction to the stable category

I. The equivariant stable category

51.
§2.
§3.

84,
§5.
§6.
§7.
§8.

Recollections about equivariant homotopy theory

Categories of G-prespectra and G-spectra

The functors EaX, F(X,E), E/H, and EH; homotopy theory

The functors Azzm; sphere spectra and homotopy groups

G-CW spectra and the stable category

The stable category, cohomology, and the cylinder construction
Shift desuspension and weak equivalence

Special kinds of G—pfespectra and G-spectra

II. Change of univérse, smash products, and change of groups

§1.
§2.
§3.
§4.
§5.
§6.
§7.
§8.
§9.

Change of universe functors

Families and change of universe isomorphisms
Smash products and funetion spectra

Change of groups functors and isomorphisms
Space level constructions

A generalization of Wirthmuller's isomorphism
A generalization of Adams' isomorphism
Coherent families of equivariant spectra

The construction of (G/N)-spectra from G-spectra

III. Equivariant duality theory

§1.
§2.
§3.
54.
§5.
§6.
§7.
§8.

Categorical duality theory

Duality for G-spectra

Slant products and V-duality of G-spaces

Duality for compact G-ENR's

Duality for smooth G-manifolds

The equivariant Poincaré duality theorem

Trace maps and their additivity on cofibre sequences
Space level analysis of trace maps

IV. Equivariant transfer

§1.
§2.
§3.
§4.
§5.
§6.
§7.

Types of equivariant bundles

The pretransfer

The definition and axiomatic properties of the transfer

The behavior of the transfer with respect to change of groups
Product and Euler characteristic formulas

The sum decomposition and double coset formulas

Transitivity relations

11
16
21
27
32
39
48

54
57
62
68
75
84
88
96
102
107

117
119
128
135
142
152
157
160
169

175
178
181
186
191
196
203
212




Vil o ‘ ’ IX

§8. Cbhomological transports 217 . : » ) §6. Extended powers of Thom spectra 439
§9, Classification of transforms and uniqueness of transfers 227 i §7. Thom spectra and operad ring spectra 443
V. The Burnside ring and splittings in equivariant homology theory 236 ’ X. Equivariant Thom spectra 450
§1. Equivariant Euler characteristics 239 : §1. Preliminaries on G-vector bundles 451
§2. The Burnside ring and Tr8(3) 245 R §2, Preliminaries on G§-spaces 452
§3. Prime ideals in A(G) 251 , §3. The definition and basic properties of Thom G-spectra 459
§4. Idempotent elements in A(G) 254 | §4. Homotopy invariance properties of Thom G-spectra 465
§5. Localizations of A(G) and of A(G)-modules 259 § §5. The equivariant Thom isomorphism 466
§6. Localizations of equivariant homology and cohomology theories 267 ; . §6, Twisted half-smash products and Thom G-spectra . 472
§7. Preliminaries on universal (J',d)-spaces and adjacent pairs 272 ’ : Appendix: Analysis of the passage from prespectra to spectra 475
§8. Concentration of homology and cohomology theories between families - 277 ?’ §1. The comstruction of the functor L 475
§9. Equivarient stable homotopy groups and Mackey functors 283 ! §2. The behavior of L with respect to limits 481
§10. Normal subgroups in equivariant stable homotopy theory 290 §3. Prespectrum and spectrum level closed inclusions 486
§11. Fixed point spectra of suspension spectra 293 j §4. The point-set topology of Chi-spectra 490
VI. Twisted half smash products and extended powers 299 ; Bibliography 496
§1. Statements of results about y x E 301 Index 504
§2. Constructions of y x E; proofs ‘ 309 ! Index of notations —- Roman letter 523
§3. Relations between smash products and twisted half smash products 323 Index of notations —- Greek letter 507
$4. Untwisting G-homotopies and r-actions 332 Index of notations -- non-alphasbetic, subscripts and superseripts 531
§5. Extended powers of G-spectra 344 ’ Index of categories 512
VII. Operad ring spectra 350 Index of adjoint pairs of functors 533
§1. Operads and extended powers 351 Index of natural transformations 535
§2. Actions of operads on spectra 361 ‘
§3. The constructions CX and CE 368
§4. Pairings and operad actions on CE 374
§5. Splitting theorems and James maps 379
VIII. The homological analysis of extended powers 384
§1. Cellular chains and filtered spectra 384
§2. Spectral sequences and cellular chains of extended powers 391 : ?
§3. Steenrod operations in D,E 400
IX. Thom spectra 407
§1. Preliminaries on sphere spaces and spherical fibrations 408
§2. Preliminaries ond -spaces 415 ’
§3. The definition and basic examples of Thom spectra 420
§4. Invariance properties of Thom spectra 426
§5. The Thom isomorphism 433




Preamble: A polemical introduction to the stable category

by J. P. May

Nonequivariantly, the virtues of having a good stable category are by now well
understood. In such a category, the basic formal properties of homology and

cohomology theories become trivialities. Many arguments that could be carried out

“ad hoc without a stable category became much cleaner with one. More important, many

common arguments simply cannot be made rigorous without use of such a category.

Equivariantly, it is even more important to have a good stable category. Much
basic equivariant algebra only arises in a fully stable context. For example, one
already has that [S%,S"] is Z for n > 1 and that [S%,X] is a Z-module for
n » 2. The equivariant analog of Z is the Burnside ring A(G), and, unless G is
finite, there need be no representation V of G large enough that [SV,SV]G is
A(G) or that [SV,X]G is an A(G)-module. Even when G 1is finite, and regardless
of connectivity hypotheses, none of the ordinary homotopy groups [Sn,X]G of a
G-space X need be A(G)-modules, whereas all of the homotopy groups of G-spectra
are A(G)-modules. Much more evidence will appear as we proceed.

Our construction of the equivariant stable category is a generalization of my
construction of the nonequivariant stable category. Since the latter is less
familiar than the earlier constructions of Boardman and Adams, a comparison of the
various approaches may be helpful to the informed reader. I can't resist quoting
from Boardman's 1969 Historical Introduetion [13, p.l}. "This introduction... is
addressed without compromise to the experts. (The novice has the advantage of not
having been misled by previous theories.)"

Boardman continues "In this advertisement we compare our category S of CW-

spectra, or rather its homotopy category S, with various competing products. We
find the comparison quite conclusive, because the more good properties the
competitors have, the closer they are to §5,". All experts now accept this
absolutely. Boardman's category Sh is definitively the right one, and any good
stable category must be equivalent to it. It does not follow, however, that his
category S, before passage to homotopy, is the right one, and we are convinced
that it is not.

Boardman's construction of his category S proceeds as follows. He begins
with the category J of finite CW complexes. He constructs the category 58 of
finite CW spectra by a purely categorical procedure of stabilization with respect -
to the suspension functor. He then construects .S from 58 by a much deeper purely
categorical procedure of adjoining colimits of all directed diagrams of finite CW
spectra and inclusions. The intuition is that, however CW spectra are defined,

they ought to be the colimits of their finite subspectra, and finite CW spectra




ought to be desuspensions of finite CW complexes. An advantage of this approach
is that one can obtain conceptual proofs of theorems about §h almost automatically
by feeding information about finite CW complexes into a categorical black box. A
disadvantage, to paraphrase Adams [1, p.123], is that the construction is
inaccessible to those without a specialized knowledge of category theory.

In fact, in his Historical Introduction [13, p.4], Boardman pointed out an
alternative description of a category equivalent to his, and he gave details of the
comparison in [14,810]. Define a CW prespectrum D to be a sequence of CW
complexes D, and cellular imelusions ID; » D,y Define amap f: D> D' to be a
family of based maps f,: D, » Dﬁ strictly compatible with the given inclusions.
Let ®(D,D') denote the set of maps D » D'. Say that a subprespectrum C is
dense (or cofinal) in D if for any finite subcomplex X of Dn, ZkX is contained
in G4y for some k. Then [14,10.3] implies that S is equivalent to the
category of CW-prespectra D and morphisms

s, = 1L eec,ens = | me,sie,
(c,c") ¢

where C and C' run through the dense subprespectra of ‘D and D' and where

f: C ~ C' is equivalent to f: C + C' if and only if the composites

cnt-fscep anda cnTIT e

are equal.

Adams [1] turned this result into a definition and proceeded from there. (He
called a map D » D' a "function", an element of S(D,D') a "map", and a homotopy
class of "maps" a "morphism"; he also called a CW prespectrum a CW spectrum.) A
similarly explicit starting point was taken by Puppe [122]. An advantage of this
approach (to some people!) is that it is blessedly free of category theory. A
disadvantage is that many proofs, for example in the theory of smash products,
become unpleasantly ad hoe. To quote Boardman again [14,p.52], "The complication
will show why we do not adopt this as definition".

It seems reasonable to seek an alternative construction with all of the
advantages and none of the disadvantages. Staring at the definition, we see that
S is constructed from the category of CW prespectra and maps by applying a kind
of 1imit procedure to morphisms while leaving the objects strietly alone. This is
the meaning of Adams' slogan [1, p.l42] "cells now - maps later".

From our point of view, this is precisely analogous to developing sheaf theory
without ever introducing sheaves or sheafification. There is a perfectly sensible
way to "spectrify" so as to force elements of S(D,D') to be on the same concrete

level as maps D » D'. Define a spectrum E to be a sequence of based spaces ,

|

and based homeomorphisms I 9En+l‘ Define a map f: E » E' to be a sequence of
based maps f,: E, » E} strictly compatible with the homeomorphisms. Let

4(E,E') denote the set of maps E » E'. Define the spectrum LD associated to a
CW prespectrum D by

(LD)n = colim Qan+k s
k>0

" 'where the colimit is taken with respect to iterated loops on adjoint inclusions

Di +_9Di+1. Since Q commutes with colimits, there are evident homeomorphisms
Q(ID)y4q ¥ (LD),. One finds by a laborious inspection of definitions that

S(D,D') = A(LD,LD').

Of course, only the expert seeking concordance with earlier definitions need worry
about the verification: we shall take the category 4 as our starting point.

Obviously the spaces (LD)n are no longer CW complexes (although they do
have the homotopy types of CW complexes), and we have imposed no CW requirement
in our definition of spectra. It should now be apparent that, despite their rigid
structure, spectra are considerably more general objects than CW prespectra.
Working in a stable world in which the only spectra are those coming from CW
prespectra is precisely analogous to working in an unstable world in which the only
spaces are the CW complexes. Just as any space has the weak homotopy type of a
CW complex, so any spectrum has the weak homotopy type of one coming from a CW
prespectrum. (Verification of the last assertion requires only elementary
constructions with space level CW approximations and mapping cylinders and was
already implieit in my 1969 paper [95].)

The extra generality allowed by our definition of spectra is vital to our

theory. Throughout this volume, we shall be making concrete spectrum-level

constructions which simply don't exist in the world of CW prespectra.

Dropping CW conditions in our definition of spectra clearly entails
dropping CW conditions in our definition of prespectra. For us, a prespectrum is
a sequence of spaces D and maps 3D > Dp4p- Maps of prespectra are defined as
above. By our analogy with sheaf theory, we are morally bound to extend the
construction L above to a spectrification functor L: @+ £ 1left adjoint to the
obvious forgetful functor from spectra to prespectra. When the adjoints
Di * QD.
due to Lewis [83], who will give details in the Appendix. Starting from D one
constructs a prespectrum D' and map D + D' by letting Di be the image of Dy

141 are not inclusions, LD is slightly mysterious and its construction is

in @D; 41 The resulting maps Dj » @D, are a bit closer to being inclusions.

Iterating this construction (transfinitely many times!) one arrives at a




prespectrum D and map D » D such that the maps D; - QBi+1 are inc}usions. One
defines LD by applying the elementary colimit construction above to D; one has a
composite natural map D + LD which is the unit of the adjunction. Actually, the
explicit construction is of little importance. The essential point is that, by

standard and elementary category theory, L obviously exists and is obviously
unique.

We now see that our category of spectra has arbitrary limits and colimits.
Indeed, the category of prespectra obviously has all limits and colimits since these
can be constructed spacewise. All such 1limit constructions preserve spectra.
Colimit constructions do not, and colimits of spectrad are obtained by applying L
to prespectrum level colimits. Thus, and this will take some getting used to by the
experts, limits for us are simpler constructions than colimits. In fact, right
adjoints in general are simpler constructions than left adjoints. For example, it
is trivial for us to write down explicit products and pullbacks of spectra and

explicit function spectra. These don't exist in the world of CW-prespectra.

Moreover, we shall often prove non-obvious facts about left adjoints simply by
quoting obvious facts about right adjoints. This might seem altogether too
categorical, but in fact the opposite procedure has long been standard practice.
Function spectra in §h (not S!) are usually obtained by quoting Brown's
representability theorem - something at least as sophisticated as any category
theory we use - and then proving things about these right adjoints by quoting known
facts about the left adjoint smash product functors.

Of course, one does want a theory of CW spectra, but there is no longer the
slightest reason to retreat to the space or prespectrum level to develop it. We have
a good category of spectra, with cones, pushouts, and colimits. To define CW
spectra, we need only define sphere spectra and proceed exactly as on the space
level, using spectrum level attaching maps. The resulting CW spectra are all
homotopy equivalent to spectra coming from CW prespectra; conversely, any spectrum
coming from a CW-prespectrum is homotopy equivalent to a CW-spectrum. A CW-spectrum
is the colimit of its finite subspectra, and a finite CW spectrum is a
desuspension of a finite CW complex (that is, of its associated suspension
spectrum). Our stable category is constructed from the homotopy category of spectra
by adjoining formal inverses to the weak equivalences. It is equivalent to the
homotopy category of CW spectra. By the discussion above, it is also equivalent
to Boardman's category Sy. Without exception, everything in the literature done in

Boardman's category can just as well be interpreted as having been done in our
category.

In one respect I have lied a bit above. We don't usually index prespectra and
spectra on integers but rather on finite dimensional inner product spaces. When one

thinks of D,, one thinks of S? and thus of RO, Implicitly, one is thinking

of R” with its standard basis. Even nonequivariantly, a coo?dinate free approach
has eonéiderable advantages. For example, it leads to an extremely simple
conceptual treatment of smash products and, as Quinn, Ray, and I realized in 1973
[991, it is vital to the theory of structured ring spectra. In the equivariant
context, one must deal with all representations, and coordinate-free indexing is

obviously called for, as tom Dieck realized even earlier.

Modulo the appropriate indexing, virtually everything said above about my

"approach to the nonequivariant stable category applies verbatim in the equivariant

context. The few exceptions are relevant to possible generalizations of Fhe earlier
c@ﬁmﬁbm.Om G-CW spectra are built up from "G-sphere spectra" WﬁA@,
and any G-CW spectrum is the colimit of its finite subspectra. However, it is not
true that a finite G-CW spectrum is isomorphic (as opposed to homotopy equivalent)
to a desuspension of a finite G-CW complex unless one redefines the latter by
allowing G-spheres G/H'A 8V associated to G-representations V as domains of
attaching maps. This loses the cellular approximation theorem and would presumably
cause difficulties in a Boardman style approach to the G-stable category. Since
G-spheres sV are not known to have canonical G-CW structures, the appropriate
notion of a G-CW prespectrum is not immediately apparent. We shall give a
definition which is related to our notions exactly as described above in the
nonequivariant case. However, a full treatment, including smash and twisted half-
smash products, would be inordinately lengthy and complicated. In any case, right
adjoints, such as fixed point functors, are even more important equivariantly than
nonequivariantly, and a treatment lacking such constructions on the spectrum level

would be most unnatural.

I should say that there is also a semisimplicial construction of the stable
catégory due to Kan (and Whitehead) [69,70] and elaborated by Burghelea and Deleanu
[21]. Except perhaps when G 1is finite, it is ill-adapted to equivariant
generalization, and it is also inconvenient for the study of structured ring

spectra.

One last point addressed to the experts. We shall not introduce graded
morphisms here. Regardless of what approach one takes, graded morphisms are really
nothing more than a notational device. The device can aid in keeping track of the
signs which arise in the study of cohomology theories, but it can in principle add
nothing substantive to the mathematics. In the equivariant context, the grading
would have to be over RO(G) and its introduction would serve only to obscure the

exposition.




I. THE EQUIVARIANT STABLE CATEGORY

by L. G. lewis, Jr. and J. P. May

We gave a preliminary definition of spectra in [H_,I51] as sequences of spaces
Ei and homeomorphisms E; = QF;,q This "coordinatized" notion is wholly inadequate
for the study of either structured ring spectra or equivariant stable homotopy
theory. While our main concern in [H_] was with the first of these subjects, we are
here most interested in the second. Because of the role played by permutation
groups in the construction of extended powers, we need a fair amount of equivariant
stable homotopy theory to make rigorous the constructions used in {H_ ] in any
case. While this motivates us only as far as the study of G-spectra for finite
groups G, it turns out that a complete treatment of the foundations of equivariant
stable homotopy theory in the proper generality of compact Lie groups is obtainable
with very little extra effort.

Thus, throughout the first five chapters, G will be a compact Lie group.
Considerations special to permutation groups will not appear until late in Chapter
VI. We shall construct a good "stable category" of G-spectra, where "stability" is

to be interpreted as allowing for desuspensions by arbitrary finite dimensional real
representations of G.

After some recollections about equivariant homotopy theory in section 1, we
begin work in section 2 by setting up categories of G-prespectra and G-spectra and
discussing various adjoint functors relating them to each other and to G-spaces. We
give both coordinate-free and coordinatized notions of G-spectra and show that these

give rise to equivalent categories. The freedom to pass back and forth between the
two is vital to the theory.

In section 3, we introduce the smash products of G-spaces and G-spectra and the
associated adjoint function G-spectra. The analogous constructions between G-spectra
and G-spectra are deeper and will be presented in the next chapter. The simpler
constructions suffice for development of most of the basiec machinery of homotopy

theory. We also introduce orbit spectra and fixed point spectra.

In section 4, we introduce left adjoints “AZZ“" to the ZEQ- space functors
from G-spectra to G-spaces, where Z runs through the relevant indexing
representations. These functors play a basic role in the passage back and forth
between space level and spectrum level information. In particular, we use instances
of these functors to define sphere G-spectra Sﬁ = G/E'AS" for integers n and

closed subgroups H of G. (The term subgroup shall mean closed subgroup

henceforward.) We then define homotopy groups in terms of these sphere spectra and
define weak equivalences in terms of the resulting homotopy groups.

In section 5, we introduce G-CW spectra. We follow a general approach,
developéd in more detail in [107], in which such basic results as the cellular
approximation theorem, Whitehead's theorem, and the Brown representability theorem
are almost formal trivialities. With these results, we see that arbitrary G-spectra
are weakly equivalent to G-CW spectra. This allows us to construct the equivariant
stable category by formally inverting the weak equivalences in the homotopy category
of G-spectra. The result is equivalent to the homotopy category of G-CW spectra,

" both points of view being essential to a fully satisfactory theory.

In section 6, we summarize the basic propertles of the stable category, the

most important being the equivariant desuspension theorem. This asserts that o

v

and
are adjoint self equivalences of the stable category for any G-representation

V. We then indicate briefly how to define represented equivariant cohomology
theories. The natural representing objects for cohomology theories on G-spaces are
cruder than our G-spectra, and we make use of an elementary iterated mapping
cylinder construction on the G—prespectrﬁm level to obtain a precise comparison.
This cylinder construction has various other applications. On the G-spectrum level,
it turns out to admit a simple description as a telescope, and this leads to a 1im!
exact sequence for the calculation of the cohomology of G-spectra in terms of the

cohomologies of their component G-spaces.

In section 7, we give a number of deferred proofs based on use of a shift
desuspension functor AZ (in terms of which the earlier functor AZ

composite). In particular, we prove the equivariant desuspension theorem. This

£ is a

depends on the assertion that a map of G-spectra is a weak equivalence if and only
if each of its component maps of G-spaces is a weak equivalence. This is the only
place in the chapter where equivariance plays a really major role in a proof, the
corresponding nonequivariant assertion being utterly trivial. We learned the basiec
line of argument from Hemning Hauschild, although the full strength of the result
depends on our definitional framework.

In section 8, we give various results concerning special kinds of G-prespectra
and G-spectra. In particular, we show that, up to homotopy, our G-CW spectra come
from G-CW prespectra of a suitably naive sort.

We shall defer some details of proof to the Appendix, on the grounds that the
arguments in question would unduly interrupt the exposition.

We remind the reader that G is always a compact Lie group and that everything
in sight is G-equivariant. Once the definitions are in place, we generally omit the
G from the notations, writing spectra for G-spectra, etc.




§1. Recollections about equivariant homotopy theory

Since the basic definitions of equivariant homotopy theory are not as widely

known as they ought to be, we give a brief summary before turning to G-spectra.

Let GU denote the category of compactly generated weak Hausdorff left
G-spaces. (The weak Hausdorff condition asserts that the diagonal is closed in the
compactly generated product; it is the most natural separation axiom to adopt for
compactly generated spaces; see [111,83].) Let GJ denote the category of based
left G-spaces, with G acting trivially on basepoints. These categories are closed
under such standard constructions as (compactly generated) products and function
spaces, G acting diagonally on products and by conjugation on function spaces.- The
usual adjunction homeomorphisms hold and are G-equivariant. For unbased G-spaces

X,Y, and Z we have

22 x T s (ghX,

We write F(X,Y) for the function space of based maps X » Y; for based G-spaces X,Y,

and Z we have

F(XaY,Z) = F(X,F(Y,Z)).

The usual machinery of homotopy theory is available in the categories GU and
GJ , homotopies being maps X x I » Y in GU or XA I* > Y in GJ . Cofibrations are
defined in either category by the homotopy extension property (and are automatically
closed inclusions). Similarly, fibrations are defined by the covering homotopy
property. We shall use standard results without further comment; see e.g. (17,143,
or 107]. Write hGU and hGJ for the respective homotopy categories and write
m{X,Y)q for the set of homotopy classes of based maps X+ Y.

Turning to homotopy groups, let S* = I%/3T™ with trivial G-action and with
SO = {0,1}. TFor Hc G, define a G-space Sﬁ by

sy = (a/m) A 8% = (a/H) x ST/(G/H) x {¥}.

We think of Sﬁ as a generalized sphere. It is well understood that the homotopy
groups of a based G-space X should be taken to be the collection of homotopy groups
H

H n
X = nX = a8 Xy, = n(S,X)g -

Here the last isomorphism comes from the adjunction

HT (Y,X) = GJ (G' AR Y,X) for X ¢ GJ and Y ¢ HJ .

X is said to be n-connected (or G-n-connected) if ngx = 0 for all q < n and H<G.

A G-map f:X + Y is said to be a weak equivalence (or weak G-equivalence) if

each fixed point map x5 v 45 8 weak equivalence in the usual nonequivariant

H

sense., This means that f*:n*(XH,x) + n*(YH,fX) is an isomorphism for all possible

~ choices of basepoint x. In our applications, the based G-spaces X and Y will always

be doubleAloop spaces. For such an X, each XH is homotopy equivalent as a Hopf
space to the product of the basepoint component (XH)O and the discrete group nOXH
[29,1.4.6]. Therefore f will be a weak equivalence if and only if f*:n*XH + n*YH is

an isomorphism, where the homotopy groups are taken with respeet to the given fixed
basepoints.

G-CW complexes have been studied by Bredon [17] for finite G and by Matumoto
[94], Illman [67], and Waner [140] for compact Lie groups G. Waner makes use of the
general abstract pattern for CW-theory developed in [104 and 107]. There are two

variants, one adapted to GW and the other to GJ . The basic definitions go as
follows.

An ordinary G-CW complex‘is a G-space X ¢ GU which is the union of an
expanding sequence of sub G-spaces X" such that XQ is a disjoint union of orbits G/H
and X®*1 is obtained from X® by attaching cells (G/H) x e™*! by means of attaching
G-maps (G/H) x S% > X, When X is a based G-space, the basepoint is required to be
a vertex and then X° may be described as a wedge of O-spheres S% = (G/H)*. The

successive quotients X.n/Xn~1 for n > 1 are clearly wedges of n-spheres Sﬁ, one for
each attaching map.

A based G-CW complex is a G-space X ¢ GJ which is the union of an expanding
sequence of sub G-spaces X® such that XO is the basepoint and X**! is the cofibre of
a based G-map from a wedge of n-spheres Sﬁ to X®. The essential difference from the
previous notion is the use of based attaching maps, and their use will lead to a
closer connection with G-CW spectra.

Evidently based G-CW complexes are necessarily G-connected ordinary G-CW
complexes. Convérsely, it is easily seen that if X is a G-connected ordinary G-CW
complex with base vertex, then X is equivalent to a based G-CW complex. In
particular, this applies to the (reduced) suspension 35X of an ordinary G-CW complex
with base vertex. Indeed, with a little care one can give such a suspension a
canonical structure of based G-CW complex. v

In the unbased context, the Whitehead theorem asserts that if X is a G-CW
complex and f:Y + Z is a weak equivalence, then

fx:hGU (X,Y) » hGU (X,Z)
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is a bijection. In particular, it follows that f is an equivalence if Y and Z are
G-CW complexes. Moreovef, for any G-space X there is a G-CW complex IX and a weak
equivalence y:IX » X. (See Seymour [128].) It is formal that any choices for the rX
yield a functor T:hGU » hGU such that y is natural. Using this, we can construct
a category SblLby formally inverting the weak equivalences of hnGU . The functor T
induces an equivalence from WU to the homotopy cateory of G-CW complexes. A more
categorical discussion of these ideas is given in section 5. By restrietion to
based G-maps of based G-spaces, we obtain ECJ analogously. Of course, to avoid
restricting to G-comnected G-spaces, we must use ordinary and not based G-CW

complexes in the construction of r:hGJ =+ hGJ.

On the space level, one can usually get away with restricting attention to
CW-homotopy types because they are preserved under most common constructions. This
is much less true on the spectrum level, where formal inversion of weak equivalences
plays a correspondingly more essential role. The difference comes from the absence
of spectrum level analogs of Milnor's basic theorems [112] on spaces of the homotopy
type of CW complexes. The equivariant version of Milnor's theorems were proven by
Araki and Murayama [5] for finite G and by Waner [140] in the full generality of
compact Lie groups G. In particular, Waner proved the following result.

Theorem 1.1. (i) Let H » G be any homomorphism of compact Lie groups. Then any
G-CW complex has the H-homotopy type of an H-CW complex.

(ii) If X is a compact G-space and Y has the homotopy type of a G-CW complex, then
go do Y& and, if X and Y are based, F(X,Y).

We should also record the following result (although we shall only need its
easy up to homotopy type version). For finite G, it was proven by Illman
[66]. As noted by Matumoto [94] and Illman [66,67], the general case is readily
proven once one knows that the orbit space of a smooth action on a compact manifold

is triangulable, and a correct proof of this fact has been supplied by Verona [139].

Theorem 1.2. Any smooth compact G-manifold is triangulable as a finite G-CW
complex.

Remarks 1.3. While the preceding result is very important for the more geometric
parts of equivariant theory, it is not helpful to us because it fails to provide
canonical triangulations of even such simple G-spaces as G/H x G/K (where double
coset choices would enter in the finite case) and spheres associated to represen-
tations-of G. In particular, products of G-CW complexes and suspensions of G-CW

complexes by representations fail to have canonical G-CW structures.
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§2. Categories of G-prespectra and G-spectra

We need some preliminaries before we can give our basic definitions.

If V is a finite dimensional real inner product space, we let sV denote its
one-point compactification with basepoint at «. If G acts through isometries on v,
then SV is a based G-space. (We shall usually, but not invariably, use small letter
superscripts for typographical reasons.) We write V® W for external direct sums
and V + W for internal direct sums of orthogonal subspaces of some ambient inner
product space; we write V LW +to indicate that V is orthogonal to W. If Ve W, we
agree to write W - V for the orthogonal complement of V in W. For any based G-space
X and G-space SY as above, we define

X = Xa8Y and @'x = F(8V,X).

Of course, these "suspensions" and "loop spaces" are based G-spaces.

In order to allow desuspension by general representations, it is essential to
index spectra on representations. The proper way to do this is to start with an
ambient real inmer product space U of countably infinite dimension sueh that G acts
on U through isometries and U is the direct sum of its finite dimensional
G-invariant sub inner product spaces. For later purposes, U is to be topologized as

the colimit of these finite dimensional subspaces (but no use will be made of the
topology in this chapter).

We say that U is a "G-universe" if it contains a trivial representation and
contains each of its finite dimensional subrepresentations infinitely often. The
most interesting case occurs when U contains all irreducible representations, and we
then refer to U as a complete G-universe. If G is finite, the sum of countably
many copies of the regular representation gives a canonical complete G-universe.

For the definition of sphere spectra and homotopy groups, it is convenient to insist
that U contain a canonical infinite dimensional trivial G-representation, denoted
R”.

An "indexing space" in a G-universe U is a finite dimensional G-invariant sub
inner product space. An "indexing sequence" in U is an expanding sequence
A= {Aili > 0} of indexing spaces such that AO = {0} and U is the union of the Ai'
An "indexing set" in U dis a set (L of indexing spaces which contains some indexing
sequence. Of course, indexing sequences are examples of indexing sets. The

"standard indexing set" in U is the set of all indexing spaces in U.

With these conventions, we can now define G-prespectra and G-spectra.

Definition 2.1. Let (! be an indexing set in a G-universe U. A G-prespectrum (D,o)

indexed on (L consists of based G-spaces DV for V e (L and based G-maps
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0:3" VDV » DW

for V€ W in (L such that the following conditions hold.
(1) o:DV = ZODV + DV is the identity map.
(ii) For VeW C Z in @, the following diagram commutes:

Z-W

PZWNVpy L 0 Vo,
1 lc
P2y —— 9% s D7

The G-map DV » Q""VDN adjoint to o is denoted §. A G-prespectrum (D,¢) is said to
be an inclusion G-prespectrum if each o is an inelusion; (D,o) is said to be a G-
spectrum if each 5 is a homeomorphism. A map f:D » D' of G-prespectra is a system
of based G-maps fV:DV » D'V such that the following diagram commutes for VC W

in O.:

v N lo

w — D'W

We refer to f as a "spacewise" inclusion, surjection, weak equivalence, ete., if
each fV is an inclusion, surjection, weak equivalence, etc. (We generally abbre-
viate fV to f when there is no danger of confusion.) We denote by

a®e O caa ) clo

the category of G-prespectra indexed on (L and its full subcategories of inclusion
G-prespectra and G-spectra respectively. We write G&U for G4(A when L is the

standard indexing set in U, and similarly for our categories of G-prespectra.

It is the category GAQ of G-spectra that is of primary interest. The
category G(Pa is needed because such basic constructions on G-spectra as colimits
and smash products are obtained by carrying out the construction on the level of
G-prespectra and then applying a suitable functor from G-prespectra to G-spectra.
This functor is actually the comﬁosite of functors GPA » G2% and GAA » GAA ,
each of these being left adjoint to the evident forgetful functor the other way.

The functor GPA + GAAR can be obtained either by Freyd's adjoint functor
theorem [55], or by a direct (and fairly unilluminating) point-set topological
construcfion. Details will be given in the Appendix. This functor is needed
because colimits and smash products of inclusion prespectra need not be inclusion

prespectra. (May overlooked this point in [99,II] and, with some motivation, gave
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inclusion prespectra an unnecessarily complicated definition; compare [99,II.1.10].
Also, the closed condition pldced on inclusions in [99] is unnecessary and
counterproductive.)

The functor G2A » GAR is completely elementary (and was introduced in
[99,11.1.41); it assigns to an inclusion G-prespectrum D the G-spectrum E with

EV = colim Q" 'DW,
WOV

the colimit being taken over those W e¢(L which contain V. Summarizing, we have the
following result.

Theorem 2.2. ‘There is a left adjoint

L:GPO » G AR
to the forgetful inclusion functor

2:GA0 » G .

That is,

GPa (D,eE) = GAQ (LD,E) for De GPx and Ee G4Q.

I

Let n:D + 4LD and e¢:L4E » E be the unit and counit of the adjunction. Then ¢ is an

isomorphism for each G-spectrum E, hence n is an isomorphism if D = gE.

Except when making categorical assertions, we shall generally omit forgetful

functors such as ¢ from the notations, writing n:D + LD and ¢:LE » E for example.

It is essential to any really good stable category that it be derived from a
category of spectra which has all colimits (wedges, pushouts, coequalizers, ete) and
all limits (products, pullbacks, equalizers, etc). These constructions all exist in
GJ . They also exist in GPQA , where they are given by the evident spacewise
constructions. It is easy to check that the limit in G®A of a diagram of G-spectra
is again a G-spectrum. Thus G4Z has all limits. Colimits in GP2 of diagrams of
G-spectra are hardly ever G-spectra, but application of L to these colimits yields
colimits in G&@ . Thus G44 also has all colimits. We remind the reader that
functors which are left adjoints preserve colimits while functors which are right
adjoints preserve limits [92].

We must point out one unpleasant fact of nature. Already in GJ , colimits need
not be given by the obvious constructions. Pushouts, for example, must be formed as

usual in the category of all G-spaces and then made weak Hausdorff if they are not
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already so. In practice, one gets around this by making appropriate point-set
topological assumptions. This solution is less practicable for spectra, and here
one must simply accept colimits as they come. This has the effect of retaining
formal properties while losing control of homotopical information and, except when
restricted to G2 , the functor L itself suffers from the same defeect. This forces
a certain amount of technical care, a discussion of which is deferred until section

8 and the Appendix.

While L is essential for theoretical purposes, and its precise form is dictated
by the uniqueness of adjoints, there is a more homotopical passage from prespectra

to spectra that is also very useful. It will be discussed in section 6.

Just as in the nonequivariant case [99,II], the formal relationship between
G-spaces and G-spectra is also given by a pair of adjoint functors. We have a
zerot™ space functor GPA + GJ which assigns Dy = D(0) to a G-prespectrum D. The

restriction of this funtor to GARis denoted
84 »GJ.

Spaces and maps in the image of this functor (or G-homotopic to spaces or maps in

this image) are called infinite loop G-spaces and G-maps.

For a G-space X, there is a suspension G-prespectrum {EVX} with structural
maps the natural identifications I Vi'X = "X for V€ W in (. We define the

suspension G-spectrum functor
12:6J > GAA
by £™X = L{z'X} and have the following result.
Proposition 2.3. The functor ® is left adjoint to @”. That is,
GJ (X,0%E) = GAA (1™X,E) for Xe GJ and Ee G44 .
A similar conclusion holds on the prespectrum level. The composite 9”r"X is
also denoted QX; thus

QX = colim 25 X.
veaq

This is the usual nonequivariant space QX with a G action derived from the G-actions

on both X and the universe U.

.

-
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Again, just as in the nonequivariant case [99,II], the category GAQ is
independent, up to equivalence, of the choice of . Further, G AU depends only on
the isomorphism class of U. This allows us to use whatever choices happen to be

convenient for any particular application or construction. The following pair of
results make this invariance precise.

Proposition 2.4. Let & €78 be indexing sets in U and let

$:G4Pp » GA&

be the functor obtained by forgetting those indexing spaces in # but not in ¢ . Then
¢ has a left adjoint

V:CEO > G4

such that the unit E + ¢yE and counit y¢F +» F of the adjunction are natural isomor-
phisms. In particular, GA& is equivalent to G £ U for any indexing set @ in U. '

Proof. For V ¢ B, (YE)(V) = colim Q" VEW, where W runs over those indexing spaces
in L which contain V. The structural homeomorphisms ¢ are evident and the

remaining verifications are easy.

Proposition 2.5. Let f:U » U' be a G-linear isometric isomorphism. Then there are
functors

£*:64U" > GEU and £y = (r~1)*:c 4U > ¢ 4T

which are inverse isomorphisms of categories.

*
Proof. For Vc U, (£ E)(V) = E(fV). The structural maps are

W-v w-v 1as fW-£V

I UE(EV) = E(£V) A ST =22 S E(fV) A S —Z > E(fW)
for VC WC U. The rest is trivial. -

*
Remark 2.6. Clearly f , but not fy, is defined when f is only a G-linear isometry,
not necessarily an isomorphism. In the next chapter, we shall generalize the

previous result by obtaining functors fy left adjoint to £* for general G-linear
isometries f.

Since equivalences of categories, such as those in the previous propositions,

Play an important role in our theory, some categorical remarks are in order.
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Remarks 2.7. Let S: @ + # and T:73+ 4_be functors. We say that S and T are
inverse isomorphisms if ST = 1 and TS = 1. We say that S and T are inverse
equivalences if ST and TS are naturally isomorphic to the respective identity

functors. We say that S and T are adjoint equivalences if we have an adjunction
8(SA,B) = A(A,TB), Aed and Be?R,

whose unit n:A » TSA and counit €:STB » B are natural isomorphisms. It follows from
the uniqueness of inverse morphisms that S is also right adjoint to T, the

adjunction

Q(TB,A) = #5(B,SA)

 having unit e 1:B » STB and counit n"l:TSA » A. By [92,p.91], eny equivalence of

categories S is part of such an adjoint equivalence (S,T,n,e).

§3. The functors EAX, F(X,E), E/H, and Y.  homotopy theory

We first define the smash product Ea X and function G-spectrum F(X,E) of a
G-space X and G-spectrum E. This gives the foundational parts of homotopy theory,

1 exact sequences, and

such as cofibration and fibration sequences, the dual lim
homotopy colimits and limits, by standard arguments. We then define the orbit and

fixed point spectra associated to a G-spectrum.

Definition 3.1. Let D ¢ GPA and X € GJ . Define DAX ¢ GP4 by letting

(DAX)(V) DVAX for Ve

and
c=oal: 2 V(DVAX) = (5" VDV)AX » DWaX for Ve W in 4.
For E ¢ G44, define EaX ¢ GIG by use of L and &
EaX = L(EAX).

Define XAD and XA E by symmetry and observe that these are naturally isomorphic to
DaX and E AX.

In particular, we now have cylinders EAI+, cones CE = EAI, and suspensions
IE = EA st , where G acts trivially on I+,I, and S!. We also have the generalized

suspensjion EvE = EAS' determined by a representation V.
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Definition 3.2. ILet D ¢ GPA and X ¢ GJ . Define F(X,D) ¢ Gpaby letting
F(X,D)(V) = F(X,DV) for Ve (k

and letting G:F(X,D)(V) » QW—VF(X,D)(W) be the composite

F(x,0v) 2229 px " Vo) = " VR(x, W)

fox“ VCWin @. If D is a spectrum, then so is F(X,D), hence F(X,?) restricts to
a functor G4Q + GAR . b

In particular, we have the free path spectrum F(I",E), the path spectrum

PE = F(I,E), and the loop spectrum ¢E = F(Sl,E). We also have the generalized loop
spectrum Q'E = F(8Y,E).

It is useful to topologize the set ®A(D,D') of (non-equivariant) maps

D » D' as a subspace of the product x  F(DV,D'V). Here D and D' are
Ve O

G-prespectra regarded as nonequivariant spectra by neglect of stucture; G acts

on ®Q(D,D') by conjugation, and the trivial map gives a G-trivial basepoint.
Clearly G@PQA(D,D') may be topologized as the fixed point space P&(D,D' )G, or
course, these topologies apply equally well to the spectrum level hom sets. We have
the following analogs of standard adjunctions on the level of G-spaces.

Proposition 3.3. There are natural homeomorphisms

R

GPADAX,D') = G6J (X,Pa(D,D')) = GPA(D,F(X,D'))

R

and

i1
R

GAOQ(EAX,E') = GT (X, 4a(E,E')) = GLA(E,F(X,E'))
for X ¢ GJ, D,D'¢ GPA, and E,E' ¢ G4A.
It follows that the functor EAX preserves colimits in each of its variables
and that the functor F(X,E) preserves limits in E and converts colimits in X to

limits. We should also record the following isomorphisms.

Proposition 3.4. For X,Y ¢ GJ and E ¢ G§4 , there are natural isomorphisms

Easd =5, F(L,E) =E
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(EAX)AY = EA(XAY), F(XaY,E) = F(X,F(Y,E)).

These tie in with the commutativity, associativity, and unit isomorphisms of

the smash product on GJ to produce a system of coherent natural isomorphisms.

Since EaI* is now defined, we have a notion of homotopy, namely a map
h: EAI” » E' or, equivalently on passage to adjoints, fi: £+ F(I+,E'). Homotopy is
an equivalence relation which respects composition, and we have the homotopy
category hG4 & of G-spectra and homotopy classes of maps. Similarly, we have
homotopy categories hGJ and hGPr . We shall write n(X,Y)G for the set of homotopy

classes of maps X + Y in any of these categories, rélying on context to determine
which is intended.

The basic machinery of homotopy theory, ineluding cofibration and fibration
sequences, the homotopy invariance of pushouts of cofibrations and of colimits of
sequences of cofibrations (and the dual assertions), the dual 1im! exact sequences,
and the entire theory of homotopy colimits and limits, applies equally well in all
of these homotopy categories. The proofs are the same as in the nonequivariant
space level context and can in fact be given uniformly in an appropriate general
framework of topological categories and continuous functors. The starting point is
that all of our categories have underlying hom sets in the category of based spaces
and have continuous composition. A functor F: W + ¥ between such topological

categories is said to be continuous if
F: W (X,Y) » v (FX,FY)

is a continuous based map for all X,Y € U. Continuous functors are automatically

homotopy preserving and so pass to homotopy categories.

A1l of the functors we have introduced (or will introduce) are continuous and
all of our adjunction isomorphisms are homeomorphisms. Therefore all of our
functors and adjunctions pass to homotopy categories. Except where the functor
L: GPa~> GAo. is involved, these assertions are easily verified by direct
inspection. The unpleasant point-set topological nature of L makes its direct
examination quite difficult, and a little categorical sophistication provides a
pleasant way of checking its properties without using or even knowing its precise
construction. For example, the continuity of L and the fact that the spectrum level
isomorphisms in Proposition 3.3 are homeomorphisms are formal consequences of the

continuity of &: G4+ GPA and the obvious equality
(%) F(X,2E) = 2F(X,E) for X ¢ G4 and E¢ Gid .

To see this, note that L is given on hom sets by the composite
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*(D,D') M@(D,@D') < A(LD,LD').

" 8ince P(1,n) 1is certainly continuous, L will be continuous if the adjunction

bijection is a homeomorphism. Now the adjunction is given by the continuous

bijection

4(1D,E) = (21D, ®) 2ullpoip im).

To see that P(n,l)“l is continuous, consider the diagram

# (D, ¢F(X,E)) 2n1) A(LD,F(X,E)) — J(X,4(LD,E)).

J(1,8(n,1))

&(D,F(X, 2E))

= J(X,P(D, ¢E))

The unlabeled arrows are bijections given by Proposition 3.3 (with topologies
ignored). As noted by Kelly [72, p. 173] in a very general categorical context, the
diagram commutes. By the diagram, J(1,®(n,1)) is a bijection. With

X =®(D,%E), it follows immediately that ]j”(n,l)"1 is continuous. It is now easy

to check the homeomorphism elaim in Proposition 3.3.

Again, the obvious equality (¥*) displayed above formally implies the very
unobvious natural isomorphism

L(DAX) = (LD)AX for X ¢ GJ and D e GfPa.

Indeed, this implication is immediate from the following standard categorical fact
about adjoint functors [92,p. 971, which we shall apply over and over again.

lemma 3.5. Let S,S':Q > 3 be left adjoints of T,T': g + A respectively. Then

there is a one-to-one correspondence, called conjugation, between natural

transformations a:S + S' and 8:T' + T. Explicitly, o and B are conjugate if and

only if the following diagram commutes for all A€ g and B€ n3:

[

((A,T'B) = B(S'A,B)

| F

Q(A,TB) ®(SA,B)

[1H

Moreover, o is a natural isomorphism if and only if 8 is a natural isomorphism.
We shall often apply this in the context of diagrams
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amiﬂ

iQ P'l Q'
SI

a 7

T!

of adjoint functors, using it to deduce that P'S = S'P if and only if QT' = TQ'. In
the motivating example preceding the lemma, (S,T) = (L,2) = (s',T') while (P,Q) and
(P',Q') are (2)a X and F(X,?) on the prespectrum and spectrum levels respectively.
As in this example, it is very often the case that the isomorphism is completely
obvious for the right adjoints and most useful for the left adjoints. In fact, in
some cases the right adjoints will be of little interest except as tools allowing
simple formal proofs of information needed about left adjoints. Further examples of

conjugate pairs appear in the following result.
Proposition 3.6. For X,Y ¢ GJ and Ee G4& , there are natural isomorphisms

PP(XAY) 2 (3°X)AY and O F(Y,E) = F(Y,Q"E).

The isomorphisms ¢ and y of Proposition 2.4 and fy and * of Proposition 2.5 commute
with both functors (?)a X and F(Y,?).

We next define orbit and fixed point spectra. We shall study these and other
change of groups functors systematically in the next chapter, hence we content
ourselves here with little more than the bare definitions. One's first thought is
simply to set o = (Eni. However, one quickly sees that there is no way to
obtain a homeomorphism between ()} ana " V(EnY unless H acts trivially
on W-V. Thus one first defines EH for spectra indexed on an H-trivial universe
and then uses a change of universe functor (as in Remark 2.6) to extend the

definition to spectra indexed on general universes.

Definition 3.7. (i) ILet D be a G-prespectrum indexed on an H-trivial G-universe
U. Let WH = NH/H, where NH is the normalizer of H in G, and observe that
U is a WH-universe. Define the orbit and fixed point WH-spectra D/H and pH by

(D/H)(V) = (DV)/H  and (DH)(V) = (DV)E,

the stfpctural maps being obtained from those of D by passage to H-orbits or to

H—fixed{point sets. The action of WH is evident. If D is a G-spectrum, then

21

pH s a WH-spectrum. For a G-spectrum E, define E/H = L(gE/H).

(ii) For a general G-universe U, 1let i: U! 5 U be the inclusion and observe
that v is a WH-universe, complete if U is G-complete. For a spectrum

E e GAU, define

o= 1*5)¥ e wng ot

o It is important to observe that BY(v) = (EV)! whenever H acts trivially

on V, for example when V € R® C U. We have not included the obvious symmetric
N 3 -

definition, E/H = (i E)/H, since this appears to us to be useless. Such a

construction, involving the composite of a right and left adjoint, tends to result

in spectra which cannot be analyzed effectively, and we have no useful definition of
orbits of H-spectra indexed on non-trivial H~universes.

Of course, we ignore the WH action in situations where it is irrelevant. We
record the spectrum level analogs of the basic adjunctions relating equivariant and

nonequivariant maps.

Proposition 3.8. Let U be a G-trivial universe and let X U > G&U be the
funetor which assigns trivial G action to a spectrum. For spectra F and
G-spectra E, there are natural isomorphisms

SU(E/G,F) = G 4U(E,c*F) and G&U(e*F,E) = 4U(F,E0).

Moreover, for G-spaces X, the adjoint of the quotient G-map I°X » e r®(X/G) is a
natural isomorphism

(2"X) /G = ™(X/G).

Proof. The last statement follows by conjugation from the obvious equality
* o ¥
e Q°F = ¢'F.

§4. The functors AZZ”; sphere spectra and homotopy groups

0

The functor &~ is left adjoint to the zeroﬁh-space functor @ from spectra

to spaces. For any Z in our indexing set ¢ , we also have the zth space
functor, which we denote by

%A, GAA—GT .

We next construct its left adjoint, which we think of as a shift desuspension
functor and denote by
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A% 64 —= G40 .

In section 7, we shall construct an adjoint pair of functors A, and A% from

z
G4Q to itself and shall see that the functors Q7A, and A%Z5® are indeed

composites, as indicated by our choice of notation. However, we have immediate need
of the composites, whereas the functors A, and A% will only play a peripheral
role. In fact, they will turn out to be equivalent to $Z and 9% respectively,
and their chief role will be to aid in the proof that :£? and 0 become adjoint

equivalences on passage to the stable category.
Definition 4.1. For X € GJ and Z €@, define A%5®X € Gfa by letting
AZsX = L{z""%X},

where {z' 2%} denotes the prespectrum whose iy space is V%X if Vo %

and {*} otherwise and whose structural maps are the evident identifications
sW=V o V-Zy o SW-Zy
for Zc VCcW and the inclusion of the basepoint otherwise.
Proposition 4.2. For Zep, X¢ G4, and E ¢ G4, there is a natural isomorphism
G 9(X,0"0,F) = GAR(A"IX,E).
For Ye GJ, there is a natural isomorphism

AZEP(XAY) 2 (AZQ”X)AY.

lZ

For Z = %' in (A, there is a natural isomorphism
AZEVX = A% 1K,
For VC W in @, there is a natural isomorphism
NP S0 kb &
Proof. The adjunction is easily checked on the prespectrum level and follows on the
spectrﬁm level. The remaining three isomorphisms can also be checked directly on

the prespectrum level, but it is more amusing to obtain them by application of our
conjugation trick codified in ILemma 3.5. For the first,

e e L
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F(X,Q°AE) = F(X,EZ) = Q"A,F(X,E).

For ’tfhe second, choose W €0l which contains both Z and Z'. Any isomorphism
W-Z = W-Z' induces a natural isomorphism

~ ~—1
Bz %> " %m 2 "% gy <> 71
For the third, the structural homeomorphisms &: EV » Q" VEW specify a natural

isomorphism Q7A, = @' '@ A.

Now recall our standing assumption that any G-universe contains a canonical
copy of R” with trivial G action. We assume (or arrange by use of Proposition 2.4)
that all indexing sets contain {Rn}, and we write M*z® for shift desuspension
by R®. We use these functors to define canonical sphere spectra.
Definition 4.3. Define sphere G-spectra S® ¢ G4t by

S = 7R = 25%°0 and s = 1% for n > 0.
Avbreviate S = 0. For H C G, define generalized sphere G-spectra Sﬁ by
SB = G/E' A SP

Observe that Propositions 3.6 and 4.2 imply isomorphisms

28f = Sf'® for m>0 and ne %

They also imply isomorphisms

Sﬁ 2 Z”Sﬁ 2 znz:“’sg and S = Anz“sg for n > 0.

Definition 4.4. (i) For HC G, ne Z, and E e GAQ, define
HE = w(Sh,E)g.

Observe that these are Abelian groups since Sﬁ is a double suspension.
(i1) Amap f: E + E' of G-spectra is said to be a weak equivalence if
fy: ngE > nﬁ ' is an isomorphism for all ne Z and H € G.
(ii1) A G-spectrum E is said to be n-connected if ngE =0 for q <n and all

HCG; E is said to be connective if it is (-1)-connected and to be bounded
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below if it is n-connected for some integer mn.

Proposition 4.5. lLet E bea G-spectrum and let K¢ H CG.
(1) For n > 0, niE = niE, and = fOER.
(ii) ngE is the same for E regarded as an H-spectrum as for E regarded as a
G-spectrum.

(1ii) ngE is naturally isomorphic to nn(EH).

Proof. Part (i) follows by adjunction from the alternative description of Sﬁ in
Definition 4.3. Parts (ii) and (iii) are immediate consequences of part (i).

The relations between spectrum level and space level homotopy groups are- much
less complete equivariantly than non-equivariantly. In particular, it is not clear
that the nﬁE determine the nﬁEV for non-trivial representations V. We shall
return to this point in section 7, where we shall prove the following fundamental
result.

Theorem 4.6. A map f:E » E' of G-spectra is a weak equivalence if and only if it is
a spacewise weak equivalence. If E and E' are connective, then these conditions
hold if and only if Q°f:0"E » O E' is a weak equivalence.

yhh

By (i) of the proposition, the rest will follow once we show that the space

functors Q“Av preserve weak equivalences.

Returning to the adjoint shift desuspension functors, we show next that the
AVs®X may be viewed as building blocks out of which arbitrary spectra can be

constructed.
Proposition 4.7. For E ¢ G§@ , there is a natural isomorphism
s,V
E = colim A & EV.
Ve

More generally, for Dé¢ GPa , there is a natural isomorphism

LD = colim A'z”DV,
velk

where the (spectrum level) colimit is taken over the maps

A0 v = A " oy — 2" 7Dw.

If De Ga& , then this colimit can be computedkon the prespectrum level, without

application of the functor L.
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Proof . For any G-prespectrum D, we have natural isomorphisms

itd

GAa (colim A't™D,E) = 1im ¢44 (A z"DV,E)

[iH]

lim GJ (DV,EV)

mn

GPR(D,2E) = GLA(LD,E).

The isomorphism LD = colim AVI®DV follows by the Yoneda lemma. By the use of L in

the definition of the spectra szmDV, the ZJ"‘h space of the prespectrum level colimit
is )

(colim A'5"DV)(Z) = colim colim 0" %3" Vpv.
v vV WoV,zZ

W~V .
Due to the maps ¢:I DV » DW appearing in the colimit system, the terms with

W =V are cofinal in the double colimit. When D is an inclusion G-prespectrum, the
right side is thus already

(LD)(Z) = colim o" ZDW,
WdZ
before application of L. This proves the last statement.

This result is most useful for inclusion prespectra, since the last statement
then gives a concrete description of the colimit. We apply the result in

conjunction with the following observations about maps into colimits.
Lemma 4.8. For a compact G-space K and inclusion G-prespectrum D,
GAR(A"s"K,ID) = colim G J(K,o" VDW).

Wov

For a directed system {Ei} of inclusions of G-spectra which contains a cofinal
sequence,

) E

G4a(r'5"K,colim E | = colim G4A(AV5™K,E.).
i i i 1

For any directed system {Ei} of G-spectra which contains a cofinal sequence,

nG 4 (AV5"K, tel E;) = colim hG4@ (A'z7K,E, ).
i i

Proof. Since (LD)(V) = colim @" VDW, the first part is obvious. For the second

part, we observe that the prespectrum level colimit of the Ei is already a spectrum
and thus
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Ga@(n'zK,colim E,) = G J (K,colim E;U) = colim G J(K,E;V).

The second isomorphism requires the specified restriction on the limit system since
a map from a compact space into an arbitrary colimit need not factor through one of
the terms. For the last part, we observe that tel E; is the colimit of its system

of inclusions of partial telescopes and apply the second part on the homotopy level.

The previous two results have the following consequence.

Corollary 4.9. For an inclusion G-prespectrum D,

TI’II—}(LD)

n

colim wﬁ(sz“Dv)
Ve Q

and the natural map
tel AVI®DV » colim AVZ™DV = LD
is a weak equivalence.

The corollary will lead to descriptions of the homology and cohomology groups
of LD in terms of those of the spaces DV. No such description need hold for
general prespectra, and for this reason only inclusion prespectra are of

caleulational as opposed to theoretical interest.

By a "compact" G-spectrum, we understand one of the form AVz®K for a compact
G-space K. By Lemma 4.8, maps in g4 with compact domain are colimits of space
level maps. When the codomain is of the form sz”X, we can express such maps as

shift desuspensions of space level maps.

Lemma 4.10. Let £:AVZ"K +» A":™X be a map of G-spectra, where K is a compact
G-space and X is any G-space. Then there exists Z ¢ 1 and a G-map g:227K » 22 Wx
such that the following diagram commutes.

Vv f

25K s A"E™X
14 IR
AZZw Z o Z-W.
ARV — AL B o %X

Proof. The isomorphisms come from Proposition 4.2. By Lemma 4.8 and the definition
of A"3%X,

a4 sK, A 57%) = colim G d (K, "X,

ZOV,W

e
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Hére f is realized by the adjoint of some g, and the result follows upon unraveling
the definitiéms.

The homotopy category of those G-spectra of the form AVZNK, where K is a
finite G-CW complex, is the appropriate equivariant analog of the Spanier-
Whitehead S-category. It should be viewed as a halfway house between the world of
spaces and the world of spectra.

-85, G-CW. spectra and the stable category

We here give the theory of G-CW spectra. Modulo the use of two filtrations,
to allow induction in the presence of spheres of negative dimension, the theory is
essentially the same as on the space level. In particular, the cellular approxi-
mation theorem and Whitehead's theorem are proven exactly as on the space level
[115,140]) (or as in the nonequivariant case [107]).

Given Whitehead's theorem for G-CW spectra and the fact that every
G~spectrum 1s weakly equivalent to a G-CW spectrum, we can construct the equivariant
stable category from the homotopy category of G-spectra by formally inverting its
weak equivalences. We include a general categorical discussion of this procedure.

We continue to work in G44 for a fixed indexing set A in a G-universe U. We
write * for the trivial G-spectrum (each EV a point) and write Cf for the cofibre
E vy CD of a map f:D +» E of G-spectra.

Definitions 5.1. A G-cell spectrum is a spectrum E € G4& together with a sequence

of subspectra En and maps jn:Jn > En such that Jn is a wedge of sphere spectra

S%, Ey = %, Ep4q = Cjy for n > 0, and E is the union of the E,. The map from the
cone on a wedge summand of J into E is called a cell. The restriction of j to a
wedge summand is called an attaching map. The sequence {En} is called the
sequential filtration of E. E is said to be finite if it contains only finitely
many cells and to be finite dimensional if it contains cells in only finitely many
dimensions. A map f:E + F of G-cell spectra is said to be sequentially cellular if
f(E,) € F, for all n > 0. A subspectrum A of a G-cell spectrum E is said to be a
cell subspectrum if A is a G-cell spectrum such that AnC.En and the composite of
each cell CS& > Anc A and the inclusion of A in E is a cell of E with image in E ;
thus A is just the union of some of the cells of E.

Note that the cells of G-cell spectra need not be attached only to cells of
lower dimension.

Definitions 5.2. A G-CW spectrum is a G-cell spectrum such that each attaching map
Sﬁ + E, factors through a cell subspectrum containing only cells of dimension < q.

The n-skeleton E' is then defined to be the union of the cells of E of dimension < n,
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and E is the union of its skeleta. A map f:E + F of G-CW spectra is said to be
cellular if it preserves the skeletal filtration {En} and to be bicellular if it
also preserves the sequential filtration {En}. A cell subspectrum A of a G-CW
spectrum E is necessarily a G-CW spectrum such that the inclusion A + E is
bicellular; in particular, this applies to A = ! for any integer n and also to
A=E, forn > 0. '

As said before, the use of two filtrations is essential for inductive
arguments. However, the sequential filtration, which describes the order in which
cells are attached, can be chosen in many different ways. In fact, for any map
f: E » F between G-cell spectra, there is a sequential filtration of E with respect
to which f is sequentially cellular (and for this reason the distinction between
cellular and bicellular maps of G-CW spectra is not very important). The following
lemma, which will be proven in the Appendix, makes it easy to verify the last
assertion. Recall that a compact G-spectrum is one of the form szmK for some

compact G-space K and some V e @ .

Lemma 5.3. If C is a compact G-spectrum and E is a G-cell spectrum, then any map
f: C » E factors through a finite cell subspectrum of E. Any G-cell spectrum is the

union of its finite cell subspectra.

Recall the discussion of G-CW complexes from section 1. We have the following
relationship between G-CW complexes and G-CW spectra.

Lemma 5.4. The functors ARz® carry based G-CW complexes and cellular maps to G-CW
spectra and cellular maps. They carry based G-spaces of the homotopy type of
ordinary G-CW complexes to G-spectra of the homotopy type of G-CW spectra.

Proof. Since A":® preserves G-spheres, cofibres, and unions, the first statement is
immediate. For X as in the second statement, 1X is equivalent to a based G-CW
complex, and "X = AL”IX by Proposition 4.2.

We shall shortly generalize the second assertion to AVI® for gemeral V; the
generalization is not obvious since the behavior of these functors on G-spheres is

not obvious. We have the following consequence of the previous result.

Ilemma 5.5. If E is a G~CW spectrum and X is a G-CW complex, then E A X has the
homotopy type of a G-CW spectrum.

Proof.” For q > O, S%*X 2 Em(SI%AX) and S;IqAX ] qum(Sg AX), hence the functor
(?) AX carries spheres Sﬂ to G-CW homotopy types. Since cofibres and unions over

sequences of cofibrations preserve G-CW homotopy types (by standard arguments with

homotopy pushouts and telescopes), the conclusion follows.
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We have an analogous result for passage to orbits.

Lemma 5.6. (1) If E dis a G-CW spectrum indexed on a G-trivial universe, then
E/G 1is naturally a CW spectrum with one cell for each cell of E.

(ii) If E is a G-CW spectrum indexed on an H-trivial universe, then E/H has
the homotopy type of a WH-CW spectrum.

Proof. Passage to orbits commutes with the functors AP:® and with cofibres and
colimits. ~For (i), it suffices to observe that (G/K)/G is a point. For (ii}, it
suffices to observe that (G/K)/H 1is the double coset space H\G/K, which is

" triangulable as a WH-CW complex. —

Returning to the general theory, we record the following analogs of standard

space level facts. All parts of the following lemma are also true for G-cell
spectra.

Lemma 5.7. (i) .A wedge of G-CW spectra is a G-CW spectrum.

(ii) If A is a cell subspectrum of a G-CW spectrum D, E is a G-CW spectrum, and
f: A » E is a cellular map, then the pushout E U D is a G-CW spectrum which
contains E as a cell subspectrum.

(iii) If E is a G-CW spectrum, then so are EAI', CE, and £E; EA(3I)" is a cell

subspectrum of Ea I* and E is a cell subspectrum of CE.

Theorem 5.8 (Cellular approximation). Iet A be a cell subspectrum of a G-CW
spectrum D, let E be a G-CW spectrum, and let f:D » E be a map which is cellular
when restricted to A. Then f is homotopic rel A to a cellular map. In particular,

any map D + E is homotopic to a cellular map and any two homotopic cellular maps are
cellularly homotopic.

For the proof, we may assume that f|A is bicellular and proceed by induetion .
over the sequential filtration. The result quickly reduces to the case of a single
cell of D not in A, and there the result can be reduced to the space level by use of
Propositions 4.2 and 4.5. A similar induction gives the following homotopy
extension and 1lifting property.

Theorem 5.9 (HELP). ILet A be a cellular subspectrum of a G-cell spectrum D and let
e:E » F be a weak equivalence of G-spectra. Suppose that hil = eg and
hijy = £ in the following diagram:
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Then there exist g and f such that the diagram commutes. In particular, the

inclusion of A in D is a cofibration.

Whitehead's theorem is an immediate consequence.

Theorem 5.10 (Whitehead). If e:E » F is a weak equivalence of G-spectra, then

ex: m(D,E)g » n(D,F)g is a bijection for every G-cell spectrum D. If E and F are

themselves G-cell spectra, then e is an equivalence.

Let GG & denote the category of G-CW spectra and cellular maps and let hGCQZ
denote its homotopy category. Lemma 5.7 implies that h&GA has arbitrary homotopy
colimits, and we have enough information to be able to quote Brown's representa-
bility theorem [19,107].

Theorem 5.11 (Brown). A contravariant set-valued functor T on hGEQis representable

as TE = (E,F)g for some G-CW spectrum F if and only if T takes wedges to products
and takes homotopy pushouts to weak pullbacks.

Here homotopy pushouts are double mapping cylinders and weak pullbacks satisfy
the existence part but not the uniqueness part of the universal property of
pullbacks. Either by quotation of Brown's theorem or by direct construction, we
obtain the following result. It asserts that G-spectra can be replaced functorially
by weakly equivalent G-CW spectra.

Theorem 5.12. There is a functor TI:hG4& > hG¢d and a natural weak equivalence
v:TE + E for E € G&& .

We can now define the equivariant stable category 1GEA by formally inverting
the weak equivalences in hGLd,, but it may be worthwhile to first give a little

general categorical discussion of this inversion procedure.

Let & be a category with a collection & of morphisms, called the weak
equivalences. Assume ‘that all isomorphisms are in &' and that & is closed under
composition. A localization of ¢ at § is a category g']p{ with the same objects
as M together with a functor L: 3/ + § “131 such that L is the identity funetion on
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cbjects, L takes weak equivalences to isomorphisms, and L is universal with respect
to the latter property.

Say that an object X ¢ ) is cocomplete if ey:34#(X,Y} » #(X,Z) is a bijection
for every weak equivalence e:Y » Z. Thus Whitehead's theorem asserts that CW
objects are cocomplete in homotopy categories. A cocompletion of an object Ye 3
is a weak equivalence y:TY » Y, where I'Y is cocomplete. If every Y admits a
cocompletion, then a formal argument shows that any collection of choices of T'Y for

'Y € X yields a functor I': ¢ + 24 such that y is natural. When this holds, we can

define 5_1?( by
€ lx (Y,Y") =x(ry,ryn),

with composition in $"1,1g inherited from # and with L = I' on morphisms. In fact,
this is how localizations are usually shown to exist, since set theoretical
difficulties arise in any attempt to give a more direct construction.

If every Y € ¥ admits a cocompletion I'Y ¢ § for some subcategory { of %, then
each cocomplete object X is isomorphic to the object TX e ¢ - In our homotopy
categories, this says that the cocomplete objects are precisely those of the
homotopy type of CW objects.

For categories H and 3; with weak equivalences and cocompletions as above, a
functor S:y » ¢ which takes weak equivalences to weak equivalences induces a functor
S: 6‘1% > £ '19, such that the following diagram commutes:

S

# ¥

Ll

£ b S P

If 8 fails to preserve weak equivalences, then we agree once and for all that
S: 5"13( + 8"1%— shall denote the functor so obtained from the composite ST:qq + %
which obviously does preserve weak equivalences.

In view of the ubiquitous role played by adjoint functors in our theory, we
shall make much use of the following observations.

Lemma 5.13. Let ¥ a.nd% be categories with weak equivalences and cocompletions of

all objects. Let S:% +} be left adjoint to T:} + H . Then S takes cocomplete
objects to cocomplete objects if and only if T takes weak equivalences to weak
equivalences. When these conditions hold, the induced funectors s:a‘lg. *5'17-1

and T: 6"17{ > g'l%, are again left and right adjoints. If S and T are adjoint

equivalences between ¥ e.nd}r both of which preserve cocomplete objects (and thus
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weak equivalences), then the induced functors are adjoint equivalences between

£l and g7y

Our applications of the first statement will go in both directions. A key
example is the adjoint pair consisting of AVz® and the Vth space functor. By Theorem
4.6, the latter functor preserves weak equivalences. We are entitled to the

following consequence.

Corollary 5.14. The functors 1':":67 + GAA take G-spaces of the homotopy type of
G-CW complexes to G-spectra of the homotopy type of G-CW spectra.

For applications in the other direction, the left adjoint S will always
preserve cofibres and unions and will therefore preserve CW homotopy types
(= cocomplete objects) if and only if it takes spheres to CW homotopy types.
Of course, by "spheres" we understand those objects allowable as domains of
attaching maps of CW objects, these being the same objects in terms of which weak
equivalences are to be defined. Possible alternative collections of equivariant

spheres will be discussed in section 8.

§6. The stable category, cohomology, and the cylinder construction

We have constructed the equivariant stable category nGAL vby formally invert-
ing the weak equivalences of hG4A . The functor r:heée - hGg@ is an equivalence,
and this allows us the freedom both to use natural constructions on the spectrum
level (such as products and function spectra) which fail to preserve CW homotopy
types and to provide spectra with CW structures whenever desirable. Of course,
Brown's representability theorem is inherited from hGEA. The category‘ﬂCLOL has
arbitrary homotopy colimits and homotopy limits with all the standard properties
familiar from spaces. In particular, it has cofibration and fibration sequences and

dual Milnor lim:L exact sequences.

It will follow from the desuspension theorem that
cofibration sequences give rise to long exact homotopy sequences (for all HC G) and
are equivalent (up to sign) to fibration sequences. Details of the last will be

given in III§2, where duality in hGAO will be studied.

We shall prove in the next chapter that.ﬁbla. is a closed symmetric monoidal
category. This means that it has a smash product functor, DAE, which is associa~
tive, commutative, and unital with unit S (up to coherent natural isomorphisms) and

that it has a function spectrum functor, F(D,E), adjoint to the smash product.
We write [D,E]y for the set of morphisms in hG4Q from D to E. If D is a G-CW

spectrum, this is naturally isomorphic to n(D,E)G. In particular, nEE = [SE,E]G.
The adjunction referred to above gives i
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[CA D,Elg = [C,F(D,E)]q.

Recall that hGJ was obtained from hGg by inverting the based maps which are
weak equivalences. Since :” preserves G-CW homotopy types by Lemma 5.4, we have

adjoint functors ™ and 9 relating hGJ to hG4a . More generally, Corollary

5.14 gives that the functors szm preserve G-CW homotopy types, and we thus have

. V.
: . (28,1, = [X,EV] .

Theorem 1.2 and Lemma 5.5 imply that the functors 3V preserve G-CW hémotopy
types. Thus 1V and @ induce adjoint endofunctors of Sba and.ECAcL . We have
referred to nG44 as an equivariant stable category, and the word "stable" is
Jjustified by the following fundamental result.

Theorem 6.1 (desuspension). For all Ve (L > the natural adjunction maps

nE > Q3'E and e:1'QFE » E

in hGA& are isomorphisms. Therefore 3’ and @V are inverse self-equivalences of the
category hG{a.

Thus, in hGA44 , we can desuspend by arbitrary representations V e&, and we
adopt the alternative notation £~ for @'. Of course, using V = R?, it follows that
hG AR is an additive category.

A proof of the theorem could be based on the isomorphisms

EzEaSzEA(2A"5780) = 5'EAN" 2 SO

implied by Proposition 4.2 and basic properties of the smash product. (Technically,
this argument, like any other, depends on Corollary 5.14.) This would give that zV
is an equivalence with inverse obtained by smashing with AvaSO, and categorical
nonsense could then be used to derive the asserted adjoint equivalence. We shall
give a different proof in the next section. Namely, we shall define endofunctors N
and Ay of hGAA which are inverse adjoint equivalences and we shall prove that AV is
naturally equivalent to V. By the uniqueness of adjoints, it will follow that Ay
is equivalent to 1V and thus that @V and 1V are inverse adjoint equivalences.

Just as in the nonequivariant case, the stable category hG AU is equivalent to
the category of cohomology theories on G-spectra. Here the latter should be
interpreted as RO(G;U)—graded, where RO(G;U) is the free Abelian group generated by
those specific irreducible representations which generate the universe U. For

a =V ~We RO(G;U), where V and W are sums of distinet irreducibles in our basis
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for RO(G;U), we set S* = 278V and define 1®E = EaS®. For G-spectra Y, we
then define

EY = [S®,Y ARl and %Y = [V,5%ElG.

We shall not give a formal axiomatic definition of what we mean by a cohomology

theory on G-spectra. Suffice it to say that the zeroth term necessarily satisfies
the hypotheses of Brown's representability theorem and the entire theory then takes
the form just given. (We shall study such theories in detail in [90], some of the

results of which have been announced in [88].)

For a based G-space X and a G-spectrum E, we define
~ o o ¥
EX=EJ(zX) and EX=E(X.

If D is an inclusion G-prespectrum, the equivalence LD = tel AVZQDV of Corollary

4.9 gives rise to a lim1 exact sequence

0+ liml[ZszwDV,ZaE]G > 11D,5°E] , » 1im(A"z"DV,5%E] ; + O.

This may be rewritten in the form

1 §a+v—1

. ~a+v
0 » lim

(DV) + EX(ID) » lim B V(DV) » O.

It expresses the cohomology of the G-spectrum LD in terms of the cohomology of the
G-spaces DV.

In the rest of this section, we shall be concerned with the represented
equivalent of the category of RO(G;U)-graded cohomology theories on G-spaces. We
specify that such a theory should consist (at least!) of representable set-valued
functors ¥' on TG4 for indexing spaces V in U together with natural isomorphisms

¥y = (:"Yx) for VoW

For V€ W C Z, the evident composite isomorphism should agree with the given
isomorphism for £?VX. Clearly the entire theory is determined by its values on the

indexing spaces A; of an indexing sequence A in U; given V, we choose the minimal i
a. a.,-v
such that VC A; and have Fx =¥z ' X). It is convenient to restrict

attention to such a sequence so as to avoid consideration of diagrams like those of
Definition 2.1(ii) and of non-sequentially indexed colimits and telescopes in the
discussion to follow.
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a.
Now let E* be represented by EA;. The suspension isomorphisms give rise to

isomorphismé EA; - ﬂbiEAi+1 in‘ibﬁ , Where Bi = Ai+1 - Ai‘ Either taking each EAi
to be a G-CW complex or allowing structural maps ¢ in hGJ, we conclude that

{EAi} is a G-prespectrum indexed on A such that each o is a weak equivalence. We
call such prespectra QG-prespectra. Consideration of maps of cohomology theories on
G-spaces leads us to introduce the classical notion of maps of prespectra.

' Definition 6.2. A w-map f:D » D' of G-prespectra indexed on A = {451 consists of G-

maps,fi:DAi + D'A; such that the following diagrams are G-homotopy commutative:
- b =

b, I 1fi by
g e YA,
£ DAy I DA

o [a'
f,

DA, _ i D'A.

Two w-maps f and f' are spacewise homotopic if fi = fé for all i (with no
compatibility requirement on the homotopies). Let wG®A denote the category of

G-prespectra and spacewise homotopy classes of w-maps. Here w stands for weak (or
Whitehead [142]).

Henceforward in this section we write Dy and o5 for the ith spaces and

structural maps of G-prespectra indexed on A.

To obtain the precise form of the represented equivalent of the category of
cohomology theories on G-spaces, and for several other purposes, we need the
following elementary construction.

Construction 6.3. Construct a CW-approximation functor I':wG®A » wGfA and a

natural weak equivalence y:T » 1 by applying any given CW-approximation functor
r:hGJ » hGJI spacewise. Thus, for D ¢ GPA, I';D = I'(D;) and y;:I;D » Dy is the

b.
given weak equivalence. The structural map oi:z 1riD > Pi+1D is that G-map,
bi
unique up to homotopy, such that Yi41° 04 = 04 © by Yi¢ For a w-map

f: D+ D', ryf is characterized up to homotopy by Y; © Pif = fi ° vy and satisfies
b5
~ 1 1 3
ri+lf © 0y =050 I rif because the composites of these maps with Yi+1 aTe

homotopic.

Remark 6.4. By Theorem 1.1, 2'X has the homotopy type of a G-CW complex if X
does. Given this, it is clear that the functor I takes QG-prespectra to
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QG-prespectra for which the maps Gi are actual equivalences.

As explained in section 5, use of I allows us to construct a category
WG A by formally inverting the spacewise weak equivalences of wG#A. It follows
easily from the discussion above that the resulting full subcategory WQGPA of
QG-prespectra is the represented equivalent of the category of cohomology theories
on G-spaces. Observe that if D' (but not necessarily D) is an QG-prespectrum, then

wG PA(D,D') = lim (D;,Di 1, »

where the limit is taken with respect to the composites

iy b, (5, (5074
' R S, 1
(D355 lg = > 8 "Dyuq8 iyl (D3,D3lg -

Let wG 4 A denote the full subeategory of WGP A the objects of which are G-spectra.

The following result implies that the evident forgetful transformation from
cohomology theories on G-spectra to cohomology theories on G-spaces has as its
represented equivalent the forgetful transformation nG £A > WG 4 A specified on
morphisms by restriction of maps to component spaces: ‘

[E,E'] 1im{E _,E'ln,.
’ e 775G

Note that this is well-defined by Theorem 4.6, which ensures that the A;th space

functor from G-spectra to G-spaces preserves weak equivalences.
Proposition 6.5. There are adjoint equivalences
Z:WQGP A > WG £A and z:WG AA > WRGE A
Here z is the evident forgetful functor and factors through the full sub-
category-;ﬁ32Ahof inclusion QG-prespectra. Just as in section 2, Z is constructed
in two steps. Recall Theorem 2.2.
lemma 6.6. The pair (L,2) induces adjoint equivalences
L:waG2 A » wG A  and 2:WG LA > WRGAA.

Proof.. For an inelusion QG-prespectrum D, each of the natural maps

aj-ai
ni:Di > LiD = colim Q Dj
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is clearly a weak equivalence. Thus n:D » ¢ILD is an isomorphism in WaGQA. Since
e:LeE + E is an isomorphism for a G=-spectrum E, this implies the conclusion.

* Note that L fails to define a functor wG2A » wc4{A. However, restriction to
QG-prespectra is not needed for the second step.

lemma 6.7. There are adjoint equivalences
K:wG®A » WG A and  k:wGRA > WG @PA

which restrict to adjoint equivalences on the respective full subcategoriés of
QG-prespectra.

Here k is the forgetful functor, hence z = kg¢. With Z = IK, the proposition
will be an immediate consequence. The following cylinder construction, which is a
variant of that given in [95], gives K and the proof of Lemma 6.7. The construction

has many other uses, and we give more precise information than is required for the
cited proof.

Construction 6.8. (i) Let D be a G-prespectrum indexed on A. We construct the
cylinder G-prespectrum KD, a w-map 1:D + KD, and & map #:KD + D such that

mo1=1 and 1 o =1 spacewise. Thus, let KjD be the (partial) telescope of
the sequence

1 a,-a
&j Z J 20'1 a.—a2
29D, g9

D, —> coe —== D,

2 J°

Equivalently, KoD = Dy and Kj+1D is the double mapping cylinder
b.
J bj +
$ “K.Dw (£ 9D, A . D,
RS B 3N T Moy By

b.
There are evident cofibrations aj:z JK.D » Kj+1D, inclusions 1j:£ﬁ > KJD, and
quotient maps nj:KjD > Dj such that

5 <] Yy =1, 1j o s = 1 via a canonical homotopy,
bj bj
wj+1ooj—0j02 nj,andlj+1ooj=cjozlj;

here the last homotopy is also canonical, being given by

b. b, b, b

J J.. = J
1j+l 3 j+1 o Gj o1x T oL lj T 41 o i+l o o5 © z th = 05 0 b J1j.
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(ii) Let £:D + D' be a w-map together with specified homotopies
b,
h.,:o} 0 X I, =1, o g.. We construect an associated map Kf:KD » KD' such that

J J+1 J ry 3 3
1Jo % = Kf 031 and m o Kf = f o 1 spacewise. Proceeding inductively, let
Kof = fo and assume given Kif for i < j. The equations
b

- J =
Kj+1f o °j = Gj oL Kjf and Kj+1f o lj+l 1j+1 o fj+l

specify Kj+1f on the ends of the double mapping cylinder Kj+1D»and we set

b,
[z JfJ.)(x),Zt] if 0<t<1/2

(Kj+1f)[x,t] =
hj(x,Zt—l) if 1/2 <t <1
for x ¢ ijDj and t ¢ I. By (i), we have a canonical homotopy
wj+1o Kj+1f = ﬂj+lo Kj+lfolj+lo "j*l = “j*lo 1j+1° f3+lo ﬂj+1 = fj+lo “j*l'

If f is a map, we take h to be constant or redefine
P
(Kj+1f)[x,tl = [(z fj)(x),t]

and find that « o Kf = £ o 1 by trivial direct caleculation; with the redefinition,
K becomes a functor GPA + GQA.
(iii) The map Kjf of (ii) is characterized up to homotopy by the condition

= if . =1, of, then
Kjf o 1j lj o fj Indeed, 1 g o 1J 1J 5

e 3 . _=K,f .O.=K.f-
g=goyom =y ofyom=boy om =l

In particular, the homotopy class of Kjf is independent of the choice of h:, K

preserves spacewise homotopies, and Ku = w:KKD + KD spacewise, the last since

an o 1j = lj o T =1 = "j o lj on KjD.

Of course, ZD = LKD is a well-defined G-spectrum for any G-prespectrum D.
Moreover, x = ni: D » ZD is always a well-defined w-map, although it is not a
spacewise weak equivalence unless D is an GG-prespectrum. We also have a natural
map Lm:ZD + LD, and Ln is a weak equivalence if D is an inelusion G-prespectrum. In
particular, for G-spectra E, we have a natural weak equivalence ¢ o Ly:ZE + E of

G-spectra. In the nonequivariant case, the homomorphism
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*
. K, s
[ZD,E] —> lim [ZiD,Ei] ——=1im [Di,Ei]

induced by x is the starting point of MeClure's amalysis in [H_, VII] of the
calculational relationship between spectrum level and space level maps. Much of his

work goes over to the equivariant case with only notational changes.

The construction Z admits the following spectrum level reinterpretation, which
should be compared with Proposition 4.7 and Corollary 4.9.

Proposition 6.9. For D ¢ G{A, there is a canonical weak equivalence

a,
6:tel A 5D, » 2D,

where the telescope is constructed with respect to the maps

a. a, a. b. a.
i+l 1o i+l o i
A Lo "I D = A £L D) > A ID;,q >
4 o th
and the restriction of 6 to A % Di is adjoint to the i™" component of the

w-map «:D » ZD. Moreover, the following diagram commutes:

a.
tel A 13p; —2—= 2p

1Lﬂ

LD

n

.8y
colim A *z%Dg

Proof The canonical homotopies specifying « as a w-map give canonical homotopies
for the construction of ¢ from the specified restrictions, and Lemma 4.8 and

Corollary 4.9 imply that 6 is a weak equivalence. The last statement follows easily
from 7 o 1 =1 and thus It o « = p.

§7. Shift desuspension and weak equivalences

This section is devoted to various related pieces of unfinished business. In
section 4, we promised to decompose AZr® as a composite of A% and $® and to
prove that the zth space functor QwAZ preserves weak equivalences. In section 6, we
promised a proof of the desuspension theorem. We shall also obtain a result

relating the connectivity of G-spectra to the connectivity of their component
G-spaces.

We begin with the definition of A% for an indexing space Z in a G-universe U.

We may assume that U = U' + Z%, where Z* denotes the sum of countably many copies of
Z, and we may take
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a = {V+Zn]Vea,‘ and n > 0}
as our indexing set in U, where QL' is any indexing set in U'.

Definition 7.1. Define functors AZ:GWL + GPA& and AZ:GPOL + G P& as follows.
For D¢ GPA , define

G,:D(V + ) s v+ 2B
to be the composite of the given & and the reinterpretation homeomorphism which
regards the loop coordinate as the (n+1)St copy rather than the n®h copy of Z (that
is, as the complement of V + Z% in V + Z°*1 rather than the complement of
V+ 28l in v + 2%), Similarly, define

L

G_:D(V + 2™ » o%D(V + 2™
to be the composite of the given T and the reinterpretation homeomorphism which
regards the loop coordinate as the nth copy rather than the (n+l)5t copy of Z.
Define

%DV if n

]
@]

(A%D)(V + Z7) =
DV + 7% irasa

where the loop coordinate is understood as the first copy of Z in Z°. By the

diagram of Definition 2.1(ii), the only structural maps we need to define are
G (A"D)(V + 2% > "V (A%D) (W + 27
for VC W in @' and

T (AZD)(V + Z™) > Q2(AZD)(V + 7°),

In terms of the given G for D, the former is to be 9?3 if n = O and § if n > 1; the
latter is to be the identity if n =0 and o if n > 1. Define

+

(A, D)V + Z8) = DV + z7*1)

with structural maps the given ¥ for V + Z%Cc W + 7% and §_for V + 22 ¢ V + 21,

These f}mctors preserve G-spectra and so restrict to endofunctors of GEQ .

Lemma 7.2. The functors AZ and AZ are inverse adjoint equivalences of the category

GAR.
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Proof . AZAZ is the identity functor on both GO, and GEOL . For D ¢ GPQL , the
maps 3:DV + @®D(V + Z) and the identity maps of D(V + Z") for n > 1 specify a
natural map D » AZAZD which is an isomorphism when D is a spectrum. The adjointness

ig trivial.

Lemma 7.3. The functor 221763 -+ 680 is isomorphic to the composite of A% and
DS

'Proof. Since A% and 1” are left adjoint to A, and Q®, the composite 22 017 is

left adjoint to the composite Q o AZ. The latter composite is obviously the Zth
space funector Q“Az , and the conclusion follows by the uniqueness of adjoi.ﬁts.

If Y 1% in U, we can assume that U has the form U" + Y” + Z® and we can take
n
O=w+1"+2"vel ,m>0,n>0}
as our indexing set, where Cl." is an indexing set in U'. The functors Ay, Ay, Ay,
and A% are then all defined. Upon further restriction to indexing spaces with
m=n, Ay, and *% are also defined. Trivial verifications give the following

result.

lemma 7.4. The following relations hold for Y 1 Z:

Y, = J 2, - G
A AZ AzA and A Ay AyA ;
= = J 22 = y+z = &
I\yAZ Ay+z Asz and A A A AN A

To prove the desuspension theorem, we want to relate the functors A% and @%.
It is convenient to restrict to an indexing sequence A = {Vn + Zn}, where
{V,} is an indexing sequence in U'. Write A = V, + Z" and let B, = C, + Z denote
the complement of A in A, ,,, where C, is the complement of V, in Vpepe For
Ee G&A, we have

(%E); = 9%(E;)

with struetural homeomorphisms the composites

Z i V] bi T bi 7
QE — > Qe E , — >0 QE,, ,
where T reverses the order of the loop coordinates. Using o to identify
E(V, + 7%71) with @%E(V, + 7%), we find that A%E can be written in the form
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(AZE)i = QZ(Ei)

with structural homeomorphisms

2 Q%% 2 Pi iz
Q Ei-—————* QQ Ei+l 2 Q7Q Ei+1 ,
the last isomorphism being given by twisting the first loop coordinate Z past the
loop coordinate C; and then identifying. Clearly these differ by the twisting of 2

past Z that occurs for 9% but not for AZ.
Define a natural w-map d:9%E » A%E by letting dy; = 1:0%Ey; » 9%E;; and letting

dys_1 be the composite

Coa €y
ZnZo 21 T Z. %, 21 Z
Q7% “TEyy ——>= Q70 Q EZi Q%Es5 -

iR
n

Z
Lt

Here t twists the two loop coordinates Z and the isomorphisms are given by 2%

bas Chs
together with the identification @ 2tz g% 2*. Not only is d a natural w-map, but

the requisite homotopies are also natural. Indeed, one finds easily that they are

consequences of a homotopy from the composite
§%a 8%n Pty g%, g%a g% LAT, g%, g%, gP
to the identity map. The composite of 1 a1 and the homotopy
hy(z,2',2") = (1 - t)(2',2,2") + t(z,2",2")

from 1Al to 1A 1 serves the purpose.

The kind of situation just displayed occurs often enough to deserve a name. We
follow May and Thomason [110].

Definition 7.5. A preternatural transformation d:D + D' between functors from any
category ¢ to the category G A consists of a natural transformation d in the
category of G-prespectra and w-maps together with a natural choice of homotopies.
Thus, for Ce¢ € and 1 > O, there is given a map d;:D;C » D;C and a homdtopy

e dg . .
hi.oiz di = di+10i’ both di and hi being natural in C. A preternatural homotopy
j:d = d' is a preternatural transformation j:D AI" » D' which restricts to d and 4
at the ends of the cylinder, where the functor DAIt is specified by
(DAT)(C) = DCAT .

Preternaturality gives precise sense to the word "canonical" used in various

places in Construction 6.8. Thus 1:1 + K is preternatural and 1 o 7 is
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preterﬁaturally homotopic to the identity transformation K + K. The following
result is immediate from part (ii) of the cited construction.

Proposition 7.6. Let d:D » D' be a preternatural transformation. Then there is a
natural transformation Kd:KD + KD' of functors § » GPA such that the following

diagram of G-prespectra is preternaturally homotopy commutative:

Kd

'. . KDC ——————>KD'C

L |

DC ————>=D'C
If d is a spacewise (weak) equivalence, then so is Kd.
The following observation gives force to the notion of preternatural homotopy.

Temma 7.7. For De GPA and X € GJ, K(DAX) is naturally isomorphic to (KD) AX. If
j:d = d' 1is a preternatural homotopy, then Kj:Kd = Kd' is a natural homotopy.

By application of the functor L, we obtain the following spectrum level
consequence of the proposition.

Corollary 7.8. Let d:D + D' be a preternatural transformation of functors

{+ GPPA. Then there are natural transformations

¢« zpc —24 s gpig — LT 1pric.

If D and D' take values in G AaQ , the maps Ly are weak equivalences.

Of course, Zd is a weak equivalence if d is a spacewise weak equivalence. In
particular, this applies to d:Q% » A%, where Q% and A? are regarded as functors
G40.» G40.. We can now deduce the desuspension theorem by passage to hG AA. By
Theorem 1.2 and Lemma 5.5, the functor z? preserves G-CW homotopy types. Therefore
Q2 preserves weak equivalences by Lemma 5.13. By the corollary, it follows that £Z
preserves weak equivalences and thus A, preserves G—CW homotopy types. However, for
the adjoint equivalence of Lemma 7.2 to imply the corresponding adjoint equivalence
after passage to ECZA, we also need the opposite assertion, that A, preserves weak
equivalences and thus A? preserves G-CW homotopy types. This is an immediate
consequence of Theorem 4.6, and the proof of the desuspension theorem is now
complete modulo the proof of that result, to which we shall turn shortly. We first
display the resulting equivalence between the adjoint pairs (:%,7%) and (A,,A%)

more explicitly.
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Theorem 7.9. There is a natural equivalence §: g% + A? of functors hGia > hGsa
with conjugate natural equivalence ¢g: A, » 32, The following diagrams commute, and

all maps n and ¢ in them are also natural equivalences.

E —Lso%i%E and E S 3%0%8
nl 16 ET IC

2 AZ Z.2 2 AZG Z
AAZE-—-——E—,A I°E A A°Ea—— p Q°E

Moreover, the following diagrams commute for Y L Z.

o7 oE —S— W o%E and Agh,E LN AyZZE
s -

W A%E ” y °E

g 2 l'fysz gy E =5 ):y+ZE

Proof. Of course, ¢ = (L7)(2d)(Lm)~! as in Corollary 7.8, and ¢ is
characterized by commutativity of either of the first two diagrams. The
transitivity of & follows from lemma 7.7 and the transitivity up to preternatural
homotopy of d. The point is that d: @¥*% » AY*% involves transposition of the
Y + Z loop coordinates whereas (AYd)d involves transposition of the two Y
coordinates and the two Z coordinates. These transpositions are canonically

homotopic.

This implies information relating the zth space and geometric suspension
functors on G-spectra. This information makes no reference to the shift functors.

Nonequivariantly, it was at the starting point of MeClure's work in [H_,VIIS1].

Corollary 7.10. For Z e@, there is a natural equivalence ¢gn5: EZ » (ZZE)O. For
Y 1 Z, the following (adjoint) diagrams commute.

o7
c c
Bz —2 (z"8), and XbovA ———9—>-zy(zZE)O
B lno J'adJ(n )
¢ (o¥sY zE) o (72"
E(r+z) — o (5 ZE)o E(Y+Z) —— (57 ZE)O

Proof.\ An easy chase from the diagrams of the theorem gives the commutative diagram
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AE 2°E
rll lh
Ayl\ AE s

n L

N AT, WYy T+eg o o7

Since ng = 3 on the left and do = 1, this gives the first of the desired adjoint

pair of diagrams on passage to zero~§-spaces.

Turning to the proof of Theorem 4.6, we insert the following lemma to avoid
circularity.

Lemma 7.11. If G acts trivially on Z, then the functor A, preserves weak

equivalences of G-spectra.

Proof. For any G-trivial W C U of dimension n, consideration of E(W + R'), where

the sum need not be direct, shows that EW is naturally G-homeomorphic to ER". It
follows easily that a weak equivalence E + E' induces a weak equivalence
(AZE)(Rq) -~ (AZE')(Rq) for all q. The conclusion follows immediately from
Proposition 4.5.

In this proof, and below, we implicitly use Proposition 2.4 to define ALE on
general indexing spaces in U.

We can now prove Theorem 4.6, which we first rephrase. The idea of the
following argument is due to Henning Hauschild.

Theorem 7.12. ILet f:E + E' be a map of G-spectra such that f*:nﬁE > ngE' is an

isomorphism for all integers n and all closed subgroups H of G. Then

(fV) g EV + nHE'V is an isomorphism for all n > O, all H, and all indexing spaces V.

Proof. We work in G4U for definiteness. Being compact Lie, G contains no infinite

descending chain of closed subgroups, and a standard argument shows that it suffices
to prove the conclusion for H under the inductive assumption that the conclusion
holds for all proper closed subgroups of H. Write V = Z + W, where W is the
complement of the fixed point set Z = VH. By Proposition 4.5, we may as well regard
E as an H-gpectrum rather than a G-spectrum. By Proposition 2.4, we may then expand
H-indexing sets to include Z and W. We then have

= (A,E)(W).

Since A, preserves weak equivalences by the lemma, we may now replace E and E' by

A E and AZE' and consider only those H-representations W with WH = {0}. If




46

H = e, then W = {0} and the conclusion is immediate. Thus assume H # e. By ouf
inductive hypothesis, fW:EW » E'W is a weak K-equivalence for all proper closed
subgroups K of H. Thus we need only consider nﬁ. Let SW and DN denote the unit
sphere and unit disc in W and consider the fibre sequence arising from the
identification SV = DN*/SW':

Ey = F(SY,EW) ———=F(DV" ,EN) ——>F(SW", B
£y = (£ (£W), (W),
1

Ey = F(S",E'W) ———=F(DI" ,E'W) ——= F(SW",E'W).
By Proposition 4.5, fO is a weak equivalence since f is. Since DN is
H-contractible, F(DN*,EW) = EW. By the five lemma, (fW)y: nﬁEw * ngE'W will be an
isomorphism for all n » 1 provided that

(fW)y: F(SW*,EW) > F(sWw*,E'W)
induces an isomorphism on nﬁ for n » 0. Since

THEW = TOF (WY, EW) > HF (SW',EW)

need not be surjective, this five lemma argument won't handle ngEW > ngE'W, but we
need only replace E and E' by ME and ME' and use the natural isomorphism

THEW = THoE(W + R) = whE(W + R) = ni(AE)(W)
to deduce the required isomorphism on ng. Of course,
Hrort,mn = (8" Eet,mM = e ey,
hence what must be shown is that
(£W): [Z(SWT) BNl » [Z(SW7),E' Wy
is an isomorphism for n > O. Since SW has no H-fixed points, we may replace
it by an equivalent H-CW complex all of whose cells have domains of the form
H/K x €™, where K is a proper subgroup. Then r(SW') inherits a structure of
H-CW- complex with a single H-trivial vertex and one (m*n)-cell of type X for each m-
cell of SW of type K. The successive quotients of the skeletal filtration of

B(SW*) are all wedges of spheres H/K*A 84. By induction over skeleta, the desired
isomorphism follows from the inductively known isomorphisms
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mn

(£W)yg:[H/K A SY,EW]y = nﬁEW > WI;E'W (H/K s SLEW] .

We have the following useful characterization of comnective G-spectra.

Proposition 7.13. The following conditions on a G-spectrum E are equivalent.

(1) E is connective.
(i1) = ER® is G-connected for n > 1.

S(1ii) ER" is G-(n-1)-comnected for n > 1.
(iv) nICiEV =0 for all V and all q < dim V.

proof. Trivially (iv) = (iii) == (ii), and (ii) <= (i) by Proposition 4.5. We
must prove that (i) implies (iv). In view of the equivalence of Ay and 2V, we have
the following isomorphisms for q > 0:

Her = 1@ o® e R _ Hw
anV [SH,Q AVE]G x [z SH,z E]G = nqz E .
Write V. = Z + W, where W is the complement of Z = VH, and let m = dim Z. Regarding

E as an H-spectrum and expanding H-indexing sets, we find

H 2z w H

H v, _ - W.
nq(E E) = m(ZTEE) = Tgem'Z E) +

Since E is commective, so is 3"E because the proposition below implies that E and
therefore also r"E is weakly equivalent to an H-CW spectrum with no cells of
negative dimension. This proves the result.

Of course, there is an analogous implied conclusion for n-connected G-spectra
for any n. We quoted the following useful result in the previous proof.

Proposition 7.14. For a G-CW spectrum E, E/En is n-connected. For any G-spectrum E,

there is a G-CW spectrum I E with no g-cells for g < n and a map Yn:TpE + E such
that

Ypx: 1D, TpElg » [D,Elq

is an isomorphism for all G-CW spectra D with no g-cells for q < n.

Proof. Since each S$+1 is m-connected, the first statement results by induction and

passage to colimits from the cofibration sequences

ER/ER o Em+1/En > Em+1/Em for m > n.

The second statement results from application of Brown's representability theorem to

the functor [?,E]d defined on the homotopy category of G-CW spectra with no g-cells
for q < n.
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§8. Special kinds of G-prespectra and G-spectra

We here collect miscellaneous results of a technical or philosophical nature.
The only common denominator is that they all deal with special kinds of prespectra
or spectra, beyond the inclusion prespectra and CW-spectra already introduced.

The functor L of Theorem 2.2 was essential to the transport of colimits and
various functors - all left adjoints - from the prespectrum to the spectrum level.
In all of these applications, L has the unfortunate effect of converting relatively
well-understood prespectra into spectra about which we know nothing beyond the
desired formal properties. Our first objective hére is to ameliorate this situation
by desceribing certain cases in which the effects of L are reasonably well
understood. We consider two questions. First, when do our prespectrum level left
adjoints produce inclusion prespectra? Of course, when they do, L is given by a
simple and easily understood passage to colimits. Second, under what conditions does
a functor constructed by use of I preserve subspectra? Specifically, when does it
preserve spacewise injections, spacewise closed inclusions, and intersections of
closed subspectra? In this connection, we shall prove the following result in the
Appendix. ‘

Lemma 8.1. A cofibration of spectra is a spacewise closed inclusion.

This applies in particular to the inclusion of a subcomplex in a CW-spectrum.

To answer our gquestions, we need the following kinds of prespectra.

Definitions 8.2. (i) A prespectrum D is a I-inclusion préspectrum if each %

o::"VDy » DN is a closed inclusion. Note that r-inclusion prespectra are inclusion

prespectra, but not conversely as the example of actual specira makes clear.
(ii) A prespectrum D is an injection prespectrum if each §:DV - Q"VDW is an
injection. Of course, inclusion prespectra are injection prespectra, but not
conversely.

As we shall make explicit below, most of our prespectrum-level left adjoints
fail to preserve either spectra or inclusion prespectra but do preserve both
injection and r-inclusion prespectra. Thus, when restricted to i-ineclusion

prespectra, these functors yield inclusion prespectra and therefore have good
calculational behavior.

'?he point of injection prespectra is that L does not mangle these quite as
badly as it does general prespectra. Again, the following result will be proven in
the Appendix.
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Proposition 8.3. (i) The functor L preserves finite products.

(ii) When restricted to injection prespectra, L preserves all finite limits.
(iii) The map n:D » ¢ID is an injection (resp., inclusion) if D is an injection
(resp., inclusion) prespectrum.

Properties (i) and (ii) are unusual for a functor which is a left adjoint.

Property (ii) is the key to answering our questions about subspectra since these can -

"all be rephrased as questions about finite limits. In any reasonable category, such

as any of our categories of spaces, prespectra, or spectra, a map f: D+ D' is an

. injection if and only if the diagram )

1

D———>D

1| |t

£

D —————3 D!

is a pullback. The intersection of subobjects D' and D" of D may be described as
the pullback

Dln il _’"'—""‘_—"D"

| l

D! —> D

A map f:D » D' is a closed inclusion if and only if there is a pair of maps
D! T/ D" such that the diagram

f

D ——— Dt T2t

is an equalizer; more precisely, this holds if and only if the canonical diagram

D_._.t:‘._.pD! _______"‘"""""’ D'\JDD'

is an equalizer. We would like to use this faet in conjunction with Proposition 8.3
to conclude that Lf is a closed inclusion when f: D+ D' 1s a closed inclusion
between injection prespectra. However, this conclusion is actually false, the
problem being that D&JDD' need not be an injection prespectrum. Let us say that

f 1is a good closed inclusion if DHJDD' is an injection prespectrum. The

following observation is easily checked by inspection and shows that goodness is
automatic when D 'is a spectrum.




50

Jemma 8.4. Iet D be a spectrum (regarded as a prespectrum).

(i) If D' and D" are injection prespectra, f: D+ D' is a closed inclusion,
and g: D+ D" 1is an injection, then D'VDD" is an injection prespectrum.

(ii) If D' and D" are spectra (regarded as prespectra) and f: D+ D' and g:

D » D" are closed inclusions, then D\ﬁp" is an inclusion prespectrum.

As an aside, D'/D is hardly ever an injection prespectrum here. Note that
D =D'AD" in D'upd"; it now follows that LD = ID'A D" in LD'<ypLD".

The discussion above has the following consequences.
Proposition 8.5. (i) When restricted to injection prespectra, the functor - L
preserves injections, good closed inclusions, and intersections of closed
subobjects.
(ii) Iet F be a prespectrum level functor which preserves pushouts and injection
prespectra. If F preserves injections, closed inclusions, and intersections of
closed subprespectra, then the spectrum level functor LFg preserves injections,

c¢losed inclusions, and intersections of closed subspectra.

It remains to survey the behavior of particular functors of interest. Inter-

sections refer to closed subobjects in the following examples.

Examples 8.6 (i) The functors A%5® from spaces to spectra are obtained by
application of L to f-inclusion prespectra and certainly preserve injections, closed
inclusions, and intersections.

(ii) The prespectrum level functor DAX preserves gf-inclusion and injection
prespectra but fails to preserve inclusion prespectra or spectra. It preserves
injections, closed inclusions, and intersections in either variable, hence so does
the spectrum level functor EaX.

(iii) The orbit prespectrum functor D/G (where D 1is indexed on a G-trivial
universe) preserves r-inclusion prespectra, injections, closed inclusions, and
pullback diagrams one leg of which is a closed inclusion (such as intersections).
However, it fails to preserve injection prespectra, and D/G is almost never an
injection prespectrum even when D 1is a spectrum. For this reason, passage to
orbits on the spectrum level is quite badly behaved in general. The situation is
saved by lemma 5.6, which shows that the orbit spectrum of a G-CW spectrum has a
natural induced structure as a CW spectrum.

We next consider possible cofibration or CW-complex restrictions in the
definition of G-prespectra. To many experts, such conditions will have been
conspicuous by their absence. We work with an indexing sequence {A;}, with
B; = Ay4q - Ay, and adopt the notations of section 6.
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. b
) Definitiqn 8.7. A G-prespectrum D is g-cofibrant if each 0412 lDi + Diyq is a

cofibration; D is cofibrant if each adjoint Ei is a cofibration.
A trivial induction gives the following result.

lLemma 8.8. If D is p-cofibrant, then any w-map D + D' is spacewise homotopic to an
actual map.

Results of lewis [84] imply the following result.

lemma 8.9. If D is g-cofibrant and the diagonal maps Di > Di x Di are cofibrations,
then D is cofibrant.

The diagonal condition holds if the D; are G-CW complexes.
Lemma 8.10. If D is cofibrant and each Ei is an equivalence, then n:D + ID is a
spacewise equivalence.
Proof. Fach 61 is an inclusion of a strong deformation retract by the standard

argument, and the rest of the proof is exactly the same as in May [95,p.469].

Definition 8.11. A g-cofibrant G-prespectrum D is a G-CW prespectrum if each D; has
cofibred diagonal and the homotopy type of a G-CW complex.
We could only ask for actual G-CW complexes and cellular structure maps by

Y K3 3 . b.
artificially choosing G-CW structures on the G-spheres S l; compare Remarks 1.3.

Lemma 8.12. If D is a G-CW prespectrum, then LD has the homotopy type of a G-CW
spectrum.

a.
Proof. Since the functors A 1:i® preserve G-CW homotopy types, this is immediate

as
from the isomorphism LD z colim A “1”D;.

Constructions 6.3 and 6.8 show how to replace general G-prespectra by G-CW
prespectra.

Proposition 8.13. For any G-prespectrum D, XD is g-cofibrant and KrD is a G-CW

prespectrum. If D is an QG-prespectrum, then n:KrD + IKI'D = ZrD is a spacewise
equivalence.

Here the last statement follows from Lemma 8.10 and Remarks 6.4 and leads to
the following reassuring result.
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Proposition 8.14. If Ee€¢ GAU is a G-CW spectrum, then E is equivalent to ZrE’and

each component space EV of E has the homotopy type of a G-CW complex.

Proof. We have the w-map y:I'E + E of Construction 6.3 and thus an actual map
KIE —S o kg — >

by Construction 6.8. By application of L, there results a weak equivalence

Zr'E » E. Since ZI'E has the homotopy type of a G-CW spectrum, this map and thus all
of its component maps are equivalences by the Whitehead theorem for G-CW spectra.
The component spaces of ZI'E have the homotopy types of G-CW complexes by the

previous result.

Thus our G-CW spectra can be replaced by equivalent G-spectra of the form 1D
for an QG-CW prespectrum D. The latter gadgets may be viewed as arising by
elementary constructions from the sort of G-prespectra that occur "in nature", for

example as representing objects for cohomology theories on G-spaces.

As explained in the preamble, this discussion gives the beginnings of a
comparison between Adams' approach to the (nonequivariént) stable category and
ours. We end with the beginnings of a comparison between Boardman's approach and
ours. Boardman's starting point is that CW-spectra should be the colimits of their
finite subcomplexes, as ours are, and that finite CW-spectra should be shift
desuspensions of finite CW-complexes. We shall prove the appropriate equivariant

version of this characterization of finite CW-spectra.

One's first guess is that a finite G-CW spectrum should have the form A%3®X for
a finite G-CW complex X. However, the usual notion of a G-CW complex is not

appropriate: we need something more general.

It has occurred to several people that the proper collection of spheres for the
definition of G-CW complexes might be the collection of spaces (G/H)+A Sv,where v
runs through the representations of G. In our context, V would run through a given
indexing set (L. (Actually, there are good grounds for using the more general
collection of spaces G Ay SV, where V runs through the representations of H, but
the former collection is appropriate for the discussion to follow.) The corres-
ponding spectrum level collection of spheres would consist of all A= ((a/H) A 8T)
with V and W in @ .

The general approach to cellular theory presented in [107] makes clear that
most standard results go over without change to the generalized G-CW complexes and
G-CWt spectra obtained by allowing these generalized spheres as the domains of
attaching maps. (On the space level, we insist on based attaching maps here.) The
one major exception is the cellular approximation theorem, which already fails for
generalized spheres. The Whitehead theorem goes through in both contexts but is no
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stronger than the form already obtained since Theorem 1.2 and Corollary 5.14 imply

that generalized G-CW complexes or spectra have the homotopy types of ordinary G-CW
complexes or spectra.

The functors A®1” clearly take generalized G-CW complexes to generalized

G-CW spectra since they preserve generalized spheres, cofibres, and unions.

Proposition 8.15. Any finite generalized G-CW spectrum E is isomorphic to A%5™Y for

'some finite generalized G-CW complex Y and some Z¢ (] .

Proof. Proceeding by induction on the number of cells of E, we may assume that E is
the cofibre of a map £:AVI™K » D, where K is a generalized sphere and D is
isomorphic to A"E™X for some finite generalized G-CW complex X and some

W e Q. By Lemma 4.10, we may write f in the form

A2 02570 VK - A%y

for some Z containing V and W and some space level map g. If K = (G/H)+t\8t, we may
take T to be orthogonal to Z - V and identify the domain of g with (G/H)*a S2-V*%,
Let Y be the cofibre of g. Then E is isomorphic to AZ:*Y. Since 52™™X is evidently

a generalized G-CW complex with one cell for each cell of X, Y is a generalized G-CW
complex.

The essential point is that we must use generalized G-CW complexes even if we
start with ordinary G-CW spectra. However, using Theorem 1.2 to triangulaté the
domains of attaching maps and then approximating them by cellular maps, we find by

an easy induction that any generalized finite G-CW complex has the homotopy type
of an ordinary finite G-CW complex.

Corollary 8.16. Any finite G-CW spectrum E is G-homotopy equivalent to 7%3™X
for some finite G-CW complex X and some Ze (L.




II. Change of universe, smash products, and change of groups

by L. G. Lewis, Jr. and J. P. May

We continue our study of the equivariant stable category with a number of

deeper or more specifically equivariant constructions and theorems.

In fact, we have different stable categories of G-spectra indexed on different
G-universes, and mich of our work will concern change of universe. We have already
observed that a G-linear isometry f: U+ U' gives rise to a forgetful functor
f*: G4U' » GJU. 1In section 1, we construct a left adjoint fy: G4U » G3U' and show
that the functors fy (or ) given by different G-linear isometries: become

canonically equivalent upon passage to stable categories.

We use these change of universe functors to construct smash products and
function spectra in section 3. It is a very easy matter to write down explicit

"external" adjoint smash product and function spectra functors
A G4U x GAU' —» GA(UB U')  and F: (G4U")°P x GJ(UB U') — GIU

for any pair of G-universes U and U'. Taking U = U', we obtain "internal"

adjoint smash product and function spectra functors by composing with
fy: GE(U® U) —G4U  and 1 x £%: (GRU)OP x G4U —G4U x GL(U @ U)

for any chosen G-linear isometry f: U @U » U. After passage to the stable
category, the functors fy (and f*) for varying f Tbecome canonically
equivalent, and this freedom to use varying G-linear isometries makes it easy to
prove that the smash product on the stable category is unital, commutative, and

associative up to coherent natural isomorphism.

In this application of change of universe, the relevant universes are
G-isomorphic. In section 2, we consider an inclusion 1i: U' + U of non-isomorphic
G-universes and prove that, for suitably restricted spectra E'« G38U' and

arbitrary spectra F'e G4U',
ig: [E',F']— [1i4E',14F"' ]

is an isomorphism. The main case of interest is the inclusion i: UN + U, where
"N is a normal subgroup of G. Here iy is an isomorphism whenever E' is an
h~free G-CW spectrum. Since 1,5° = 1®: GJ + G4U, we find in particular that
if X is an N-free G-CW complex and Y is any G-space, then [I"X,I"Y]; 1is the

same when computed in UN as when computed in U. For finite X and Y, this
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result is due to Adams [3]. Its virtue is that it allows us to work in U to
construct stable maps X + Y, pull them back along iy to maps between suspension
spectra indexed on UN, and then pass to orbits over N to obtain stable maps
X/N+ ¥Y/N. This is precisely how we shall construct stable transfer maps in chapter
IV. Along the same lines, we show that any N-free G-CW spectrum E ¢ G§U is
equivalent to 1iyxD for an N-free G-CW spectrum D € GJUN. Up to equivalence,

D is uniquely determined by E. An explicit model for D is E§(N)+Ai*E,

“where F(XN) is the family of subgroups of G which intersect N trivially and

E4 denotes the universal # -space associated to a family # . A much more useful

explicit model is the twisted half smash product EF(N) x E to be constructed in
chapter VI.

In section 4, we consider various change of group functors associated to a
homomorphism o: H + G of compact Lie groups. For a G-universe U regarded by
pullback as an H-universe, we have a forgetful functor

*
a : GIU — HLU.
We construct left and right adjoints
G, (2): HfU>G U and F [G,?): HAU -=GU
* . .
to a and study their propeties. When o is an inclusion, we use the notations
G kHD and FH[G,D); these are the free and cofree G-spectra generated by an
H-spectrum D. When o is the trivial homomorphism H + e, e maD = D/H and
= nH :
F,le,D) = D", 1In general, if N = Ker(a) and J = H/NC G, then

G oD =Gos(D/N) and F,l6,D) = Fylc,0M).

Section 5 contains some elementary space level geometry needed in the proofs of
our main change of groups isomorphisms in sections 6 and T.

For HC G, the adjunction
[6 %D E]l; = [D,Ely,
De HJU and E e GJU, implies an isomorphism
Eq(G o) & Ey(D)
on the level of reﬁresented cohomology theories. In section 6, we prove that the

free G-spectrum G mHD is naturally equivalent to the cofree G-spectrum

L .
FH[G,z D), where L is the tangent H-representation at the identity coset of
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G/H (and thus L = 0 if G is finite). This equivalence amounts to a and
complementary adjunction ) ,
@ 0. <A
(2%, 27%/N ; = (5% Y,27%%x] g,
(E,G wyDlg = [E,5Mply
where the left sides are computed in the J-universe UN and the right sides are
and implies an isomorphism computed in the G-universe U. When G is a finite group and X and Y are

finite complexes, these isomorphisms are due to Adams [3] (who in turn credits us
‘for the special case N = G).

3

E3(G wD) = Ei(xlD)
. The isomorphisms of the previous paragraph cry out for interpretations in terms

2 -— ® -
on the level of represented homology theories. When D =I"Y for an H-space Y,  of cohomology and homology analogous to those of the paragraph before. One problem

such an isomorphism was first obtained by Wirthmuller [1Lk]. is that, while it is obvious that a spectrum E; ¢ GAU may be viewed as a

For a normal subgroup N of G with quotient homomorphism e€: G » J, where

spectrum EH ¢ HfU for H C G, it is less obvious how to construct from EG a

J = G/N, we have the adjunction spectrum  Ej ¢ T80V for g = G/N. In cases like K-theory, cobordism, and

R

cohomotopy, however, we have cohomology theories for all G. We discuss such
[D/N,EIJ " [DqS*E]G; families in section 8, describing when the isomorphisms of the previous paragraph
lead to isomorphisms of the form

here D¢ GJUN and E € J&UN for a G-universe U. Assuming that D is N-free, we

. . * . w¥ (s
can combine this with the change of universe isomorphism i, associated to the ‘ EJ(D/N) = EG(I*D)
inclusion 1i: UN + U to obtain
and
(o/m,El; = (140,78l G,

J =« wl(s—As

Ex(D/N) = EZ(z™"i,D)
where E#E is defined to be i*s*E € G4U. Thus e#E is the G-spectrum obtained by .

*

regarding the J-spectrum E as a G-spectrum by pullback along € and then for N-free G-spectra D ¢ GAU™.

. s n 5 . . . .
building in the representations of U not in U" by means of ix. Remember here We give a different perspective on the relationship between J-spectra and

that any N-free G-spectrum indexed on U is equivalent to one of the form izD for G-spectra in section 9. There is a naive construction of J-prespectra from

. N .
a uniquely determined N-free G-spectrum D indexed on U". In section T, we prove G-prespectra obtained simply by passing to N-fixed points spacewise. This was
exploited by Caruso and May [24,103] in their study of the analog of the Segal

conjecture for general equivariant cohomology theories and by Araki [4] in his study

that the orbit J-spectrum D/N is equivalent to the fixed point J-spectrum
(Z'Ai*D)N, where A is the adjoint representation of G on the tangent space at
the identity element of N (and thus A =0 if G is finite). The N-fixed point of localizations of equivariant cohomology theories (compare V§6 below). Following
* . .

functor G4U + JXUN is the composite of i and the N-fixed point functor

ideas of Costenoble, we give a reinterpretation of this construction in terms of
GBUN > JBUN and is thus the right adjoint of e#: JAUN » GAU. Our equivalence i

actual fixed point spectra and describe algebraically the resulting passage from
therefore amounts to a complementary isomorphism G-cohomology theories to J-cohomology theories. However, our main concern will be
to demonstrate that the stable homotopy category EJXUN of J-spectra is equivalent
to the full subcategory of the stable homotopy category HGXU of G-spectra whose

objects are those G-spectra D such that HE(D) = 0 unless H contains N.

(5,0/8] 5 = [eE,z7B1,D] .

When D = 1®X for an N-free G-CW complex X and E =3:"Y for a J-CW complex

Y; the last two isomorphisms specialize to give

§1. Change of universe functors

3* ;
(2"X/N,2%¥] 5 = [I¥%,5%¢ Y]g ‘ Let U and U'

be G-universes and let f: U+ U' be a G-linear isometry. We
have observed that there is a change of universe functor
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5. 64Ut — 64U

specified by letting (£¥E')(V) = E'(£V), with structural maps

W-V 1af fW-fV o

VR (£7) = B'(£V)AS =5 E'(£V)aS =B (fW).

* s I3
Tt is vital to our work that f Thas a left adjoint

fy: G4U —=GAU'

even when f fails to be an isomorphism.

Definition 1.1. For D ¢ GfU, define fygD ¢ GPU' as follows. For an indexing
space V' C U', let V= £ XV') CU, sothat £ maps V omto V'N £(U)C V'.

Define
(£4D) (V') = pvas’ '~V

and define the structural map associated to V'« W' to be the following composite,

where W = 1y,

'—-
DVASV'~fVASW'_V' = DVAwa-fYASw W
-1 ' 1
1af "l DVASW—YASW -fW oAl DWASW fW.

For E € G4U, define fyE = Lfyx(LE) ¢ G4U'.

Proposition 1.2. For a G-linear isometry f: U+ U' and for E € GAU and E'e GAU',

there is a natural isomorphism

GAU(E,£7E') = G4U' (£4E,E').

% %
Moreover, for f': U' » U", (f'f)* = £ £ and (F'f)y = fifs.
Proof. For De GFU and D'e GPU', define
%
w: GPU(D,f D') —>GPU' (£4D,D')
i *p 1th the composite
by letting w(k), k: D» £ D', have V'2= component map e comp
' L
pvas? TV EVAL b (ev)as’ T S iy,
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Then ® . is an isomorphism; for k': fxD + D', w-l(x') has VER component map

K'(£V): DV = (f4D)(£V) —=D'(1V).
This gives the adjunction, and the last statement is clear.

We record the basic point-set level and formal properties of the functors

' fy. For the first, compare I.8.5.

Leﬁma 1l.3. The prespectrum level functor £y preserves L-inclusion and ihjection
prespectra. Both it and the spectrum level functor fyx preserve injections, closed

inclusions, and intersections of closed subobjects.
Proposition 1.4, For X e GJ and E € G4U, there is a natural isomorphism
Fe(EAX) 2 (£4E)aX.
For isomorphic indexing spaces VL U and V' € U', there are natural isomorphisms
£(0V2%x) = aTVr®x = AV 5%x.

Therefore fy carries G-CW spectra to G-CW spectra.

Proof. The first and second isomorphisms follow by conjugation from the evident

equalities
* * ¥*
£F(X,E') = F(X,f B') and (£ E')V) = E'(fV),

E'¢G4U'; the last is given by I.4t.2. These isomorphisms and the fact that fy is

a left adjoint imply that fy preserves spheres and commutes with wedges, cofibres,
and colimits.

What really matters about the functors fy is that, up to equivalence, they
are independent of the choice of f. The proof of this fact depends on the theory
of twisted half smash products to be presented in chapter VI, but we shall explain

the basic idea here.

Recall that U is topologized as the colimit of its indexing spaces. Let
3(u,u') denote the function G-space of linear isometries U+ U', with G acting
by conjugation. Thus a G-linear isometry is a G-fixed point of 3(u,u'). We shall

exploit the following result, in which U' must be a G-universe but U could be any

real G-inner product space.
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Lemma 1.5. If there is at least one G-linear isometry f: U+ U', then J(U,U') is

G-contractible.

Proof. Write U' as a sum over various representations V of sequences V,,
—_— i

i> 1, with each Vi a copy of V. Let a: U'+ U' map vy identically onto
Voi
i2Vi respectively, where il and i2 are the canonical injections U' » U' @ U'.

and let B: U' » U' @U' map V,; and Vyy_; identically onto 1;V; and

Thus B is an isomorphism and Ba = i;. Define paths Hy: I » J(ur,u') from the
identity to o and Hy: I »J(U,U@U) from i; to i, by normalizing the
obvious linear paths and define H: I xJ(U,U') »3(U,U') by

Hl(2t) og if 0< tsg 1/2
H(t,g) =
6'1 of(g+f)oH 2(21:—1) if 1/2< t< 1.

Then H is a homotopy from the identity to the constant map at B_l oi_o f, and

all maps in sight are G-maps.

Now suppose given a G-map x: X » 4(U,U'), where X is any (unbased)

G-space. In Chapter VI, we shall construct a twisted half smash product functor
x & (?): G4U — G3U'.

The construction will also be functorial in x, viewed as a space over J(U,U').

The functor yx % (?) will come with a right adjoint twisted function spectrum

functor

Flx,?): GAU' —> GLU,

and this will be contravariantly functorial in x. Appropriate analogs of Lemma 1.3

and Proposition 1.4 will hold.

When X is compact, the definitions are quite straightforward, and the reader
can get a quick idea by reading the first few pages of VI§2 (through 2.7). When X
is a single point with image f, the definitions specialize to give
*
x K E= £f4E  and Flx,E) = £ E,
hence we agree to write

*
x X BE=yxxE and F[x,E) =x E

in general in what follows. The only property of twisted half smash products
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- relevant to the present discussion is the following one, whose easy proof is given

in VI.2.16.
Temma 1.6. ILet X be a subcomplex and G-deformation retract of a finite G-CW
complex Y. Let ¢: Y + #(U,U') be a G-map with restriction y to. X. For G=CW

spectra E € G4U, the inclusion i: X » Y induces a natural G-homotopy equivalence

igx: xxE —> y4E.

C . E
By conjugation, for E' € G&U', i : ¢ E' » X*E‘ is an isomorphism in the stable

category hG4U.

The previous two lemmas allow us to draw the following conclusions about our

change of universe functors.

Theorem 1.7. The functors fy: G4U + GEU' induced by varying G-linear isometries

- f: U+ U' become canonically and coherently naturally equivalent on passage to the

stable categories hG4U and hG4U'. The same conclusion holds for the functors
*
f : GAU' > G4U.

Proof. Given G-linear isometries f,g: U+ U', Lemma 1.5 implies that there is a

G-path h: I +J4(U,U') connecting them. For G-CW spectra E, Lemma 1.6 then
gives natural G-homotopy equivalences

Lo s
£ E —=>h,FE «<—— g E.

If j: I »JI(U,U') is another G-path from f to g, Lemma 1.5 implies that there
is a G-homotopy k: I x I » J(U,U') from h to j through G-paths from f +to
g. By Lemma 1.6 again, inclusions of vertices and faces of 12 give a commutative
diagram of natural G-homotopy equivalences
i i
0% *
f B ——> (), (E) 1 feE.
iO*-[( L l io*
hyE ——  k,E — jE
ll*T i T i T 1

O* *
8B — (gn) . (E) 1 )

Here = is the projection I + {¥}. By a trivial inspection of definitions (see
VI.1.7), (fn)x(E) = I'af,E and the top and bottom horizontal composites ii%io*
are identity maps. Thus the equivalence fyxE = gyE is independent of the choice

of h. Clearly any desired coherence relations as f varies can be proven by the

i )
same method. These conclusions for the functors f follow by conjugation.
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We shall need no further information about change of universe for the study of
smash products, but we shall need the following formal complement to the preceding

proof in the next section.

Corollary 1.8. Let h be a G-path connecting G-linear isometries f,g: U+ U',
Write n and e for the units and counits of the adjunctions determined by ¥,
g, and h. Then the following dilagrams commute, and all maps in them other than
the n and e are equivalences.

*
fi o« « falg
£ £, ———> f hyE

N e o] L

*
E —2—>hhE and E «*—hhE
n* K}
n * 1 € * T1x
€ Lz % ® Byl

g gyE ——>g h,E gyg B e g.h E

If f is an isomorphism, then n and e for f are isomorphisms, hence n and

¢ for g and h are (compatible) equivalences.
The last sentence will have particularly useful consequences.

§2. Families and change of universe isomorphisms

Let i: U' + U be an inclusion of non-isomorphic G-universes. Thus more

representations occur in U than in U'. We seek conditions which guarantee that
ig: [B,Flp— [i4E,14F]g

is nevertheless an isomorphism. The results are best expressed in terms of

families.

Definitions 2.1. (i) A family F in G is a set of subgroups which is closed

under conjugation and passage to subgroups.

(ii) An unbased G-space is an J-space if the isotropy group of each of its points

is in 4; a based G-space is an F-space if the isotropy group of each of its points

other than the basepoint is in J .

(iii) A G-CW spectrum is an F-CW spectrum if the domains of its attaching maps

are all of the form Sﬁ with Hed .
(iv) A map of based or unbased G-spaces or of G-spectra is said to be a (weak)

J-equivalence if it is a (weak) H-equivalence for all H € J.

Proof. (i) If there is an H-linear isometry U » U!
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We say that J-objects are " g -isotropic". (The term " F-free" occurs in the
literature.) Of course, if X is an J-space and a G-CW complex, then it is an
%-CW complex; that is, the domsins of its attaching maps are of the form
G/H x 8% with He¢ F. Unless the indexing universe is G-trivial, the component
spaces of F-CW spectra need not be J -spaces, and we have no useful definition

of 5-§pectra in the absence of a given cell structure.

‘ There is an J -Whitehead theorem, its proof being exactly the same induction
starting from cells as the proof of the usual Whitehead theorem (see I.5.10). It

reads- as follows on the spectrum level.
Theorem 2.2. If e: E+ F is a weak J -equivalence of G-spectra, then
ex: [D,Elg » [D,Fl; 4is an isomorphism for every g-CW spectrum D. If E and

F are themselves F-CW spectra, then e is a G-homotopy equivalence.

Examples of families are legion. We introduce notations for those of interest
to us here.

Definitions 2.3.. (i) For G-universes U and U', let

€(u,u') ¢ z(u,ur)

denote the families consisting respectively of those H such that U is
H-isomorphic to U' and of those H such that there exists an H-linear isometry
U=+ U'.

(i) For a normal subgroup N of G, let J(N) denote the family of subgroups
H of G such that HA N =e and let F[N] denote the family of subgroups H
which do not contain Nj; J(N) ¢ F[N] unless N =e.

There are several equalities relating these families.

Lemma 2.4. (i) If U' 4is a sub G-universe of U, +then

€(u,u) = z(u,ur).
(ii) If U is a complete G-universe and N is a normal subgroup of G, then

c(u,uM = (v, 0% = 3(w).

all the H-irreducible representations appearing in U. Since the converse clearly

holds, U and U' are H-isomorphic.

, then U' contains copies of
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(ii) If f: U » U is an H-linear isometry and ge Hn N, then f(gv) = £(v) for
all ve U. Since G acts effectively on U and f is an injection, g = e and
thus H e 3(N). Conversely, if H € 3(N), then H maps isomorphically onto a
subgroup of G/N. Since U is G-complete, UN is G/N-complete and thus both U

and N are H-complete and therefore H-isomorphic.

The interest in J(N) is that an J(N)-space is precisely the same thing as an
N-free G-space. By analogy, we say that an J (N)-CW spectrum is an N-free G-CW
spectrum. We need one more definition before we can state our basic change of

universe theorem. -

Definition 2.5. Let i: U' » U be an inclusion of G-universes. A
U'-representation of a spectrum E ¢ G8U is a spectrum E' e GIU' together with an
equivalence ixE' + E. For example, by Proposition 1.4, suspension spectra in

G3U are represented by the corresponding suspension spectra in G4U', and

similarly for shift desuspensions by representations in U'.

Theorem 2.6. Let i: U' » U be an inclusion of G-universes and let 3 = F(U,U').

(1) If E' ¢ G8U' is an g-CW spectrum and F' e G§U' is any G-spectrum, then
ig: [B',F'lg — [ixE',ixF']g

is an isomorphism.
(ii) If B € GU is an 3 -CW spectrum, then E admits a U'-representation by
an 3 -CW spectrum E' ¢ G3U'. Moreover, E' is unique up to equivalence and can

be chosen to have cells in canonical bijective correspondence with the cells of E.
Proof. (i) The transformation iy is the composite

Nx *
[E',F'], — [E',1 i,F']

G 2 [1,E 1, e

G
By Corollary 1.8 (and (i) of Lemma 2.4), n: F' » i*i*F' is a weak

J-equivalence, hence nx is an isomorphism by the # -Whitehead theorem.

(ii) We construct E' and an equivalence ixE' + E by induction up a sequential
filtration of E, starting with E§ = *. Assume that E; and an equivalence

i*Eﬁ = En have been constructed. Let En+l be the cofibre of k: K » En, where

K 1is a wedge of spheres Sﬁ ¢ GAU with Hed . Let J be the corresponding wedge
of spheres S§ ¢ GAU' and note that ixJ = K by Proposition 1.h. Let j: J =+ E}
be the map, unique up to homotopy, such that ix(3) corresponds to k and let

Eﬁ+1 be its cofibre. There results an equivalence i*Eﬂ+l = E ;y, and we obtain

E' by passage to colimits. The uniqueness of E' is implied by (i),

65
Restricted to spaces, part (i) can be interpreted as follows.

Corollary 2.7. If X is an 4-CW complex and Y is any G-space, then
[ZwX,ZwY]G is the same when computed in the universe U' as when computed in the
universe U.

Qur main interest is in the following specialization.

Theorem 2.8. Let N be a normal subgroup of G, let U be a complete G-universe,

. and let 1i: UN + U be the inclusion.

(i) If E'e GAU' is an N-free G-CW spectrum and F' ¢ GAUN‘ is any
G-spectrum, then

ix: [E',F'g—> [14E",i4F' ],

is an isomorphism.

(i1) If E € G4U is an N-free G-CW spectrum, then E admits a UN;represen—
tation by an N-free G-CW spectrum E'. Moreover, E' is unique up to equivalence
and can be chosen to have cells in canonical bijective correspondence with the cells
of E.

(iii) If E € GAU is a finite N-free G-CW spectrum, then E is equivalent to
A%5"X  (and thus to 1~%5®X) for some finite N-free G-CW complex X and some
G/N-representation Z.

Proof. In view of Lemma 2.4(ii), parts (i) and (ii) are immediate. For (iii), we
may apply (ii) to represent E as igE' for a finite N-free G-CW spectrum

E' € GXUN; By I.8.16 and its proof, E' has the specified form, and the conclusion
for E follows from Proposition 1.k,

Corollary 2.9. If X is an N-free G-CW complex and Y is any G-space, then
[2%%,2%Y] is the same when computed in the universe UN> as when computed in the
G

universe U.

When G is a finite group and X and Y are finite complexes, the corollary
is due to Adams [3,5.5].

In sum, these results assert that N-free G-CW spectra live in the N-trivial
G-universe UN; We now have all the information about change of universe needed for
our study of change of groups. However, for our study of twisted half smash
products and to place our results in proper perspective, we go on to relate the
observations above to the universal 4 -spaces introduced by Palais [118]. (Later
authors call these classifying spaces; we prefer to follow Palais in reserving the
term classifying space for the resulting orbit spaces.)
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Definition 2.10. An J -space E 1is said to be universal if, for any (unbased)

4 -CW complex X, there is a unique homotopy class of G-maps X+ EF . Ve

require EJF to have the homotopy type of a G-CW complex, and this ensures that
E4 is unique up to equivalence. An alternative characterization is that (EiﬁH be

empty if H ( 4 and nonempty and contractible if HE€ 3.

For éxample, EG is universal for the trivial family J = {e}. As explained
by tom Dieck [37], iterated joins of orbits can be used to construct EF for
general families 4 , and an attractive conceptual construction has been given by
Flmendorf [52]. For the families of interest here, we already have universal

F -spaces on hand.

Lemma 2.11. J (U,U') is universal for the family F(U,U').

Proof. By Lemma 1.5, J(u,u)!  is contractible if it is nonempty, and A(U,U') has
the homotopy type of a G-CW complex by Waner [1k0,4.9] and VI.2.19 below (z,
there being G-paracompact, completely regular, and GELC) .

This fact will imply that the twisted half smash product functors
x ®x (?): GAU » G4U'
canonically equivalent upon passage to stable categories, where they will be
denoted X x (?).
with the case X = {¥}.

determined by varying G-maps x: X + ﬂ(U,U') become

Of course, this is a generalization of Theorem 1.7, which deals

Smash products with spaces Es’ give functorial models for the U'-represen-
tations of Theorem 2.6, as we proceed to explain. Clearly the Cartesian product of
an unbased J-space and an arbitrary G-space is an unbased F -space and the smash
product of a based J-space and an arbitrary based G-space is a based ¥ -space. Using
I.5.5, we see that the smash product of an #-CW complex and a G-CW spectrum or
of a G-CW complex and an J-CW spectrum has the homotopy type of an Z-CW

spectrum. More generally, using Theorem 3.8 below, the smash product of an Z-CW

spectrum and a G-CW spectrum has the homotopy type of an F-CW spectrum.

Lemma 2.12. Let m: 3" » SO be the natural projection. For any G-CW spectrum

F, E3AF has the homotopy type of an -CW spectrum and
3

nal: EFtAF —»50\F = F

is a weak j-equivalence. If F is an $-CW spectrum, then wal is a G-homotopy

equivalence.
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Proof. The first statement holds since w is an H-homotopy equivalence for H € J

and the second statement follows by the § -Whitehead theorem.

Of course, the evident space level analog also holds.

Now recall the discussion of localizations of categories from I§5. The
functor EZ*A(2) can be viewed as the localization at the collection &F of weak
J-equivalences (of based G-spaces or of G-spectra). To make this precise, let 4J
and #4U denote the categories of G-spaces of the weak homotopy type of Z-CW
complexes (with basepoint) and of G-spectra of the weak homotopy type of #-CW
spectra. These have homotopy categories (prefix h) and localizations at their

weak equivalences (prefix h); here weak equivalences coincide with weak

J-equivalences.

Proposition 2.13. The functors E9+A(?) induce equivalences

(€9 Nned) —>h3S and  (E9)"L(hG4U) —»hF4U.

Proof. Via CW-approximation, this is an immediate consequence of Lemma 2.12 and
the J~Whitehead theorem.

These observations shed further light on Theorem 2.6.

Proposition 2.1k. Let i: U' + U be an inclusion of G-universes and let

3=4(U,U'"). Then iy induces an equivalence
(€3)~N(rosu') —(84)"L(heav).

If F € GAU is an J-CW spectrum, then E5+Ai*F is a U'-representation of F.

Proof. The first statement follows immediately from Theorem 2.6. For the second
. - Y 'y 3 *
statement (in which CW-approximation of i F is of course understood), Corollary

'y . . .* s .
1.8 implies that e: iyi F + F 1is an J-equivalence and the conclusion follows from
Lemma 2.12 and the commutative diagram

i (wal)
. + ¥ * *
ig(BFALF) —— i1 F —5 T

IR Il
lac 1

+ *
Ef ai i F —=C sgg'ar T L5,
The problem with this last result is that, as a composite of a left and a right
s ' + ¥ c s .
adjoint, the functor EJ ai F of F is impossible to analyze calculationally. In
a very real sense, the essential point of the theory of twisted half smash products

in Chapter VI is the construction of a functor X x F which is an analyzable left
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- .
adjoint and yet is equivalent to the composite functor X+Ai F, where X 1is any

3 -CW complex.

§3. Smash products and function spectra

Throughout this section, let Q. and X' be indexing sets in G-universes U
and U' and let

A®AL' = {(VOV'|Ved and V'€ UL}

be the resulting indexing set in the G-universe U ®U'. We shall first define and
discuss "external" smash products and function spectra and then use changes of
universe to obtain "internal" functors when U =U' and & =@&'. The external
functors have good properties before passage to the stable category and are central
to the theory of extended powers. The internal functors on the stable category are

central to all of stable homotopy and cohomology theory.
Definition 3.1. For D ¢ GP& and D' ¢ GPRW , define .
DAD' ¢ GP (- ® ')
by (DaD')(V@® V') = DVAD'V' with structural maps
= 1 ot ~ - 1yt 1
IR =V ) pu ey 2 5y TV pryr 2890
For E ¢ GAA and E' e G{®, define
EAE' = L(XEALE') ¢ GA (A DO Q).
Inspection and use of I.8.5 give the following result.
Proposition 3.2. The functor DAD' preserves injection and I-inclusion prespectra
(but not inclusion prespectra or spectra). Both the prespectrum and spectrum level
functors preserve injections, closed inclusions, and intersections of closed
subobjects. If E and E' are closed subspectra of F and F', then

EAE' = (EAF') N (FaE").

Recall the discussion of G-spaces of nonequivariant morphisms of G-prespectra
given above I.3.3.
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Definitions 3.3. For D" e GAa®AQ') and Ve, define
D"[V] « G

by D"[V](V') = D"(V@® V') with structural maps induced by those of D". Other

structural maps of D" give a map of prespectra

D" [Vl — QW"‘VD" [W]

'

for VC W, and this map is an isomorphism if D" 1is a spectrum. For
D' € GPA', define

F(D',D") e GO
by F(D',D")(V) =®a'(D',D"[V]) with structural maps
®ar(p',0"[V]) —=Fo (D' ,2¥ VD" [W]) = oV e (D', D"([W]),

where the (V')-@ component of the last homeomorphism is induced by the double
adjunction homeomorphism

FD'V' " 'D"(W @ V")) = Q" VF(D'V!,D'"(W @ V')).
Clearly F(D',D") is a G-spectrum if D" is a G-spectrum.
We have the following analogs of the adjunctions in T.3.3.
Proposition 3.4. There are natural homeomorphisms
cP(A® &' )(DaD' ,D") ¥ GPA(D,F(D',D"))
for D e GPR, D' ¢ GPW, and D"e¢ GA(A®Q') and
G4 (R ® a')(EAE',E") = G4&(E,F(E',E"))
for E e GI&, E' ¢ G4a', and E" ¢ Gé(a ® a').
Of course, there is a symmetric definition of F(E,E") € GSX' for E € GAO

and E" ¢ GA(A ® ®') and a corresponding adjunction. The functor EAE' preserves

colimits in both variables while F(E',E") preserves limits in E" and converts

colimits in E' ktAo limits. The following results are obvious by inspection of the
prespectrum level definitions.
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Proposition 3.5. The functors EaE' and F(E',E") are independent of the choices
of indexing sets and G-universes in the sense that they commute up to coherent
natural isomorphism with the isomorphisms of categories of G-spectra of I.2.4 and
I.2.5.

Of course, use of ¢ and ¢ also transports our constructions to indexing
sets not of the form A ® Q' in UG U'.

Proposition 3.6. et V€@ and V'e X'. For based G-spaces Y and Y', there

is a natural isomorphism

AVERYanY 1y = AV 1P(vayt).

1113

For E ¢ GAQ and E'e GAQ', there are natural isomorphisms

(EAY) AE' = (EAE')AY = Ea(E'AY).

This implies that smash products of equivariant cells behave appropriately.

P q . .
Lemma 3.7. For a p-cell ey e G4& and g-cell ey € gfa', there is a canonical
isomorphism of pairs

q-1

P q -1 q p+g-1
(eHAeJ,eﬁASJ Usfl AeJ) = (Ltae

.
v q,L+AS )

in Gd(A®QR'), where L = G/H x G/J.

If H=G or J =G, the right side is an equivariant cell and its
boundary. If G is finite, then G/H x G/J is a disjoint union of orbits and the
right side is a wedge of equivariant cells and their boundaries, although this
description depends on double coset choices and is thus not canonical. For general
compact Lie groups G, the right side is at least equivalent to a G-CW spectrum
and a subcomplex (by I.1.2 and I.5.5). These observations and the commutation of
smash products with pushouts and sequential colimits lead to the following result.
Say that a G-CW spectrum is G-trivial if no spheres S% with H # G appear as
domains of its attaching maps.

Theorem 3.8. Let E €GA& and E'e GIA' be G-CW spectra. Then EAE' may be

given the sequential filtration

' = 1
(EAE') | p&g:n EpAE}, n > 0,

71
and the skeletal filtration

(a2 = U mPa(e")?, 0 ¢ 2z,
pte=n
both being functorial with respect to bicellular maps of their variables. If E
or E' is G-trivial or if G is finite, then EAE' is a G-CW spectrum with

respeét to these filtrations. In general, EAE' has the homotopy type of a G-CW

“spectrum.

Clearly EAE' opreserves homotopies in both variables and therefore ﬁreserves

G-CW homotopy types. By I.5.13, this implies the following result.

Corollary 3.9. Let E' have the homotopy type of a G-CW spectrum. Then the
functor F(E',E") preserves weak equivalences in the variable E", and EAE!

and F(E',E") induce an adjoint pair of functors relating the stable categories
hGA& and hGEA @QA').

Here we must apply CW-approximation to E and E' to transport EAE' and

F(E',E") +to functors on stable categories.

Remarks 3.10. The restriction to a single group G in sight is the simplest way to

set up notations, but there is an alternative viewpoint that is sometimes useful.
We might begin with groups G and G' actingon U and U' and thus G x G'
acting on U@ U'. 1In this setting, the result on CW structures becomes more

precise because the obvious identifications
G/H x (G'/H') = (G x G')/(H x H")

imply that smash products preserve spheres and cells. Actually, this setting can be
included in our original one by noting that the G and G' wuniverses U and U'
are both G x G'-universes via the projections. Conversely, with G = G', use of

A: G+ G x G shows that our original setting can be obtained by change of groups
from the setting with two groups in sight.

Returning to our initial context, we observe next that the smash product is
associative and commutative in the appropriate sense. The associativity is
immediately obvious on the prespectrum level and passes to the spectrum level via

L. The commutativity must take account of the transposition isomorphism

t: USU' —=U'@U
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and asserts that tx(EAE') is naturally isomorphic to E'AE in G@ ®A). The

verification is again immediate.

Henceforward, we restrict attention to a single G-universe U and the indexing
sets AP =A@ <o« ®Q in B, It is useful to consider the graded category whose
ot term is ¢da?, with G&QO = @f. The external smash product and function

spectrum functors
G0T x GLA —» GAMT  ana  (GAAM)OP x G — caa”

give this category a closed symmetric monoidal structure. Further discussion of
this point of view will be given in [107], and we turn here to the internalization
process. Observe that, by virtue of our conventions on G-universes, there is at
least one G-linear isometry ! » U for each n and thus each J(Un,U) is

G-contractible by Lemma 1.5.

Definition 3.1l. Choose a G-linear isometry f e J(U ®U,U). Define internal smash

product and function spectrum functors
G40 x G4h —» GAG  and (G80-)°P x G4A — GLR
by EaE' = fx(EAE') and F(E,E') = F(E,£ B') for E,E' ¢ Gd& .

*
Composition of the (fg,f ) adjunction of Proposition 1.2 with the adjunction

of Proposition 3.4 yields an adjunction
GA0(EAE' ,E") = GAME,F(E',E")).

The functors REAE' and F(E',E") behave properly with respect to colimits and
limits. The functor EAE' commutes properly with smash products with spaces and
with the functors A'I® and preserves G-CW homotopy types. After CW-
approximation of the variables E and E', EsE' and F(E',E") pass to an adjoint

pair of endofunctors on the stable category hG 4o .

Before passage to the stable category, the functors EAE' and F(B',E")
depend non-trivially on the choice of f, and EAE' fails to be unital,
commutative, and associative. Thus these internal functors only become interesting
after passage to EGAG, Here they are independent of f by Theorem 1.T, and the
following definition gives unity, commutativity, and associativity isomorphisms.

Recall that (f'f)y = fify for composable G-linear isometries f and f£'.

Definitions 3.12. Let E,E',E" ¢ G4 and Ye GJ.

(i) Define a natural isomorphism
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EAY = EAZ®Y
by passage to EGAa. from the composite
EAY = (£fi)x(EAY) = fy3ig(BaY) = fx(Eaz™Y).

Here 1i: U»> U® U includes U onto the first summand. The first equivalence is

‘given by -Theorem 1.7, and iyz(EAY) = Eax®Y by an easy direct inspection of

definitions on the prespectrum level. When Y = SO, there results a unit
isomorphism E = EaS. -

(ii) Define a natural commutativity isomorphism
Y: EAE' = E'AE
by passage to hG4A from the composite

Tx(EAE') = (££)4(EaE') = futy(EaE') = £,(EWE).

Here t 1is the transposition on U @ U, and the first equivalence is given by

Theorem 1.7.
(iii) Define a natural associativity isomorphism

(EAEI)AE" ~ EA(E'AE")

by passage to hGd4 from the composite

R

2 (F(EAE')AE') = fy3(f @ 1)x(EAE'AE")

n

(£(£ @ 1))4(EaE'AE")

R

(£(1 ® £))x(EaE'AE")

13

f5(1 @ £)4(EAE'AE") = £y (Eafy(EWE")).

The first and last isomorphisms result from a simple comparision of definitions, and
the middle equivalence is given by Theorem 1.7.

These isomorphisms are independent of the choices of paths and commute properly

with the natural isomorphism relating fy to gy for any other G-linear isometry

.12 . ces
g: U » U. Using the contractibility of the ,Q(Un,U), one can prove the

commutativity of the various coherence diagrams relating these isomorphisms and so

obtain the following result. Details may be found in [107), but the ideas are amply
illustrated in the proof of Theorem 1.7.
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Theorem 3.13. The stable category EG&@_ is a closed symmetric monoidal category.

with respect to the internal smash product and function spectrum functors.

This result is exploited systematically for the study of cohomology theories in

[107] and [90] and is the starting point for our discussion of Spanier-Whitehead
duality in the next chapter.

We end with a few remarks about the relationship between smash product and
fixed point functors. The obvious fact that (XAY)G = XGAYG for based G-spaces X
and Y is a calculational commutation relation between left and right adjoints.
There is no reason to expect this relationship to ‘extend to spectra, and in fact it

doesn't.

Remarks 3.14. Let 1i: UG > U be the inclusion. By definition, for E € G4U,

B¢ = (1*8)% ¢ &u%. This functor has = i*s*:IJUG » GAU as left adjoint, where
. assigns trivial G action to a spectrum (or space; we are thinking of e: G » e).
The counit of the adjunction is a natural G-map e#EG + E. This is the spectrum

#
level analog of the obvious inclusion e YG

+ Y for a G-space Y. We have the
following commutation relations. '

(i) Tt is obvious that 9°(E®) = (a”E)® and it follows from I.3.5 that
e¥1®X = 1®"X for a space X. Applying this to X = Y% and passing to adjoints,

we obtain a natural map
* 0.
z: 1°(1%) — (2% Y0)% — (z°1)C.

(Here £™: 3+ 4U% on the left and I™: GJ » G4U in the middle and on the right.)

(ii) Proposition 1.4 implies an isomorphism
%
E#(DAX) 2 (S#D)A(E X)

for D€ &UG. Applying this to D = EG and X = YG and passing to adjoints, we
obtain a natural map

v: EOAYC '—?((e#EG)A(e*YG))G ‘*’(EAY)G-

In contrast to the space level, v is generally not an isomorphism.
(iii) By an easy inspection (see (VI.3.1(ii)), the functor e’ commutes with
external smash products. That is,

.

(i ® i)ge (DaD')

n

AR
ixe Daige D!

N . .00
for D,D' e A€, For a G-linear isometry f: U@ U » U, we have fo(i @ i) = iof”,
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and we deduce that s# commutes with internal smash products. That is

e £3(DaD1) = £4(cfDac?D!).

Applying this to D = o and D' = B¢ for E,E'e G4U and passing to adjoints,
we obtain a natural map

w: fg(EGAE'G)-——>[f*(s#EGAe#E'G)]G"'—*[f*(EAE')]G-

Again, w 1is generally not an isomorphism. (In practice, of course, we omit the

isometries from the notation in this comparison of internal smash products.)

(iv) The maps ¢, v, and w are related by the following commutative diagram,

where the unlabeled isomorphisms are given by Definition 3.12(i).
G G
E“AY v (Eav)C

G It
f,(1az)
2 (8% (r%) s SOz %) —2 s (£, (BAZ™Y)]C

§4. Change of groups functors and isomorphisms

Let o: H+ G be a homomorphism of compact Lie groups. An indexing set (1 in

a G-universe U may also be regarded as an indexing set in U regarded as an

H-universe via a, and there results a forgetful functor

*

a : GAL —s H4O .

Of course, we have analogous forgetful functors a*: GJ + HJ and a*: GPA > HPo »

*
We shall usually omit a from the notation, regarding G-objects as H-objects by
neglect of structure.

We shall construct left and right adjoints to a*. On the space level, such

functors are given by

+ +
G" A,Y and  F (G7,Y)
for Y e HJ. Here fAJ thqwﬁwtwweG?WhL where

(galh),y) ~ (g,hy) for ge G, h ¢eH, and y ¢ Y;

G acts via its left action on itself. The space Fa(G+,Y) is the function space
of left H-maps

G+ Y with left G action induced by the right action of G on
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itgelf. When o is an inclusion, we use the notations
+
G'AgY end Fy(G,Y)

for these constructions. When o is a projection onto a quotient group with

kernel N, we have
G"A YN and Fet,y) =N
In the general case, if o has kernel N and J = H/N, we have
G*A Y 2 GAZI/N)  and  Fu(67,Y) = Fyia, Y.

Thus the definition for general o is logically redundant; however, it will be

quite convenient to have the general notation on hand.

We have already defined orbit and fixed point speetra in I1.3.7, and, for
simplicity, we shall define the general spectrum level c?hange of group functors as

the appropriate composites.

We need some standard space level G-homeomorphisms. For a: H » G and for a

G-space X and H-space Y, define a G-homeomorphism
C: G+Isa (Y/\X)——»(G+Au Y)IaX
by
-1 _ -14)
clg,yax) = (g,ylagx and ¢ ({g,y)ax) = (g,yag8 %

for ge G, y e Y, and xe X. We shall continue to write ¢ for cognate

G-homeomorphisms differing by transpositions, such as
G*A, (XAY) = Xa(G'A, V).
There is an analogous G-homeomorphism
é: F(x,FG(G*,Y))——»FQ(G*,F(X,Y));
it is specified on f: X ~+ Fa(G+,Y) and f': 6"+ F(X,Y) by

S(£)(g)(x) = g lx)(g) and #H(£N)(x)(g) = £'(g)lgx).
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Definitions 4.1. Let H be a subgroup of G and let D € HP, where G, is an
indexing set in a G-universe.

(i) Define G xyD € GOQ by letting
g
(G wyD)(V) = GT A DV

and letting the structural map associated to VC W be the composite

il

-1

(c*A HDV)ASW_V —LaG“L/\H(DVAsW‘V) —5‘—‘—"—5(}*/\HDW.
For E ¢ HAQ, define G K E = L(G quE) ¢ GiQ.
(i1) Define FylG,D) ¢ GP@ by letting

Fyl6,D) (V) = Fy(e™,DV)
and letting the adjoint structural map associated to V C W be the composite
+ F(1,9) + WV 7l w4
F(G7,DV) == F(GT L0 D) =@ Fu(G",DW).
If D is an H-spectrum, then Fy[G,D) is a G-spectrum.

These functors may be viewed as particularly simple examples of twisted half
smash products and twisted function spectra, the maps ;_1 and qS"l encoding
twisting by the action map v: G » J(U,U), v(g)(v) = gv. They should not be
confused with the untwisted smash product and function prespectra G*AD and

F(c*,p) of I§3, which admit no G action. Our choice of notations is intended to
accentuate this distinction.

By inspection on the prespectrum level and use of I.8.5, we have the following

observations, which should be contrasted with those for orbit spectra in I.8.6(iii).

Lemma 4.2. The prespectrum level functor G «HD preserves I-inclusion prespectra
and injection prespectra. Both it and the spectrum level functor G D<HE preserve
injections, closed inclusions, and pullback diagrams one leg of which is a closed

inclusion (such as intersections of closed subobjects) .

We make no further explicit references to prespectra below, and we generally
use the letter D for H-spectra and the letter E for G-spectra. We think of
G gD as the G-spectrum freely generated by D; dually, FylG,D) is "cofree". The
expected adjunctions make this precise.

Proposition 4.3. For H € G, there are natural isomorphisms
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G40.(G &gD,E) = H4a(D,E)
and
H4 @(E,D) = G4 (E,FylG,D)),
where E ¢ GAQL and D e HL@®R, (L being an indexing set in a G-universe.

We use this in conjunction with the following more precise form of the

adjunctions for orbit and fixed point spectra given in I.3.8.

Proposition 4.4t. For a normel subgroup N of G with quotient map e: G+ J,

J = G/N, there are natural isomorphisms

J4A(D/N,E) = G (D, E)

n

and

céa (¢*E,D) = 74 (2,09,

3

where E € JAA and D ¢ GAR, Qbeing an indexing set in a J-universe. If M 1is
a second normal subgroup of G and &: G/M » G/MN is the quotient map, then

(¥E) /M = % (B/(MN/N)) .

The last statement is easily checked by conjugation and is recorded for use in

section T.

As usual, these adjunctions pass to stable categories. (See Lemmas 4.12 and
4.13 below.) There the orbit adjunction combines with the change of universe

results of Theorem 2.6 and Corollary 2.7 to give the following conclusions.
Theorem 4.5. Let J = G/N with quotient map e: G » J. Let U be a complete
G-universe with inclusion i: Vs Uy, If De cduY is an N-free G-spectrum and
E € JxUN, then

[D/N,El; = [i4D,e"Elg,

*
where e#E = ige E. In particular, if X is an N-free G-CW complex and Y is

any J-CW complex, then
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13

[ZmX/Nasz]J [EwX:ZwE*Y]Ga

where the left side is computed in the universe UN and the right side is computed

in the universe U.

When G is a finite group and X and Y are finite complexes, the last
statement is due to Adams |[3,5.3].

o Returning to our main theme, we combine definitions to obtain the desired

general change of groups functors.

Definition 4.6. Let o: H+ G be a homomorphism of compact Lie groups and set

N=Ker(a) and J =H/NCG. Let D ¢ HEQ, where CL is an indexing set in a
G-universe. Define

G xD =G wy(D/N) and F,lc,D) = Fylc,Y).
We have the desired composite adjunctions, and our functors are suitably

compatible with their space level analogs.
Theorem 4.7. For o: H+ G, there are natural isomorphisms
GAQ(G x D,E) = HfQR(D,a"E)
and
H4G(a"E,D) = GLQ(E,F,[6,D)),

vhere E € GAQ, and De HAQL, & being an indexing set in a G-universe. Moreover,

for X € GJ, ¥ €HJ, and Zé& @, there are natural isomorphisms
G x A%5%Y = AZ5®(G* A Y) *n%® “a"
o = Ay and o A"Z2X 2 AT a X.

Proof. Composites of adjoint pairs are adjoint pairs. The last statement follows
by conjugation from the evident equalities

Fol6,02) = (F,16,0))(2) and o*(52) = (a"E)(2).

Stated another way, the adjunctions mean that there are natural H-maps

n: D G & D and e: Fa[G,D) —»D
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such that H-maps f: D+ E and g: E + D uniquely determine G-maps f and g

which make the following diagrams of H-spectra commute.

D————->Gb<D and GD)—————->D

N/ \/

When D=E and f and g are the identity map, we write

£: G x,E—=E and v: E —F, [G,E)

for the resulting "action" and "coaction" G-maps. As on the space level, these maps

admit simple reinterpretations.

Lemma 4.8. For a G-spectrum E, the G-maps ¢ and ¢ characterized by the

commutative diagrams of H-spectra

. 0
L — L E and F(s",E) B

n i l“"l F(n,l)f . Te

G KB —% 5 (G/aH) AR F(c/om)" ,E) —2> F_[6,E)

are isomorphisms, where n: SO > (G/aH)+ is the obvious H-map. Moreover, the

+ 0 .
following diagrams of G-spectra commute, where £: (G/aH)” > 8° 1s the obvious

G-map.

G & E —% s (c/aH)"AE  and  F((G/aH),E) —-—é—'PFa[G,E)

ei | est F(E,I)T Tv

X 0
E SO F(s",E) E

Here one thinks of G as acting from the left on G xaE and diagonally on
(c/oH)YAE. Again, just as on the space level, the isomorphisms ¢ and ¢

generalize.

Lemma 4.9. For a G-spectrum E and H-spectrum D, the G-maps ¢z, $, and «

characterized by the commutative diagrams of H-spectra

DaE F(E,D)

o

(EF [¢,D)) ———a-F [c,F(E,D))

n nal

G & (DAE) —%= (G x DAE
[+ o
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F(D,E)

F(n,l)/ \

F(G x o0 B) ——->~F {¢,F(D,E))

T

are all isomorphisms.

In fact, these isomorphisms are all purely formal consequences of the

adjunctions, via application of the Yoneda lemma. They can also be checked

directly, by passage from spaces to prespectra to spectra. Similarly, we have
transitivity isomorphisms.

Lemma 4.10. For a: H+> G and B: K+ H and for a K-spectrum C, the dotted

arrow G-maps specified by K-commutativity of the diagrams

¢ I H x,C and FB[H,C) —£ = ¢

1 I ! I
G gl —> G K H K C F [6:Fg[H,C)) ——--pTF  [6,C)

%
are isomorphisms. For a G-spectrum E, 8 o E = (ag) (E).

These results imply relations between G-sphere and H-sphere spectra.
Lemma 4.11. For o: H+ G and B: K+ H and for n ¢ 2,

(G/apK)tAs? = @ KoS" = Gk H xos"

m

gS" = G x ((H/8K)AS™),

where we have implicitly used the relations a*Sn = s and 8*Sn = g?,

Since the functor G xa(?) commutes with wedges, cofibres, and colimits, this
has the following immediate consequence.

Lemma 4.12. If D is an H-CW spectrum, then G uaD inherits a canonical

structure as a G-CW spectrum.

*®
The analog for the functor o is weaker.

*
Lemma 4.13. If E is a G-CW spectrum, then o E has the homotopy type of an
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*
H-CW spectrum. If G is finite, then o E is itself an H-CW spectrum.

% *
Proof. Again, we need only see what « does to sphere spectra. Since a

*
commutes with Anzw, it suffices to consider the behavior of o on space level
q
spheres. For K C G, a*SK has the homotopy type of an H-CW complex by T.1le1.
* * 4
If G is finite, o (G/K) is a disjoint union of H-orbits and o SK is a wedge of

a
H~spheres SL for various L.

In the discussion above, we consistently worked in a fixed G-universe regarded
as an H-universe by pullback along a: H +> G. Inspection on the level of right
adjoints and use of conjugation gives the expectéd behavior with respect to change

of universe.

Lemma L.14. Let £: U+ U' be a G-linear isometry between G-universes. Then there

are natural isomorphisms
Fea E = o T4 £5"E = o FE
% -
F,lG,f D')

*
fel(G »an) £ Fa[G,D')

"
n

G kaf*D
for E e G4U, E' € GAU', D ¢ HQU, and D' e HIU'.
We conclude this section with a discussion of the free and cofree G-spectra

GrE=0CGxE and FlG,E) = Fe[G,E)

generated by a nonequivariant spectrum E € Al., where (L is an indexing set in a
G-universe U. We are specializing the theory above to the trivial inclusion

e + ¢ and we have the adjunctions

6AR(c  E,F) =4a(E,F) and A(F,E) = GAR(F,F[G,E))

for E ¢40 and F € GAA. Just as G-spaces can be defined in terms of maps

G'AX » X, so G-spectra can be defined in terms of maps Gix E+ E. We summarize
the properties of these constructions in the following remarks, all of which can

easily be verified by passage from spaces to prespectra to spectra.

Remarks b4.15 (i) The unit and multiplication of G induce natural maps

n: E+»Gx E and u: Gk Gw E> G x E such that (G x (?),p,n) is a monad in the
category Ap. (See e.g. [92,97] for the relevant categorical definitions.)
Moreover, a G-spectrum E ¢ GAQ is precisely the same thing as an algebra over

this monad. That is, a G-structure on E ¢ A0, determines and is determined by a

ST e s

“'yisualized as follows. If g € G

map £E: G E =+ E such that the evident unit and associativity diagrams commute.
gimilarly, a map of G-spectra is the same thing as a map of G x (?)-algebras.

(ii) The dual assertions also hold. There are natural maps e: F[G,E) + E and
v: FIG,E) » F[G,F[G,E)) such that (F[G,?),v,e) is a comonad in AQ and a
G-spectrum is the same thing as an F[G,(?))-coalgebra. Here (n,e) and (p,v) are
conjugate pairs in the sense of I.3.5.

(iii) If G dis finite, then G x (?) and its relation to G actions can be

is regarded as a linear isomorphism U+ U,
then gx: 44 > {Q is defined as in I.2.5 and gghy = (gh)z. Here g =v for an

indexing space V in U, and a trivial comparison of definitions shows éhat

GtXE=\/ gxE.
geG
An action of G on E is specified by maps gg: gxE + E such that £_ = 1 and
— s e
ggog*gh = Egh' The action of g on E comes via maps g*E + E (as compared to

the space level maps X » X) because of the role played by the action of G on the

universe U. Dually

*
F[G,E) = x g E
geG

and the coaction map E + F[G,E) of a G-spectrum admits a similar description in

terms of maps E » g*E.

(iv) If N is a normal subgroup of G with quotient group J and E ¢ i,
vhere (L is a J-indexing set regarded as a G-indexing set, then

Ix E= (G x E)/N ¢ J4A

by Lemma L4.10 applied to the trivial composite e + G + J.
and J = e,

In particular, with N = G

E=(GKE)/Ge AR

vhen (L is an indexing set in a G-trivial universe.

(v) Let K=G x H and let Q. be an indexing set in a K-universe U. Then
Gx (?):4Q + GAR restricts to a functor HA& + K4& , and similarly for H.

Moreover, for E ¢ A&, there are natural isomorphisms of K-spectra

Hx GKE=zKKk EzGx Hi E.

For F e Kga, the G action Gx F+ F is a map of H-spectra and the H

action HX F +» F is a map of G-spectra. The interpretation is that K-spectra are
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precisely the same as G-spectra in the category of H-spectra or H-spectra in the .

category of G-spectra.

In chapter VI, we shall use the last observations to study Zj—spectra in the
category of G-spectra. In particular, we shall construct extended powers of
G-spectra, the full generality presenting no greater difficulty than the case of

nonequivariant spectra.

§5. Space level constructions

For simplicity, we separate out the elementary space level constructions and
lemmas required in the proofs of our main change of groups theorems. Let H be a
(closed) subgroup of G and let L be the tangent H-space at eH ¢ G/H. We
write L = L(H) or L = L(H,G) when necessary for clarity. The following map t

will be the geometric heart of the equivalence
w: Fil6,5l) —= G kD
tTHYY H

constructed in the next section.

Construction 5.1. ILet j: G/H + V be an embedding of G/H in a G-representation

V. The inclusion of the tangent space at eH embeds L as a sub H-representation
of V. Let W be the orthogonal complement of L, so that V=L@®W as an
H-space. The normal bundle of the embedding j is G xHW + G/H, hence we may
extend j to an embedding E: GxgW +V of a normal tube. Collapsing the

complement of its image to the basepoint, we obtain a G-map
b 8V —=G xysW.

We need unit and transitivity properties of t. The inclusion {0} » L induces
e: SO > SL, and we also write e for the induced H-map Sw > SV = SL A Sw. Mote
that e is null H-homotopic if L contains a trivial representation, and this is
so if and only if WH = NH/H is infinite. For an H-space Y, write n: Y » G uHY for
the natural inclusion. The restriction of 5 to W gives rise to an H-map

s¥ > 8V which is H-homotopic to e.

Lemma 5.2. The following dlagram is H-homotopy commutative.

‘ sV
. . \
V_t W
qs

S ——xG K
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For the transitivity relation, let KC HC G and fix an identification of
K~spaces )

L(K) = L(X,H) @ L(H),

vhere L(K) and L(H) are taken with ambient group G.

'Construction 5.3. Let i: H/K + V' be an H-embedding of H/K in a

G-representation V' and write V' = L(K,H) @ W' as a K-space. Let E: HoxpW' » ¥
be an embedding of a normal H-tube. Let J and 3 be as in Constructioﬁ 5.1,
Define a G-embedding

k: G/K = G xy(H/K)—>V' @ V
by
k(g,hK) = (gi(nk),j(eH)).
Then define an embedding of a normal G-tube
K: G (W ® W) = G wy(H x (W' @ W))—> V' @V
by
K(g,h, (v W) = (gi(n,w'),](g,mw).

With these notations, Construction 5.1 gives three maps t related by a
transitivity diagram.

Lemma 5.4h. The following diagram commutes.

V! '
sV'a SV - SV‘@V __‘t_)___>'G “KSW W G “H[H MK(SW;\SW)]

1At lxg—l

1 -1 ] ]
8"h (6 k") Eg w(sV'agM) Beleal) g g (287 ) a5Y)

The following map u will be the geometric heart of the equivalence

v: G xpd—=Fyle,z7D)
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inverse to w constructed in the next section.

-1
Construction 5.5. Let H x H act on G by (hl’hQ)g = hlgh2 and act on
Lx H by (hl,he)(x,h) = (hlx,hlhhal). We think of the first and second factors

H as acting from the left and right, respectively. Choose an embedding f: L > G

of L as a slice at e such that
£(n) = he()h~r  and  £(-2) = £(0)7T

(say by use of the exponential map). Via f£(A,h) = f(A)h, £ extends to an

(HxH)-embedding ;: L x H+ G with image an open neighborhood of e. Collapsing
i s gt sl Aagt. 16 oH

its complement to the basepoint, we obtain an (HxH)-map u: G » .

has finite index in G, u: ¢t » ut maps all points of G - H to the disjoint

basepoint. For any H-space Y, we obtain an induced left H-map
L o, ot = sbay
u: G xyg¥ —>(S”AH) AgY = §7A Y.
W

We are interested particularly in the case Y = 8", where

ui G ws"—mslash = ',

Again, we need unit and transitivity properties of u.

Lemma 5.6. The following diagram commutes for an H-space Y.

/ N\

G x Y 2 S AY

Lemma 5.7. The following diagram is K-homotopy commutative for a K-space Z.

G w (H x 2) —u gL, (H w,2)
lau
R |
LK) 5, 2 gL(H) A gLUKGH) |

G xKZ —LE g

Proof. Given a K-slice f': L(K,H) » H and an H-slice f: L(H) » G, let f; be
the K-slice specified by the composite

. n
L(K) ¥ L(H) x L(K,H) S5 Eog x & G,

[
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_ where m is the product on G. (The fact that f;(-r) # fl(x)'l is immaterial.)

Then f; is K-isotopic rel {0} to the slice used to construct the bottom map u

and, if we use £ instead, the diagram commutes by a trivial verification.

The following three lemmas will be used in the next section to construct the
spectrum level map ¢ from the space level map u and to prove that the
composites Yo and w) are homotopic to the respective identity maps.

Lemma 5.8. For a G-space X and H-space Y, the following diagram is commutative

. if H has finite index in G and is H-homotopy commutative in general.

G IXH(XAY) —5 sy a(G KHY)

u 1aa

SPAaxat =2 xastay

Proof. Both u and (lau)g map all points with G coordinate not in the
neighborhood f{L x H) to the basepoint. For A e L, we have

(lAu)E(f(A,h),XAy) = f(A)hxarahy
and

u(;(x,h),XAy) = Aphxahy.

The H-contractibility of L implies that f: L + G is H-homotopic to the constant
map at e, and the conclusion follows.

Lemma 5.9. The following composite is H-homotopic to the identity.

s % ¢ kst - o5V,

Proof. The H-embedding f: L x H+ G of Construction 5.5 and the G-embedding

Ji G xgW » V of Construction 5.1 induce an embedding

k: V=LxW= (L x H) TR G N

The composite ut . is k™! on k(V) and collapses the complement of k(V) +to the
basepoint. Clearly k is H-isotopic to the identity, and we apply the Pontryagin-
Thom construction to an isotopy to obtain the desired homotopy .
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Temms. 5.10. Tor an H-space Y, the following diagram is H-homotopy commutative._}

\i -1
V, on ¥ . V 14t W W
2 EDs (G ¥} = (G g T) AST (0 Y] AL wS) Smg wl' (G wg¥)
Zvn 1 & Ewu

V) 1 & {lagal}

2 (0 bgt) i G o (XA ¢ my(tas’) T q s B (ST AT)

At the bottom, &' sL & and o: 8% > 8L maps A to -A

Proof. The composite around the right maps all points with V coordinate not in
g(f(L) x W} 4o the basepoint. It maps the point y;.j(f(h)aw} to

(£{2),y)af{A){a,w). Agein, the H-contractibility of L implies that an Huhomotopic
map is obtained if f(x) is replaced by the identity element of G. Thus the

composite around the right is H-homotopie to naut and the concliusion follows from .

the previous lemma. *

The following observation reinterprets the *sign" ¢ appearing in the previous'f

result.

Lemma 5.11. The map oAl: SL SL > SL SL is H-homotopic to the transposition map.

% 1-%

Proof. Multiplication by the block matrices ( ) for t¢ I gives the

1-% 1
homotopy.

§6. A generalizatlon of Wirthmiller's isomorphism

Fix & G-universe U inio which G/H (and any other orbits used)} embeds. ALl -

spectra are to bhe indexed on U. Recall the notations of Construction 5.1 and

take V € U there. Noite that our specification ¥ = S%NSW forees sV = "%\S“L.

Transposition of Sw and 8°F gives a natural H-lsomorphism
VD = pasVas" = Das¥asIagW = DasT = D,
Definition 6.1. For & G-spectrum E, define % to be the composite G-map
E=ilEas 20 ZEA{Gu}IS}—;——-*GKHEE e ¥ 6w E
For an H-spectrum D, define « to be the composite G-map

L lNEL
F[GED)—”—)-GMHE F[GED)—““—““"”‘“‘“‘“’“’-GNB.
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The purpose of this sectlon is to prove the following result.

Theorem 6.2. Yor H-spectrs D, the map w: FH[G,ELD} + G xyD is a natural
equivalence of G-spectra.

: gorellary 6.3. There are G-equivalences FlG/H",8) = G RHS”L and

IG/H = Fyle,s) = FIG wys,8),

}.Prodf. Take D = 8L and use the isomorphism ¢ of lemma 4.8 for the Pirst
' equivalence. Take D = 2 for the second. The last is the case D= SV and F =

of the ilsomorphism &k of Lemma 4.9, with F(S”L,S) = 8-,

Remark 6.4. As will be discussed in V39, a Mackey functor isg an additive contra-
variant functor from OG to the category of fbelian groups, where &G is the full
subcategory of orbit spectra in ﬂGS. This notion is the starting point for the
construction of ordinary RO{G)-graded cohomology theorles; see [88,90]. When G is
finite, @G is self dual. In the case of general compact Lie groups G, the
corollary suggests that one should study not ©G but the self dual full subeategory
of ﬂ35 containing both the orbit gpeetra and their dusls.

The theorem i1s most useful in its represented form.
Corollary 6.5. For G-spectrs X and H-spectra D,
uxt (X, 2501y = (X, FylG, i"D) g — (X,6 wPig
is a natural isomorphism.

Replacing D by YaE for a G-spectrum E and H-gspeetrum 7Y, using the
isomorphism ¢ to replace G wy{YaE) by (G wy¥)aE, and letting X run through
the G-sphere speetra, we obiain the following homologleal consequence.

Corollary 6.6. For G-spectrs E and H-spectra Y,

Bl = 56 ogn).

Here E§ denotes the RO(G;U)-graded homology theory on H-spectra obtained by
regarding E as an H-spectrum. Wirthmiller's original isomorphism is cbtained by

specializing to the case of suspension H-speetra Y.

We need some observations about the cylinder construction in order to define
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the inverse to w. Consider the categorical functor L of I.2.2 and the cylinder
functor Z = IK of I.6.8 from H-prespectra to H-spectra. For H-prespectra D,
I1.6.8 gives a natural map w: KD + D. When D 1is an inclusion H-prespectrum, for
example an H-spectrum, % = Lw is a weak equivalence. When D 1is an H-CW
spectrum, 2D has the homotopy type of an H-CW spectrum by I.8.12 and I.8.1k
and ¥ is an H-homotopy equivalence. By inspection of I.6.8, we find easily that
there are natural isomorphisms which make the following diagrams commute, where Y

is an H-space.

K(G x_D) K{DAY)
H
“l \\\E* G KHD and i DAY

G KD Dxn

When D is an H-spectrum, L(G kyeD) and L(2DAY) give the spectrum level

(Iﬂ))AY mal

functors G xyD and DAY, vwhere & 1is the forgetful functor from spectra to

prespectra, and the diagrams imply the following conclusions.

Lemma 6.7. Let D be an H-CW spectrum and Y be an- H-CW complex.
(1) 7: 2(G kD) » G wgD is an equivalence of G-spectra.

(ii) F: 2(DaY) » DAY is an equivalence of H-spectra.

Definition 6.8. ILet D be an H-prespectrum indexed on U. For an indexing G-

space W, Construction 5.5 gives an H-map
. - L J—
u: (G xpD)(W) = G wyDW ~—» 5~ DW = I DW.

If H has finite index in G, then Lemma 5.8 implies that the maps u specify a
map of H-prespectra G xyD » ELD (and the details to follow are unnecessary). In
general, Lemma 5.8 implies that the maps u specify a w-map, in the sense of
I.6.2. Moreover, the homotopies are natural, so that u: G kgD =+ zIp specifies a
preternatural transformation of functors on H-prespectra. Now let D be an
H-spectrum. By I.7.8, we obtain a diagram of actual natural transformations of

H~-spectra
G D <—— 7(G w,;4D) —2 7 (5Pe) —Ts gD,

By Lemma 6.7, this diagram specifies a well-defined natural map u: G wyD ELD in
the stable category of H-spectra. Let

i Gxgd —=Fyle,zlp)

o1

bé the G-map such that ey =y as an H-map.

In the two most important special cases, yu can be written directly in terms
of the space level maps u.

Lemma 6.9.

Note that the bottom isomorphism involves transposition of 8

Lemma 6.10.

These

diagrams.

Lemma 6.11.

commutes.

We ins

For H-spaces Y, +the following diagram of H-spectra commutes.

z (G "‘HY) =Gl Y
AT
(st ay) T sMy '

L and Y.

For G-spectra E, the following diagram of H-spectra commutes.

G/E AE =

wy

stag 2

]
(o]
b4
|cal

i}
™~
=

are both easy verifications from the definitions and naturality

Similarly, we have the spectrum level analog of Lemma 5.8.

For H-spectra D and G-spectra E, the following diagram of H-spectra

G w (EAD) —L »EAlG xD)

| im

tP(EAD) ——EAz'D

ert the unit and transitivity properties of w and u implied by Lemmas

5.2, 5.4, 5.6, 5.7 and diagram chasing. Note that e: S0 » S' induces a map
e: S'L > S‘L'\SL = S.

Lemma 6.12.

Lemma 6.13.

The following diagrams of H-spectra commute.

L
z'LFH[G,zLD) I eypTily -

D
lAeJ{ l n and / \1Ae
u L

FH[G,ELD) —_— s D G x.D—4=3"D

H H

Let KC HCG and let C be a K-spectrum.
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(a) The following diagram of G-spectra commutes.

L(H) L{K,H) L(K)

FH[G,z FK[H,Z c)) = FK[G,E c)
F[l,EL(H)w)l l’m
FH[G,EL(H)(H %, C)) —2 ag o C e M, C

(b) The following diagram of K-spectra commutes.

K
L‘(Jlk) ) L(H.Eu '

C == 1

~
G kKC = G xHH x,C
b

H KKC

We begin the proof of Theorem 6.2 with the following reduction.

Lemma 6.14. If w: FK[H,SL(K’H)) > H xS is an H-equivalence for all KCHCG,
then w: FH{G,ZL(H)D) +> G «HD is a G-equivalence for all H-CW spectra D.

Proof. With C =S, the vertical arrows of the diagram of Lemma 6.13 (a) are
assumed to be equivalences. We conclude from the diagram that w is a
G-equivalence when D is H &S or any of its suspensions by G-representations
(since the suspension coordinate shuffles through all of the constructions). Now

consider the homomorphism
: Ix,2ly = )l —>I 1
wg: [X,27Dly = [X,Fylc,27D)lg X,G xyDlg
for a G-spectrum X. By induction over cells from the case zanH/K+, this is an
isomorphism when D is finite. By passage to colimits, it is thus an isomorphism
for any D when X is a finite G=-CW spectrum. Letting X run through the

G-sphere spectra, we conclude that w 1is a (weak) G-equivalence for any D.

Proof of Theorem 6.2. We shall prove more precisely that w and ¢ are inverse

G-equivalences between G xyD and FH[G,ELD). We first show that ¢ is
G-homotopic to the identity map of FH[G,ZLD), and it suffices to show that
eyw = pw is H-homotopic to e. Now w = (1 x 5M:)t and an easy chase of

naturality diagrams shows that
w1 w 1) = eu: G xyz~lryle,ztp) —s zp.

Thus pw = epg. A diagram chase from Lemmas 5.9, 6.9, and 6.11 shows that the

composite
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E—2 g g

I
H E ——=E

is H-homotopic to the identity for any G-spectrum E. The crucial point is that

ut = 1, but sign watchers will see that the transposition of Sw and S’L in the
definition of % is neutralized by the transposition of SL and Sw coming from
our application of Lemma 6.9 to Y = SW.

To show that wy is G-homotopic to the identity map of G KHD, it suffices to
show that ~wyn is H-homotopic to n. DNote first that

wp = (I zle)ty = (1o zle) (1w 57yt = (1 2700t

by the naturality of E: E~G KHZ“LE and the relation u = ey. Note next that the
following commutative diagram re-expresses the Vﬁh- suspension of this composite;
we abbreviate E = G RHD for legibility.

Ve v, L
2'E 221" (6 w ) 2 Uz ), (Vg D)

| c c

V_-L
EpS’ G tzVz'LE 1xEI wge quVD

1At 1x o' 1 x (laoal)

L

W
Ea (G «st) £ sg :tzWE AxEuLg tzVD

Here o': EASW = EASUASTASY 5> Bas~taslash = Eas~las? is the transposition
and 1aoal on DaSY = Dasla s¥ is given by the sign map o(A) = -A. The
bottom right square commutes by Lemma 5.11 and the top right square commutes by
naturality. The left part of the diagram is seen to commute by writing out %,
using naturality diagrams, and checking carefully which suspension coordinates get
permuted. By Lemmas 5.10 and 6.9 and the diagram, we conclude that wyn is
H-homotopic to n when D = £*Y. Thus, for such D, w and ¢ are inverse
G-equivalences. By Lemma 6.14 and the case Y = SO, we conclude that w is a
G-equivalence for any D. Since wy = 1 for any D, it follows that ¢ and w

are inverse G-equivalences for any D.

We conclude this section with a few technical naturality properties of w.
These played a role in our work with McClure [89] comparing various forms of the
Segal conjecture and will be needed in Chapter V. We need a definition, which is in

fact a first instance of basic notions to be studied in detail later.
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Definition 6.15. The transfer associated to the projection G/H +» pt is the

composite

-y v
s =378’ Ity V(e gy T lIxe),

(@ leSV) T 5/E".

The equivariant BEuler characteristic x(G/H) 1is the composite gt: S+ S,

g: ZWG/H+ + 8; it is to be regarded as an element of ng(s).

The name Euler characteristic is justified since a theorem of Hopf (to be given

an equivariant generalization in III§T) implies that the composite

gVt . “HSW ix e “HSV _& g
has nonequivariant degree the classical Euler characteristic X(G/H); compare

Becker and Gottlieb [10,2.4].

The next result shows how w relates to the G action § and G coaction

v of a G-spectrum E.

Lemma 6.16. The following diagram of G-spectra commutes.

FH{G,E) ——Elllsl—a-FH[G,zLE) —® .G x.E

H
Tl 3///

SAE ——E2L L G/HTAE £

/ x(G/H) N

v
E > E

Proof. The bottom part commutes by the definition of X(G/H) and the triangle
commtes by Lemma 4.8. Using ev = 1 and naturality diagrams, we find easily that
the commutativity of the top part reduces to the commutativity of the following
diagram, which can be checked by a careful inspection of definitions.

T L

E > G~MHZ E

SAE —5—3—1—~G/H+AE<-———9—G»<HE

‘On the level of represented functors,

Vg* [X,E]Gﬂ [X’FH[G’E)IG = [XaElH
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is the gvident forgetful homomorphism, and we may reformulate the previous result as
follows.

Corollary 6.17. The following diagram commutes for G-spectra X and E.

e
[X,Ely —F . IX,zLElH 2% [X,6 kBl
(1al), ! i
va|  [GSAEl, ————=[X,G/H AE], g,
Ex
// x(G/H), \
[X,E], >~ [X,E],

Similarly, it is worth recording the represented form of the transitivity
diagram of Lemma 6.13 (a).

Corollary 6.18. The following diagram commutes for G-spectra X and K-spectra C.

w
[x,zL(K)c]K —* - Ixoc ®Clo
(EL(H)w)* Hz
w
[X,EL(H)H «KC}H - x,c wH chlG

Remark 6.19. For H-spectra D, the composite

G kKD ) xHH xKD —3;5—£4>G KHD

is the natural projection of G-spectra. The naturality diagram relating w and
1 x g can be used in conjunction with Corollaries 6.17 and 6.18 to obtain the
following commutative diagram. (Here e refers to the K-map 80 SL(K’H).)
— (1x g)*
[x,6 uKan [x,6 % H w D] — L= BT, [x,0 Dl g
W

Wy

L(H)
[X,ZL(K)D]K (37 'e)® [X’ZL(H)D]K Vi [XSZL(H)D]HX(H/K)* [X,EL(H)D]H
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Remark 6.20. For K-spectra C, the composite
n g
H kKC —>G NHH uKC G wKC
is the natural inclusion of H-spectra, and the unit diagram for H »xyC can be used
in conjunction with the transitivity diagram of Lemma 6.13 (b) and a naturality

diagram to obtain the following commutative diagram of K-spectra. (Here e refers
to the H-map 0, gbH) )

HuKC-——i-»GtxHHmKC—:GwKC

JL(K,H) e LK) o

§7. A generalization of Adams' isomorphism

In parallel with the description just given of the relation between the
functors G x(?) and FylG,?) on H-spectra for HC G, we here discuss the
relation between the functors (?)/N and (23N on G-spectra, where N is a normal
subgroup of G with quotient group J = G/N. This connection is less general in
that it applies only to N-free G-spectra and is more complicated in that it involves
changes of indexing universe. We fix a complete G-universe U and let i: UN + U
be the ineclusion of its N-fixed point subuniverse. We may regard UN as a

J-universe and, as such, it is clearly complete.

The group G acts on N by conjugation, fixing ee N. Thus the tangent
space of N at e is a G-representation. We denote it A, or A(N) or A(N,G)
when necessary for clarity, and call it the adjoint representation of G derived

from N.

For a J-spectrum E indexed on UN, let
s#E = i*s*E, e G—>J.

The functor e#: JAW 5 c8U  is left adjoint to the N-fixed point functor
GAU » J&UN (by Propositions 1.2 and 4.4; compare Remarks 3.14). For an N-free

G-spectrun D indexed on UN, we shall construct a map
T3 e#(D/N)———>Z'Ai*D

of G-spectra indexed on U, and the purpose of this section is to prove the

following result.
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Theorem 7.1. For N-free G-spectra D, the adjoint
F: D/N—= (z~A1,0)¥
of 1 1is a natural equivalence of J-spectra indexed on UN.

Corollary T.2. If D ¢ GAUY is N-free and E ¢ JUY, then

T

¥e: (E,D/W) ; — [E,(z7A1,0) V5 = [eFE,17R1,0],

is a natural isomorphism. In particular, if X 1is an N-free G-CW complex and Y

is any J-CW complex, then
(270, 2%x/N 5 = [5°Y,2725"x]g,

where the left side is computed in the universe UN and the right side is computed
in the universe U.

When G is a finite group and X and Y are finite complexes, the last

statement is due to Adams [3,85], and his work motivated our work in this section.

Remarks 7.3 (i) If N is not Abelian, its conjugation action on itself is non-
trivial. If N is also not finite, then N acts non-trivially on A. In this
case, the desuspension functor ™A i only defined on EGAU, not on EGAUN.

(ii) When A = 0, one might naively hope to replace (igD)Y¥ by DV in Theorem 7.1,
but this fails hopelessly. For example, if G = N is finite and D = 2%et € GXUG,
then D¢ = ¥, whereas the theorem gives that (i*D)G = 8. This fact helps explain
our care in defining N-free G-spectra indexed on non-trivial universes. They are
formed from cells involving only N-free orbits G/H and, as we have just observed,

it does not follow that their N-fixed point spectra are trivial.

The remainder of this section is devoted to the construction of 1 and the
proof of Theorem T.l. In fact, 1 is an example of the transfers to be defined in
chapter IV. We think of the projection igD + ix(D/N) as a kind of stable
bundle. When D is 3®Y" for an unbased N-free G-space Y, this map is the
stabilization of the "equivariant bundle" Y » Y/N, and we begin by explaining the

appfopriate way to think about group actions in this space level situation.

In our approach to the usual stable transfer map, it is essential that a
bundle Y » B with fibre F and structural group I has an associated principal
I-bundle X. We construct the transfer by first constructing a stable pretransfer

-map S » ©°F" in a complete I-universe, next smashing with X+, then using the
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change of universe isomorphism of Theorem 2.8 to pull back to a I-trivial univerée,
and finally passing to orbits over II. The use of change of universe is vital since
we cannot pass to orbits when working in a non-trivial universe. The essential

observations are just that X is I-free and that Y =X xHF and B =X xn*.

For our N-free G-space Y, it would seem that the fibre and structure group
are both N and the bundle is principal. However, there is no obvious way to
give Y xull a G-action making it G-homeomorphic to Y. This illustrates the
problem, to be discussed in detail in IV§1l, of deciding just what one should mean by
an "equivariant bundle". In the present situation, we can resolve the difficulty by
working not with G but with the semidirect product' I = G ch; where c¢: G » Aut{N)

is the conjugation action of G on N. Thus, in T,
(h,m)(g,n) = (hg,g"lmgn) for h,g ¢ G and m,n € N.

We agree to write I for N regarded as the normal subgroup e ch of T, s0
that G = I'/Il. We have both the obvious quotient homomorphism €: T » G specified
vy e(g,n) = g and the twisted quotient homomorphism 6: T - G specified by
8(g,n) = gn. The latter restricts on I to the identity homomorphism of N. Let
e*x denote Y regarded as a I'-space via 6 and note that Y is I-free. We
embed G as the subgroup G x.e of T and observe that both ¢ and 6 restrict
to the identity map G + G. ILet T act on N by

(g,n)m = gnmg™! for g € G and m,n e N.

Then N is I'-homeomorphic to the orbit TI'/G via the map sending n to the coset

of (e,n). Observe that we have the composite G-homeomorphism

(a5
i

(T xg¥)/m = (6%Y x 1/6)/1 = (%Y x m)/u.

(This would also hold for e*Y, but we want the free W-action.) Thus, when

*
thinking of Y » Y/N as an equivariant bundle, we regard the I'-space © Y as the
total space of its associated principal bundle, the T'-space Nz /G as its fibre,

and the subgroup I of T as its structural group.

We must generalize this description of Y as (G*Y x N)/I +o the spectrum
level. For D ¢ G&UN, we have i*e*D ¢ T4U, where U is regarded as a I'-universe
via e: '+ G (and not 6); since NC G acts trivially on u¥, +the r-actions
on UN via € and 6 agree. It is easy to see that i*e*D is I-free when D is
N-free.

Lemma T.4. Let D be an N-free G-spectrum indexed on UN. Then there are natural

isomorphisms

» G-spectrum, because the composite G T —§~’G
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(ig0" D AN") /I

in

igD  and (140 D)/I = ix(D/N)

of G-spectra indexed on U.

Proof. Since N = I'/G, Lemma 4.8 gives that EAN is I'-isomorphic to T KoE
for E ¢ TdU. Since the composite G C T <56 is the identity, Lemma L4.10 gives
that (T RGE)/H =E for E e G4U. Since i*e*D = iyD when regarded as a

; : is the identity, this proves the
first isomorphism. For the second, observe that (i*e*D)/H is isomorphic to

. * *
ix((6'D)/I) and that (6 D)/I is isomorphic to D/N (by Lemma 4.14 and the last
statement of Proposition L.k). ‘

We now understand how to think of iyD » i,(D/N) as a stable bundle.
need a stable T-map t: S » r~*y°n'.

We next
For this, we must work in a complete

F-universe U'. The geometric source of the "dimension-shifting pretransfer" +t
Construction 5.1 applied to the orbit T/G

is

n

N. The tangent bundle there is just

Nx A in this case. To see this, let I' act on A via e: T + G. We obtain a

P-trivialization of the tangent bundle of T'/G by sending an element (n,a) of

Nx A to d{n){a), where d(n) is the differential at e of left translation

by n. Embedding TI'/G in a sufficiently large I'-representation V and taking

W=V -A, sothat W too is a I'-representation, we see that Construction 5.1

gives a T'-map
t: 8V —> 1/G*A VA,

Applying :* and desuspending by V, we obtain the desired map

t: 8 —s Pyt

of I'-spectra indexed on U'.

We must still mix our stable bundle with our stable pretransfer. For this
purpose, we observe that we may take our complete G-universe U +to be (U')H.

Let j: U=+ U' be the resulting inclusion of TI'-universes.

Construction 7.5. Let D %be an N-free G-spectrum indexed on UN and observe

PR, .
that Jxix® D is a lI-free I'-spectrum indexed on U'. By Theorem 2.8, the map
« s ok s o3 ok . -
Iat: Jyisd D 2 jyind DAS —»jxixd DAZ™PI®N' = j.2~A(i40°Dan')

of I-free I'-spectra indexed on U' is represented by a map

~ * *
7: 1x0 D —> 578140 D A NY)
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of I-free I-spectra indexed on U = (U')N, On passage to orbits over 1 and use of
the identifications of Lemma 7.4, there results a "dimension-shifting transfer"
G-map

1 ig(D/N) —= 5721, D.

Here we have used that I * commutes with both jx and passage to orbits over I

since 1 acts trivially on A.

Proof of Theorem 7.l. Since T: D/N » (L7 i*D)N -4s natural in D and since it

suffices to prove that T induces isomorphisms on homotopy groups, it is clear
(from I.5.3) that D may be assumed to be finite. Since all functors in sight
either preserve cofibre sequences or convert them to fibre sequences, it suffices
inductively to assume that D = G/H" A S%, where ne¢ Z and HANN = e. Since
suspensions by trivial representations commute with all functors in sight, it
suffices to take n = 0.

To handle the case D = EmG/H+, we require a more explicit desceription of the
transfer G-map ’

o (£%6/HY) /N — 12/,
Since N is normal in G, HN = {in|h ¢ H and n e¢ N} is a subgroup of G, and it
is clearly a closed subgroup. Since H/MN = e, each element of HN has a unique

expression as a product hn, and of course (G/H)/N = G/HN.

Lemma 7.6. The map t1: 1°G/HN' » r25%6/H' in 1G8U can be identified with the
map

1x b G wpS —= G sy (HN weS™A),

where t: S » HN mHS’A is obtained by applying Construction 5.1 to HN/H.
Proof. The tangent H-space of HN/H at eH is just A regarded as a represen-
tation of H, so the statement makes sense. Define a monomorphism ao: HN + T by
*
al(hn) = (hn,n'l). Clearly 6: I » G induces a HN-isomorphism HN/H » o I/G. By
Lemma 4.8, we have isomorphisms
17°6/H" = I/a(HN)*'A S = T xS

and, since N = /G end rAr°HN/H® = HN wgs A

1207 G/HA £AsONY = r/otHN) Y A sAs r/GT

n

~-A
r ka(HN xS ).
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Under ﬁhese identifications, the map
1at: 170 G/H A 5 —»1®0 G/HY A £7ALN"
in hrdU' can be identified with the map
1 t: T kS —>T « (HN xgs™8),

where t: S » HN KHS'A is the map in EHNJU' obtained by applying Construction 5.1
to the group HN and orbit HN/H (rather than to the group I and orbit TI/G).
Since a(HN)N I = e, U and o U' are equivalent HN-universes. It follows that
jxt = t, where the left map t is that of the statement of the lemma. By Lemma
L.14, application of jx to the map

T =1 t: I 8 —>T x (HN wgs™h)

in EPAU gives the corresponding map 1k t in ﬁPJU'. According to Construction
T+.5, T 4is obtained from % by passage to orbits over 1. GSince the composite
HN ~%+ T ~£5G is just the inclusion of HN in G, Lemma 4.10 gives that

(r qu)/n = G “HNE for E ¢ HNJU. The conclusion follows.

If we view 1T as a transfer in the sense of chapter IV, then the
identification of the lemma becomes an application of Axiom 6 of IV§: to the

homomorphism of pairs o: (HN,e) + (T,I).

It is now an easy matter to prove that T is an equivalence when D = ZmG/H+,
HN N = e, by using the Wirthmiller isomorphism of Theorem 6.2. We may view A as

the tangent H-representation of HN/H at the coset eH, and Definition 6.8 gives
an HN-equivalence

. -A
b: HN xS~ — Fy[HN,8).

If e: FH[HN;S) + 8 is the evaluation H-map, then ey = u: HI\ItxHS"A + S 1is the
stable H-map derived from the map u of Construction 5.5. Lemma 5.9 implies that
ut is the identity H-map S + S (vhere t is as in Lemma 7.6). Thus eyt = 1
and ¢t is the coaction HN-map v: S » Fy[HN,8). Clearly T will be a
J-equivalence if the adjoint of the composite

1l x % -Ay 1X 9§
G kS ——>G NHN(HN S ) >G «HNFH[HN,S)

is a J-equivalence, and this composite is just 1 x v.

Let L be the tangent HN-space of G/HN at the coset eHN and let




102

K = HN/N € J. Then K is a copy of H and, since G/HN = J/K, L is the pullback of the
tangent K-space of J/K at eK along the quotient homomorphism HN + K.

Definition 6.8 gives the G-equivalences ¢ in the following commutative diagram.

G KB Lxv, g K gy [HI )

v
L
N[G,Z FH[HN,S))

IR

L
FlG,s )

L
L, Fl1,27)
FHN[G,S ) SRS

v

The unlabeled isomorphism is given by Lemma 4.10, and the bottom map v is the

G-map characterized by the requirement that ev = g: FHN[G,SL) > SL‘as an H-map.

It suffices to show that the adjoint J-map of vy 1is an equivalence. The

domain of this adjoint is $™J/K¥ since
G S = IG/HN = 1,576/HNT = Fma/Kt
oting that ixSl' = 8 in H{U, we see that its target is
Fyle,8)Y = (i*Fyle, 1488 = Fyle,i7 1,80V Fel7,17148%) .
Here Lemma L4.14 gives the middle isomorphism, and Lemma 4.10 gives the last
isomorphism since the composite H € G + J can be identified with the inclusion

K € J. With these identifications, we find easily that the adjoint of vy is the

composite
*
5k —Ler, 17,8%) -F;LJ;’—T’—LFK[J,i 1,8M),

*
where ¢ is the J-equivalence of Definition 6.8 and 7: SL > i i*SL is the unit of
the (i*,i*)—adjunction. Since HAN=e, UY and U are isomorphic as H (or K)

universes, hence n 1s a K-equivalence by Corollary 1.8. This completes the proof

of Theorem T.l.

§8. Coherent families of equivariant spectra

To begin with, adopt the notations of the previous section. Thus N is a
normal subgroup of G, €e: G + J = G/N is the quotient homomorphism, A is the
adjoint representation of G derived from N, U is a complete G-universe, and

i: UN + U is the inclusion. The functor

5# = i*g*: JJUN——’- GAU
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is 1ef§ adjoint to the N-fixed point functor. Recall that J(N) is the family of
subgroups H of G such that HA N = e and that the N-free G-spectra are those
G~spectra (weakly) equivalent to J(N)-CW spectra. Up to equivalence, any N-free

G-spectrum in GA4U is of the form iyD for some N-free G-spectrum D ¢ G}UN, by
Theorem 2.8,

Theo;em 8.1. Let Ej e J4W  and Eqe G4U and assume given an F(N)-equivalence
-, g+ €"Ey » Eg. Then, for any N-free G-spectrum D¢ GAUN,

mn

* * J G
Ej(D/N) = Eg(ixD) and  Ex(D/N) = Ex(z Ri4D). -

In particular, for any N-free G-space X,

]

Ej(X/N) = Eg(X) and  ER(X/N) = Bz AX),

where the left sides are computed in the J-universe UN and the right sides are
computed in the G-universe U.

Proof. The cohomology statement is immediate from Theorems 2.2 and 4.5. For the
homology statement, Theorem 2.2 implies that

Ing: 4,0 Ac"E)) = (584,00 efE; — (7A1,D) 4 By

is a G-equivalence, and the conclusion follows from Corollary 7.2 (since the

functor e# carries J-spheres to G-spheres by Proposition 1.4 and Lemma 4.14).

Of course, I ™A is abusive notation for :~Az™X. It is interesting that a
spectrum level context is needed even to make sense out of the second isomorphism
when A 1is non-zero.

Example 8.2. Using subseripts to denote the relevant group, we see from Proposition
1.4 and Theorem 4.7 that there is a natural isomorphism s#E?X 2 76X of G-spectra
for J-spaces X. In particular, with X = So, e#SJ z Sg. Thus the theorem relates

dJ-homotopy and cohomotopy to G-homotopy and cohomotopy for any quotient group J
of G.

This example is misleading in that the full strength of the theorem is usually
required: one usually has only an 3(N)-equivalence and not a G-equivalence

# : . . .
between ¢"E; and Eg. There is an illuminating alternative description of what it
means to have such an equivalence.

Lemma 8.3. A G-map &: e#EJ > EG' is an J(N)-equivalence if and only if the
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composite G-map

*
* * * *
€ E; AN EG)N]-1—* 1B,

is an 3(N)-equivalence, where
. N - (% N
r: Ep __’(EG) = (4 EG)

is the J-map adjoint to & and 1 1is the evident inclusion.

Proof. For H e J(N), e: G » J restricts to an isomorphism H + e(H), and uN
and U are isomorphic as H-universes. Unraveling the composite adjunction e#, we
see that & 1is the composite

*
# . ¥ #€ & owoox o, el ow
€'E; = ige By —>i4e [(17B)"] —— 1,1 By —Eg,
*
where the last map is the counit of the (iy,i )-adjunction and is an
3 N)-equivalence by Corollary 1.8. Since Theorem 2.8 (i) implies that a map f in
caul is an 3(N)-equivalence and only if the map 1xf in G4U 1is an

#(N)-equivalence, the conclusion follows.

Example 8.4. For E; e G8U, let E e 4% denote i*EG with G-action ignored. We
think of E as the underlying nonequivariant spectrum of E; and have the
inclusion 1: (EG)G = (i*EG)G > E. The G-spectrum E; 1is said to be split if there
exists a map ¢: E » (EG)G such that 1z = 1: E» E. (If 1z were an equivalence,
not necessarily the identity, we could precompose g with (1@)"1 and so obtain a
new ¢ for which 1z = 1.) By the case N =G of the lemma and theorem (with
3(c) = {e}), we then have

E'(D/6) = EG(ixD) and Ex(D/G) = EG(z~R1,.D)

for a free G-spectrum D ¢ GJUG, where A is the adjoint representation of G. The
first of these isomorphisms generalizes a result of Kosniowski [75]. Both

generalize results in May and McClure [108, Lemmas 12 and 161].

What is so special about the case N =G 1is that e is canonically both a
subgroup and a quotient group of G. In general in Theorem 8.1, we need quite
different spectra EG and EJ. As we shall explain in the next section, there is a
general procedure for constructing a J-spectrum Ej from a given G-spectrum EG’
but ﬁJ so constructed will usually not be related to EG in the manner prescribed
in Theorem 8.1. In fact, this fails for such familiar examples as K-theory and

cobordism. The failure is important since the constructed quotient group theories
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piay a major role in the study of the "completion conjecture" in equivariant
cohomology theory (see [24,103,109]). However, in K-theory and cobordism, we have
preassigned G-spectra for all G, and these are so related as to guarantee the
applicability of Theorem 8.1 to any G and J. In the rest of this section, we

develop a setting in which such coherent families of equivariant spectra can be
studied.

Choose a complete G-universe Uy for each compact Lie group G. Choose an

T . . . *
H~linear isometry Jgi @ UG > UH for each homomorphism a: H + G. We have adjunctions

[34#D'>Dly = [D',35Dly  and  [o«"E,D'ly = [E,F [6,0")]g,
vhere D' ¢ Hfa'Ug, D ¢ HdJy, and E ¢ GfU;. We define
ofE = j 4" ¢ HIUy and oD = F_[6,51D) € ady;
and have the composite adjunction

[a#E,D]H

n

[E,a#D]G.

If B: K+ H is another homomorphism, then (aB)* = B*a* trivially,

2 Y 2 3 s s 2 * *. 'y 3
Jg#dgx 2 Jougx since Jgi, = jaB’ and JaxB = B Jgx by inspection on the
adjoint level. We therefore have natural isomorphisms of functors

B#O.# = (U.B)# and Q#B# = (GB)#.

Clearly l# and l# are identity functors, 1: G+ G. If a: H+ G is an
inclusion, we may take ja to be an isomorphism, so that a#E is essentially
just o'E and auD is essentially just FylG,D). If e: G»J =G/N is a
quotient homomorphism, we may take jE to be the composite of an isomorphism
e*UJ > (UG)NA and the inclusion (UG)NA+ Uge Thus e is essentially the same as
the functor entering into Theorem 8.1 and

ey 1s essentially just the N-fixed point
spectrum functor.

Definition 8.5. ILet M be any subcategory of the category of compact Lie groups

and their homomorphisms. A A~-spectrum consists of a G-spectrum EG € GXUG for
each G ¢/ and an H-map £yt a#EG + By for each homomorphism a: H+ G in |
such that the following conditions hold.

(a) gyt Ey = l#EG + By is the identity map for each G.

(b) The following diagram commutes for o: H+ G and B: K+ H.
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#
B E
B#a#E a

R, L
(aB)#EG — B . g
(¢) If a: H> G is an inclusion, then ¢ is an H-equivalence.

Let ¢, : Eg » a#EH be the adjoint of Eqt Then ¢4 is the identity map and the
following diagram commutes.

E_C_("_B.....__;-(B)
G By By

L. W

g > oy By
The definition requires only appropriate functoriality and behavior on

inclusions. DNothing is assumed about quotient homomorphisms, but we have the

following implication.

Proposition 8.6. ILet e: G > J = G/N be a quotient homomorphism. For H e z(n),

consider the following commutative diagram.

H —25G

o E

K —Emg

Here o is the inclusion, K = e€(H), § is the isomorphism obtained by restriction
of €, and B 1is the inclusion induced by a. If {Eg} is a H-spectrum, where the
displayed diagram and §~1 are in H for each H ¢ #(N), then Eg: e#EJ + By is

an ZF(N)-equivalence.

Proof. We have the following commutative diagram for H € F(m.

G#B#EJ = (BG)#EJ o (sa)#EJ B en#e#EJ
#
8 ES EBS F’sa ¢ ge
£ 3
# $ o #
§ EK —_— EH = EH a— EG

Since’ a and B are inclusions, &y and G#gs are H-equivalences. Since § is

an isomorphism in 8 , 5 is an H-equivalence with inverse

6#66_1: By = 6% (671) By — 67Ey.
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Therefore a#g e is an H-equivalence.

The hypothesis 6"1 ¢ M is essential. We have examples where everthing else

holds and the conclusion fails because § s fails to be an H-equivalence.

Examples 8.7. (i) If R is the category whose objects are the two groups e and
G and whose non-identity morphisms are just e + G, G+ e, and G+ e+ G, then
-al -spectrum is exactly the same thing as a split G-spectrum.

(ii) {SG} is al\—spectrum, where fﬂ is the category of all compact Lie groups and
homomorphisms. The £yt a#SH > SG are the canonical isomorphisms given by

Proposition 1.4t and Theorem 4.7; compare Lemma L.11.

Clearly suitably coherent families of RO(G)-graded cohomology theories on
G-spaces give rise to coherent families of equivariant spectra (modulo the usual
problems with ILim:L terms as we pass from space level to spectrum level data). In
particular, the representing spectra for equivariant K-theory give a H-spectrum.
Again suitably defined equivariant Thom spectra (as in chapter X) give M-spectra.

It would take us too far afield to go into detail here.
Warning 8.8. There are important examples of families of spectra {Eg} which
depend canonically but not functorially on G. In particular, there are several

such families of equivariant Eilenberg-Maclane spectra [88,90].

§9. The construction of (G/N)-spectra from G-spectra

Let N be a normal subgroup of G with quotient group J, €: G+ J, and
let U be a G-universe with N-fixed J-universe UN, i: Ul\I + U; U need not be

complete in this section. We shall calculate I—1JXUN in terms of hG4U.

To establish an appropriate conceptual context, it is useful to begin more
generally with complements to some of the ideas in section 2. Let F be a family
of subgroups of G and let F' = {H IH;{ 3} be its complementary "cofamily".
Define EJ‘ to be the cofibre of the canonical projection w: EsT 5 sO0 and let
1: 895 E? be the inclusion. If He £, then (gHH - s ana (Ei)H = ¥, If
Hed', then (E?-J')H = % and (E?)H = g9,

Say that a map f: X+ Y of G-CW complexes or G-CW spectra is an
F'-equivalence if

1Af: E3AX — EFAY

is a G-equivalence. On the space level, but not on the spectrum level, this just

means that fH is an equivalence for all H € #'. Say that amap f: X » ¥
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between general G-spaces or G-spectra is a weak J'-equivalence if IaI'f 1is a
G-equivalence, where TIf: I'X + I'Y is a G-CW approximation of f. On the space
level, but not on the spectrum level, this just means that 1af 1is a weak
G-equivalence (because here EﬁAI‘X is weakly G-equivalent to E!AX). The point is
that, on the stable category level, the functor EaAX must be interpreted as

‘EJAPX. The careful reader may want to insert CW approximations explicitly in some
of the arguments below, as dictated by the discussion in and above I.5.13. It would
not do simply to assume that all given spectra are CW homotopy types since some of
the functors we will use, such as passage to N-fixed point spectra, need not

preserve CW homotopy types.

Let £4' denote the collection of weak F'-equivalences in. hGJ or hG4U.
The content of Proposition 2.13 is that the localization of hGAU obtained by

adjoining formal inverses to its weak J-equivalences can be calculated as
(&) 1hegu(x,Y) = [EF*aX,EFAY]s.
The cofamily analog reads as follows.

Proposition 9.1. The localization of EGAU at its weak 4'-equivalences can be

calculated as

(&4")~Thogu(x,Y) = (EFaX,EdaYls.

The construction of localizations of categories in terms of "cocompletions" of
objects following I.5.12 can be dualized to a construction of localizations in terms
of "completions" of objects. In that language, the following result asserts that,

with respect to &£F', the objects EFaX are complete and the maps
1al: X = SOAX —» ESaX
are completions. These assertions imply the previous result.

Proposition 9.2, Let X be a G-CW complex or a G-CW spectrum. Then the map
1ALl: X » ;ZAX is an # '-equivalence and the following three statements are
equivalent.
(i) 1Al is a G-equivalence.
(i1) aff*: [Z,XlG > [Y,)(]G is an isomorphism for every weak 3'-équivalence
£f: Y » Z.
(ii1) wf(X) =0 for all He f.

Proof. The first statement holds since 1a1: E3 > E4AEF is a G-equivalence by a
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_ check on fixed point sets. Observe that IEfAX,EhX']G =0 for any X and X'

since EZ only has cells of orbit type G/H with He# and 53’ is H-contractible
for such H. In view of the cofibre sequence

EFAY —> Y AL faay — 5(557AY),

it follows that

(1a1)*: [E$aY,B8aX]—> [Y,E3aX],
is an isomorphism for any Y. It is clear from this that (i) implies (ii). If
He3, then G/H?Ea’ is G-contractible, hence G/H+AY + ¥ is an 3'-equivalence
for any Y. This shows that (ii) implies (iii). Assume (iii). When X is a
G-CW complex, 1al: X » ’E5AX is a G-equivalence by another check on fixed point
sets. When X 1is a G-CW spectrum, we claim that m4(E$*AX) = O for all Hc G,
so that 14l is a G-equivalence. If He #, then gt is H-equivalent to SO
and our claim holds by hypothesis. If He g', let J|H be the family of
subgroups of H in J and observe that Ef regarded as an H-space is a model
for E(#{H). It is thus H-equivalent to an (¥ |H)-CW complex. Since &(X) = 0 for
Ke #|H, (W) = X(W) = 0 for any (F|H)-CW complex W.

We shall need a space level observation that has no direet spectrum level
analog. For a G-space X, let X; denote the G-subspace {x | GyeJ'}ys For

example, if % = {e}, then X; is the singular set of X. If X is a G-CW

complex, then X_:,'. is a subcomplex.

Proposition 9.3. For G-CW complexes X and Y, the inclusions Xg + X and
0 > EF induce bijections

(X,E3aY]lq — [X_,E5AY], 4-—-[X3 .
Proof. The first bijection follows easily from the facts that the cells of X mnot

in Xg_ are of orbit type G/H with He? and that E&H is H-contractible for
such H. The second bijection is obvious from the fact that EsH =80 for He F!'.

With this discussion as preamble, we return to our normal subgroup N with
quotient group J and consider the family J[N] of subgroups of G which do not
contain N. Here, for a G—sgace X, X.;[N] = 1, By Proposition 9.2, for a G-space
or G-spectrum X, 1al: IX » EFINJaIX 1is a G-equivalence (which means that
1l X » E;[N]AX is an isomorphism in nG3U) if and only if ’IT-I*I(X) = 0 unless
H contains N. Let us say that X is concentrated over N when this holds. We
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shall show that, from the point of view of equivariant homotopy theory, G-spaces or
G-spectra concentrated over N are completely equivalent to J-spaces or J-spectra.

We begin on the space level, where the result is trivial.

Proposition 9.L. For J-spaces W and G-spaces X concentrated over N, there is

a natural isomorphism
XN 5 = [E#(Wlaw,x]g.

The unit of this adjunction is the identity W = (E4[N]AW)N and the counit is the

natural weak G-equivalence
EZ[N]AxY — B [N]aX = X
i i i N J- W and W'
induced by the inclusion X" + X. Therefore, for spaces N
(w,w'l; = [EI[N]aW,EF(N]AW' | 5.
We have implicitly regarded J-spaces as G-spaces via ¢ here, and we must use
the change of group and universe functor s# = i*ew: JAUNA+ G4U left adjoint to the

N-fixed point functor to express the spectrum level analog.

Theorem 9.5. For J-spectra E ¢ I8N and G-spectra D € GAU concentrated over

N, there is a natural isomorphism
(2,0 = (E3(Nlae’E,D]G.
> . . . . - N

The unit n: E » (EQ[N}Ae#E)N of this adjunction is an isomorphism in hJ4U~ and
the counit e: EJ[N]AQ#(DN) + D is an isomorphism in hG4U. Therefore, for
J-spectra E and E',

[B,8']; = [ES(Nlac?E,ES(NIacTE |4
Proof. Proposition 9.2 gives the required isomorphism as

(a1)*: (29(WacE,D]q —> [¥E,Dlg = [£,0M];.

: . . N
The unit and counit of this adjunction are determined by the unit E + (e#E) and
counit e (DY) » D of the (e#,(?)N)—adjunction as the composites

N
E — (f2) N AL gy e te) ¥
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-1
#7(N1a e (DY) ——= #3(njap AL p,
Of course, by our adjunction, the composite
#
g3l (O 228 gy niact (EINIac (DV))Y — 5 B3 (N1a F (DY)

is the identity map for each D. We will prove in Proposition 9.10 below that n is
an isomorphism in hi4uN for each E. We will construct an isomorphism (different

. from g) between D and EJ[N]AS#(DN) in Proposition 9.11. By the naturality

of ¢ and the relation e(lae’n) = 1, it will follow that ¢ is an isomorphism
in hGAU for each D.

Combining with Proposition 9.2, we can restate the last assertion as a
sharpened analog of the case ¥ = F[N| of Proposition 2.13.

Corollary 9.6. The functor EJ[N]Ae#(?) induces an equivalence
nisuN s €5 (1) 1ha 4y,

the target being equivalent to the full subcategory of tiU whose objects are the

G-spectra concentrated over N. Under this identification of the target, the
inverse functor is (?7)N.

The rest of the proof of Theorem 9.5 depends on the "spacewise N-fixed point
functor" from G-prespectra to J-prespectra.

Definition 9.7. Let 4, | n >0} be an indexing sequence in the G-universe U and

let By = Ay - A,. Note that {Aﬂ} is an indexing sequence in N, write
D, = DA, for D ¢GPA and E, = E(A)) for E ¢ JPAY. Define a functor
oN: GPA » JeaN by letting (@ND)n = (Dn)N, with structural maps

v BN B GN

N.n_ n,N n N
(Dn) AS T = (DnAS ) ————>(Dn+

1)

Define oN: G4A » J&AN by letting oD = LoVKrD, where KID 1is the G-CW
prespectrum canonically weakly equivalent to D (see I.6.3, 1.6.8, and I.8.12).

We have used indexing sequences here to avoid ambiguities resulting from the
fact that different indexing spaces in U can have the same N-fixed point indexing
space in N, We have usually passed from a functor on prespectra to a functor on
spectra by use of the adjunetion (L,2). In the case of ®N, this would be
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inappropriate since it is not the formal properties but the homotopical propertiés
of &Y that we wish to retain on the spectrum level. Observe that @N carries
G-CW prespectra to J-CW prespectra, on which the functor L: JPAN > JJAN is
given simply by passage to colimits, as above I.2.2, (See I.8.7-I.8.1k.)

The functor @N must not be confused with the actual fixed point functor

GAU + JJUN. After change of indexing sets, the latter is specified as a functor

N
-A
cha » JAAY by letting (DN)n = (ﬂAn nDn)N. The direct prespectrum level

definition of oV

is uninteresting when applied to spectra. (Compare Adams
[3,8§7].) However, there is a simple relationship between % anda (?)Y, and we
shall use this relationship to complete the proof of Theorem 9.5. We index
G-prespectra and spectra on A and J-prespectra and spectra on AN in the rest of
this section. The following result is the spectrum level version of a cohomological

observation of Costenoble.

Theorem 9.8. (i) For G-CW prespectra (or, more generally, f£-inclusion

G-prespectra) D, there is a natural weak equivalence of J-spectra

£: (EF(v]A1D)Y —s10%D.
(ii) For G-CW spectra D, there is a natural weak equivalence of J-spectra

g: (E3[N]aD)¥— oD,
Proof. (i) As observed above I.3.5, we have an isomorphism

EF[N]aLD = L(EF[N]aLD) = L(EF[N]aD).
Since D is a I-inclusion G-prespectrum, so is E3N|aD. Thus L on the right is
given by passage to colimits (as above I.2.2) and the ntl space of (Eg[N]ALD)N
is G-homeomorphic to
N A AN

A - P - N
(colim @ ¢ P(EF[N]aD )" = colim(n & "(EfF(n]aD ))™.
q 4 q ¢

On the other hand, the nEE- space of L@ND is

AN-Ag N AN—Ag . N
colim o ¢ D = colim @ + ™(Eg[n]aD ).
q q
q q
The inclusions § ¢ >s 4 induce a map from the first colimit to the second,

and this map is a weak J-equivalence by application of adjunctions and Proposition
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. 9.3 to the calculation of homotopy groups. As n varies, these maps specify the

desired weak J-equivalence
£: (E9[N]a1D)Y . 1%,
(ii) We deduce (ii) by applying (i) to KrD, obtaining
o : (B3 ap)Y = (Bg(wazkrp)’ £ 1oMkrp = o',
We can use this result to relate fixed points of spaces to fixed points of
spectra.

Corollary 9.9. Let X be a G-CW complex. Then there are natural weak
equivalences of J-spectra

£(xM) = (E#N]Az=X)Y = o¥z™x

(where 1® refers to J on the left and to G in the middle and on the right).

Proof. Let {ZAnX} denote the suspension G-CW prespectrum of X, so that

EQXN= L{ZAnX}. Gbviously QN{ZAnX} is the suspension J-CW prespectrum
{):A"XN} .
{zA"

The equivalences result by application of part (i) of the theorem to

X} and of part (ii) to I%X.

Of course, we can apply the results above to the study of H-fixed point

WGH—Spaces and spectra associated to G-spaces and spectra, where WGH = NGH/H.

Proposition 9.10. (i) If E is a J-prespectrum, then E = QNi*s*E, where
ig: G@AN > GPA is the prespectrum level change of universe functor.
(ii) If E is a J-CW spectrum, then

n: E —> (E9[n]acfE)V

is a weak J-equivalence.

N
. . ¥ -
Proof. (i) ixe E has n® space EnASAn An, hence its N-fixed point set is

En back again.
(i1) We may as well assume that E = LE', where E' is a J-CW prespectrum. By

part (i) and the discussion above I.3.5, Theorem 9.8(i) gives a weak J-equivalence

£: (E3INAe®E)Y = (B3 [N]aLige E)V—5 1oVi 8" = E.
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The map n is given on n-— spaces by the composite . : . We have now proven Theorem 9.5. Clearly a large part of the point is the
AN— AN 3 failure of smash products to commute with passage to fixed points on the spectrum
colim § & nE& level. However, as the following results show, we do have such commutation
AN AI\I : relations for J-spectra concentrated over N.
(colim @ & nn)N
| AV AN o AV g AN . Propqsnlon 9.12. (i) For G-CW spectra D and G-CW complexes X, there is a
I (colimg & (o @ %4 ¢ qE('l)) natural weak J-equivalence
Aq’Arlf N (EFINIaDA)N = (E3(N1aD)YaxN,
(colim @ (1a1)) -
N
AN

A - A -A (i1} For G-CW spectra D and D', there is a natural weak J-equivalence
(colim @ & P(EF(N]aE'as & ayy
q

(E3IN]aDaD )N = (Eg(NIAD)NA(EF[NIaD)N.
and it follows by inspection that &n 1is the identity map of E.

Proof. (i) For G-prespectra D and G-spaces X, we clearly have

Proposition 9.11. (1) If D is a G-CW prespectrum, then there is a spacevise

equivalence of G-prespectra @N(DAX) = (@ND)AXN.

~ ~ R
D.

E#NIAD — E3{Nlalye e Application of this with D replaced by KID and use of Theorem 9.8 (ii) gives

. part (i).

(ii) If D is a G-spectrum concentrated over N, then D is isomorphic to

o 4o o (i) Let A®A be the indexing sequence {A, ® A} in U®SU. Let
E3[N]ac"(D7) in hGEA. f: U®U + U be a G-linear isometric isomorphism and let A' be the indexing

of. (i) TFor each n, the inclusion E3[N]aDY » E#[N]AD is a G-equivalence sequence {f(A, ® A )} in U. We have the external smash product and change of
Pro s n n

with homotopy inverse r,, say. Let s) be the composite G-equivalence wniverse functors
N
Th N lAe & v Pahn
EQ[N]ADn . E}[N]ADn ———-E;[N]«DnAS > At GPA x GPA— GP(A ® A) and fy: GRA® A) —s GPA'.
Ay-hn . s
where e: 80 » S is the inclusion. It is easily checked that the s; specify For G-prespectra D, D' ¢ GPA, we find easily that
a w-map (in the sense of I.6.2)
Ne, (DAD') = £N(aNDasNDY)
~ ~ %
s': EJ[N]AD —» EF[Nlaige 01D,
in JPAn)N, Applying this with D and D' replaced by XrD and KrD', noting
By I.8.8, s' is spacewise homotopic to an actual map s. that fx(KIDAKID') is equivalent to KrIfyx(DAD'), and using Theorem 9.8 (ii), we

(ii) By hypothesis, D = E3[N]AD in hGAA. Thus ve have the chain of isomorphisms obtain (ii) from the definition of internal smash products in section 3.
in hGAA

The discussion above makes clear that, with a change of notation, a
compulsively reasonable way to construct a J-spectrum Ey € J/SUN from a

G-spectrum E, ¢ G8U 1is to set Ej = (E?[N]AEG)N. This is equivalent to setting
#2(nlac’e"D E; = o'Eg,

D = IKID = RJ[N]anIKTD = L(EFIN]AKID)

i

~ *
—I—’§->'L(E3[N1Ai*s @NKI‘D) and the construction commutes with smash products and preserves ring

spectra. For a J-spectrum X, we have
~ #, N
E#(nlae" (D7),

#
222 & gan)ac (Baimla)"

[
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ENX) = (E3INWE (X0

w ¥

For J-spaces X, we recall that e#sz z 17¢'X. We can work with RO(J)-graded
cohomology here, using the homomorphism ¢¥: RO(J) » RO(G) to interpret the grading
on the right. The following calculation of EE(X) is due to Costenoble, who proved

it by direct inspection of colimits from the prespectrum level definition of @N.

Proposition 9.13. Let Eg ¢ G&U be a ring spectrun and set Ej = (B3 (N1aEm)N € J8UN.
For a finite J-CW spectira X, E}(X) is the localization of Eé(e#x) obtained by»
inverting the Euler classes y, ¢ EE(SO) of those representations V of G such
that VN = o.

* 0
Proof. Here y, is the image of the wnit 1 ¢ EG(SY) under e, e: 7 » SV. The
statement means that, for o ¢ RO(J),

e*u+V( #

E;(X) = colim Ej X)),

where the colimit runs over the indexing G-spaces V C U - UN; for VC W, the map

*
gV ( Py gy
G G
of the colimit system is multiplication by xy_y- For the proof, observe that the
colimit of the spheres sV is a model for EZ[N], as we see by passage to colimits
from the cofibration sequences S(V)* » D(V)* » 8V, where S(V) and D(V) are the

a . 3

unit sphere and disk in V. Therefore Ej(X) is the colimit over V of the groups
#

0 258V

R

*
(SVAEG)8 He

III. Equivariant duality theory

by L. G. Lewis, Jr. and J. P. May

We here give a thorough treatment of duality in the equivariant stable

category. For a G-spectrum E, define the dual of E +to be the function
G-spectrum

'

D(E)

F(E,S).
For a based G-space X, define D(X) = D(:™X). We are concerned with the

calculational relationship between E and DE and with the concrete identification
of DX.

Nevertheless, our starting point will be purely categorical. In courses since
1970, the second author has emphasized the analogy between the stable category and
the category of modules over a commutative ring R. In this comparison, XaY
corresponds to M ®N, S corresponds to R, F(X,Y) corresponds to Hom(M,N), and
finite CW spectra correspond to finitely generated projective R-modules. The
analogy is illuminating since many of the central facts about duality theory read
the same way in the stable category as in the module category, where they are
transparently obvious. In a very pretty paper [47!, Dold and Puppe carried this
analogy much futher. By discussing duality in the appropriate categorical frame-
work, they showed that many of these facts admit purely formal common derivations.

We present our version of their categorical discussion in section 1.

We return to the equivariant stable category in section 2. Because our
category of G-spectra has canonical fibration sequences as well as canonical
cofibration sequences and has canonical function spectra, the behavior of duality
with respect to cofibration sequences is immediately apparent. The central,
obvious, fact is that, for a map f: X + ¥ and G-spectrum Z, the function
G-spectrum F(Cf,Z) 1is isomorphic to the fibre of £ F(Y,Z) + F(X,Z). In earlier
treatments of the stable category, point set level fibration sequences and function
spectra did not exist, hence the comparison between cofibre sequences and duality
was intrinsically less precise, involving use of maps not uniquely determined up to
homotopy. Our treatment uses only canonical natural maps. Given these observa-
tions, the basiec results about duality directly generalize from orbit spectra
E°°G/H+ to arbitrary finite G-CW spectra X, +the duals of orbit spectra having
been computed in II§6. In particular, we obtain a natural equivalence

F(X,E) = DXa E

and thus an isomorphism E(X) = Ex(DX). This section also includes an analysis of
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the behavior of duality with respect to change of groups.

In section 3, we give a quick derivation of the standard products in homology
and cohomology theory and explain the interpretation of duality in terms of slant
products. Turning from the spectrum to the space level, we desceribe V-dualities
(for representations V) and give wholly space level interpretations of the basic
notions in duality theory. In particular, we show that a G-map e: YAX » sV is a
V-duality if and only if each of its fixed point maps e': Yia o (g)E is an
nH-duality, where ny = dim Vi,

In section 4, we prove an equivariant version of the original Spanier-Whitehead
duality theorem [130,132] for G-spaces and G-pairs nicely embedded in G-represen-
tations. Our treatment is particularly clean, elementary, and precise. It'makes no
use of simplicial decompositions or of ordinary homology and gives very simple
concerete descriptions of the relevant duality maps. Even nonequivariantly, we find
this direct homotopical treatment far more efficient and aesthetically satisfactory
then the classical one. Equivariantly, it gives much greater generality than could
be hoped for from any argument dependent on triangulations. We make absolutely no
claim to originality. Our treatment is essentially that of Dold and Puppe [47] and
their students Henn and Hommel [63,64,65] whose nonequivariant work generalizes

effortlessly to the equivariant context (as Dold and Puppe realized [47,571).

Tn section 5, we specialize to obtain equivariant generalizations of the
classical results of Milnor and Spanier [113] and Atiyah (6] on the duality between
smooth manifolds and the Thom complexes of their normal bundles. We combine these
results with the Thom isomorphism to obtain equivariant Poinearé duality in section
6.

In sections 7 and 8, we lay the foundations for our study of the transfer in
chapter IV and of the Burnside ring in chapter V. The essential starting points for
these studies are the pretransfer <(X) e ng(X) and the Fuler characteristic
x(X) e ng(pt) associated to a compact G-ENR X. These are special cases of the
trace t(f) ¢ ng(X) and Lefschetz constant x(f) € wg(pt) associated to a G-map
f: X + X. We begin our study of these notions in the general categorical context of
section 1. We then specialize to the context of finite G-spectra and prove a basic
additivity formula for the behavior of traces on cofibre sequences. In section 8,
we use this result to compute t(f) and x(f) in terms of the nonequivariant
traces of the fixed point maps B and the equivariant transfers t(G/H) € ng(G/H)
and Fuler characteristics x(G/H) e wg(pt).

; We have gone to considerable trouble in writing down explicit duality maps in
this chapter. It is our feeling that the literature on duality, both equivariant
and nonequivariant, leaves a great deal to be desired in terms of precision. The
resulting pedantry may somewhat obscure the exposition, but its absence would surely

obscure the mathematics.
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§1. Categorical duality theory

Category theorists have long recognized the convenient unifying role played by
the concept of a "closed category".

' Such a category & comes equipped with a unit
objeet S, a product a:f xC » ¢,

and an internal hom functor F:¢ %P x¢ + € .

It is required that A  be unital (with unit S), associative, and commutative up

po coherent natural isomorphism and that there be a natural adjunction

[

C(XAaY,2) = €(X,P(Y,3)).

There are coherence theorems to the effect that all diagrams relating these data
that reasonably can be expected to commute do in fact commute {73,74].' As is
customary, we do not introduce notation for the unit and associativity isomor-

phisms. We write vy: XAY » YAX for the commutativity isomorphism and we write
n: X—=F(Y,XAY) and e: F(X,Y)a XY

for the unit and counit of the adjunction. Of course, e is to be viewed as an

evaluation map. We define the dual DX of an object X to be F(X,S)
»S).

As indicated by our biased choice of notations, we are thinking of the stable
category of G~spectra. However, it is useful to think in terms of such more
familiar and elementary examples as the category of modules over a commutative
ring R. The essential point is that there is enough information in the purely
categorical setup to make it well worthwhile to treat duality first there before
turning to details special to the stable category.

Various useful natural transformations are implicit in the structure of a
closed category £ . First, we have the pairing

A FILI)AF(X,Y') > F(XAX',YAY")

whose adjoint is the composite
FIX,Y) AF{X',Y'")A XA X! 1—1‘—1'—\—--1»!?(X,Y) AXAF(X',Y) A X E28.7 477,
In particulaf, with Y = Y' = 5, A specializes to a pairing
A DX ADX'—D(Xa X').

The map n: Z » F(S,Z24 S) = F(S,2) is always an isomorphism (its inverse being
e: F(S,Z) = F(S,Z)AS » Z),

and A also specializes to give a natural map
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vi FX,Y) A 2 220F(X,Y) A F(S,2) 2>F(X,YA2).

In the stable category, this general nonsense map lies at the heart of Spanier-
Whitehead duality relating homology and cohomology. We obtain a natural map

p: X—=DDX
by taking the adjoint of the composite

XADX —L=DKA X —=58.
We obtain a natural map
u: F(XAY,2)—F(X,F(Y,2))
by applying adjunction twice to the evaluation map
e: FIXAY),Z)AXAY—nZ. "’

It is simple to check from the adjunction that u is an isomorphism for
arbitrary objects X, Y, and Z. Of course A, v, and o need not be isomor-
phisms in general, and a central theme of this section is the discussion of
conditions on objects which ensure that they are isomorphisms.

Definition 1.1. An object X of & is said to be finite if there exists a

"eoevaluation map" n: S » XADX such that the diagram

commutes. We shall see that this implies that the map v in the diagram is an
isomorphism, so that the coevaluation map is characterized as the composite yv‘ln.

Dold and Puppe [47] call finite objects "strongly dualizable" (and give a more
complicated but equivalent definition). We prefer the term finite since in practice
there is always something finite about them. Observe that any retract of a finite
object is finite.

To see the intuition, consider the category of modules over a commutative

ring R. If X is a free R-module on the finite basis {eq,=*,ep} with dual
basis {fy,-e,fy}, then we obtain a coevaluation map n: R+ X ® Hom(X,R) by
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setting ,nilx = z e; ® f;. Here the diagram of the definition asserts that
i
X = g fj(x)e; for all x e X. It is an observation called the "dual basis theorem"

that an R-module is finite if and only if it is finitely generated and projective.

We shall see in the next section that finite G-CW spectra, and thus also
their wedge summands, are finite objects in the stable category of G-spectra. In

‘marked contrast to the nonequivariant case, a wedge summand of a finite G-CW

spectrum need not have the homotopy type of a finite G-CW spectrum. We conjecture

~ that, up to equivalence, the finite G-spectra are precisely the wedge summands of

finite G-CW spectra. It is illuminating to think of finite G-CW spectra and

their wedge summands as analogous to finitely generated free modules and finitely
generated projective modules.

For a finite object X, the functor (?)a DX is right adjoint to the
functor (?)AX and is therefore isomorphic to the functor F(X,?). The following
two results explain these conclusions and give some consequences.

Proposition 1.2. ILet X be a finite object of £ . Then DX is a finite object
of  and the composites

XZsax Ml xamiax L8305 2

and

DX 2 DXa S 1AMpxaxany £2h s amx 2 px
are identity maps. Therefore, for any objects W and Z of ¢ >
€yt C(W,ZA DX)——,-C(WAX,Z)

is an isomorphism with inverse Ny, where, for f: W+ ZADX and g: WaX s Z
b
eg(f) and ng(g) are the composites

fal lag ~

WAX ——ZADKAX —7A 3 = 2

and

WZwWas 22 hywax anx 8447 4 x,

Proof. By an easy diagram chase, the composite
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§ —N ¥ ADX —Y» DX AX 2LLeDXA DDX
is a coevaluation map for DX. The essential point is that the diagram

S — 5 F(X,X)

”l LF(l,p)
F(DX,DX) = F(X,DDX)

commutes, where the isomorphism is the composite

-1
F(DX,DX) — > F(DXAX,S) Tl p(xa DX,5) —>F(X,DDX).

The composite (lae)(nal) is the identity map of X since the diagram
X sax b xamgax 228 xas
nal yal
A
F(X,X)/‘\xé’—l DXAXAX

X

commutes and its bottom composite e(nal) is the identity map. Modulo transpo-
sitions, the proof that (ea1)}(lan) is the identity map of DX is identical.

Proposition 1.3. (i) If X dis finite, then p: X » DDX ds an isomorphism.
(ii) If either X or Z is finite, then

v: F(X,Y) A 2—=F(X,Y4 2)

is an isomorphism.
(iii) If both X and X' are finite or if X is finite and Y =S (or X' is
finite and Y' = S), then

A: FIXY)AF(X,Y') —=F(XAX,YAY')

is an isomorphism.

1

Proof. If X is finite, then easy diagram chases show that p~~ is given by the

composite

nal 1Ay lae -
DDX £ SADDX —=XADKXADDX —>=XADDXADX —=XAS =X

and vl is given by the composite

123

e

CF(X,YAZ) S R(X,YAZ)A S ZATMF(X,Y AZ) A XA DX

EALYAZADR —L» xaY AZ Y25 (X, ¥) A 2.

This case of (ii) (and symmetry) implies (iii) by virtue of the commutative diagram

F(X,Y) AF(X',Y') ——D s F(XAX',Y AT")

v v

FOY AR(xe, ) BBEL W py pixl yay),

In turn, this implies that v 1is an isomorphism when Z is finite by virtue of the
comnutative diagram

F(X,Y) A2 —222 > F(X,Y) A DDZ —2 s F(XADZ,Y)

\)l v u
F(x,ya2) B8 0l ey yapnz) ELavY) pix p(bz,1)).

The next two results give useful information about the duals of maps between
finite objeets. Their proofs are easy diagram chases from the results above.
Proposition 1.4. Let X be a finite object of & . Then the natural composite

§: DYaX =X ADY 224 DDx A DY 2 >D(DX AY)

is an isomorphism for any object Y. When Y = X, 6§ is a canonical self-duality
isomorphism for DXA X and the following diagram commutes.

s Do XADX —Y—  DXAX £ ]
n| = § = n
DS De > D(DXAX) —2»D(XADX) —20 5 g

That is, if we regard 6§ as an identification, then we may regard vyn as the
dual of ¢ and e as the dual of yn.

Proposition 1.5 The dual Df: DY » DX of amap f: X+ Y is uniquely
characterized by commutativity of the diagram
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Y AX —25s py Ay

Df Al €

DX AX —E—» S,

If X is finite, then Df coincides with the composite

DYAS 22 pyaxanx 2252 L pyavanx £235a0x 2 DXL

n

DY

If X and Y are both finite, then the following diagram commutes, and its

commutativity also uniquely characterizes Df.

s —D »yaADY

n 1 ADf

xaDX —21 . yaDx

We need usable criteria for recognizing when a given object Y is isomorphic
to DX for a given object X. In general, we have the obvious criterion that the
functors €(?,Y) and £(?AX,S) must be isomorphic. For finite X, there are
more illuminating criteria, and these criteria also yield illuminating alternative

characterizations of finiteness.

Theorem 1.6. The following data relating objects X and Y of { determine one
another.
(1) Maps e: YAX +» S and n: S » XAY such that the composites

Z SAX n_“_l_,.x,\‘_{,\x .];.ﬁ.‘.:,.x,\s '

>
I

and

"

~

Yas 1Ay axay E2L gy 2y

are identity maps.
(ii) A map e: YAX » S such that the function

eyt 6 (W,ZA Y)—E(W AX,Z)

is a bijection for all W and Z, where e#(f) is the composite
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Wax £2hsavax 108 5,52 g,
(iii) . Amap n: S + XAY such that the function
ng: EWAX,Z) = £(W,ZAY)

is a bijection for all W and Z, where ng(g) is the composite

TwWas H2hyaxay BAL 7 Ay,

=
[}

Further, maps n and e satisfy these properties for the pair (X,Y) if and only
if the maps yn and ey satisfy these properties for the pair (Y,X). If X is
finite and Y = DX, then the canonical maps n and ¢ satisfy these properties.
Conversely, suppose given such maps for the pair (X,Y). Then the adjoint §: Y » DX
is an isomorphism with inverse the composite

XS DXAS 2AL i axaAy £20h 50y Ty

and X 1is finite with coevaluation map the composite
s —N=xaY 1AS % ADx.

Proof. Given (i), gy and ny of (ii) and (iii) are inverse bijections. Given
(ii), set W =8 and Z = X and specify n by requiring egln) to be the
identity map of X. Then (i) holds. Similarly (iii) determines (i). The symmetry
statement is easily checked and we have already seen that the canonical duality maps
for finite X satisfy the stated properties. The isomorphism claim of the last

statement is another easy diagram chase, and the defining diagram

S—0»  xaylfE yax
) [
F(X,X) L2 DXa X

for a coevaluation is seen to commute by passing to adjoints and using that
(nal)(lag) = 1.

Warning 1.7. Given a pair X and Y of dual objects, there are in general many
choices of pairs of maps n and e displaying the duality. In particular, given
any map ¢ such that ey in (ii) is a bijection, we obtain another such map by
composing e with any automorphism of S.
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Remark 1.8. In the context of the theorem, there is an alternative version of -
Proposition 1.4 that is sometimes useful. If (n,e) and (n',e') represent
(X,Y) and (X',Y') as dual finite pairs, then
(1ayAal)(nan'): S=SAS—=XAX'AYAY!
and

(eae")(layal): YA Y'AXAX'—=SAS = S

represent XA X' and YAY' as a dual finite pair. In particular, this applies

to (n,e) and (yn,ey), giving a derived duality between XAY and Y AX. The

diagram
TAXAS eal sagLayalllnayn) vy, yayay
1A 1a n lAalace
Yaxa xay fefe)(1AyAL) o o ntl =XAYAS

commutes, and in this sense n and ¢ are characterized as duals to one another.

Now suppose given two closed categories ¢ and & with unit objects S and T.
A (lax) monoidal functor ¢:¢ +g is a functor ¢ together with a map A: T + ¢S and
a natural transformation

$: XAY—9(XAY)
such that the following coherence diagrams commute.

X =L o(SAX) 2X noY L= oYA oX 0XA 0T A 87 228 5X A5 (Y A 2)

It b b : oal :

Ta oX 20 55 4 6

a(XAY) sp(Yax) a(Xa¥)aoz L>0(XaT42)
(See Lewis [73] for a categorical discussion.) We say that ¢ is a strict monoidal
functor if A and ¢ are isomorphisms. In practice, A is usually an isomorphism

even if ¢ 1is not.

Proposition 1.9. Let ¢:{ + &be a monoidal functor such that A: T » ¢S is an

?
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isomorphism. ILet X be a finite object of ¢ such that

d: X A DX —»d(X A DX)

is an isomorphism. Then ¢X is a finite object of @, the natural map
¢DX + D¢X is an isomorphism, and

o : ¢: 0XA oY (XA Y)

. is an isomorphism for every object Y of .

Proof. For any object X of {, we have the composite
? .
e: ODKA X —22 a(DX A X) 25545 2 s,

Its adjoint €: ¢DX » D¢X is the natural map referred to in the statement. Under
our hypotheses on X, we also have the composite

-1
nt T —25 68 —2m g(X ADK) —L—» 0% A 0DX,
and it is easily checked that n and e satisfy the conditions of Theorem 1.6 (i). For

the last part, the dotted arrow composite in the following diagram is easily checked
to be inverse to ¢.

B(XAY) S TA0(XaY) —DAL L oxAsDXAB(XAY)
i
-1
. 1
{
N4 ~
XAGY 2 oXao(Say) odleal)

XA (DXAXAY)

Dold and Puppe say that a finite objeet X is "¢-flat" if the map
¢: 2XA Y » ¢(XAY) 1is an isomorphism for all Y or, equivalently, for Y = DX.

Remarks 1.10. For any closed category €, ¢x€ and ¢°P are closed categories in

an evident way. The functor A: € x{ + & is strict monoidal with respect to the
evident isomorphisms

S 2 8a8 and 1A ya 1: XAX'AYAY' —=XAaYAXA Y,

The functor D: &°P » € is lax monoidal with respect to

~

n: §—>DS and A: DXADY—»D(XAY);
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D is strict monoidal when restricted to the full subcategory of finite objects.

§2. Duality for G-spectra

We first discuss cofibration and fibration sequences in the G-stable category
hG4U and show that finite G-CW spectra are finite objects in the categorical
sense of the previous section. We then relate duality to the change of groups

isomorphisms proven in the previous chapter.

The definition and basic properties of cofibration and fibration sequences are

the same for G-prespectra and G-spectra as they are for G-spaces. We define the
cone CX = XATI with I being given the basepoint 1. We define the path object
PX = F(I,X) with I being given the basepoint 0. For a map f: X + Y, we define
the homotopical cofibre and fibre of f by

Cf = TwpeCX  and Ff = X xpPY.

We form the sequence

. . 2
() x Loy Leor Tagx gy 2 por B2 IR 2y oLl

i and +w Dbeing the canonical inclusion and quotient map. Each successive pair of
maps in (C) is equivalent to a map followed by the inclusion of its target in its
cofibre, the inclusion being a cofibration. There results a long exact sequence

upon application of the functor [2,Z]; for eny Z. Similarly, we form the
sequence

2 .
(F) coo — ofx 25 2y 28 gpe 9B oy =0 oy 1opr Pox Loy,

1 and p being the canonical inclusion and projection. Each successive pair of
maps in (F) is equivalent to a map preceded by the projection of its fibre to its
source, the projection being a fibration. There results a long exact sequence upon
application of the functor [Z,?IG for any Z. In particular, fibration sequences
give rise to long exact sequences of homotopy groups. The essential new fact for
G-spectra, as opposed to G-spaces, is that cofibration sequences also give rise to
long exact sequences upon application of [Z,?]G.

lemma 2.1. Let f: X+ Y be a map of G-spectra. Then the following sequence is

exact for any G-spectrum Z.
f i

* *
(2,X], (2,11, > (2,0f] ;.
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Therefore the following sequence is also exact, where 3 is the composite

b Z~1
H ¥ H ¥ H
nanv——*nan-——a o

N 1X.

f i
® 00 H * * H a H
—> TlnX 'n;LY nan "n—lX —> eeo

Proof. Let iy(a) = 0, ot Z + Y. We can construect B and vy which make the

" following diagram homotopy commutative.

- Z——>»C0Z —> 7 — 57
| ]
| |
] ]
o |8 oy Y
1
¥ v
x—f syt sor T opx Iy

If y = 2Iy', then fy(y') = a.
We next describe how cofibration and fibration sequences hook up.
Definition 2.2. For a map f: X + Y of G-spaces, define
n: Ff —s QCf and g: IFf —s Cf
by
w(2t) if 0« t< 1/2

n(x,w)(t) = elx,w,t) =
(x,2t-1) if 1/2 <t < 1,

where x eX, w ¢ PY, and t e I, with (1) = f(x). Define analogous n and
e spacewise for amap f: X + Y of G-prespectra. For amap f: X+ Y of
G-spectra, note that

QX = 20X, F(ef) = gF(f), X = LygX, and Cf = LC(&f),
and define

e = Le: IFf = LF(2f)—= LC(4F) = Cf;

then define n: Ff » QCf to be the (spectrum level) adjoint of €.

Lemma 2.3. For amap f: X » Y (of G-spaces, G-prespectra, or G-spectra), the




130

following diagram is homotopy commutative.

pox —20f o poy U spp 2P . 5y
€ € € ll
¥ £ v .
oy —+—>rFf —2» X > Y Ls of ——3X
‘l n n n
Qi or _ ¥ Qf
QY —= % qCf — = 35X = QrY

The proof is elementary. Up to one change of sign, the top row is obtained by
applying © to part of (F) and the bottom row is obtained by applying @ to part
of (C). By the desuspension theorem, the five lemma, and the Whitehead theorem, the
previous lemmas have the following immediate consequence.

Theorem 2.4. For a map f: X + Y of G-spectra,
n: Ff—»QCf and e: IFf-—>Cf
are isomorphisms in the G-stable category.

Of course, passage to the stable category entails use of CW-approximation, but
there is no loss of homotopical information. In the language of triangulated
categories [121,107], the conclusion is that cofiberings and fiberings give two
distinet triangulations of the stable category, the negative of a cofibration
triangle being a fibration triangle and conversely.

Passage to function objects converts cofiberings to fiberings.

Lemma 2.5. For amap f: X+ Y (of G-spaces, G-prespectra, or G-spectra) and an
object Z, the sequence
. ¥ f*
F(1X,2) —%—» F(Cf,Z) —=—> F(Y,2) ——>F(X,%)

is isomorphic to the sequence

*
QF(X,2) —2s P(£7) —Bs F(Y,2) ——> F(X,2).

Proof. Modulo reversal of the I coordinate dictated by our choices of basepocints,
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we may identify PF(X,Z) with F(CX,Z). Since the functor F(?,Z) converts
pushouts to pullbacks, there results an identification of F(Cf,Z) with F(eY).
This identification converts i® to p and restriects via n* and 1 to the

negative of the standard identification of F(5X,2) and @F(X,2).
~In particular, the dual of a cofibering is a fibering, and its negative is thus
another cofibering. An easy induction on the number of cells, together with our

caleulation of D(G/H') in II.6.3, gives the following consequence.

Corollary 2.6. In the G-stable category, the dual of a finite G-CW spéetrum is
isomorphic to a finite G-CW spectrum.

We say that a G-spectrum is finite if it is a finite objeect of iG,JU in the

sense of Definition 1.1. Recall the criteria for recognizing such objects from
Theorem 1.6.

Theorem 2.7. Any finite G-CW spectrum is a finite G-spectrum, hence so is any
wedge summand of a finite G-CW spectrum.

Proof. We first show that orbits are finite G-spectra. Define
er (G xgS™h) aza/H = S
to be the adjoint of the equivalence
¥t G wgSTP_SFul6,8) = F(a/HY,S) = Dla/HY).

The map €y of Theorem 1.6 (ii) may be described as the dotted arrow composite in
the diagram

-L (1Al + Yx +
[W,ZA (G S )lG ———% [W,Z AD(G/H )]G — [W,D(G/H ) "Z]G
|
|
E#: Vx
¥
[WAz™G/HY,Z]g W,F(G/HY,Z) 1.

Using the definition of w in II.6.1 and naturality diagrams, we find easily that
the following diagram commutes.
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F4lG,8) Az = D(G/H ) AZ —Y>F(G/H ,2) = Fyl6,2)

w Al 4 w
L -1

VA Z 4 : -G tz'Lz

(G S
Since both maps « are equivalences, v 1is an equivalence. Thus vy and €y are
bijections and Z°°G/H+ is finite by Theorem 1.6. It follows that all suspensions
of 2:°°G/H+ are finite. Now consider the canonical evaluation map e: DXAX » S.
Clearly

E#: [W,ZA DX]Gﬁ{WAX,Z]G

is natural in X. By the five lemma and the results above, the cofibre of a map
between finite objects is itself finite. The conclusion follows by induction.

As said before, we conjecture that, up to equivalence, all finite G-spectra are
wedge summands of finite G-CW spectra. Proposition 1.3 specializes to give the
following conclusions.

Proposition 2.8. (i) If X is a finite G -spectrum, then p: X » DDX is an
equivalence.
(ii) If either X or Z is a finite G- spectrum, then
v: F(X,Y)A Z —F(X,YA Z)
is an equivalence.
(iii) If both X and X' are finite G-speetra or if X is a finite G-spectrum
and Y =S (or X' is finite and Y' = S), then
A FIX,Y)AFXL,Y') —» FIXAX',TAY')

is an equivalence.

We single out the case Y = S of (ii) since it is the basic spectrum level
duality theorem.

Coroliary 2.9. if X is a finite G-spectrum, then

v: DXaE—F(X,E)
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is an equivalence for any G-spectrum E. Therefore
vg: Ex(DX) = 1$(DXA E) = 13F(X,E) = E (X)
is an isomorphism.

Here and later, homology and cohomology may be interpreted in either the

" Z-graded or RO(G;U)-graded sense.

Remafk 2.10. We have been working implicitly in a fixed G-universe U. Duality for
the orbit G/H requires that G/H embed in U. Provided that we restrict
attention to G-CW spectra built up out of orbits which embed in U, we need not
insist that U be complete.

We shall return to homological interpretations of duality in the next sectionm,

but we first record the behavior of duality with respect to change of groups.

Proposition 2.11. Let H be a subgroup of G and let I be the tangent
representation of H at the identity coset of G/H. Let X and Y be dual finite
H-spectra with duality maps e: YaX + S and n: S+ XAY and let ¢ and n
correspond to the G-maps

T G wy(YAX) —S and §: S —»G wy(Xaz7ly)

under the isomorphisms of II.4.3 and II.6.5. Then G NHX and G xHZ'LY are dual
finite G-spectra with duality maps

(@ gz ™) A (G oK) T 6 oG gz ) A ) Leluml) g o (Ya%) ~Em s
and
§ s G (XA 27HY) 1x(nal) o wg( (G ) A 270Y) (6 X A (G w Y,

where u: G MHZ_LY +Y is the H-map given by II.6.8 and n: X + G xgX is the
natural inclusion of H-spectra.

Proof. For G-speetra E and E', II.4.3, II.4.9, II.6.5, and Theorem 1.6 give the
chain of isomorphisms
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ne

[En(C “HX)’E']G [G xH(EAX),E']

G

e

(EAX,E'], = [E,E'A Y]y

ne

[E,6 sy (E'A I, ¥ IEE A (6 gt

Thus G xpX and G xHE'LY are G-dual. We obtain the specified descriptions of the
duality maps by taking E = G KHZ'LY and E' = § and tracing the identity map of
G uHZ'LY back through the chain and by taking E = 8 and E' = G xgX and tracing
the identity map of G xyX through the chain.

Proposition 2.12. ILet N be a normal subgroup of G with quotient homomorphism

g: G+ J=G/N and let A be the adjoint representation of G derived from N.

Let U be a complete G-universe and let 1i: UN + U be the inclusion. ILet

¥ e G4UN be an N-free G-spectrum. If iyX is a finite G-spectrum, then its dual
is N-free and therefore has the form iyY for an N-free G-spectrum Y e aduN,

Let e: 1,¥AiyX + S and n: S » i3XA i,Y be duality maps and let & and n

correspond to the J-maps
T (YAX)/N—=S and 7: S—= (XA sPY)/N

under the isomorphisms of II.4.5 and II.7.2. Then X/N and (ZAY)/N are dual
finite J-spectra with duality maps

GRO /A G/ 2 (P /NN L (ya /0 —Em s
and
s s (xarfy)/n S (A st S yma R/,
Here % is characterized (via II.2.8(i) and the freeness of X) by
1,(F) = 1ALl 1, () /NALX 1,7 A 1,X,

where 1 is the dimension-shifting transfer of II.7.5, and &: X » X/N is the

projection. Moreover, iyx¢ and =t are dual G-maps.
Proof. The following diagram commutes, where w: E3* » SO is the projection.
. +
ES () A D(1,X) —%> F(L,X,EF (M)

HN /F(ll,'!r)

D(1,X)
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. Sinee iyX is finite, v is an equivalence. Since iyX is N-free, IT.2.2 gives

that
(2%m)x: (274X, 58 3 (N 7] — [1PiyX, 8],

is an isomorphism for any n. This implies that F(l,r) is an equivalence.
Therefore 1Al is an equivalence and D(iyxX) is N-free (where of course we mean
‘that a G-CW approximation of D(iyX) has the homotopy type of an N-free G-CW
spectrum). By II.2.8, D(iyX) is equivalent to iyY for an N-free Y ¢ GXUN. Now
let e = iye*: B8UY > 68U, For E,E' ¢ J8UN, 1I.4.5, Theorem 1.6, and II.7.2 give
the following three isomorphisms, where G-maps are computed in U, J-maps are
computed in UN, and we implicitly use the commutation of iy with smash products.

[FEn 1,x, fEr Ig

"

[EAX/NE'];

[e#E,e#

ALY F IEE A (/N

Thus X/N and (ZAY)/N are dual. We obtain the specified deseriptions of the
duality maps by taking E = (EAY)/N and E' = S and tracing back the identity map
of (ZAY)/N and by taking E =S and E' = X/N and tracing through the identity
map of X/N. Proposition 1.9 implies that e#(X/N) and e#((XAY)/N) are dual in
hG8U, and the last statement follows by the characterization of dual maps in
Proposition 1.5.

Proposition 2.13. With N, J, and A as in the previous proposition, let X be a
finite N-free G-CW complex. Then the G-dual of X is equivalent to 5=25%Y  for
some finite N-free G-CW complex Y and some representation Z of J. Moreover,
the J-dual of X/N is equivalent to E"sz(zAY)/N.

Proof. The G-dual of X is a finite N-free G-CW spectrum by the proof of
Corollary 2.6, and the first statement follows from II.2.8(iii). The previous
proposition implies the second statement.

When G is finite, A disappears and this result is due to Adams [3,8.5] (who
ascribes the case N = G to us).

§3. Slant products and V-duality of G-spaces

We wish to interpret duality in terms of slant products, and we digress to

define the basic products in homology and cohomology theory. Consider variable

spectra X and X' and coefficient spectra E and E'. We have the evident
pairings
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(1) Iayal: XAEAX'A E'—=XAX'A EAE!
and
(2) A: F(X,E)AF(X',E'") = F(XAX',EAE").

On passage to homotopy groups, these give rise to the external products

(1) By (X) ® By(X') o (EAE') 4 (X AX')
and
(2" (X)) ® B¥(X')— (EAEN (XX

We also have the slant products defined by commutativity of the diagrams

(3) F(XAX',E) A XAE B2 Lp(X F(X',E))A XA B!

/l LEAl

F(X',EAE') <—>— F(X',E)a B

and

(4) XA X'A EAF(X,E') —TL—> X'~ EAF(X,E') A X,

\
l ‘///////Z/\lh €
X'AEAE!

On passage to homotopy groups, these give rise to the homological slant products

(3" /i E(XAXY) ® BY(X) — (EAED (X")
and
(4") N: By (XAX') ® BV (X) = (EAE' )4 (X").

In view of the artificial and hard to remember appearance of (3') and (4'), it
is not surprising that no two authors seem to have chosen precisely the same
definition of the slant products. It is convenient and sensible to rewrite these

prodpets in their adjoint forms

(3") /: EX(XAX') —» Hom(E}(X),(EAEN) ¥ (X1))
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and
(4m) N: Eg(XAX') —Hom(E' (X),(EAE )4 (X')).

In these forms, the variables are clearly seen to be written in their most natural
order.

By coherence, any well formulated diagram involving the transformations (1)

'through (4) will automatically commute. The translation of such diagrams to

formulas relating the products (1') through (4') is immediate. In practice, of
course, E = E' is a ring spectrum and we obtain internal products by composition
with the multiplication EAE » E. Similarly, A and \ are most often applied
with X ='X' a suspension spectrum and are then composed with A* and Ay to
obtain the cup and cap products

U ) @E (XN —E (X and M: 50 @ E (X) — B (X).
Now consider a map e: YAX + S with adjoint €: Y + DX. We may view ¢ as
an element of the G-cohomotopy group ng(YAIX). Similarly, we view a map
n: S+ XAY as an element of the G-homotopy group ng(XAY).
Proposition 3.1. Let e: YAX » S be a map of G-spectra and let e' = ey: XAY » S.

Let E be a ring G-spectrum and, for H C G, regard G-spectra as H-spectra by
neglect of structure. The slant products

e/(2): BR(Y) > ER(X)  and  e'/(2): ER(X) —»ER(Y)
are induced by the respective composite H-maps

~ =
YAE S xaE — Y5 R(x,E) and XAE =21 pyam — Y F(Y,E).

If X and Y are finite G-spectra, then ¢/(?) and ¢'/(?) are both isomorphisms
for all E, all H, and all gradings in RO(H;U) if and only if either is an
isomorphism for E = S, all H, and all integer gradings.

Proof. Note that ¥' coincides with the composite

De

X —&— ppx » DY.

The first statement is proven by easy diagram chases. If ¢/(%): ngY > ngDX is an
isomorphism for all H and n, then €: Y » DX is an equivalence by Whitehead's
theorem, and similarly for ¢'/(?). The rest follows from Theorem 1.6.
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Scholium 3.2. In an exercise [131, p. 4621, Spanier defined duality
nonequivariantly by requiring both wy¥ = n*X and wyX = n*Y. The redundancy has
been copied by several later authors.

The previous result admits a dual.

Proposition 3.3. ILet n: S » XAY be a map of finite G-spectra and let
n' = yn: S + YA X. The slant products

n\(2): ER(Y) —>EH(X)  and  m\(2): Eg(X) —E(T)
are induced by the respective composite H-maps

-1 ~ -1 ~
F(Y,E) > DY AE L2LXAE and F(X,E) s IXAE LA 4y AR,

where the adjoints are taken with respect to the canonical isomorphisms
eyt [S,XAY]H—>[DY,X]H and eyt [S,YAXiH‘*[DX,YlH.

The homomorphisms n'\(?) and n\(?) are both isomorphisms for all E, all H,
and all gradings in RO(H;U) if and only if either is an isomorphism for E = S,

all H, and all integer gradings.

We now shift our focus from G-spectra to G-spaces. By I1.8.16, finite G-CW
spectra are homotopy equivalent to desuspensions of finite G-CW complexes. In
particular, if X is a finite G-CW complex, then D(X) is equivalent to
1 Vg®Y for a finite G-CW complex Y and a G-representation V. This is what
brings "n-duality" into the classical nonequivariant theory and "V-duality" into the
equivariant theory. Note that the suspension spectrum of a finitely dominated

G-CW complex is a wedge summand of a finite G-CW spectrum and is therefore
finite.

Definition 3.4. Let X and Y be based G-spaces whose suspension spectra are
firite and let V be a representation of G. A G-map e: YAX » s’ is said to be a
V-duality if

e/(1): 1Y) —= 152z 77X

is anAisomorphism for all HC G and all n ¢ 2 or, equivalently, if

(ey)/(2): (™% — nzP (z7VI%Y)
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is an isomorphism for all HC G and all n € Z.

The first slant product can be defined directly or by applying the definitions
above to

€= 1275%: B7VI"NALY = V(YA X)) — V" = g,

and similarly for the second. The equivalence of the two conditions is part of
Proposition 3.1, which also shows that these slant product isomerphisms imply many
othefs. There is a dual definition based on Proposition 3.3. Of course, if e is
a V-duality, then the adjdint of € is an equivalence $ V™Y » DX and :®X and
275" are dual finite G-spectra.

We shall need a purely space level criterion for determining when a given map

e 1s a V-duality. There is a dual criterion for maps n.

Lemma 3.5. Let n: &V > XAY and e: YAX » 8 be G-maps such that the following

diagrams become commutative upon passage to suspension spectra and the stable
category.

SAx 2Ly avax  and  YAS' EANayaxay

3 lae Y eAl
xas’ s'ay 221 g0y
Here ¢ 1is the sign map, o(v) = -v, and the y are transpositions. Then the

suspension spectra of X and Y are finite and ¢ is a V-duality. Conversely,
if e is a V-duality, then there is a stable G-map n such that the specified

diagrams commute stably, and n is uniquely characterized by the commutativity of
either of the diagrams.

Proof. Define € as above and let

=3 7V5%: 8 = 3V s VER(XAY) = 1PX A TVEY.

Easy diagram chases show that stable commutativity of the given diagrams is
equivalent to commutativity of the diagrams
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2 AL o Az Y ALY and 5 Y EA e VY ArTX A TUETY

\ 143 \\ o

0 -V 0o

t X L

In the second chase, we use the fact, implied by II.5.11, that the composite
S=5Vas' AogasV 2LV AgV o s

is the identity (where the equivalences are given by duality maps, SV being
canonically equivalent to DSY). The conclusion follows from the equivalence of (i)
and (ii) of Theorem 1.6.

The reader may prefer the following nonequivariant criterion. This result has
long been folklore when G 1is finite; we first learned it from Frank Connolly.

Theorem 3.6. Let X be a G-space such that :*X is a finite G-spectrum with dual
of the form z'v'sz' for some representation V' and G-space Y'. ILet Y be a
G-space dominated by a finite G-CW complex. Then a G-map e: YA X » sV is a
V-duality if and only if its fixed point map e': Yoa X » (s is an ny-duality
for each HC G, where ny = aim(vH),

Proof. Clearly ¢ is a V-duality if and only if 1V e: 3V YaX > 8V isa
(V4V')-duality. Since V'Y is finitely dominated and z~(V*V')3®(sVY') is dual
to £¥X, we may assume without loss of genmerality that V = V'. ILet z: £°Y » "Y'
be the adjoint of :®c with respect to the adjunction given by the duality of
X and :Vi®Y'. Explicitly, ¢ is the composite

— o
2y 1AM oy A p kA s %y 2 2L 57 A 5y = 1Y

(Compare Theorem 1.6(iii).) Clearly e is a V-duality if and only if ¢ is a
G-equivalence. After suitable suspension, say by W, :%r is represented by 1"\
for a space level G-map A: Y - Y (by I.4.10). Thus ¢ is a V-duality if and only
if A is a stable G-equivalence. Applying exactly the same argument on fixed point
spaces and using II.3.14 to check compatability of the equivariant and nonequiva-
riant situations, we find that eH is an nH—duality if and only if AH is a stable
equivalence. Since Y is finitely dominated, it follows from the space level
G-suspension and G-Whitehead theorems (e.g. Hauschild [59] or Namboodiri [115,52])
that A is a stable G-equivalence if and only if each A is a stable equivalence.

The hypothesis on X is certainly satisfied if X is a finite G-CW complex,
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~and we shall see in the next section that it is satisfied more generally if X is a

compact G-ENR.

We should also record a purely space level description of dual maps. On the
spectrum level, if (n,e) and (n',e') display finite pairs (E,F) and
(E',F'), as duals and if f: E + E' is a map, then Df is the composite

F' = FuAS}_’}Jl,FtAE,,FMFI,\EtAFM,SAFg F.

f

Consistency with the spectrum level duality maps (7,€) associated to space level

duality maps (n,e) forces the following specification.

Lemma 3.7. -Let (n,e) and (n',e') be a V-duality and a V'-duality displaying
stably finite pairs (X,Y) and (X',Y') as duals and let f: X » X' be a map.
Define Df +to be the composite

yiagy l—'}—l}-Y'AX/\Y _l_Lf_'_\_Lyt,\X'AY,":_‘_/_\_:.L.;.SVIA Y.

Then the following diagram of spectra commutes.

v o -V

LI -V o - ! ©
SRS GRS O S R Bt T
© —(VG'V')co
Dr”f z £°Df
-V ~ =V! o 1 - ©. - t © H
VY 2 Aty = oA )

Further, the following diagrams of spaces commute stably, and the commutativity of
either diagram characterizes Df.

Tasiax 205y sax  anda 8Va 8V AL xiayiagt
lay lan
4 v
v v!
DfA1 Y'A X'A S S'A XAy 1ADF
e'al yal
. 1A N 4 \y‘ . v
S'A yax LRE oA xas’ ay LA L via g Ay

Also, the following composites specify a (V+V')-duality relating the pairs XA X!
and YAY'.

(- 1 '
ST T VA ANy yAxtaY RAXAL A giayay
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TAY'A X Axt 2AYALy iy yiax 285" = g
Proof. Strictly speaking, V' @V in the first diagram should be interpreted as
k(V' ® V), where k 1is the linear isometry used to internalize smash products.
The equivalences are given by I.7.9, II.l.4, II.3.6, and II.3.12(i), and the

commutativity of the diagram is just a naturality statement. Both space level

diagrams commute by virtue of the first diagram of lemma 3.5, and the rest is clear.

§4. Duality for compact G-ENR's

A G-space X is a G-ENR (Euclidean neighborhood retract) if it can be
embedded as a retract of an open subset of some G-representation V. It is a
standard fact that a separable metric G-space is a G-ENR if and only if it is a
finite dimensional G-ANR, and it was observed by Kwasik [79] that any separable
metric G-ANR has the homotopy type of a G-CW complex. Jaworowski [68,2.1] gave
a convenient characterization of G-ENR's. In the compact case, his criterion is
simply that each fixed point subspace must be a nonequivariant ENR. In particular,
any finite G-CW complex is a compact G-ENR. While compact G-ENR's have the
homotopy types of G-CW complexes, they need not have the homotopy types of
finite G-CW complexes, even stably. For example, locally linear compact
topological G-manifolds are compact G-ENR's, but several authors have produced
examples of such manifolds no suspension of which has the homotopy type of a
finite G-CW complex. However, compact G-ENR's are clearly finitely dominated
and are therefore wedge summands of finite G-CW complexes stably. Their
suspension G-spectra are thus finite (in the categorical sense studied in the
previous sections). A pair (X,A) will be called a G-ENR pair if X and A are both G-
ENR's; this is true if and only if X is a G-ENR and the inclusion AcC X is a G-
cofibration. We shall construct explicit space level V-dualities for compact G-
ENR's X and compact G-ENR pairs (X,A).

For a pair of unbased spaces (X,A), defined C(X,A) to be the unreduced
mapping cone X u CA with cone point 1 ¢ I as basepoint. By definition or
convention, C(X,4) = X*. If X has a nondegenerate basepoint *, then C(X,*),
which is just X with a whisker grown from its basepoint, is based G-homotopy
equivalent to X. We shall prove the following version of the Spanier-Whitehead
duality theorem.

Theorem 4.1. Let (X,A) be a G-ENR pair with X embedded as a neighborhood retract
in a representation V. Then C(X,A) and C(V-A,V-X) are V-dual. In particular,
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X" and C(V,V-X) are V-dual and, if X has basepoint ¥ X and C(V-¥,V-X) are

V-dual.

- The classical Spanier-Whitehead theorem asserts that if a based finite
polyhedron is simplicially embedded in Sn+1 (with respect to some triangulation),
then X and S™1.X are n-dual. We sketch how to think of theorem 4.1 from the
point. of view of complementary embeddings in spheres.

'Remark 4.2. Think of s'*1  as the unreduced suspension of S'. Fmbed C(X,A) in

Svfl- by using the given embedding of X at level 1/3 and letting the cone
coordinate run from 1/3 to 1. Clearly C(V-A,V-X) is equivalent to c(sV-4,8"-x).
Embed the latter in SV*% by embedding V-A at level 2/3 and letting the cone
coordinate run from 2/3 to O. (Draw a picture!) With these embeddings, it is
intuitively clear that C(S'-A,S8V-X) and C{(X,A) are G-deformation retracts of
each other's complements.

We need two preliminary lemmas about mapping cones to specify the duality maps
to be used in the proof of Theorem 4.l. For a G-map f: (X,A) » (Y,B), 1let C(f)
denote the induced map of mapping cones. Clearly C 1is a homotopy-preserving
functor from pairs of G-spaces to based G-spaces. Say that a G-space X is normal
if any two disjoint closed G-subspaces A and B of X have disjoint open
G-neighborhoods. The proof of Urysohn's lemma goes through equivariantly to show
that there is then a G-map X + I which takes the value O on A and 1 on B.
Just as nonequivariantly, if the topology on X is given by a G-invariant metrie,

then X is normal.
lemma 4.3. If Uc ACX, then the excision
(X-U,A-U)— (X,8)
induces a based G-homotopy equivalence on passage to mapping cones under either of
the following two hypotheses.

(i) UCA and X is normal.

(ii) The inclusions A-U » X~U and A » X are G-cofibrations.

Proof. (i) ILet wu: X + I satisfy wu(x) =0 if x ¢ A and uwlx) =1 if
x ¢ U It is easy to check that the space

(X-A) v {(a,s) | a e A-U and s > u(x)}

embeds as a G-deformation retract in both C(X-U,A-U) and C(X,A).

(ii) Collapsing the cones C(A-U) and CA +to a point gives G-equivalences from
C(X-U,A-U) and C(X,A) to
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(X-U)/(A-U) = X/A. : . Blxay) = (x,y)
Observe that C(X,A)AY' is naturally G-homeomorphic to C(X x Y,A x Y). We B((a,s)ay) = ((a,y,1),s)

shall need a generalization of this fact.

Blx ~(b,t)) = ((x,b,0),t)
Lemma 4.4. For pairs of G-spaces (X,A) and (Y,B), define
((a,b,1-t/28),8) if s3> t

0]

a: C(X,A) AC(Y,B) =C(X x Y, X x BUA x Y) g ~ Bl(a,s) 4 (b,t))
((a,b,s/2t),t) if s < t.

by the following formulas, where x ¢ X, y € Y, (a;s) ¢ CA and (b,t) e CB. Thus it remains to check that n is a G-equivalence over X x Y under either of

our hypotheses (i) and (ii).

alxay) = (x,y) © (i) Let wu: (X x B) W (A xY) I satisfy ulx,y) =0 if x¢ A and
u(x,y) =1 if y ¢ B. Define y: X x BUAx Y » Z by
al(a,s)ay) = ((a,y),s)
¥ix,y) = (x,y,ulx,y)).
al{xa (b,t)) = ((x,b),t)

Then wp =1 and yr = 1 via an evident homotopy.

i

al(a,s) A(b,t)) = ((a,b), max(s,t)).

(ii) Here we apply the standard fact that the pushout functor preserves

) G-equivalences when applied to diagrams one leg of which is a G-cofibration.
If A or B is empty, then o is a G-homeomorphism. In general, o 1is a

G-homotopy equivalence under either of the following two hypotheses. Henceforward, we shall often use the (categorically incorrect) notation
(i) A is open in X, B is open in Y, and (X x B) W (A x Y) is normal.

(ii) One of the inclusions A + X and B+ Y is a G-cofibration. (X,A) x (,B) = (X x Y,X x BUA x Y).

Proof. The homeomorphism part is clear so assume that A and B are nonempty.

let Z denote the double mapping cylinder Observe that o is associative and commutative in the obvious sense.

(X x Bx {0}) (A xBx I) WA xYx {1}). Construction 4.5. (i) Choose a G-map
Let w: Z » (X x B)u (A x Y) be the obvious quotient map and let p be the g1 C(V=-A,V-X) A C(X,A) —8¥
composite of 7 and the inclusion of (X x B) W(A xY) in X x Y. Then
induces a map which makes the following diagram commute up to G-homotopy.

C(m): C(X x ¥,2)—»C(X x Y,X x BuUA x Y), C(V-4,V-X) A C(X,4) —25 C[(V-A,V-X) x (X,A)]
where C(X x Y,Z) denotes the unreduced mapping cone of p. Clearly C(w) is a G- € c(a)
equivalence whenever 1w is a G-equivalence over X x Y. The map o is the
composite of C(w) and the G-homeomorphism - C(V,V-B) ——> C(V,V-{0})

g: C(X,A)A C(Y,B)—C(X xY,Z) Here d 1is the difference map, d(v,x) = v-x; B 1is any closed disc about the

origin in V and the unlabeled arrows are the obvious equivalences.

specified by (ii) Iet r: N+ X be a G-retraction of an open neighborhood N of X in V.
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Since A ¢ X is a G-cofibration, (X,A) dis a G-NDR pair and there is a
G-homotopy h: X x I » X such that h(x,0) = x, h(a,t) = a for a ¢ A, and

s = hl restricts to a G-retraction U + A for some open neighborhood U of A
in X. The composite sr: r'lU + A is a G-retraction of an open neighborhood of
A in V. Since X 1is compact, we may arrange that N is contained in a closed
disec B about the origin in V. Choose a G-map

n: 8 —»C(X,A)A C(V-4,V-X)
which makes the following diagram commute up to G-homotopy.

87 <= C(V,7-B) —= (¥, (v-X) L 1) &2 c(nea, (N-X)  (U-4))

cla)
n ClN, =) x (V-A,V-X)]
‘C(srx1)
4
C(X,A) A C(V-A,V-X) ——Pts CL(X,A) x (V-4,V-X)]

Here C(i) is an equivalence since Lemma 4.3(i) applies to the excision i. Of

course, when A is empty, U is also empty and the diagram simplifies accordingly.

We shall use the criterion of Lemma 3.5 to show that the pair (e,n) gives a
V-duality between C(X,A) and C(V-A,V-X).

Lemma 4.6. The following diagram is G-homotopy commutative.
v nAl
S'A C(X,A) ———> C(X,A) A C{V-A,V-X) A C(X,A)
1ae

c(x,a) a s’

Proof. By an easy inspection, it suffices to show that the following diagram of

pairs becomes G-homotopy commutative upon passage to mapping cones.
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(V,7-B) x (X,A) —= (V,(V-X) U U) x (X,A) <L (NoA, (N-X) © (U=A)) x (X,A)

e A x1
N 4

Y (N,r "U)

X

(V,7 - 0 2L (n,27h0) x (V-A,7-X) x (X,4)

sr x 1 srx 1 x1

\ ,J' L,

(X,4) x (V,V-B) —> (X,A) x (V,V - {0}) <=2 (X,8) x (V-A9-X) x (X,A)

The bottom right square commutes trivially. The map e 1is specified by
e{v,x) = (x,v-x). The homotopy k of maps of pairs specified by

k(v,x,t) = (x,v - tx)

and the facts that r =1 on X and s = 1 rel A show that the left part of the
diagram is G-homotopy commutative. For the top right square, define

M= {(n,x) | tx + (1-t)ne N for 0 <t <1} € (N-4) x X

and consider the following schematic diagram (in which Ay denotes the diagonal
subspace of Y x Y).

M = ay ) € ((N-A) x X, (N=A) x X = &y 1) D (N-A, (N-X) U (U-)) x (X,4)

%\ (N,r-lU)lxl(V,V Y ‘%

In each pair of arrows, the first is given by (n,x) + (n,n-x) and the second by
(n,x) » (x,n-x). The two left arrows are in the same homotopy class by the
definition of M. Since the left inclusion is an excision, Lemma 4.3 implies tha
the two right arrows induce homotopic maps of mapping cones.

. When A 1is empty, the following lemma completes the proof of Theorem 4.1.

Lemma 4.7. The following diagram is G-homotopy commutative.

C(V,V-X) A 87 E200(V,7-X) aXTA C(V,V-X)

Y eAl

s¥a o(v,v-x) 224 §VA o(v,v-x)
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Proof. By an easy inspection, it suffices to show that the following diagram of
pairs is G-homotopy commutative.

(V,7-X) x (V,V-B) —> (V,U-X) x (V,U-X) +2Fe  (V,VX) x (N,N-X)

ll x A

(V,v-X) x N x (V,V-X)
1xrxl

(ox1)y g f

(V,V=B) x (V,V=X) —> (V,V - {0}) x (V,V-X)S2L  (v,v-X) x X x (V,V-X)

Here f(v,n) = (v-n,n) and g(v,v') = (v-v',v). On the right,
(d x 1)(1 x 7 x 1)(1 x A)(v,n) = (v-r(n),n),

and (v,n,t) » (v-[{1-t)n + tr(n)],n) gives a homotopy from f to this

composite. Similarly, we have linear homotopies
(v,n,t) = (v-n,(1-t)v + tn) and (v,v',t)—=(tv-v',v)
from g(l xi) to f and from (o x 1)y to g.

When A is nonempty, points in the diagonal subspace Ay obstruet the
definition of maps f and g as above. We complete the proof of Theorem 4.1 by
deducing the relative case from the absolute case.

lemma 4.8. The following diagram is at least stably G-homotopy commutative.

v

C(V-A,V-X) A 87 LATLG(V_A,V-X) A C(X,A) A C(V-A4,V-X)

Y eal

SVA C(V-4,V-X) —22L o VA G(V-4,V-X)

Proof. By Lemmas 3.5 and 4.6, we need only show that the map e in the diagram is

a V-duality. Observe first that there is a natural G-homotopy equivalence
r: ClC(V,V-A),C(V,V-X)] —>= LC(V-A,V-X),

where the outer cone in the domain is reduced rather than unreduced. In fact, g is
Jjust tﬁe quotient map obtained by collapsing the cone CV to the basepoint and
transposing the two cone coordinates of CC(V-X). We can use the reduced cone on
the left since ¢ collapses the line through the inmer cone point to the
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. basepoint. Thus we have a based cofibration sequence

C{V,V-X) —» C(V,V-A) —=5£C(V-A,V-X)

in which the second map is obtained by collapsing out V and including. Of course,
we alsp have the based cofibration sequence

AT — X" — C(X,A).

. The following two diagrams are clearly G-homotopy commutative.

CV,V-X) A A" ——>0(V,v-X) A X

cv,v-p)an — & o gv

and

C{V-A,V-X)A X' ———> C(V-A,V-X) AC(X,A)

CV,v-X)ax —& 5 ¥

A little less obviously, the following diagram is stably G-homotopy commutative up
to the sign -1.

C(V,V-A) A C(X,A) ——C(V,V-A)A zA" = £[C(V,V-A) A A"]

e

ZC(V-A,V-X) AC(X,A) T £[C(V-A,V-X) A C(X,8)] —2&—s5s"

To see this, replace s¥ by C(V,V - {0}) and collapse out the contractible
G-space V. The target 35S' is then replaced by zz{(V - {0}), where the inside
suspension is unreduced. The two resulting maps into the new target are easily
checked to differ only by a transposition of suspension coordinates. Since we are
working stably (compare Lemma 4.9 below), we may as well assume that V contains a
copy of the trivial representation. This allows us to choose a G-fixed basepoint

in V - {0} and pass to the reduced suspension, whereupon the assertion becomes
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clear. By the three diagrams above and an easy comparison of long exact sequences,
¢ is a V-duality in the relative case because it is a V-duality in the absolute

case.

The previous proof used instances of two useful general naturality properties

of e.

Lemma 4.9. If (X,A) C (X',A') dis an inclusion of compact G-ENR pairs in V,
then the following diagram commutes.

C(V-A",V-X') AC(X,A) ———= C(V-A",V-X') AC(X',A")

C(V-A,V-X) AC(X,A) ——F—s g

Lemma 4.10. Iet (X,A) be a compact G-ENR pair in V¥ and let VCV' with
orthogonal complement W. Then the diagram

tC(V-A,V-X) ==  C(V-A,V-X) AC(W,W - {0})

C o
C(V'-A,V1-X) SXEI8IO0 6 (y_p vox) x (W,W - {O})

specifies a G-homotopy equivalence ¢ such that the following diagram is G-homotopy
commutative.

~

£ (V-A,V-X)A C(X,A) = 5"[C(V-A,V-X)A C(X,A)]

tal e
1 ~
C(V'-A,V'-X) AC(X,n) —E=8" 2 3"

The explicit geometric nature of the maps e and n often allows explicit
evaluation of dual maps. We give two examples.

Iemma‘A.ll. The dual of the projection &: xt - SO is the "Pontryagin-Thom" map

t: 8" «— C(V,V-B) —»C(V,V-X).
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Proof. Of course, P is O-self dual via & = 04 80, According to Lemma 3.7,
the dual of ¢ is the composite

s' ext ac(v,v-x) E2%0(v,v-x).

A simple inspection shows that this agrees with +t.

"Lemma 4.12. Define the "Thom diagonal" aA: C(V,V-X) + X*A C(V,V-X) +to be the

composite

o(v,v-x) «C2L oy wx) S8 0w« (v,v-x))

-1
Sl 6(x % (V,V-X)) —%—»X*A G(V,V-X) .

Then the following diagram is G-homotopy commutative.
s'A X" —X s x'A g7 ARL yA xta &Y
nAal 1ala ¢
XA oV, v-x)axt 22801 ¥a ¥ OV, V-X)A X7

Proof. This follows from the definitions of n and ¢, the relation
(LA e)(nAl) = y, and the transitivity diagram
A +
Cc(V,Vv-X) ——= XA C(V,V-X)
A l LlA A

X" ac(v,v-x) 225" x*a o(v,v-x)

We must justify thé terminology used in the lemmas.

Remark 4.13. It is often the case that V-N is a G-deformation retract of V-X,

V-U is a G-deformation retract of V-A, and the inclusion of V~N in V-U is a

G-cofibration. Under these circumstances, we have natural G-equivalences
C(V-A,V-X)&— C(V-U,V-N) ~—>(V-U)/(V-N).

When A is empty, V/(V-N) is G-homeomorphic to the l-point compactification N°

of N. The "Pontryagin-Thom" map of Lemma 4.11 corresponds under these equivalences
to the Pontryagin-Thom map t: SY + N® obtained by collapsing the complement of
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N to the basepoint. The "Thom diagonal" of Lemma 4.12 corresponds to the Thom
diagonal a: N® » X*ANC® obtained from the composite

N Laytant ZALytA N

by use of the natural based map N* » N®. In the manifold context of the next
section, N will be a tubular neighborhood of X and r will be the bundle

projection.

§5. Duality for smooth G-manifolds

It is now a very easy matter to compute the duals of smooth G-manifolds and to
be rather more precise about the duality maps than is customary. We shall need the
precision in our discussion of Poincaré duality. We begin with the closed case.
Let Tn denote the Thom complex of a G-vector bundle n.

Theorem 5.1. lLet M be a smooth compact G-manifold without boundary smoothly
embedded in a G-representation V. Let v be the normal bundle and let N be a
tubular neighborhood of M in V. ILet

n 8 L n® T ooy LawtaTy

be the composite of the Pontryagin-Thom map and the Thom diagonal. Let s: M +» v De
the zero section, observe that the normal bundle of the composite

M—Loym x M E21sy o
is
Aus ®1) @ w(a) = v® T = M x V,
and let
e: Toal —Lontag? E8LgY
be the composite of the Pontryagin-Thom map associated to a tubular neighborhood

of (s x 1) A and the canonical projection. Then -n and e display MY and
Tv as V-duals.

Proof. As observed in Remark 4.13, C(V,V-M) is canonically G-equivalent to Tv.
Write n' and ' for the duality maps of Construction 4.5. It is easy to check
that n' corresponds to n under the equivalence. Rather than try to obtain the

to a tubular neighborhood of the embedding
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. analogous (and much less obvious) comparison of ' and e directly, we note that,

by the dual version of Lemma 3.5, it suffices to prove that the following diagram is
G-homotopy commutative.

S TR EES VAN NN T
\\\\* llAa
N
Ma s’
The composite (1ae){nAl) is easily seen to be the Pontryagin-Thom map associated

M—%Mng—i—LVxM,

where 1 is our given embedding of M in V. For a radial embedding r: V+ V of V as
a sufficiently small open ball around the origin, a second, isotopic, tubular
neighborhood M x V + V x M is specified by sending (m,v) to (r(v) + i(m),m).
Clearly the Pontryagin-Thom map for this second tubular neighborhood is homotopic to
the switch map.

The last few results of the previous section imply the following addenda.

Corollary 5.2. The dual of the projection ¢: M" > 89 is the Pontryagin-Thom map
t: 87 > Ty

Corollary 5.3. The Thom diagonal fits into the stably G-homotopy commutative
diagram

s'ant —Ys Mas’ A0L A nta g’
nAl,l, binaa e
M A TvA M 1aanl Ma M A Ty M.

Similarly, we have the Atiyah duality theorem for smooth G-manifolds with
boundary.

Theorem 5.4. ILet M be a smooth compact G-manifold with boundary. Let V = V' x R,

where (M,3M) is properly embedded in (V' x [0,=),V' x {0}), and let v' and
v be the normal bundles of 3M in V' and of M in V. Then the cofibration
sequence

Ty — Tv —Tv/Tv' —> ETV'

is V-dual to the cofibration sequence




154

s(oM ) e— M/oM =—M" «—aM'.
Proof. Since our embedding is proper, we may assume that it restricts to the
obvious embedding oM x [0,4] > V' x [0,4] on a boundary collar M x [0,4]
inside M. (Use of 1[0,4] rather than [0,1] will aid in the check that all three
maps in the two sequences are dual to one another.) Glue another boundary collar
oM x [-1,0] on the outside of M to obtain a manifold M embedded in
V' x [-1,%), and let § be a tubular neighborhood of M in V' x [-1,=). If

N=RA(V x (-1,) and N' =8 A (V' x(-1,1)),

then N 1is the normal bundle of I - M and N' is the normal bundle of
M x (-1,1). Let

M = M- (aM x [0,3)) and Ny = NA (V' x (2,=).
Then N; is the normal bundle of M - (aM x [0,2]). Via a direction reversing
homeomorphism from the interval [0,1] to the interval [0,3], we obtain an
identification of <z(aM") with M/(aMu M;) under which the boundary map
M/aM = MY o c(aM’) —=z(aM)
becomes homotopic to the quotient map
M/BM-—->M/(8MQM1).

The horizontal arrows are equivalences in the commutative diagram

C(V - (M v M), V-M) «——C(V - (N'w N;)},V-N) —> (V-0Nw Nl))/(V-N)

}

C(V - aM,V-M) e C(V-N',V-N) —_— (V-N'")/(V-N)
C(V,V-M) B — C(V,V-N) — V/(V-N)

t ¥
C(V,V-3M) T C(V,V-N') —— v/ (V-N')

By Theorem 4.1 and our comparison of {aM™) to M/ (M M), the left column is
V—dua; to the sequence

Tl oM") e—M/ M e—M" e— M".
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. By inspection, the right column is equivalent to the sequence

Tv ~——’T\) ——,T\)/T\" —————»ET\)' .

where V 1is the pullback of v' along the projection oM x [1,2] + 3M. Since
there is an evident equivalence TV = Tv compatible with the inclusions TV + Tv
and Tv' + Tv, this proves the result.

'

As in Theorem 5.1, it is easy to write down explicit descriptions of the

_relevant duality maps n and e. For example, n: SY » M/3M ATv can again be

described as the composite of the Pontryagin-Thom map +t: S’ » Tv/Tv' and the Thom

diagonal A: Ty/Tv' > M/3MATv. We leave the remaining cases to the reader.

In our treatment of Poincaré duality, we shall need a technical result on the
relationship between local and global duality on manifolds.

Proposition 5.5. Iet M be a smooth compact G-manifold smoothly (and properly)
embedded in a G-representation V with normal bundle v. Let x e M - 3M have
isotropy group H, let Z Dbe the fibre at x of the normal bundle of Gx € M and
let W Dbe the fibre at x of v. Extension of G/H = Gx CM 1o a slice

G xHZ + M gives rise to a "local Thom map" Tyt M/3M » G-‘“AHSZ (where M/0M 1is
interpreted as Mt if M is empty). The bundle inclusion G xyW » v gives rise
to an induced map Jyt GfAHSW + Tv. The maps t, and Jy are dual to one another.

Proof. We shall prove that the following diagram commutes.

1nt_al
(G+AHSW)A M/3M ATy —— (G+/\HSW) '\(G+AHSZ)A Ty

1lan eyal

5 AL
(@ a8 AT Es 1y as’ <X sV,

(Compare Lemma 3.7.) Here n is the composite At, as above, and ¢ is the
explieit duality map of Proposition 2.11. This makes sense since if I is the
tangent H-representation of G/H at the identity coset, then L ® Z® W is
H-isomorphic to V, so that tlg? and ¥ are v-dual H-spectra. Note that ¢
depends on a choice of H-equivalence RN LN Sv, and we are free to insert a
sign if we choose (see Warning 1.7); ey is again a duality map by Theorem 1.6. A

little diagram chase shows that the composite around the top can be written in the
form

-1 W

1a,a
(* AHSW) As’ LY AMENE -—:I{——FG+/\H(Tv'\SV) Erroad’,
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where ¢ 1is the G-homeomorphismn specified above II.4.1 and £ is the G-action

map. The H-map o 1is specified by commutativity of the diagram

1At Al

A
s’ 25 a gy L2 A wamary —2—s"a (6" 8 ATy
o YAl
Tvas’ « s'any ==stasla st Ay 2L (6T s%)a 8V ATy,

where u 1is as defined in II.5.5. Let 7: v + M be the bundle projection.
Clearly alwav) = *¥ unless v 1is in the copy of v in the chosen tubular
neighborhood of M, n(v) 1is in the slice G xyZ, and, in there, is in the slice
L xZ wused in II.5.5. Therefore o factors through 1at', where

' sV 5 gla sfagW - Sv is a Pontryagin-Thom map H-homotopic to the identity
determined by the various embeddings in sight. Regard t' as an identification.

Then, for w,w' e W, x e L, and 2z ¢ Z,
lWAAAZAW') = (X,2,W)A (AnzZA W),

where (A,z,w') ¢ Tv is to be interpreted as the point w' in the fibre of v at
the point (A,z) ¢ L x ZC G x3Z CM. On the other hand, jyAl can be written as
the composite

-1 1.8
(6" a 87 o ata (M ash) —HEugs (tuas’) ErTyas,
where
BlwarxAazaw') = (x,wa (Aazaw').

Since L x Z is H-contractible, this neighborhood in M contracts to x. Thus, up
to the sign introduced by interchange of w and w' (see II.5.11), o« and B are

H-homotopic. We may alter ¢ (and thus a) by the same sign and so obtain the
result.

Remark 5.6. We have restricted the material above to smooth G-manifolds for
simplicity and our own security. However, using the foundational material developed
by Lashof and Rothenberg [82] and its generalization from finite groups to compact
Lie grbpps, it seems that one can carry out everything above and in the next section
in the more general context of locally linear compact topological G-manifolds. The
essential point is that such manifolds are compact G-ENR's and have slices, normal
bundles, tubular neighborhoods, and boundary collars with the usual properties.
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As noted by Atiyah [6], Theorem 5.4 implies a duality theorem for the Thom
complexes of vector bundles over closed manifolds.

Theorem 5.7. Let M be a smooth compact G-manifold without boundary smoothly

embedded with normal bundle v in a G-representation V. Let & be a real
G-vector bundle over M and let n be a complementary bundle with respect to a
G-representation W, £ ®n ~ M x W. Then T¢ is (VeW)-dual to T(v ® n).

‘Proof. We may give £ a smooth structure. If Df and Sg denote the unit disc

and unit sphere bundles of ¢ then Dg is a smooth G-manifold with boundary Sg

and Tg = Dg/Sg. Thus Tg is Z-dual to Tw, where  1is the normal bundle of a

suitably nice embedding of D¢ in a G-representation Z. Let #: Dg + M be the
projection. Clearly the tangent bundle of Di is e ®¢), where 1t is the
tangent bundle of M, and of course Tt ® £) ® 1 (v ® n) is the trivial bundle
V@®Wover Dg. This implies that w + VAW is stably equivalent to T (v® n) ® Z.
Interpreting duality maps stably, Te is (VAW ® Z)-dual to "V, and thus to
ﬁhﬂv@ﬂ.TMmmm Tg is (V@ W)-dual to nﬂv@m.smw r is a
G-homotopy equivalence, To (v ® n) 1is G-homotopy equivalent to T(v® n).

§6. The equivariant Poincaré duality theorem

We begin by describing the Thom isomorphism of an oriented G-vector bundle ¢
over a G-space Y. If i: G/H »Y is the inclusion of an orbit, then i*g is of
the form G xyW ~ G/H, where W 1is the fibre H-representation at i(eH). Thus
T(i*g) = G+"HSW. Let E Dbe a commutative ring G-spectrum. (We index
G-spectra on a fixed complete G-universe.) Let e: RO(G) + Z be the augmentation.

Definition 6.1. An E-orientation of £ is an element o of RO(G) such that ela)
~a
is the fibre dimension of ¢ together with a class y e Eg(Tg) such that the

restriction of u to EE(T(i*g)) = Eﬁ(sw) is a WE(E) generator for each orbit
inclusion 1i: G/H + Y with fibre representation W.
~*
The definition makes sense since EH(SW), regarded as graded over RO(H), is
a free wf(E)—module on one generator, where nE(E) is also understood in the
RO(H)-graded sense.

If Y is G-connected, there is an obvious preferred choice for o, mnamely the
fibre G-representation V at any fixed point of Y. Here any fibre H-represen-
tation W as above is isomorphic to the restriction of V to H. For general Y
and &, there is no obvious preferred choice for «, and the existence of an
orientation implies restrictions on the coefficients nE(E). If ue Eg(Tg) is an

orientation of £ and W is the fibre H-representation at i(eH) for an orbit
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. ~Q ’
inelusion i: G/H + Y, then i*(u) ¢ EH(SW) = nﬁ_a(E) must be a unit. If o # w,
the existence of such a unit forces a certain amount of periodicity in the theory.

If ACY is a G-cofibration, the relative Thom diagonal
A Tg/T(g|A) —=Y/AA TE
gives rise to a cup product
EN(Y,A) @ E¥(Tg) —=E (Tg,T(g]A))

(where T(g|A) is a point if A is empty). An easy homotopical proof of the

following equivariant Thom isomorphism theorem is given in X§5.

~0,
Theorem 6.2. Let u e Eg(Tg) be an orientation of the G-vector bundle ¢ over Y.
Then, for a G-cofibration AcC Y,

uw EB(Y,A) —E®*B(Tg,T(£]A))
is an isomorphism for all g e RO(G).
Now specialize to the context of smooth G-manifolds.

Definition 6.3. A smooth G-manifold M is said to be E-orientable if its tangent
bundle <t is E-orientable, and an orientation yu of 1 is also called an
orientation of M. If M has boundary, then the smooth boundary collar theorem
shows that the normal bundle of the embedding oM + M is trivial. Giving it the
canonical orientation 1 e EG(Z(8M+)), we obtain a unique orientation sy of M
such that 3p ® 1 is the restriction of yu to M.

let npe EgT(r) be an orientation of M. Embed M in a G-representation V
and let ' denote the normal bundle of the embedding. Iet ve By “(T(r)) be
the unique orientation such that v® u is the canonical orientation in
EV(z'M"). We obtain the Poincaré duality isomorphism by combining Atiyah duality,

Spanier-Whitehead duaslity, and the Thom isomorphism.

Definition 6.4. If M is a closed E-oriented smooth G-manifold, then the composite

- Bp (o)) —= 8

EG a—B(M)

. b
D: EG(M) —

of thé Thom and Spanier-Whitehead duality isomorphisms is the Poincare duality
isomorphism. The element ([M] = D(1) in Eu(M) is called the fundamental class
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Aassoci'ated to the orientation. If M 1is a compact E-oriented smooth G-manifold
with boundary, then the analogous composites

B T ot
D: Eq0) —= BT Fr(eh) —= 22 o, a0

and

D: Eg(M,aM) — gy i) re ) —= 5% on
o-8

are the relative Poincaré duality isomorphisms. The element [M] = D(1) in
Ea(M, M) is called the fundamental class associated to the orientation.

Theorem 5.4 and a direct comparison of definitions give the following result.

Proposition 6.5. The Poincaré duality isomorphisms are all given by the cap product

with the fundamental class. In the case of manifolds with boundary, the following
diagram commutes.

-1
coe =BG (o) —2mEE (M, o) — el — Bl —=...

D D D D

G G G G
TE, (M) —=E_ () —=E_ O, —E_ ) (a0) —= ...

The fundamental class of an E-oriented G-manifold admits a loeal description,
as in the nonequivariant case.

Definition 6.6. ILet M be a smooth compact G-manifold. For x M-3M, let

bty M/3M > ¢* AHSZ be a local Thom map at x (as in Proposition 5.5), where H is
the isotropy group of x and Z is the fibre at x of the normal bundle of Gx ¢ M.
An E-fundamental class of M is an element o of RO(G) such that e(q) = dim M
and an element [M] e E%(M, M) such that the image of [M] under the composite

t
G x¥ oG, Lt Z z ¢ gl*2
E_(M, 3M) T E (G AST) = Cl(S )

. H o~
is a ny(E)-generator of EE(SL*Z) for each x e M-aM. If oM = ¢, the same
definition applies with M/3M interpreted as M.

Proposition 6.7. Let M be a smooth compact G-manifold smoothly (and properly)
embedded in a G-representation V. Then the Spanier-Whitehead-Atiyah duality
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isomorphism

V=01 Ly ~ G

E, (T(7)) = Ea(M/sM)
restricts to a bijective correspondence between E-orientations of rl (and thus
of t and M) and E-fundamental classes of M.
Proof. Let t,: M/oM - G+A.HSZ be as in Definition 6.6, let W be the fibre of
4 at x, and let L be the tangent space of G/H at eH. Thus V 1is
isomorphic as an H-representation to L + Z + W. If jy: g'A HSW > (Y is
induced by the inclusion of G xgW in rl, then the top square of the following
diagram commutes by Proposition 5.5 and the bottom square commutes by Proposition
2.11.

ooy —=— B/

G
. * t
Jx <%

V=01, At W Z Gt Z
EG (G A HS ) ———> Eu(G IN HS )

1 i
#-ogh) = gHgl?

H o

The result follows from the diagram and the definitions.

Scholium 6.8. In the nonequivariant case, the previous result is given in Switzer
[137,14.18]. As Stong observed, Switzer's proof falls because it relies on
[137,14.9], which is false. Our proof escapes the difficulty in [137] by connecting
global orientations and fundamental classes directly rather than via local

orientations and fundamental classes.

§7. Trace maps and their additivity on cofibre sequences

To begin with, we return to the categorical context of section 1 and assume
given a closed symmetric monoidal category & with unit S, product A, and
internal hom functor F. We introduce a general categorical notion of a trace map.

Definition 7.1. Let X and C Dbe objects of &, with X finite, and let
f: X +X and A: X » XAC be morphisms of &. Define the trace of f with
respect to A, denoted <(f), to be the composite

S e X ADK —LoDX #X 225 px ax 224 pyaxac 25540 T,
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If C=S and A is the unit isomorphism X = XA S, then <(f) is denoted
x(f) and called the trace (or Lefschetz constant) of f. If f is the identity
map, x(f) is denoted x(X) and called the Euler characteristic of X. If

C =X, we call A a diagonal map; here, if f is the identity map, <(f) is
denoted 1(X) and called the transfer (or pretransfer) of X.

To see the intuition, the reader should check for himself that the "trace®

vx(f) of a linear transformation f: X » X on a finite dimensional vector space X

really is the usual trace and that, if X is graded, the "Euler characteristic"

x(X) .really is the usual Euler characteristic. The verification will show the

- essential role played by the transposition vy, with its associated sign.

In the context of G-spectra, the transfer and Euler characteristics will be
central to the work of the next two chapters. There only the identity map f will
be used, but we shall work with general maps in this chapter with a view towards
applications in equivariant fixed point theory.

In practice, C is usually a "coalgebra" and X is a "right C-comodule". This
means that C has a coassociative coproduet A: C + CAC with a two-sided counit
(or augmentation) &: C + S and that the following diagrams commute.

X —2~ xac and X

Al ]14 A Al Qi}
AN xac 126y as.

XAC —=XACAC
The second diagram clearly implies that g.t(f) = x(f) for any map f: X » X. We
shall refer to our given map A: X » XAC as a coaction of C on X even when we
don't assume the extra data just specified.

Since (fal)n= (1ADf)n and el(laf) = e(DfA1l), easy diagram chases show
that the same map +(f) 4is obtained by inserting any one of the four composites

1af 1AfAl
— 1AM lAap —_—
DX AX DFA T DXAX DXAXAC and DXAX ——=>DXAXAC mDX'\XAC

between yn and e. This fact aids in the verification of the formal properties of
the trace, which we catalog in the following series of lemmas.

Lemma 7.2 (Unit property). x(f) = £ for any map f: S » S.

Lemma 7.3 (Fixed point property). Let C coact on X and let f: X + X and

h: C » C be such that (fAh)a = aAf. Then ht(f) = 1(f).

Lemma 7.4 (Invariance under retraction). Let C coact on X and D coact on Y
and let k: X » Y, k': Y X, and h: C » D be such that k'k =1 and
(kah)a = Ak. Then hrt(f) = t(kfk') for any map f: X » X.
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In particular, we can take C = D and give Y the coaction (kA1l}ak' induced by.
the coaction on X. When k is an equivalence, we view this as a homotopy invariance
property.

Lemma 7.5 (Commutation with products). Let C coact on X and D coaect on ¥

and give XAY the coaction
xay 2085 acayap L2y AyacaD

by CAD. Then t{fag) = t(f)at(g): S = SAS » CAD for any maps f: X » X and g: ¥ » Y.

In practice, and in the next lemma, § is an additive category and the -
functor A is bilinear. We then write v for the biproduct (which is the wedge
sum in our categories of spectra and the direct sum in the usual categories of
modules). Here D(XvY) =DXvDY and XvY is finite if X and Y are finite.

Lemma 7.6 (Commutation with sums). Let C coact on X and Y and give XvY the

coaction

vy 2Y4 (xac)v (Y AC) £ (XvY)a C.

Then, for any map h: XvY » XvY, t(h) = <(f) + t(g), where f and g are the
restrictions X +X and Y +Y¥ of h.

The force of this result is that the cross terms X +Y and Y »X of h

make no contribution to t(h), as one would expect of a trace function.

Proposition 1.9 has the following immediate consequence.

Proposition 7.7. Let ¢: (7 » & be a monoidal functor whose unit map x: T » 85 is an
isomorphism. ILet X be a finite object of § such that ¢: ¢XAeDX » (XA DX) is

an isomorphism. Let C coact on X and give ¢X +the coaction

-1
X 225 o(XaC) L—> sXAC

by ¢C. Then the following diagrams commute for any map f: X » X.

Xl gg gl
)\l l)\ )\l ”
as 2L, o5 o5 25, o0
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We now focus attention on the category hG3U of G-spectra, where we either
assume that U is a complete G-universe or restrict attention to G-CW spectra

built up out of cells G/H'A e such that G/H embeds in U.

Lemma 7.8. For any integer n, x(S") = (-1)®. 1If a G-spectrum C coacts on a
finite G-spectrum X and "X is given the coaction

- . Px s Pixac) = (FHAC,

Then - t(1®f) = (-1)P¢(f) for any map f: X + X.

Proof. Under the equivalence &2 = psi adjoint to the standard equivalence
SA 8% = 9, y(S?) corresponds to the transposition

S =X"as™ Xes AR = g,

which has degree (-1)®. By lLemma 7.5, <(if) = y(S%)z(f).

Proposition 7.9 (Invariance under change of groups). Let HCG and let X be a
finite H-spectrum with a coaction by an H-spectrum C. Give G "‘HX the coaction

G s X ELLW w (XA C) Ix(1an), o by (X A LG 3,0)) (G s X) A (G 5,0)

by G xyC. Then the following diagram of G-spectra commutes for any H-map
f: X + X, where (G “HS) is defined with respect to the diagonal coaction of
G xS = I°G/H on itself.

T(GNHS) T(1xf)

G 1S letlf) o ol

Proof. Let Y = DX. Proposition 2.11 gives explicit maps displaying G kX and

G NH):’LY as dual finite G-spectra. We note that the composite

n

G vy (XA 270Y) Ix{nal), o (G ) A £ T (6 X AlG xHE'LY)

appearing there coincides with the composite

Ix(1la n)

ne

G «H(X ~zly)

G oy (XA (6 g2 )] T (G oK) A (6 agn oY)

since these two G-maps give the same H-map when precomposed with
n: iarly 5 KH(XAZ"LY). Now direct inspection of definitions and easy diagram

chases show that, with the notation of Proposition 2.11, (1 x f) is the composite
G-map
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5 ——?‘-'—’G by (XA ity e g(TAX A(G xC)) =6 xy(YAX) A (G bxyC) L xyCs
where ¢ is the composite H-map
O N D) A X 28D (6 YA x

ul\ll\l

128, (6 w7y axac 2% (6 I ) A X A (G 1,0) TAX A(G sg0).

Visibly, this last composite coincides with

xaply Toun g,y Gaa) U8y vy g ac 22280,y 4 x4 (G w00

Here the composite H-map
D O
agrees with the composite
Tash Iy o (o s sh) 2hya s

(Actually, un: ST » S0 is the dual of 1 Te, e: SO » SF; compare II.6.12.) We
may express (G wyS) as the composite

n
S —=G MHS

LL!‘._I—‘.‘LGH,,‘S,

Now a further easy diagram chase, which uses that the composite

1lxn > + EAL
G NHC —0 D(H(G txHC) = G/H A (G VHC) =G o(HC

is the identity, gives the conclusion.

The rest of this section will be devoted to the proof of the following result,

whose space level implications will be discussed in the next section.

Theorem 7.10 (Additivity on cofibre sequences). ILet X and Y be finite
G-spectra coacted on by a G-spectrum C and let f: X » X, g: ¥ » Y, and k: X + Y be
G-maps such that the diagrams

X Xsy  and x —Es v
X Xay XnC -k-'-‘—lﬂ c
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éommuﬁe up to G-homotopy. Let Z denote the cofibre 'Y\JkCX and construet
G-maps h: Z2 +Z and A: Z + ZAC such that the middle squares commute strictly
and the right squares commute up to G-homotopy in the diagrams

k

X ———>Y’———* 7 L 35X

f}l I

Xy i,z Tox

and

LI O

xacEihyacirlyac 10 syac,

where 1 and 1 are the natural inclusion and quotient maps. Then
t(g) = «(f) + t(h). In particular, with C = S, x(g) = x(f) + y(h).

Proof. It is important to note that no compatibility between f and g and the
coactions is required. By abuse of notation, we agree to write B/A for the
cofibre of a map A + B, not necessarily a cofibration, throughout this proof
(except in the case of Z). There will always be a canonical relevant map A » B in
sight. We write i: B » B/A and #: B/A + A generically for the resulting
canonical inclusion and quotient map. The construction of h and a is é standard
use of homotopies, exactly as on the space level. Since <t(zf) = -1(f), it suffices
to prove that <(h) = t(g) + t(if). By Proposition 1.4, <{h) coincides with the
composite

-1
S =D 285p(Dzaz) L 5Dzaz 228 0zaz LAA Dz AzAC E205a 0 = ¢,

and similarly for <(g) and +1(zf). In the special case of FEuler characteristics,
the last few maps can be replaced by e: DZAZ » S. We claim that all parts of the
diagram on the following page commute in the G-stable category. This will prove the
result for Euler characteristics. To handle the general case, we need only expand
the bottom left corner of the diagram by replacing e: DZAZ + S by
(eal)(1AaA)(lAah): DZAZ » C, and similarly for Y and $X. The maps 1la g

and 1A h induce self-maps of the three cofibres displayed (in quotient notation)
in diagrams I and II, and the maps 1la A induce coactions by C on these

cofibres. It is easy to verify that these induced maps fit into naturality diagrams
with respect to the maps Dial, 1A n, 1A i, Dral, and j appearing in the cited

diagrams. These naturality diagrams and the diagrams obtained by smashing I and II

with C make clear that the general case will follow from the special case.
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De -
S = DS D{DZA 2)
* /
De n(DZA Z, Dj
« DIXA Y
11
(De,De) (D(1ai),D(Dnal))
DZA Y DIXAZ
Digsxay VR G ay N
§(m,1)
Iv
D(Dial)vD(1lax)
D(DY A Y) v D(DIX A £X) I A 111
8(w,1) ~wv 8(1,1)
4
v -1 (DY2 X,
DZA~ 7
1 - -1
shet / s
\
-1, DY A 35X, , -1,DYA X
L oraz Ve 5za )
v :/
(DY A ¥) v (DEX A 1X) VII
1
wmv(lm) 2 3
DZAY, DIXAZ
(DzXAY)" (DI:XAY) Vi
(e,e) (1ni,Dmal)
- DZA %
_ DIXAY
// I N
A
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' Tb}prove that our diagram commutes, we require precise control on maps between
fibres (or, equivalently by the discussion at the start of section 2, between
cofibres), and we work with our explicit dual function spectra. The following
diagrams commute on the level of spectra since we have a spectrum level adjunction.

lak

YA X 22K pyay pzay 225z Ay DIX AZ SATaprx A X

- Dkal € Dinl € Dphl €

DXAX —E> 8 DYAY —Es= S DZAZ —E> §°

The composite e(DnAi): DIXAY » S is equal to e(lan){lai) and is thus the
trivial map of spectra. If j denotes the inclusion of DZAZ in the cofibre of
Dnai, there results a canonical extension & of ¢ over j. This gives I in our
main diagram, and II commutes by the second and third diagrams above. Diagrams

I* and II" are the duals of diagrams I and II.

Diagram III is an identification up to equivalence of the map Dj as the
homotopy fibre of Di An: DZAZ + DYA 5X. To obtain this diagram, recall the
general maps 6&: DBAA > D(DAAB) of Proposition 1.4. These maps are only natural
on the stable category level, because the commutativity isomorphism for the smash
product and the remaining maps specifying 6§ involve inverting weak equivalences.
However, on the spectrum level, & is given by a chain of natural maps going in the
right direction and natural weak equivalences going in the wrong direction (the
latter coming from II.3.12 and the proof of II.1.7). Given spectrum level maps
a: A > A" and B8: B' » B, we can work our way stepwise along the chain to obtain a
canonical chain of weak equivalences representing 6&(a,g8) in the comparison of
fibration sequences

-1,DB'A A' §{a,B) DAAB
b (DBA n ) 2 D(DA‘ ‘\B')
2 ) s | ox
DB AA =3 D(DA A B)
DBac l lD(DaI\B)
§

DBf AA' —————— D(DA'A B')

On the left, & should be interpreted as the projection of the homotopy fibre of
DBAc onto DBAaA, but we can use section 2 to replace it by a map in a cofibre
sequence, as indicated by the notation. This diagram specializes to give III. Our
precise construction of ¢&(a,B) shows that it is natural in o and B8, and IV is

Just a naturality diagram. Its unlabeled bottom arrow is given by the two canonical

comparisons of homotopy fibres, or of desuspensions of cofibres, given by the
commutative diagram
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DYAY = £ YC(1A 1) —— 5 20(Di Am) ——> 3 1C(DL A1) = DEXAIX
lAE\\N l L l “///f%AI
pyaz AL iz AT, pganx
lunl Diaw lDil\l
DY arX —— DY A zX — DIia:X

Of course, the desuspended cofibre on the left is just DYAY and that on the right
is canonically equivalent to DiXa £X. This fact gives the unlabeled equivalence at
the bottom of V, and that diagram can then be checked to be an identification of

canonical maps §.
We define 3' = j» to obtain diagram VI. Then 3' is the boundary map of the

natural cofibre sequence

DZA Z DY A X _DYazX
DX aY T DiXAY DZaz

Here :X and DY are equivalent to the cofibres of i: Y » Z and Dw: DX » DZ,

and the commutativity of VII is a special case of the following lemma.

lemma 7.11. Let f: A+ X and g: B> Y be maps of G-spectra and let i: X » Cf
and j: Y » Cg be the inclusions into their cofibres. Then the boundary map

8: 371C(1in j) —=Clfag)
in the natural cofibre sequence
C(fag)—>C(if A jg) —=C(1ia J)

is the sum of the two natural composites

-1
ot ng) ECEALL ;10 a5y = ceaB T clraly) SE24ELG(rag)

and

1 zlc(1a§)

o g B8EA L1500 HEEEY

Cg): AnCg = ﬂlAag)—————*C(ngL

Proof. We may assume that f and g are inclusions of subcomplexes in G-CW
spectra and replace cofibres by actual quotients. The given cofibre sequence then
becomeés

XAY Cf ACg Cf ACg
AAB K aB XaY °
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Here CfaCg is equivalent to (XAY)/(XaB u AAY), hence the last quotient is
equivalent to I(XAB u AaY). The boundary map in question agrees under the
equivalence with the composite

XAaBUAAY > X AY » X AY/A AB.

This factors through

XaBuUAAY _ XAB  AAnY
AAB AAB AAB

)

in the obvious fashion, and translation back to cofibres gives the conclusion.

§8. Space level analysis of trace maps

We here use the additivity of the trace on cofibre sequences to analyze its
behavior on suspension spectra, and we agree to use the same letter for a map of
spaces and its induced map of suspension spectra. The essential point is to
determine equivariant traces in terms of non-equivariant traces and equivariant
Euler characteristics of orbit spaces. As we shall see in chapter V, the latter are
typical basis elements of the Burnside ring A(G) = ng(pt), where ng denotes
unreduced stable G-homotopy.

Suppose given a compact G-ENR pair (X,A) and a map of pairs f: (X,A) » (X,A)
with induced map C(f): C(X,A) + C(X,A) of unreduced mapping cones. Let i: A + X
be the inclusion. The coactions a: X' » X*'a X* and (1ai%)a: A > A%WX' are

compatible and induce the coaction
Cla): C(X,A) —=C(X x X, A x X) = C(X,A)nx"

of X* on C(X,A). We can use Construction 4.5 to give an explicit space level map
which represents the stable map <t(C(f)). We assume the notations of the cited
construction, so that r: N » X is a retraction of a neighborhood N of X in
some representation V and s: X » X restricts to a retraction U+ A of a

neighborhood U of A in X.

Lemma 8.1. The following diagram is G-homotopy commutative.

sV a—  G(V,V-B) —>C(V,(V-X) w U) 4« C(N-A, (N-X) U(U-4))

T(C(£)) ‘ clg)

S €5 CIVXX, (V-B)xK) —=> G(VxX, (V-{03)xX) 2L G[ (v=n, v-X)x (X, ) ]
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Here ¢(n) = {n,sr(n)) for n ¢ N-A and ¢(v,x) = (v-f(x),f(x)) for
(v,x) e (V-4) x X.

From this description, it is easy to derive a criterion for the vanishing of

7{C(f)) in terms of the fixed points of f.

Proposition 8.2. If f has no fixed points in the complement of A, then
1(C(f)) = 0 and therefore x(C(f)) = 0. If, further, f =1 as a map of
pairs, then +t(g) = O and therefore x(g) = 0 for every stable G-map

g: £7C(X,A) + ”C(X,A). .

Proof. If f has no fixed points in X-A, then
P (V=A,V-X) x (X,8)—>(V x X,(V - {0}) x X)

factors through ((V - {0}) x X,(V - {0}) x X). If f =1, then C(y) = Clw),
where w(v,x) = (v-x,x). For any map g, t(g) factors through the map obtained by
applying 17V:® to the bottom row of the diagram in Iemma 8.1 with C(y) replaced
by Cluw). ‘

We shall calculate <(C(f)) in general, and we begin by calculating
(f) e ng(G/H) for a self-map f of an orbit space G/H'AS®, where a/H* coacts
on G/H*ASn via the nEE. suspension of the diagonal on G/H*. By homotopy
invariance (Lemma 7.4), we could just as well view G/HW 8" as
C(G/H x €®,G6/H x §%1) coacted on by (G/H x €®)*. As usual, let WH = NH/H,
(e/mH. write

it

where NH is the normalizer of H in G, and observe that WH
(X) = ¢(z*X*) for an unbased G-space X.

lemma 8.3. Let f: G/H'AS® » G/H'AS® be any G-map. Let e(ff) =0 if WH is
infinite and e(f) = x(fH)/|WH| if WH is finite, where x(f) is the
nonequivariant trace of the H-fixed point WH-map £H: wath s® » wH'AS®. Then
wf) = (-1)%e(f)c(c/H).

"

Proof. If WH contains a circle group, then G/H has a fixed point free self
G-map homotopic to the identity and <(G/H), t(f), and x(fH) are all zero. Thus
assume that WH is finite. Passage to H-fixed points gives a bijection

(G/H'ASP,G/H'ASP] 5 —= [WH'A S WH'A Sy = [P, WH'A 871,

If n'> 0, this is the integral group ring ZIWH]; if n =0, it is WH and may

be viewed as a subset of Z[WH]. We may write f = I n.w, where w ¢ WH is
weWH

regarded as a self G-map of G/Hﬁxsn. By Lemma 7.6, <{f) =% ngr({w). If
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w # e, the map w is fixed-point free and <t(w) = 0, and of course
t(e) = (-1)®#(G/H) by Lemma 7.8. Clearly the nonequivariant trace X(fH) is equal
to n.|WH|, and this implies the result.

We wish to compute <(C(f)) for a map of pairs f: (X,A) » (X,A), but it is
useful to proceed in greater generality and compute <t(f) for all maps

£: X/A » X/A and not just those induced by maps of pairs. We let X' coact on

"X/A via the canonical equivalence C(X,A) = X/A.

Theorem 8.4. Let (X,A) be a pair of G-CW complexes such that X/A is finite
and let f: X/A > X/A be a cellular G-map. Let

. 3

be the composite of the inclusion of an orbit and the it characteristic map for
N n.:
some enumeration of the cells of X-A. Let fi: G/H{AS 1, G/H AS % be the map

induced by f on the iﬁ§~ wedge summand of the nizg- skeletal subquotient of

X/A. Then
N
o(f) = ¢ (-1) 1e(fi)(ji)*r(G/H).
i

Proof. The conclusion follows inductively by use of homotopy invariance (Lemma
7.4), additivity on wedges (Lemma 7.6), the previous lemma, and Theorem 7.10 applied
to the inclusions of skeleta (X/A.)n'1 > (X/A)®, the restrictions of f to
skeleta, and the coactions (X/A)" » (x/A)% X" obtained by restriction from any
cellular approximation of the diagonal coaction X/A + (X/A)AX .

Remark 8.5. When A is empty, the theorem applies to compute t(f*) for a map
f: X+ X. When X is based and A 1is the base vertex, it applies to compute
t(f) for a based map f: X » X. These two elements of ng(X) differ by the
summand of t{f") coming from the base vertex of X. We have a corresponding
distinction between the traces y(f%¥) and x(f) in ng(pt).

Remark 8.6. If X is a finite G-CW spectrum and f: X + X is a cellular G-map,

then the same formal argument applies to give the formula x(f) = Zy(f;) in

ug(s), where f: G/H{Asni > G/H{ASni is the map induced by f on the iR wedge
summand of the niﬁg- skeletal subquotient of X. Since the f; here are spectrum

level maps, Lemma 8.3 is not sufficient to cémpute the X(fi)- It suffices by Lemma
7.8 to consider the case n; = 0, and we shall determine all stable maps

G/H" + G/H* in V§9; at least when G is finite, we shall also determine the traces
of all such maps; see V.9.8.
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Theorem 8.4 does not apply to general compaet C-ENR's since these need nof.

nave the homotopy types of finite G~CW complexes. It also suffers from an evident

lack of invariance. We want a caleculation of <{f} intrinsic to the structure of
X as a G-space, irrespective of possible cellular decomposiiions. For simplieity,

we restrict attention 1o the abscliute case.

Let X be & compact G-ENR and consider its G-subspaces
Ky = X { G, is conjugate to H}.

The orbit space X(H)/G breaks up as a disjoint inion of path comnected subspaces
M, called the orbit type components of X/G. If X is a smooth G-manifold, then
each M is a smooth manifold. Let a: X » X/G be %the quotient mep. Given an
orbit type componment M, let L be the closure of LM 4n X, let

al = L - n"ltM}, and let K = L/3L. These subguotlents K of X play a role
anslogous to that of the subquotient spheres G/H)'ASn of & finite G-CW complex.
To obtain an analog of the skeletal filtration, observe that X has only a finite
number of orbit types and these are partially ordered by inelusion. We may
enumerate them as G/Hy,+++,G/H,, with {H;) < (Hj) oaly if i > j. The closed
subspaces

Xé = {x | x has orbit type G/H; with 1 < J}

give an inereasing filtration of X. Any G-mep f: X » X preserves this filtration
and s0 induces quotient maps X‘]./Xj_1 > xj/xjml. Visibly, Xj/Xj~1 is the wedge of
the G-spaces K determined as above by the orbit iype components M of type

G/HJo Thus f induces a based map fK: K + K for each such K. Moreover, the
ecoaction of XS on C(Xj:xjml) induces a coaction of X° on each K via the
equlvalence C(Xj’xj—l) = Xj/Xj_l and. the inelusion Xj + X. We therefore have &

trace t{fy) ¢ wg{X}.

Theorem 8.7. Let X be a compact G-ENR and let f:; X » X be any G-mep. Let
5: X + X/G be the quoiient map and let

gt O/ C P00 C X

be the inelusion of an orbit in the orbit type compenent M. Let fK: K + ¥ be the
G-map induced by f on the quotient K = L/3L, where L 1s the closure of

1M in X apd oL =1L -« t(M). If WH dis infinite, let elfy) = 0. If WH
is finite, let elfy) = x(f%)/lﬂﬂl, where x{fﬁ) is the nonequivariasnt trace of
the H-fixed point WH-map fﬁ: s kB, Then
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f) = 1 elfy) Uy, <(G/H) .
M

Prgof, By induction up the orbit types, lLemma 7.4, Lemma 7.6, and Theorem 7.10 give
that 1(f) = Er(fK). Here r(fK} is computed with respect to the coaction above

of X' on K. Sinee K = L/3L, we also have a coaction by L+, and it is eclear
that tl{fy) in HS(X) is obtained by application of iy to gl in ag(L),

where i: L + X is the inclusion. Applied to the pair (L,3L), the following

“pesuli computes the latter trace and so completes the proof. It also gives further

information about e(fK).

Lemma 8.8. ILet {X,A} be a compact G-ENR pair such that X-A has constant orbit
type G/H, A has no orbits of type G/J with (J) < (H}, and (X-A)/G 1is
connected. Let K = X/&, give K the evident coaection by X*, and let f: K » K
be any based G-map, If WH is infinite, let e(f) = 0. If WH is finite, let
e(f) = w(£By/1wH]. Them «(f) = e(f)j t(G/H), where j: G/H > X is the inclusion
of any orbit in X-A. Moreover, if' the nonequivariant BEuler characieristic

v{G/H) is non-zero, then e{f) = y(f)/yx(G/H}, where (f} 1s the nonequivariant
trace of f. If f is the identity map, then el(f} coincides with the reduced
Fuler characteristic of the orbit space X/G.

Proof. The pair (X,A) is a retract of some finite G-CW pair (Y,B}, and it is clear
that this remains true if we excise from ¥ all cells of orbit type G/J with

{d) < (H). Bince any orbit of T-B not of type G/H must map to A under the reirac-
tion, we may as well assume that all cells of such orbit types are in B. We also may
as well delete from Y any cells of Y-B whose images in (Y-B}/G are no% in the path

compenent containing the image of (¥-A}/G. In this way we arrive at maps of pairs
i: {X,4A) —=(Y,B} and r: {Y,B} w-s(X,A)

such that ri = 3, (Y,B} is a finite G-CW pair, Y-B has constant orbit iype G/H, B
has no orbits of type G/J with (J} < (H), and (Y-B)/G is comnected. Of course,
1 and r display K as a retract of Y/B. By lemma 7.4, iyt(f) = «{ifr) in
ﬂg(Y} and thus ©{f) = ryr(ifr) in ng(x). By Theorem 8.4,

w(ifr) = 1(-1) Telgy) (g}, <{6/H),

where the sum runs over the cells G/H x eni of Y-B, ji is the inclusion of an
orbit of G/H x eni in ¥, and gy dis the self map of G/Htxsni induced by

ifr. Since (Y-B)/G 1is conmnected, the inclusions Jj are all homotopie, at least
if each is adjusted by an appropriate isomorphism of G/H, and the attaching maps
of the cells may be adjusted so as to eliminate these isomorphisms. Thus we may

replace all Jy by the composite 1j. Since rl = 1, we conclude that
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w(f) = nj*T(G/H),

where n = z(—l)nie(gi). If WH is infinite, then +<(G/H) = 0 and we may as well
set n = O.1 Thus assume that WH is finite. We must show that n = e(f). If we
compose t(f) with g;, where £: X + pt 1is the trivial map, we find from the
previous equation that

x(£) = nx(G/H).

This is true equivariantly, but all of our constructions remain unchanged if we
forget the G actions, so it is also true nonequivariantly. If x(G/H) # O, this
gives n = x(f)/x(G/H). We use change of groups to calculate n in general. The

inclusion of (XH,AH) in (X,A) is an NH-map and induces a G-map

whose quotient map is a G-homeomorphism G+ANHKH » K. Thus t(f) = T(lANHfH), where
the coaction of X* on G+ANHKH is the composite of 1Ak and the natural coaction
of (G xNHXH)+, as in Proposition 7.9. By that result, <(f) is the composite

1 r(fH)

+
ST(GNH)GKNHS___I_@MG“ H o+ ~ X

o0 o« + oo+
A SHER A ) =
Now (XH,Aﬁ) is a compact WH-ENR pair, ) G LI P WH-free, and (XH-AH)/WH is
homeomorphic to (X-A)/G and is therefore connected. Exactly as in the first few

steps, we conclude that
w(g) = mjlleom)

for some integer m (jH: WH » XH—AH C XH being the inclusion of an orbit).
Composing with 53 and noting that the nonequivariant FEuler characteristic yx(WH)
is |WH| and thus non-zero, we see that m = w(£8) /| wH
again, we find that <(G/H) is the composite

. Applying Proposition 7.9

<(G/NH) Loty (WH) by st e
S G NNHS —_—>0 KNHZ WH =1z (G xNHWH) ——=—>3 G/H .
Here k' is the canonical G-homeomorphism G xNHWH + G/H. Clearly

jk' = k(1 xNHjH), and we see that m = n by comparing our descriptions of +t(f).
Finally, suppose that f is the identity mep. We must show that e(f) = X(K/G),
and we 'know that e(f) = %(KH)/IWHI. Since WH acts freely on K@ - ¥ and
kH/WH 1is homeomorphic to K/G, |WH|X(XK/G) = %(k%) by a standard homological
argument; see e.g. tom Dieck [44,5.2.10].

IV. Equivariant Transfer

by L. G. Lewis, Jr. and J. P. May

We here study the transfer associated to equivariant bundles. The first
problem, to be discussed in section 1, is to decide exactly what we should mean by a

"G-bundle™. There are at least three reasonable notions, of which the most

"restrictive has so far been much the most important and the least restrictive is the

one that yields the most notationally simple and conceptually clear treatment of the

i transfer. We begin by specifying the latter notion and its cited specialiéation.

Throughout this chapter, we shall assume given an extension of compact Lie
groups

l—s7—sT—sG—>1.

When we use the letter T, we often think of it as shorthand notation for the
éntire extension. All (unbased) I'-spaces are to have the homotopy types of TI'-CW
‘complexes. By a "G-bundle with total group T, structural group 7, and fibre
F", we understand a G-map

£: X x F —=X/7

induced by the projection F + ¥, where X is a n-free I'-space and F is any
I'-space. Ail group actions are to be left actions, and X x.F denotes the orbit
G-space (X x F)/m. We think of X as the associated principal bundle of £ (as
will be discussed in section 1). The most important examples are the (G,w)-bundles,
for which T =G x n and F is a n-space regarded as a I'-space by pullback along
the projection T + w. Various examples of (G,w)-bundles and of G-bundles which are

not (G,n)-bundles are given in section 1. We occasionally refer to the (G, n)-bundle
case as the classical case.

We shall construct and analyze the transfer G-map

() 2™(X/m) e 1™(X %, F)*

associated to a G-bundle g. To do so, we require that F have the homotopy type
of a compact T-ENR, and we then say that F is a "finite r-space". The main
examples are the finite TI'-CW complexes, but the extra generality causes no
difficulty and has applications (as explained in III§4). Nonequivariantly, one
usually studies the transfer in terms of its induced homomorphism in cohomology for
some given theory, dbut the utility and power of regarding it as a stable map are by

now well understood. For example, this viewpoint makes commutation with cohomology
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operations obvious. Things work the same way equivariantly.

The first step in the definition of <t(g) is to construct a r-map
(F): S+ r™F". This may be thought of as the transfer for a bundle over a point,
but it is a I-map whereas the actual transfer is a G-map. We call (F) the
pretransfer to emphasize the distinetion. In fact, 7(F) arises directly from
Spanier-Whitehead duality and has already been studied in III§§7-8. We review its’

properties in section 2.

The trick to the construction of the transfer is to insert the TI'-map (F)
fibrewise into £ so as to obtain the desired G-map t(g). We accomplish this
sleight of hand by a change of universe. We assume given a complete r—universe U,
fixed throughout the chapter. We regard U™ as both a complete G-universe and a m-
trivial r-universe, and we let 1: U™ » U be the ineclusion. The r-map t(F) is
computed in U. The functor £”: IJ + T4U is the composite of ix: T4U" » rgu and
£®: 1J » 1gU", so we have a map of I-spectra indexed on U

1570 = ¥ s 2L 0 TF L s B
Since X is m-free, II.2.8 ensures that this map can be represented in the form
iy for a uniquely determined map 7: 5%t 12X x F)+ of r-spectra indexed on
U™. When working in a n-trivial universe, it is legitimate to pass to orbits over

7, and t(g) is just %T/m.

We generalize this definition a bit in section 3. The quoted change of
universe theorem applies not only to 1°x¥ but to any w-free r-spectrum D indexed
on U". Associated to D we have the "stable G-bundle"

g: DaF —> D/m
and an associated transfer G-map
tw(g): D/w éDAﬂF+.

Since it simplifies notations, costs no extra effort, and has useful applications,
we shall work in the context of these stable G-bundles throughout the chapter. If
he chooses, the reader can disregard the generality by viewing D as simply a
shorthand notation for 2°X'. An example of the utility of the more general context
is that it obviates the need for any special consideration of relative bundles.

If A, is a T-subspace of X, then the cofibre of I®A* » X’ is I"C(X,A),
where: C(X,A) is the unreduced mapping cone. Since the cofibre of any map of
n-free I-spectra is a n-free I'-spectrum, we immediately obtain the transfer for the

bundle pair
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(X x,F,A %, F) — (X,4).

The naturality of the transfer with respect to the boundary homomorphism of the pair

is merely an instance of its naturality with respect to maps of n-free I-spectra.

Section 3 also gives some of the basic properties of the transfer, namely those

taken as axioms by the first author in [85], points out several easy generalizations

" of the definition, and compares it to others in the literature. A major advantage

6f our definition is its convenience for the proofs of calculationally useful

properties. Since the two essential components, Spanier-Whitehead duality on the

" fibre and the structure of the associated principal bundle, are neatly separated,

the properties of the transfer all follow directly from the properties of the
pretransfer and of the change of universe and passage to orbits functors. Thus all
of the real work has already been carried out in the previous chapters. The major

disadvantage of our definition is that it is intrinsically restricted to G-bundles
rather than G-fibrations.

We prove the basic calculational properties of the transfer in sections 4-7.
In section 4, we give a deferred axiom on change of groups and a number of related
results. In particular, we describe the relationship between the transfer and our
generalized Wirthmiller and Adams isomorphisms. In section 5, we show that the
transfer of a product of two bundles is the smash product of their transfers and
give an Euler characteristic formula for the composite g1. In section 6, we give
sum decomposition theorems and the double coset formula for the computation of the
composite +tg. In section 7, we prove transitivity relations. While all of these
results are proven as statements about commutative diagrams in the stable category
of G-spectra, we shall include discussions of their consequences in equivariant

cohomology. Of course, there are analogous consequences in equivariant homology.

Nonequivariantly, these results sharpen theorems due to Becker and Gottlieb
[10,11], Dold [46], and Feshbach [53,54] by eliminating finiteness conditions on the
base space. (However, we shall see in Warning 6.11 that the finiteness hypothesis
necessarily reappears in some key applications. We are much indebted to Feshbach
for elucidation of this point.) Equivariantly, the Euler characteristic formula

similarly sharpens results of Nishida [117] and Waner [141], but all of the rest is
new.

The last two sections have a different flavor. In them, we rework and simplify
the first author's paper [85] on the axiomatization of the transfer in light of our
present much better understanding of stable bundles. Generalizing a bit further
from section 3, we start with a general finite I-spectrum E rather than one of the
form :®F*. We also start with a module G-spectrum j, over a ring G-spectrum

kG and assume that our n-free I-spectrum D comes with a "coaction" D + %D by

a n-free T-space X. With these data, we show in section 8 how to construct a
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transfer-like homomorphism
X ¥
1t Jg{DAE)—> Ja(D/w)

from any cohomology class 6 e kg(X u“DE) and show that these "cohomological

transports" enjoy many transfer-like properties.

There is a universal choice of X which coacts on every D, mnamely the
universal n-free I-space EHw) of II.2.10. In section 9, we show that any family
of homomorphisms 1, as above, which is defined, natural, and stable for all D
arises from a uniquely determined class 6 ¢ kg(EJTn) RWDE), where kg is the
function ring spectrum F(jG,jG). We deduce from this classification theorem for
“jz—transforms" that the standard transfer in jé—cohomology is uniquely
characterized by the cohomological versions of the axioms of sections 3 and 4. By
constructing transfers for stable bundles from transfers for ordinary bundles, we
obtain an analogous axiomatization of the transfer for bundles over finite

1

dimensional base spaces (or, modulo lim~ terms, over general base spaces).

Throughout, cohomology is to be understood in the RO(G)—graded sense; on

K
spaces, Jo means unreduced cohomology.

§1. Types of equivariant bundles

A prineipal (G,n)-bundle X » X/v is a principal n-bundle and a G-map such
that G aets on X through w-bundle maps. It is usual to let G act from the
right and = from the left, but with both actions on the left it is clear that X
is just a w-free (G x =)-space. For a w-space F, £: X x F » X/r 1s the associated
(G,7)-bundle with fibre F. For our purposes, this is the appropriate definition of
a (G,n)-bundle. We display X and F explicitly in the total space because F
and X play clearly separated roles in our treatment of the transfer and because we
find it quite convenient not to insist that = act effectively on F.

However, when = does act effectively on F, there is a more intrinsic
description of (G,n)-bundles. Consider a bundle g: Y + B with fibre F and
structural group = such that ¢ is also a G-map between G-spaces. With G
ignored, the associated prineipal w-bundle of g 1is the subspace X of the
function space ¥ consisting of the admissible homeomorphisms ¢: F + g‘l(b) for
b e B. Admissibility means that the composite of ¢ and the homeomorphism
@: g‘l(b) > F obtained by use of any coordinate chart coincides with action by an
eleméqt of w. The w action on F and the G action on Y induce a
(G x E)—action on X if and only if the composite gy: F » g‘l(b) + g'l(gb) is
admissible whenever ¢ is admissible, and this is what it means for & to be a

(G,n)-bundle. (Of course, w must act effectively on F if it is to act freely on X.)
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For example, define a finite G-cover ¢: Y + B to be a G-map which is also a
finite cover. Such a ¢ 1is necessarily a (G,Zn)—bundle, where n is the
cardinality of the fibre F. Taking F = {1,2,eee,n} and identifying ¥ with
Yn’ we see in this case that X 1is the space of those n-tuples of points of Y
which together comprise a fibre 5'1(b), with G acting diagonally and I, acting
by permutations.

Again, the G-vector bundles that arise in equivariant differential topology are

(G,U(n))-bundles or (G,0(n))-bundles, and it is this sort of bundle which is used to
define equivariant XK-theory.

Thus (G,n)-bundles are central to equivariant topology, and we refer the reader
to [81, 82, and 125] for further discussion. However, this is really a quite
restrictive notion, and there are numerous examples of maps which clearly ought to
be G-bundles of some sort but clearly fail to be (G,w)-bundles for any w. Perhaps
the most naive example is the projection g: X x F » X, where X and F are
arbitrary G-spaces and G acts diagonally on their product. The only reasonsble
candidate for the structural group of & is the trivial group, but ¢ fails to be
a (G,e)-bundle unless G acts trivially on F. Of course, such projections are

precisely the G-bundles with total group G and structural group e, as defined in
the introduction.

Returning to the context of a G-map ¢: Y + B which is a bundle with fibre

F and structural group =, where = acts effectively on F, it is natural to
require the composites

F-Ys e lp) s lign) Low

which entered into our description of (G,n)-bundles to be elements of some fixed
group T of homeomorphisms of F. Clearly I must contain w, and it imposes the
minimal sensible rigidity on the situation to require = +to be normal in T with
quotient group G. We claim that & is a G-bundle with total group T, structural
group w, and fibre F if and only if, for each y ¢TI with image g ¢ G and
each admissible homeomorphism ¢: F » g'l(b), the composite

-1
FLop sl Ea g

is admissible. Indeed, if this condition holds, then we can specify an action of T
then clearly a G-map. Conversely, if ¢: X x P X/m 1s a G-bundle with total
group T, structural group =, and fibre F, +then the admissible homeomorphisms

y are of the form y(f) = (x,f) for some fixed x ¢ X, and the composite above is
the admissible homeomorphism determined by yx.

on X by yp = g ¢ y‘l. The usual evaluation homeomorphism X an + Y over X/m = B is
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Tom Dieck [36] and Nishida [117] have studied a type of bundle intermediate
between (G,n)-bundles and our G-bundles with structural group w. They assume that
the given extension is split, so that T =G X T for some homomorphism
v: G » Aut(n) with smooth adjoint G x w + w. Explicitly, the produet on I is
given by i

(h,m)(g,n) = (hg,y(g™})(m)n)

for h,g ¢G and m,n e n. Modulo adjustment for our consistent use of left group
actions, they define a principal (G,y,w)-bundle to be the orbit projection X + X/n
of a n-free I-space, and they define the associated (G,y,n)-bundle with fibre a
r-space F exactly as we did in the introduction. When y is trivial and T = Gx 7
acts on F through its projection to m, this notion specializes to that of a
{@,n)-bundle. Of course, our definition of a G-bundle is obtained from this one by
dropping the requirement that the extension be split. Our motivation is primarily
simplicity rather than generality. The splitting, if present, would be completely

irrelevant to most of our work.

Motivation for the intermediate notion is given in II§7. For an N-free
G-space X, where N is a normal subgroup of G, the projection X » X/N is a
principal N-bundle and a G-map but not a (G,N)-bundle since the actions of G and
N fail to commute. The failure is measured by the conjugation action ¢ of G
on N and, with = a copy of N, X » X/N is a principal (G,c,n)-bundle.

We have just defined "principal (G,y,n)-bundles", and we show next how to
interpret them as associated (G,y,n)-bundles with fibre w=. Without the splitting,
a m-free I'-space need have no G-action and so can't be the total space of an
associated G-bundle. However, it is the total space of an associated
(r,e,n)-bundle, and this is a useful point of view even in the split case since it
keeps track of the full T-action.

Remarks 1.1 (i) Let T =G xy T and let T act on = via

(g,n)m = y(g)(nm)
for g ¢G and m,n ¢ m. For a principal (G,y,n)-bundle X, the orbit
projection X + X/m can be interpreted as the associated (G,y,n)-bundle
X xm > X/w. To see this, define a map ¢: X x m + X by the formula

ylx,n) = (e,n‘l)X-

With the usual diagonal action of T' on X x 5 and the action of T through the
projeetion T + GC I on the target copy of X, ¢ is a I'-map by an easy
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verification. Since 1w acts trivially on the target, y factors through a
G-homeomorphism X xm +X over X/m.

(ii) For a general extension G = I'/m, G is not a subgroup of I and we define
Q=T x,m, where c is the conjugation action of T on its normal subgroup =. We

also define 6: @ »T by 6(y,n) =yn for ye T and n ¢ 7. Clearly o

restricts on = +to its inclusion in T. Thus, if X is a n-free r-space, then

M
6'X 1s a v-free Q-space. We conclude from (i) that the orbit projection X » X/

“can be interpreted as the associated (TI,c,nw)-bundle (8*X) x.m »X/n (as was proven
directly in II§7.)

Observe that a given G-map £: Y » B which is a bundle with fibre F and
compact Lie structural group may well admit various descriptions as a G-bundle with
total group I and structural group n. Our results in seetion 4 will have the
effect of ensuring that all such descriptions lead to the same transfer G-map.

§2. The pretransfer

The bundle context is irrelevant and I can be any compact Lie group in this

section. As in the introduction, we consider a finite r-space F. We index
r-spectra on any I'-universe into which F embeds. This ensures that :“F is a
finite TI-spectrum and so allows us to apply duality theory. Specialization of
III.7.1 gives our definition of the pretransfer =t(F): S » z°F .

Definition 2.1. Define the pretransfer <(F) to be the composite

s X pp'AFt L8 R Y E8garT - 5

Specialization of III.8.1 gives an explicit space level deseription of (F).
Lemma 2.2. ILet r: N+ F be a retraction of an open neighborhood of F in some
representation V and let B be a disc in V which contains N. Then the
following diagram is T'~homotopy commutative.

¥ = C(V,V-B) —  C(V,V-F)
o(F) C(N,N-F)

.. ) lc(w)
S'AF «— C(V x F,(V-B) x F) —>C(V x F,(V-{0}) x F)

Here the unlabeled arrows are inclusions or projections and y is specified by
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y(n) = (n-r(n),r(n)) for n ¢ N.

As observed in III.8.2, this description implies that <(F) = 0 if the

identity map of F is I-homotopic to a fixed point free map.

When F is a smooth I-manifold we can take N to be a tubular neighborhood
of F and r to agree with the projection of the normal bundle. The description

of <t(F) then simplifies.

Lemma 2.3. If F 1is a smooth closed I-manifold smoothly embedded in V with

normal bundle v, then <t(F) is the composite T-map

¥ Loy -Car(v® 1) T s%F,

where + is the Pontryagin-Thom map and e is induced by the inclusion of v in
NCEN

This shows that our definition of the pretransfer agrees with that of Becker
and Gottlieb [10]. A similar comparison of definitions goes through for manifolds
with boundary. It is a standard and useful observation that e could just as well
be replaced by the mep induced by any vector field on F, not necessarily the zero
field. Again, this implies that <(F) =0 if F admits a nowhere zero r-invariant

vector field.

Remarks 2.4. (i) For a smooth closed I-manifold F, the dual of <(F) can be

described as the composite
Tv Lo FATy LT —Es8Y,

where A is the Thom diagonal. One way to show this is to use the description of

¢ in III.5.1 to verify that the composite
Tuas? 22T, 0, grt 1% 0 pas? £8 gV 87

is TI-homotopic to (eyAlal.
(ii) Let T/A be an orbit embedded in V and let L and W be the tangent
representation of A at the identity coset of /A and the orthogonal complement

of the image of L in V. Then <(r/A) is the I-map

g -t A8 1—"f->r+AAs" NSV

(as in II.5.1 and II.6.15) and its dual is the TI-map
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r+AASw lae rfAASV 4 Sv’

where ¢ 1s the I'-action map. The verification can be made either by use of
I1II.2.11 and 3.7 or by use of part (i).

Returning to the context of general finite I'-spaces, we catalog some elementary
facts about the pretransfer.

Lemma 2.5. Iet E and F be finite r-spaces.
(1) If F 'is a point, then <(F) = 1: S » °F" = 8.
(ii) If k: E+ F is a I'~homotopy equivalence, then kt(E) = <(F).
(ii1) (E x F) = 1(E)AT(F): S = SAS » $™(E x F)* = 3®E"A1"F*.
{iv) t(EWF) = «(E) + «(F): S » s™(EU P " = :"EVi“F'.

Proof. These hold by III.7.2, 7.4, 7.5, and 7.6.
In (iii), the smash product is internal. We also need the external analog. No
new proof is required. Both statements are formal consequences of the fact that the

relevant smash product is a (strict) monoidal functor; compare III.1.9, 1.10, and
7.7.

Lemma 2.6. Let F; be a finite I'y-space, i =1 or 2. Then
©(Fy x Fp) = t(F)At(Fy): 8 = SAS—1™(Fy x Fy)* = 1™F{Ar™F3,

where the external smash product ﬂrllUl x EFZZUz + ﬂ(rl x T)4(U; @ Uy} is

understood, U; being a Ij-universe into which F; embeds.

We also need a consistency statement for the behavior of the pretransfer with
respect to change of groups and change of universe. This again is a formal
consequence of the cited categorical observations.

Lemma 2.7. Let a: A » T be a homomorphism of compact Lie groups. Let F be a

finite r-space and let a*F denote F regarded as a finite A-space by pullback.
Let V and U be A and T universes into which o F and F embed and let
j: «*U > V be a A-linear isometry. The functors 1%« and j*a*zm from ETJ
to BA&V are naturally equivalent, and T(a*F): S + z”(a*F)+ agrees under the
equivalence with jyo t(F): jxa's » E I L

In particular, with A =T, the pretransfer is preserved under change of
universe. Again, with AC I and V = U, the pretransfer for F regarded as a

r-space is also the pretransfer for F regarded as a A-space. In our study of
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transitivity, we shall need another invariance property with respect to change of

groups. It is a special case of III.7.9.

Lemma 2.8. lLet J be a finite A-space, where A€ T. The following diagram of

r-spectra commutes.

r xAJ)

22(r/n) ¢ <IT8) g > 17(T XAJ)+
“2 1 x () “{m .
T MAS T RAZ J

The most substantial of our axioms for the transfer will be a direct

consequence of the following additivity theorem.

Theorem 2.9. If F 1is the pushout of a I'-cofibration fl: F3 > Fl and a I'-map
fy: FB + F,, where the F, are finite r-spaces, then

o(F) = le(Fl) + j2T(F2) - jBT(FB)’

where Jy: szﬁ » £®F* is induced by the natural map Fy » F.

Proof. We may replace F by the double mapping cone of f; and f, and so embed
+
Fl.lLF2 in F with quotient ZF%' The natural equivalence C(F,Fllle) > ZF3 then

fits into the commutative diagram

A +
C(F,F ALF)) —> C(F,F) UF))aF .

The conclusion follows from III.7.10 applied to the cofibre sequence
0+ 00t @t 0 + © + © +
z F]_VZ Fz‘—’ L F—>1 ZFB“""‘E EFlVZ EF2-

As pointed out to us by Albrecht Dold, a simple direct proof of this result is
possible based on the concrete space level description of the pretransfer in Lemma
2.2 and the fact that the trace of a map depends only on its fixed point set
(compare III.8.1 and 8.2).

We need two consequences of Theorem 2.9, the first of which is a special case
of III.8.4. Recall that x(F) = gt(F), where ¢: I”F' » S is induced by the
projebtion F » pt.

Theorem 2.10. ILet F be a finite TI-CW complex and let
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: nj
Jit I/ € T/0p xe T —>F
be the composite of the inclusion of an orbit and the 1 characteristic map for
. ns
some enumeration of the cells of F. Then <(F) = 5(-1) 1j;t(r/A;), hence
ns i
x(F) = 2(-1) *x(r/n).
i

There is a more invariant analog applicable to a general compact TI-ENR F.
‘Recall that the path components M of the various orbit spaces F(A)/F are called
the orbit type components of F/TI, where

Fipa = x| 1y 1is conjugate to A}.

Let ﬂ be the closure of M in F/r and let oM = ﬁ-M. Define the nonequivariant
internal Euler characteristic x(M) of M in F/I to be the reduced Euler
characteristic of ﬁ/aM; equivalently (by the nonequivariant case of III1.7.10),
x(M) = x(ﬂ) - x{aM). If F happens to be a finite TI-CW complex, then y(M) is
the signed sum of the number of cells with interior contained in the inverse image
of M in F. In this case, the previous result directly implies the following one,
as we see by grouping together equal summands obtained by including different orbits
in the same orbit type component. The general case holds by III.8.7 and the last
sentence of III.8.8.

Theorem 2.11. ILet F be a compact I-ENR and let J,: I/A » F be the inclusion
of an orbit in the orbit type component M. Then <(F) = Ix(M)je(r/A), hence
x(F) = 2y(M)x(T/A).

Extraneous terms in the previous two theorems are eliminated by the following
consequence of III.8.2 (or of Remark 2.4 (ii)).

Lemma 2.12. If WA = NrA/A is infinite, then <(r/A) = O.

Remark 2.13. Our observations about the vanishing of the pretransfer sometimes
imply that the transfer is zero in a situation in which one would like to use it to
prove an isomorphism. In many cases, 1(F) vanishes because some group containing

a circle acts freely on F. In Lemma 2.12, for example, <(r/A) factors as the
composite

. Iec, T(WA)
s TIM), o = S =T o W 2 271/,

i

where N = NpA, and <(WA) = O because WA acts freely on itself. In these
situations, II.7.5 offers a substitute for the transfer. Assume that A is normal
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in T and that A acts freely on F. Let A be the adjoint representation of -
I derived from A and let Q = r/A. By II.7.2, there is an isomorphism

Vie generally abbreviate t(g) to 1t1; it is a map of G-spectra indexed on the
complete G-universe U™, When G = e, t(g) is the nonequivariant transfer

A associated to the nonequivariant stable bundle ¢. The definition specializes to
+ ~ =Aoont

(8,2%F/A lg = 18,27727F Iy, give the transfer G-map associated to a (G,n)-bundle with fibre F; here the
n-space F 1is regarded as a (G x w)-space by pullback along the projection

where the right side is computed in a complete I'-universe and the left side is G x> T

computed in its A-fixed point Q-universe. Let

Remarks 3.2. (i) Note that we require no finiteness condition on the base

A oo+
©F,A): S—1"LF spectrum. Adams [2, p. 207-208] has advertised the desirability of having transfer

maps for bundles over infinite dimensional CW-complexes. When D = X" for a
be the image of <t(F/A) under this isomorphism. (If A = {0}, this is just finite CW-complex X and F is a compact smooth w-manifold, our definition of
transfer coincides with that of Becker and Gottlieb [10] and its equivariant version

due to Nishida [117] (as we shall explain shortly).

7(F).) These "dimension-shifting pretransfers" enjoy many of the properties of the
standard pretransfer, such as the evident analogs of the properties in 2.5(ii),

2.5(1v), 2.6, 2.9, 2.10 and 2.11 above. The procedure of the next section for (ii) Becker and Gottlieb [11] used suspension ex-spectra and fibrewise duality to

generalize their earlier transfer from bundles to fibrations with finite fibres and
finite dimensional base spaces; see also Dold [46]. By introducing a stable
category of ex-spectra, Clapp [26] generalized their construction so as to allow

obtaining the transfer from the pretransfer applies equally well in the present
context, and we shall have occasion to use the resulting dimension-shifting
transfers in the next chapter.

infinite dimensional base spaces. On the other hand, by using suspension
§3. The definition and axiomatic properties of the transfer

ex-G-spectra and equivariant fibrewise duality, Waner [141] generalized their
construction to G-fibrations with finite fibres and finite dimensional base

As in the introduction, consider an extension G =T/w, a w-free I'-spectrum spaces. Generalizations of our equivariant stable categories to ex-G-spectra is
D indexed on U", where U is a complete I'-universe, and a finite I'-space F. We

perfectly feasible and allows the evident simultaneous generalization of the work of
let DA F' denote (DAF')/n and think of the orbit map

Clapp and Waner. When restricted to bundles, these definitions of the transfer also
agree with that given here.

g: DAWF+“* D/m (iii) The definition admits numerous variants and generalizations. We can
replace t1(F) by the trace, or twisted pretransfer, t(g) of III.7.1 for any

+ . .
as a stable G-bundle. When D = 3°X° for a w-free T'-space X, ¢ is obtained from self-map ¢ of F. More generally, we can replace t(F) by any stable map

the G-bundle X XﬂF + X/v by adjoining disjoint basepoints and applying 1”. By
I11.2.8 (together with II.l.4 and II.3.12 (i)), the inclusion i: U™ » U induces an

isomorphism

S+ 3. If A is a second normal subgroup of T and F is A-free, we can
replace t(F) by the dimension-shifting pretransfer <(F,A): S » s~Ag=Ft of Remark
2.13 (which is what we did in II$7 and will do again in V§11). In fact, with a
little care in defining DAE, we can even replace 7(F) by an arbitrary map E » E'
of Ir-spectra indexed on U. This may seem altogether silly, but we shall actually
get some mileage out of such generality in sections 8 and 9. Again, we shall

ig: [D,DAF*] —> [14D,ix(DAF") ] = [14DAS,14Das™F"] .

indicate how to twist the transfer by any self-map of the total space over the base

~ + P .
Definition 3.1. Let 7T: D » DAF be the r-map such that ix(7) is 1at(F), space in Example 8.3(vi) (as comes most naturally out of the ex-spectrum approach).

+ . .
where (F): S » £F" is the pretransfer I-map. Define the transfer More importantly, such generality will play an essential role in our axiomatization
of the transfer. We defer all further discussion of generalizations to section 8.
w(g): D/w —‘»f»D/\ﬁF+

As the following remarks explain, we earlier found a less elementary, but more

to be the G-map obtained from T by passage to orbits over . explicit, construction of the transfer. While it bears a closer resemblance to

other definitions in the literature, we shall make no use of it in this chapter
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since the new definition generally allows simpler proofs.

Remarks 3.3. (i) In chapter VI, we shall construct the twisted half smash product
functor X x (?): nrgv > iGXU", where X is a g-free I'-space. For

r-spaces Y, there is a natural isomorphism

=3 + +
(X X_"Y) =X k“Z“Y .

Before we knew the results of II§2, we took

1]

LY opt L w0 +
1w (F): 2°(X/m)7 = X o S=>X w I%F 2 17(X x,F)

as our definition of the transfer associated to X xﬂF + X/n. This approach is
reflected in Lewis [85] and still has its advantages. For example, it lends itself
more readily to precise calculational analysis as in chapter VIII.

(ii) Generalizing (i), let E be any I-CW spectrum indexed on U. By
VI.1.11, X = E is then a n-free I'-spectrum indexed on U™, and by VI.1.5 we have

a natural identification of G-spectra
(X % E)A Y" = X & (EnY")
for I'-spaces Y. The collapse map F + * induces a stable G-bundle
£: X % (EAF') — X x &,
and the transfer +t(g) is just the obvious map
1 = (1at(F)): X x, E —>X x“(EAF+)

induced by t(F). In fact, II.2.8 and VI.1.17 imply a natural equivalence of T-

spectra
ig(X x E) = X'AE

under which i, carries 1 « (I1at(F)) to 1Alat(F): XAE » X'AE4F', so that

1 x (1at(F)) gives an explicit deseription of the map T of Definition 3.1 in the
present situation.

(i3i) We can recover the full gemerality of Definition 3.1 by the method of (ii).
Reé;11 from II.2.10 that there is a universal w-free I'-space E#(w). For any w-free
r-spectrum D indexed on U“, II.2.8 and VI.1l.17 imply a TI'-equivalence
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Eg(n) x iyD = E9(q)*AD,

and the projection EF(m)*AD » D is a T-equivalence by II.2.12, By (ii) applied with
E = 14D and by the naturality of the transfer (Axiom 1 below), t: D/7 » DAWF+ agrees
under the resulting composite equivalence with

1o (1at(F)): E3(w) w iyD = E3(n) k_(1,DAF").

(iv) Returning to the context of (i), suppose that X is compact. Then the

.simble prespectrum level description of the functor X x (?) of VI.2.5 apﬁlies.

Using this and the description of the pretransfer for smooth manifolds in Lemma 2.3,
it is easy to check the agreement of definitions claimed in Remark 3.2 (i). The

point is that the complementary sphere bundles used in VI.2.5 are exactly the same
as those used by Becker and Gottlieb (and Nishida).

We single out certain of the most basic properties of the transfer in the
following list of axioms.

Axiom 1. Naturality. The following diagram commutes for a map f: D+ D' of g~
free r-spectra.

D/w _____2[_13_,_ D'/w

e |

DA F+ — " DA F
™ i

Axiom 2. Stability. The following diagram commutes for a representation V of
G regarded by pullback as a representation of T.

£ (0/x) T (:'D)/w
)Zvrl lr
zv(DA“F+) z (z"D),\“F+

Axjom 3. Normalization. With F = *, the transfer associated to the identity

bundle D/# + D/n is the identity map.

Axiom 4. Fibre invariance. The following diagram commutes for an equivalence

k: F» F' of finite r-spaces.
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D/w

ﬁ/// \\\:
. 1ak

DA F —»Da (F1)©
T T

Axiom 5. Additivity on fibres. If F 1is the pushout of a r'-cofibration F3 > Fl

and a T'-map FB + Fy, where the Fy are finite I'-spaces, and if 1) is the
transfer associated to D/\“Fi"{ + D/n and jy: DAﬂF}’; > DA“F" is induced by the
canonical map Fy + F, then

T = lel + jz’l’2 - jBTB.

There is a sixth axiom, on change of groups. It is more technical to state and
will be explained in the next section. The axioms above are immediate consequences
of Definition 3.1 together with Lemma 2.5 and Theorem 2.9.

Remarks 3.4. (i) In Axiom 1, the cofibre sequence
D—= D' —= Cf — 1D

is a sequence of TI'-maps between n-free r-spectra, hence the transfer maps the
cofibre sequence of f/w: D/w » D'/m to the cofibre sequence of

fhﬂl! DA.“F+ > D‘A“F+. When f comes from an inclusion A + X of n-free I'-spaces,
this immediately gives a relative transfer compatible with cofibre sequences in the
bundle context (when combined with the case V = R of Axiom 2).

(ii) Given a G-spectrum Xk and a filtration of D, we obtain spectral sequences
for the computation of k*(D/n) and of k*(DAﬁF+)- The transfer induces a map of
the relevant exact couples and thus a map of spectral sequences. If D is a TI'-CW
spectrum with its skeletal filtration, the conclusion is that o maps what should
be thought of as the Serre spectral sequence for k*(DAnF+) to the Atiyah-Hirzebruch
spectral sequence for k*(D/n). In the situation of nonequivariant bundles, G = e
and D = ENX+, Prieto [119] has identified r* on the E, level.

(1ii) In Axiom 2, we are using that the smash product of a w-free r-spectrum and a
r-space (or r-spectrum) is a w-free r-spectrum. We shall see in Corollary 5.3 that
this axiom is actually a special case of the behavior of <t on products. When

D =,me+’ it may be viewed as relating the transfer associated to X to the
tranéfer associated to the bundle pair (X x BV,X x SV), where BV and SV are the
unit disc and unit sphere in V.

(iv) Axioms 4 and 5 are deceptively simple looking. As we shall explain in
section 6, they directly imply equivariant generalizations of Feshbach's
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decomposition theorem [53, V.14] and double coset formula [53, II.11].

§4. The behavior of the transfer with respect to change of groups

Before we can study the behavior of transfer with respect to change of groups
and smash products, we must slightly generalize its definition and consider its

behavior with respect to change of universe. Thus consider a r-universe U', not

‘pecessarily complete, and a w-trivial r-universe U" contained in (U')". Let

i: U" » U' be the inclusion. Recall from II.2.3 that €(U',U") denotes the family
of subgroups A of T such that U' and U" are A-isomorphic. For anf(U‘,U")-épectrum

D indexed on U" and a finite I-space F, II.2.6 gives an isomorphism
ix: [D,DAF] = [1xD,ix(DAF*) I = [14DaS,ixDar™F'] .

Exactly as in Definition 3.1 we define the transfer <t: D/m + DA“F+ associated to
the stable G-bundle DAHF+ + D/m to be the G-map 7/m, where 1iyu(T) = 1lat(F).
Here we must assume that F embeds in U', so that <(F) is defined (see Lemma 2.2).

Several of our constructions will force consideration of this more general form
of the transfer, and in such cases we can make use of the following comparison to
the original form. Observe that there necessarily exists a I'-linear isometry

j: U' » U, where U is our given complete r-universe, and that j restricts to a
r-linear isometry U" » U7.

lemma 4.1. The following diagram commutes in hGAU™  for a m-free E(U',U")-spectrum
D in T§UY.

n

j*(D/'ﬂ) (j*D)/T{

ot l’r

s + .
Jx(Dna F*) = (J*D)A"F+

1

The proof is immediate from Lemma 2.7 and‘inspection of definitions. Actually,

Just as long as Jj exists and both transfers are defined, we need not assume that
U is complete.

Turning to change of groups, we assume given a map of extensions of compact Lie
groups

l—wp —=pA—>H-—1

o ] ]

l el —=G—21
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. . . s : -1 i . ' * * ~ _%
such that o: H » G is an inclusion or, equivalently, o ~(n)c p in A. We say EH(DAp“ F) 2 EG((F X« D)4 FH)
that o: (A,p) + (T,7) is a homomorphism of pairs with quotient ineclusion H ¢ G. o

If o'U denotes our complete I'-universe regarded via o as a A-universe, then ) T* T*
*
ofUT  is p-trivial and, for any ¥ < A with ¥np=-e, o U" and o U are
i hic as Y-universes sin N 7 = €. Therefore, if D is a p-free * ~ *
isomorphic as Y-universe ce al¥)n 7w refore, 0 EH(D/D) ~ EG((F RQD)/n)

A-spectrum indexed on a*U“, then D is an £(a*U,a*U")—spectrum. Of course,

«"U need not be A-complete, but we nevertheless have a transfer

¥t
: D D F H, L ~
t: D/p — Daga Ee(sD/o) T ES((r x_D)/m)
associated to Dﬁba*F+ + D/p, where a*F denotes a finite r-space F regarded as . <
- * *
a A-space (since a*F certainly embeds in a*U). The condition o 1(Tr) c p also

implies that T x D is a n-free T-spectrum (since its cells are of type T/aly) EH(ZLDA a*F+) ~ G((P x DA F)
* e
where ¥ np = e), hence we also have a transfer P o

Proof. These are immediate consequences of the natural isomorphisms of II.4.3 and

13 (T x D)/m —> (T x D)a_F'. I1.6.5 togeth . . . X L
o oDy 6, ogether with Axiom 6 (and Axiom 2, which allows us to regard "t on the

bottom left as a transfer).
By I1.4.10, we have a natural isomorphism

~ We single out some special cases in the context of (G,w)-bundles.
G xg(E/p) —>(T x E)/7w
Examples 4.3. (i) Suppose that p is a subgroup of =, T =Gx 7, A = G x 0,

0 : *ow . . .
in G4U" for E in Aga' U", and this permits a comparison of the above two and a: A » T is the cbvious inclusion. For E e AgU",

transfers.

| - (T % E)/w = (x mpE)/n =z E/p
; Axiom 6. The following diagram commutes in hGSU"™ for a homomorphism of pairs

a: (A,p) » (T,m) with quotient inclusion H C G and a p-free A-spectrum D by II.4.10. Ilet F be a finite w-space. Axiom 6 asserts that, for a p-free
, -

. *oomr
indexed on o UT. (G x p)-spectrum D, the transfer associated to D/\pF+ + D/p agrees with the

. KH(D/O) ~ (T qu)/n ] transfer associated to (n xpD)A“F+ + D/p. In particular, if g: X < F»X/n is a
(G,n)-bundle whose structural group reduces to p, so that X =z 7 xY for a
lle B lT principal (G,p)-bundle Y, +then the transfer for ¢ regarded as a ?G,n)-bundle
G “H(D Apu*F+) (T Ka(DAu*F+))/ﬂ 2 (7 KuD)AﬂF+ ) agrees with the transfer for ¢ regarded as a (G,p)-bundle.
(ii) Suppose that = = p/c for a normal subgroup ¢ of p, T =Gx =,
The proof is immediate from Lemma 2.7 and the commutation of iy with the A=Gxp, and a: A+ T is the obvious quotient homomorphism. For E ¢ ALUT,

relevant change of group functors given by II.4.14. We have the following
homological interpretation (in which we retain the otheses of the axiom).

g P hyp (r = E)/n = (E/o)/n = B/p
Proposition 4.2. Let E be a G-spectrum indexed on UT. Then the following by II.4.10. Let F be a finite n-space. Axiom 6 asserts that, for a o-free

° F] -

(G x p)-spectrum D, the transfer associated to DApF+ + D/p agrees with the
transfer associated to (D/O)A“F+ + D/p. In particular, this says that, when o
acts ineffectively on F with kernel ¢, the transfer for a (G,p)-bundle with

i . ; fibre F agrees with the transfer for the same bundle regarded as a (G,p/o¢)-bundle.

. diagrams are commutative, where L is the tangent H-representation at the identity
coset of G/H.
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(iii) Suppose that p =m, T = Gx m, A =Hx 7, and a: A » T is the inclusion

determined by an inclusion HC G. For E ¢ AU",
(r uaE)/n = (G xHE)/n.

Axiom 6 asserts that, for a n-free (H x m)-spectrum D, the G-map G &yt extending the
transfer H-map associated to the stable (H,n)-bundle DANF+ + D/m agrees with the
transfer G-map associated to the extended (G,w)-bundle (G xHD)A“F+ + (G xgD) /7. The
homological interpretation is of particular interest in this case.

There is another, simpler, compatibility property‘for H C G. The transfer
G-map associated to a (G,w)-bundle may be viewed as an H-map and, as such, it may be
identified with the transfer H-map associated to £ regarded as an (H,w)-bundle.
This property generalizes as follows to arbitrary homomorphisms o: H +» G. Here
o*UT need not be H-complete (in contrast to the situation in Axiom 6), hence we

must bring in a change of universe as in Lemma 4.1.

Proposition 4.4. Assume given a map of extensions

1—p T —=Ah—=H —>1

L

15—l —» G—=1.

Iet U' be a (complete) A-universe and let j: o’U + U' be a A-linear isometry.
Let D be a n-free T'-spectrum indexed on U™. Then j*a*D is a n-free A-spectrum

indexed on (U')™ and the following diagram commutes.

jeat(D/m) = (jxa D)/

. *

Jx0 T T
Jxt(DAFY) = (Jxa'Dia F*.

Proof. If Yy CT and ¥~ w=e, then r/¢¥ is triangulable as a finite w-free
A-CW complex. Tt follows as in IL.4.13 that o'D, and thus jxa'D, 1is a n-free
A-spectrum. The rest is clear from Lemmas 2.7 and 4.1 by inspection of definitions.

" As in Lemma 4.1, as long as we make hypotheses which ensure that the transfers

are defined, we need not assume that U and U' are complete here.

We again single out some special cases in the context of (G,n)-bundles.

Examples 4.5. (i) Let F be a finite m-space. Taking a: A > T 1o be

0
‘g‘
|
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ax1l:t: Hxm+ Gx7n for some o: H+ G, letting D = 2°x* for a principal
(G,7)-bundle X, and using that the functors j*a*z“ and 3%a° are isomorphic, we
see that application of j*a* to the transfer G-map associated to the (G,w)-bundle

g: X . F > X/m gives the transfer H-map associated to ¢ " regarded as an (H,n)-bundle
via o. When o: H+ G is an inclusion, we may set U' = U and take j +to be the
identity; this gives the case mentioned before the proposition.

(i1) For a different special case of (i), let e: G+ J be a quotient homomorphism

'with kernel N and take a: A+ T tobe ex1: Gxm+ Jx n. Here our

orlglnal U is a complete (G x r)-universe and we may take UM as our complete
(J x w)-universe and let j: Wsu be the resulting inclusion of

(G x n)-universes. If E is a n-free (J x 7)-spectrum indexed on UNX", then
j*a*E is an N-trivial n-free (G x w)-spectrum indexed on U" and the two resulting
transfers are related by j*a*r = t. In particular, with N = G, this relates the
nonequivariant transfer of g: EAWF+ + E/v  to the equivariant transfer of ¢
regarded as a G-trivial stable (G,n)-bundle.

The previous example is of particular interest when E is obtained by passage
to orbits over N from an (N x w)-free (G x w)-spectrum. In this situation, but
reverting more generally to our original extension G = I'/w, we have the following
analog of Proposition 4.2. As usual, F is a finite T-space and U is our
complete r-universe.

Proposition 4.6. Let G =7T/r and J = G/N. ILet A > m be the inverse image of

N in T, so that J =Tr/A. Let Ej ¢ JAU' and Fy ¢ GSU" and assume given an
e # .

JN)-equivalence ¢ Ey » By (where e = J*E*, €1 G»J and j: UM = (¥ ¢ vm).

Let D be a A-free r-spectrum indexed on UM. Then the following diagrams are

commutative, where A 1is the adjoint G-representation derived from N.

EJ(DAFY) = EG((j4D)a FF)
L ¥ *
T T
E3(D/A) = Eg((jxD)/n)
and
EL(D/0) = E§((z7A54D)/n)

o b

Ef (DA, FY) = ER((z7A,Dn FY)

n

Proof. The stable J-bundle D:AF+ + D/An 1is obtained by passage to orbits over N
from the stable G-bundle DaF" » D/m. While U need not be G-complete, D is
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an e(U,UA)—spectrum since it is A-free, and there is thus a transfer G-map

t: D/m » DA“F+. It is immediate from the definitions that /N is the transfer

J-map of DAAF+ > D/A. Lemma 4.1 identifies jyt as a transfer. The diagrams are

thus direct consequences of the naturality of the isomorphisms of II.8.1 (and Axiom

-A
T

2, which allows us to regard I as a transfer).

Example 4.7. When T = G x 7 in the proposition, A = N x w. Here F is a finite
m-space and D is an (N x 7m)-free (G x w)-spectrum, we can identify DAAF+ + D/A
with (D/N)A“F+ > D/(N x w), and we have a map of stable (G,w)-bundles

(JxD)a F* + J4(D/N)a F". Comparing with Examples-4.5 (ii), we find that the

identifications of transfers of the proposition factor through the resulting
naturality diagrams.

The basic source of suitably related pairs of spectra Ej and Eq is
explained in II.8.6. In particular, when N = G, Proposition 4.6 relates the
transfer in Eé and Eg to the transfer in E' and Ey, where E, is a split

G-spectrum with associated nonequivariant spectrum E as in II.8.4.

To give a concrete illustration, let HC G and consider the projection
g: EG x G/H » EG. The orbit bundle £/G 1is the natural bundle BH + BG. Writing
FH for EG regarded as an H-space and using the evident bundle map from £ to
G/H + ¥, we obtain the following special case.

Corollary 4.8. If kq is a split G-spectrum with associated nonequivariant
spectrum k, then the following diagram commutes.

*
k;(*) - k;( EH) T Xk (BH)

A

(%) ~S—> ki (EG) ¥ K (BG).

(13

e

In the case of complex K-theory, this diagram (on skeleta) is due to Nishida
[117], who also verified that the left most transfer may then be identified with the
standard induction homomorphism R(H) + R(G).

§5. Product and Fuler characteristic formulas

The basic topological fact here is the commutation of transfer with products.
A special case will imply an Euler characteristic formula for the evaluation of the
compogite Es<t for a (stable) G-bundle g£. The relevant Euler characteristic
depends on ¢ and not just its fibres, but we show that the determination of when
this composite induces an isomorphism on cohomology does reduce to questions about
Euler characteristics of fibres.
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“We.begin with a result on external products.

Theorem 5.1. For i =1 and -i = 2, assume given an extension Gy = ri/ni, a

’n’-
complete I:-universe U;, a w;-free I:-spectrum D. indexed on U;t, and a finite
p i i i i 1 i

rj-space F;. Then the following diagram of (Gl X G2)—spectra indexed on
T W
U 1(3 U 2 commutes, where all of the smash products are external.

Dl/nlls D2/1r2 = (DlADz)/(Trl X 112)

TAT T

+

([

+ +
(Dl"anl)A(DZ A“2F2) (DlADZ) A“lx“z(Fl x F2)

Proof. While U; ® U, need not be a complete (ry x Ip)-universe, DjaD, is an

(U, C>Ué,U{1(3 U;2)~spectrum since its cells are given by orbits (ry x Tp)/(Aq x Ap)
with AN LR Thus the right hand transfer is defined as in the previous
section. The conclusion follows from Lemma 2.6 and the commutation of external
smash products with the change of universe functors used to define the three
transfers in sight.

We use change of groups to internalize this result.
Theorem 5.2. With the hypotheses of Theorem 5.1, assume further that Gy = G2 =G
and define I +to be the equalizer of the projections Iy + G, so that the

following is a map of extensions.

l_;nlxngg——w I' ——= G —1

b

j— ] X Mg ==l x Ty —=G

X
o)
-

. LB R b R
Choose the Ij-universes U; so that Uy~ = U2 =T for a complete I'-
universe U. Then the internal smash product D;+D, is a (“1 x n2)~free I'-spectrum
U“]‘M2 and the following diagram of G-spectra indexed on Uﬂlxn2
commutes, where all of the smash products are internal.

indexed on

Dl/nl/\D2/112 = (D]_’\DE)/W1 x
TAT T
+ o~ +
(Dl ,\anl)l\ (D2 /\“2F2) = (D1AD2) A“1X“2(Fl X F2)

T X
Proof. The G-universe U ! 2 has complementary Ty, Tp, and T summands in Uy,

W X7 Tq X7 T XT
U,, and U, hence we can extend the G-linear isometry U I"2@ul2,y172
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used to internalize the smash product to a r-linear isometry J: A*(U1 C)Ué) > U..
Then the internal smash products here are obtained from the external smash products
of the theorem by applying the functor j*A*. We obtain the conclusion by

applying j*A* to the diagram of the theorem and using Proposition 4.4 to identify
the resulting arrow j*A*r as a transfer.

Of course, we can always construct the required universes Ui by adding
T XT
appropriate summands to the complete G-universe U 1 2. In the context of
{(G,7)-bundles, we start with stable (G,n;)-bundles D; and construct the stable
(G,m x mp)-bundle DjAD,. If Dy = ™¥;, then -DjAD, = 1™(X; x Xp)*. Here
ry = G x g, I' = G x LI DY and A: T » ry x Ty is induced by the diagonal map
of G.

FEither specializing to the case where one of the stable G-bundles is an
identity map and quoting Axiom 3 or arguing by direct inspection of definitions, we
obtain the following generalization of Axiom 2. We revert to our usual context of
n-free I'-spectra D indexed on U™ and finite r-spaces F, where U is a
complete T-universe.

Corollary 5.3. Let E be any G-spectrum indexed on U". Then DAE is a n-free
r-spectrum indexed on U™ and the following diagram of G-spectra commutes, where

all smash products are internal.

(DAE) /w = (D/w) AE
Tl Lrhl
(DI\E)I\"F+ = (Dr\"F+) AE

We want to use this result to obtain homological formulas involving cup and cap
products. Here we need appropriate diagonal maps. While these are obviously
present when D = Z“Xf, it is again simple and useful to proceed in greater

generality. The following definition makes sense for any compact Lie group T.

Definition 5.4. A coaction of a r-space X on a I'-spectrum D is a map
A: D+ XD of r-spectra such that the following counit and coassociativity

diagrams commute.

D—25%x"aD and D —2 5x*AD
\\ lersl A l lAhl
TS P Ap A v axtA D

For a (commutative) ring r-spectrum k. and a kp-module r-spectrum j,, there
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results a cup product

Ut K(X) ® J3(D) — k(D)

and a cap product

N 35D @ 1k (x) —= (D)

1

arising from the external products (2') and (4') of III§3, and these endow
jp(D) and JE(D) with K}(X)-module structures. )

Of course, we are free to replace X' by X' (or to view X' as shorthand
notation for 1™X"). We are interested in coactions by n-free I'-spaces on n-free

r-spectra, and in this case we continue to write A for the induced composites
D533 D2 (x/m)*aD  and D 4w x'ap 229 x*ap/4,
where the g's are the quotient maps, and for the induced maps
D/n — (X/m)*AD/n  and DA F*—» (X x F)*'A(DAF').
Observe that the first two of these are maps of w-free I-spectra which both induce
the third map on passage to orbits over =. The fourth map arises in the evident
way by use of the diagonal on F. The naturality of the transfer, the previous

corollary, and elementary chases give diagrams relating A, t, and £.

Corollary 5.5. Let a: D » X'AD be a coaction of a 7-free I'-space X on a n-free
I-spectrum D. Then the following diagram of G-spectra commutes.

(X/n)+'\D/11<--A—— /1 ——> DAWF+ «—t— p/n —‘A—V(X/TI).FAD/H

Al A 1at

(X x“F)+AD/n e (x xﬂF)"A(DAﬂF*) —&rL S (x/ma (‘DA“F“)

There result formulas relating the transfer to cup products and cap products.

Corollary 5.6. Let kG be a (commutative) ring G-spectrum and let jG be a kG—

module G-spectrum. Then
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H

K
Fwm oy = clwuEtly))  for we k(X xF) and ye jg(D/n)

XUt (2) T*(E*(X)\J z) for x e ké(x/n) and 2z € jé(DfﬁF+)
*
uN T w) = glrelw) Ow)  for ue j§(D/m)  and we kg(X x F)

Te(uMx) for uce j%(D/n) and X € ké(X/n)

i

wlu) M g*(x)

With w taken to be the identity element, the first formula implies an Euler

* ¥
characteristic formula for the computation of & T .

Definition 5.7. Define the Fuler characteristic x(g) associated to the G-bundle
gr X x F - X/m to be (1) e kg(X/n), where Xk, is any given ring spectrum. In
represented form, x(g) is the composite

£ x/m 27X x“F)+ —£r5 Lk,

where p is the collapse map and e is the unit of kG.

Theorem 5.8. let the n-free I'-space X coact on the g-free TI-spectrum D and let

jG be a module G-spectrum over a ring G-spectrum kg. Then the composite
* ¥ % + ¥k
JlD/m) = jo (0 F) —t i (D/m)
e as 0
is multiplication by the Fuler characteristic x(g) € kg(X/w).

We shall shortly restrict to the space level and discuss conditions which
ensure that x(£) is a unit, but we should first display some examples of coactions

on stable G-bundles to which the general considerations above apply.

Examples 5.9. (i) Of course, a I-space X coacts on k¥, If A is a r-subspace
of X and C(X,A) is the unreduced mapping cone, then X coacts on £C(X,A) via

100X, 8) ZCAL 26 (x « XX x A)

~ ot ©

X £C(X,A).

More genmerally, if A; and A, are r-subspaces of X with union A, then the
diagonal of X and the I-equivalence of IIIL.4.4 give a I-map

0(x,8) SBho(x x X,X x Ay U Ay x X) = OIK,A DAC(X, &) -

Via diagrams like those of Corollary 5.5, we can prove the evident relative versions
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of the formulas of Corollary 5.6.

(ii) If A 1is a coaction of X on D and E is any I'-spectrum, then Aal is a
coaction of X on DAE. The case of interest is when X is a n-free r-space, D
is a n-free Ir-spectrum, and E is a g-trivial r-spectrum, as in Corollary 5.3.
(iii) As pointed out in Remark 3.3 (iii), the projection E4(m)*AD + D is a

r-equivalence for any n-free I'-spectrum D, by II.2.12. The inverse of this

equivalence specifies a coaction ¢ of ES(wm) on D. This example plays a

universal role. For any n-free I'-space X, there is a unique I'-map
r X+ EHm), and (Aal)a = y whenever X coacts on D via A (as we see by
composing with the projection).

Since. x(g) dis only defined for space level G-bundles £: X x.F o+ X/n, we
ignore the more general context henceforward in this section. We want to determine
when x(g) e kg(X/w) is a unit. Observe that, by the previous example, this holds
for all X {and a given fixed F and kG) if and only if it holds for X = E3(w),

in which case T*g* is an isomorphism for every stable G-bundle &: D/\WF+ + D/m.

We need to relate x(g) to x(F), and for this purpose we must first study
the case when the base G-space X/w is an orbit G/H. Here X must be an orbit
I/A, but there are in general many possible choices of A for a given choice of
H. &Since X is w-free, A ¢ $(n); that is, A A 7w = e. The composite A € I + G maps
A isomorphically onto H. ILet o: H+ I denote the composite of the inverse of
this isomorphism and the inclusion of A in T. We call o the fibre representa-
tion of the orbit r/A (and think of it as defined up to conjugation in I'). For a
general w-free I'-space X and base orbit G/H C X/w, we say that o is the fibre repre-

sentation of X at G/H if the pullback of X over G/H is I-homeomorphic to T/A.

Our finite I'-space F has the Fuler characteristic y(F) = E*T(F) € u?(s),
g: F+»pt. If a: H+T is a fibre representation, then, regarding F as a finite
H-space via a, we obtain an Euler characteristic x(a*F) € nﬁ(S). Equivalently,
x(u*F) is the image of x(F) under o n?(S) + ng(s). We continue to write
x(a*F) for its image in kg(S) = kg(G/H) when k, is a ring G-spectrum.

Lemma 5.10. Let A e J(w) determine the fibre representation o: H + I'. Then the

G-bundle g: (r/A) x_ F + I/Anr may be identified with the extended G-map
1 xye: G xHa*F + G/H and the following diagram of G-spectra commutes.

Gws T 2T(r/am”
1xt(a*F)l lr(g)
6 st F T E7((r/0) % )

Therefore y(g) = x(a*F) in the ring wg(G/H) = ng(S).
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Proof. Since (I/A) x F is I-homeomorphic to I x,F and (r x,F)/n 1is
G-homeomorphic to G xHa*F, the identification is clear. The diagram results by
application of Axiom 6 to the inclusion of pairs (A,e) » (I,n) with quotient
inclusion H C G, with D in Axiom 6 taken to be the sphere A-spectrum (which of
course is e-free).

Example 5.11. Let I = Gx m and let F be a wn-space. Here any A e F(n) has
the form A = {(h,p(h))|h ¢ H} for some subgroup H of G and homomorphism

p: H+ m. The corresponding fibre representation o«: H+ T is given by

a(h) = (h,p(h)), and of course 'F = p*F. This- recovers the usual description of
(G,n)-bundles over orbits as extended bundles G pr*F.

We insert two criteria for an element of kg(B) to be a unit.

Lemma 5.12. Let k; be a ring G-spectrum and let u e kg(B), where B is a
G-CW complex. Then u is a unit if either of the following conditions hold.
(i) The image of u in kg(G/H) is a unit for each orbit G/H € B.
(ii1) B is G-connected with basepoint * and the image of u in kg(*) is a
unit.

Proof. First note that condition (ii) implies condition (i) since, if B 1is
G-connected with basepoint ¥, then any inclusion G/H + B 1is homotopie to the
projection G/H +» ¥ (because there is an H-path commecting * to the image of the
orbit eH). Thus assume (i). We show that u acts isomorphically on kZ(B).
Since u acts on the Milnor 1lim! exact sequence for ké(B), we may as well assume
that B has finite dimension n. The result certainly holds for n = 0, and an
easy Mayer-Vietoris sequence argument from the pushout diagram deseribing B in

terms of its n-cells and (n-1)-skeleton gives the conclusion by induction on n.
We obtain the following result by combining Lemmas 5.10 and 5.12.

Theorem 5.13. Let B = X/m for a G-bundle £: X x.F » X/n and let k; be a ring
G-spectrum. Then x(&) e kg(B) is a unit if any of the following conditions hold.
(1) x(a'F) ¢ ¥}(S) is a unit for each a: H»> I such that G/H embeds in B

with fibre representation a.

e
[N

B is G-connected with basepoint * and x(a*F) € kg(S) is a unit, where
a: G » I' is the fibre representation at *.

(iii) B 4is G-free and the classical nonequivariant Fuler characteristic

. x{F) ¢ ¥3(S) is a unit.

Part (iii) is the special case of (i) in which only the trivial isotropy group

and thus only the classical Euler characteristic appears. When B is finite and

203

G-trivial, (ii) is due to Nishida [117, 4.7]. The most important case of (ii)
occurs when G acts trivially on F, so that x(a*F) is the image of the

classical Euler characteristic of F under the unit Z » kg(S).

Of course, in practice one usually localizes appropriately to obtain the unit
conditions of the theorem. Nonequivariantly, when G = e, connectivity is a

negligible hypothesis and (i) and (ii) have the same content. ZEquivariantly,

G-comnectivity is an annoyingly strong hypothesis. One is stuck with (i) and should

localize so as to invert all x(a*F). We shall not pursue the relevant techniques

here.  Application of (i) in ordinary RO(G)-graded cohomology gives the following

" conclusion; see [89, Thm B].

Theorem 5.14. If G is a finite p-group and &: Y + B 1is a finite G-cover whose
fibre F has cardinality prime to p, +then the composite G-map

2:ooB+ T D ooY-l- 13 D coB+

becomes an equivalence upon localization at p. In fact, the conclusion applies to
any stable G-bundle of the form ¢&: DA“F+ + D/w.

§6. The sum decomposition and double coset formulas

We here exploit the homotopy invariance and additivity on fibres axioms to
prove Feshbach's sum decomposition and double coset theorems. We also discuss the
equivariant analogs of Feshbach's applications of the double coset formula, this

being an area where much further work remains to be done.

We shall use the same letter for a map of spaces and for its induced map of
suspension spectra. We shall also use the same letter for a map of finite m-spaces
and for its induced map of stable bundles with these spaces as fibres. For a n-free
r-spectrum D and a subgroup A of T, we write ¢(A,r) for the stable bundle
Dl\“(I'/A)+ + D/n and t(A,r) for its associated transfer map.

With these notations, the following two decomposition theorems are immediate
consequences of the pretransfer level assertions of Theorems 2.10 and 2.11.

Theorem 6.1. Let F be a finite I-CW complex and let

: o
Ji® F/Ai c I'/Ai X e "> F

be the composite of the inclusion of an orbit and the iﬁh- characteristic map for
some enumeration of the cells of F. Then, for any n-free I-spectrum D,
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= 2(-1)™j.1(A;,1): D/m —>Da F*
T—%— JiTiA4,T): b A E .

As above Theorem 2.11, write F/T as a disjoint union of orbit type path
components M and let x(M) be the internal Fuler characteristic of M in F/T.

Theorem 6.2. ILet F be a compact TI'-ENR and let : T/A + F Dbe the inclusion of

Jpt
an orbit in the orbit type component M. Then, for any w-free r-spectrum D,

T = ﬁx(M)jmT(A,r): D/w ——§DAwF+.

let ¢ and p be subgroups of = and let £(o,m) be the evident quotient
map D/¢ + D/mw. We would like to obtain a double coset formula for the computation
of t{p,mela,n), where t(p,n) is the transfer associated to ¢g{p,m). Here for
the first time our general context causes real difficulty. It is not clear what
equivariance £(o,n) has or that it is the sort of stable bundle for which our
methods provide a transfer. We shall return to the general context at the end of
the section, but until then we shall take I = G x m and work in the context of
stable (G,m)-bundles. Remember that a principal (G,n)-bundle is the same thing as a

“w-free (G x w)-space.

Thus consider a w-free (G x n)-spectrum D indexed on U", where U is a
complete (G x w)-universe. As in II.4.8 and II.4.15, the m-action ¢g: m x D+ D is
a (G x w)-map and gives rise to the following commutative diagram of w-free
(G x w)-spectra.

m %D = Daln/a)*

¢1 Lue

D DI\SO

n

By II.4.10, we have an isomorphism of G-spectra
D/o =z (=w KO_D)/TI',

and £(o,n) is just the composite G-map
Do T g/

= (x KOD)/n ——>» D/7

or, equivalently,
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~ + lA’n‘E
D/o = DA“(H/G) ————= D/7.

Thus E(o,n) 1is a stable (G,w)-bundle and has a transfer +t(o,n).
Theorem 6.3. Let p and o be subgroups of « and let o\n/p be the double

coset space regarded as the space of orbits under ¢ of the homogeneous space w/p.

Let {m} be a set of representatives in = for the orbit type component

"manifolds- M of o\n/p and let x(M) be the internal Euler characteristic of M

in o\n/p. Then, for any wn-free (G x w)-spectrum D, the composite
D/o &> D/n == D/p
is the sum over M of x(M) +times the composite
T m n ‘m
D/ —%D/p" Ag —=—=D/p" — = D/p.

Here oo = mpm'1 and c; is induced by the left m-map /o™ + w/p given by right

multiplication by m. In symbols,
wlp,mloglo,n) = ZX(M)cmog(me\o,pm)OT(pmr\o,c).
M
Proof. The isotropy group under ¢ of the point mp e w/p is % o, and we let
. m =
Jpt o/p Ao —>oamp c /p

be the inclusion, s(p®mo) + smp for s ¢o. Observe that Jp coincides with the
composite

[¢]
m m m
/o ang € m/p —=u/p.

With the isomorphism again coming from II.4.10, we see from our description of
glo,m) that we have a commutative diagram

~ dal
DAG(“/D)+ = (n KcD)Aw(“/°)+ —"D/p

El lE(P:ﬂ)

D/o glo,m) = D/7

By Axiom 6 (in the context of Example 4.3 (i)) and Axiom 1,

tlp,mela,n) = (¢A“1)T(€)-
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By application of the previous decomposition theorem to ¢,
w(g) = ﬁx(M)jmr(Hnn g,0) .
By a simple diagram chase from our initial observations,
(Ba )iy = cmE(pmr\o,pm).
We obtain the conclusion by combining these relations.
Of course, if p has finite index in «, then M is the point omp and

x(M) = 1. Here the result has the same form as the classical double coset formula
in the cohomology of finite groups.

The most important case occurs when D = $°E(G, )", where E(G,r) is the
universal principal (G,w)-bundle. Here E(G,n)/p is a classifying G-space
B(G,p) for any p ¢ m and the result takes the following form.

Corollary 6.4. The composite
£°B(G, o) —E—= £"B(G,m " —== £7B(G,p)"
is the sum over M of x(M) times the composite

c
°B(6,0)" —L> 17B(G, 0" no)* —E— £7B(G, M) — B 17B(G,0) "

Remarks 6.5. Taking G = e (and restricting to skeleta), we obtain the main
theorem of Feshbach's paper [53]. Feshbach later gave a separate argument for the
generalization of the double coset formula to Borel cohomology, namely

k:(Y) = X" (En xY) for a n-space Y and nonequivariant theory Xk [54,II.2]. In
fact, one need only apply Theorem 6.3 to (Er x ¥)¥ to read off this
generalization.

It is to be emphasized that the double coset formula depends only on the
structure of fibres and thus has the same form and can in principal be exploited in
the same way equivariantly as nonequivariantly. In particular, the following
consequence of Lemma 2.12 serves to eliminate terms.

Proposition 6.6. If Wp = N“p/p is not finite, then

t(p,n): D/m—>D/p
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is zero -for every n-free (G x m)-spectrum D.

‘For example, if ¢ dis a torus in the double coset theorem, then all terms
vanish except those indexed on fixed point orbit type components M, that is, those
with o®Ao = o; of course, t(o,0) = 1, and all terms vanish if there is no m

such that oC ¢ If ocpcn and o is a maximal torus in =, then the fixed

- point subspace {mp|o C o™} of o\n/p is the finite set Wyo/W,o and each x(M) = 1.

‘Indeed, if o c o™, then mlom is a maximal torus in p and is thus equal to

o% for some mn ¢ p, so that mn e N, (o) and me N (o)p. Therefore, as proven by
Feshbach [53,54] when G = e, the following result is an immediate specialization
of the double coset theorem.

Corollary 6.7. Let D be any n-free (G x w)-spectrum.

(1) If p 1is the normalizer of a maximal torus o in w, then
w(p,mg(o,w) = glo,p): D/oc —=D/p,

hence Img(c,p)* = Img(c,n)* in j*(D/c) for any G-spectrum j.
(ii) If p 1is a maximal torus in mw, then

tlp,mglp,n) = zey: D/p —>D/p,

where the sum ranges over a set {m} of coset representatives for Wnp.

(ii1) If p 1is normal and of finite index in w, then

w(p,m)glp,n) = tey: D/p —=D/p,
where the sum ranges over a set {m} of coset representatives for u/p.
(For example, p might be the identity component of w.)

Still following Feshbach, we insert a definition which will allow us to state a
best possible reduction theorem for the computation of j*(D/n) in terms of
¥
J°(D/p) for a subgroup p of w.

Definition 6.8. An element 7y e j*(D/p) is said to be stable (or m-stable) if

Elono®,0) (y) = E(pr\pm,pm)*c;(y)

% v
for all m e w; J ‘(D/p)S denotes the set of stablé elements. Obviously
Elp,mley g(o®,7), hence
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me(o,m* ¢ ¥(o/p)S.

Theorem 6.9. Let the n-free (G x w)-space X coact on the n-free (G x w)-spectrum
D and let jG be a module G-spectrum over a ring G-spectrum kG. Iet pegm and
consider ¢ = g(p,n). Suppose that x(g) ¢ kg(X/n) is a unit. Then

*, .

£ N o/m) —= 3% (/008

is an isomorphism.

Proof. For y e j*(D/p)S, an immediate calculation from the double coset dand Euler
characteristic formulas shows that 5*1*(y) = uy, where

u = sx(Mx(g(p®Ap,p)) € kg(X/p).
. . . R 0 s R * % _
Applying this relation to 1 = £°(1) ¢ kg(X/p)", we find that '« (1) = u, so
that u is a unit. Since 1*5*(z) = x(g)lz for =z e jé(D/n), the conclusion
follows. '

With B = X/m and F = n/p, Theorem 5.13 gives three criteria for the
requisite unit condition. While the first criterion is unfortunately the one
relevant to classifying spaces B(G,w) and thus to the theory of equivariant
characteristic classes, the last two lead to the following omnibus theorem. When
G = e, it contains Feshbach's results in [53] and their improvements along the
lines of [54,II.2].

Theorem 6.10. Let Jj, be a G-spectrum. Let X be a principal (G,w)-bundle, let
pc m, and consider ¢ = g(p,n): X/p + X/m. Assume that X/v 1is either
G-connected with trivial fibre representation G » n at the basepoint or G-free.

(i) If p is the normalizer of a maximal torus in =, then
£¥: JalX/m) —=j§(x/0)S

is an isomorphism.

(ii) If p 1is the inverse image in the normalizer of a maximal torus of a

p~-Sylow subgroup of the quotient Weyl group, then

g*: jE(X/n)¥<>jé(X/p)S

is an isomorphism if jG is p-local.

(iii) If p is a maximal torus in = with Weyl group W, then
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£ Jal%/m—igx/0)"

is an isomorphism if j, 1is localized away from |W

If p is normal and of finite index in w, then
£%: JE/m —= i3 (x/p) /P

is an isomorphism if jG is localized away from |n/p

Moreover, with the assumption on the base space X/n dropped, 5* in (iii) and
(iv) is still an epimorphism. The same conclusions apply with X replaced by any

m-free (G x w)-spectrum on which X coacts.

Proof. In (i), x(n/p) = 1. In (i1), x(a/p) 4is prime to p. The last statement
holds since Corollary 6.7 implies that g*r*(y) = wy for stable elements Yy,
where w = |W| or w= |n/p

. For (iii), note that this formula already holds for
W-fixed elements and thus implies that all such elements are stable. The rest is
clear from Theorem 6.9.

Warning 6.11. When we say that a nonequivariant spectrum j is T-local for a set
of primes T, we mean that its homotopy groups are all T-local or, equivalently,
that the natural map Jj » jT is an equivalence, where jT = jAMZT. Here MZT is
the Moore spectrum 2'12“3%, S% being the localization of sl at T. If we start with
a general spectrum j and form its localization Jjp, then j;(B) = j*(B) ® Zp for
finite CW complexes B but not for general CW complexes, because localization

at T fails to commute with infinite products and inverse limits. Our unit
criteria of Lemma 5.12 depended heavily on the wedge axiom and so apply only to
theories represented by local spectra, not to localized theories j*(?) C)ZT. Thus
parts (ii) through (iv) of Theorem 6.10 do not apply to j*(?) ® Zp without a
finiteness condition on the base spaces. In fact, the (nonequivariant) K-theory of
classifying spaces of finite groups provides obvious counterexamples. Note,
however, that the surjectivity in parts (iii) and (iv) clearly does apply to

j*(?) ®Zp in full generality, by the proofs given. The moral seems to be that one
should learn how to exploit part (i) rather than the more familiar but less general

part (iii). This warning applies verbatim equivariantly.

Returning to our original context, we ask how generally there is a double coset
formula for non-trivial extensions T. There is a reasonably satisfactory answer
when T is a split extension G XyTe Here we restrict attention to subgroups o
and p of = invar;ani under the action of G given by y. We define r0'= G *y 0
and identify T /o with G. Here again II.4.8 and II.4.10 give isomorphisms of
G-spectra over D/n
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°

D/o = (T sy DI/m = Da(1/rg)"

for a w-free r-spectrum D. Thus ¢g(o,w): D/o » D/r is a stable G-bundle and has a
transfer <t(o,n). We need some observations and notations to state the double coset
formula in this context (and we shall leave verifications to the reader).

Define an action of G on o\n/p by the formula
glomp) = ay(g)(m)p

for ge¢ G and m ¢ m. Then the orbit map 0\:"/{; > (o\n/p)/G can be identified
with the map o\n/p » I'd\l“/I‘p which sends omp to I'Gml"p. When vy is trivial,
G acts trivially and this map is an identification.

For m e w, define Iy =T N (I‘p)m; explicitly,
rp = (g, vlgmrm™) e e p and yghHmrm?! ¢ o).

Define Hy = I‘m/cm o% and note that H, embeds in I'G/c = G; when vy is trivial,
this embedding is an isomorphism.

For a n-free I-spectrum D, D/onp” is an Hy~spectrum but not a G-spectrum. By
IT.4.8 and II.4.10, we have a stable G-bundle

G b<Hm(D/on ") = Da (T /)" —>D/a,
and we let
1" (onp®,0): D/o —=G |><Hm(D/onpm)

be its transfer. Since (r p)m/pm ¥ G, D/p™ 1is a G-spectrum and the H -map
elonp®,p)™: D/ono™ > D/pf extends to a G-map

£'(anpm, o™ : G o<Hm(D/cr\pm) —=D/p™.
With these notations, we have the following generalization of Theorem 6.3.

Theorem 6.12. Let = = G X\ and let ¢ and p be y-invariant subgroups of =.
Let {m} be a set of representatives in 1 for the orbit type component
manifb;.ds M of the orbit space (o\un/p)/G and let x(M) be the internal Euler
characteristic of M in (o\n/p)/G. Then, for any w-free I'-spectrum D, the

composite
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D/o glo,m) D/ t(p,m) D/

is the sum over M of x(M) times the composite

(s A p,0) m 5’(cnpm pm) n °m
D/¢ — =% %4 (D/onp ) 2 D/p D/p.
m

Proof. In outline, the argument is the same as the proof of Theorem 6.3. One has a
commutative diagram

+ o~ + ¢An1 + o~ -
DAq(r/rp) = (T an,qD),\n(r/rp) —————aDAﬂ(r/rp) = D/p
g€ lg(p,n)
D/o elo,m) D/w

and one evaluates t(g) Dby use of Theorem 6.2. Since the fibre of ¢ is T/T 0
regarded as a I -space, it is the double coset space I‘(;\l’/I‘p rather than o\n/p
which enters at this point. The remaining details are a bit tedious but

straightforward and are left to the reader.

There is an analog of Corollary 6.4 obtained by taking D to be ZQE(G,Y,TI)+,
where E(G,y,n) is the universal principal (G,y,n)-bundle. Here E(G,y,n)/p is a
classifying G-space B(G,y,p) for any y-invariant pc n (but of course o™ and
onp® are generally not y-invariant).

Remark 6.13. A check of details shows that the only properties of o c n and

;€ T used in proving Theorem 6.12 are that o is normal in T , I';,n 7w =0,

and (I‘G)n = TI. We say that such a group [, is a m-complement of ¢ in T; it
is not uniquely determined. Provided only that both ¢ and p have w-complements,
the statement and proof of the theorem remain valid without the requirement that I
be a split extension. The only subtle point here is the specification of the action
of G on o\un/p. One identifies G with I'c/c, uses T = (I‘p)n to write an element of G

in the form yno for y ¢ Iy and n e w, and sets (yno) (omp) = c(ynmy-l)p-

The following remarks apply in the generality of the previous one.

Remarks 6.14. (i) By the transitivity theorem of the next section, the transfer

t'{oNp®,0) factors as the composite

D/ T 1xt{an Qm!O) m
¢ G % (D/o) G g (D/omp )

m m

Here 1 1s specified in terms of the pretransfer G-map t(G/H;) as
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lAT(G/Hm) +
D/o = D/oAS ————== (D/o)AL" G/Hm) = G Ky (D/a).

m

(ii) If we forget about G in Theorem 6.3, then it and Theorem 6.12 give two
different calculations of 1t(p,n)&(o,n) as a nonequivariant map. The first uses
owr/p directly while the second uses (o\n/p)/G and compensates by use of the
change of groups G Ky (?). When G/Hm is finite, G &y E is nonequivariantly
equivalent to |G/Hj| copies of E and (i) shows that ' (onp™,0) is |G/Hp|
copies of t(cr\pm,c). This is compensated for by the difference in the Euler
characteristics of the two formulas. When G/Hm is not finite, one can apply
Theorem 2.10 nonequivariantly to 1t in (i) to obtain the first formula from the
second. In both cases, the idea is that the second deeompositioﬁ results from the
first by assembling nonequivariant transfers into equivariant maps.

(iii) In (i), t'(onp™,0) vanishes if W, I is not finite and, perhaps more

usefully, t(onp®,o) vanishes if Wy I 1is not finite. The latter group can be
m

identified with the subgroup

{slonp®)|s e ¢ and ysy~ls71

€ onp® for all y ¢ T}
m
of W lonpo).

§7. Transitivity relations

Dold studied the transitivity of his fixed point transfer in [46,§7].
Consideration of transitivity in terms of the Becker-Gottlieb definition seems not
to appear in the literature. In our context, it seems most natural to consider

transitivity for stable bundles built up from bundles of fibres.

To handle equivariance, we assume given a commutative diagram

- g D€ Q
(o]

in which both the rows and the columns are extensions of compact Lie groups. In the
classical case, these extensions are all to be trivial; that is, T = G x 7,

p = X g, and Q=G x 7w x . To fix universes, let U' be a complete Q-universe

and let U = (U')9. Then U is a complete I'-universe and U" = (U')P is a complete

G-universe.

Let P be a finite o-free Q-CW complex with orbit space K = P/¢ and let
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J be any finite Q-CW complex. {(In this section, we use cell structures so we
must at least restrict to finite o-CW homotopy types.) Define F = P XcJ' The
resulting I-bundle ¢: F » K with total group @, structural group o, and

fibre J 1is to be our bundle of fibres. In the classical case, P is to be a
n-free (m x o)-CW complex and J a o¢-CW complex, so that F and K are finite
n-complexes and ¢ is a (w,¢)-bundle with fibre J regarded by pullback as a

(G x m,0)-bundle. (In practice, = does not act effectively on K, but this
causes no problems by Example 4.3 (ii).)

. As usual, we assume given a m-free I'-spectrum D indexed on U". Since F

‘and K are finite r-spaces, our r-bundle : induces a map

1a o
DA F ————>DA K

A

D/

of stable G-bundles, and of course & and &' have transfer G-maps <(g) and
t(g'). With these notations and hypotheses, our transitivity theorem reads as
follows.

Theorem 7.1. (i) The following diagram commutes in nriv.

T(K/ \(F)

5K T(C) _tlg) | et

(ii) The G-map 1Anc: DAnF+ > DA"K+ is a stable G-bundle with total group «,
structural group p, and fibre J and the following diagram commutes in ﬁGXU“.

/M\

DA K — Dh F

Proof. (i) If P is given as a pushout of a cellular inclusion P3 +P; and a

cellular map P3 +> Py, where the P; are all o-free Q-CW complexes, then F
and K inherit pushout structures and the map J + ¥ induces a map from the
pushout diagram for F +to the pushout diagram for K. By additivity and
naturality, the result for ¢ will follow from the result for its pullbacks over
the Pi/a. By induction on the number of cells of P and by further use of
additivity and homotopy invariance to handle spheres and cells, we see that the
result will hold for all P if it holds for P = Q/¥, where ¥ no=e. Let Q/Y
have fibre representation o: A = ¥ CQ, where A ¢ TI. Then, by Lemma 5.10,
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® + © +
t(g): I™(Q/vo) T — 7 ((/Y) xJ)
can be identified with
* s E,» *J+
1 KAT(G J): T xS T 2% d .

Therefore (i) holds in this case by Lemma 2.8.

(i1) ILet ¢'D denote D regarded as an Q-spectrum. We observe first that

<*DaP*  is a p-free Q-spectrum. In fact, by consideration of produit cells, the
verification quickly reduces to the space level observation that e (F/A) x /Y 1is
p-free if Anwr=e and ¥ Ao =¢e (by a simple check from our initial diagram of
extensions). Since the quotient homomorphism @ » G factors through I, we find by

use of II.4.10 that the G-map
1a,g: DAF'—> DAK'
can be identified with the evident G-bundle
(e*DAP") A T —=( D" ) /p

Tet i: U" U, i': U" = (UN)P » U', and j: U = (U")9 » U' be the inclusions, so
that 1i' = ji. If we smash the diagram of part (1) with iyD, we obtain a

commutative diagram
i,DAS
1at{K) 1at(F)
i*DAExK+ 1¥5i51>i*DAsz+

in irdU. Referring back to Definition 3.1, we see that this diagram arises by

application of iy to a diagram of the form

D
?/X
DAK" —E—>DAF"

in TT4U" and that T'/w = t(g') and T/n = t(g). Similarly, t(g) = T(z)/o for a
map <T(g) in hQU  such that

J4F(2) = 1at(3): £7PTAS —»3™PTAL®s"

in hodU'. Therefore p = v/o for a map v such that

|
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1;v = 1alat(J): 1;& DAP AS'—9-1;£ DaP'ax™J,

By Definition 3.1 again, u/w = v/p 1is the transfer t{la;z), and the desired
diagram is obtained from the previous one by passage to orbits over m.

In view of Theorems 6.1 and 6.2, the following multiplicativity formulas for
the Euier classes of bundles are easy consequences of part (i) of the theorem and
‘the naturality of the transfer on pullbacks. Nonequivariantly, results like this
are usually proven using the Serre spectral sequence.

TN
Corollary 7.2. Let Jj;: I'/A; CT/Aj x e * » K be the inclusion of an orbit in
the iﬁg cell for some enumeration of the cells of K and let Tit Fi > I‘/A:.L be

s
the pullback of z: F + K along j;. Then x(F) = z(-1) lx(ci)r(F/Ai).
i

Corollary 7.3. Let j,: I/A » X be the inclusion of an orbit in the orbit type
component M and let g : F » T/A be the pullback of z: F + K along
Then x(F) = ﬁX(M)X(Cm)T(T/A)-

Jpe

Here Lemma 5.10 explains how to compute the relevant Euler characteristics of
bundles over orbits.

We give some examples of situations in which part (ii) of the theorem applies.

Examples 7.4. (i) If we prove Corollary 5.3 directly, then it and transitivity

imply Theorem 5.2. Here the bundle of fibres is just the projection F1 X F2 > F2, its
structural group ¢ being trivial, and we start with the extension Xy > T > G
used in Theorem 5.2. In fact, for any (nl X n2)—free r-spectrum D, not necessarily
of the form DlADZ, we obtain transitivity for the transfers associated to the diagram

+ +
DAﬂlxn2(Fl x FZ) —‘~“’lDAhlxn2F2
N .

D/Tr1 x Ty D D/nlAn2F2

There is also a version of this example for the external smash products, relating
the external version of Corollary 5.3 and transitivity to Theorem 5.1.

(ii) 1In the classical case, with P =7 and J a o¢-CW complex, we obtain
transitivity for the diagram of transfers associated to the diagram

y'T opadt
a

L

D/w <£££££l D/o.

DA (n x J
m ag
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(iii) For a general T, suppose that ¢ € w has a n—-complement T, cr, as in
Remark 6.13. Replacing ocC p c @ in our original diagram of extensions with

i = i - i i by the left action
[,€ mnxT,CT x T, taking P =T with (r x rj)-action given by

of T and right action of T and letting J be a finite rg—CW complex, we

6}
obtain transitivity for the diagram of transfers associated to the diagram
+ ~ +
DA“(F erJ) = DAUJ

D/n ¢§LE¢EL D/g.
(iv) The theorem implies the transitivity of the transfers associated to any

composite of finite G-covers. To see this, suppose given finite G-covers
(%) y—2sz Y .p =

Let ¢ have fibre XK = {1,.ee,n} and A have fibre J = {l,e0e,m} and let
F = K x J. The projection ¢: F » K may be viewed as a (Enjzm,zm)—bundle, where
the wreath product I,[3; acts on F via

(0,17, 1y) (k,§) = (o(k), 7 (J))

and acts on K through the projection znfxn + Iy. While ¢ is of course a
(G, Iy, )-bundle, the factorization £ = yi implies a reduction of its structural.
group to I,fi;. In fact, the associated principal (G,z,[zy)-bundle X of £ is
the space of mn-tuples (yk,j) e Y¥ such that the Yk, j together comprlse-a
fibre g’l(b) for some b ¢ B and the Vi, j for fixed Xk together comprise a

- . %
fibre A‘l(zk) for some 2y ¢ Y l(p). It is easy to check that (*) may be
identified with the composite

F X K X/t [Ze

Rt [ % 1y [ —> ¥/ n

(v) Thinking nonequivariantly, with G = e, suppose given a c-bundle A: Y + Z and
a m-bundle ¢: Z + B (where of course the indicated groups are the structure
groups). Let ¢: F » K be the o-bundle obtained by restricting A to a fibre X
of ¢. The theorem requires the = action on K to 1lift appropriately to F.
Without some such restriction, we would have no control over the structure group of
the composite "bundle" A, which might not even be a compact Lie group. (It would

require some work even to determine exactly when ¢ 1is necessarily a bundle.)
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§8. Cohomological transports

As usual, we assume given G = I/t and a complete I'-universe U. We shall
construct and study certain transfer-like homomorphisms

36D E) —> J5(D/7),

"where D .is a n-free I-spectrum indexed on U™ and E is a finite r-spectrum

indexed on U. With E = :F" for a finite I-space F, the transfer will be a
special case. 7

We must first make sense of the relevant smash products. Let i: U™ > U be
the inclusion. Since D is n-free, iyDAE is m-free. By II.1.8, the natural

map i*i*E + E is an 3(w)-equivalence. By II.2.2, it thus induces a r-equivalence
ix(DAL"E) = i4DAiygi’E —» iyDaE.

Therefore DAi*E is an explicit model for the n-free r-spectrum which represents
14DAE in the universe U". The existence and uniqueness (up to equivalence) of
such a speetrum was proven in II.2.8 (ii). By abuse of notation, we agree to
write DAE for DAi*E throughout this section and the next. We shall usually be
dealing with the G-spectrum DA"E obtained by passage to orbits over r. Since
passage to orbits presupposes use of U", it should be easy to remember that DaE
is indexed on U™ and not on U. It follows directly from II.2.8 and the study of
smash products in II§3 that DAE inherits good formal properties from iyDaE. We
catalog what we need. (For this, E need not be finite.)

lemma 8.1. (i) DaE is funetorial in D with respect to maps in ﬁrLU“ and

functorial in E with respect to maps in hr4u.

(ii) For n-free D; ¢ r8U" and for E; ¢ T4U, there is a natural equivalence
(DyAD, JA(EAE,) = (D)AE, JA(DHAE, ) .
(ii1) For C € r4U", +there is a natural equivalence
(DAEJAC = (DaC)AE;
if C e G4U7, then this equivalence passes to orbits to give
(DAHE)AC = (DAC)AWE.

(iv) For I-spaces F, there is a natural equivalence
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DAZ™F" = DAF'.
(v) For n-free I'-spaces X, there is a natural equivalence
"X'AE = X x E.
(vi) A coaction A: D » X'AD induces a coaction, also denoted A,
(DAE)AC H2ALIAL ((x*AD)AE)AC = X"A{(DAEIAC),

where C e T4U™ and the equivalence comes from two applications of (iii).

Proof. Only (iv) and (v) require comment. For (iv), simply note that
ix(DAFT) = (i4D)AF" = i,Daz®F"

by II.l.4 end II.3.12. In (v), X x E ¢ I4U" denotes the twisted half smash
product to be constructed in chapter VI, and it is essential not to confuse this
with the ordinary half smash product X*AE ¢ T4U. By VI.1.17, II.l.4, and II.3.12,

ig(X k E) = X'AE = 142X AR,
and it follows that

Ix E = ):'”X+Ai*E = X+Ai*E.

We shall make considerable use of the spectra X x E, but we only need the
formal properties following from the equivalences just displayed, not the explicit

construction.

We can now define the homomorphisms we wish to study.

Definition 8.2. ILet Jjgu e G4U" be a (left) module spectrum over a (not necessarily
commutative) ring spectrum kG e GEUT, let A: D=+ X*AD be a coaction of a n-free
r-space X on a n-free I'-spectrum D e T4U", and let E ¢ I4U be a finite
r-spectrum with canonical duality map n: S + EADE. Define the intertwining ¢

of A and n to be the composite G-map

~

AAa Y1
6: D/n ¥ DA S —I—> (X'AD)a_(DEAE) —> (X x DE)A(Da E),

where the second map is induced by the equivalence of Lemma 8.1 (ii). For
9 € kg(X u“DE), define the "cohomological transport of 6"
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(8): jé(DAnE)q jé(D/n)

by sending a class f: DA E » EajG of degree o € RO(G) to the class

§ oaf o, o,
D/m —= (X %“DE)A(DA"E) ~——rkGAZ Jg =g,
where the last map is given by the action of kG on jG. Similarly, define the

"homological transport of g"
%(0): jg(D/n)——ﬁjg(DA"E} -

by sending a class f: S% » D/majg to the class

a f . {6al)éal . A R .
S* = p/naj, ~EESL K A(DA Ela] L—];(DA“E)AkGAJG —> (DA _E)aj -
We shall often apply t(6) with D replaced by DAC for some C & G8U", and we
then use Lemma 8.1 (iii) to rewrite it in the form

©(8): J5((Da EIAC) —=j4(D/TAC) .

We shall not discuss homological transports in detail sinee their behavior is
parallel to that of cohomological transports; we delete the adjective henceforward.

In our earlier work, we always restricted attention to commutative ring
spectra. We allow non-commutativity here since we shall exploit the function ring
spectrum  k, = F(j,,Jz) in the next section. For calculational, as opposed to
theoretical, applications, commutativity is essential, and some of our results below
will require it. Again, the most important case calculationally is D = 2”X+, but
the case of interest for the theory of the next section is X = EF(w) with its
natural coaction on arbitrary D given in Example 5.9 (iii).

Transports include all of the generalizations of the transfer mentioned in
Remarks 3.2 (iii).

Examples 8.3 (i) We may take kg = S for any J,, using the unit equivalence
SAjg = jg @as the module action. Here <1(8) is just the induced homomorphism
[(eal)sl*.

(ii) Let f: S+ E be any map in EPSU (such as a pretransfer t: S + I°F") and
define o(f): X % DE > 8 to be the composite

lx_Df . .
X« DE——>X x § = 1" (X/7) L5,
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where p 1is the collapse map. A little diagram chase shows that In the rest of this section, we run through some generalizations and analogs of

the properties of the transfer developed in the previous sections. Since the proofs
(e(f)AL)s = 1A“f: D/w = DAHS—-*-DA“E. are easy and are much the same as those already given, they will be sketched or

omitted. We shall not spell out hypotheses unduly; we simply assume whatever data

(iii) With E = F+, we obtain a transport are needed to make sense of the statements. We begin with naturality properties.
(8): jé(DAWF+)—~+-jé(D/") Proposition 8.4. ILet o kg(X x,DE), where X coacts on D.
‘ v (1) If. X' coacts on D' and if f: D' + D and g: X' » X are I-maps such
for each class 6 ¢ kg(X x“DF+). We sometimes refer to 1(8) as the generalized that (gaf)a' = Af, then the following diagram commutes, where
transfer determined by 6. By (i) and (ii), the standard transfer of Definition 3.1 » ) o' = (g uﬂl)*(e).
and the twisted transfer of Remarks 3.2 (iii) are special cases. . (fA 1)
(iv) For a e RO(I'), we can replace E by 1%E and so obtain transports Jj (DA E) —T 3 ([ﬂA E)
t(8): Ja(DALI%E) —>=J(D/n) (o) t(e")
from classes 0 e kg(X MHE“E). Applying this and (ii) to the dimension shifting jZ(D/n ~—l222L——» J (D'/7w)
pretransfers S » X'Asz+ of Remark 2.13, we obtain the dimension shifting
transfers of Remark 3.2 (iii). If o ¢ RO(G), then £* permutes through our (1i) If g: E+ E' 1is a r-map, then the following diagram commutes, where
constructions and we obtain 8' = (1 D¢)*(e)
(1a ¢)
t(e): jé‘“(DA“E)—-—>jé(D/w) (DA E') (DA E)
r(e\ /r(s
from 6 € kg(X x DE). All of our results below apply to these dimension shifting
transports since they are obtained by specialization of our original framework. J (D/”)
However, signs due to transpositions of suspension coordinates may be needed in some (iii) 1If ké acts on j' and if pu: k + ké is a ring map and wv: jG > jé is
of the resulting cohomological formulas.

G
u-equivariant, then the following diagram commutes.
. N ~ v
(v) With E =S, hence DE = S, we obtain a transport » jZ(D“nE) —-f~**(jé)*(DA“E)

(8): Jg(D/m) —> ja(D/1) r(e)l (1,0

K Vx ¥
from each 6 ¢ k3(X/n). Clearly t(8) is just left multiplication by 6 with Jg(D/m) —— () (D/m)
respect to the product induced by A: D/n + X/w*AD/m. We shall shortly use this

example to obtain a general Fuler characteristic formula. We next record analogs of the main change of groups results in section 4.

(vi) This section may be viewed as a disguised form of manipulations of Spanier- Recall the discussion above Axiom 6.
Whitehead duality for ex-spectra. The spectrum X o<"DF+ is the ex-spectrum over

; X/n Spanier-Whitehead dual to the suspension ex-spectrum associated to the bundle Proposition 8.5. ILet a: (A,p) + (I,n) be a homomorphism of pairs with quotient
; X an + X/n. Upon making this rigorous (which we shall not do here), we see that inclusion H € G. Let D be a p-free A-spectrum indexed on a*U“ and coacted on

any map X xﬂF + X x“F over X/n induces a self map of X RWDF+. Composing with by a p-free A-space X. If
o(t): X lx"DF+ + S, where 1 is the pretransfer and 6(t) 1is as in (ii), we see

that we can twist the standard transfer by any self-map of the bundle. B € kg(x xpD(u*E))

= 1J((r x,X)  DE),
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then the following diagram commutes. . - _ Proof. The isomorphisms come from II.8.1. Application of iy to the coaction of
« « . ’ X on D gives a coaction of X on iyxD. The conclusion follows by inspection of
jH(D)\pu E) = jG((I‘ kaD)A“E) definitions.
r(e)l ‘ t(8) ) Turning to products, we easily see that Theorem 5.1 directly generalizes to
* ~ ¥ transforms by use of the obvious external pairings. We record the analog of the
g(D/e) T jR((r  D)/)) i pairing ¢

more useful internal product formula of Theorem 5.2.

Proof. For E eT4U, II.4.9 and II.4.10 imply a natural isomorphism }
— . Theorem 8.7. Assume given extensions G = Ty/mi, 1 =1 and 1 =2, and let T be

. | the equalizer of the projections T. » G. Let U: b lete I.-univers
G ;xH(DApa*E) 2 (I x DIAE d prod 1 i pe e com fyTmiverse S0

o gle o "™ ;
chosen that U;™ = Uy® = U for a complete I-universe U. Let D; be a
. : X R . . "
in G&U". This gives the isomorphisms of the statement. The coaction of X on D n5-free Ij-spectrun indexed on Uii and coacted on by a nj-free Ty-space X;, let
induces a coaction of T x X on T x D, namely the composite

E; be a finite Ty-spectrum indexed on Ui’ and let hy and ,]'G be module spectra over a
Ix A . 1x (nal) + o + R . T X 0
I D—3T x (XAD) —%——>71 x ((T XQX) AD) = (T an) AT “aD)’ commutative ring spectrum k, indexed on U o If 8y e kplXg u“'DEi) and if
a o a i

. *
where the isomorphism is given by II.4.9. Since the A-universe o U need not be 07A05 € kg((xl % Xz) “nlxnzD(ElAEZ))
complete, we must extend Definition 8.2 just as at the start of section 4 in order

to make sense of 1(6) on the left. The conclusion follows by inspection of is their external product, then the following diagram commutes
definitions. . .
. A .
A A
There are also analogs of Lemma 4.1 and Proposition 4.4, which we leave to the B, (D) nlEl) ®JG(D2",T2E2) (hytjg) ((DlAD2)'~“ . (EAES))
reader. The analog of Proposition 4.6 is perhaps more interesting and reads as
follows (8 )er(e,) t(ey46,)
o .
ny(Dy /1) ® Jn(D,/n,)  —2—s (naj ) ((DAD,)/( )

Proposition 8.6. ILet G =T/n and J = G/N. Let A D>u be the inverse image of e\ ™ ®JG o/ Ty g ( D, AD, / LRt
N in T, so that J =T/A. Let kje J4uh be a ring spectrum and "

= j = A
ige 780" be a kj-module spectrum. Assume given F(N)-equivalences of G-spectra en hg = jg = kK, the product on k; can be used to replace hgAjg by kg on

L # L #s . s ing map and v is the right.
u.ekJ»kG and vi €"Jy * Jg such that uy is a ring map

u-equivariant. Let D be a A-free I'-spectrum indexed on t*  and coacted on by a

Proof. ILet A: T » Iy x I be the natural homomorphism and let j: A*(Ul @ Up) » U be
‘A-free r'-space X. If

a I'-linear isometry as in the proof of Theorem 5.2. The smash product E1AE,; must be
understood as obtained by application of the functor ,]'*A*: (ry x I’z)ﬁ(Ul ®U,) » 180

to the obvious external smash product. With this interpretation, we have a natural
equivalence of G-spectra

6 ¢ XX «,DE) = k(X « DE),

Then the following diagram commutes (where i: UM € UT).

(DyA__Eq A (DoA_Es) = (DjaDy)A (E,AE,)
* ~ ¥ . lnll 21r22 12n1x1r212
jJ(DAAE) = ,]G((l*D)A"E)
and, with E; and E, finite, a natural equivalence of TI-spectra
t(8) t(0)
* ~ V¥ D(EME = DE4ADE, .,
33(0/8) % §5(,D)/m) (E)ME) = DEjADE,

This makes sense of all the external products used. The coactions of the X; on
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the Dy induce a coaction of Xl X X2 on DlAD2 in the evident way, and the rest

of the argument is like the proof of Theorem 5.2.

If Xk, were mot commutative, we would have to regard 6,46, as a class in

(kGAkG)-cohomology. We would still obtain the diagram, but it would not be possible‘

to use the product on kG to replace kGAkG by kG when hG = jG = kG.

The first part of the following result is a direct generalization of Corollary
5.3, but the remaining parts are more useful.

Proposition 8.8. Let 6 ¢ k3(X w DE) and let C e G4UT.
(1) Regard F(C,j,) as a ky-module spectrum via the natural map

kPF(C,i5) » F(C,kqrjq) and the action of ky on jg. Then the
following diagram commutes, where the isomorphisms are given by the smash
product and function spectrum adjunction.

R .

JG((DA“E)AC) = F(C,Jig) (Da E)

1(9) t(8)

JR(D/nAC) = F(C,3g) " (D/m)

(ii) The following diagram commutes, where k, is given its natural left

action on itself in defining +t(8) on the left.
* K A ¥
kG(DAnE) ® JG(C) ———*JG((DA“E)AC)
t(8)8l t(8)
* ¥ A *
kG(D/n) ® JG(C) e JG(D/HAC)
v(iii) If kg is commutative, the following diagram also commutes.
* ¥ A ¥
kG(C) ® JG(DA"E) —"""’JG(C“(DA‘"E))
1®t(8) (9)
* ¥ *
kG(C) ® JG(D/n) _— JG(CAD/v)

When kg, is commutative, these diagrams lead to analogs of all of the formulas

of Corollary 5.6. In the absence of commutativity, only some of the formulas work.
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We'need appropriate Euler characteristics to obtain an Euler characteristic

formula. Here we restrict attention to generalized transfers, taking E = F*.
Definition 8.9. For 6 ¢ k(X x DF'), define

x(8) = (1 % Dp)*(8) ¢ XQ(X/m),

‘where p:<F+ + S 1is the collapse map. Here we use the identification

Xx 8= £2(X/m)"  and recall that, on spaces, ké is understood to mean unreduced

. cohomology . N

Proposition 8.10. ILet 8 ¢ kg(x xﬂD(F*)). Then the composite

*
* *
5a(0/m) —E— 32 0a F) Lo % (p/m)

is multiplication by x(8) e kg(X/n). Moreover, if x(8) is a unit for some
class 6, then the diagram

* T
S/ 5 jDa F) —Lp j{(Da (F = F)

ok

)

™

N ox

is an equalizer, where the Ty are induced by the projections F x F » F.

Proof. By naturality, T(G)E* is the transport t(x(6)) associated to the map

x(8), and z(x(ed) is multiplication by x(6) by Example 8.3 (v). For the second
statement, suppose that x(6) is a unit and define

£ = x(0)Le(0): JG(DaF")—= jG(D/n)
and
g = x(0)7 e(8): jg(Da (F x F)*) —> jG(Da F*).
Here the latter (@) is defined since X coacts on DAF' (compare Lemma 8.1).
Then fg* =1, gn; =1, and g"; = g*f, the last by naturality. This proves that

the diagram is in fact a split equalizer in the sense of [92, p. 145].

In view of the criteria for x(e) to be a unit given in lLemma 5.12, it is

important to understand the behavior of generalized transfers for bundles over

orbits. With the breliminaries in and above Lemma 5.10, Proposition 8.5 implies the
following generalization of that result.
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Temma 8.11. Iet A ¢ J(w) determine the fibre representation o: H +» r. If
6 ¢ XJD(a'F)) = K(r/n « DIFY)),

then the following diagram commutes.

IR F) = GG/ x F)
t(8) t(6)
IR = JA(r/am

This can be used in conjunction with the evident generalization of Theorem
5.13.

Theorem 8.12. ILet 6 ¢ kg(X knDF+). With the Euler characteristic of

g X x,F » X/n and of its fibres replaced by the Euler characteristic

x(8) e kg(X/n) and its pullbacks along inclusions of orbits, the criteria for
x(g) to be a unit in Theorem 5.13 apply equally well to x(e).

Additivity on fibres is a distinguishing property of the standard transfer and
its dimension-shifting analogs, hence we cannot expect versions of the results of
section 6 to hold for generalized transfers. (However, the second part of
Proposition 8.10 is closely related to such results as Theorem 6.9.)

The main input of the transitivity theorem of section 7 was the transitivity
of pretransfers given by Lemma 2.8. That input was processed by means of facts
which can be generalized to the context of transports, provided that we first
generalize the latter notion.

Definition 8.13. Ilet K and E be finite r-spectra and observe that there is a
duality map

nal

n': K = SAK EADEAK —Y— DEAKAE.

Exactly as in Definition 8.2, if X coacts on D there results an intertwining
6: Dp X—>= (X kﬂ(DEAK))A(DAnE)

of A: D+ X'AD and 7', and any elass o kg(X w"(DEAK)) induces a
cohomological transport

o “w: X x DE
m
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t(8): j(DAE) —= j5(Da K).

Everything done so far in this section can be generalized to this context by
simply inserting K wherever appropriate. To study transitivity, observe that
therevis a canonical composite

2xlAn) o (DEAKADK) ——> (X x_(DEAK))A(X _DK),

Thé second map being induced by the diagonal of X and a transposition. Assume
given

6 ¢ X3(X x_(DEAK)) and ¢ ¢ kQ(X & DK)

and define yof = w*(eAw) € kg(X « DE). Note that Xk, need not be assumed to be
commutative here. With these notations and hypotheses, we have a transitivity
statement.

Proposition 8.14. The following diagram commutes.

(D LB g * (Da LK)

W\ 2

(D/n)

A large part of the proof of Theorem 7.1 consists of the verification that, in
the special case there, the relevant generalized transport t(6) can be reevaluated
as an ordinary transport (as in Definition 8.2). This part of the argument can be
generalized, but we desist.

§9. Classification of transforms and uniqueness of transfers

We first show that all families of homomorphisms
K ¥
(%) 1t jg{DALE) = Jo(D/7)

which are suitably natural and steble in D arise from cohomological transports. We
then use this result to give an axiomatic characterization of the transfer in
jé—cohomology.

Definition 9.1. Let j, e G4&U™ and let E e r4U be finite. A jé—transform for




228

E is a family of homomorphisms (%), one for each n-free D ¢ rgU", which satisfy

the following cohomological versions of Axioms 1 and 2.

Axiom C.1. Naturality. The following diagram commutes for any map f: D » D' of

n~free I-spectra.

*
% (f/\“l) ¥
JG(D'A“E) ——-———~'JG(DA“E)

* -
50t /m) L 8 o)

Axiom C.2. Stability. The following diagram commutes for any representation V

of G and any n-free I'-spectrum D.

e

* *
Jg  ((z'D)Ia B) Z jo(DaE)

5Dy /m iglo/m

"

Here the unlabeled isomorphisms are given by suspension and application of the

natural equivalence
(DAC)AE = (DAﬂE)AC

for C ¢ GAU™ (of Lemma 8.1) to C = S'. More generally, we can use this
equivalence to extend a jé~transform v to a family of homomorphisms

¥
1 J((DAEIAC) —= j(D/7aC)
natural in both C and D. We use this extension to relate transforms under a
. ¥
product axiom. Let jG be a kG-module spectrum and suppose given jn and

ké—transforms for E, both denoted t.

Axiom C.2'. Commutation with products. The following diagram commutes for any

n-free D e TgU" and any C € G&UT.

L
|
-
i

|

!

I

|
L
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* ) ® jalC) —2— 55
kG(DI\nE @JG( ) — g (DA"E)AC)
™1 T

Ky (D/1) ® jo(C) —2—> j%(D/mAC)

We séy that a ké—transform for E is multiplicative if Axiom C.2' holds for
the product action of k, on itself; here Axioms C.l and C.2' imply Axiom C.2.

Proposition 9.2. ILet t be a jé~transform for E. If k, is the function ring
spectrum F(jG,jG), then the homomorphisms

t: kG(DAE) = Jo((DAE)Ajg) —> J5(D/najg) = kg(D/n)

specify a multiplicative ké—transform such that Axiom C.2' holds for Jj, considered

as a kG-module under evaluation.

Proof. It is clear that 1 for ké satisfies Axioms C.1 and C.2 since 1 for
jé does so. Observe that Axiom C.2 implies the corresponding axiom with V
replaced by any 8 € RO(G). For the action of ky on Jjg, ‘the diagram of Axiom
C.2' can be rewritten in the following form, where a,8 € RO(G).

JGUDA B)aTy) ® 15(0) —2—=337B((DA E)aC)
™1 T
JUD/Ai ) @ JGe) —A—m ¥ B (D/mac)
For f: (DA E)Ajq » 1%, and g: C » szG, fag 1is the composite
Be

1a B, ~ B Ly L a+B,
(Da E)AC ————g—v(DA"E)Az Jg ¥ 2TUDA E)aj,) —=>1%F

and the axioms imply that <(fag) = t(f)ag. If we replace C by CAj, here, we

obtain the diagram of Axiom C.2' for the action of kg on itself.

Recall from Example 5.9 (iii) that EJ(w) coacts naturally on n-free r-spectra
D. Propositions 8.4 and 8.8 imply that we have the following examples of transforms.

Proposition 9.3. Let k; be a ring spectrum and let o ¢ kg(ES(n) waE). For any

kn-module spectrum jG, the cohomological transports
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.*( ¥
t(0): jo(Da E)—> Ja(D/m)
specify a jé—transform for E such that Axiom C.2' holds.

We shall prove that all examples are of this form. Observe that E3J(w) x DE is
a n-free I'-spectrum with w-orbit G-spectrum E3(w) x DE.

Definition 9.4. Ilet k; ¢ GSU" De a ring spectrum and let E ¢ rgU be finite.
Define the test class

$ ¢ ¥((E3(n) x DE) A E)

to be the composite of the unit e: S » k; and the cohomotopy test class

1x ¢
(ES(n) x DE)a_E = E4(x)  (DEAE) —>E3(r) x S = :Bg3(n)" 2> 8,

where the equivalences are given by Lemma 8.1, ¢ 1is the canonical duality map,
and p 1is the collapse map. Define the characteristic class

o(1) ¢ KQ(E3(n) w DE)
of a ké—transform t for E to be the image of ¢ under

t: KJ((E3(n) x DE)a E)—> KQ(ES(n) w DE).

Theorem 9.5. Let Jj, be a module spectrum over a ring spectrum ko € GgU™ and

let Ee rdU be finite. If ¢ is the ké—transform for E given by the transports
of a class 6 € kg(Ef(n) % DE), then 8 = 6(t). Conversely, if 6 is the
characteristic class of a given ké—transform for E and if Axiom C.2' holds for a
JG—transform vt for E, then 1 = 1(8). Therefore multiplicative ké—transforms
for E are in canonical bijective correspondence with elements of kg(Es(n) x, DE)

and also, if k5 = F(jn,Jjn), with jJ *-transforms for K.
G ada G :

Proof. The last clause follows from Proposition 9.2. With D = Ef(rn) = DE,
Definition 8.2 gives an intertwining map

§: E3(w) x DE — (E3(w) w"DE)A((ES(Tr) 3 DE)AHE),
and an easy chase shows that (1lag)é = 1, where ¢ is the cohomotopy test class.

The first statement follows by a comparison of definitions. For the converse,

Definition 8.13 (with K = E) and Lemma 8.1 give an intertwining map
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8: Da E —a(EF(n) & (DEAE))A(DA E) = ((Ed(w) x DE)a E)A(Da E),

and another easy chase shows that (@al)§ = 1 here. The axioms imply the
commutativity of the following diagram.

1

KO((E3 () x DE)A E) ®jZ(DAWE) —18L, xQ(Es (m) DE) ®JG(DA E)

*
Jg(((E3(x) w DE)A'E) A (DA E)) ~——T—->-j;((E3(1;) x DE) A (Da E))

/] .

jg(DAE) T ia(D/m)

If g e kg((Ef(n) % DE)A E) is the test class and f ¢ JG(DA E), then 6*(¢4f) = f by
inspection and § (r(¢)Af = ¢(6(t))(f) by Definitions 8.2 and 9.4.

There is a dimension-shifting analog of jé—transforms and an analogous
classification of them in terms of dimension-shifting transports.

Teking E = Z“F+, we may view the theorem as giving a classification of
generalized transfers for stable bundles with fibre F. We shall use this result to
prove that the standard transfer in jé—cohomology is characterized by the
cohomological versions of Axioms 1 through 6. To make sense of Axioms 3 through 5,
we assume given a jé-transform T for 3%F* fér each finite I'-space F; these
axioms then read as follows. We require finite r-spaces to be equivalent to

finite TI-CW complexes throughout the rest of this section.

Axiom C.3. Normalization. For any n-free I-spectrum D, t: jé(D/n) > jé(D/n) is
the identity homomorphism.

Axiom C.4. Fibre invariance. The following diagram commutes for any n-free

I'-spectrum D and any equivalence k: F » F' of finite r-spaces.,

(1a_ 0"
jg(oa (F1)" ) ——T— jp(Da F")

N,/

D/n)

Axiom C.5. Additivity on fibres. If F is the pushout of a I-cofibration

F3 + F, and a TI-map F3 + Fy, where the F; are finite I-spaces and if
iy DA"Fi > DA“F+ is induced by the canonical map Fy + F, then




232

. . T ¥
T = Tli + 113 - r1§: Jé(DAﬂF+)-—*JG(D/n).

To make sense of Axiom 6, we assume given a j§~transform T for each finite
A-space F whenever (A,p) is a subpair of (I,n) with quotient inclusion HC G.
Since we assume that A is contained in T, our complete I'~universe U is also
complete as a A-universe, in contrast to the more general situation studied in
section 4. In the context of (G,rn)-bundles, where T =G x =, it is sensible and

sufficient to restrict attention to the case H =G and A= G x p.

Axiom C.6. Change of group invariance. If (A,p) is a subpair of (T,n) with

quotient inclusion HC G, then the following diagram commutes for any p-free
A-spectrum D and any finite I'-space F.

JEDAF) = jallr )D)AF")
T T
Jg(D/p) = ja(r %D)/m)

Definition 9.6. Let Jg be a G-spectrum. A jé—transfer is a collection of

homomorphisms
¥ s
©: Jp(DaF") —ig(D/p),

one for each subpair (A,p) of (r,T) with quotient inclusion H C G, each p-free
A-spectrum D, and each finite A-space F, such that Axioms C.1 through C.6 hold
for each theory j; (as ambient theory). If jg = k3 is a ring spectrum and Axiom
C.2' also holds for each k; (for the action of Xy on itself), we say that the

transfer is multiplicative.
Here we let Jjy denote Jj; regarded as an H-spectrum and we observe that
F(jg,ig) Tegarded as en H-spectrum is F(jg,Jg) Proposition 9.2 extends

immediately to the context of transfers.

Proposition 9.7. Let t be a ja-transfer and let kg = F(jg,Jg)- Then the
homomorphisms :

©r IG(DAFY) 2 JH((DAF )agy) —> §5(D/pnly) = ky(D/p)

specify a multiplicative ké—transfer.
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We shall prove that there is only one jp-transfer.

Theorem 9.8. The only jé—transfer is the standard one.

This is a consequence of an apparently weaker result.

Theorem 9.9. If ks 1is a ring spectrum, then the only multiplicative ké—transfer

is the standard one.
‘To deduce Theorem 9.8, we simply note that Theorems 9.5 and 9.9 imply that any
given jé-transfer and the standard jé—transfer are determined by the same

characteristic classes in kg(E?(p) “pDF+), ¥y = Fljy,Jy), and are therefore equal.

Proof of Theorem 9.9. Assume given a multiplicative ké—transfer 1. Proceeding

inductively, using the descending chain condition on closed subgroups of T, it
suffices to prove that the given transfer

t: Kg(DaF) —ig (D/7)

is the standard transfer for all m-free I'-spectra D and all finite I'-spaces F
under the inductive hypothesis that

1 k(DA F") —= kg (D/p)

is the standard transfer for all p-free A-spectra D and all finite A-spaces F
when (A,p) is a proper subpair of (TI,n) with quotient inclusion H C G. The
cohomological version of Theorem 6.1 is an immediate consequence of our
cohomological axioms, hence it suffices to prove that =+t agrees with the standard
transfer when F 1is an orbit T/A. (It is for this step that we require F +to be
equivalent to a finite TI-CW complex.) If A =T, the conclusion is immediate
from Axiom C.3. Thus assume that A # T, let p = A Nq, and let H = A/p. By
Theorem 9.5,

v = 1(8): k(D A /&) X5 (D/7),

where 6 is the characteristic class of +t, namely the image of the test class
+
$¢ KQUEF (n) w DI/0") a_ 1/4") under

2 KQU(EF(m) w Dr/a%)a_1/4") —kQ(EF(n) « Dr/A%).

The standard transfer admits the same description. Embed TI/A in a I'-represen-
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tation V and let L be the tangent representation of A at the identity coset
of T/A. Then the dual of r/n" is T “AS-L' By I1.4.9 (and Lemma 8.1), we have a

canonical equivalence
EF(m) w (T 0,875 = T ooy (BF(m) & S71),

and EH ) x S is a p-free A-spectrum. By Axiom C.6, the last transfer can be
identified with

v QUEIm x STTA) 1747 —= W(EH D) x5,

and similarly for the standard transfer. The desired equality of transfers is now
immediate from the induction hypothesis.

In principle, the proof gives an inductive construetion of the standard

transfer that makes no use of the pretransfer.

In practice, one generally starts with a jé—transfer defined only when
D = £™X* for a n-free r-space X, perhaps with X restricted to be finite or
finite dimensional. Here one must work with pairs (X,A) or with nondegenerately
based n~free I-spaces Y. If ¢ is defined in the based context, we define <t on
unbased pairs (X,A) by considering the unreduced cone C(X,A). If 1 is defined
in the unbased context, we define <t for based spaces Y by exploiting the

canonical equivalence
ClEF ) x Y, EF(q) x {*¥}) —sC(Y,{*}) =Y.

(The infinite dimensionality of E3J(m) is of no concern since we shall be working
modulo 1im1 terms.) Thus the based and unbased contexts are essentially
equivalent. We shall discuss the based context for technical convenience, although
the motivating applications deal with unbased pairs.

We claim that, modulo limt terms, a jé—transform t for E defined on based

n-free (finite dimensional) I-complexes Y, that is, on D = £*Y, extends uniquely
to a jé—transform defined on all D. To see this, let {W,} be an indexing
sequence in the I-universe U (as in I82). If V, = W], then {V;} is en
indexing sequence in U". For D e I[3U", 1let Dy denote the component space
D(Vn). Since 7 acts frivially on U", the D, are r-free if D is n-free. By

1.4.9, we have a canonical equivalence

-V.
D = tel 1 "5"D,

and thus, if D is n-free, a canonical equivalence
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DA“E

13

-V,

n
tel % Z“DnAHE
for E € rgU. We define

- -V.
J&(DAE) = Lim JA(z PI®DyA E)

1

and have a lim" exact sequence

atv, -1 ~
0 ———a-limle Dy Z'”DnAwE) -——»j&(D/\_”E) —hjg(DANE) —»0

When restricting attention to finite dimensional Y, we may replace the D, by
suitably large skeleta of the component spaces of a G-CW Q-prespectrum
approximating D (as in I88) without altering any of the groups in sight. We
define SG—transforms and ié—transfers exactly as in Definitions 9.1 and 9.6,
replacing all represented cohomology groups by inverse limit cohomology groups. (Of

course, using the natural map jé > fé, we could replace 3é by jé in the
domains of all homomorphisms.)

Proposition 9.10. A jé—transform for E defined on D = £®Y for all based g-free

(finite-dimensional) r-spaces Y induces a unique §é~transform for E defined on
all n-free r-spectra D. The analogous statement for jé—transfers also holds.

The proof is immediate by passage to limits. Our arguments above go through
unchanged to give inverse limit versions of the classification of transforms and the
axiomatization of the transfer. Using the proposition and restricting back to
spaces, we obtain an axiomatization of the transfer for based bundles YA“F+ + Y/x
or for unbased bundle pairs (X x F, A x F) » (X/7, A/7).

Theorem 9.11. The only jé—transfer defined for based bundles with finite

dimensional base spaces (or for unbased bundle pairs with finite dimensional base
spaces) is the standard one.

The reader is referred to [85] for a version of the axiomatization of the

transfer which applies when given a fixed rather than a variable fibre. Here Axioms

Ce3 ~ C.5 no longer make sense and a more sophisticated normalization axiom is used
in their place.




V. The Burnside ring and splittings in equivariant homology theory

by L. G. lewis, Jr., J. P. May, and J. E. McClure

When G is a finite group, the Burmside ring A(G) is the Grothendieck ring
obtained from the semi-ring of isomorphism classes of finite G-sets; addition and
multiplication are given by disjoint union and Cartesian product. While A(G) is a
classical object, it is a fundamental insight of Segal [126] that A(G) is
isomorphic to the zerot stable homotopy group ng(S). In a series of papers
[40~44]1, tom Dieck defined and studied the Burnside ring of a compact Lie group and
generalized the isomorphism A(G) = ng(S) to that context.

Tom Dieck defined A(G) in terms of the nonequivariant Euler characteristics
of the fixed point spaces of compact G-ENR's (our finite G-spaces). We find it
more illuminating to work with the equivariant Euler characteristics of finite
G-spaces. The point is that these are defined as elements of ng(S), and their use
clarifies the isomorphism A(G) =z ng(s). (Tom Dieck defined equivariant Fuler
classes in R(G)

n

Kg(S), but these invariants depend only on my(G) and are too
weak to serve as a basis for the construction of A(G).)

We study equivariant FEuler characteristics in section 1. Additivity on cofibre
sequences reduces their calculation to the case of orbit spaces G/H, where a
connection with degrees of maps between spheres is easily established. This allows
the analysis of equivariant FEuler characteristics in terms of nonequivariant Euler
characteristics of fixed point spaces.

We define the Burnside ring A(G), prove that it is isomorphic to n%(s), and
observe that the isomorphism commutes with various natural homomorphisms in section
2. We analyze the prime ideals of A(G) in section 3. We relate its idempotent
elements to the perfect subgroups of G in section 4. Most of the results in these
sections are due to Dress (48] when G is finite and to tom Dieck [40-44] in
general, but we include several useful addenda. Section 4 ends with the
generalization to compact Lie groups of a result of Araki [4] for finite groups
which states that e%A(G) is isomorphic to e?LA(WL), where e% is the idempotent
determined by a perfect subgroup L (and 1 denotes the trivial perfect subgroup
of WL = NL/L).

We study localizations of A(G) in section 5, following Dress [48] and others
{44,4,56,147] when G is finite and tom Dieck [40,41,44] in general. Here the two
cases differ sharply. Say that a finite group is p-perfect if it admits no normal
subgroup of index p. We allow the case p = 0, agreeing that any finite group is
0—perfec%. Fach p-perfect subgroup L of a finite group G determines a primitive
idempotent e% € A(G)(p), and A(G)(p) is the product over conjugacy classes
(L) of its subrings e%A(G)(P), these being the localizations of A(G)(p) at its
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~ maximal ideals. Moreover, as pointed out by Araki 141, e%A(G)(p) is isomorphic

to e?LAkWL)(?). (Of course, localization at (0) is rationalization.)

The situation for general compact Lie groups is much less satisfactory. Here
A(G)(p) is not the product of its localizations at its maximal ideals and these
localizations are not determined by idempotents. Nevertheless, we show that the
rings A(G)(p), and also all modules over these rings, are determined sheaf
theoretically by their localizations at maximal ideals and that these localizations

“¢an be computed in a reasonable algebraic way. We are grateful to Spencer Bloch for

tutorials on the relevant sheaf theory. The ring A(G)(o) is absolutely flat
(equivalently, von Neumann regular), and we include some general algebraick
information to give a feel for such rings. We are grateful to Irving Kaplansky for

tutorials on this material.

From our point of view, the force of this algebraic analysis is its
implications in homology theory. We explain in section 6 how techniques of
induction and reduction to subquotients simplify the calculation of the pieces into

which homology and cohomology groups split along the splittings of A(G) and its
localizations.

By the work in chapter II, we can associate a J-spectrum E; to a G-spectrum
E, for any subquotient group J of G. Generalizing a result of Araki [4] from

finite groups to compact Lie groups, we prove that if L is a perfect subgroup of
G, then

ofEa(x) = llmy (x1)

for any finite G-CW complex X. When G is finite, we reprove and concatenate
results of Araki [4] and tom Dieck [44] to show that if L is a p-perfect subgroup
of G and if VL is a p-Sylow subgroup of WL (with VL the trivial group in the
case p = 0), then

Gp¥ ~ % (yLyinv
e1B(X) (p) = By (X p),
where E;L(XL)%gy is the kernel of the difference of projections homomorphism
M-y By (WL/VLAXE) () =B (WL/VLAWL/VE'AXE) (o) -

Since EE(X)(p) is the product over (L) of these groups, this result gives a
complete determination of Eé(X)(p) in terms of groups E?(XL)%;Y for appropriate
subquotient p-groups J of G. Observe that all reference to A(G)(p) and its
idempotents has disappeared from this final calculational conclusion. The analog in

homology is also valid, and here X need not be finite. It should be remembered
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that Ej depends on the representation of J as a subquotient of G and not just/
on J as an abstract group. In particular, with p = 0, we obtain a complete
determination of the rationalization of Eé and Eﬁ in terms of various
nonequivariant subquotient cohomology and homology theories. (Actually, it suffices

for this to localize away from |G| rather than to rationalize.)

The results described so far give little information about localizations of
homology and cohomology theories at prime ideals of A(G) when G 1is a general
compact Lie group. After giving some preliminaries concerning universal
(3',9)-spaces for pairs FCJ' of families of subgroups of G in section 7, we
explain in section 8 how one might construct such localizations topologically by
concentrating theories between pairs of families. Following tom Dieck [42,44] in
homology, we also give analogous constructions of the parts of homology and
cohomology theories determined by idempotents e% in A(G) and of the
localizations of homology and cohomology theories at multiplicative sets of Huler
classes of representations of G.

The last three sections concentrate on equivariant stable homotopy theory.
Except for reliance on section 7, which gives key lemmas on adjacent pairs of
‘families, they are largely independent of the rest of the chapter. We begin section

R

9 by expleining an alternative approach to the isomorphism A(G) = ng(S). This is
based on the case Y = L of the splitting

Ad(WH)YH)

ny

~ +
I my (EWH A

~G
Ty (Y)
* (H)

w® ’

which holds for arbitrary based G-spaces Y. Here Ad(G) denotes the adjoint
representation of G and the sum runs over the conjugacy classes of subgroups of
G. The splitting results by combining a theorem of tom Dieck [38] with our
generalized Adams isomorphism of II.7.2. We then use this splitting to analyze the
full subcategory @G of the stable category whose objects are the orbit spectra
Z“G/H+. Together with earlier work in this book, this analysis completes the
technical preliminaries needed to f£ill in all details of our announcement [88].
There we explained how to use the equivariant stable category to construct ordinary
RO(G)-graded cohomology theories with coefficients in Mackey functors, where a
Mackey functor is a contravariant additive functor(G >04. As explained in [88],
the particular Mackey functor displayed in Proposition 9.10 leads to a transfer
homomorphism

1 B (X/6;2) —=H (X/H;2)

in ordinary cohomology for any G-CW homotopy type X and any HC G. We shall
return to the study of these theories in [90].
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We prove a generalization of the splitting of %Q(Y) cited above in section
10. We assume given a normal subgroup 1 of a compact Lie group I with quotient
group G and give a splitting theorem for the computation of [Enz“X,X“Y]r for

based G-spaces X and I'-spaces Y. There is one summand for each I-conjugacy class
of subgroups A of 1, and that summand is

(B OO i S S IV

wher§ W= WpA(= NpA/A), W' = Wph, B is the universal W A-free W A-space, and A
is the adjoint representation of WFA derived from WHA. As we explain in section
11, this splitting implies a decomposition of the I-fixed point G-spectrum (p*Y)I
as the wedge over (A) of the suspension G-spectra of the G-spaces

G+AW/W' (E+I\w| ZAYA) .
This analysis generalizes our comparison between the equivariant and nonequivariant

forms of the Segal conjecture in {89]. It will be used to obtain an interesting

generalization of the Segal conjecture, concerning universal fI-free r-spaces, in
[106].

§1. Equivariant Euler characteristics

Recall from III.1.1 that a "finite G-spectrum" is one for which duality
works. The finite G-CW spectra and their wedge summands are the main (and, we
conjecture, the only) examples. Recall too that a "finite G-space" is one of the
homotopy type of a compact G-ENR; its suspension G-spectrum is finite.

Specialization of III.7.1 gives our definition of Euler characterisitics.

Definition 1.1. Define the Euler characteristic x(X) e ng(S) of a finite
G-spectrum X to be the composite

s —Y0 = DXAX £ »s.

For an unbased finite G-space X, define y(X) = y(£™X"). For a based finite
G-space X, define Y(X) = yx(:z"X).

It will follow from our results below that (X) is the classical Euler

characteristic of X when G = e. By III.8.1, we have an explicit topological
description of x(X). when X is a compact G-ENR.
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Lemma 1.2. Let r: N+ X be a retraction of an open neighborhood of X 1in some
representation V and let B be a disc in V which contains N. Then the

following diagram is G-homotopy commutative.

sV 2 C(V,V-B) —————=C(V,V-X)
x(X) C(N,N-X)
Clw)
§' «—2— ¢(V,V-B) ———=C(V,V-{0})

Here the unlabeled arrows are inclusions or projections and o is specified by

w(n) = n-r(n) for ne N.

As usual, it follows that x(X) = 0 if the identity map of X 1s G-homotopic

4o a fixed point free map.

We catalog some elementary facts about Euler characteristics.

lemma 1.3. Let X and Y be finite G-spectra.

(1) x(8) is the identity element of w3(S).

(ii) x(¥) = 0, where * is the trivial G-spectrum.
(iii) x(X) = x{Y) if X is G-equivalent to Y.

(iv)  x(XaY) = x(X)x(Y).

(v) x(Xvi) = x(X) + x(Y).

(vi) x(£"X) = (-1)%(X).

Proof. These hold by III.7.2, 7.4, 7.5, 7.6, and 7.8.

V The key property of Euler characteristics is their additivity on cofibre

sequences, which follows from III.7.10.

Theorem 1.4. If Z is the cofibre of a map X + Y of finite G-spectra, then
x(Z) = x(Y) - x(X).

By induction on the number of cells, this has the following consequence.

Theorem 1.5. If X is a finite G-CW spectrum and v(H,n) dis the number of
n-cells of orbit type G/H in X, then

x(X) = (-1)"v(H,n)x(G/H) .

L I
n (H)

For a G-space X, Xy = {Xl(GX) = (H)}. Define the nonequivariant internal
Euler characteristic X(X(H)/G) to be the sum of the internal Euler

is the normalizer of H in G.

241

_ characteristies x(M), where M runs over the path components of X(H)/G. The

x(M) were specified above IV.2.11, and that result implies the following one.

Theorem 1.6. If X is a compact G-ENR, then

K0 = 5 X (X /GI(G/H)

These results focus attention on x(G/H). Recall that WH = NH/H, where NH

Lemma 1.7. If WH is infinite, then y(G/H) = O and X((G/H)K) = 0 for all K. If WH is
finite and G/H embeds in a representation V, then y(G/H) is represented by a G-map
£: 8V > 8V such that deg(f¥) = l(G/H)KI for each K such that WK is finite.

ggggi} Of course, (G/H)K is nonempty if and only if (K) < (H). Since the
tangent space of WH = (G/H)H at e is the H~-fixed point space of the tangent
space L(H) of G/H at eH, WH is finite if and only if L(H) contains no
positive dimensional trivial summand. If (X) < (H) and WK is finite, then WH
is finite since L(H) 1is a summand of L(K). Since WH acts freely on (G/H)K,
the first statement is now clear (compare IV.2.12). Thus assume that WH and WK
are finite. As in IV.2.4(ii) and II.6.15, x(G/H) 1is represented by the composite
£ 8" 2 .g kS g xS’ 2 (a/m) as’ AL gY,
where V = L(H) @ W. If K is not subconjugate to H, then K ig clearly
trivial. Thus assume that (X) < (H). Conjugating if necessary, we may assume
that K C H. By Bredon [18,II.5.7], (G/H)K has finitely many WK orbits and is
thus a finite set. Its tangent space L(DX at eH is therefore zero and VK = WK,
Thus fK is the composite

X K
s L. [(G/H)Kl"AsVK—‘i'irsV ,
where g collapses (G/H)K to a point and t¥  is obtained by embedding (G/H)K
in VK, extending to an embedding of small copies of VK around the points of
(G/H)K, and collapsing out the complement. It is obvious from this description
that the degree of X ig the cardinality of (G/H)K.

Define a homomorphism of rings dy: ng(s) + Z by represenﬁing an element of
ng(S) by a G-map f: sV » 8V and taking the degree of K. 87 5 sV, The results
above have the following consequence relating equivariant and nonequivariant Euler
characteristics.
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Corollary 1.8. Ilet X be a finite G-space. Then
dgx(X) = X(XK).

Proof. The previous results and standard arguments with nonequivariant Euler
characteristics give

K
GxX) = 1 X0 /OO 5w ) = ).

(K) <(H) K)em) B

This leads to a criterion for the equality of the equivariant Euler
characteristics of two finite G-spaces. Since the following result is a special
case of more general ones [44,45,60], we shall content ourselves with a sketch of

its elementary obstruction theoretic proof.

Proposition 1.9. Iet V be a complex representation of G. Two G-maps
f,g: sV 5 s are G-homotopic if and only if deg(fH) = deg(gH) for all H such
that WH is finite.

Proof. Necessity is obvious. Assume the equality of degrees. By inducﬁion Uﬁ the
orbit types of V, it suffices to show that, for each HC G, f = g: s .87 as
WH-maps under the inductive hypothesis that f = g: ™ s 1 as WH-maps, where

TVH denotes the union gver isotropy groups J DH, J # H, of the spaces SVJ.
Since the inelusion TVH > SVH is a WH-cofibration and WH acts freely on the

complement, the obstructions lie in the groups
. H H H
wh(sV e, 1V w8V ).

These groups are zero unless i = dim v and WH is finite, in which case the

group is Z and maps isomorphically under projection on orbits to
. yH H
sV 1V ;7).

(The verification of these claims is easy since our assumption that V is complex

ensures that dim VJ < dim V2 when J is en isotropy group of V which properly

contains H.) The obstruction to a WH-homotopy maps under the projection on orbits
to the obstruction to a nonequivariant homotopy, and the latter is of course
deg T deg gH.

Corollary 1.10. For finite G-spaces X and Y, x(X) = x(Y) if and only if
«x) = y(¥) for all H such that WH is finite.
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Now recall the classical congruences for nonequivariant Euler characteristics.

Lemma 1.11. ILet X be a finite G-space.
(i) If G is a torus, then x(X%) = y(X).
(ii) If G is a finite p-group, then X(XG) = x(X) mod p.

Proof. Theorem 1.6 applies as it stands to the computation of the nonequivariant
Fuler characteristic of a finite G-space X, and of course X(g)/G = x6. I (1),
x(G/H) = 0 for all proper subgroups H. In (ii), y(G/H) = O mod p for all proper
subgroups H.

Following tom Dieck and Petrie [45], we use Corollary 1.8 to obtain a general
set of congruences relating the Fuler characteristics X(XK). Let u(C) denote the
number of generators of a finite cyclic group C.

Proposition 1.12. Let V be a complex representation of a finite group G and
let f: SV > SV by any G-map. Then

(é)[G:NC]um)deg(fC) = 0mod |G,

where the sum ranges over the conjugacy classes of cyclic subgroups of G.

Corollary 1.13. Let V be a complex representation of a compact Lie group G and

let £: 8 » 8 bea G-map. Let H be a subgroup of G such that WH is
finite. Then

(B, L A NK] p(K/H) deg(£5) = 0 mod |wH|,

where the sum ranges over the NH-conjugacy classes of groups K such that
HCKCNH and K/H is cyelic.
Proof. Apply the proposition to the WH-map fE.

Corollary 1.14. Let X be a finite G-space. ILet H be a subgroup of G such
that WH is finite. Then

(5, e NK]u(K/H) x (%) = 0 mod |wH],

where the index of summation is as in the previous corollary.

Proof. Apply the previous corollary to a G-map f which represents x(X) and use
Corollary 1.8.
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For completeness, we recall the proof of Proposition 1.12 from [43]. let
blG,V) € EG(SV) be the Bott class (8,125]. Sinee Ku(8') is a free R(G)-module on
the generator b(G,V), there exisis o« ¢ R(G) sueh that

0(6,V) = ab(6,7), where £7: Kgl8') —wKy(sh).

Let ol{C) € R(C) be the restriction of «. Since b(G,¥} restricts to b(C,V)e
EC(SV}, we alsc have . i

5(0,7) = alCIB(C,V), where f': Kn(8T) —=Ey(8").
G vC . . '
Write V= V'@ Vo as a C-space and let e: S » 38° be the inclusion. Then
¥ % O ¥ % ¥ Yy ~ N
e f = (£¥)7e , where e : Ko{8'}—rKy(8" ).
If X y(W) denctes the alternating sum z(-l)kkk(W), then
¥ G
2 b{C,V) = a_5(Va)b{C, V™),
and of course (£0}* is miltiplication by deg(fc). Therefore

alOIA_q(Vg) = degltO)a (V)

in B(C). Evaluating characters on a generator x ¢ C and using that knl(VC)(x} F 0,
we gee that

alx) = alC)(x) = deg(fl).

A% this point, we use our hypothesis that G d4s finlte. Standard representation

theory gives the relation
i alx) 5 0 mod |Gl.
el

Grouping elements of G as generators of eyclic groups and conjugates thereof, we
find immediately that

3 alx) = 1 [G:NClu{Cldegtf®),
Xe {C}

Remark 1.15. Tom Dieck §{40,44] defined the Fuler characteristic of a compact
G~-ENR X 1o be the element
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1 = s-1id e « ro,

where Hi(x;c) has its induced action by G (whieh depends only on the finite
group G/Gn). Our definition is related to his by eyx{X} = x(X), where

ey: ng(s) > KS(S} = R{G} is the unit homomorphism for equivariant K-theory. A
cheracter-theoretic proof based on [40, Prop. 22] should be possible.
Aiternétively, since both Buler characteristics are appropriately additive, it
‘suffices to check the formula when X is an orbit or, more generally, a smooth
closed G-manifold. Now eyx(X} Kg(S) is the product of 1 e Kg(S) and

. x(X) = T*E*(l} € ng{S) and is thus the transfer of 1 ¢ Kg(X). As shown By Nishida

f117, 5.1 and 5.3, the transfer 1: KolX) » K,(8)  is computable in terms of the
topological index in such a way that the relation (1) = x(X) is easily verified.

§2. The Burnside ring and ng(s}

We exploit our study of Buler characteristics to define A(G) and prove that
it is iscmorphic to ngts). While our initial definition is a bit different from
his, we emphasize that most of the results in this section and the next two are due
to tom Disck (40-44].

Cefinition 2.1. Define the Burnside ring A{(G} 1o be the set of eguivalence
classes of finite G-spaces under the equivalence relation specified by X ~ Y if
xiX) = x{Y} in n8(5). The addition and multiplication on A(G} are induced by
disjoint union and Cartesian product. We write [X] for the eguivalence class of &
finite G-space X; ~|X] = 1K x XJ, where K is any compact ENR with trivial
G-aetion sueh that y(X) = -1 nopnequivariantly.

By lemma 1.3 and Corollary 1.1C, A(G} is & well-defined commutative ring
and y sepecifies a well-defined ring monomorphism A(G) » ng(S). We shall see
shortly that y dis an isomorphism.

Remark 2.2. We are working implicitly in & G-universe U which contains all

irreducible representations of G. We define A{G;U} similarly for a general
universe U, bui restrieiing to compact G-ENR's which embed in U, Everything in
this section applies egqually well in the more general context,

We need notations for certain sets of subgroups of @.

Notations 2.3. Let £C denote the set of closed subgroups of G and 3G denoie

the set of those closed subgroups H such that WH 4s finite. Tet G and G

dencte the sets of conjugacy classes of subgreups in £C¢ and #G, respectively.
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We record some finiteness results concerning these sets. Part (i) was pointed
out by Palais [118, 1.7.27] and parts (ii) and (iii) are due to tom Dieck [41; 44,
5.10.8 and 5.9.9].

Theorem 2.4. (i) TG is a countable set.
(ii) oG is a finite set if and only if the Weyl group WT acts trivially on
the maximal torus T.
(iii) There exists an integer b such that IWH/WOHI < b for every He (G,
where WnH denotes the component of the identity in WH; therefore the
set of orders |WH| for (H) ¢ G has a least common multiple n(G).

We begin our study of A(G) by recording some direct consequences of the
results of the previous section. Recall that the degrees of maps of fixed point

sets give ring homomorphisms dg: 73(8) » 2.
H "0

Proposition 2.5. For H C G, define ¢y = dH o x:A(G) » Z. Then ¢ylX] = X(XH)
for a finite G-space X.

Proposition 2.6. Additively, A(G) is the free Abelian group on the basis
{lG/K]|(K) ¢ 2G}. For a compact G-ENR X,

[X] = z x(X(K)/G)[G/K].
(K)e oG
Proof. By Theorem 1.6, we need only check that the [G/K] are linearly
independent. If ZnK[G/K] = 0 and some ny # 0, we may choose an (H) which is
maximal among those (K) such that ng # 0. This leads to the contradiction

0 = ¢y(mnglG/K]) = ny|WH| # O.

It follows, of course, that A(G) 1is the Grothendieck ring of finite G-sets
when G is finite. It also follows that A(G) could just as well have been

defined in terms of finite G-CW complexes rather than compact G-ENR's.
Proposition 2.7. For any x e¢ A(G) and any (K) e ¢(G),

x + 16/K] = ¢(x)[6/K] + & n [G/H].
(H)<(K)

If x = [G/J], then the integers ny are all non-negative. If T is a maximal

torus in G, then [G/TI? = |WT|lG/T].

Proof. It suffices to consider x = [X]. Here the product is [X x G/K], and it
is clear that only orbits type G/H with (H) < (K) appear in X x G/K. The
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_coefficient of [G/K] is computed by applying ¢x. If X = G/J, then

ny = x((G/J x G/K)(H)/G).

Here (G/J x G/K)(11)/G = (G/J x G/K)y/NH € (6/3 x G/K)Y/NH (where

X = (x1(6) = (0} and Xy = {x|G, = ). Since (¢/DF and (a/K)F are
finite sets, ny is just the cardinality of a finite set. For the last
statement,- (H) < (T) and WH finite imply (H) = (T).

" We require a little topological algebra to proceed further. For a metric
space X with bounded metric, we give the set X of closed subsets of X the
Hausdorff metric

d(A,B) = max{sup d(a,B), sup d(A,b)}.
aeh beB
The space AX 1is complete or compact if X is so. In particular, starting with a
bi-invariant metric on G, we topologize &G as a subspace of X£G and then
topologize FG as a subspace of {£G.

Lemma 2.8. (i) £G 1is a closed subspace of AG.
(ii) 4G is a closed subspace of {G.
(iii) The action of G on &G by conjugation is continuous.
(iv) With the orbit space topology, IG and @G are totally disconnected

compact metric spaces, and ¢G 1is a closed subspace of TIG.

Proof. We give a sketch, referring the reader to tom Dieck [44,5.6.1] for

details. Part (i) is a direct verification from the definitions. Part (ii) follows
from the facts that subgroups in small neighborhoods of a subgroup H are
subconjugate to H [18,IL 5.6] and that if H DK with K ¢ G then He 3G.

Part (iii) is clear and part (iv) follows by countability (Theorem 2.4(i)) and part
(ii).

If G 1is finite, A(G) is effectively studied by using the ring homomor-
phisms ok to embed it in a product of copies of Z. For general compact Lie
groups G, such a product is too big to be of much use and we use the topology on
oG to obtain the appropriate substitute.

Definition 2.9. Give Z the discrete topology and define C(G) to be the ring of

continuous (= locally constant) functions oG +» Z. Observe that, by the compactness

of ¢G, such a function takes only finitely many values. For a G-map

£: 8" » SV, the degree function, d(f)(K) = deg fK, is clearly continuous. Let
d: ng(S) + C(G) be the resulting ring homomorphism and define
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¢ = dy: A(G)—> C(G).

Since x is a monomorphism by definition and d is a monomorphism by Proposition

1.9, ¢ 1is a monomorphism.
We shall prove the following result in section 5.

Lemma 2.10. Upon tensoring with Q, ¢ becomes an isomorphism of rings.
Granting this, we obtain the following conclusions.

Theorem 2.11. Consider the commutative diagram

A(6) ——X—> n(s).

N
c(a@)

Additively, C(G) dis the free Abelian group generated by {eg|(K) e @G}, where oy
is the unique element such that ]WK[aK = $[G/K]. A continuous function a: 3G + Z
is in the image of ¢ if and only if, for each (H) e &(G),

&)[NH: NH A NK]u(K/H)a(K) = 0 mod |WH|,
where the sum runs over the NH-conjugacy classes of groups K such that HC K CNH
and XK/H is cyclic and where u(K/H) denotes the number of generators of K/H.

Moreover, x is an isomorphism of rings.

Proof. By Coroilary 1.13, any oe Im d, hence any a e Im¢, satisfies the
specified congruences. Since y and d are monomorphisms, the last statement will
therefore follow from the second. Since WK acts freely on the finite set

(G/K)H when (H) < (K) and WH is finite, |WK| divides ¢[G/K] and oy is
present in C(G). We must show that any o ¢ C(G) 1is an integral linear
combination of the oag. By the promised Lemma 2.10, after tensoring with Q we can
write o = Iqpoy, qx ¢ Q. ILet (H) be maximal such that gy # O. Then ag(H) =0
if (K) # (H) and qg # O, while oyx(H) = 1. Thus ofH) = qy and gy is an
integer. Repeating the argument on a - Aoy and iterating, we conclude that all

ag € Z. Finally, suppose given o satisfying the specified congruences. We may

write o = Ingog, ng e Z. To prove that o e Imp, it suffices to prove that
|WK| divides ny for each (K). Choose (H) maximal with ny # O. The
coefficient of o(H) in the HHL congruence is one and the remaining a(K) are
zero by the maximality of (H). Therefore afH) = ny is divisible by |WH|.
Repeating the argument on o - nyoy and iterating, we conclude that nyg is
divisible by |WK| for each (K).
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We conclude from Theorem 2.4 (iii) that n(G) annihilates C(G)/A(G). When
G is finite,‘this fact, and thus Lemma 2.10 and the theorem, are easily proven
directly from the congruences. We shall give a different proof that x is an
isomorphism in section 9.

Remark 2.12. We defined A(G) in terms of finite G-spaces and observed that we
- could instead have restricted to finite G-CW complexes. It is obvious that we

could just-as well have worked with based finite G-spaces or based finite G-CW

complexes and reduced Fuler characteristics; in this context, additive inverses are

-given by suspensions. It is also clear that we could have started with fihite

G-CW spectra and their Euler characteristices. Finally, after the fact, we see

that A(G) . could have been defined in terms of finite G-spectra X and their Euler
characteristies. Although we have no a priori formula for the calculation of

x(X) as a linear combination of the x(G/H) in this generality, there necessarily

is such a formula for each X since x(X) 1is an element of ng(S).

There are various maps relating Burnside rings which correspond appropriately

to maps between stable homotopy groups (or cohomotopy groups).

Definition 2.13. Let a: H+ G be a homomorphism of compact Lie groups. Define a

ring homomorphism o A(G) » A(H) by sending a finite G-space X to X regarded

as a finite H-space via a. Since XK= & ror ke H, ¢Ka* = ¢y(g) When «

is an inclusion, we write a* = rg (or r for short) and call it the
restriction. When HCG and g e G, we write Cgt A(H) » A(gHg'l) for the
isomorphism induced by the conjugation isomorphism gHg‘l + H.

Lemma 2.14. The following diagram commutes for o: H + G.

AG) — X ng(S)

o . [ o

MH) —X 1(S).

Definition 2.15. For H € G, define induction G. A(H) » A(G) (or 1 for short)

Tt
by sending a finite H-space Y %o G xyY. Clearly (G xHY)K is empty and thus
¢Krg =0 if K CG is not subconjugate to H. By inspection, if K C H and
WK is finite (so that (G/H)X is a finite set), then (G xz¥)¥ is homeomorphic
to the disjgint union over a set {g} of coset representatives of (G/H)K of the
- G
spaces Y8 K& hence oty = L ¢ _ .
’ K*'H g g 1Kg

We record the basic algebraic properties of rﬁ and then its relationship to

cohomotopy. The former can be derived by direct inspection and use of the

homomorphisms ¢g or by quotation of results about the transfer in cohomotopy.
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Lemma 2.16. (i) ng A(H) » A(G) 1is a morphism of A(G)-modules, where A(G)

acts on A(H) through rg (Frobenius reciprocity).
(ii) The composite rgrgz A(G) + A(G) 4is multiplication by [G/HI.

(iii) For subgroups H and K of G, the composite r%r%: A(H) + A(K) is the

sum, over a set {g} of representatives in G for the orbit type
component manifolds M of K\G/H, of x(M) times the composite

C
A(H) —E > A(H8) —F— a8 K) —F—=A(X),

-1

where HE = gHg (double coset formula).

Lemma 2.17. Let KC HCG and ge G and let =: G/K » G/H and cgt G/Hg + G/H

be the canonical G-maps. Then the following diagrams commute.

14
ne

A(H) —-X—>1r§(8) ng(G/H) A(K) —X—> n%S) vrg(G/K)

rl | Ti l

AK) —%—= ‘nl(()(S) ng(G/K) A(H) ——L—ng(s) wg(G/H)

0
"

A X 1 X(8) Z a3(C/H)
| *

°e) lcg

A(E®) ——X—-‘-'nog(S) 2 pota/ef)

H

Definition 2.18. Let N be a normal subgroup of G with quotient group J.
Define a ring homomorphism ¢: A(G) + A{J) by sending a finite G-space X to the
finite J-space W™, Since ws* =1, e: G +J, ¢y is a split epimorphism. »If
NCHCG and K=HNcCJ, then (XX =3 and thus ¢y = ¢. The kernel of
¢ is spanned by those [G/Ll, (L) € &G, such that L does not contain N;
equivalently (by an argument like the proof of Proposition 2.6), o e Ker y if and
only if ¢gla) =0 for all (H) € oG such that H contains N.

Lemma 2.19. Let N be a normal subgroup of G with quotient group J and
define : ng(SO) > ng(SO) by passage to N-fixed points on representative maps of
G-spheres. Then the following diagram commutes.

AG) —X> ng(s)

wl |

AT —X 1 (5)
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‘§3, Prime ideals in A(G)

For HC G, let q(H,p) denote the prime ideal ¢ﬁ1(p) of A(G), where
(p) € Z; here p is zero or a prime number. When necessary for clarity, we
write q(H,p;G) instead of q(H,p) to indicate the ambient group.

Proposition 3.1. ILet q be a prime ideal of A(G) and let p = char A(G)/q. Then

there exists a unique (K) € oG such that q = q(K,p) and |WK| # O mod p.

Proof. ~ Of course, the second condition is vacuous if p = 0. Consider -
(®|le/8] € q} C 6.

This set is non-empty since it contains (G), hence it contains a minimal element
(K). By Proposition 2.7 and minimality,

x+1G/K] = ¢p(x)(G/K] mod q

for any x ¢ A(G). Since [G/K] ¢ q, x = ¢og(x) mod g and thus q = q(K,p). Of course,
oglG/Kl = |WK| £ 0 mod p. If (J) also satisfies q = q(J,p) and |WJ| £ O mod p, then

¢oxlG/I1 = ¢71G/I] # O mod p
and (G/J)K is non-empty. Similarly (G/K)J is non-empty, and this implies (J) = (K).

Corollary 3.2. (i) Every proper containment of prime ideals of A(G) is of the
form q(X,0) C q{K,p) for some (X) € ¢ and p > O.
(ii) A(G) is Noetherian if and only if &G is finite.
(iii) Any ring homomorphism from A(G) to an integral domain factors through
¢y for some (K) € 3G.
(iv) If (J) ¢ 4G, then ¢; = ¢y for some (K) e aC.

Proof. Part (i) is clear and implies (ii) sinee a Noetherian ring can have only
finitely many minimal prime ideals [16,I184.3 Cor 3 to Prop 14]l. Part (iii) holds
since the kernel of such a ring homomorphism is a prime ideal; (iv) is a special
case of (iii).

Theorem 2.4 (ii) shows that A{(G) generally fails to be Noetherian when G 1is
not finite.

We next study when q(H,p) = q(J,p) for (H) # (J). For p = 0, the answer
is entirely satisfactory.
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Proposition 3.3. let H and J be closed subgroups of G.
(i) If HQAJ and J/H is a torus, then q(H,0) = q(J,0).
(ii) If (K) 1is the unique element of ¢G such that q(H,0) = q(X,0), then,
up to conjugation, H<JK and K/H 1is a torus.
(1ii) If (H) ¢ oG and (J) € G, then q(H,0) = q(J,0) if and only if
(H) = (J).

Proof. Part (i) follows from Lemma 1.11 and Proposition 2.5 and part (1i1) is
immediate from Proposition 3.1. In view of (i) and the uniqueness of (K}, to
prove (ii) it suffices to construct K such that H K, K/H is a torus, and WK
is finite. We claim that the inverse image in NH "of a maximal torus T in WH is
a group K as desired, and we need only check that WK is finite. IlLet S be a
maximal torus of WK and let L be the inverse image of S in NK. Since L/K = S,
conjugation of K by an element of L 1is homotopic to an inner automorphism and
therefore, by [35, 38.11, equal to an inmer automorphism. Since H 1is normal in

K, it is thus also normal in L. The extension 1 + T » I/H + 8 » 1 shows that
L/H is a torus. By the maximality of T, S=-e and WK is finite.

The analog for p > O is less satisfactory. Beforé stating it, we record an

obvious consequence of Proposition 3.1.

Corollary 3.4. Fix p > 0 and let o(G;p) be the subset of oG consisting of
those (K) such that |WK| #0 mod p. Then every prime ideal of A(G) of residual
characteristic p has the form q(K,p) for precisely ome (K) e 8(G;p) .

Remark 3.5. We may topologize @(G;p) as a subspace of @G, but it need not be a
closed subspace. To see this, consider the sequence of subgroups

K, = Dy x Doy x Doy of the subgroup K = 0(2) x 0(2) x 0(2) of 0(6), where D,
denotes the dihedral group of order 2n. The normalizer of T, in 0(2) is

D, . In 0(6), NK =K, and |WK_ | £0 mod 3. However, K is the closure of the
union of the K,, and |WK] = 0 mod 3. (We are indebted to Dale Peterson and David
Vogan for pointing out this example.)

Proposition 3.6. ILet H and J be closed subgroups of G and fix p > O.
(1) If H4QJ and J/H is an extension of a torus by a finite p-group, then
q(H,p) = q(J,p).
(ii) If (H) ¢ #(G) and |WH| = O mod p, then there exists K such that
. (K) e 3G, H K, and K/H is a finite p-group.
(iii) “If (H) € oG and |H/Hy| # O mod p, where Hy 1s the component of the
identity in H, and if (K) is the unique element of &(G;p) such that
q(H,p) = q(K,p), then, up to conjugation, H JK and K/H is a finite
p-group.
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Proof. Part (i) follows from Lemma 1.11 and Proposition 2.5. For (ii), the inverse
image in NH of a p-Sylow subgroup of WH is a group K as required. For (iii),
it suffices by uniqueness to show that this group K satisfies [WK| # O mod p
when ]H/HOI £0 mod p. Since K/H is a p-Sylow subgroup of WH, it suffices to
show that NKC NH. Thus let g ¢ NK and consider HE = gHg'l. The groups H,
Hg’ anq K all have the same identity component, hence H/(H N H8) is a quotient
of H/Hy and thus has order prime to p. However, H/(H N HB) is also isomorphic
to a subgroup of the p-group X/H8. Therefore H = HE.

The following result has no counterpart for general compact Lie groups;and
plays a major role in many applications.

Proposition 3.7. Iet G be finite and, for HC G, 1let H be the (unique)
smallest normal subgroup of H such that H/Hp is a p-group. For (K) ¢ &(G,p),
q(H,p) = a{K,p) if and only if, up to conjugacy, K,C HC K. Therefore

q(H,p) = q(J,p) if and only if (HP) = (JP).

Proof. Given H, let K be the inverse image in NHp of a p-Sylow subgroup of
WHP' Then Hp‘ﬂ K and K/HP is a p-group, hence Hp = Kp. It suffices to show
that |WK| # O mod p, and this will hold if MNKC NH,. If ge NK, then H% 4K
and K/H% is a p-group. By minimality, H% = H,.

For a general compact Lie group G and subgroup H, Propositions 3.3(ii) and
3.6(1) show that, if (K) is the unique element of oG such that q(H,0) = q(K,0),
then q(H,p) = q{K,p) for every prime p. Given (H) ¢ ¢G and a fixed prime p,
one can reach the unique element (K) ¢ @(G;p) such that q(H,p) = a(K,p) by
transfinite iteration of Proposition 3.6(ii). That is, one can start with Hy = H
and construct an expanding sequence {Hi} in oG such that Hi <4 Hi+1 and
Hi,1/H; 1is a p-group. One may not reach an H; such that |WH,| # 0 mod p after

finitely many steps. For example, the dihedral groups Ibi in 0(2) all satisfy

[WDyi [= 0 mod 2. In that case, ome can pass to the closure J of the union of

the H;. Certainly q(J,p) = q(H;,p) for all i since ©5 = ¥ for any given
finite G-CW complex X and all sufficiently large i. One can then again apply
Proposition 3.6(ii) iteratively, starting with J, and so on. GEventually one must
reach K such that |WK| # O mod p. This discussion raises an open problem.

Question 3.8. If HC JCK and q(H,p) = q(K,p), is q(J,p) = q(H,p)?

We thought the answer was yes until the final proofreading of this book, when
we noticed a gap in our proof. The answer is clearly yes if G is finite, by
Proposition 3.7. In general, we can enlarge K as above to arrange that (K)e ¢(G,p).
We can also apply Proposition 3.3(ii) to obtain H ¢ H' sueh that H'/H is a torus.
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(If we enlarge J to J' this way, we need not have H'ec J'.) Then H'N JQ H',
H'/H' N J is a torus, and thus

q(H,p) = q(H',p) = q(H'N J,p).

As above, we can find a possibly transfinite ascending chain connecting H' to K.

The intersection of this chain with J connects H'M J to KMNJ = J. We would like
to say that all groups L in the new chain define the same prime ideal q(L,p), but we
do not see a way around the fact that the closure of a union LJ(HiVW J) may be quite
different from the intersection of J with the closq;e of the union of the Hj.

Warning 3.9. For HCG, ¢ and ¢ mneed have little to do with one another. For
example, there may be no (K) € oG such that (K) < (H), as the inclusion of a
(finite) subgroup in a circle makes clear. Thus one must consider general conjugacy

classes when comparing prime ideals in A(G) and in A(H).

Remark 3.10. Proposition 3.1, Corollary 3.2, and part (i) of both Propositions 3.3
and 3.6 remain valid for the Burnside ring A(G;U) of a general G-universe U. Here
the [G/H] such that G/H embeds in U form an additi&e basis. None of the rest
of the results above generalize to this context since they all start with a given
subgroup H and proceed by constructing another subgroup K, and G/K mneed not
embed in U when G/H does. In particular, when G is finite, G/Hp need not
embed in U when G/H does; see Namboodiri [115,§8] for an example and a context

in which