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Preface 

Our primary purpose in this volume is to establish the foundations of 

equivariant stable homotopy theory. To this end, we shall construct a stable 

homotopy category of G-spectra enjoying all of the good properties one might 

reasonably expect, where G is a compact Lie group. We shall use this category to 

study equivariant duality, equivariant transfer, the Burnside ring, and related 

topics in equivariant homology and cohomology theory. 

This volume originated as a sequel to the volume I1H, ring spectra and their 

 application^'^ in this series [201. However, our goals changed as work progressed, 

and most of this volume is now wholly independent of [20]. In fact, we have two 

essentially disjoint motives for undertaking this study. On the one hand, we are 

interested in equivariant homotopy theory, the algebraic topology of spaces with 

group actions, as a fascinating subject of study in its own right. On the other 

hand, we are interested in equivariant homotopy theory as a tool for obtaining 

useful information in classical nonequivariant homotopy theory. This division of 

motivation is reflected in a division of material into two halves. The first half, 

chapters I-V, is primarily addressed to the reader interested in equivariant 

theory. The second half, chapters VI-X, is primarily addressed to the reader 

interested in nonequivariant applications. It gives the construction and analysis 

of extended powers of spectra that served as the starting point for [201. It also 

gives a systematic study of generalized Thom spectra. With a very few minor and 

peripheral exceptions, the second half depends only on chapter I and the first four 

sections of chapter I1 from the first half. The reader is referred to [I051 for a 

very brief guided tour of some of the high spots of the second half. 

Chapter I gives the more elementary features of the equivariant stable 

category, such as the theory of G-CW spectra and a desuspension theorem allowing 

for desuspension of Gspectra by all representations of G in the given ambient 

"indexing universe". Chapter I1 gives the construction of smash products and 

function Gspectra. It also gives various change of universe and change of groups 

theorems. Chapter I11 gives a reasonably comprehensive treatment of equivariant 

duality theory, including Spanier-Whitehead, At iyah, and ~oincar6 duality. Chapter 

N studies transfer maps associated to equivariant bundles, with emphasis on their 
calculational behavior in cohomology. Chapter V studies the Burnside ring and its 

role in equivariant stable homotopy theory. It includes various related splitting 

theorems in equivariant homology and cohomology theory. 

Although we have encountered quite a few new phenomena, our main goals in the 

first half have been the equivariant generalization of known nonequivariant results 

and the generalization and sharpening of known equivariant results. We tperefore 

owe ideas and material to numerous other mathematicians. Our general debt to the 



work of Boardman [13,141 and Adams [,1 I in nonequivariant stable homotopy theory will 
be apparent throughout. The idea for a key proof in chapter I is due to 

Hauschild. The main change of groups theorems in chapter I1 are generalizations of 

results of Wirthmuller [1441 and Adams [31, and the study of subquotient cohomology 

theories in I109 is based on ideas of Costenoble. 

Our debts are particularly large in chapters 111, IV, and V. Our treatment of 

duality is largely based on ideas in the lovely paper [471 of Dold and Puppe and on 

(nonequivariant) detai.1~ in the papers [63,64,651 of their students Henn and Hornel; 

equivariant duality was first studied by Wirthmuller [1451. Our treatment of 
transfer naturally owes much to the basic work of-Becker and Gottlieb [10,111 and 

Dold [46 1 , and transfer was first studied equivariantly by Nishida [I17 I and Waner 
[1411. Our IV06 is a reexposition and equivariant generalization of Feshbachls work 

[53,541 on the double coset formula, and he cleared away our confusion on several 

points. While our initial definitions are a bit different, a good deal of chapter V 

is a reexposition in our context of tom Eeck's pioneering work [38-441 on the 

Burnsi.de ring of a compact Lie group and the splitting of equivariant stable 

homotopy. This chapter also includes new proofs and generalizations of results of 

Araki 141. 

A word about our level of generality is in order. We dont t restrict to finite 
groups since, for the most part, relatively little simplification would result. We 
don't generalize beyond compact Lie groups because we believe that only the most 

formal and elementary portions of equivariant stable homotopy theory would then be 

available. The point is that, in all of our work, the depth and interest lies in 

the interplay between homotopy theory and representation theory. Technically, part 

of the point is that the cohomology theories represented by our Gspectra are RO(G)- 

graded and not just Z-graded. This implies huge amounts of algebraic structure 

which would be invisible in more formal and less specific homotopical contexts. 

While a great deal of our work concerns equivariant cohomology theory, we have 

not given a systematic study here. Lewis, McClure, and I have used the equivariant 

stable category to invent "ordinary RO(G) -graded cohomology theories" [ 881, and the 

three of us and Waner are preparing a more thorough account [901. (Hauschild, 
Waner, and I are also preparing an account of equivariant infinite loop space 

theory, which is less directly impinged upon by this volume. 

Chapters VI-VIII establish rigorous foundations for the earlier volume [201, 

which we shall refer to as [Hal here. That volume presupposed extended powers 

DjE = Exj rx .~(j ) of spectra with various good properties. There E was a 
J 

nonequivariant spectrum, but our construction will apply equally well to 

~-s~ectra E for any compact Lie group G. 

In fact, extended powers result by specialization of. what is probably the most 

fundamental construction in equivariant stable homotopy theory, namely the twisted 

half-smash product X K E of a Gspace X and a Gspectrurn E. (The "twisting" is 

encoded by changes of universe continuously parametrized by X.) This construction 

is presented in chapter VI, although various special cases will have been 

encountered earlier. 

We develop a theory of "operad ring G-spectra" and in particular construct free 

operad ring G-spectra in chapter VII. When G is finite, special cases give 

approximations of iterated loop Gspaces $lVzVx, and we obtain equivariant 

generalizaGons of Snaithls stable splittings of spaces $ln-j?xe 

 we prove some homological properties of nonequivariant extended powers-that 
were used in [H,] in chapter VIII. 

Chapters IX and X give a careful treatment of the Thom spectra associated to 

maps into stable classifying spaces. These have been used extensively in recent 

years, and many people have felt a need for a detailed foundational study. In 

chapter IX, we work nonequivariantly and concentrate on technical problems arising 

in the context of spherical fibrations (as opposed to vector bundles). In chapter 

X, we work equivariantly but restrict ourselves to the context of G-vector bundles. 

There result two specializations to the context of nonequivariant vector bundles, 

the second of which is the more useful since it deals naturally with elements of 

KO(X) of arbitrary virtual dimension. 

We must again acknowledge our debts to other mathematicians. We owe various 

details to Bruner, Elmendorf, and McClure. The paper of Tsuchiya [I381 gave an 

early first approximation of our definitions of extended powers and Hm ring 

spectra. As explained at the end of VII02, Robinson's Am ring spectra [I241 fit 

naturally into our context. The proof of the splitting theorem in VII05 is that 

taught us by Ralph Cohen 13.41. We owe the formulations of some of our results on 

Thom spectra to Boardman [12] and of others to Mahowald [931, whose work led to our 

detailed study of these objects. 

Each chapter of this book has an introduction summarizing its main ideas and 

results. There is a preamble comparing our approach to the nonequivariant stable 

category with earlier ones, and there is an appendix giving some of the more 

esoteric proofs. ~eferences are generally by name (Lemma 5 .A) when to results in 

the same chapter and by number (11.5.4) when to results in other chapters. 

Finally, I should say a word about the genesis and authorship of this volume. 

Chapter VIII and part of chapter VI are based on Steinbergerls thesis [133] ,  and 

chapter VII started from unpublished 1978 notes of his. Chapter IX and the 

Appendix are based on Lewis1 thesis [831, and the definition and axiomatization of 

the transfer in chapter IT7 are simplifications of his work in 1851 . Chapter V 
incorporates material from unpublished 1980 notes of McClure. A11 of the rest of 

the equivariant material is later joint work of Lewis and myself. 
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Preamble: A polemical introduction t o  the stable category 

by J. P. May 

Nonequivariantly, the virtues of having a good stable category are by now well 

understood. In such a category, the basic formal properties of homology and 

cohomology theories become t r i v i a l i t i e s .  Many arguments tha t  could be carried out 

lad hoc without a stable category became much cleaner with one. More important, many 

common arguments simply cannot be made rigorous without use of such a category. 

Equivariantly, it i s  even more important t o  have a good stable category. Much 

basic equivariant algebra only ar ises  i n  a fu l ly  stable context. For example, one 

already has that  [ p, $1 i s  Z for n 2 1 and that  [ sn,x1 i s  a Z-module for 

n 2 2. The equivariant analog of Z i s  the Burnside ring A ( G ) ,  and, unless G i s  

f i n i t e ,  there need be no representation V of G large enough that  [ s ~ , s ~ ]  is 

A(G)  or tha t  [SV,xlG i s  an A(G)-module. Even when G i s  f i n i t e ,  and regardless 

of connectivity hy-potheses, none of the ordinary homotopy groups [ S " , X I ~  of a 

G-space X need be A(G)-modules, whereas a l l  of the homotopy groups of G-spectra 

are A(G)-modules. Much more evidence w i l l  appear as we proceed. 

O u r  construction of the equivariant stable category i s  a generalization of my 

construction of the nonequivariant stable category. Since the l a t t e r  i s  l e s s  

familiar than the ea r l i e r  constructions of Boardman and Adams, a comparison of the 

various approaches may be helpful t o  the informed reader. I can' t  r e s i s t  quoting 

from Boardman's 1969 Historical Introduction [13, p.11. "This introduction... i s  

addressed without compromise t o  the experts. (The novice has the advantage of not 

having been misled by previous theories.)" 

Boardman continues "In t h i s  advertisement we compare our category 2 of CW- 

spectra, or rather its homotopy category &, with various competing products. We 

find the comparison quite conclusive, because the more good properties the 

competitors have, the closer they are t o  &I1.  A l l  experts now accept t h i s  

absolutely. Boardman's category 3 i s  definit ively the r ight one, and any good 

stable category must be equivalent t o  it. It does not follow, however, tha t  h i s  

category a before passage t o  homotopy, i s  the r ight one, and we are convinced 

that  it i s  not. 

Boardman's construction of his category 2 proceeds as follows. He begins 

with the category 3 of f i n i t e  CW complexes. He constructs the category gs of 

f i n i t e  CW spectra by a purely categorical procedure of stabil ization with respect 

t o  the suspension functor. He then constructs .2 from 3, by a much deeper purely 

categorical procedure of adjoining colimits of a l l  directed diagrams of f i n i t e  CW 

spectra and inclusions. The in tu i t ion  is that ,  however CW spectra are defined, 

they ought t o  be the colimits of the i r  f i n i t e  subspectra, and f i n i t e  CW spectra 



ought to be desuspensions of finite CW complexes. A n  advantage of this approach 

is that one can obtain conceptual proofs of theorems about E& almost automatically 

by feeding information about finite CW complexes into a categorical black box. A 

disadvantage, to paraphrase Adams [ 1, p.1231, is that the construction is 

inaccessible to those without a specialized knowledge of category theory. 

In fact, in his Historical Introduction 113, p.41, Boardman pointed out an 
alternative description of a category equivalent to his, and he gave details of the 

comparison in [14,§101. Ikfine a CW prespectrum D to be a sequence of CW 

complexes and cellular inclusions CDn + Dn+l. Define a map f: D + Dl to be a 

family of based maps fn: Dn + strictly compatible with the given inclusions. 

Let @(D,D' denote the set of maps D + Dl. Say that a subprespectrum C is 

dense (or cofinal) in D if for any finite subcomplex X of #, zkx is contained 

in Cn+k for some k. Then [14,10.31 implies that 2 is equivalent to the 
category of CW-prespectra D and morphisms 

where C and C' run through the dense subprespectra of 'D and Dl and where - -  - 
f: C + C' is equivalent to f: C + C' if and only if the composites 

are equal. 

Adams [l] turned this result into a definition and proceeded from there. (He 

called a map D + D1 a "function", an element of 2(D,D1 ) a llmap", and a homotopy 

class of "maps" a "morphism"; he also called a CW prespectrum a CW spectrum.) A 

similarly explicit starting point was taken by Puppe 11221. An advantage of this 

approach (to some people!) is that it is blessedly free of category theory. A 

disadvantage is that many proofs, for example in the theory of smash products, 

become unpleasantly ad hoc. To quote Boardman again [14,p.521, "The complication 

will show why we do not adopt this as definitionn. 

It seems reasonable to seek an alternative construction with all of the 

advantages and none of the disadvantages. Staring at the definition, we see that 

S is constructed from the category of CW prespectra and maps by applying a kind - 
of limit procedure to morphisms while leaving the objects strictly alone. This is 

the meaning of Adams' slogan [l, p.142 I Ifcells now - maps lateru. 
From our point of view, this is precisely analogous to developing sheaf theory 

without ever introducing sheaves or sheafification. There is a perfectly sensible 

way to "spectrify" so as to force elements of S-(D,Df ) to be on the same concrete 

level as maps D + Dl. Define a spectrum E to be a sequence of based spaces % 

and based homeomorphisms E, + OE,+l. Define a map f: E + E1 to be a sequence of 

based maps fn: + strictly compatible with the homeomorphisms. Let 

,J(E,Et) denote the set of maps E a El. Define the spectrum LD associated to a 

CW prespectrum D by 

'where the colimit is taken with respect to iterated loops on adjoint inclusions 

Di + ODi+l. Since Q commutes with colimits, there are evident homeomorphisms 

Q(LD),+~ " (LD),. One finds by a laborious inspection of definitions that 

Of course, only the expert seeking concordance with earlier definitions need worry 

about the verification: we shall take the category /;I as our starting point. 

Obviously the spaces (LD), are no longer CW complexes (although they do 

have the homotopy types of CW complexes), and we have imposed no CW requirement 

in our definition of spectra. It should now be apparent that, despite their rigid 

structure, spectra are considerably more general objects than CW prespectra. 

Working in a stable world in which the only spectra are those coming from CW 

prespectra is precisely analogous to working in an unstable world in which the only 

spaces are the CW complexes. Just as any space has the weak homotopy type of a 

CW complex, so any spectrum has the weak homotopy type of one coming from a CW 

prespectrum. (Verification of the last assertion requires only elementary 

constructions with space level CW approximations and mapping cylinders and was 

already implicit in my 1969 paper [ 95 1 . ) 
The extra generality allowed by our definition of spectra is vital to our 

theory. Throughout this volume, we shall be making concrete spectrum-level 

constructions which simply don't exist in the world of CW prespectra. 

Dropping CW conditions in our definition of spectra clearly entails 

dropping CW conditions in our definition of prespectra. For us, a prespectrum is 

a sequence of spaces Dn and maps ED, + Dn+l. Maps of prespectra are defined as 

above. By our analogy with sheaf theory, we are morally bound to extend the 

construction L above to a spectrification functor L: P +  ,d left adjoint to the 

obvious forgetful functor from spectra to prespectra. When the adjoints 

Di + QDi+l are not inclusions, LD is slightly mysterious and its construction is 

due to Lewis [831, who will give details in the Appendix. Starting from D one 

constructs a prespectrum Dl and map D + Dl by letting Dl be the image of Di 

in QDi+l. The resulting maps Dl + SID;+~ are a bit closer to being inclusions. 

Iterating this construction (transfinitely many times!) one arrives at a 



prespectrum 'D and map D + i such that the maps 'Di + $i+l are inclusions. One - 
defines LD by applying the elementary colimit construction above to D; one has a 

composite natural map D + LD which is the unit of the adjunction. Actually, the 

explicit construction is of little importance. The essential point is that, by 

standard and elementary category theory, L obviously exists and is obviously 

unique. 

We now see that our category of spectra has arbitrary limits and colimits. 

Indeed, the category of prespectra obviously has all limits and colimits since these 

can be constructed spacewise. All such limit constructions preserve spectra. 

Colimit constructions do not, and colimits of spectra are obtained by applying L 
to prespectrum level colimits. Thus, and this will take some getting used to by the 

experts, limits for us are simpler constructions than colimits. In fact, right 
adjoints in general are simpler constructions than left adjoints. For example, it 

is trivial for us to write down explicit products and pullbacks of spectra and 

explicit function spectra. These don't exist in the world of CW-prespectra. 

Moreover, we shall often prove non-obvious facts about left adjoints simply by 

quoting obvious facts about right adjoints. This might seem altogether too 

categorical, but in fact the opposite procedure has long been standard practice. 

Function spectra in 3 (not S!) are usually obtained by quoting Brown's 
representability theorem - something at least as sophisticated as any category 
theory we use - and then proving things about these right adjoints by quoting known 
facts about the left adjoint smash product functors. 

Of course, one does want a theory of CW spectra, but there is no longer the 
slightest reason to retreat to the space or prespectrum level to develop it. We have 

a good category of spectra, with cones, pushouts, and colimits. To define CW 
spectra, we need only define sphere spectra and proceed exactly as on the space 

level, using spectrum level attaching maps. The resulting CW spectra are all 

homotopy equivalent to spectra coming from CW prespectra; conversely, any spectrum 

coming from a CW-prespectrum is homotopy equivalent to a CW-spectrum. A CW-spectrum 
is the colimit of its finite subspectra, and a finite CW spectrum is a 

desuspension of a finite CW complex (that is, of its associated suspension 

spectrum). Our stable category is constructed from the homotopy category of spectra 

by adjoining formal inverses to the weak equivalences. It is equivalent to the 
homotopy category of CW spectra. By the discussion above, it is also equivalent 

to Boardman's category &. Without exception, everything in the literature done in 

Boardman's category can just as well be interpreted as having been done in our 

category. 

In one respect I have lied a bit above. We don1 t usually index prespectra and 
spectra on integers but rather on finite dimensional inner product spaces. When one 
thinks of Dn, one thinks of S" and thus of @. Implicitly, one is thinking 

of Rm with its standard basis. Even nonequivariantly, a coordinate free approach 

has considerable advantages. For example, it leads to an extremely simple 

conceptual treatment of smash products and, as Quinn, Ray, and I realized in 1973 

[991, it is vital to the theory of structured ring spectra. In the equivariant 

context, one must deal with all representations, and coordinate-free indexing is 

obviously called for, as tom Dieck realized even earlier. 

Modulo the appropriate indexing, virtually everything said above about my 

'approach'to the nonequivariant stable category applies verbatim in the equivariant 

context. The few exceptions are relevant to possible generalizations of the earlier 

constructions. Our GCW spectra are built up from "G-sphere spectra" G/H+A sn, 
and any G-CW spectrum is the colimit of its finite subspectra. However, it is not 

true that a finite G-CW spectrum is isomorphic (as opposed to homotopy equivalent) 

to a desuspension of a finite G-CW complex unless one redefines the latter by 

allowing G-spheres G/H+A sV associated to G-representations V as domains of 

attaching maps. This loses the cellular approximation theorem and would presumably 

cause difficulties in a Boardman style approach to the Gstable category. Since 

G-spheres sV are not known to have canonical G-CW structures, the appropriate 

notion of a G-CW prespectrum is not immediately apparent. We shall give a 

definition which is related to our notions exactly as described above in the 

nonequivariant case. However, a full treatment, including smash and twisted half- 

smash products, would be inordinately lengthy and complicated. In any case, right 

adjoints, such as fixed point functors, are even more important equivariantly than 

nonequivariantly, and a treatment lacking such constructions on the spectrum level 
! would be most unnatural. 

I I should say that there is also a semisimplicial construction of the stable 
> category due to Kan (and Whitehead) [69,701 and elaborated by Burghelea and Eeleanu 
I 

[211. Except perhaps when G is finite, it is ill-adapted to equivariant 

generalization, and it is also inconvenient for the study of structured ring 

I spectra. 

I 

One last point addressed to the experts. Vie shall not introduce graded 
I 

I 
I morphisms here. Regardless of what approach one takes, graded morphisms are really 
I 

\ nothing more than a notational device. The device can aid in keeping track of the 
I 
I signs which arise in the study of cohomology theories, but it can in principle add 
I 
I 

I nothing substantive to the mathematics. In the equivariant context, the grading 
I 

\ would have to be over RO(G) and its introduction would serve only to obscure the 
I 

exposition. 
1 



I. THE IQUIVARIANT STABLE CATEGORY 

by L. G. Lewis, J r .  and J. P. May 

We gave a preliminary definit ion of spectra in [ H w , I § l l  as  sequences of spaces 

Ei and homeomorphisms Ei z This " c o o r d i n a t i ~ e d ~ ~  notion i s  wholly inadequate 

for  the study of e i ther  structured ring spectra or equivariant stable homotopy 

theory. While our main concern i n  [Hal was with the f i r s t  of these subjects, we are 

here most interested i n  the second. Because of the role played by permutation 

groups in the construction of extended powers, we need a f a i r  amount of equivariant 

stable homotopy theory t o  make rigorous the constructions used in  [Hal i n  any 

case. While t h i s  motivates us only as f a r  as the study of Gspectra for f i n i t e  

groups G, it turns out tha t  a complete treatment of the foundations of equivariant 

stable homotopy theory i n  the proper generality of compact Lie groups i s  obtainable 

with very l i t t l e  extra ef for t .  

Thus, throughout the f i r s t  f ive chapters, G w i l l  be a compact Lie group. I 

Considerations special t o  permutation groups w i l l  not appear u n t i l  l a t e  i n  Chapter I 

V I .  We shal l  construct a good "stable category" of Gspectra,  where l lstabil i tyH is 
I 

t o  be interpreted as allowing for desuspensions by arbitrary f i n i t e  dimensional r ea l  
J 

representations of G. I I 

After some recollections about equivariant homotopy theory in section 1, we I 

begin work i n  section 2 by se t t ing  up categories of G-prespectra and G-spectra and 
I 

discussing various adjoint functors relat lng them t o  each other and t o  G s ~ a c e s .  We 1 

give both coordinate-free and coordinatized notions of G-spectra and show tha t  these 
I 3 

give r i se  t o  equivalent categories. The freedom t o  pass back and for th  between the I 

two i s  v i t a l  t o  the theory. I 

I 

In section 3, we introduce the smash products of Gspaces and G-spectra and the i 

associated adjoint function G-spectra. The analogous constructions between G-spectra I 

I and G-spectra are deeper and w i l l  be presented i n  the next chapter. The simpler I 

constructions suffice for development of most of the basic machinery of homotopy I 

theory. We also introduce orbit  spectra and fixed point spectra. I 

I 

In section 4, we introduce l e f t  adjoints l l ~ z Z w n  t o  the 241 space functors 

from G-spectra t o  G-spaces, where Z runs through the relevant indexing 

representations. These functors play a basic role i n  the passage back and for th  

between space level  and spectrum level  information. In part icular,  we use instances 

of these functors t o  define sphere G-spectra S; = G/H+A sn for integers n and 

closed subgroups H of G. (The term subgroup shal l  mean closed subgroup 

henceforward.) We then define homotopy groups i n  terms of these sphere spectra and 

define weak equivalences i n  terms of the result ing homotopy groups. 

In section 5, we introduce G C W  spectra. We follow a general approach, 

developed i n  more deta i l  i n  11071, i n  which such basic resul ts  as  the ce l lu lar  

approximation theorem, Whiteheadts theorem, and the Brown representability theorem 

are almost formal t r i v i a l i t i e s .  With these resul ts ,  we see that  arbitrary G-spectra 

are weakly equivalent t o  G C W  spectra. This allows us t o  construct the equivariant 

stable category by formally inverting the weak equivalences in the homotopy category 

of Gspectra.  The resul t  is equivalent t o  the homotopy category of G C W  spectra, 

both points of view being essential  t o  a fu l ly  satisfactory theory. 

In section 6, we summarize the basic properties of the stable category, the 

most important being the equivariant desuspension theorem. This asser ts  tha t  nV and 

Z V  are adjoint self  equivalences of the stable category for  any Grepresentation 

V. We then indicate br ief ly  how t o  define represented equivariant cohomology 

theories. The natural  representing objects for cohomology theories on Gspaces are 

cruder than our G-spectra, and we make use of an elementary i tera ted  mapping 

cylinder construction on the Gprespectrum level  t o  obtain a precise comparison. 

This cylinder construction has various other applications. On the Gspectrum level ,  

it turns out t o  admit a simple description as  a telescope, and t h i s  leads t o  a l i m i  

exact sequence for the calculation of the cohomology of G-spectra i n  terms of the 

cohomologies of the i r  component Gspaces. 

In section 7, we give a number of deferred proofs based on use of a s h i f t  

desuspension functor AZ ( i n  terms of which the ea r l i e r  functor hZZm i s  a 

composite). In part icular,  we prove the equivariant desuspension theorem. This 

depends on the assertion tha t  a map of Gspectra i s  a weak equivalence i f  and only 

i f  each of i t s  component maps of G-spaces i s  a weak equivalence. This i s  the only 

place i n  the chapter where equivariance plays a really major role i n  a proof, the 

corresponding nonequivariant assert ion being ut ter ly  t r i v i a l .  We learned the basic 

l i ne  of argument from Henning Hauschild, although the f u l l  strength of the resul t  

depends on our definit ional  framework. 

In section 8, we give various resul ts  concerning special kinds of Gprespectra 

and G-spectra. In part icular,  we show that ,  up t o  homotopy, our G-CW spectra come 

from G-CW prespectra of a suitably naive sort .  

We shal l  defer some deta i l s  of proof t o  the Appendix, on the grounds tha t  the 

arguments i n  question would unduly interrupt the exposition. 

We remind the reader tha t  G i s  always a compact Lie group and that  everything 

i n  sight i s  Gequivariant. Once the definit ions are i n  place, we generally omit the 

G from the notations, writing spectra for G-spectra, etc.  



5 1 .  Recollections about equivariant homotopy theory 

Since the basic definit ions of equivariant homotopy theory are not as widely 

known as they ought t o  be, we give a brief  summary before turning t o  G-spectra. 

Let G U  denote the category of compactly generated weak Hausdorff l e f t  

G-spaces. (The weak Hausdorff condition asserts  tha t  the diagonal i s  closed i n  the 

compactly generated product; it i s  the most natural  separation axiom t o  adopt for 

compactly generated spaces; see [111,831 . ) Let G J  denote the category of based 

l e f t  Gspaces, with G acting t r i v i a l l y  on basepoints. These categories are closed 

under such standard constructions as (compactly generated) products and function 

spaces, G acting diagonally on products and by conjugation on function spaces. The 

usual adjunction homeomorphisms hold and are G-equivariant. For unbased G-spaces 

X,Y, and Z we have 

zx , ( z Y ) ~ .  

We write F(X,Y) for the function space of based maps X + Y; for based G-spaces X,Y, 
I 

i 

and Z we have 

i 

The usual machinery of homotopy theory i s  available i n  the categories GLC and 

G3 , homotopies being maps X x P + Y in GU or X A  1' -+ Y i n  GJ . Cofibrations are 

defined i n  either category by the homotopy extension property (and are automatically 

closed inclusions). Similarly, f ibrations are defined by the covering homotopy 

property. We shal l  use standard resul ts  without further comment; see e.g. [17,143, 

or 1071. Write h a  and hG3 for  the respective homotopy categories and write 

x ( X , Y ) ~  for the se t  of homotopy classes of .based maps X + Y. 

Turning t o  homotopy groups, l e t  @ = In/aIn with t r i v i a l  G-action and with 

SO = {0,1). For H c G, define a G-space S; by 

We think of Sft as  a generalized sphere. It i s  well understood that  the homotopy 

groups of a based G-space X should be taken t o  be the collection of homotopy groups 

Here the l a s t  isomorphism comes from the adjunction 

HJ (Y,X)  z G 3  (G+ A H  Y , X )  for  X r G 3  and Y e H 3 .  

X i s  said t o  be n-connected (or  G-n-connected) i f  n% = 0 for a l l  q 5 n and HcG.  
9 

A G-map f:X + Y i s  said t o  be a weak equivalence (or  weak G-equivalence) i f  

each fixed point map fH:xH + yH i s  a weak equivalence in the usual nonequivariant 
H H sense. This means that  f, : n,(X ,x)  + n,(yH,fX) i s  an isomorphism for  a l l  possible 

choices of basepoint x. In our applications, the based G-spaces X and Y wi l l  always 

'be double loop spaces. For such an X, each xH i s  homotopy equivalent as a Hopf 

space t o  the product of the basepoint component (xHIO and the discrete group T # ~  

(29, I .4.6 1 . Therefore f w i l l  be a weak equivalence i f  and only i f  f x  : nxxH + nxyH i s  

an isomorphism, where the homotopy groups are taken with respect t o  the given fixed 

basepoints . 
G-CW complexes have been studied by Bredon [I71 for f i n i t e  G and by Matumoto 

[ 94 1 , Illman [ 67 1 , and Waner [ 1401 for  compact Lie groups G. Waner makes use of the 

general abstract pattern for  CW-theory developed i n  (104 and 1071. There are two 

variants,  one adapted t o  G U  and the other t o  G J  . The basic definit ions go as  

follows . 
An ordinary G C W  complex i s  a Gspace X e G'U which is the union of an 

expanding sequence of sub G-spaces xn such that  XO i s  a d is jo in t  union of orbi ts  G/H 

and xntl is  obtained from xn by attaching ce l l s  (G/H) x en+' by means of attaching 

G-maps (G/H) x sn + xn. When X is a based G-space, the basepoint i s  required t o  be 

a vertex and then XO may be described as a wedge of 0-spheres = (G/H)+.  The 

successive quotients xn/xn-l for n 2 1 are clearly wedges of n-spheres #, one for  

each attaching map. 

A based G-CW complex is a G-space X c ~3 which is the union of an expanding 

sequence of sub G-spaces xn such that  XO i s  the basepoint and xn+' i s  the cofibre of 

a based G-map from a wedge of n-spheres E$ t o  xn. The essential  difference from the 

previous notion is the use of based attaching maps, and the i r  use wi l l  lead t o  a 

closer connection with G C W  spectra. 

Evidently based G C W  complexes are necessarily Gconnected ordinary G C W  

complexes. conversely, it i s  eas i ly  seen that  i f  X i s  a G-connected ordinary G-CW 

complex with base vertex, then X i s  equivalent t o  a based G-CW complex. In 

part icular,  t h i s  applies t o  the (reduced) suspension CX of an ordinary G-CW complex 

with base vertex. Indeed, with a l i t t l e  care 'one can give such a suspension a 

canonical structure of based G-CW complex. 

In the unbased context, the Whitehead theorem asser ts  tha t  i f  X is a G C W  

complex and f:Y + Z is a weak equivalence, then 



is a bijection. In particular, it follows that f is an equivalence if Y and Z are 52. Categories of Gprespectra and (&spectra 

G-CW complexes. Moreover, for any G-space X there is a G-CW complex rX and a weak 

equivalence y:rX + X. (See Seymour 11281.) It is formal that any choices for the rX We need some preliminaries before we can give our basic definitions. 

yield a functor r:hGU + hGU such that y is natural. Using this, we can construct 
If V is a finite dimensional real inner product space, we let sV denote its 

a category h~?.Lb~ formally inverting the weak equivalences of h ~ u .  The functor I' 
one-point compactification with basepoint at m. If G acts through isometries on V, 

induces an equivalence from KG% to the homotopy cateory of G-CW complexes. A more 
then .sV is a based G-space. (We .shall usually, but not invariably, use small letter 

categorical discussion of these ideas is given in section 5. By restriction to 
superscripts for typographical reasons.) We write V O W  for external direct sums 

based G-maps of based G-spaces, we obtain analogously. Of course, to avoid 
' and V + w for internal direct sums of orthogonal subs~aces of some ambient inner 

restricting to G-connected G-spaces, we must use ordinary and not based G-CW 

complexes in the construction of r:hGa + hG3 . 
On the space level, one can usually get away with restricting attention to 

CW-homotopy types because they are preserved under most common constructions. This 

is much less true on the spectrum level, where formal inversion of weak equivalences 

plays a correspondingly more essential role. The difference comes from the absence 

of spectrum level analogs of Milnor's basic theorems [I121 on spaces of the homotopy 

type of CW complexes. The equivariant version of Milnor's theorems were proven by 

Araki and Murayama [ 5 1 for finite G and by Waner [I401 in the full generality of 
compact Lie groups G. In particular, Waner proved the following result. 

Theorem 1.1. (i) Let H + G be any homomorphism of compact Lie groups. Then any 

6-CW complex has the H-homotopy type of an H-CW complex. 

(ii) If X is a compact Gspace and Y has the homotopy type of a G C W  complex, then 

so do yX and, if X and Y are based, F(X,Y). 

We should also record the following result (although we shall only need its 

easy up to homotopy type version). For finite G, it was proven by Illman 

1661. As noted by Matumoto 1941 and Illman [66,671, the general case is readily 
proven once one knows that the orbit space of a smooth action on a compact manifold 

is triangulable, and a correct proof of this fact has been supplied by Verona 11391 . 
Theorem 1.2. Any smooth compact G-manifold is triangulable as a finite G-CW 

complex. 

Remarks 1.3. While the preceding result is very important for the more geometric 

parts of equivariant theory, it is not helpful to us because it fails to provide 

canonical triangulations of even such simple Gspaces as G/H x G/K (where double 

coset choices would enter in the finite case) and spheres associated to represen- 

tations2,0f G. In particular, products of G C W  complexes and suspensions of GCW 

complexes by representations fail to have canonical G-CW structures. 

.., 
product space; we write V 1 W to indicate that V is orthogonal to W. If Vc W, we 

agree to write W - V for the orthogonal complement of V in W. For any based G-space 

X and G-space sV as above, we define 

C ~ X  = X A S ~  and $X = F(s~,x). 

Of course, these  suspension^^^ and "loop spaces" are based G-spaces. 

In order to allow desuspension by general representations, it is essential to 

index spectra on reprecentations. The proper way to do this is to start with an 

ambient real iimer product space U of countably infinite dimension such that G acts 

on U through isornetries and U is the direct sum of its finite dimensional 

G-invariant sub inner product spaces. For later purposes, U is to be topologized as 

the colimit of these finite dimensional subspaces (but no use will be made of the 

topology in this chapter). 

We say that U is a "G-universe" if it contains a trivial representation and 

contains each of its finite dimensiohal subrepresentations infinitely often. The 

most interesting case occurs when U contains all irreducible representations, and we 

then refer to U as a complete G-universe. If G is finite, the sum of countably 

many copies of the regular representation gives a canonical complete G-universe. 

For the definition of sphere spectra and homotopy groups, it is convenient to insist 

that U contain a canonical infinite dimensional trivial G-representation, denoted 

R". 

An "indexing space" in a Guniverse U is a finite dimensional G-invariant sub 

inner product space. An "indexing sequence" in U is an expanding sequence 

A = {%li 2 0) of indexing spaces such that = {O) and U is the union of the q. 
An "indexing set" in U is a set &of indexing spaces which contains some indexing 

sequence. Of course, indexing sequences are examples of indexing sets. The 

"standard indexing set" in U is the set of a11 indexing spaces in U. 

With these conventions, we can now define Gprespectra and G-spectra. 

Definition 2 .l. Let a be an indexing set in a G-universe U. A G-prespectrum (D,o) 

indexed on a consists of based G-spaces DV for V E and based G-maps 



for  VC W i n  such that  the following conditions hold. 

(i) u:DV= C 0 D ~ + D V i s t h e i d e n t i t y m a p .  

(ii) For V c  W C Z i n  a, the following diagram commutes: 

zz-W w-v 
C DV ~ ~ - ~ u  _ ~ 8 - w ~ ~  . 

112 u 

C'-~DV + DZ 

The G-map DV + Q ~ - ~ T ) I N  adjoint t o  a i s  denoted G .  A G-prespectrum ( D , u )  i s  said t o  

be an inclusion G-prespectrum i f  each i s  an inclusion; ( D , u )  i s  said t o  be a G- 
,-4 

spectrum i f  each o i s  a homeomorphism. A map f:D -+ Dl  of Gprespectra i s  a system 

of based G-maps fV:DV + D I V  such that  the following diagram commutes for V C W 

in a: 

We refer  t o  f as a 'lspacewisell inclusion, surjection, weak equivalence, etc. ,  i f  

each fV i s  an inclusion, surjection, weak equivalence, e tc .  (We generally abbre- 

v ia te  fV t o  f when there i s  no danger of confusion.) We denote by 

the category of Gprespectra indexed o n a a n d  i t s  f u l l  subcategories of inclusion 

G-prespectra and G-spectra respectively. We write GdU for  GAG when i s  the 

standard indexing se t  i n  U, and similarly for  our categories of Gprespectra. 

It i s  the category G&L of G-spectra tha t  i s  of primary in teres t .  The 

category G @ a  is needed because such basic constructions on G-spectra as colimits 

and smash products are obtained by carrying out the construction on the level  of 

G-prespectra and then applying a suitable functor from G-prespectra t o  G-spectra. 

This functor i s  actually the composite of functors GP& + G S P  and + G J &  , 
each of these being l e f t  adjoint t o  the evident forgetful  functor the other way. 

The functor G6& -F GaU can be obtained e i ther  by Freydls adjoint functor 

theorem (551, or by a direct  (and f a i r l y  unilluminating) point-set topological 

construction. Details w i l l  be given i n  the Appendix. This functor is needed 

because colimits and smash products of inclusion prespectra need not be inclusion 

prespectra. (May overlooked t h i s  point in [99,IIl and, with some motivation, gave 

inclusion prespectra an unnecessarily complicated definition; compare [99,11.1.101. 

Also, the closed condition placed on inclusions in 1991 i s  unnecessary and 

counterproductive.) 

The functor G* + GA@- i s  completely elementary (and was introduced in 

[99,II  .l.41); it assigns t o  an inclusion G-prespectrum D the G-spectrum E with 

EV = colim Q ~ - ~ D w ,  
, w 3 v  

the colimit being taken over those W €6 which contain V. Summarizing, w e  have the 

following resul t .  

Theorem 2.2. There i s  a l e f t  adj oint  

L : G ~ &  + G A R  

t o  the forgetful  inclusion functor 

a:GdQI + G~xL . 
That i s ,  

G pa ( D ,  a-1 5 GdU (LD,E) for D E GB& and E e G A G .  

Let n:D + RLD and E:LU + E be the unit and counit of the adjunction. Then E i s  an 
isomorphism for each G-spectrum E, hence i s  an isomorphism i f  D = RE. 

Except when making categorical assertions, we shal l  generally omit forgetful  

functors such as R from the notations, writing n:D -+ LD and E:LE -+ E for example. 

It i s  essential  t o  any really good stable category that  it be derived from a 

category of spectra which has a l l  colimits (wedges, pushouts, coequalizers, e t c )  and 

a l l  l imi ts  (products, pullbacks, equalizers, e t c ) .  These constructions a l l  exis t  i n  

Gg . They also exis t  i n  G8& , where they are given by the evident spacewise 

constructions. It i s  easy t o  check that  the l i m i t  i n  GO& of a diagram of G-spectra 

i s  again a G-spectrum. Thus GAU has a l l  l imits.  Colimits i n  G% of diagrams of 

G-spectra are hardly ever G-spectra, but application of L t o  these colimits yields 

colimits i n  G& . Thus Gda also has a l l  colimits. We remind the reader tha t  

functors which are l e f t  adjoints preserve colimits while functors which are r ight  

adjoints preserve l imi ts  [921. 

We must point out one unpleasant fac t  of nature. Already in G 3 ,  colimits need 

not be given by the obvious constructions. Pushouts, for example, must be formed as  

usual i n  the category of a l l  G-spaces and then made weak Hausdorff i f  they are not 



already so. In practice; one gets around t h i s  by making appropriate point-set 

topological assumptions. This solution is l e s s  practicable for spectra, and here 

one must simply accept colimits as they come. This has the ef fec t  of retaining 

formal properties while losing control of homotopical information and, except when 

res t r ic ted  t o  G3& , the functor L i t s e l f  suffers from the same defect. This forces 

a certain amount of technical care, a discussion of which i s  deferred un t i l  section 

8 and the Appendix. 

While L i s  essential  for  theoretical  purposes, and i t s  precise form i s  dictated 

by the uniqueness of adjoints,  there i s  a more homotopical passage from prespectra 

t o  spectra tha t  is also very useful. It w i l l  be discussed i n  section 6. 

Just as in the nonequivariant case [99,111, the formal relationship between 

G-spaces and G-spectra i s  also given by a pai r  of adjoint functors. We have a 

zeroth space functor GP& + G j  which assigns Do = D(0) t o  a G-prespectrum D. The 

r e s t r i c t ion  of t h i s  funtor t o  f dais denoted 

Spaces and maps i n  the image of t h i s  functor (or Ghomotopic t o  spaces or maps in  

t h i s  image) are called in f in i t e  loop G-spaces and G-maps. 

For a G-space X, there is a suspension G-prespectrum {?XI with structural  

maps the natural  identif ications c ~ - ~ c ~ x  E zWx for V C W i n  a. We define the 

suspension G-spectrum functor 

by z"X = L (CVx) and have the following resul t .  

Proposition 2.3. The functor C" i s  l e f t  adjoint t o  R". That is, 

Gfl(X,n"E) Z G ~ & ( C " X , E )  f o r X ~ :  G 3  and E E  ~ d a  . 

Again, just  as i n  the nonequivariant case [99, I I l ,  the category GXQ. i s  

independent, up t o  equivalence, of the choice of & . Further, G A U depends only on 
the isomorphism class of U. This allows us t o  use whatever choices happen t o  be 

convenient for  any particular application or construction. The following pai r  of 
resul ts  make t h i s  invariance precise. 

Proposition 2.4. Let I L C d b e  indexing se t s  i n  U and l e t  

$:GAls + GdGi 

be the functor obtained by forgetting those indexing spaces i n  & but not i n  (2,. Then 

$ has a l e f t  adjoint 

such that  the unit E + $$E and counit $$F + F of the adjunction are natural  isomor- 

phisms. In part icular,  Gh a i s  equivalent t o  G d U for any indexing se t  a i n  U. 

Proof, For V E b, ( $El ( V )  = colim Rw-VEW, where W runs over those indexing spaces 

in a which contain V. The structural  homeomorphisms are evident and the 

remaining verif ications are easy. 

Proposition 2,5. Let f:U + U '  be a G l i n e a r  isometric isomorphism. Then there are 
functors 

f * : ~ d  U' + G d U  and f, = ( f ' ' )* :~  ,&u + G dU1 

which are inverse isomorphisms of categories. 

Proof. For V c U, ( f * ~ )  ( V )  = E(fV). The s t ructura l  maps are 

for V C W C U. The r e s t  i s  t r i v i a l .  - 

A similar conclusion holds on the prespectrum level .  The composite Q " Z ~  i s  
Remark 2.6. Clearly f*, but not f*, i s  defined when f i s  only a G l i n e a r  isometry, also denoted QX; thus 
not necessarily an isomorphism. In the next chapter, we shal l  generalize the 

QX = colim fiVzvx. previous resul t  by obtaining functors f x  l e f t  adjoint t o  f X  fo r  general G-linear 

v c Q  isometrics f .  

Since equivalences of categories, such as  those i n  the previous propositions, 
This i s  the usual nonequivariant space QX with a G action derived from the &actions 

play an important role i n  our theory, some categorical remarks are i n  order. 
on both X and the universe U. 



Remarks 2.7. Let S: + 8 and T: 73 + be functors. We say that S and T are ~efinition 3.2. Let D E GPL and X E G 3  . Define F(X,D) E G m b y  letting 

inverse isomorphisms if ST = 1 and TS = 1. We say that S and T are inverse 

equivalences if ST and TS are naturally isomorphic to the respective identity F(X,D)(V) = F(X,DV) for V E C4 

functors. We say that S and T are adjoint equivalences if we have an adjunction ,., 
and letting u:F(X,D) (V) + Q~-~F(X,D) (w) be the composite 

@(SA,B) : lL(A,TB), A e and B E R , 

whose unit n:A + TSA and counit &:ST13 + B are natural isomorphisms. It follows from 

the uniqueness of inverse morphisms that S is also right adjoint to T, the 

adjunction 

&(TB,A) r i%B,SA) 

having unit :B + STB and counit :TSA + A. By 192 ,p .911, any equivalence of 

F(X,DV) w-v ~('3~) +F(x,Q~-~DW) : Q F(X,DW) 

for V C W in a .  If D is a spectrum, then so is F(X,D), hence F(X,?) restricts to 
a functor GAR + G~GP . 

In particular, we have the free path spectrum F( 1+,E), the path spectrum 

PE = F(I,E), and the loop spectrum QE = F(s',E). We also have the generalized loop 
categories S is part of such an adjoint equivalence (S,T,n,&). I spectrum Q ~ E  = F(S~,E). 

03. The functors EA X, F(X,E), EJH, and E ~ ;  homotopy theory 

We first define the smash product E A X  and functi0n.G-spectrum F(X,E) of a 

G-space X and G-spectrum E. This gives the foundational parts of homotopy theory, 

such as cofibration and fibration sequences, the dual lim exact sequences, and 

homotopy colimits and limits, by standard arguments. We then define the orbit and 

fixed point spectra associated to a G-spectrum. 

Definition 3.1. Let D E. GB& and X c: G.3 . Define D A X  E GB& by letting 
(DAX)(V) = DVAX f o r V c R  

and 

= u ~ ~ :  c ~ - ~ ( D v ~ x )  : (C~-~DV)AX + DWAX for vc w in a. 

For E E G ~ Q ,  define E A X  c G d U  byuseof L and II: 

It is useful to topologize the set 'B&(D,D' ) of (non-equivariant) maps 

D + Dt as a subspace of the product x F( DV,DIV) . Here D and Dl are 
Ve CL 

G-prespectra regarded as nonequivariant spectra by neglect of stucture; G acts 

on 9Q(D,D1) by conjugation, and the trivial map gives a G-trivial basepoint. 

Clearly G~CL(D,D' ) may be topologized as the fixed point space R3.(D,Dt lG. Of 

course, these topologies apply equally well to the spectrum level hom sets. We have 
the following analogs of standard adjunctions on the level of Gspaces. 

Proposition 3.3. There are natural homeomorphisms 

and 

E A X  = L(I1EhX). 
for X E. G3 , D,Dt E GPO., and E,E1 E GAL. 

Define X A D  and X h E  by symmetry and observe that these are naturally isomorphic to 

Db.X and E AX. It follows that the functor E A X  preserves colimits in each of its variables 

and that the functor F(X,E) preserves limits in E and converts colimits in X to 
In particular, we now have cylinders E A I+, cones CE = E A I, and suspensions limits. We should also record the following isomorphisms. 

CE = E E sl, where G acts trivially on I+, I, and sl. We also have the generalized 
suspension CVE = E  AS^ determined by a representation V. Proposition 3.4. For X,Y E G3 and E e G ~ Q ,  there are natural isomorphisms 



These tie in with the commutativity, associativity, and unit isomorphisms of 

the smash product on Gd to produce a system of coherent natural isomorphisms. 

Since E A I' is now defined, we have a notion of homotopy, namely a map 
,-., 

h: E A I' + El or, equivalently on passage to adjoints, h: E + F( I' ,El ) . Homotopy is 
an equivalence relation which respec-ts composition, and we have the homotopy 

category h ~ d  of Gspectra and homotopy classes of maps. Similarly, we have 

homotopy categories hG3 and hGp&. We shall write r(X,Y)G for the set of homotopy 

classes of maps X + Y in any of these categories, relying on context to determine 

which is intended. 

The basic machinery of homotopy theory, including cofibration and fibration 

sequences, the homotopy invariance of pushouts of cofibrations and of colimits of 

sequences of cof ibrations (and the dual assertions) , the dual liml exact sequences, 
and the entire theory of homotopy colimits and limits, applies equally well in all 

of these homotopy categories. The proofs are the same as in the nonequivariant 

space level context and can in fact be given uniformly in, an appropriate general 

framework of topological categories and continuous functors. The starting point is 

that all of our categories have underlying hom sets in the category of based spaces 

and have continuous composition. A functor F:U. + between such topological 

categories is said to be continuous if 

is a continuous based map for all X,Y e ZC. Continuous functors are automatically 

homotopy preserving and so pass to homotopy categories. 

All of the functors we have introduced (or will introduce) are continuous and 

all of our adjunction isomorphisms are homeomorphisms. Therefore all of our 

functors and adjunctions pass to homotopy categories. Except where the functor 

L: GPa+ GAG. is involved, these assertions are easily verified by direct 

inspection. The unpleasant point-set topological nature of L makes its direct 

examination quite difficult, and a little categorical sophistication provides a 

Since p(1,n) is certainly continuous, L will be continuous if the adjunction 

bijection is a homeomorphism. Now the adjunction is given by the continuous 
bijection 

g(LD,E) = B(iLD,B) '("'l)~p(~,a~). 

To see that i?(n,l)-l is continuous, consider the diagram 

The unlabeled arrows are bijections given by Proposition 3.3 (with topologies 

ignored). As noted by Kelly [ 72, p. 1731 in a very general categorical context, the 
diagram commutes. By the diagram, J(l,@( n,l) is a bijection. With 

X = @ (  D, L E I ,  it follows immediately that $( n,l)-l is continuous. It is now easy 
to check the homeomorphism claim in Proposition 3.3. 

Again, the obvious equality ( * I  displayed above formally implies the very 

unobvious natural isomorphism 

L(D/rX) z (LD) h x  for x E G3 and D E GPa. 

Indeed, this implication is immediate from the following standard categorical fact 

about adjoint functors (92,~. 971, which we shall apply over and over again. 

pleasant way of checking its properties without using or even knowing its precise 

construction. For example, the continuity of L and the fact that the spectrum level 

isomorphisms in Proposition 3.3 are homeomorphisms are formal consequences of the 

continuity of R: Gb& + G6a and the obvious equality 

L e m  3.5. Let S,S1 : O. + be left adjoints of T,T1 : 8 -t & respectively. Then 

there is a one-to-one correspondence, called conjugation, between natural 

transformations a:S + S' and B:T1 + T. Explicitly, a and B are conjugate if and 
only if the following diagram commutes for all A E  Q and B 6 yg: 

( * I  F(X,RE) = RF(X,E) for X E ~3 and E 6 ~b . 
To see this, note that L is given on hom sets by the composite 

Moreover, a is a riatural isomorphism if and only if 6 is a natural isomorphism. 

We shall often apply this in the context of diagrams 



of adjoint functors, using it to deduce that PIS 2 SIP if and only if QTt 2 TQ1. In 

the motivating example preceding the lemma, (S,T) = (L,R) = (S1,T1) while (P,Q) and 

(P' ,Q1 ) are ( ?  A X and F(X,?) on the prespectrum and spectrum levels respectively. 

As in this example, it is very often the case that the isomorphism is completely 

obvious for the right adjoints and most useful for the left adjoints. In fact, in 

some cases the right adjoints will be of little interest except as tools allowing 

simple formal proofs of information needed about left adjoints. Further examples of 

conjugate pairs appear in the following result. 

Proposition 3.6. For X,Y E GJ and E 6 GQA , there are natural isomorphisms 

The isomorphisms @ and I$ of Proposition 2.4 and fx and f* of Proposition 2.5 commute 

with both functors ( ? ) r r  X and F(Y ,? ) . 

We next define orbit and fixed point spectra. We shall study these and other 

change of groups functors systematically in the next chapter, hence we content 

ourselves here with little more than the bare definitions. One's first thought is 

simply to set (EH) (V) = ( w)~. However, one quickly sees that there is no way to 

obtain a homeomorphism between (EVIH and unless H acts trivially 

on W-V. Thus one first defines EH for spectra indexed on an H-trivial universe 

and then uses a change of universe functor (as in Remark 2.6) to extend the 

definition to spectra indexed on general universes. 

Definition 3.7. (i) Let D be a G-prespectrum indexed on an H-trivial G-universe 

U. Let WH = NH/H, where NH is the normalizer of H in G, and observe that 

U is a WH-universe. Define the orbit and fixed point WH-spectra D/H and dl by 

(D/H)(V) = (DV)/H and (D~)(v) = (DV)~, 

the structural maps being obtained from those of D by passage to H-orbits or to 

H-fixed 'point sets. The action of WH is evident. If D is a G-spectrum, then 

is a WH-spectrum. For a G-spectrum E, define E/H = L(aE/H). 

(ii) For a general G-universe U, let i: UH + U be the inclusion and observe 

that U" is a WH-universe, complete if U is Gcomplete. For a spectrum 

E E G&U, define 

I It is important to observe that EH(V) = ( E V ) ~  whenever H acts trivially 

on V, for example when V C R" C U. We have not included the obvious symmetric 

definition, E/H = (~*E)/H, since this appears to us to be useless. such a 

construction, involving the composite of a right and left adjoint, tends to result 

in spectra which cannot be analyzed effectively, and we have no useful definition of 

orbits of H-spectra indexed on non-trivial H-universes. 

' Of course, we ignore the WH action in situations where it is irrelevant. We 

record the spectrum level analogs of the basic adjunctions relating equivariant and 

nonequivariant maps. 

Proposition 3.8. Let U be a Gtrivial universe and let E*: AU + G&U be the 

functor which assigns trivial G action to a spectrum. For spectra F and 

G-spectra E, there are natural isomorphisms 

~u(E/G,F) 2 G LULE, E*F) and G b U( E*F,E) z bu(F,EG) . 
Moreover, for Gspaces X, the adjoint of the quotient Gmap z"X + E*z"(x/G) is a 

natural isomorphism 

Proof. The last statement follows by conjugation from the obvious equality 
i 

i E*Q"F = Q"E*F- 

84. The functors liZZm; sphere spectra and homotopy groups 

The functor C" is left adjoint to the zernth space functor Q" from spectra 

to spaces. For any Z in our indexing set a ,  we also have the & space 
functor, which we denote by 

We next construct its left adjoint, which we think of as a shift desuspension 

functor and denote by 



In section 7, we shall construct an adjoint pair of functors Az and A" from 

GdG to itself and shall see that the functors R"A, and AZzm are indeed 

composites, as indicated by our choice of notation. However, we have immediate need 

of the composites, whereas the functors A and A" will only play a peripheral 

role. In fact, they will turn out to be equivalent to zz and $2" respectively, 

and their chief role will be to aid in the proof that 6' and Rz become adjoint 

equivalences on passage to the stable category. 

Definition 4.1. For X E GJ and Z E 12, define hZzWx E GAU by letting 

AZzmx = L{C~-~X), 

where {z~-~x) denotes the prespectrum whose space is zV-"x if V ;) Z 

and {*) otherwise and whose structural maps are the evident identifications 

for Z C V C W and the inclusion of the basepoint otherwise. 

Proposition 4.2. For Z E @, X E GJ , and E E Gda, there is a natural isomorphism 

G 1 (X,R~A,E) s GA@(A~Z~,E). 

For Y E Gg , there is a natural isomorphism 

For Z n Z' in a, there is a natural isomorphism 

For V C  W in &,  there is a natural isomorphism 

A ~ G ~  n ~ ~ z ~ z ~ - ~ ~ .  

For the second, choose W e a which contains both Z and Z' . Any isomorphism 

W-Z s W-Z1 induces a natural isomorphism 

For the third, the structural homeomorphisms 5: EV -+ . Q ~ ~ ~ E W  specify a natural 

isomorphism nm% 2 nw-vnm~. 

Now recall our standing assumption that any Guniverse contains a canonical 

copy of R" with trivial G action. We assume (or arrange by use of Proposition 2.4) 
that all indexing sets contain {@I, and we write Anzm for shift desuspension 

by p. We use these functors to define canonical sphere spectra. 

~efinition 4.3. Define sphere Gspectra sn E Gda by 

Abbreviate S = so. For H C G, define generalized sphere Gspectra by 

Observe that Propositions 3.6 and 4.2 imply isomorphisms 

zm% n z+n for m , o and n p Z; 

They also imply isomorphisms 

S: s n Fzw# and $n s A ~ z " ~  for n 20. 

Definition 4.4. (i) For H c G, n E Z, and E E G W ~ ,  define 

Proof. The adjunction is easily checked on the prespectrum level and follows on the 
- ,  (ii) A m P  f: E -t E' of Gspectra is said to be a weak equivalence if 
spectrum level. The remaining three isomorphisms can also be checked directly on f*: T:E -+ T~E' is an isomorphism for all n 6 Z and H C G. 

the prespectrum level, but it is more amusing to obtain them by application of our (iii) A Gspectrum E is said to be n-connected if n t ~  = 0 for q G n and all 

conjugation trick codified in Lemma 3.5. For the first, H C G ;  E is said to be connective if it is (-1)-connected and to be bounded 



below if it is n-connected for some integer n. 

Proposition 4.5. Let E be a G-spectrum and let K c H C G. 
(i For n 0, n:E z n:E0 and nfnE z IT~ER~. 

(ii) X ~ E  is the same for E regarded as an H-spectrum as for E regarded as a 

G-spectrum. 

( iii ) n:E is naturally isomorphicta nn( E ~ )  . 
Proof. Part (i) follows by adjunction from the alternative description of E$ in 

Definition 4.3. Parts (ii) and (iii) are immediate consequences of part (i). 

The relations between spectrum level and space level homotopy groups are.much 

less complete equivariantly than non-equivariantly. In particular, it is not clear 
H H that the nnE determine the nnEV for non-trivial representations V. We shall 

return to this point in section 7, where we shall prove the following fundamental 

result. 

Theorem 4.6. A map f:E + El of Gspectra is a weak equivalence if and only if it is 

a spacewise weak equivalence. If E and E1 are connective, then these conditions 

hold if and only if S2-f :nmE + .Qrn~l is a weak equivalence. 

By (i) of the proposition, the rest will follow once we show that the Vth space 

functors ilrn$ preserve weak equivalences. 

Returning to the adjoint shift desuspension functors, we show next that the 

AVCmx may be viewed as building blocks out of which arbitrary spectra can be 

constructed. 

Proposition 4.7. For E E Gda , there is a natural isomorphism 

E z colim A ~ C ~ E V .  
vca 

More generally, for D C G ~ Q  , there is a natural isomorphism 

LD z colim A ~ C ~ D V ,  
vcQ 

where the (spectrum level) colimit is taken over the maps 

W w W-V A ~ E ~ ~ : A ~ C ~ D V  z A C C DV --s AWCWD~. 

If D E  Gd.& , then this colimit can be computed on the prespectrum level, without 
application of the functor L. 

Proof. For any Gprespectrum D, we have natural isomorphisms - .  

G,ja (colim AVCWD,~) z lim G4 Q (A~C~DV,E) 

z lim G31 (DV,EV) 

E GIP&(D,RE) z G~~(LD,E). 

?he isomorphism LD z colim AVCm~V follows by the Yoneda lemma. By the use of L in 
the definition of the spectra hVZwDV, the zth space of the prespectrum level colimit 

( colim A ~ C ~ D V )  ( Z = colim colim R ~ - ~ z ~ - ~ D v .  
v v W3V)Z 

Due to the maps ~:Z"~DV + DW appearing in the colimit system, the terms with 

W = V are cofinal in the double colimit. When D is an inclusion Gprespectrum, the 
right side is thus already 

( LD) ( z = colim Q ~ - ~ D W ,  
W 3 Z  

before application of L. This proves the last statement. 

This result is most useful for inclusion prespectra, since the last statement 
then gives a concrete description of the colimit. We apply the result in 
conjunction with the following observations about maps into colimits. 

Lemma 4.8. For a compact G-space K and inclusion G-prespectrum D, 

GAQ(A~C~K,LD) E colim GJ(K,Q~-~DW). 
W J V  

For a directed system {Ei) of inclusions of G-spectra which contains a cofinal 

sequence, 

~ba(A~C~K,colim E ) E colim G ~ Q ( A ~ Z ~ K , E ~ ) .  
i i i 

For any directed system {Ei) of G-spectra which contains a cofinal sequence, 

Proof. Since (LD) (V) = colim Q~'~DW, the first part is obvious. For the second 
part, we observe that the prespectrum level colimit of the Ei is already a spectrum 

and thus 



~ ~ ~ ( h ~ z ~ K , c o l i m  Ei) z G j (K,colim E~V) z colim G 1  (K,E~v). 

The second isomorphism requires the specified restriction on the limit system since 

a map from a compact space into an arbitrary colimit need not factor through one of 

the terms. For the last part, we observe that tel Ei is the colimit of its system 

of inclusions of partial telescopes and apply the second part on the homotopy level. 

The previous two results have the following consequence. 

Corollary 4.9. For an inclusion G-prespectrum D, 

and the natural map 

tel hVzmDv + colim hVzmDv z LD 

is a weak equivalence. 

The corollary will lead to descriptions of the homology and cohomology groups 

of LD in terms of those of the spaces DV. No such description need hold for 

general prespectra, and for this reason only inclusion prespectra are of 

calculational as opposed to theoretical interest. 

By a "compact" G-spectrum, we understand one of the form AVXmK for a compact 

G-space K. By Lemma 4.8, maps in GJ& with compact domain are colimits of space 

level maps. When the codomain is of the form hWzmx, we can express such maps as 

shift desuspensions of space level maps. 

Lemma 4.10. Let f: hVzmK + hWzmx be a map of Gspectra, where K is a compact 

G-space and X is any G-space. Then there exists Z € a and a G-map g:zz-V~ + 

such that the following diagram commutes. 

hVzm~ 
f 

lIwzmx 

Proof. The isomorphisms come from Proposition 4.2. By Lemma 4.8 and the definition 

of A~C?, 

Here f is realized by the adjoint of some g, and the result follows upon unraveling 

the definitions. 

The homotopy category of those G-spectra of the form hVzmK, where K is a 

finite G-CW complex, is the appropriate equivariant analog of the Spanier- 

Whitehead S-category. It should be viewed as a halfway house between the world of 

spaces and the world of spectra. 

,§5. G-CW. spectra and the stable category 

We here give the theory of G-CW spectra. Modulo the use of two fiItrations, 

to allow induction in the presence of spheres of negative dimension, the theory is 

essentially the same as on the space level. In particular, the cellular approxi- 

mation theorem and Whitehead's theorem are proven exactly as on the space level 

[115,1401 (or as in the nonequivariant case [1071). 

Given Whitehead's theorem for G-CW spectra and the fact that every 

G-spectrum is weakly equivalent to a GCW spectrum, we can construct the equivariant 

stable category from the homotopy category of G-spectra by formally inverting its 

weak equivalences. We include a general categorical discussion of this procedure. 

We continue to work in GAQ for a fixed indexing set & in a G-universe U. We 

write * for the trivial G-spectrum (each EV a point) and write Cf for the cofibre 
E Uf CD of a map f:D + E of G-spectra. 

Definitions 5.1. A Gcell spectrum is a spectrum E e GdP together with a sequence 

of subspectra E, and maps jn:Jn + En such that Jn is a wedge of sphere spectra 

s:, Eo = *, = Cjn for n 2 0, and E is the union of the %. The map from the 

cone on a wedge summand of Jn into E is called a cell. The restriction of jn to a 

wedge summand is called an attaching map. The sequence {En) is called the 
sequential filtration of E. E is said to be finite if it contains only finitely 

many cells and to be finite dimensional if it contains cells in only finitely many 

dimensions. A map f:E + F of Gcell spectra is said to be sequentially cellular if 

f (E,) C Fn for all n 2 0. A subspectrum A of a G-cell spectrum E is said to be a 
cell subspectrum if A is a G-cell spectrum such that hC E, and the composite of 
each cell CG + AnC A and the inclusion of A in E is a cell of E with image in En; 
thus A is just the union of some of the cells of E. 

Note that the cells of G-cell spectra need not be attached only to cells of 

lower dimension. 

Definitions 5.2. A GCW spectrum is a Gcell spectrum such that each attaching map 

S% + % factors through a cell subspectrum containing only cells of dimension G q. 
The n-skeleton E? is then defined to be the union of the cells of E of dimension ( n, 
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and E is the union of its skeleta. A map f:E + F of GCW spectra is said to be We have an analogous result for passage to orbits. 

cellular if it preserves the skeletal filtration {En} and to be bicellular if it i 

also preserves the sequential filtration {%I. A cell subspectrum A of a GCW Lemma 5 -6.  (i) If E is a G-CW spectrum indexed on a G-trivial universe, then 

spectrum E is necessarily a G-CW spectrum such that the inclusion A + E is E/G is naturally a CW spectrum with one cell for each cell of E. 

bicellular; in particular, this applies to A = F? for any integer n and also to (ii) If E is a G-CW spectrum indexed on an H-trivial universe, then E/H has 

A =  E;,forn>O. the homotopy type of a WH-CW spectrum. 

proof. Passage to orbits commutes with the functors hnzm and with cofibres and - 
As said before, the use of two filtrations is essential for inductive &limits. ' For ( i ) , it suffices to observe that (G/K)/G is a point. For ( ii ) , it 

arguments. However, the sequential filtration, which describes the order in which suffices to observe that (G/K)/H is the double coset space H\G/K, which is 
cells are attached, can be chosen in many different ways. In fact, for any map triangulable as a WH-CW complex. 
f: E + F between G-cell spectra, there is a sequential filtration of E with respect 

to which f is sequentially cellular (and for this reason the distinction between 
Returning to the general theory, we record the following analogs of standard 

cellular and bicellular maps of G-CW spectra is not very important). The following 
space level facts. All parts of the following lemma are also true for G-cell 

lemma, which will be proven in the Appendix, makes it easy to verify the last spectra. 
assertion. Recall that a compact G-spectrum is one of the form A " C ~ K  for some I 

compact G-space K and some V 6 . i Lemma 5.7. (i) A wedge of GCW spectra is a GCW spectrum. 

(ii) If A is a cell subspectrum of a G-CW spectrum D, E is a G-CW spectrum, and 
Lemma 5.3. If C is a compact Gspectrum and E is a Gcell spectrum, then any map 

f: A + E is a cellular map, then the pushout E Uf D is a GCW spectrum which 
f: C + E factors through a finite cell subspectrum of E. Any G-cell spectrum is the contains E as a cell subspectrum. 
union of its finite cell subspectra. (iii) If E is a GCW spectrum, then so are En 1') CE, and cE; E A ( a I)+ is a cell 

subspectrum of EA I' and E is a cell subspectrum of CE. 
Recall the discussion of GCW complexes from section 1. We have the following 

relationship between G-CW complexes and G-CW spectra. Theorem 5.8 (Cellular approximation) . Let A be a cell subspectrum of a GCW 
spectrum D, let E be a G-CW spectrum, and let f:D + E be a map which is cellular 

Lemma 5.4. The functors hnzm carry based G-CW complexes and cellular maps to G-CW 
when restricted to A. Then f is homotopic re1 A to a cellular map. In particular, 

spectra and cellular maps. They carry based G-spaces of the homotopy type of 
any map D + E is homotopic to a cellular map and any two homotopic cellular maps are 

ordinary GCW complexes to G-spectra of the homotopy type of GCW spectra. cellularly homotopic. 

Proof. Since hnCm preserves G-spheres, cofibres, and unions, the first statement is 

immediate. For X as in the second statement, CX is equivalent to a based G-CW For the proof, we may assume that f lA is bicellular and proceed by induction 

complex, and C? = A C ~ C X  by Proposition 4.2. over the sequential filtration. The result quickly reduces to the case of a single 

cell of D not in A, and there the result can be reduced to the space level by use of 

We shall shortly generalize the second assertion to hVzm for general V; the Propositions 4.2 and 4.5. A similar induction gives the following homotopy 

generalization is not obvious since the behavior of these functors on G-spheres is extension and lifting property. 

not obvious. We have the following consequence of the previous result. 

Theorem 5.9 (HELP). Let A be a cellular subspectrum of a Gcell spectrum D and let 

Lemma 5.5. If E is a G-CW spectrum and X is a G-CW complex, then E A): has the e:E + F be a weak equivalence of G-spectra. Suppose that hil = eg and 

homotopy type of a G-CW spectrum. hi0 = f in the following diagram: 

sequences of cofibrations preserve G C W  homotopy types (by standard arguments 6 t h  

homotopy pushouts and telescopes), the conclusion follows. 



objects, L takes weak equivalences t o  isomorphisms, and L i s  universal with respect 

t o  the l a t t e r  property. 

Say that  an object X E 3q i s  cocomplete i f  e,:x(X,Y) + R ( X , Z )  i s  a bijection 

for every weak equivalence e:Y + Z. Thus Whitehead's theorem asser ts  tha t  CW 

objects are cocomplete in  homotopy categories. A cocompletion of an object Y E  # 
is a weak equivalence y:rY + Y, where rY is cocomplete. If  every Y admits a 

Then there exis t  and such that  the diagram commutes. In part icular,  the 

inclusion of A in D is a cofibration. 

Whitehead's theorem i s  an immediate consequence. 

Theorem 5.10 (Whitehead). If  e:E + F is a weak equivalence of Gspect ra ,  then 

ex: n(D,E)G + n(D,FIG is a bijection for  every G-cell spectrum D. If  E and F are 

themselves G c e l l  spectra, then e is an equivalence. 

Let G G & denote the category of G-CW spectra and ce l lu lar  maps and l e t  hGt @+ 

denote i t s  homotopy category. Lemma 5.7 implies tha t  h ~ G a  has arbi t rary  homotopy 

colimits, and we have enough information t o  be able t o  quote Brown's representa- 

b i l i t y  theorem 119,107 1 . 
Theorem 5.11 (Brown). A contravariant set-valued functor T on hGl;ais representable 

as  TE = r(E,FlG for some G-CW spectrum F i f  and only i f  T takes wedges t o  products 

and takes homotopy pushouts t o  weak pullbacks. 

Here homotopy pushouts are double mapping cylinders and weak pullbacks sa t i s fy  

the existence part  but not the uniqueness part  of the universal property of 

pullbacks. Either by quotation of Brown's theorem or by direct  construction, we 

obtain the following result .  It asser ts  tha t  Gspect ra  can be replaced functorial ly 

by weakly equivalent G-CW spectra. 

Theorem 5.12. There is a functor r:hGd& + hGga and a natural  weak equivalence 

y:rE + E for E e GZQ. 

We can now define the equivariant stable category ~ G A O -  by formally inverting 

the weak equivalences in h ~ d a ,  but it may be worthwhile t o  f i r s t  give a l i t t l e  

general categorical discussion of t h i s  inversion procedure. 

Let a be a category with a collection e of morphisms , called the weak 

equivalences. Assume tha t  a l l  isomorphisms are in 6 and tha t  is  closed under 

composition. A localization of d( a t  t$ i s  a category C-la with the same objects 

a s %  together with a functor L: + G -5 such tha t  L is  the ident i ty  function on 

cocompletion, then a formal argument shows that  any collection of choices of r Y  for 

' Y  E &/- yields a functor r :  sC + such tha t  y is natural. When t h i s  holds, we can 
define g-lX by 

with composition i n  -la inherited from X and with L = on morphisms. In fac t ,  

t h i s  i s  how localizations are usually shown t o  exis t ,  since se t  theoretical  
d i f f i cu l t i e s  ar ise  in  any attempt t o  give a more direct  construction. 

If  every Y e 3C admits a cocompletion r Y  E g for some subcategory $ of 31, then 

each cocomplete object X i s  isomorphic t o  the object rX E . In our homotopy 
categories, t h i s  says tha t  the cocomplete objects are precisely those of the 

homotopy type of CW objects. 

For categoriesH and with weak equivalences and cocompletions as above, a 
functor S:% + p  which takes weak equivalences t o  weak equivalences induces a functor 

S : 6 -lH + 6 -\ such that  the following diagram commutes : 

If S f a i l s  t o  preserve weak equivalences, then we agree once and for a l l  t ha t  

S: g-ly + g - ' ~  shal l  denote the functor so obtained from the composite SI' :q( + 8 ,  
which obviously does preserve weak equivalences. 

In view of the ubiquitous role played by adjoint functors in our theory, we 

shal l  make much use of the following observations. 

Lemma 5.13. Le t% andy  be categories with weak equivalences and cocompletions of 

a l l  objects . Let S:% +$ be l e f t  adjoint t o  T: P + 9( . Then S takes cocomplete 

objects t o  cocomplete objects i f  and only i f  T takes weak equivalences to  weak 

equivalences. When these conditions hold, the induced functors S : f + 6 -17$ 
and T : f$ -'H + cl& are again l e f t  and right adjoints . If S and T are adj oint  

equivalences betweenz andk  both of which preserve cocomplete objects (and thus 



weak equivalences), then the induced functors are adjoint equivalences between 

&-I% and E-l 
% *  

Our applications of the first statement will go in both directions. A key 

example is the adjoint pair consisting of hVzm and the vth space functor. By Theorem 
4.6, the latter functor preserves weak equivalences. We are entitled to the 

following consequence. 

Corollary 5.14. The functors A ~ C ~ : G J  + GdB take Gspaces of the homotopy type of 

G-CW complexes to G-spectra of the homotopy type of, G-CW spectra. 

For applications in the other direction, the left adjoint S will always 

preserve cofibres and unions and will therefore preserve CW homotopy types 

(=  cocomplete objects) if and only if it takes spheres to CW homotopy types. 

Of course, by "spheres" we understand those objects allowable as domains of 

attaching maps of CW objects, these being the same objects in terms of which weak 

equivalences are to be defined. Possible alternative collections of equivariant 

spheres will be discussed in section 8. 

06. The stable category, cohomology, and the cylinder construction 

- 
We have constructed the equivariant stable category hGdk by formally invert- 

ing the weak equivalences of hGd& . The functor r :%G~Q + hGC& is an equivalence, 

and this allows us the freedom both to use natural constructions on the spectrum 

level (such as products and function spectra) which fail to preserve CW homotopy 

types and to provide spectra with CW structures whenever desirable. Of course, 

Brown1 s representability theorem is inherited from hGC&. The category KG&& has 
arbitrary homotopy colimits and homotopy limits with all the standard properties 

familiar from spaces. In particular, it has cofibration and fibration sequences and 

dual Milnor liml exact sequences. It will follow from the desuspension theorem that 

cofibration sequences give rise to long exact homotopy sequences (for all H C G) and 
are equivalent (up to sign) to fibration sequences. Details of the last will be 

- 
given in 11102, where duality in hGk& will be studied. 

We shall prove in the next chapter that hG1& is a closed symmetric monoidal 

category. This means that it has a smash product functor, DAE, which is associa- 

tive, commutative, and unital with unit S (up to coherent natural isomorphisms) and 

that it has a function spectrum functor, F(D,E) , adjoint to the smash product. 
w&' write [D,EIG for the set of morphisms in KGB& from D to E. If D is a GCW 

spectrum, this is naturally isomorphic to x(D,E)~. I" particular, n 3  = IS~,EI G. 

The adjunction referred to above gives 

Recall that <G 3 was obtained from hGg by inverting the based maps which are 
weak equivalences. Since Cm preserves GCW homotopy types by Lemma 5.4, we have 

adjoint functors Cm and am relating KGJ to KGI& . More generally, Corollary 
5.14 gives that the functors A ~ C ~  preserve GCW homotopy types, and we thus have 

Theorem 1.2 and Lemma 5.5 imply that the functors zV preserve GCW homotopy 
types. Thus CV and nv induce adjoint endofunctors of hG3 and hG&L . We have 
referred to hGd& as an equivariant stable category, and the word l1stable1I is 

justified by the following fundamental result. 

Theorem 6.1 ( desuspension ) . For all V c & , the natural ad junction maps 

in hG JQ are isomorphisms. Therefore zV and nv are inverse self-equivalences of the 
category KG d ~ .  

Thus, in <GAG, we can desuspend by arbitrary representations V E 42, and we 

adopt the alternative notation zmV for slV. Of course, using V = R ~ ,  it follows that - 
hG A& is an additive category. 

A proof of the theorem could be based on the isomorphisms 

implied by Proposition 4.2 and basic properties of the smash product. (Technically, 
this argument, like any other, depends on Corollary 5.14.) This would give that CV 

is an equivalence with inverse obtained by smashing with hVzw~O, and categorical 
nonsense could then be used to derive the asserted adjoint equivalence. We shall 

give a different proof in the next section. Namely, we shall define endofunctors hV 

and A, of hGb& which are inverse adjoint equivalences and we shall prove that hv is 

naturally equivalent to nV. By the uniqueness of adjoints, it will follow that A, 

is equivalent to zV and thus that nV and zV are inverse adjoint equivalences. 

Just as in the nonequivariant case, the stable category KG A U  is equivalent to 
the category of cohomology theories on G-spectra. Here the latter should be 

interpreted as RO(G;U)-graded, where RO(G;U) is the free Abelian group generated by 

those specific irreducible representations which generate the universe U. For 
a = V - W E RO(G;U), where V and W are sums of distinct irreducibles in our basis 



for RO( G; U) , we set sa = C - ~ S ~  and define CaE = E A sa. For Gspectra Y, we 
then define 

E,Y = [ s ~ , Y A E ] ~  and E ~ Y  = [ Y , c ~ E I ~ ~  

We shall not give a formal axiomatic definition of what we mean by a cohomology 

theory on Gspectra. Suffice it to say that the zeroth term necessarily satisfies 

the hypotheses of Brown's representability theorem and the entire theory then takes 

the form just given. (We shall study such theories in detail in [901, some of the 

results of which have been announced in [881.) 

For a based G-space X and a Gspectrum E, we define 

,., ,* E*X = Ex(zrnx) and E X = E*(Cmx). 

If D is an inclusicin G-prespectrwn, the equivalence LD = tel A ~ C ~ D V  of Corollary 

4.9 gives rise to a liml exact sequence 

This may be rewritten in the form 

It expresses the cohomology of the Gspectrum LD in terms of the cohomology of the 

G-spaces DV. 

In the rest of this section, we shall be concerned with the represented 

equivalent of the category of RO(G;U)-graded cohomology theories on G-spaces. We 

specify that such a theory should consist (at least!) of representable set-valued 

functors Ev on K G ~  for indexing spaces V in U together with natural isomorphisms 

For V C  W C Z, the evident composite isomorphism should agree with the given 

isomorphism for C'"~X. Clearly the entire theory is determined by its values on the 

indexing spaces % of an indexing sequence A in U; given V, we choose the minimal i 
a. a.-v 

such that V C + and have EVx 2 E I( c I X) . It is convenient to restrict 
attention to such a sequence so as to avoid consideration of diagrams like those of 

Definition 2.l(ii) and of non-sequentially indexed colimits and telescopes in the 

discussion to follow. 

Now let ti be represented by l!2$.. The suspension isomorphisms give rise to 

isomorphisms % + nbiE++l in KG$ , where Bi = - Either taking each % 
to be a G-CW complex or allowing structural maps in hGj , we conclude that 
{EA.) is a G-prespectrum indexed on A such that each is a weak equivalence. We 

call such prespectra QG-prespectra. Consideration of maps of cohomology theories on 

G-spaces leads us to introduce the classical notion of maps of prespectra. 

' Definition 6.2. A w-map f :D + Dl of G-prespectra indexed on A = {+) consists of G- 

maps fi:D+ + Dl+ such that the following diagrams are Ghomotopy commutative: 
L 

Two w-maps f and f are spacewise homotopic if f. = f for all i (with no 
I i 

compatibility requirement on the homotopies). Let wG$A denote the category of 

G-prespectra and spacewise homotopy classes of w-maps. Here w stands for weak (or 

Whitehead [ 142 1 1. 

Henceforward in this section we write Di and ui for the ith spaces and 

structural maps of G-prespectra indexed on A. 

To obtain the precise form of the represented equivalent of the category of 

cohomology theories on G-spaces, and for several other purposes, we need the 

following elementary construction. 

Construction 6.3. Construct a CW-approximation functor r:wGPA + &$A and a 

natural weak equivalence y:r + 1 by applying any given CW-approximation functor 

T:hG3 + hG3 spacewise. Thus, for D E GPA, riD = r(Di) and yi:riD + Di is the 

b. 
given weak equivalence. The structural map ui : C lriD + Ti+lD is that G-map, 

bi unique up to homotopy, such that yi+lo ui = ui o via For a W-map 

f: D + D', Tif is characterized up to homotopy by yi o rif = f. o yi and satisfies 

i 
I'i+lf o ui = u! o C T.f because the composites of these maps with yi+l are 

homotopic. 

Remark 6.4. By Theorem 1.1, iiVx has the homotopy type of a G C W  complex if X 
does. Given this, it is clear that the functor r takes QG-prespectra to 



- 
SZGprespectra for which the maps ui are actual equivalences. 

As explained i n  section 5, use of r allows us t o  construct a category 
- 
wG PA by formally inverting the spacewise weak equivalences of wG PA. It follows 

easily from the discussion above that  the resulting f u l l  subcategory %G@A of 

QG-prespectra i s  the represented equivalent of the category of cohomology theories 

on G-spaces. Observe that  i f  Dl (but not necessarily D) i s  an RG-prespectrum, then 

- 
w G b A ( D , D 1 )  = l i m  I D i , D i l G  , 

where the l i m i t  i s  taken with respect t o  the composites 

Let GG d A  denote the f u l l  subcategory of %GPA the objects of which are G-spectra. 

The following resul t  implies tha t  the evident forgetful  transformation from 

cohomology theories on G-spectra t o  cohomology theories on G-spaces has as i ts 

represented equivalent the forgetful  transformation h G  ,&A + 6.4 A specified on 

morphisms by res t r ic t ion  of maps t o  component spaces: 

Note tha t  t h i s  i s  well-defined by Theorem 4.6, which ensures tha t  the 4 t h  space 

functor from G-spectra t o  G-spaces preserves weak equivalences. 

Proposition 6.5. There are ad j oint equivalences 

Z:%G@A + a B A  and z:& 8A + %G@A 

Here z i s  the evident forgetful  functor and factors through the f u l l  sub- - 
category wSZGaA of inclusion SZG-prespectra. Just as in section 2, Z is constructed 

i n  two steps. Recall Theorem 2.2. 

Lemma 6.6. The pair  (L,R) induces adjoint equivalences 

L : % G ~ L A + ~ G ~ A  and R : % L A + % G ~ A .  

Proof.": For an inclusion QG-prespectrum D, each of the natural  maps 

- 
i s  clearly a weak equivalence. Thus Q: D + PlLD is  an isomorphism i n  w R G 3  A. Since 
E:LQ 4 E i s  an isomorphism for a G-spectrum E, t h i s  implies the conclusion. 

Note tha t  L f a i l s  t o  define a functor % 2 A  + % A  A. However, res t r ic t ion  t o  

SX3-prespectra is not needed for the second step. 

Lemma 6.7. There are adjoint equivalences 

K:%@A + %$A and k:%&A + % @ A  

which r e s t r i c t  t o  adjoint equivalences on the respective f u l l  subcategories of 

~ G p r e s p e c t r a  . 

Here k i s  the forgetful  functor, hence z = kg. With Z = LK, the proposition 

w i l l  be an immediate consequence. The following cylinder construction, which i s  a 

variant of tha t  given i n  [951, gives K and the proof of Lemma 6.7. The construction 
has many other uses, and we give more precise information than i s  required for the 

ci ted proof. 

Construction 6.8. (i) Let D be a Gprespectrum indexed on A. We construct the 

cylinder G-prespectrum KD, a w-map I : D + KD, and a map n:KD -t D such tha t  
n o I = 1 and I o n = 1 spacewise. Thus, l e t  KWjD be the ( p a r t i a l )  telescope of 

the sequence 

a .  c a j  -al Ca j -a2 ' J D ~  

Equivalently, QD = and Kj+lD i s  the double mapping cylinder 

b .  
There are evident cofibrations u : C J ~ .  D + Kj+lD, inclusions I : Dj + K. D, and 

J J  J 
quotient maps n :Kj  D + Dj such tha t  

3 o l j  = 1 , 1 o n = 1 via a canonical homotopy, 
j j 

here the l a s t  homotopy i s  also canonical, being given by 
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(ii) Let f :D + D' be a w-map together with specified homotopies 
b. 

h.:cr! 0 C Jf - 
j 

- fjtl o aj. We construct an associated map Kf:KD + KD' such that 
J J  
I o f = Kf o I and n o Kf - f o n spacewise. Proceeding inductively, let 

Kof = fo and assume given Kif for i 5 j. The equations 

* 
[ZD,E] - lim [ZiD,Eil 4 l i m  [ D ~ , E ~ ]  

induced by K is the starting point of McClurels analysis in [Ha, VIII of the 

calculational relationship between spectrum level and space level maps. Much of his 

, work goes over to the equivariant case with only notational changes. 

The construction Z admits the following spectrum level reinterpretation, which 

should be compared with Proposition 4.7 and Corollary 4.9. 

specify K + f on the ends of the double mapping cylinder Kj+lD and we set j 1 
Proposition 6.9. For D 6 G@A, there is a canonical weak equivalence 

b. 
for x r r J D ~  and t r I. By ( i ) , we have a canonical homotopy 

If f is a map, we take h to be constant or redefine 

where the telescope is constructed with respect to the maps 
i 

a. 
and the restriction of 0 to A 'rmDi is adjoint to the ith component of the 

w-map K:D + ZD. Moreover, the following diagram commutes: 

and find that n o Kf = f o n by trivial direct calculation; with the redefinition, 

K becomes a functor G ~ A  + G%A. Proof The canonical homotopies specifying K as a w-map give canonical homotopies 
(iii) The map Kjf of (ii) is characterized up to homotopy by the condition for the construction of 0 from the specified restrictions, &d Lemma 4.8 and 
K . f o 1  2 1  o f  Indeed,if g o 1  - 1  o f  then 
J j j j  j j j' Corollary 4.9 imply that 0 is a weak equivalence, The last statement follows easily 

from n o 1 = 1 and thus Ln o K =  q. 

o n  '1 O f  o n  = K . f 0 1  o n  -K.f. g'gOlj j j j j J j j J 

87. Shift desuspension and weak equivalences 
In particular, the homotopy class of K.f J is independent of the choice of hj, K 

preserves spacewise homotopies, and Kn - n:KKD + KD spacewise, the last since This section is devoted to various related pieces of unfinished business. In 

section 4, we promised to decompose A'Z" as a composite of and 1" and to 
Kjn o lj = lj o nj - 1  = n. o I 0nK.D. 

J j J prove that the zth space functor n"nZ preserves weak equivalences. In section 6, we 
promised a proof of the desuspension theorem. We shall also obtain a result 

Of course, ZD = LKD is a well-defined G-spectrum for  an^ G-prespectrum D. relating the connectivity of Gspectra to the connectivity of their component 
Moreover, K = 111: D + ZD is always a well-defined w-map, although it is not a 
spacewise weak equivalence unless D is an nC-prespectrum. We also have a natural 

We begin with the definition of A' for an indexing space Z in a Guniverse U. 
map Ln:ZD + LD, and Ln is a weak equivalence if D is an inclusion ~prespectrum. In We may assume that U = U' + zm, where Z" denotes the sum of countably many copies of 
particular, for G-spectra E, we have a natural weak equivalence E o L~:ZE + E of 

Z, and we may take 
G-spectra. In the nonequivariant case, the homomorphism 



as our indexing set in U, where CL1 is any indexing set in U1. 

Definition 7.1. Define functors hZ:G@& + GP& and hZ :GP& + G Pd. as follows. 

For D E GPa , define 

to be the composite of the given and the reinterpretation homeomorphism which 

regards the loop coordinate as the (n+llst copy rather than the nth copy of Z (that 

is, as the complement of V + zn in V + znfl rather than the complement of 
V + zn-' in V + zn). Similarly, define 

to be the composite of the given ;j and the reinterpretation homeomorphism which 

regards the loop coordinate as the nth copy rather than the (n+lIst copy of Z. 

- Define 

where the loop coordinate is understood as the first copy of Z in Zm. By the 
diagram of Definition 2.l(ii), the only structural maps we need to define are 

for V C  W in and 

In terms of the given for D, the former is to be azZ if n = 0 and 5 if n 2 1; the 
latter is to be the identity if n = 0 and ;+ if n > 1. Define 

with structural maps the given for V + zn c W + zn and for V + zn C V + zn+'. 
These Eyctors preserve G-spectra and so restrict to endofunctors of G A a  . 
Lemma 7.2. The functors Az and hz are inverse adjoint equivalences of the category 

GAU. 

!)roof. hZhZ is the identity functor on both G m  and G d a  . For D c G B ~  , the 
. - .  

maps Z:DV + .Q~D(V + Z) and the identity maps of D(V + zn) for n > 1 specify a 
natural map D + hZhzD which is an isomorphism when D is a spectrum. The adjointness 

is trivial. 

Lemma 7.3. The functor hZCm:G3 + GA& is, isomorphic to the composite of hZ and 

c03. 

Proof. - Since hZ and cm are left adjoint to A, and am, the composite hZ o Cm is 

left adjoint to the composite am o $. The latter composite is obviously the zth 
space functor nmhz, and the conclusion follows by the uniqueness of adjoints. 

If Y 1 Z in U, we can assume that U has the form U" + Y" + Z" and we can take 

as our indexing set, whereat' is an indexing set in ulI. The functors 5, h, hy, 
and hz are then all defined. Upon further restriction to indexing spaces with 

rn = n, %+z and hy" are also defined. Trivial verifications give the following 

result. 

Lemma 7.4. The following relations hold for Y 1 Z: 

To prove the desuspension theorem, we want to relate the functors A" and nZ. 
It is convenient to restrict to an indexing sequence A = fin + zn}, where 

{Vn} is an indexing sequence in Ut . Write A, = Vn + zn and let # = Cn + Z denote 

the complement of in h+l, where Cn is the complement of Vn in Vn+l. For 

E E G &A, we have 

with structural homeomorphisms the composites 

where T reverses the order of the loop coordinates. Using ;j to identify 

E(Vn + zn-l) with Q'E(V, + zn) , we find that A'E can be written in the form 



with structural homeomorphisms 

the last isomorphism being given by twisting the first loop coordinate Z past the 

loop coordinate Ci and then identifying. Clearly these differ by the twisting of Z 

past Z that occurs for nz but not for hZ. 

Define a natural w-map d:nZE + A"E by letting 'd2i = l:nZ~2i + Q ~ E ~ ~  and letting 

d2i-l be the composite 

Here T twists the two loop coordinates Z and the isomorphisms are given by Q% 

together with the identification nb2% Rznc2i. Not only is d a natural w-map, but 

the requisite homotopies are also natural. Indeed, one finds easily that they are 

consequences of a homotopy from the composite 

to the identity map. The composite of 1 A T  and the homotopy 

from T A 1 to 1 A r serves the purpose. 

The kind of situation just displayed occurs often enough to deserve a name. We 

follow May and Thomason [ 110 I . 

Definition 7.5. A preternatural transformation d:D + D1 between functors from any 

category C to the category G@A consists of a natural transformation d in the 
category of Gprespectra and w-maps together with a natural choice of homotopies. 

Thus, for C c C and i 2 0, there is given a map di:DiC + D!C and a homitopy 
b. 1 

h i  d = di+ui both di and hi being natural in C. A preternatural homotopy 

j :d = dl is a preternatural transformation j :D A 1' + Dl which restricts to d and dl 

at the ends of the cylinder, where the functor D A 1' is specified by 

(Dh 1' )(c) = DC A I+. 

Preternaturality gives precise sense to the word "canonical" used in various 

places in Construction 6.8, Thus 1:1 + K is preternatural and I o n is 

preternaturally homotopic to the identity transformation K + K. The following 

result is immediate from part (ii) of the cited construction. 

Proposition 7.6. Let d:D + D1 be a preternatural transformation. Then there is a 

natural transformation Kd :KD + KD1 of functors & -t G@A such that the following 

diagram of Gprespectra is preternaturally homotopy commutative: 

KDC 
Kd > KDlC 

If d is a spacewise (weak) equivalence, then so is Kd. 

The following observation gives force to the notion of preternatural homotopy. 

Lemma 7.7. For D e G P A  and X E G j  , K(DhX) is naturally isomorphic to (KD) AX. If 
j:d = dl is a preternatural homotopy, then Kj:Kd = Kdl is a natural homotopy. 

By application of the functor L, we obtain the following spectrum level 

consequence of the proposition. 

Corollary 7.8. Let d:D + Df be a preternatural transformation of functors 

c-t GPA. Then there are natural transformations 

If D and D1 take values in GdlL  , the maps L-rr are weak equivalences. 

Of course, Zd is a weak equivalence if d is a spacewise weak equivalence. In 

particular, this applies to d:Rz + A", where nZ and hZ are regarded as functors 
Gd&+ G &a. We can now deduce the desuspension theorem by passage to KG &A. By 

Theorem 1.2 and Lemma 5.5, the functor zz preserves GCW homotopy types. Therefore 

RZ preserves weak equivalences by Lemma 5.13. By the corollary, it follows that A" 

preserves weak equivalences and thus A, preserves GCW homotopy types. However, for 

the adjoint equivalence of Lemma 7.2 to imply the corresponding adjoint equivalence 

after passage to ~GJA, we also need the opposite assertion, that A, preserves weak 

equivalences and thus A" preserves G-CW homotopy types. This is an immediate 

consequence of Theorem 4.6, and the proof of the desuspension theorem is now 
complete modulo the proof of that result, to which we shall turn shortly. We first 

display the resulting equivalence between the adjoint pairs ( zZ ,nZ) and (A,, A" ) 

more explicitly. 



Theorem 7.9. There is a natural equivalence 6 : nz + hZ of functors K G J ~  + K G ~ ~ L  

with conjugate natural equivalence 5 : A, + zZ. The following diagrams commute, and 

all maps n and E in them are also natural equivalences. 

Moreover, the following diagrams commute for Y I Z. 

Proof. Of course, 6 = ( LT) ( ~ d )  ( LT) as in Corollary 7.8, and 5 is 

characterized by commutativity of either of the first two diagrams. The 

transitivity of 6 follows from Lemma 7.7 and the transitivity up to preternatural 

homotopy of d. The point is that d: + AY+' involves transposition of the 

Y + Z loop coordinates whereas (AYd)d involves transposition of the two Y 

coordinates and the two Z coordinates. These transpositions are canonically 

homotopic. 

This implies information relating the 2411 space and geometric suspension 
functors on G-spectra. This information makes no reference to the shift functors. 

Nonequivariantly, it was at the starting point of McClurels work in [H,,VII§lI. 

Corollary 7 .lo. For Z E a, there is a natural equivalence co: EZ + ( z "E) 0. For 

Y 1 Z, the following (adjoint) diagrams commute. 

Proof. An easy chase from the diagrams of the theorem gives the commutative diagram 

Since no = 3 on the left and do = 1, this gives the first of the desired adjoint 

pair of diagrams on passage to z e r s  spaces. 

Turning to the proof of Theorem 4.6, we insert the following lemma to avoid 

circularity. 

Lemma 7.11. If G acts trivially on Z, then the functor A, preserves weak 

equivalences of G-spectra. 

Proof. For any Gtrivial W C U of dimension n, consideration of E(W + B?), where 

the sum need not be direct, shows that EW is naturally G-homeomorphic to ERn. It 

follows easily that a weak equivalence E + El induces a weak equivalence 

(AZE) (Rq) + (AZE1 ) ( R ~ )  for all q. The conclusion follows immediately from 

Proposition 4.5. 

In this proof, and below, we implicitly use Proposition 2.4 to define AzE on 

general indexing spaces in U. 

We can now prove Theorem 4.6, which we first rephrase. The idea of the 

following argument is due to Henning Hauschild. 

H H Theorem 7.12. Let f :E + E1 be a map of Gspectra such that f, :nnE + %E1 is an 

isomorphism for all integers n and all closed subgroups H of G. Then 

(fV),: TEEV + TEE~V is an isomorphism for all n > 0, all H, and all indexing spaces V. 
Proof. We work in GBU for definiteness. Being compact Lie, G contains no infinite 

descending chain of closed subgroups, and a standard argument shows that it suffices 

to prove the conclusion for H under the inductive assumption that the conclusion 

holds for all proper closed subgroups of H. Write V = Z + W, where W is the 

complement of the fixed point set Z = vH. 8y Proposition 4.5, we may as well regard 

E as an H-gpectrum rather than a Gspectrum. By Proposition 2.4, we may then expand 

H-indexing sets to include Z and W. We then have 

Since Az preserves weak equivalences by the lemma, we may now replace E and E1 by 

AzE and AzE1 and consider only those H-representations W with wH = {O) . If 



H = e, then W = ( 0 )  and the conclusion is immediate. Thus assume H # e. By our 

inductive hypothesis, fW:EW + EIW is a weak K-equivalence for all proper closed 
H 

subgroups K of H. Thus we need only consider R,. Let SW and IXJ denote the unit 

sphere and unit disc in W and consider the fibre sequence arising from the 

identification SW E IXJ+/SW+: 

By Proposition 4.5, fo is a weak equivalence since f is. Since IN is 

H-contractible, F(DN+,EW) EW. By the five lemma, (fW),: gEW t IT~E'W will be an 

isomorphism for all n b 1 provided that 

induces an isomorphism on { for n , 0. Since 

need not be surjective, this five lemma argument wontt handle $Ew + $EtW, but we 

need only replace E and Et by AIE and AIE1 and use the natural isomorphism 

to deduce the required isomorphism on 4. Of course, 

hence what must be shown is that 

is an isomorphism for n 0. Since SW has no H-fixed points, we may replace 

it by an equivalent H-CW complex all of whose cells have domains of the form 

H/K x em, where K is a proper subgroup. Then I?(SWf) inherits a structure of 

H-CW complex with a single H-trivial vertex and one (m+n)-cell of type K for each m- 

cell of SW of type K. The successive quotients of the skeletal filtration of 

c~(sw+) are all wedges of spheres H/K+A sq. By induction over skeleta, the desired 

isomorphism follows from the inductively lmown isomorphisms 

We have the following useful characterization of connective G-spectra. 

proposition 7.13. The following conditions on a Gspectrum E are equivalent. 

(i) E is connective. 

(ii) EB? is Gconnected for n 2 1. 
,(iii) E$ is G-(n-1)-connected for n 2 1. 
(iv) nHEV=O f o r a l l V a n d a l l q < d i m ~ ~ .  

9 
proof. Trivially (iv) 4 (iii 4 (ii) , and (ii) - ( i) by Proposition 4.5. We 

must prove that (i) implies (iv) . In view of the equivalence of Av and zV, we have 
the following isomorphisms for q 2 0: 

Write V = Z + W, where W is the complement of Z = vH, and let m = dim Z. Regarding 

E as an H-spectrum and expanding H-indexing sets, we find 

nH(ZvE) = nH(ZzI:w~) z nH (zWE) . 
9 9 q-m 

Since E is connective, so is zWE because the proposition below implies that E and 

therefore also zWE is weakly equivalent to an H-CW spectrum with no cells of 

negative dimension. This proves the result. 

Of course, there is an analogous implied conclusion for n-connected G-spectra 

for any n. We quoted the following useful result in the previous proof. 

Proposition 7.14. For a GCW spectrum E, E/E? is n-connected. For any Gspectrum E, 

there is a G-CW spectrum r E  with no q-cells for q < n and a map yn:rnE + E such 

that 

is an isomorphism for all G-CW spectra D with no q-cells for q 5 n. 

Proof. Since each smtl is m-connected, the first statement results by induction and 
H 

passage to colimits from the cofibration sequences 

P/En t $'+'/En t Em+'/Em for m 2 n. 

The second statement results from application of Brown's representability theorem to 

the functor [?,ElG defined on the homotopy category of GCW spectra with no q-cells 

for q 5 n. 



$8. Special kinds of Gprespectra and G-spectra 

We here collect miscellaneous results of a technical or philosophical nature. 

The only common denominator is that they all deal with special kinds of prespectra 

or spectra, beyond the inclusion prespectra and CW-spectra already introduced. 

The functor L of Theorem 2.2 was essential to the transport of colimits and 

various functors - all left adjoints - from the prespectrum to the spectrum level. 
In all of these applications, L has the unfortunate effect of converting relatively 

well-understood prespectra into spectra about which we know nothing beyond the 

desired formal properties. Our first objective here is to ameliorate this situation 

by describing certain cases in which the effects of L are reasonably well 

understood. We consider two questions. First, when do our prespectrum level left 

adjoints produce inclusion prespectra? Of course, when they do, L is given by a 

simple and easily understood passage to colimits. Second, under what conditions does 

a functor constructed by use of L preserve subspectra? Specifically, when does it 

preserve spacewise injections, spacewise closed inclusions, and intersections of 

closed subspectra? In this connection, we shall prove the following result in the 

Appendix. 

Lemma 8.1. A cofibration of spectra is a spacewise closed inclusion. 

This applies in particular to the inclusion of a subcomplex in a CW-spectrum. 

To answer our questions, we need the following kinds of prespectra. 

Definitions 8.2. (i) A prespectrum D is a C-inclusion prespectrum if each 

o :CWmV~v + DW is a closed inclusion. Note that C-inclusion prespectra are inclusion 

prespectra, but not conversely as the example of actual spectra makes clear. 

(li) A prespectrum D is an injection prespectrum if each E:DV + Q ~ - ~ D W  is an 

injection. Of course, inclusion prespectra are injection prespectra, but not 

conversely. 

(ii) When restricted to injection prespectra, L preserves all finite limits. 

(iii) The map n:D + RLD is an injection (resp., inclusion) if D is an injection 

(resp., inclusion) prespectrum. 

Properties (i) and (ii) are unusual for a functor which is a left adjoint. 

Property (ii) is the key to answering our questions about subspectra since these can 

all be rephrased as questions about finite limits. In any reasonable category, such 

as any of our categories of spaces, prespectra, or spectra, a map f: D + D1 is an 

injection if and only if the diagram 

i 1 D-D 

is a pullback. The intersection of subobjects Dl and Dl1 of D may be described as 

the pullback 

Dl D1l - Dl1 
1 i 
Dl - D 

A map f:D + Dl is a closed inclusion if and only if there is a pair of maps 

Dl -* DD" such that the diagram 

is an equalizer; more precisely, this holds if and only if the canonical diagram 

f D - Dl -; D' % D' 

As we shall make explicit below, most of our prespectrum-level left adjoints 
is an equalizer. We would like to use this fact in conjunction with Proposition 8.3 fail to preserve either spectra or inclusion prespectra but do preserve both 
to conclude that Lf is a closed inclusion when f: D + Dl is a closed inclusion 

injection and C-inclusion prespectra. Thus, when restricted to C-inclusion 
between injection prespectra. However, this conclusion is actually false, the 

prespectra, these functors yield inclusion prespectra and therefore have good 
problem being that Dl+' need not be an injection prespectrum. Let us say that 

calculational behavior. 
f is a good closed inclusion if D'dDD1 is an injection prespectrum. The 

The point of injection prespectra is that L does not mangle these quite as following observation is easily checked by inspection and shows that goodness is 
badly 'as it does general prespectra. Again, the following result will be proven in automatic when D is a spectrum. 
the Appendix. 



Lemma 8.4. Let D be a spectrum (regarded as a prespectrum). 

(i) If Dl and Dl1 are injection prespectra, f :  D + D1 i s  a closed inclusion, 

and g: D + Dli is  an injection,  then D1uDD1! is an injection prespectrum. 

(ii) If D1 and Dl1 are spectra (regarded as prespectra) and f :  D -t Dl and g: 

D + Dl1 are closed inclusions, then D%D1I i s  an inclusion prespectrum. 

As an aside, D 1 / D  is hardly ever an injection prespectrum here. Note tha t  

D = D 1 n  Dl1 i n  D1uDDl1; it now follows that  LD = LD1nLD" i n  LD1%DLD1l. 

The discussion above has the following consequences. 

Proposition 8.5. (i) When res t r ic ted  t o  injection prespectra, the functor . L 

preserves injections,  good closed inclusions, and intersections of closed 

subobjects. 

(ii) Let F be a prespectrum level  functor which preserves pushouts and injection 

prespectra. If  F preserves injections,  closed inclusions, and intersections of 

closed subprespectra, then the spectrum level  functor LFR preserves injections, 

closed inclusions, and intersections of closed subspectra. 

It remains t o  survey the behavior of part icular functors of in teres t .  Inter- 

sections refer  t o  closed subobjects in the following examples. 

Examples 8.6 (i) The functors A'C- from spaces t o  spectra are obtained by 

application of L t o  C-inclusion prespectra and certainly preserve injections,  closed 

inclusions, and intersections. 

(ii) The prespectrum level  functor D A X  preserves C-inclusion and injection 

prespectra but f a i l s  t o  preserve inclusion prespectra or spectra. It preserves 

injections,  closed inclusions, and intersections in e i ther  variable, hence so does 

the spectrum level  functor EAX. 

(iii) The orbi t  prespectrum functor D/G (where D i s  indexed on a G t r i v i a l  

universe) preserves C-inclusion prespectra, injections,  closed inclusions, and 

pullback diagrams one leg of which i s  a closed inclusion (such as intersections).  

However, it f a i l s  t o  preserve injection prespectra, and D/G is almost never an 

injection prespectrum even when D i s  a spectrum. For t h i s  reason, passage t o  

orbi ts  on the spectrum level  is quite badly behaved in general. The s i tua t ion i s  

saved by Lemma 5.6, which shows that  the orbit  spectrum of a G C W  spectrum has a 

natural  induced structure as a CW spectrum. 

We next consider possible cofibration or CW-complex res t r ic t ions  i n  the 

definit ion of G-prespectra. To many experts, such conditions w i l l  have been 

conspicuous by the i r  absence. We work with an indexing sequence { + I ,  with 

Bi = ++1 - +, and adopt the notations of section 6. 

b 
Definition 8.7. A Gprespectrum D i s  C-cofibrant i f  each oi: C ' D ~  + Di+l is  a 

cofibration; D is cofibrant i f  each adjoint Zi i s  a cofibration. 

A t r i v i a l  induction gives the following resul t .  

Lemma 8.8. If D i s  C-cofibrant, then any w-map D + Dl i s  spacewise homotopic t o  an 

actual 'map. 

Results of Lewis [841 imply the following resul t .  

Lemma 8.9. If D i s  C-cofibrant and the,diagonal maps Di + Di x Di are cofibrations, 

then D i s  cofibrant. 

The diagonal condition holds i f  the Di are CPCW complexes. 

Lemma 8.10. If D i s  cofibrant and each Zi i s  an equivalence, then q : D  -t LD i s  a 

spacewise equivalence. 

Proof. Each Zi i s  an inclusion of a strong deformation re t rac t  by the standard 

argument, and the r e s t  of the proof is exactly the same as i n  May [95,p.4691. 

Definition 8.11. A C-cofibrant Gprespectrum D i s  a G-CW prespectrum i f  each Di has 

cofibred diagonal and the homotopy type of a G-CW complex. 

We could only ask for actual G-CW complexes and ce l lu lar  structure maps by 

a r t i f i c i a l l y  choosing G-CW structures on the G-spheres Sbi ; compare Remarks 1.3. 

Lemma 8.12. If  D is a G C W  prespectrum, then LD has the homotopy type of a G C W  

spectrum. 
a. 

Proof. Since the functors A 'Cm preserve G-CW homotopy types, t h i s  is immediate 

from the isomorphism LD - colim A a i ~ m ~ i .  

Constructions 6.3 and 6.8 show how t o  replace general G-prespectra by G C W  

prespectra. 

Proposition 8.13. For any Gprespectrum D, KD is C-cofibrant and KTD i s  a G C W  

prespectrum. If D is an OG-prespectrum, then n : K r D  + LKrD = Z r D  is a spacewise 

equivalence. 

Here the l a s t  statement follows from Lemma 8.10 and Remarks 6.4 and leads t o  

the following reassuring resul t .  



Proposition 8.14. If E 6 G A u  is a GCW spectrum, then E is equivalent to ZrE and 

each component space EV of E has the homotopy type of a G-CW complex. 

Proof. We have the w-map y:rE + E of Construction 6.3 and thus an actual map 

by Construction 6.8. By application of L, there results a weak equivalence 

ZTE + E. Since ZrE has the homotopy type of a GCW spectrum, this map and thus all 

of its component maps are equivalences by the Whitehead theorem for G-CW spectra. 

The component spaces of ZrE have the homotopy t ~ e s  of GCW complexes by the 

previous result. 

Thus our G-CW spectra can be replaced by equivalent Gspectra of the form LD 

for an QG-CW prespectrum D. The latter gadgets may be viewed as arising by 

elementary constructions from the sort of Gprespectra that occur "in nature", for 

example as representing objects for cohomology theories on G-spaces. 

As explained in the preamble, this discussion gives the beginnings of a 

comparison between Adams approach to the ( nonequivariant ) stable category and 

ours. We end with the beginnings of a comparison between Boardmants approach and 

ours. Boardman's starting point is that CW-spectra should be the colimits of their 

finite subcomplexes, as ours are, and that finite CW-spectra should be shift 

desuspensions of finite CW-complexes. We shall prove the appropriate equivariant 

version of this characterization of finite CW-spectra. 

One's first guess is that a finite G-CW spectrum should have the form hZzmx for 

a finite GCW complex X. However, the usual notion of a GCW complex is not 

appropriate: we need something more general. 

It has occurred to several people that the proper collection of spheres for the 

definition of G-CW complexes might be the collection of spaces (G/H)+ n sV,where V 
runs through the representations of G. In our context, V would run through a given 

indexing set a. (Actually, there are good grounds for using the more general 
collection of spaces G+ AH sV, where V runs through the representations of H, but 

the former collection is appropriate for the discussion to follow.) The corres- 

ponding spectrum level collection of spheres would consist of all hWC"( ( G/H)+A sV) 

with V and W in . 
The general approach to cellular theory presented in [I071 makes clear that 

most standard results go over without change to the generalized G-CW complexes and 

G-CW: spectra obtained by allowing these generalized spheres as the domains of 

attaching maps. (On the space level, we insist on based attaching maps here. ) The 

one major exception is the cellular approximation theorem, which already fails for 

generalized spheres. The Whitehead theorem goes through in both contexts but is no 

stronger than the form already obtained since Theorem 1.2 and Corollary 5.14 imply 

that generalized G-CW complexes or spectra have the homotopy types of ordinary G-CW 

complexes or spectra. 
i 

The functors AZzm clearly take generalized G-CW complexes to generalized 
G-CW spectra since they preserve generalized spheres, cofibres, and unions. 

Proposition 8.15. Any finite generalized G-CW spectrum E is isomorphic to A~c"Y for 
'some finite generalized G-CW complex Y and some Z C  @ . 
Proof. Proceeding by induction on the number of cells of E, we may assume that E is 

the cofibre of a map f :AVG"K + D, where K is a generalized sphere and D is 

isomorphic to AWz"X for some finite generalized G-CW complex X and some 
W E a .  By Lemma 4.10, we may write f in the form 

for some Z containing V and W and some space level map g. If K = ( G/H)+A st, we may 
take T to be orthogonal to Z - V and identify the domain of g with (G/H)+ A s'-"+~. 
Let Y be the cofibre of g. Then E is isomorphic to A~c"Y, Since C'-~X is evidently 
a generalized G-CW complex with one cell for each cell of X, Y is a generalized G-CW 
complex. 

The essential point is that we must use generalized G-CW complexes even if we 

start with ordinary G-CW spectra. However, using Theorem 1.2 to triangulate the 
domains of attaching maps and then approximating them by cellular maps, we find by 

an easy induction that any generalized finite G-CW complex has the homotopy type 
of an ordinary finite G-CW complex. 

Corollary 8.16. Any finite G C W  spectrum E is Ghomotopy equivalent to hZz"X 

for some finite G-CW complex X and some Z E a. 



11. Change of universe, smash products, and change of groups 

by L. G. Lewis, J r .  and J. P. May 

We continue our study of t he  equivariant s tab le  category with a number of 

deeper or  more spec i f ica l ly  equivariant construct ions and theorems. 

In  f a c t ,  we have d i f f e r en t  s t ab l e  categories  of G-spectra indexed on d i f f e r en t  

G-universes, and much of our work w i l l  concern change of universe. We have already 

observed t h a t  a G-linear isometry f :  U + U' gives r i s e  t o  a forge t fu l  functor 

f*: GAU' + GJU. In sect ion 1, we construct a l e f t  ad jo in t  f*: GBU + GBU' and show 

t h a t  the  functors  f* ( o r  f*) given by d i f f e r en t  G-linear isometries become 

canonically equivalent upon passage t o  s t ab l e  categories .  

We use these change of universe functors t o  construct  smash products and 

function spectra  i n  sect ion 3. It i s  a very easy matter t o  wr i te  down exp l i c i t  

"external" adjoint  smash product and function spectra  functors  

A :  GdUx G A U ' - - , G I ( U @ U ' )  and F: ( G ~ u ' ) ~ ~  x G ~ ( u @ u ' )  - GBU 

f o r  any pa i r  of G-universes U and U ' .  Taking U = U ' ,  we obtain "internal"  

ad jo in t  smash product and function spectra  functors by composing with 

f,: G ~ ( U  @ U) -GBU and 1 x f*: (G~u)OP x GAU -GIU x G&(U @ U) 

f o r  any chosen G-linear isometry f :  U @U + U. After  passage t o  t he  s t ab l e  

category, t he  functors  f *  (and 2)  f o r  varying f become canonically 

equivalent ,  and t h i s  freedom t o  use varying G-linear isometries makes it easy t o  

prove t h a t  t he  smash product on t he  s t ab l e  category i s  u n i t a l ,  commutative, and 

assoc ia t ive  up t o  coherent na tura l  isomorphism. 

In t h i s  applicat ion of change of universe, the  relevant  universes a r e  

G-isomorphic. In  sect ion 2, we consider an inclusion i: U'  + U of non-isomorphic 

G-universes and prove t h a t ,  f o r  su i tab ly  r e s t r i c t ed  spectra  E' 4 G 8 U h n d  

a rb i t r a ry  spectra  F' E GAU' , 

i s  an isomorphism. The main case of i n t e r e s t  is t he  inclusion i: uN + U ,  where 

N is a normal subgroup of G. Here i* is an isomorphism whenever E' is  an 

N-free G-CW spectrum. Since i,zm = zm:  G 3 + GdU,  we f ind  i n  pa r t i cu l a r  t h a t  

i f  X is an &free G-CW complex and Y i s  any G-space, then [c"x,c~Y] is  t h e  

same when computed i n  uN a s  when computed i n  U. For f i n i t e  X and Y ,  t h i s  

r e su l t  is due t o  Adams [ 31 . I t s  v i r t ue  i s  t ha t  it allows us t o  work i n  U t o  

construct s tab le  maps X + Y ,  pu l l  them back along i* t o  maps between suspension 

spectra  indexed on uN, and then pass t o  o rb i t s  over N t o  obtain s t ab l e  maps 

x / N  + Y/N. This i s  precisely how we s h a l l  construct s t ab l e  t r an s f e r  naps i n  chapter 

IV. Along the  same l i n e s ,  we show t h a t  any &free  G-CW spectrum E E GgU i s  

equivalent t o  i * D  f o r  an N-free G-CW spectrum D E G , ~ u ~ *  Up t o  equivalence, 

D i s  uniquely determined by E. An exp l i c i t  model f o r  D is  ~3 ( I?)+A~*E, 

twhere 3 (.N) i s  t he  family of subgroups of G which i n t e r s ec t  N t r i v i a l l y  and 

E3 denotes the  universal$-space associated t o  a family 3 . A much more usefu l  

exp l i c i t  model i s  the  twisted half  smash product E ~ ( N )  w E t o  be constructed i n  

chapter V I .  

In  sect ion 4 ,  we consider various change of group functors associated t o  a 

homomorphism a: H + G of compact Lie groups. For a G-universe U regarded by 

pullback a s  an H-universe, we have a forge t fu l  functor 

a*: GSU- H I U .  

We construct l e f t  and r igh t  ad jo in t s  

G K ~ ( ? ) :  H I U  *G U and  fa[^,?): HdU-zGdU 

t o  a* and study t h e i r  propet ies .  When a i s  an inclusion,  we use the  notat ions 

G RHD and F ~ [ G , D )  ; these a r e  t he  f r e e  and cofree G-spectra generated by an 

H-spectrum D. When a is the  t r i v i a l  homomorphism H + e ,  e waD = D/H and 

F ~ [ ~ , D )  = DH. In  general,  i f  N = ~ e r ( c t )  and J = H/NC G,  then 

I? G %D = G wJ(D/I?) and F,[G,D) = F ~ [ G , D  ). 

Section 5 contains some elementary space l eve l  geometry needed i n  t he  proofs of 

our main change of groups isomorphisms i n  sect ions 6 and 7. 

For H C G ,  t h e  adjunction 

D E H.4J and E E GgU,  implies an isomorphism 

on t he  l eve l  of represented cohomology theories .  In sect ion 6 ,  we prove t h a t  t he  

f r e e  G-spectrum G cxHD is  na tura l ly  equivalent t o  t he  cofree G-spectrum 

F ~ [ G , ~ ~ D ) ,  where L is the  tangent H-representation a t  the  i den t i t y  coset  of 



G / H  (and thus L = 0 i f  G i s  f i n i t e ) .  This equivalence amounts t o  a 

complementary adjunct ion 

and implies an isomorphism 

on the  l eve l  of represented homology theories.,  When D = CPy fo r  an H-space Y ,  

such an isomorphism was f i r s t  obtained by ~ i r t h n k l e r  11441 . 
For a normal subgroup N of G with quotient homomorphism E :  G + J, where 

J = G I N ,  we have t he  adjunction 

here D E G J U ~  and E E J ~ U ~  f o r  a G-universe U. Assuming t h a t  D is N-free, we 

can combine t h i s  with the  change of universe isomorphism i, associated t o  t h e  

inclusion i: uN + U t o  obtain 

where E#E is  defined t o  be i+E*E E GOU. Thus E#E is  t he  G-spectrum obtained by 
3C 

regarding the  J-spectrum E as  a G-spectrum by pullback along E and then 

building i n  t he  representat ions of U not i n  UN by means of is. Remember here 

t h a t  any N-free G-spectrum indexed on U is  equivalent t o  one of the  form i*D f o r  

a uniquely determined N-free G-spectrum D indexed on uN. In  sect ion 7 ,  we prove 

t h a t  the  o rb i t  J-spectrum D / N  is  equivalent t o  t he  f ixed point  J-spectrum 

( c - ~ ~ , D ) ~ ,  where A is  the  ad jo in t  representat ion of G on t he  tangent space a t  

t he  i den t i t y  element of N (and thus A = 0 i f  G is  f i n i t e )  . The N-f ixed point  

functor  GdU + J J U ~  i s  the  composite of i* and t he  N-fixed point functor 

G ~ U ~  + j 6 U N  and is thus the  r i gh t  adjoint  of E# : J A U ~  .r GbU. Our equivalence 

therefore  amounts t o  a complementary isomorphism 

When D = Crnx fo r  an N-free G-CW complex X and E = 7Emy fo r  a J-CW complex 

Y; the  l a s t  two isomorphisms spec ia l ize  t o  give 

and 

where the  l e f t  s ides a r e  computed i n  t he  J-universe UN and the  r igh t  s ides a r e  

computed i n  t he  G-universe U. When G is a f i n i t e  group and X and Y a r e  

f i n i t e  complexes, these isomorphisms a r e  due t o  Adams [ 31 (who i n  tu rn  c r ed i t s  us 

' fo r  the  spec ia l  case N = G) .  

The isomorphisms of t he  previous paragraph cry out f o r  in te rpre ta t ions  i n  terms 

of cohomology and homology analogous t o  those of the  paragraph before. One problem 

i s  t h a t ,  while it is  obvious t ha t  a spectrum EG E G ~ u  may be viewed as  a 

spectrum EH r H l U  f o r  H C G ,  it i s  l e s s  obvious how t o  construct  from EG a 

spectrum E j  E J A U ~  f o r  J = G I N .  In  cases l i k e  K-theory , cobordism, and 

cohomotopy, however, we have cohomology theor ies  for  a l l  G. We discuss such 

famil ies  i n  sect ion 8,  describing when the  isomorphisms of the  previous paragraph 

lead t o  isomorphisms of the  form 

and 

for  N-free G-spectra D E G A U ~ .  

We give a d i f fe ren t  perspective on the  re la t ionsh ip  between J-spectra and 

G-spectra i n  sect ion 9 .  There i s  a naive construction of J-prespectra from 

G-prespectra obtained simply by passing t o  N-fixed points  spacewise. This was 

exploited by Caruso and May [ 24 , l o  31 i n  t h e i r  study of the  analog of the  Segal 

conjecture f o r  general equivariant cohomology theor ies  and by Araki (41 i n  h i s  study 

of loca l iza t ions  of equivariant cohomology theor ies  (compare ~ § 6  below). Following 

ideas of Costenoble, we give a re in te rpre ta t ion  of t h i s  construction i n  terms of 

ac tua l  fixed point spectra  and describe a lgebra ica l ly  the  resu l t ing  passage from 

G-cohomology theor ies  t o  J-cohomology theories .  However, our main concern w i l l  be 

t o  demonstrate t h a t  the  s t ab l e  homotopy category ~ J B U ~  of J-spectra i s  equivalent - 
t o  the  f u l l  subcategory of the  s t ab l e  homotopy category hGBU of G-spectra whose 

objects  a r e  those G-spectra D such t h a t  I T ~ ( D )  = 0 unless  H contains N. 

$1. Change of universe functors 

Let U and U' be G-universes and l e t  f :  U + U'  be a G-linear isometry. We 

have observed t h a t  there  is a change of universe functor 



f*: GdU' 4 GLU 

specif ied by l e t t i n g  ( f*E1 ) (v)  = E' ( fv)  , with s t r uc tu r a l  maps 

Z"~E' ( f v )  = E' (fv)nsW-' E'  ( ~ v ) * s  fwifV -%a E' ( fw) . 

It i s  v i t a l  t o  our work t h a t  f* has a  l e f t  ad jo in t  

even when f  f a i l s  t o  be an isomorphism. 

Defini t ion 1.1. For D E G%, define f*D E a s  follows. For an indexing 

space V' C U'  , l e t  V = f - l ( v 1 )  C U ,  so t h a t  f  maps V onto V' A f  (u )  C V'  . 
Define 

( f * ~ )  ( v l  = D V A S V ' - ~ ~  

and define the  s t r uc tu r a l  map associated t o  V1  c W1 t o  be the  following composite, 

where W = f-'w' : 

DVAsV'-fVAsW'-V' ; - DVAS~-fvASW'-fW 

Af-lA I. W-v W' -fw a D w A s ~ l  - f ~  
~ D V A S  A s  

For E E G ~ U ,  define f*E = L ~ * ( R E )  E GbU' 

Proposition 1.2. For a  G-linear isometry f :  U + U' and fo r  E c G a U  and E' E GBU' ,  

the re  i s  a  na tura l  isomorphism 

Moreover, f o r  f ' :  U '  4 U", ( f l f ) *  g f*f l*  and ( f ' f ) .  " fkf*. 

Proof. For D E G8SU and D' e ~ 6 % '  , define 

by ' : le t t ing w(k) , k: D + f*D1 , have v1= component m p  the  composite 

DVA s V'-" k V A l D 1  (fV)AsV'-fv 5 D t V 1 .  

Then w . is  an isomorphism; for  k '  : f*D + D' , w-l(kf ) has VZ component map 

This gives the  adjunction, and the  l a s t  statement i s  c lear .  

We record the  basic  point-set l eve l  and formal propert ies  of the  functors  

y,. For the  f i r s t ,  compare 1.8.5. 

~ e & a  1.3. The prespectrum l eve l  functor f, preserves C-inclusion and in jec t ion  

prespectra. Both it and the  spectrum l eve l  functor f* preserve in jec t ions ,  closed 

inclusions,  and in te rsec t ions  of closed subobjects. 

Proposition 1.4. For X E G 3  and E E GgU, there  i s  a  na tura l  isomorphism 

For isomorphic indexing spaces V U and V'  C U ' ,  there  a r e  na tura l  isomorphisms 

Therefore f, c a r r i e s  G-CW spectra  t o  G-CW spectra .  

Proof. The f i r s t  and second isomorphisms follow by conjugation from the  evident 

equa l i t i es  

~ * F ( x , E ' )  = F ( x , ~ * E ' )  and (f*E1)(V) = E' ( f ~ ) ,  

E' cr GdU1 ; the  l a s t  i s  given by I .4.2. These isomorphisms and the  f ac t  t h a t  f, i s  

a  l e f t  ad jo in t  imply t h a t  f +  preserves spheres and commutes with wedges, cofibres,  

and col imits .  

What r e a l l y  matters about the  functors f, i s  t h a t ,  up t o  equivalence, they 

a r e  independent of the  choice of f .  The proof of t h i s  f a c t  depends on the  theory 

of twisted half  smash products t o  be presented i n  chapter V I ,  but we s h a l l  explain 

the basic  idea here. 

Recall t h a t  U i s  topologized a s  the  col imit  of i t s  indexing spaces. Let 

$ (u ,u ' )  denote the  function G-space of l i nea r  isometrics U + U ' ,  with G ac t ing  

by conjugation. Thus a  G-linear isometry i s  a  G-fixed point of 9 (u,u'  ) . We s h a l l  

exploi t  the  following r e s u l t ,  i n  which U'  must be a  G-universe but U could be any 

r e a l  G-inner product space. 



Lemma 1.5. I f  there  i s  a t  l e a s t  one G-linear isometry f :  U + U'  , then ..! (u,u'  ) i s  

G-contractible. 

Proof. Write U '  a s  a sum over various representat ions V of sequences Vi, 

i 2 1, with each Vi a copy of V. Let a :  U'  + U'  map Vi i d en t i c a l l y  onto 

V2i and l e t  $ :  U' + U'  @ U' map VZi and V2i-l i d en t i c a l l y  onto i l V i  and 

i 2 V i  respect ively,  where il and i2 a re  the  canonical in jec t ions  U'  + U' @ U ' .  

Thus $ is  an isomorphism and $a = i l  Define paths HI: I + J ( u '  ,U1 ) from the  

i de n t i t y  t o  a and H2: I +.! (U,U @ U )  from il t o  i2 by normalizing t h e  

obvious l i nea r  paths and define H: I x .! (u,u '  ) -t %(u,u '  ) by 

Then H i s  a homotopy from the  i den t i t y  t o  the  constant map a t  B-I o i2 o f ,  and 

a l l  maps i n  s igh t  a r e  G-maps. 

Now suppose given a G-map X :  X + J ( u , u ' ) ,  where X is  any (unbased) 

G-space. In Chapter V I ,  we s h a l l  construct a twisted half  smash product functor 

x IF ( ? ) :  GBU -P G8U1. 

The construction w i l l  a l so  be func tor ia l  i n  X ,  viewed as  a space over J ( u , u ' ) .  

The functor x tx ( ? )  w i l l  come with a r i gh t  adjoint  twisted function spectrum 

functor 

F [ ~ , ? ) :  GAU' -3 GAU, 

and t h i s  w i l l  be contravariant ly func tor ia l  i n  X .  Appropriate analogs of Lemma 1 .3  

and Proposition 1.4 w i l l  hold. 

When X i s  compact, t he  def in i t ions  a r e  qui te  s traightforward,  and the  reader 

can get a quick idea by reading t he  f i r s t  few pages of ~ 1 § 2  (through 2.7). When X 

i s  a s ingle point with image f ,  t h e  def in i t ions  spec ia l ize  t o  give 

x r E = f*E and F [ X , E )  = f * E, 

hence we agree t o  wri te  

x K E = xnE and F [ ~ , E )  = X*E 

i n  general i n  what follows. The only property of twisted ha l f  smash products 

relevant .to t he  present discussion i s  the  following one, whose easy proof i s  given 

in  ~1.2.16. 

Lemma 1.6. Let X be a subcomplex and G-deformation r e t r a c t  of a f i n i t e  G-CW 

complex Y. Let JI: Y + 3 (u ,u '  ) be a G-map with r e s t r i c t i o n  x to ,  X. For G-CW 

spectra  E E GbU, t h e  inclusion i: X + Y induces a na tura l  G-homotopy equivalence 

* * 
By conjugation, for  E' GdU '  , i : JI E' + X * ~ '  i s  an isomorphism i n  the  s t ab l e  - 
category hGJU. 

The previous two lemmas allow us t o  draw the  following conclusions about our 

change of universe functors. 

Theorem 1.7. The functors  f,: GXU + GSU' induced by varying G-linear isometries 

f :  U + U '  become canonically and coherently na tura l ly  equivalent on passage t o  t h e  - - 
s tab le  categories  hGIU and hG4U1. The same conclusion holds for  t he  functors 

f*: GLU' + G8U. 

Proof. Given G-linear isometries f ,g : U -t U'  , Lemma 1.5 implies t ha t  there  i s  a 

G-path h: I + Q (u,u '  ) connecting them. For G-CW spectra  E, Lemma 1.6 then 

gives natural  G-homot opy equivalences 

I f  j : I + Q(u,u ' )  i s  another G-path from f t o  g,  Lemma 1.5 implies t h a t  t he r e  

is a G-homotopy k: I x I -t 4 (u,u'  ) from h t o  j through G-paths from f t o  

g. By Lemma 1.6 again, inclusions of ver t ices  and faces of I* give a commutative 

diagram of na tura l  G-homotopy equivalences 

Here n is t he  project ion I + { * I .  By a t r i v i a l  inspection of def in i t ions  ( see  

V1.1.7), (fx),(E) = I+A~,E and t he  t op  and bottom horizontal  composites iiii0, 
are  i den t i t y  maps. Thus t he  equivalence f*E = gnE i s  independent of t he  choice 

of h. Clearly any desired coherence re la t ions  as  f var ies  can be proven by the  

same method. These conclusions fo r  t h e  functors  f* follow by conjugation. 



We s h a l l  need no fur ther  information about change of universe f o r  t he  study of 

smash products, but we s h a l l  need t he  following formal complement t o  t he  preceding 

proof i n  t h e  next sect ion.  

Corollary 1.8. Let h be a G-path connecting G-linear isometries f , g :  U -+ U ' .  

Write rl and E f o r  t he  un i t s  and counits of t h e  adjunctions determined by f ,  

g ,  and h. Then t h e  following diagrams commute, and a l l  maps i n  them other  than 

t h e  n and E a r e  equivalences. 
a?. 

and 

We ,say t h a t  3 -objects a r e  J -isotropict1. (The term It  $-free1' occurs i n  t h e  

l i t e r a t u r e .  ) ' Of course, i f  X is an 3 -space and a G-CW complex, then it is  an 

3-CW complex; t h a t  is ,  t he  domains of i t s  a t taching maps a r e  of t he  form 

G / H  x sn with H E 3 .  Unless t he  indexing universe i s  G-tr ivial ,  the  component 

spaces of 3 -CW spectra  need not be 3 -spaces, and we have no usefu l  def in i t ion  

of 3 -spec t ra  i n  t he  absence of a given c e l l  s t ruc ture ,  

There i s  an 3-Whitehead theorem, i t s  proof being exactly t he  same induction 

s t a r t i n g  from c e l l s  as  the  proof of the  usual  Whitehead theorem (see 1.5.10). It 

reads a s  follows on t he  spectrum leve l .  

Theorem 2.2. I f  e: E + F is  a weak 3 -equivalence of G-spectra, then 

e,: [ D , E ] ~  + [D,FIG i s  an isomorphism fo r  every 3 -CW spectrum D. I f  E and 

F a r e  themselves 3-CW spect ra ,  then e is a G-homotopy equivalence. 

Examples of famil ies  a r e  legion. We introduce notat ions fo r  those of i n t e r e s t  

t o  us here. 

I f  f i s  an isomorphism, then q and E for  f a r e  isomorphisms, hence and 

E f o r  g and h a re  (compatible) equivalences. Definitions 2.3.. ( i )  For G-universes U and u ' ,  l e t  

The l a s t  sentence w i l l  have pa r t i cu l a r l y  usefu l  consequences. e ( U , u t )  C 3(U,U1) 

$2. Families and change of universe isomorphisms 

Let i: U' +- U be an inclusion of non-isomorphic G-universes. Thus more 

representat ions occur i n  U than i n  U ' .  We seek conditions which guarantee t h a t  

denote t he  famil ies  consist ing respect ively of those H such t h a t  U i s  

H-isomorphic t o  U '  and of those H such t h a t  there  e x i s t s  an H-linear isometry 

u -+ U' .  

( i i )  For a normal subgroup N of G, l e t  3(N) denote t he  family of subgroups 

H of G such t h a t  H CI N = e and l e t  3 [ N ]  denote t he  family of subgroups H 

which do not contain N; 3(N) C 3 [ N ]  unless  N = e. 

is nevertheless an isomorphism. The r e su l t s  a r e  best  expressed i n  terms of There a r e  several  equa l i t i e s  r e l a t i ng  these famil ies .  

famil ies  . 
Lemma 2-40 (1 )  If U t  i s  a sub G-universe of U, then 

Defini t ions 2.1. ( i )  A family 3 i n  G is  a s e t  of subgroups which is closed 

under conjugation and passage t o  subgroups. & ( u , u t )  = 3 (u ,u1 ) .  

( i i )  An unbased G-space is  an 3-space i f  t he  isotropy group of each of i t s  points  

is i n  3; a based G-space i s  an 3-space if the  isotropy group of each of i ts  points  ( i i )  If U is  a complete G-universe and N i s  a normal subgroup of G, then 

other  than t h e  basepoint is  i n  3 . 
( i i i )  A G-cw spectrum is an 3-CW spectrum i f  the  domains of i t s  at taching maps c (u ,uN)  = 3(u,uN) = f (N) .  

a rb  a l l  of t h e  form ~ b i t h  H t 3 .  
( i v )  A map of based or  unbased G-spaces or  of G-spectra i s  sa id  t o  be a (weak) Proof ( i )  I f  there  i s  an H-linear isometry U + U ' ,  then U'  contains copies of 

&equivalence i f  it is a (weak) H-equivalence fo r  a l l  H € 3. a l l  t he  H-irreducible representat ions appearing i n  U. Since .the converse c l e a r l y  

holds, U and U t  a r e  H-isomorphic. 
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( i i )  I f  f :  U + uN i s  an H-linear isometry and g e H fl  N,  then f ( g v )  = f ( v )  f o r  Restr icted t o  spaces, par t  ( i )  can be in te rpre ted  as  follows. 

a l l  v E U. Since G a c t s  e f fec t ive ly  on U and f is an in jec t ion ,  g = e and 

thus H e ?C(N). Conversely, i f  H E 3 (N)  , then H maps isomorphically onto a Corollary 2.7. I f  X is an 3 - C W  complex and Y is any G-space, then 

subgroup of GIN.  Since U is  G-complete, uN is GIN-complete and thus both U [ x ' x ~ z ' Y ] ~  i s  the  same when computed i n  t h e  universe U'  a s  when computed i n  the  

and uN a r e  H-complete and therefore  H-isomorphic. universe U. 

The i n t e r e s t  i n  J ( N )  i s  t h a t  an ~ ( N ) - s ~ a c e  is  precisely t he  same th ing  a s  an 

N-free G-space. By analogy, we say t h a t  an 3 (N)-cw spectrum i s  an N-free G-CW 

spectrum. We need one more def in i t ion  before we can s t a t e  our basic  change of 

universe theorem. 

Definition 2.5. Let i: U '  + U be an inclusion of G-universes. A 

U'-representation of a spectrum E E GBU i s  a spectrum E' c G$U1 together  with an 

equivalence i*E1 + E. For example, by Proposition 1.4, suspension spectra  i n  

GJU a r e  represented by t he  corresponding suspension spectra  i n  G I U ' ,  and 

s imi la r ly  f o r  s h i f t  desuspensions by representat ions i n  U ' .  

Theorem 2.6. Let i: U '  + U be an inclusion of G-universes and l e t  3 = 3(U,U1 ) * 

( i )  I f  E' E GdU' i s  an 3 - C W  spectrum and F' E GLIU' i s  any G-spectrum, then 

i s  an isomorphism. 

a r  main i n t e r e s t  i s  i n  t h e  following spec ia l iza t ion .  

Theorem 2.8. Let N be a normal subgroup of G ,  l e t  U be a complete G-universe, 

and l e t  i: uN + U be t h e  inclusion. 

( i )  I f  E' E GBU' i s  an N-free G-CW spectrum and F' E G A U ~  i s  any 

G-spectrum, then 

is an isomorphism. 

( i i )  I f  E e G I U  i s  an N-free G-CW spectrum, then E admits a uN-represen- 

t a t i on  by an N-free G-CW spectrum E'. Moreover, E' is  unique up t o  equivalence 

and can be chosen t o  have c e l l s  i n  canonical b i j e c t i ve  correspondence with t he  c e l l s  

of E. 

( i i i )  I f  E E G I U  i s  a f i n i t e  N-free G-CW spectrum, then E is  equivalent t o  

A'Z"X (and thus t o  X-~X"X) fo r  some f i n i t e  N-free G-CW complex X and some 

GIN-representation Z. 

( i i )  I f  E E G U is  an 3 -CW spectrum, then E admits a U'-representation by 
Proof. In view of Lemma 2 . 4 ( i i ) ,  par t s  ( i )  and ( i i )  a r e  immediate. For ( i i i )  , we 

an 3 -CW spectrum E' e GIU'. Moreover, E' i s  unique up t o  equivalence and can 
may apply ( i i )  t o  represent E as  E for  a f i n i t e  N-free G-CW spectrum 

be chosen t o  have c e l l s  i n  canonical b i j e c t i ve  correspondence with t he  c e l l s  of E= 
E' 6 G I U ~ .  By 1.8.16 and i ts  proof, El has the  specif ied form, and the  conclusion 

Proof. ( i )  The transformation i* is the  composite for  E follows from Proposition 1.4. 

By Corollary 1.8 (and ( i )  of Lemma 2.4), 11: F' + i*i*~' i s  a weak 

a-equivalence, hence Q* i s  an isomorphism by t he  3-Whitehead theorem. 

( i i )  We construct  E' and an equivalence inE1 -+ E by induction up a sequential  

f i l t r a t i o n  of E, s t a r t i n g  with Eb = *. Assume t h a t  and an equivalence 

i*Eh = En have been constructed. Let En+1 be the  cofibre of k: K + En, where 

K i s  a wedge of spheres ~3 e GBU with H c 3 . Let J be t h e  corresponding wedge 

of spheres sfl c G ~ U '  and note t h a t  i*J s K by Proposition 1.4. Let j :  J .t EA 

be t h e  map, unique up t o  homotopy, such t h a t  i * ( j )  corresponds t o  k and l e t  

be i t s  cofibre.  There r e s u l t s  an equivalence i*EA+l = En+1, and we obtain 

E' by passage t o  col imits .  The uniqueness of E' i s  implied by ( i )  . 

Corollary 2.9. I f  X is an N-free G-CW complex and Y i s  any G-space, then 

[ X ' X , T I " Y ] ~  i s  t h e  same when computed i n  t he  universe u N  as  when computed i n  t he  

universe U. 

When G i s  a f i n i t e  group and X and Y a r e  f i n i t e  complexes, t he  corol lary 

is due t o  Adams (3,5.5]. 

In sum, these r e su l t s  a s s e r t  t h a t  N-free G-CW spectra  l i v e  i n  t he  N- t r iv ia l  

G-universe uN. We now have a l l  t h e  information about change of universe needed fo r  

our study of change of groups. However, f o r  our study of twisted half  smash 

products and t o  place our r e su l t s  i n  proper perspect ive,  we go on t o  r e l a t e  t h e  

observations above t o  t h e  universal  3 -spaces introduced by Palais  [ 118 1 . ( ~ a t e r  

authors c a l l  these c lass i fy ing  spaces; we prefer  t o  follow Palais  i n  reserving t h e  

term c lass i fy ing  space fo r  t h e  resu l t ing  o r b i t  spaces.) 
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Defini t ion 2.10. An 3 -space E is  sa id  t o  be universal  i f ,  fo r  any (unbased) - proof The f i r s t  statement holds since n i s  an H-homotopy equivalence for  H e j 

3 -CW complex X ,  there  i s  a unique homotopy c l a s s  of G-maps X + E3 . We and t he  second statement follows by t he  $-Whitehead theorem. 

require E3 t o  have t he  homotopy type of a G-CW complex, and t h i s  ensures t ha t  

8 3  is unique up t o  equivalence. An a l t e rna t i ve  character izat ion i s  t h a t  ( ~ 3 ) ~  be Of course, t he  evident space l eve l  analog a l so  holds. 

empty i f  H / 3 and nonempty and cont rac t ib le  i f  H ( 4 . 
For example, EG i s  universal  f o r  t he  t r i v i a l  family 9 = {e) .  A s  explained 

by tom Dieck [ J I ] ,  i t e r a t e d  joins of o rb i t s  can be used t o  construct  E 3  fo r  

general famil ies  3 ,  and an a t t r a c t i v e  conceptual construction has been given by 

Elmendorf [52] ,  For t h e  famil ies  of i n t e r e s t  here,  we already have universal  

3-spaces on hand. 

Lemma 2.11. 4 (u,u'  ) i s  universal  f o r  the  family 3(u,U1 ) 

Proof. By Lemma 1.5, ( u , u ' ) ~  i s  cont rac t ib le  i f  it is nonempty, and P (u ,u '  ) has 

t he  homotopy type of a G-CW complex by Waner [140,4.9] and V I .  2.19 below ( Z, 

there  being G-paracompact , completely regular ,  and GELC ) . 

Now r eca l l  the  discussion of loca l iza t ions  of categories  from 1s5. The 

functor E@&(?)  can be viewed as  the  loca l iza t ion  a t  t he  co l lec t ion  f of weak 

3-equivalences (of based G-spaces or  of G-spectra). To make t h i s  precise,  l e t  jlJ 

' and idbU denote t he  categories  of G-spaces of the  weak homotopy type of 3-CW 

complexes (with basepoint) and of G-spectra of the weak homotopy type of 3 -CW 

spectra .  These have homotopy categories  ( p r e f i x  h) and loca l iza t ions  a t  t h e i r  - 
weak equivalences (pref ix  h)  ; here weak equivalences coincide with weak 

Proposition 2.13. The functors  E ~ + A (  ? ) induce equivalences 

( e  3 ) - l ( h ~ 3 )  ---9h33 and ( F ~ ) - ~ ( ~ G A U )  - h 3 ~ ~ .  

This f a c t  w i l l  imply t h a t  t he  twisted half  smash product functors  

x K ( ? ) :  GXU + GAU' determined by varying G-maps X: X + J (u ,u ' )  become 

canonically equivalent upon passage t o  s tab le  categories ,  where they w i l l  be 

denoted X rx ( ? ) .  Of course, t h i s  i s  a general izat ion of Theorem 1.7, which deals  

with the  case X = {*). 

Proof. Via CW-approximation, t h i s  i s  an immediate consequence of Lemma 2,12 and 

t he  3 -Whitehead theorem. 

These observations shed fur ther  l i g h t  on Theorem 2.6. 

Proposition 2.14. Let i: U '  + U be an inclusion of G-universes and l e t  
Smash products with spaces E3+ give func tor ia l  models f o r  t he  U1-represen- 3 = 3(U,u1 ) Then iw induces an equivalence 

t a t i ons  of Theorem 2.6, as  we proceed t o  explain. Clearly the  Cartesian product of 

an unbased 3-space and an a rb i t r a ry  G-space i s  an unbased3-space and t he  smash 

product of a based 3-space and an a rb i t r a ry  based G-space is a based3-space. Using 

1.5.5, we see t h a t  the  smash product of an 3 - C W  complex and a G-CW spectrum or  I f  F 6 G&U i s  an 3 - C W  spectrum, then E3+niXF i s  a U1-representation of F. 
of a G-CW complex and an 4-CW spectrum has t he  homotopy type of an 3 - C W  
spectrum. More general ly,  using Theorem 3.8 below, t he  smash product of an 3-cw Proof. The f i r s t  statement follows immediately from Theorem 2.6. For t he  second 

spectrum and a G-CW spectrum has the  homotopy type of an J-CW spectrum. statement ( i n  which CW-approximat ion of iWF i s  of course understood) , Corollary 

1.8 implies t h a t  E :  i*iwF + F i s  an 3-equivalence and the conclusion follows from 

Lemma 2.12. Let a :  E3+ + So be t he  na tura l  project ion.  For any G-CW spectrum Lemma 2.12 and the  commutative diagram 

F, E ~ + A F  has t he  homotopy type of an 3 - C W  spectrum and * i , ( a ~ l )  * 
i*(E3'~i F) - iwi F A F 

n ~ l :  ~ 3 ' 4 ~  4 S'AF = F IIz 11 
u + ~ i , i * F  IhE * E$AF % F * 

is a weak 3-equivalence. I f  F i s  an 3-CW spectrum, then a ~ l  is a G-homotopy 

eqGivalence . The problem with t h i s  l a s t  r e su l t  i s  t h a t ,  as  a composite of a l e f t  and a r igh t  

ad jo in t ,  t h e  functor E ~ + A  i*F of F is impossible t o  analyze calculat ional ly.  In 

a very r e a l  sense, t he  e s s en t i a l  point of t he  theory of twisted half  smash products 

i n  Chapter V I  is the  construction of a functor X K F which i s  an analyzable l e f t  
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adjoint  and ye t  is equivalent t o  t h e  composite functor x+AiXF, where X is  any Definitions 3.3. For D" e Gfla @ a' ) and V E a ,  define 

3 -CW complex. 
D " [ v I  E GPO! 

$3. Smash products and function spectra  by D" [ v ]  (v '  ) = D"(V O V' ) with s t r uc tu r a l  maps induced by those of D" . Other 

Throughout t h i s  sect ion,  l e t  a and a' be indexing s e t s  i n  G-universes U 

and U'  and l e t  

a+@&' = {V OV'IV E a and V'  E & } 

1 s t r uc tu r a l  maps of D" give a map of prespectra  
i 
F 

D" [v]  -P [w]  

! 

for  V C W ,  and t h i s  map is an isomorphism i f  D" is a spectrum. For 

D ?  e G@@ , define 

be t he  resu l t ing  indexing s e t  i n  t he  G-universe U @U1. We s h a l l  f i r s t  define and 

discuss "external" smash products and function spectra  and then use changes of 

universe t o  obtain "internay1 functors  when U = U' and a = @'. The external  

functors  have good propert ies  before passage t o  t he  s t ab l e  category and a r e  c en t r a l  
by F(D' ,D")  (v )  = Pa' (D' ,D" [v] ) with s t r uc tu r a l  maps 

t o  t he  theory of extended powers. The i n t e rna l  functors on the  s t ab l e  category a r e  

c e n t r a l  t o  a l l  of s tab le  homotopy and cohomology theory. 

Definition 3.1. For D E. G8CI  and D '  E G#@, define 

by (DAD' ) (V  @ v ' )  = DVAD'V' with s t r uc tu r a l  maps 

For E E GBd and E' E: G i g ,  define 

E&' = L(RE,,EE') E G A  (@.Q@'). 

where t h e  (v')% component of the  l a s t  homeomorphism i s  induced by t he  double 

adjunct ion homeomorphism 

Clearly F(D' ,D") i s  a G-spectrum i f  D" is a G-spectrum. 

We have t he  following analogs of the  adjunctions i n  I. 3.3. 

Proposit ion 3.4. There a r e  na tura l  homeomorphisms 

GV(& @ a') (DAD' ,D") G6)a(D,F(D1 ,D")) 

Inspection and use of 1.8.5 give t he  following r e su l t .  
fo r  D e G 6 4  D1 e GPOL', and D " E  G @ ( a @ a l )  and 

Proposition 3.2. The functor DAD' preserves in jec t ion  and C-inclusion prespectra  

(bu t  not inclusion prespectra  or  spec t ra ) .  Both t he  prespectrum and spectrum l e v e l  

functors  preserve in jec t ions ,  closed inclusions,  and in te rsec t ions  of closed 

subobjects. I f  E and E' a r e  closed subspectra of F and F ' ,  then 
for  E e ~ g a ,  E'  E G I & ' ,  and E" e G 8 ( & @ a 1 ) *  

Of course, there  i s  a symmetric def in i t ion  of F(E,E") 6 G A ~ '  f o r  E E G A ~  

and E" E Gd(a O @' ) and a corresponding adjunction. The functor EAE' preserves 

co l imi t s  i n  both var iab les  while F(E' ,En) preserves l im i t s  i n  El' and converts 
Recall the  discussion of G-spaces of nonequivariant morphisms o r  G-prespectra 

col imits  i n  E1 t o  l i m i t s .  The following r e su l t s  a r e  obvious by inspection of t h e  
given above I. 3.3. - 

prespectrum l e v e l  def in i t ions .  



Proposition 3.5. The functors  EAE' and F(E' ,E") a r e  independent of the  choices 

of indexing s e t s  and G-universes i n  t he  sense t h a t  they commute up t o  coherent 

na tura l  isomorphism with t he  isomorphisms of categories  of G-spectra of 1.2.4 and 

1.2.5. 

Of course, use of 4 and $ a l s o  t ranspor t s  our construct ions t o  indexing 

s e t s  not of t he  form A @ 01' i n  U @ U' . 

Proposition 3.6. Let V E GL and V ' E  a ' . For based G-spaces Y and Y'  , t h e r e  

i s  a na tura l  isomorphism 

A ~ C ~ Y A A ~ '  zmy z A*' C-(YAY ) . 

For E E GKQ and E' E GALL', t he re  a r e  na tura l  isomorphisms 

(EAY)AE'  z (EAE')AY E EA(E 'AY) .  

This implies t h a t  smash products of equivariant c e l l s  behave appropriately.  

P 9 
Lemma 3.7. For a p-cel l  eH E G.& and q-cell e J E G$L' , t h e r e  i s  a ~ a n o n i c a l  

isomorphism of pa i r s  

i n  GI(@ @ @' ) , where L = G / H  x G / J *  

I f  H = G o r  J = G, t h e  r i gh t  s ide  is an equivariant c e l l  and i ts  

boundary. I f  G is f i n i t e ,  then G / H  x G / J  is a d i s j o in t  union of o rb i t s  and t h e  

r i gh t  s ide  is a wedge of equivariant  c e l l s  and t h e i r  boundaries, although t h i s  

descript ion depends on double coset  choices and is thus not canonical. For general  

compact Lie groups G, t h e  r i gh t  s i de  i s  a t  l e a s t  equivalent t o  a G-CW spectrum 

and a subcomplex (by I. 1.2 and I. 5.5) . These observations and the  commutation of 

smash products with pushouts and sequential  col imits  lead t o  t h e  following r e su l t .  

Say t ha t  a G-CW spectrum is G-tr ivial  i f  no spheres S; with H # G appear a s  

domains of i ts  at taching maps. 

Theorem 3.8. Let E E GdQ and E' E G l P '  be G-CW spectra .  Then E d '  may be 

given t he  sequential  f i l t r a t i o n  

(EAE' = U EPA(E' 19, n c Z, 
p+q=n 

both being func tor ia l  with respect t o  b i ce l l u l a r  maps of t h e i r  variables .  I f  E 

or  E' i s  G-tr ivial  o r  i f  G is  f i n i t e ,  then EAE' i s  a G-CW spectrum with 

respect t o  these f i l t r a t i o n s .  In general ,  D E '  has the  homotopy type of a G-CW 

cspect rum. - 

Clearly EAE' preserves homotopies i n  both variables  and therefore preserves 

G-CW homotopy types. By 1.5.13, t h i s  implies t he  following r e s u l t .  

Corollary 3.9. Let E' have t he  homotopy type of a G-CW spectrum. Then t he  

functor F(E' ,E") preserves weak equivalences i n  the  var iab le  E", and EAE' 

and F(E' ,E") induce an ad jo in t  pa i r  of functors r e l a t i ng  the  s t ab l e  categories  

kdU. and ;G~(u @a') .  

Here we must apply CW-approximation t o  E and E' t o  t ranspor t  EAE' and 

F(E' ,E") t o  functors on s t ab l e  categories .  

Remarks 3.10. The r e s t r i c t i o n  t o  a s ingle group G i n  s igh t  is the  simplest way t o  

s e t  up notat ions,  but there  is an a l t e rna t i ve  viewpoint t h a t  is  sometimes useful .  

We might begin with groups G and G' ac t ing  on U and U' and thus G x G '  

ac t ing  on U @U1.  In  t h i s  s e t t i ng ,  the  r e su l t  on CW s t ruc tures  becomes more 

prec ise  because t he  obvious iden t i f ica t ions  

imply t h a t  smash products preserve spheres and ce l l s .  Actually, t h i s  s e t t i ng  can be 

included i n  our o r i g ina l  one by noting t ha t  the  G and G '  universes U and U'  

a r e  both G x G1-universes v i a  the  project ions.  Conversely, with G = G ' ,  use of 

A :  G + G x G shows t ha t  our o r i g ina l  s e t t i ng  can be obtained by change of groups 

from the  s e t t i ng  with two groups i n  s igh t .  

Returning t o  our i n i t i a l  context, we observe next t h a t  the  smash product i s  

assoc ia t ive  and commutative i n  t he  appropriate  sense. The a s soc i a t i v i t y  is  

immediately obvious on t he  prespectrum l eve l  and passes t o  the  spectrum l eve l  v i a  

L. The commutativity must take account of t he  t ranspos i t ion  isomorphism 



and a s se r t s  t h a t  ~ , ( E A E ' )  is na tura l ly  isomorphic t o  E'nE i n  Gd(&' O h ) .  The 

ve r i f i c a t i on  i s  again immediate. 

Henceforward, we r e s t r i c t  a t ten t ion  t o  a s ingle G-universe U and the  indexing 

s e t s  61" = a@ a 4 0  QO. i n  un. It i s  useful  t o  consider the  graded category whose 

term i s  GbLn,  with ~60.O = GJ. The external  smash product and function 

spectrum functors 

 am G&& -+= and ( GAbm) OP x GAQ~'" Ggkn 

give t h i s  category a closed symmetric monoidal s h c t u r e .  Further discussion of 

t h i s  point of view w i l l  be given i n  [107], and we t u rn  here t o  t he  in te rna l iza t ion  

process. Clbserve t h a t ,  by v i r t ue  of our conventions on G-universes, there  is a t  i 

l e a s t  one G-linear isometry un + U fo r  each n and thus each 9(un ,u) is  F 
I 

- 
by passage t o  hGA& from the composite 

Here i: U + U @ U includes U onto the  f i r s t  summand. The f i r s t  equivalence is 

'given by -Theorem 1.7, and ~ * ( E A Y )  s EhCrnY by an easy d i r ec t  inspection of 
def in i t ions  on the  prespectrum leve l .  When Y = SO, there  r e su l t s  a u n i t  

isbmorphism E = EAS. 

( i i )  Define a natural  commutativity isomorphism 

- 
by passage t o  h G k  from the  composite 

Definition 3.11. Choose a G-linear isometry f € $ (U @ U,U) * Define smash ~ + ( E A E ' )  = ( ~ ~ ) * ( E A E ' )  z ~ , ~ * ( E A E ' )  e ~ , ( E ' A E ) .  

product and function spectrum functors  Here t i s  the  t ransposi t ion on U 0 U ,  and the  f i r s t  equivalence i s  given by 
Theorem 1.7. 

G A O .  x G d a - G & a  and ( G A & ) O ~ X G A ~ Z . G E  
( i i i )  Define a na tura l  a s soc i a t i v i t y  isomorphism 

by EIE' = f++(EnE1) and F(E,E')  = F ( E , ~ * E ' )  for  E,E' c GiU- . 
Composition of the  ( f, , f* ) adjunction of Proposition 1.2 with t he  adjunction - 

by Passage t o  ~ G A &  from the  composite 
of Proposition 3.4 y ie lds  an adjunction 

The functors EAE' and F(E' ,E") behave properly with respect t o  colirnits and 

l i m i t s .  The functor EAE' commutes properly with smash products with spaces and 

with the  functors  hvCm and preserves G-CW homotopy types. After CW- 

approximation of the  variables  E and E' , EnE1 and F(E' ,E") pass t o  an adjoint  - 
pa i r  of endofunctors on the  s t ab l e  category hG&L. 

Before passage t o  t he  s t ab l e  category, t he  functors EAE' and F(E' ,E")  

depend non-tr ivial ly on the  choice of f ,  and EnE1 f a i l s  t o  be u n i t a l ,  

commutative, and associat ive.  Thus these i n t e rna l  functors  only become in t e r e s t i ng  

a f t e r  passage t o  hGd& Here they a r e  independent of f by Theorem 1.7, and t he  

following def in i t ion  gives uni ty,  commutativity, and a s soc i a t i v i t y  isomorphisms. 

~ e c a k l  t h a t  ( f f )  e fkf* for  composable G-linear isometries f and f '  . 

The f i r s t  and l a s t  isomorphisms r e su l t  from a simple comparision of def in i t ions ,  and 

t h e  middle equivalence is  given by Theorem 1.7. 

These isomorphisms a r e  independent of the  choices of paths and commute properly 

with t h e  natural  isomorphism r e l a t i ng  f* t o  gn fo r  any o ther  G-linear isometry 

g: u2 + U. Using the  con t r ac t i b i l i t y  of the  (un,u) ,  one can prove t he  

commutativity of the  various coherence diagrams r e l a t i ng  these isomorphisms and so 

obtain t he  following r e su l t .  Detai ls  may be found i n  [107],  but the  ideas a r e  amply 
Definitions 3.12. Let E,E1,E" (: G A L  and Y E G 3  * 

i l l u s t r a t e d  i n  t h e  proof of Theorem 1.7. 
( i )  Define a na tura l  isomorphism 



- 
Theorem 3.13. The s t ab l e  category hG&& i s  a closed symmetric monoidal category 

with respect t o  the  i n t e rna l  smash product and function spectrum functors .  

This r e su l t  i s  exploited systematical ly for  t he  study of cohomology theor ies  i n  

[lo71 and [go] and is the  s t a r t i n g  point  for  our discussion of Spanier-Whitehead 

dua l i ty  i n  t he  next chapter. 

We end with a few remarks about the  re la t ionsh ip  between smash product and 

fixed point  functors. The obvious f ac t  t h a t  ( X A Y ) ~  = XGnYG for  based G-spaces X 

and Y i s  a ca lcu la t iona l  commutation r e l a t i on  between l e f t  and r i gh t  ad jo in ts .  

There i s  no reason t o  expect t h i s  re la t ionsh ip  t o  extend t o  spec t ra ,  and i n  f a c t  it 

doesn't .  

Remarks 3.14. Let i: uG + U be t h e  inclusion. By de f i n i t i on ,  for  E s G I U ,  

EG = (i*EIG s duGe This functor has E# = i l rX : 4 uG + GdU a s  l e f t  ad jo in t ,  where 

E* assigns t r i v i a l  G ac t ion  t o  a spectrum (o r  space; we a r e  thinking of E :  G + e l .  

The counit of t he  adjunction is a na tura l  G-map .#EG i E. This is t he  spectrum 

l e v e l  analog of t he  obvious inclusion €*YG i Y f o r  a G-space Y. We have t he  

Applying t h i s  t o  D = EG and D' = ElG fo r  EYE1 E GdU and passing t o  ad jo in ts ,  

we obtain a natural  map 

~ ~ i i n ,  w is general ly not an isomorphism. (1n prac t ice ,  of course, we o m i t  t h e  

isometries from the  notation i n  t h i s  comparison of i n t e rna l  smash products.) 

( i v )  The maps 5 , v , and w a r e  re la ted  by the  following commutative diagram, 

following commutation re la t ions .  

( i )  It is obvious t h a t  SIW(EG) = ( Q " E ) ~  and it follows from I. 3.5 t h a t  

E*E"X r. E"E*x f o r  a space X. Applying t h i s  t o  X = YG and passing t o  ad jo in ts ,  

we obtain a na tura l  map 

(Here c": 3 + 4uG on the  l e f t  and 1": G I  i GdU i n  the  middle and on the  r igh t . )  

( i i )  Proposition 1.4 implies an isomorphism 

for  D f2 &fi. Applying t h i s  t o  D = EG and X = YG and passing t o  ad jo in ts ,  we 

obtain a natural  map 

In contrast  t o  the  space l e v e l ,  v is generally not an isomorphism. 

( i i i )  By an easy inspection ( see  (VI. 3 . l ( i i )  ) , t h e  functor E#  commutes with 

external  smash products. That is ,  

( i  @ i)*E*(DhD1) z i*eXD*ix&*D' 

for  D,D1 s d u G e  For a G-linear isometry f :  U O U + U,  we have f o ( i  @ i )  = io fG,  

where t he  unlabeled isomorphisms a re  given by Definition 3.12( i) . 

$4. Change of groups functors and isomorphisms 

Let a :  H + G be a homomorphism of compact Lie groups. An indexing s e t  a i n  

a G-universe U may a l so  be regarded as  an indexing s e t  i n  U regarded as  an 

H-universe v i a  a ,  and there  r e su l t s  a forge t fu l  functor 

Of course, we have analogous forge t fu l  functors a*: GJ + H 3  and a*: GPO- + H B a .  * 
We s h a l l  usual ly omit a from the  notat ion,  regarding G-objects as  H-objects by 

neglect of s t ruc ture .  

We s h a l l  construct  l e f t  and r i gh t  ad jo in ts  t o  a*. U1 t h e  space l eve l ,  such 

functors a r e  given by 

GChaY and F ~ ( G + , Y )  

fo r  Y r H3. Here G+ hay  i s  the  quotient space G+AY/ (-) , where 

(ga(h) ,y)  - ( g , h ~ )  for  g s G y  h E H, and y E Y ;  

G a c t s  v i a  i t s  l e f t  ac t ion  on i t s e l f .  The space F ~ ( G + , Y )  is t he  function space 

of  l e f t  H-maps G + Y with l e f t  G ac t ion  induced by t he  r i gh t  act ion of G on 



i t s e l f .  When a i s  an inclusion, we use the notations 

fo r  these constructions. When a i s  a projection onto a quotient group with 

kernel N, we have 

Ln the general case, i f  a has kernel N and J = H/N, we have 

G+A a~ 2 G A j ( Y / N )  and F,(G+,Y) 2 F ~ ( G + , Y ~ ) .  

Thus the definit ion for general a is logically redundant; however, it wi l l  be 

quite convenient t o  have the general notation on hand. 

We have already defined orbi t  and fixed point spectra in 1.3.7, and, fo r  

simplicity, we shal l  define the general spectrum level  change of group functors as  

the appropriate composites. 

We need some standard space level  Ghomeomorphisms. For a: H -+ G and for a 

G-space X and H-space Y,  define a G-homeomorphism 

c.(g,~hx) = ( g , y ) ~ g x  and (g,y)nx) = (g,yAg-lx) 

for g e G, y E Y ,  and x E X. We shal l  continue t o  write < for cognate 

G-homeomorphisms differing by transpositions, such as  

There i s  an analogous G-homeomorphism 

it 18 specified on f :  X + F,(G+,Y) and f ' :  G+ + F(X,Y) by 

4(f  (g )  (x )  = f(g-lx) ( g )  and fi- l(f1 ) (x )  ( g )  = f '  (g )  (gx) . 

indexing se t  ' in  a G-universe . 
(i) Define G kHD E GOO, by l e t t ing  

and l e t t ing  the s t ructura l  map associated t o  VC W be the composite 
8 

( G + A ~ D V ) A S ~ - '  G ~ + ~ H ( ~ ~ ~ ~ W - v )  ~ " ) G + A ~ D w .  

For E E H A Q  , define G RHE = L ( G  rxHe~) E Gdp. 

(ii) Define F ~ [ G , D )  E GPQ by l e t t ing  

i 
and l e t t ing  the adjoint s t ructura l  map associated t o  V C W be the composite 

If  D i s  an H-spectrum, then F ~ [ G , D )  i s  a G-spectrum. 

These functors may be viewed as part icularly simple examples of twisted half 

smash products and twisted function spectra, the maps and 0-I encoding 

twisting by the action map y : G + Q (u,u) , (g )  (v)  = gv. They should not be 

confused with the untwisted smash product and function prespectra G+AD and 

F(G+,D) of 153, which admit no G action. h r  choice of notations i s  intended t o  

accentuate th i s  dist inction.  

By inspection on the prespectrum level  and use of 1.8.5, we have the following 

observations, which should be contrasted with those for orbit  spectra in 1.8.6(i i i) .  

 emm ma 4.2.   he prespectrum level  functor G r H D  preserves 1-inclusion prespectra 

and injection prespectra. Both it and the spectrum level  functor G RHE preserve 

injections,  closed inclusions, and pullback diagrams one leg of which i s  a closed 

inclusion (such as intersections of closed subobjects). 

We make no further explici t  references t o  prespectra below, and we generally 

use the l e t t e r  D for H-spectra and the l e t t e r  E for G-spectra. We think of 

G wHD as  the G-spectrum freely generated by D; dually, FH[G,D) i s  "cofree". The 

expected adjunctions make t h i s  precise. 

Proposition 4.3. For H C G,  there are natural isomorphisms 



and 

where E E G A &  and D e Hd@, a being an indexing s e t  i n  a G-universe. 

We use t h i s  i n  conjunction with t he  following more prec ise  form of the  

adjunct ions fo r  o rb i t  and fixed point spectra  given i n  I. 3.8. 

Proposition 4.4. For a normal subgroup N of G with quotient map E : G + J, 

J = G I N ,  there  a r e  natural  isomorphisms 

and 

where the  l e f t  s i de  i s  computed i n  the  universe uN and the  r i gh t  s ide  i s  computed 

i n  the  universe U, 

When G i s  a f i n i t e  group and X and Y a r e  f i n i t e  complexes, t h e  l a s t  

statement is due t o  Adams [3,5.3]. 

, Returning t o  our main theme, we combine def in i t ions  t o  obtain t he  desired 

general change of groups functors. 

Definition 4.6. Let a :  H + G be a homomorphism of compact Lie groups and s e t  

N = ~ e r ( a )  and J = H / N  C G. Let D e H d a ,  where a is an indexing s e t  i n  a 

%-universe. Define 

where E E J $ &  and D E G d a ,  a b e i n g  an indexing s e t  i n  a J-universe. I f  M i s  

a second normal subgroup of G and 6 :  G/M + G/MN i s  t he  quotient map, then 

We have the  desired composite adjunctions, and our functors a r e  su i tab ly  

compatible with t h e i r  space l eve l  analogs. 

Theorem 4.7. For a: H + G ,  there  a r e  na tura l  isomorphisms -- 

and 

The l a s t  statement is  ea s i l y  checked by conjugation and is recorded for  use i n  

sec t ion  7. 
where E e G A ~  and D E H A &  , being an indexing s e t  i n  a G-universe. Moreover, 

A s  usual ,  these  adjunctions pass t o  s t ab l e  categories .  (see Lemmas 4.12 and for  X c: G 3 ,  Y E H$, and Z P a, t h e r e  a r e  na tura l  isomorphisms 

4.13 below.) There the  o rb i t  adjunction combines with the  change of universe 

r e s u l t s  of Theorem 2.6 and Corollary 2.7 t o  give t he  following conclusions. G K ~ A ~ Z ~ Y  2 AZzm(G+ and C , * A ~ ~ ~ X  2 hZzWa*x. 

Theorem 4.5. Let J = G I N  with quotient map E: G + J. Let U be a complete Proof. Composites of adjoint  pa i r s  a r e  adjoint  pa i r s .  The l a s t  statement follows 
G-universe with inclusion i: uN + U. If D r G A U ~  i s  an &free 0-spectrm and by conjugation from the  evident equa l i t i e s  

E E J J U ~ ,  then 

# F ~ [ G , D Z )  = ( F ~ [ G , D ) ) ( z )  and ~ * ( E z )  = ( a fE ) ( z ) .  [D/N,E] 2 li*D,c ElGy 

# 
Stated another way, t he  adjunctions mean t h a t  there  a r e  natural  H-maps 

where E E = i*EfE. In pa r t i cu l a r ,  i f  X i s  an N-free G-CW complex and Y is 

any J-CW complex, then n :  D - G k , D  and E :  F a [ G , D ) 4 D  
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such t h a t  H-maps f :  D + E and g: E + D uniquely determine G-maps f and g 

which make the  following diagrams of H-spectra commute. 

D ' r G  RaD and Fa[G,D) 

When D = E and f and g a r e  t he  iden t i ty  map, we wr i te  

5:  G H ~ E - - ~ E  and v: E-Fa[G,E) a re  a l l  isomorphisms. 

f o r  t he  resu l t ing  "action" and "coaction" G-maps. As on t h e  space l eve l ,  these maps In f a c t ,  these isomorphisms a re  a l l  purely formal consequences of the  

admit simple re in te rpre ta t ions .  adjunctions, v i a  applicat ion of the  Yoneda lemma. They can a l so  be checked 

d i r ec t l y ,  by Passage from spaces t o  prespectra t o  spectra .  Similar ly,  we have 
Lemma 4.8. For a G-spectrum E, t h e  G-maps < and b character ized by the  t r a n s i t i v i t y  isomorphisms. 

commutative diagrams of H-spectra 

E S 0 E  and F(s',E) E 

T c  

a r e  isomorphisms, where 11: So + (G/aH)+ i s  the  obvious H-map. Moreover, t h e  

following diagrams of G-spectra commute, where 6 :  (G/aH)+ + So i s  the  obvious 

G-map . 

G c E A ( G / ~ H ) + A E  and F ( ( G / ~ H ) + , E )  + F ~ [ G , E )  

'1 C A I  F(S 

- 
E - 

T 
F(s',E) - E 

Here one thinks of G a s  ac t ing  from the  l e f t  on G K,E and diagonally on 

(G/~H)+*E.  Again, j u s t  as  on the  space l eve l ,  t h e  isomorphisms 5 and b 
general ize.  

Lemma 4.9. For a G-spectrum E and H-spectrum D, t h e  G-maps c ,  b ,  and K 

character ized by the  commutative diagrams of H-spectra 

Lemma 4.10. For a :  H + G and f3 : K + H and for  a K-spectrum C ,  t h e  dotted 

arrow G-maps specif ied by K-commutativity of the  diagrams 

C ' A  HbBC and & j .  C 

i 1" 
G K C ----*G waH r C 

a B B 

IE  
F, [ G . F ~  [H,c) ----+- F [G,c) 

a B 
* * a r e  isomorphisms. For a G-spectrum E, B a E = (aB)*(E).  

These r e su l t s  imply re la t ions  between G-sphere and H-sphere spectra .  

Lemma 4.11. For a :  H + G and B :  K + H and fo r  n E 2 ,  

( G / ~ B K ) + A S ~  2 G r sn n G K,H rBsn  n G K,((H/BK)+As"), 
a13 

where we have impl ic i t ly  used the  re la t ions  a*Sn = Sn and BWsn = Sn. 

Since the  functor G K ~ ( ? )  commutes with wedges, cof ibres ,  and co l imi t s ,  t h i s  

has the  following immediate consequence. 

Lemma 4.12. I f  D i s  an H-CW spectrum, then G waD i nhe r i t s  a canonical 

s t ruc ture  a s  a G-CW spectrum. 

8 
The analog fo r  the  functor  a is weaker. 

Lemma 4.13. I f  E i s  a G-CW spectrum, then a8E has the  homotopy type of an 



H-CW spectrum. I f  G i s  f i n i t e ,  then a * ~  i s  i t s e l f  an H-CW spectrum. 

Proof. Again, we need only see what a* does t o  sphere spectra .  Since a* 

commutes with A " C ~ ,  it su f f i c e s  t o  consider the  behavior of a* on space l eve l  
n 9 

spheres. For K C G ,  a SK has t h e  homotopy type of an H-CW complex by I. 1.1. * 9 
I f  G is  f i n i t e ,  ~ * ( G / K )  is  a d i s j o in t  union of H-orbits and a SK i s  a wedge of 

9 
H-spheres SL for  various L. 

In  t h e  discussion above, we cons is ten t ly  worked i n  a fixed G-universe regarded 

as  an H-universe by pullback along a: H a G. Inspection on the  l eve l  of r i gh t  . 

adjo in ts  and use of conjugation gives the  expected behavior with respect t o  change 

of universe. 

Lemma 4.14. Let f :  U + U' be a G-linear isometry between G-universes. Then there  

a r e  na tura l  isomorphisms 
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map 5 : . G  rx E -t E such t h a t  the  evident un i t  and a s soc i a t i v i t y  diagrams commute. 

s imilar ly,  a map of G-spectra is the  same thing as  a map of G CK (?)-algebras. 

( i i )  The dual asser t ions  a l so  hold. There a r e  na tura l  maps E :  F[G,E) -+ E and 

v: F[G,E) -t F[G,F[G,E))  such t h a t  ( F [ G , ? ) , v , E )  i s  a comonad i n  A& and a 

G-spectrum is t he  same th ing  as  an F [ G ,  ( ? ) 1-coalgebra. Here ( II ,E ) and ( p ,v ) a r e  

conjugate pa i r s  i n  t he  sense of I. 3.5. 

( i i i )  I f  G i s  f i n i t e ,  then G pc ( ? )  and i t s  re la t ion  t o  G ac t ions  can be 

lvisualized a s  follows. If g E G i s  regarded as  a l i nea r  isomorphism U + U,  

then g*: da + l a  is  defined as  i n  I. 2.5 and g*h, = (gh), . Here g'l~ = V fo r  an 

indexing space V i n  U ,  and a t r i v i a l  comparison of def in i t ions  shows t h a t  

An act ion of G on E is specif ied by maps cg: grE + E such t h a t  6, = 1 and 

tgogicch = Cgh" The act ion of g on E comes v i a  maps g E + E ( a s  compared t o  

the space l eve l  maps X + X)  because of the  ro l e  played by the  act ion of G on the  

universe U. Dually 

* ,  
~ , ( G K $ ) z G K ~ ~ * D  ~ * F ~ [ G , D ' ) ~ F , [ G , ~ D ' )  

F I G , E )  = x g * ~  

geG 
fo r  E E: G ~ U ,  E' E GSU' , D G H&Uy and D' E HJU' 

and the  coaction map E + F[G,E)  of a G-spectrum admits a s imi la r  descript ion i n  
8 

terms of maps E + g E. 
We conclude t h i s  sect ion with a discussion of t he  f ree  and cofree G-s~ectra 

( i v )  I f  N is  a normal subgroup of G with quotient group J and E E A & ,  
where & is a J-indexing s e t  regarded as  a G-indexing s e t ,  then 

G H E = G K,E and F[G,E) = Fe[G,E) 

generated by a nonequivariant spectrum E e h a ,  where a is an indexing s e t  i n  a J K E = (G H E ) / N  E JJ& 

G-universe U. We a r e  spec ia l iz ing  t he  theory above t o  t h e  t r i v i a l  inclusion 
by Lemma 4.10 applied t o  the  t r i v i a l  composite e + G + J. In par t icu la r ,  with N = G 

e + G and we have t he  adjunctions 
and J = e ,  

GA@(G IX E,F) ~ A @ ( E , F )  and &&(F,E) n G ~ ~ ( F , F [ G , E ) )  

for  E da and F E: G A P .  Jus t  as  G-spaces can be defined i n  terms of maps 

G'AX + X ,  so G-spectra can be defined i n  terms of maps G Lx E + E. We summarize 

the  propert ies  of these construct ions i n  the  following remarks, a l l  of which can 

e a s i l y  be ve r i f i ed  by passage from spaces t o  prespectra  t o  spectra .  

Remarks 4.15 ( i ) The un i t  and mul t ip l ica t ion  of G induce na tura l  maps 

n: l3 + G ix E and p: G P G K E + G P E such t h a t  (G c ( ? ) , p y n )  is a monad i n  t he  

when a is an indexing s e t  i n  a G-tr ivial  universe. 

( v )  Let K = G x H and l e t  be an indexing s e t  i n  a I<-universe 

G ~c ( ? )  : d a  + G U  r e s t r i c t s  t o  a functor H A a  + KdlL, and s imi la r ly  

Moreover, fo r  E E Aa, t h e r e  a r e  na tura l  isomorphisms of K-spectra 

U. Then 

for  H. 

category A&. (see e .g. 192,971 fo r  the  relevant  ca tegor ica l  de f i n i t i ons0  ) 

Moreover, a G-spectrum E E: G B ~  is  precisely t he  same th ing  as  an algebra over For F E K A a y  t h e  G ac t ion  G P( F + F i s  a map of H-spectra and the  H 

t h i s  monad. That i s ,  a G-structure on E e &a determines and is determined by a action F + F is a map of G-spectra. The in te rpre ta t ion  i s  t ha t  K-spectra a r e  



category of G-spectra . 
In chapter V I ,  we s h a l l  use t h e  l a s t  observations t o  study Zj-spectra i n  t h e  

category of G-spectra. In pa r t i cu l a r ,  we s h a l l  construct extended powers of 

G-spectra, t h e  f u l l  general i ty  presenting no grea te r  d i f f i c u l t y  than t he  case of 

nonequivariant spectra .  

$ 5 .  Space l eve l  construct ions f 

For s impl ic i ty ,  we separate  out the  elementary space l eve l  construct ions and 

lemmas required i n  the  proofs of our main change of groups theorems. Let H be a 

(closed)  subgroup of G and l e t  L be t he  tangent H-space a t  eH E G/H. We 

wri te  L = L(H) or  L = L(H,G) when necessary for  c l a r i t y .  The following map t 

w i l l  be t he  geometric heart  of the  equivalence 

constructed i n  the  next sect ion.  

Construction 5.1. Let j :  G/H + V be an embedding of G / H  i n  a G-representation 

V. The inclusion of the  tangent space a t  eH embeds L as  a sub H-representation 

of V. Let W be t h e  orthogonal complement of L, so t h a t  V = L O W  a s  an 

H-space. The no& bundle of the  embedding j is G xHW + G / H ,  hence we may 
N 

extend j t o  an embedding j :  G xHW + V of a normal tube. Collapsing t he  

complement of i ts  image t o  the  basepoint,  we obtain a G-map 

We need un i t  and t r a n s i t i v i t y  propert ies  of t . The inclusion ( 0 )  + L induces 

e :  SO + sL, and we a l so  wr i te  e f o r  t he  induced H-map sW + sV = sL A sW. Note 

t h a t  e is nu l l  H-homotopic i f  L contains a t r i v i a l  representat ion,  and t h i s  is 

so i f  and only i f  WH = NH/H is  i n f i n i t e .  For an H-space Y, wr i te  17: Y + G ocHY f o r  
N 

t h e  na tura l  inclusion.  The r e s t r i c t i o n  of j  t o  W gives r i s e  t o  an H-map 

sW + sV which is H-homotopic t o  e. 

Lemma 5.2. The following diagram i s  H-homotopy commutative. 

For t he  t r a n s i t i v i t y  r e l a t i on ,  l e t  K C H C G and f i x  an i den t i f i c a t i on  of 

K-spaces 

where L(K)  and L(H)  a r e  taken with ambient group G. 

'Construction 5.3. Let i: H/K + V '  be an H-embedding of H/K i n  a 
N 

G-representation V' and wri te  V' = L(K,H) @ W' as  a K-space. Let i: H xKWt + V' 
N 

be an embedding of a normal H-tube. Let j  and j be a s  i n  ~ o n s t r u c t i o n  5.1. 

Define a G-embedding 

k(g,hK) = (gi(hK) , j  (gH) 1. 

Then define an embedding of a normal G-tube 

,., 
k: G xK(W' @ W) = G xH(H xK(wl @ w))--+ V' $ V 

With these notat ions,  Construction 5.1 gives th ree  maps t re la ted  by a 

t r a n s i t i v i t y  diagram. 

Lemma 5.4. The following diagram commutes. 

The following map u w i l l  be the  geometric heart  of the  equivalence 
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inverse t o  w constructed i n  the  next sect ion.  where m i s  the  product on G.  he f a c t  t h a t  fl(-A) # fl(A)-l i s  immaterial.) 

Then f l  is K-isotopic r e 1  ( 0 )  t o  t he  s l i c e  used t o  construct  the  bottom map u 

Construction 5.5. Let H x H a c t  on G by (hl,h2)g = hlghzl and ac t  on 

L x H by (hl,h2) (A ,h) = (hlh ,hlhh?l). We th ink  of the  f i r s t  and second fac tors  

H as  act ing from the  l e f t  and r i gh t ,  respect ively.  Choose an embedding i: L + G 

of L a s  a s l i c e  a t  e such t h a t  

N 

(say by use of the  exponential r ap ) .  Via f(A , h ) ~  = f(A)h, f extends t o  an 
N 

(HXH)-embedding f :  L x H + G with image an open neighborhood of e .  Collapsing 

i t s  complement t o  t he  basepoint,  we obtain an (HXH)-map u: G+ + sL AH'. I f  H 

has f i n i t e  index i n  G ,  u: G+ + H+ maps a l l  points  of G - H t o  the  d i s j o in t  

basepoint.  For any H-space Y ,  we obtain an induced l e f t  H-map 

L 
U: G WHY -(sL AH') AHY = S A Y. 

We a r e  in te res ted  pa r t i cu l a r l y  i n  t he  case Y = sW, where 

u: G K ~ S ~ - S ~ A  sW = sV* 

Again, we need un i t  and t r a n s i t i v i t y  propert ies  of u. ; 
X 

Lemma 5.6. The following diagram commutes f o r  an H-space Y e  

Lemma 5.7. The following diagram i s  K-homotopy commutative fo r  a K-space Z. 

and, i f  we use f l  ins tead ,  t he  diagram commutes by a t r i v i a l  ver i f ica t ion .  

The following three  lemmas w i l l  be used i n  the  next sect ion t o  construct t he  

spectrum l eve l  map Jl from the  space l eve l  map u and t o  prove t h a t  the  

composites Jlw and wJI a r e  homotopic t o  the  respect ive i den t i t y  maps. 

Lemma 5.8. For a G-space X and H-space Y ,  t h e  following diagram is commutative 

i f  H has f i n i t e  index i n  G and is H-homotopy commutative i n  general.  - 

Proof. Both u and ( lhu) S map a l l  points  with G coordinate not i n  the  
N 

neighborhood f ( ~  x H )  t o  t he  basepoint. For A e L, we have 

and 

The H-contract ibi l i ty  of L implies t h a t  f :  L + G i s  H-homotopic t o  the  constant 

map a t  e ,  and the  conclusion. follows. 

Lemma 5.9. The following composite i s  H-homotopic t o  the  iden t i ty .  

N 

Proof. The H-embedding f :  L x H + G of Construction 5.5 and the  G-embedding 
N 

j : G xHW + V of Construction 5.1 induce an embedding 

Proof. Given a K-slice f : L(K,H) + H and an H-slice f : L(H) + G ,  l e t  f be k: V = L x W = (L x H )  xHW +G kHW +v. 

the  K-s l ice  specif ied by the  composite 
The composite u t  i s  k-I on k(v)  and col lapses t he  complement of k(V) t o  t he  

basepoint. Clearly k is H-isotopic t o  the  i den t i t y ,  and we apply the  Pontryagin- 

Thom construction t o  an isotopy t o  obtain t he  desired homotopy. 
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Lemma 5.10. For an H-space Y, the following diagram is H-homotopy comutative. Thepurpose of this section is to prove the following result. 

v -1 
zVy VYE'(G xHY) = (G xHY) AS' &(G w,Y) A(G $3') 4 G  Theorem 6.2. For H-spectra D, the map w: FHIG,zLD) + G kHD is a natural 

equivalence of Gspectra. V I  x r, 

J! Corollary 6.7 There are Gequivalences F(G/H+,s) - G nHSL and 

2 (140d' G PH(~n~V) G E"(G 9) 4-L G %(YAS ) 

Z~G/H+ - F ~ I G , S ~ )  = F(G N~s-L,s). 

At the bottom, S" = sLhSW and c: SL + SL maps A to -A. 

Proof. The composite around the right maps all'points with V coordinate not in 
Proof. Take D = s - ~  and use the isomorphism 6 of lemma 4.8 for the first - equivalence. Take D = SO for the second. The last is the ease D = SL and E = S 

J(~(L) x W) to the basepoint. It maps the point y A j (f ( ~)hw) to 
of the isomorphism x of Lemma 4.9, with F(s-~,s) = SL. 

(f (A) ,y).+f l A) (h,w). Again, the H-contractibility of L implies that an H-homotqpi 

map is obtained if fl A) is replaced by the identity element of G. Thus the 
Remark 6.4. As will be discussed in V§9, a Mackey functor is an additive contra- 

composite around the right is H-homotopic to wut and the conclusion follows fro 
variant functor from 8 G  to the category of Abelian groups, where 8 G  is the full 

the previous lemma. 
subcategory of orbit spectra in ~GA. This notion is the starting point for the 

The following observation reinterprets the "sign" o appearing in the previou construction of ordinary RO(G)-graded cohomology theories; see 188,901. When G is 

finite, 6 G is self dual. In the case of general compact Lie groups G, the 
result. 

corollary suggests that one should study not 8 G  but the self dual full subcategory 

of ~ G B  containing both the orbit spectra and their duals. 
Lemma 3.11. The map o~l: SLASL + SL,SL is H-homotopic to the transposition map. 

Proof. Multiplication by the block matrices I- ) for The theorem is most useful in its represented form. - 

homotopy . Corollaw 6.5. For G-spectra X and H-spectra D, 

86. A ceneralisation of ~irthmiiller's isomorphism : IX,Z%I~ - IX,F~LG,C~) lG- IX,G uH~lG 

Fix a Guniverse U into which G/H (and any other orbits used) embeds. All is a natural isomorphism. 
spectra are to be indexed on U. Recall the notations of Construction 5.1 and 

take V C D there. Note that our specification 8' = S%SW forces s-' = S-~AS-~. 
Replacing D by YAE for a Gspectrum E and H-spectrum Y, using the 

Transposition of SW and SL gives a natural H-isomorphism isomorphism i to replace G pH(YnE) by (G xHY)nE, and letting X run through 

zWz-vD = D&-VAsW = DAs-WAs-LAsW - D ~ - ~  = z-L~. the G-sphere spectra, we obtain the following homological consequence. 

- Corollary 6.6. For G-spectra E and H-spectra Y, 
Bfinition 6.1. For a G-spectrm E, define t to be the composite G-map 

-1 
E E X - ~ E A S ~  a z-~E~(G ~$3') LG %c~z-~E " G E$ ~ k )  E E$(G "9). 

Here Ei?. denotes the HO(G;U)-graded homology theory on H-spectra obtained by For an H-spectrum D, define w to be the composite G-map 
regarding E as an H-spectrum. Wirthmiirler's original isomorphism is obtained by 

- 
L t 

-L 
F~[G,Z D) -G % L - ~ F ~ I G , ~ ~ D )  * "-6 W,D. specialiaing to the case of suspension 8-spectra Y. 

We need some observations about the cylinder construction in order to define 



the  inverse t o  w. Consider t he  ca tegor ica l  functor L of 1.2.2 and t he  cyl inder  

functor Z = LK of 1.6.8 from H-prespectra t o  H-spectra. For H-prespectra D ,  

1.6.8 gives a na tura l  map a :  KD + D. When D i s  an inclusion H-prespectrum, fo r  

example an H-spectrum, 7 = La is a weak equivalence. When D is an H-CW 

spectrum, ZD has the  homotopy type of an H-CW spectrum by 1.8.12 and 1.8.14 

and 7 is an H-homotopy equivalence. By inspection of 1.6.8, we f ind  ea s i l y  t h a t  

there  a r e  na tura l  isomorphisms which make t he  following diagrams commute, where Y 

is an  H-space. 

K(G K ~ D )  K(-DAY) 
"%3 

lp 4G 'HD and DAY 

G K ~ K D  

When D i s  an H-spectrum, L(G K ~ L D )  and L(RDAY) give t h e  spectrum l eve l  

functors G wHD and D h Y ,  where R is the  forge t fu l  functor from spectra  t o  

prespectra ,  and the  diagrams imply t h e  following conclusions. 

Lemma 6.7. Let D be an H-CW spectrum and Y be an .  H-CW complex. 

( i )  y: Z(G F ~ D )  + G r H D  i s  an equivalence of G-spectra. 

( i i )  7: Z(DAY) + DAY is an equivalence of H-spectra. 

Defini t ion 6.8. Let D be an H-prespectrum indexed on U. For an indexing G- 

space W ,  Construction 5.5 gives an H-map 

I f  H has f i n i t e  index i n  G ,  then Lemma 5.8 implies t h a t  the  maps u specify a 

map of H-prespectra G r H D  + zLD (and the  d e t a i l s  t o  follow a r e  unnecessary). In 

general,  Lemma 5.8 implies t h a t  t he  maps u specify a w-map, i n  the  sense of 

1.6.2. Moreover, t he  homotopies a r e  na tura l ,  so t h a t  u: G KHD + ,ELg spec i f i e s  a 

p re te rna tura l  transformation of functors  on H-prespectra. Now l e t  D be an 

H-spectrum. By 1.7.8, we obtain a diagram of ac tua l  na tura l  transformations of 

H-spect r a  

In t he  two most important spec ia l  cases,  u can be wri t ten d i r ec t l y  i n  terms 

of the  space l eve l  maps u. 

Lemma 6.9. For H-spaces Y ,  t h e  following diagram of H-spectra commutes. 

Note t h a t  the  bottom isomorphism involves t ranspos i t ion  of sL and Y. 

Lemma 6.10. For G-spectra E, t h e  following diagram of H-spectra commutes. 

These a r e  both easy ve r i f i c a t i ons  from the  def in i t ions  and na tu r a l i t y  

diagrams. Similar ly,  we have the  spectrum l eve l  analog of Lemma 5.8. 

C ,  

i Lemma 6.11. For H-spectra D and G-spectra E, t h e  following diagram of H-spectra 
i 

commutes . 

By Lemma 6 -7,  t h i s  diagram spec i f ies  a well-defined na tura l  map 11 : G *HD + CLD i n  

t h e  s t ab l e  category of H-spectra. Let 

We in se r t  the  un i t  and t r a n s i t i v i t y  propert ies  of w and p implied by Lemmas 

5.2, 5.4, 5.6, 5.7 and diagram chasing. Note t h a t  e: SO + sL induces a map 

e :  S-L + S-LASL = S. 

Lemma 6.12. The following diagrams of H-spectra commute. 

Lemma 6.13. Let KC H C G and l e t  C be a K-spectrum. 



( a )  The following diagram of G-spectra commutes. 

( b )  The following diagram of K-spectra commutes. 

We begin t he  proof of Theorem 6.2 with the  following reduction. 

Lemma 6.14. I f  o: F ~ [ H , s ~ ( ~ ' ~ ) )  + H r @  i s  an H-equivalence fo r  a l l  K C H c G, 

then w: FH [ G , I ~ ( ~ ) D )  -+ G K ~ D  is a G-equivalence fo r  a l l  H-CW spectra  D. 

Proof. With C = S, t h e  v e r t i c a l  arrows of t he  diagram' of Lemma 6.13 ( a )  a r e  

assumed t o  be equivalences. We conclude from the  diagram t h a t  w i s  a 

G-equivalence when D i s  H #@ o r  any of i ts  suspensions by G-representations 

( s ince  t he  suspension coordinate shuf f les  through a l l  of the  construct ions) .  k w  

consider t he  homomorphism 

fo r  a G-spectrum X. By induction over c e l l s  from the  case Z ~ Z ~ H / K + ,  t h i s  is an 

isomorphism when D i s  f i n i t e .  By passage t o  col imits ,  it is  thus an isomorphism 

fo r  any D when X i s  a f i n i t e  G-CW spectrum. Let t ing X run through t h e  

G-sphere spectra ,  we conclude t h a t  o i s  a (weak) G-equivalence for  any D. 

Proof of Theorem 6.2, We s h a l l  prove more precisely t h a t  w and $ a r e  inverse 

G-equivalences between G MHD and FH[G , E ~ D )  . We f i r s t  show t h a t  $w is  

G-homotopic t o  the  i den t i t y  map of F~ [G,zLD) , and it suf f ices  t o  show t h a t  

E$O = p w  is  H-homotopic t o  E .  k w  w = ( 1  a z - ~ E ) ~  and an easy chase of 

na tu r a l i t y  diagrams shows t h a t  

- 
Thus ~w = ~ p t  . A diagram chase from Lemmas 5.9, 6 -9, and 6.11 shows t h a t  t h e  

composite 

i s  H-homotopic t o  t he  i den t i t y  for  any G-spectrum E. The c ruc i a l  point i s  t h a t  

u t  - 1, but sign watchers w i l l  see t h a t  the  t ranspos i t ion  of SW and s - ~  i n  t he  

def in i t ion  of % i s  neutral ized by t he  t ranspos i t ion  of SL and SW coming from 

our applicat ion of Lemma 6.9 t o  Y = sW. 

To show t h a t  w$ i s  G-homotopic t o  the  i den t i t y  map of G aHD, it suf f ices  t o  

show t h a t  ' w$n i s  H-homotopic t o  n. Note f i r s t  t h a t  

F 
i 
1 by the  na tura l i ty  of t :  E + G K ~ E - ~ E  and the  r e l a t i on  p = E$. Note next t h a t  t h e  

following commutative diagram re-expresses the  'ith suspension of t h i s  composite ; 
i 

I we abbreviate E = G kHD fo r  l e g i b i l i t y .  

Here a ' :  EAS' = E A S ~ A S - ~ ~ S ~  + E ~ S - ~ A  SL*SW = E A S - ~ A S ~  is the  t ransposi t ion 

and l ~ a  ~1 on DAS '  = D A  S ~ A  SW i s  given by t he  sign map a(X) = -A. The 

bottom r i gh t  square commutes by Lemma 5.11 and t he  top r igh t  square commutes by - 
na tu r a l i t y .  The l e f t  par t  of the  diagram i s  seen t o  commute by wri t ing out t ,  

using na tu r a l i t y  diagrams, and checking carefu l ly  which suspension coordinates get  

permuted. By Lemmas 5.10 and 6.9 and the  diagram, we conclude t h a t  w$n is  

H-homotopic t o  n when D = zmy. Thus, f o r  such D ,  w and $ a r e  inverse 

G-equivalences. By Lemma 6.14 and t he  case Y = SO, we conclude t h a t  w is  a 

G-equivalence fo r  any D. Since w$ - 1 fo r  any D ,  it follows t h a t  $ and w 

a r e  inverse G-equivalences for  any D. 

We conclude t h i s  sect ion with a few technica l  na tu r a l i t y  propert ies  of w. 

These played a r o l e  i n  our work with McClure [89] comparing various forms of the  

Segal conjecture and w i l l  be needed i n  Chapter V. We need a def in i t ion ,  which is i n  

f a c t  a f i r s t  instance of basic  notions t o  be studied i n  d e t a i l  l a t e r .  



-V v C-T w z-'( lKe)pz-v(G KHSV) hmGIH+. T: s = z s -ceV(G aHS ) 
i Corollary 6.17. The following diagram commutes f o r  G-spectra X and E. i 

The equivariant Euler cha r ac t e r i s t i c  X(G/H)  i s  t he  composite 5 ~ :  S + S, 

5: RZrnG/H+ + S; it is t o  be regarded as  an element of n;(s). 

The name Euler cha r ac t e r i s t i c  is  j u s t i f i e d  since a theorem of Hopf ( t o  be given 

an equivariant  general izat ion i n  111s7) implies t h a t  the  composite 

W l o c  e sV AG K,s --G IXHs V 5  , s V  

has nonequivariant degree the  c l a s s i c a l  Euler cha r ac t e r i s t i c  x (G/H) ;  compare 

Becker and Got t l i eb  [ 10~2.41  . 
Similar ly,  it is worth recording the  represented form of the  t r a n s i t i v i t y  

diagram of Lemma 6.13 (a). . 

The next r e su l t  shows how w r e l a t e s  t o  t h e  G ac t ion  5 and G coaction Corollary 6.18. The following diagram commutes for  G-spectra X and K-spectra C. 

Lemma 6.16. The following diagram of G-spectra commutes. 

L F[l,e) = + F ~ [ G , ~  E) FH [G,E) - ~ G L < ~ E  

V T  S A E  : G / H + ~ E  

Proof. The bottom par t  commutes by t he  def in i t ion  of X(G/H)  and t he  t r i ang l e  

commutes by Lemma 4.8. Using EV = 1 and na tu r a l i t y  diagrams, we f ind  ea s i l y  t ha t  

the  commutativity of t he  top par t  reduces t o  the  commutativity of t h e  following 

diagram, which can be checked by a carefu l  inspection of def in i t ions .  

,,On the  l eve l  of represented functors ,  

Remark 6.19. For H-spectra D ,  the  composite 

i s  t he  na tura l  project ion of G-spectra. The na tu r a l i t y  diagram r e l a t i ng  w and 

1 K 5 can be used i n  conjunction with Corol lar ies  6.17 and 6.18 t o  obtain t he  

following commutative diagram. (Here e r e f e r s  t o  the  K-map SO + s ~ ( ~ ~ ~ )  * )  



Remark 6.20. For K-spectra C,  the  composite 

i s  the  na tu r a l  inclusion of H-spectra, and the  un i t  diagram f o r  H P ( ~ C  can be used 

i n  conjunction with the  t r a n s i t i v i t y  diagram of Lemma 6.13 ( b )  and a n a t u r a l i t y  

diagram t o  obtain the  following commutative diagram of K-spectra. (Here e r e f e r s  

t o  the  H-map SO + s ~ ( ~ ) . )  

$7. A general izat ion of Adams' isomorphism 

I n  p a r a l l e l  with the  descript ion jus t  given of the  r e l a t i on  between the  

functors  G kH(?)  and FH[G,?) on H-spectra f o r  H C G, we here discuss the  

r e l a t i on  between the  functors  ( ? ) / N  and ( ?  l N  on Gspec t r a ,  where N i s  a normal 

subgroup of G with quotient  group J = G/N. This connection i s  l e s s  general i n  

t h a t  it applies  only t o  N-free G s p e c t r a  and i s  more complicated in t h a t  it involves 

changes of indexing universe. We f i x  a complete G-universe U and l e t  i: uN + U 

be the  inclusion of i t s  N-fixed point  subuniverse. We may regard uN a s  a 

J-universe and, a s  such, it i s  c l ea r l y  complete. 

The group G a c t s  on N by conjugation, f ix ing  e e  N. Thus the  tangent 

space of N a t  e is a G-representation. We denote it A, o r  A(N) o r  A(N,G)  

when necessary f o r  c l a r i t y ,  and c a l l  it the  ad jo in t  representat ion of G derived 

from N. 

For a J-spectrum E indexed on uN, l e t  

The functor  E#: J A U ~  -t GaU i s  l e f t  adjoint  t o  t he  N-f %xed point  functor 

GbU + J ~ U ~  (by Propositions 1.2 and 4.4; compare Remarks 3.14) . For an N-free 

G-spectrum D indexed on uN, we s h a l l  construct  a map 

w 

T: DIN -+- ( C - ~ ~ ~ D )  
i 
1 

of T i s  a na tura l  equivalence of J-spectra indexed on uN. 

I 
E Corollary 7.2. I f  D e GAU' i s  N-free and E € JmN, then 

I 8 

is a na tura l  isomorphism. In pa r t i cu l a r ,  i f  X i s  an N-free G-CW complex and Y 

i s  any J-CW complex, then 

where the  l e f t  s ide  i s  computed i n  the  universe u N  and the r igh t  s ide  i s  computed 

i n  the  universe U. 

When G i s  a f i n i t e  group and X and Y a r e  f i n i t e  complexes, t he  l a s t  

statement i s  due t o  Adams [ 3 , § 5 ] ,  and h i s  work motivated our work i n  t h i s  sect ion.  

Remarks 7 .3  ( i )  I f  N is  not Abelian, i t s  conjugation act ion on i t s e l f  i s  non- 

t r i v i a l .  I f  N is a l so  not f i n i t e ,  then N a c t s  non-tr ivial ly on A. In t h i s  

case, t h e  desuspension functor c - ~  i s  only defined on ~ G A U ,  not on &uN. 
( i i )  When A = 0 ,  one might naively hope t o  replace ( i , ~ )  by D N  i n  Theorem 7.1, 

but t h i s  f a i l s  hopelessly. For example, i f  G = N is  f i n i t e  and D = C"G+ 6 G I U ~ ,  

then DG = *, whereas the  theorem gives t h a t  ( & D l G  = S. This f a c t  helps explain 

our care i n  defining N-free G-spectra indexed on non-tr ivial  universes. They a r e  
formed from c e l l s  involving only N-free o rb i t s  G / H  and, a s  we have j u s t  observed, 

it does not follow t h a t  t h e i r  &.fixed point spectra  a r e  t r i v i a l .  

The remainder of t h i s  sec t ion  is  devoted t o  the  construction of T and the  

proof of Theorem 7.1. In f a c t ,  T i s  an example of the  t r an s f e r s  t o  be defined i n  

chapter I V .  We th ink  of the  project ion i*D + &(DIN)  as  a kind of s t ab l e  

bundle. When D is  Cmy+ fo r  an unbased N-free G-space Y ,  t h i s  map i s  the  

s t ab i l i z a t i on  of the  "equivariant bundle" Y + Y / N ,  and we begin by explaining t he  

appropriate  way t o  th ink  about group act ions i n  t h i s  space l eve l  s i tua t ion .  

of G s p e c t r a  indexed on U, and the  purpose of t h i s  sec t ion  i s  t o  prove the  

following r e su l t .  

In our approach t o  the  usual  s t ab l e  t r an s f e r  map, it i s  e s s en t i a l  t ha t  a 

bundle Y + B with f i b r e  F and s t r uc tu r a l  group II has an associated pr inc ipa l  

II-bundle X. We construct t he  t r an s f e r  by f i r s t  constructing a s t ab l e  pre t ransfer  

n-map S + cO"F+ i n  a complete II-universe, next smashing with x+, then using t he  



change of universe isomorphism of Theorem 2.8 t o  p u l l  back t o  a II- t r ivial  universe,  

and f i n a l l y  passing t o  o r b i t s  over Ii. The use of change of universe is v i t a l  s ince  

we cannot pass t o  o r b i t s  when working i n  a non-tr ivial  universe. The e s s e n t i a l  

observations a r e  j u s t  t h a t  X i s  II-free and t h a t  Y = X xRF and B = X xn*. 

For our N-free G-space Y ,  it would seem t h a t  t h e  f i b r e  and s t r u c t u r e  group 

a r e  both N and t h e  bundle i s  p r inc ipa l .  However, t h e r e  is no obvious way t o  

g ive  Y xNN a G-action making it G-homeomorphic t o  Y. This i l l u s t r a t e s  t h e  

problem, t o  be discussed i n  d e t a i l  i n  I V S 1 ,  of deciding j u s t  what one should mean by 

an "equivariant bundle". In t h e  present  s i t u a t i o n ,  we can resolve t h e  d i f f i c u l t y  by 

working not with G but with t h e  semidirect  product. I' = G xcN, where c: G + A u t ( ~ )  

i s  t h e  conjugation ac t ion  of G on N. Thus, i n  I' , 

(h,m)(g,n) = (hg,g-%ngn) f o r  h,g r G and m,n 6 N. 

We agree t o  wr i te  II f o r  N regarded a s  t h e  normal subgroup e xcN of I', so 

t h a t  G = I'/II. We have both t h e  obvious quot ient  homomorphism E :  I' + G spec i f ied  

by ~ ( ~ , n )  = g and t h e  twisted quotient  homomorphism 8: I' + G spec i f ied  by 

8(g,n)  = gn. The l a t t e r  r e s t r i c t s  on II t o  t h e  identi-t;y homomorphism of N. Let 

8 % ~  denote Y regarded as  a I'-space v i a  8 and note t h a t  Y i s  II-free. We 

embed G a s  t h e  subgroup G xce of  I' and observe t h a t  both E and 8 r e s t r i c t  

t o  t h e  i d e n t i t y  map G t G. Let I' a c t  on N by 

(g,n)m = gnmg-l f o r  g r G and m,n s N. 

Then N is  I'-homeomorphic t o  t h e  o r b i t  I'/G v i a  t h e  map sending n t o  t h e  coset 

of (e ,n ) .  Observe t h a t  we have t h e  composite G-homeomorphism 

Y 2 (I' xGy),/II s (@*Y x I'/G)/II e ( 8 % ~  x N)/II. 

(This would a l s o  hold f o r  E*Y, bu t  we want t h e  f r e e  X-action.) Thus, when 

thinking of Y t Y / N  a s  an equivariant  bundle, we regard t h e  r-space @*Y a s  t h e  

t o t a l  space of i ts  associated p r i n c i p a l  bundle, t h e  r-space N z r / G  a s  i t s  f i b r e ,  

and t h e  subgroup II of I' z s  i ts  s t r u c t u r a l  group. 

We must general ize t h i s  descr ip t ion  of Y a s  (B*Y x N)/II  t o  t h e  spectrum 

l e v e l .  For D s G P U ~ ,  we have i*8*D r I'AU, where U i s  regarded a s  a I'-universe 

v i a  E:  I' + G (and not 8)  ; s ince  N C G a c t s  t r i v i a l l y  on uN, t h e  I'-actions 

on uN v i a  E and 8 agree. It is easy t o  see  t h a t  i*8*D i s  II-free when D i s  

Lemma 7.4. Let D be an I?-free G-spectrum indexed on uN. Then t h e r e  a r e  na tura l  

isomorphisms 

(i*@*Dr\N+)/II 2 i*D and (i,flXD)/II 2 i.(D/N) 

of G-spectra indexed on U. 

Proof. Since N e I'/G, Lemma 4.8 gives t h a t  E A N+ is  r-isomorphic t o  I' wGE 

f o r  E e rdu. Since the  composite G C I' A G is t h e  i d e n t i t y ,  Lemma 4.10 gives 

t h a t  (I' F ~ E ) / I I  s E f o r  E e GIU.  Since i,8*D = i,D when regarded a s  a 
6 G-spectrum, because the  composite G c I' ----jrG is t h e  ider i t i ty ,  t h i s  proves t h e  

f i r s t  isomorphism. For t h e  second, observe t h a t  ( i,8'D) /II is  isomorphic t o  

ix((8*D)/II) and t h a t  (@'D)/II is isomorphic t o  D I N  (by Lemma 4.14 andLthe l a s t  

statement of Proposition 4.4) . 

We now understand how t o  th ink  of i,D + i,(D/N) a s  a s t a b l e  bundle. We next 

need a s t a b l e  f-map t:  S + x-~z"N+. For t h i s ,  we must work i n  a complete 

r-universe U ' .  The geometric source of t h e  "dimension-shifting pre t rans fe r"  t is 

Construction 5.1 applied t o  the  o r b i t  r / ~  s N. The tangent bundle t h e r e  i s  j u s t  

N x A i n  t h i s  case. To see t h i s ,  l e t  I' a c t  on A v i a  E :  I' + G. We obtain a 

I ' - t r iv ia l i za t ion  of t h e  tangent bundle of I'/G by sending an element (n ,a )  of 

N x A t o  d(n)  (a )  , where d(n)  is t h e  d i f f e r e n t i a l  a t  e of l e f t  t r a n s l a t i o n  

by n. Embedding I'/G i n  a s u f f i c i e n t l y  l a r g e  I'-representation V and tak ing  

W = V - A, so t h a t  W t o o  is  a I '-representation, we see  t h a t  Construction 5.1 

gives a I'-map 

Applying C" and desuspending by V, we obtain t h e  desired map 

of I'-spectra indexed on U ' .  

We must s t i l l  mix our s t a b l e  bundle with our s t a b l e  p re t rans fe r .  For t h i s  

purpose, we observe t h a t  we may take  our complete G-universe U t o  be ( u ' ) ~ .  

Let j :  U + U' be t h e  r e s u l t i n g  inclusion of .  I'-universes. 

Construction 7.5. Let D be an  N-free G-spectrum indexed on uN and observe 

t h a t  j* i*8*~ i s  a II-free I'-spectrum indexed on U ' .  By Theorem 2.8, t h e  map 

of II-free I'-spectra indexed on U'  i s  represented by a map 
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of n-free r-spectra indexed on U = ( U '  On passage t o  o rb i t s  over II and use of Under these identif ications,  the map 

the identif ications of Lemma 7.4, there resul ts  a "dimension-shifting transfer" 

G-map 1 A t : C ~ B * G / H + A  s --.s z r n 8 * ~ / ~ + h  C - A C m ~ +  

T : i* ( D/N -+ E-%*D. in  h r d ~ '  can be identified with the map 

Here we have used tha t  c - ~  commutes with both j* and passage t o  orbi ts  over n 
since II ac ts  t r i v i a l l y  on A. 

Proof of Theorem 7 .l . Since 7: D/N + ( T ~ ~ , D ) ~  -is natural  i n  D and since it 

suffices t o  prove tha t  7 induces isomorphisms on homotopy groups, it is  clear 

(from I. 5.3) tha t  D may be assumed t o  be f in i t e .  Since a l l  functors i n  sight 

e i ther  preserve cofibre sequences or  convert them t o  f ibre  sequences, it suffices 

inductively t o  assume that  D = G/H+A sn, where n E Z and H A N = e . Since 

suspensions by t r i v i a l  representations commute with a l l  functors in sight,  it 

suffices t o  tdke n = 0. 

To handle the case D = zrnG/H+, we require a more expl ic i t  description of the 

transfer G-map 

Since N i s  normal i n  G, HN = {hn(h E H and n c N) i s  a subgroup of G, and it 

i s  clearly a closed subgroup. Since H n N  = e, each element of HN has a unique 

expression as a product hn, and of course ( G / H ) / N  z G/HN. 

Lemma 7.6. The map r: CrnG/HN+ + Z - ~ E ~ G / H +  i n  ~ G B U  can be identif ied with the 

map 

where t: S + HN is obtained by applying Construction 5.1 t o  HNJH. 

Proof. The tangent H-space of HN/H a t  eH is just  A regarded a s  a represen- 

ta t ion  of H, so the statement makes sense. Deffne a monomorphism a: HN -+ r by 

a(hn) = (hn,n-'). Clearly 0: T + G induces a HN-isomorphism HN/H + aXr/G. By 

Lemma 4.8, we have isomorphisms 

and, since N z r /G and Z-~C"HN/H+ E HN w H S A ,  

where t : S -r HN M ~ s - ~  i s  the map i n  ~ H N ~ L I '  obtained by applying Construction 5.1  

t o  the group HN and orbit  HN/H (rather than t o  the group l' and orbi-t r / G ) .  

Since ~ ( H N )  n 11 = e ,  U and a * ~ '  are equivalent HN-universes. It follows that  

j,t = t ,  where the l e f t  map t i s  tha t  of the statement of the lemma. By Lemma 

4.14, application of j* t o  the map 

- - 
in  hrdU gives the corresponding map 1 K t in  hrJU1. According t o  Construction 

7.5, T i s  obtained from r by passage t o  orbi ts  over II. Since the composite 

HN 5 I' -%G i s  just  the inclusion of HN in G ,  Lemma 4.10 gives tha t  

( r  k a ~ )  /II E G sHNE for E r HNdU. The conclusion follows. 

I f  we view r as a transfer in the sense of chapter I V Y  then the 

identif ication of the lemma becomes an application of Axiom 6 of I V § ~  t o  the 

homomorphism of pairs a: ( H N , ~ )  -r ( r , ~ ) .  

It i s  now an easy matter t o  prove that  7 i s  an equivalence when D = CrnG/H+, 

H A N = e ,  by using the ~irthrnii l ler  isomorphism of Theorem 6.2. We may view A as 

the  tangent H-representation of HN/H a t  the coset eH, and Definition 6.8 gives 

an HN-equivalence 

I f  E: FH[HNYS) + S i s  the evaluation H-map, then E$ = p: HN ~ K ~ s - ~  + S i s  the 

stable H-map derived from the map u of Construction 5.5. Lemma 5.9 implies that  

u t  i s  the identi ty H-map S + S (where t i s  as in Lemma 7.6). Thus ~ $ t  = 1 

and $ t  i s  the coaction HN-map v : S + F ~ [ H N , s ) .  Clearly 7 w i l l  be a 

J-equivalence i f  the adjoint of the composite 

i s  a J-equivalence, and t h i s  composite i s  just  1 IX v .  

Let L be the tangent HN-space of G/HN a t  the coset eHN and l e t  



K = HN/N C J. men K i s  a copy of H and, since G/HN s J / K ,  L i s  the pullback of the 

tangent K-space of J/K a t  eK along the quotient homomorphism HN + K. 

Definition 6.8 gives the G-equivalences $ in  the following commutative diagram. 

The unlabeled isomorphism i s  given by Lemma 4.10, and the bottom map v i s .  the 

G-map characterized by the requirement tha t  E V  = E: FHN[G,sL) + sL as an H-map. 

It suffices t o  show that  the adjoint J-map of v$ i s  an equivalence. The 

domain of t h i s  adjoint i s  C"J/K+ since 

Noting that  i*sL = sL i n  HSU, we see that  i t s  target  i s  

Here Lemma 4.14 gives the middle isomorphism, and Lemma 4.10 gives the l a s t  

isomorphism since the composite H C G + J can be identif ied with the inclusion 

K C J. With these identif ications , we find easily tha t  the adjoint of v* i s  the 

composite 

where I) i s  the J-equivalence of Definition 6.8 and n : sL + i*i*sL i s  the unit of 

the ( i s  ,i")-adjunction. Since H N = e ,  uN and U are  isomorphic as H (or K )  

universes, hence n i s  a K-equivalence by Corollary 1.8. This completes the proof 

of Theorem 7.1. 

$8. Coherent families of equivariant spectra 

To begin with, adopt the notations of the previous section. Thus N is a 

normal subgroup of G ,  E: G + J = G/N i s  the quotient homomorphism, A i s  the 

adjoint representation of G derived from N, U i s  a complete G-universe, and 

i: uN + U i s  the inclusion. The functor 

i s  l e f t  adjoint t o  the N-fixed point functor. Recall tha t  9 ( N )  i s  the family of 

subgroups H of G such tha t  H r\ N = e and that  the N-free G-spectra are those 

G-spectra (weakly) equivalent t o  9 ( N )  -CW spectra. Up t o  equivalence, any N-free 

G-spectrum i n  GdU is of the form i*D for  some N-free G-spectrum D e G1uN, by 

Theorem 2.8. 

Theorem 8 ~ e t  E e J I U ~  and EG r G& and assume given an 3( N )  -equivalence 
# 

, 5: E EJ t EG* Then, for any N-free G-spectrum D 6 G4uN, 

J G 
Ei(D/N) -El( i*D)  and E*(D/N) -E*(z-%*D). 

In part icular,  for any N-free G-space X, 

-* 
~ : ( x / N )  2 E ~ ( x )  and i i ( x / ~ )  z ~ $ ( z - ~ x ) ,  

where the l e f t  sides are computed i n  the J-universe uN and the r ight sides are 
computed in the G-universe U. 

Proof. The cohomology statement i s  immediate from Theorems 2.2 and 4.5. For the 
homology statement, Theorem 2.2 implies tha t  

is a G-equivalence, and the conclusion follows from Corollary 7.2 (since the 

functor E# carr ies  J-spheres t o  Gspheres by Proposition 1.4 and Lemma 4.14). 

Of course, r A x  i s  abusive notation fo r  Z -~ZY.  It i s  interesting that  a 

spectrum level  context i s  needed even t o  make sense out of the second isomorphism 

when A is non-zero. 

Example 8.2. Using subscripts t o  denote the relevant group, we see from Proposition 

1.4 and Theorem 4.7 that  there is a natural  isomorphism E#@ s '3 of G-spectra 

for  J-spaces X. In part icular,  with X = so, E#SJ z SG. Thus the theorem re la tes  
J-homotopy and cohomotopy t o  G-homotopy and cohomotopy for any quotient group J 
of G. 

This example i s  misleading i n  tha t  the f u l l  strength of the theorem is  usually 

required: one usually has only an 3(N)-equivalence and not a G-equivalence 

between E # E ~  and EG. There is an illuminating alternative description of what it 
means t o  have such an equivalence. 

Lemma 8.3. A Gmap 5: E # E ~  + EG i s  an 3 ( N )  -equivalence i f  and only i f  the 



composite G-map 

i s  an 3( N) -equivalence, where 

is t h e  J-map ad jo in t  t o  5 and 1 is t h e  evident inclusion.  

cohomology theory ( see [ 24,lO 3,109 1 ) . However, i n  K-theory and cobordism, we have 

preassigned G-spectra f o r  a l l  G ,  and t h e s e =  so r e l a t e d  a s  t o  guarantee t h e  

a p p l i c a b i l i t y  of Theorem 8.1 t o  any G and J. In  t h e  r e s t  of t h i s  sec t ion ,  we 

develop a s e t t i n g  i n  which such coherent fami l ies  of equivariant  spec t ra  can be 

s tudied.  

I 

I Choose a complete G-universe UG f o r  each compact Lie group G. Choose an 

H-l inear  isometry ja: aXuG + UH f o r  each homomorphism a :  H + G. We have adjunct ions 

Proof. For H a 3 ( N )  , E : G + J r e s t r i c t s  t o  an isomorphism H + E ( H )  , and uN [ja*D1 .DlH  % [ D '  .J:DIH and [a*E,D1 l H  2 [ E , F ~  [G,D'  ) l G y  
and U a r e  isomorphic as  H-universes. Unraveling t h e  composite adjunct ion E # ,  we 

see  t h a t  5 is  t h e  composite 

# * i * ~  5 * * N i*t * 
E EJ = i * ~  E -i*c [ ( i  EG) ] -+ i*i E ---EG, J G 

where t h e  l a s t  map is t h e  counit of t h e  (i*,i*)-adjunction and is an 

&N)-equivalence by Corollary 1.8. Since Theorem 2.8 ( i )  implies t h a t  a map f i n  

GbuN i s  an 3(N)-equivalence and only i f  the  map i*f i n  G I U  is  an 

S(N)-equivalence, the  conclusion follows. 

Example 8.4. For EG e GIIU, l e t  E e duG denote iXEG wi th  G-action ignored. We 

th ink  of E as  t h e  underlying nonequivariant spectrum of EG and have t h e  

inc lus ion  1:  ( E ~ ) ~  E ( i * ~ ~ ) ~  + E. The G-spectrum EG i s  s a i d  t o  be s p l i t  i f  t h e r e  

e x i s t s  a map 5: E + (EGIG such t h a t  15 = 1: E + E. (1 f  15 were an equivalence, 

not necessar i ly  t h e  i d e n t i t y ,  we could precompose 5 with ( 1 and so obtain a 

new < fo r  which 15 = 1.) By t h e  case N = G of the  lemma and theorem (with 

3 ( G )  = {e) ) , we then have 

E ( D G )  % E D  and E*(D/G) ̂ . E $ ( I - ~ ~ * D )  

f o r  a f r e e  G-spectrum D a G4uG, where A is t h e  ad jo in t  representat ion of G. The 

f i r s t  of these  isomorphisms general izes  a r e s u l t  of Kosniowski [751. Both 

general ize r e s u l t s  i n  May and McClure [ 108, Lemmas 12 and 161 . 
What is so spec ia l  about t h e  case N = G is  t h a t  e i s  canonical ly both a 

subgroup and a quot ient  group of G. In  general  i n  Theorem 8.1, we need q u i t e  

d i f f e r e n t  spectra  EG and EJ. A s  we s h a l l  explain i n  t h e  next sec t ion ,  t h e r e  is a 

genera?. procedure f o r  construct ing a J-spectrum EJ from a given G-spectrum EGy 

but  EJ s o  constructed w i l l  usual ly not be r e l a t e d  t o  EG i n  t h e  manner prescr ibed 

i n  Theorem 8.1. In f a c t ,  t h i s  f a i l s  f o r  such fami l ia r  examples as  K-theory and 

cobordism. The f a i l u r e  is  important s ince  t h e  constructed quotient  group theor ies  

where D '  a HdduG, D s H&JH, and E a GduG. We define 

a#E = j a i a * ~  r H&JH and a#D = Fa [G,J;D) e G A U ~  

and have t h e  composite adjunct ion 

* * 
If 6: K + H is another homomorphism, then (a6 )*  = $ a t r i v i a l l y  , 

* * 
j6+ja* % jaB" s ince  j 6 j a  = j a B ,  and j,*$ % $ jaX by inspect ion on t h e  

ad jo in t  l e v e l .  We there fore  have na tura l  isomorphisms of functors  

Clearly 1' and 1# a r e  i d e n t i t y  functors ,  1: G + G. I f  a :  H + G is an 

inc lus ion ,  we may take j a  t o  be an isomorphism, so t h a t  a#E i s  e s s e n t i a l l y  

j u s t  a * ~  and a#D is e s s e n t i a l l y  j u s t  FH[G,D). I f  c: G + J = G I N  is a 

quotient  homomorphism, we may take j E  t o  be t h e  composite of an isomorphism 

E * U ~  + (uG)' and t h e  inc lus ion  (uG) + UG. Thus c# is e s s e n t i a l l y  t h e  same a s  

t h e  functor  enter ing i n t o  Theorem 8.1 and E# i s  e s s e n t i a l l y  j u s t  t h e  &fixed point 

spectrum functor .  

Defini t ion 8.5. L e t  kf be any subcategory of t h e  category of compact Lie groups 

and t h e i r  homomorphisms. A &spectrum cons i s t s  of a G-spectrum EG r G8UG f o r  

each G r and an H-map ca: a#EG + EH f o r  each homomorphism a : H + G i n  # 
such t h a t  t h e  following condit ions hold. 

( a )  tl: EG = 1 ' ~ ~  + EG i s  t h e  i d e n t i t y  map f o r  each G. 

(b) The following diagram commutes f o r  a :  H + G and 6: K + H. 



( c )  I f  a :  H + G i s  an inclusion,  then ca is  an H-equivalence. 

Let ra: EG + a#EH be t he  ad j  oint  of  5,. Then 5 i s  t he  i den t i t y  map and t he  

following diagram commutes. 

The def in i t ion  requires  only appropriate  f unc to r i a l i t y  and behavior on 

inclusions.  Nothing i s  assumed about quotient homomorphisms, but  we have t h e  

following implication. 

Proposition 8.6. Let E : G + J = G / N  be a quotient homomorphism. For H r 3 (N)  , 
consider t he  following commutative diagram. 

Here a i s  the  inclusion,  K = E ( H ) ,  6 i s  the  isomorphism obtained by r e s t r i c t i o n  

of E ,  and B i s  the  inclusion induced by a.  I f  {EG} is a 4-spectrum, where t h e  

displayed diagram and 6-I a r e  i n  & f o r  each H t . $ ( N ) ,  then c E :  c#EJ + EG i s  

an 3 ( N) -equivalence . 
Proof. We have t h e  following commutative diagram fo r  H € 3(N) .  

Since a and 8 a r e  inclusions,  ca and 6#cB a r e  H-equivalences. Since 6 is  

an isoiorphism i n  fA , c6 is  an H-equivalence with inverse 

The hypothesis 6-1 e 4 i s  essen t ia l .  We have examples where everthing e l s e  

holds and the  conclusion f a i l s  because c6  f a i l s  t o  be an H-equivalence. 

Examples 8.7. ( i )  I f  M i s  the  category whose objects  a r e  t he  two groups e and 

G and whose non-identity morphisms a r e  j u s t  e + G, G + e ,  and G -t e + G,  then 

&&-spectrum is exactly t he  same th ing  as  a s p l i t  G-spectrum. 

( i i )  {SG} i s  a f i  -spectrum, where is the  category of a l l  compact Lie groups and 

honomorphisms. The ca :  a'sH + SG a r e  t he  canonical isomorphisms given by 

Proposition 1.4 and Theorem 4.7; compare Lemma 4.11. 

Clearly su i tab ly  coherent famil ies  of ~ ~ ( G ) - ~ r a d e d  cohomology theor ies  on 

G-spaces give r i s e  t o  coherent famil ies  of equivariant  spectra  (modulo the  usual  

problems with l i m l  terms as  we pass from space l eve l  t o  spectrum l eve l  da ta ) .  In 

pa r t i cu l a r ,  the  representing spectra  f o r  equivariant K-theory give a k-spectrum. 

Again su i tab ly  defined equivariant Thom spectra  ( a s  i n  chapter X)  give 8 -spectra. 

It would take us too f a r  a f i e l d  t o  go i n to  d e t a i l  here. 
, 

Warning 8.8. There a r e  important examples of famil ies  of spectra  {EG} which 

depend canonically but not func tor ia l ly  on G. In pa r t i cu l a r ,  there  a r e  severa l  

such famil ies  of equivariant Eilenberg-MacLane spectra  [88,901, 

$9. The construction of (G/N)-spectra from G-spectra 

Let N be a normal subgroup of G with quotient group J, E :  G + J, and 

l e t  U be a G-universe with N-fixed J-universe uN, i: U' + U; U need not be 

complete i n  t h i s  sect ion.  We s h a l l  ca lcu la te  hJ&uN i n  terms of hGbu. 

To es tab l i sh  an appropriate conceptual context, it i s  usefu l  t o  begin more 

general ly with complements t o  some of t he  ideas i n  sect ion 2. Let # be a family 

of subgroups of G and l e t  3' = {H I H f! $1 be i ts  complementary "cofamily" . 
N 

Define E J  t o  be t he  cofibre of the  canonical project ion n : ~3.' + SO and l e t  
N 

I : SO + ES be the  inclusion.  I f  H r 3 , then ( ~ 3 ' ) ~  - SO and ("E)H = *. I f  

H e 3 '  , then ( ~ 3 ' ) ~  = * and (&3)H = SO. 

Say t h a t  a map f :  X + Y of G-CW complexes or  G-CW spectra  i s  an 

3 ' -equivalence i f  

is a G-equivalence. Ch t h e  space l eve l ,  but not on the  spectrum l eve l ,  t h i s  j u s t  

means t ha t  fH  i s  an equivalence fo r  a l l  H r 3'. Say t h a t  a map f :  X + Y 



between general G-spaces or G-spectra i s  a weak 3 '-equivalence i f  lhrf  i s  a 

G-equivalence, where I'f: I'X + I'Y i s  a G-CW approximation of f .  On the space 

level ,  but not on the spectrum level ,  t h i s  just  means that  lbf i s  a weak 
N N 

G-equivalence (because here EJAI'X i s  weakly G-equivalent t o  E ~ A x ) .  The point i s  - 
t ha t ,  on the stable category level ,  the  functor E~AX must be interpreted as 
N 

'EahI'X. The careful reader may want t o  inser t  CW approximations expl ic i t ly  i n  some 

of the arguments below, as dictated by the discussion i n  and above 1.5.13. It would 

not do simply t o  assume that  a l l  given spectra are CW homotopy types since some of 

the  functors we w i l l  use, such as passage t o  N-fixed point spectra, need not 

preserve CW homotopy types. 
- - 

Let 3' denote the collection of weak 3'-equivalences in, hG3 or hGJU, - 
The content of Proposition 2.13 is tha t  the localization of hG.4U obtained by 

adjoining formal inverses t o  i t s  weak 3-equivalences can be calculated as 

The cofamily analog reads as follows. 

- 
Proposition 9.1. The localization of hGdU a t  i t s  weak $'-equivalences can be 

calculated as 

The construction of localizations of categories i n  terms of "cocompletions" of 

objects following 1.5.12 can be dualized t o  a construction of localizations in terms 

of "completions" of objects. In tha t  language, the following result  asser ts  t h a t ,  

with respect t o  d4' ,  the objects E$nX are  complete and the maps 

since E9 only has ce l l s  of orbi t  type G/H with H E 3 and E 3 i s  H-contractible 

for such H. In view of the cofibre sequence 

it follows that  

i s  an isomorphism for any Y. It i s  clear from t h i s  tha t  (i) implies (ii). If 

H r 3 , then G/H+A:S i s  Gcontractible,  hence G/H+AY + * is an 3'-equivalence 

for any Y. This shows that  (ii) implies (iii). Assume (iii). When X is a 
N 

G-CW complex, I A ~ :  X t ~ 3 f X  i s  a Gequivalence by another check on fixed point 

sets .  When X i s  a G-CW spectrum, we claim tha t  rg(Efl+r\x) = 0 for a l l  H C G, 

so tha t  1 ~ 1  i s  a Gequivalence. If  H e 3 , then Eat i s  H-equivalent t o  SO 

and our claim holds by hypothesis. If  H e a ' ,  l e t  3 1 H  be the family of 

subgroups of H in 3 and observe that  Eg regarded as an H-space i s  a model 

for E ( ~ ) H )  . It i s  thus H-equivalent t o  an (3 I H )  -CW complex. Since T!(X) = 0 for 

K IIH, r g ( ~ n ~ )  = S(W) = O for  any @\HI-cw complex W. 

We shal l  need a space level  observation that  has no direct  spectrum level  

analog. For a G-space X, l e t  X denote the Gsubspace {x I Gx e 3 ) . For 
3 

example, i f  $ = {e), then Xs i s  the singular se t  of X. If X i s  a G-CW 

complex, then X) i s  a subcomplex. 

Proposition 9.3. For G-CW complexes X and Y,  the inclusions X3 t X  and 
N 

So + E 3  induce bijections 

are  completions. These assertions imply the previous result .  

Proposition 9.2. Let X be a G-CW complex or a G-CW spectrum. Then the map 
N 

l A 1 :  X + = A X  i s  an 3 '-equivalence and the following three statements are 

equivalent. 

( i )  1 ~ 1  i s  a G-equivalence. 

( i i )  .,fS: [ z , x ] ~  + [ Y  ,xlG i s  an isomorphism for every weak 3'-equivalence 

f :  Y + Z. 

( i i i )  n;(x) = 0 for a l l  H s f. 
N N N  

Proof. The f i r s t  statement holds since l ~ t :  E3 + E ~ A E ~  i s  a G-equivalence by a 

Proof. The f i r s t  bi jection follows eas i ly  from the fac ts  tha t  the ce l l s  of X not 
N 

i n  XI are of orbi t  type G/H with H e 3  and that  ~3~ i s  H-contractible for 
N 

such H. The second bijection i s  obvious from the fac t  tha t  ~3~ = So for  H E ' . 

With t h i s  discussion as preamble, we return t o  our normal subgroup N with 

quotient group J and consider the family 3 [ N l  of subgroups of G which do not 

contain N. Here, for  a Gspace X, % [ N 1  = xN. By Proposition 9.2, for a G-space 
N 

or G-spectrum X, 141: rX -+ E 3 l N l ~  rX is a G-equivalence (which means that  
N 

1 ~ 1 :  X + E3[NI*X i s  an isomorphism i n  ~ G J U )  i f  and only i f  I T ~ ( X )  = 0 unless 

H contains N. Let us say that  X is concentrated over N when t h i s  holds. We 



s h a l l  show t h a t ,  from the point of view of equivariant homotopy theory, G-spaces or 

G-spectra concentrated over N are completely equivalent t o  J-spaces or J-spectra. 

We begin on the space level ,  where the  result  i s  t r i v i a l .  

Proposition 9.4. For J-spaces W and G-spaces X concentrated over N, there i s  

a natural isomorphism 

N 

The unit of t h i s  adjunction i s  the identi ty W = ( E ~ [ N ] A W ) ~  and the counit i s  the 

natural  weak G-equivalence 

induced by the inclusion xN + X. Therefore, for J-spaces W and W ' ,  

We have implicitly regarded J-spaces as G-spaces v i a  E here, and we must use 

the  change of group and universe functor E# = &E*: JduN .r G&U l e f t  adjoint t o  the 

N-fixed point functor t o  express the spectrum level  analog. 

Theorem 9.5. For J-spectra E E J ~ U ~  and G-spectra D 6 GhU concentrated over 

N, there i s  a natural isomorphism 

N 

The unit n :  E + ( E ~ [ N ]  n ~ # ~ ) N  of t h i s  adjunction i s  an isomorphism i n  hJduN and 

the  counit E :  "E#[N] 4€#(DN) + D is an isomorphism in  C G ~ U .  Therefore, for 

J-spectra E and E ' ,  

Proof. Proposition 9.2 gives the required isomorphism as 

The unit  and counit of t h i s  adjunction are determined by the unit E + (E'E) and 

counit €#(DN) .r D of the ( E # , ( ?  )N)-adjunction as the composites 

is the identi ty map for each D. We w i l l  prove i n  Proposition 9.10 below that  n i s  
an isomorphism in hJ4uN for each E. We w i l l  construct an  isomorphism (di f ferent  

from E )  between D and ~ [ N I  i n  Proposition 9.11. By the natuia l i ty  

of E and the re la t ion  E ( ~ A E # ~ )  = 1, it w i l l  follow tha t  c i s  an isomorphism 

i n  GGAU for each D. 

Combining with Proposition 9.2, we can res ta te  the l a s t  assertion as a 

sharpened analog of the case 3 = 3 [ N 1  of Proposition 2.13. 

Corollary 9.6. The functor E3 1 N I  ? induces an equivalence 

hJduN -+ (f3 [ N I  ' )-'~GIu, 

- 
the target  being equivalent t o  the f u l l  subcategory of hG8U whose objects are the 

G-spectra concentrated over N. Under. t h i s  identif ication of the target ,  the 

inverse functor is ( ?  lN.  

The r e s t  of the proof of Theorem 9.5 depends on the "spacewise N-fixed point 

functor1' from G-prespectra t o  J-prespectra. 

Definition 9.7. Let {A, I n > 0 )  be an indexing sequence i n  the G-universe U and 

l e t  % = - A,. Note tha t  {g} i s  an indexing sequence i n  uN. Write 

Dn = DA, for  D a G@A and % = ~ ( $ 1  for  E c J@AN. Define a functor 

mN: GU'A + J@AN by l e t t ing  ( $Dln = ( D , ) ~ ,  with s t ructura l  maps 

Define mN: GdA + J1AN by l e t t ing  mND = L ~ ~ K ~ D ,  where K r D  is the G-CW 

prespectrum canonically weakly equivalent t o  D (see 1.6.3, I .6.8, and I .8.12 . 
We have used indexing sequences here t o  avoid ambiguities result ing from the 

f ac t  tha t  different indexing spaces i n  U can have the same N-fixed point indexing 

space i n  uN. We have usually passed from a functor on prespectra t o  a functor on 

spectra by use of the adjunction (L, 2 ) .  In the case of @N, t h i s  would be 



inappropriate  since it i s  not the  formal propert ies  but t he  homotopical propert ies  

of m N  t h a t  we wish t o  r e t a i n  on t h e  spectrum leve l .  Observe t h a t  a N  ca r r i e s  

G-CW prespectra t o  J-CW prespectra ,  on which t he  functor  L: JPA' + J ~ A '  i s  

given simply by passage t o  co l imi t s ,  as  above I. 2.2. (see 1.8.7-1.8.14.) 

The functor 9N must not be confused with the  ac tua l  f ixed point functor 

G ~ U  -t J ~ u ~ .  After change of indexing s e t s ,  the  l a t t e r  is  specif ied as  a functor 

N 
G ~ A  + J k N  by l e t t i n g  (DN), = (Q'-'D,)N~ The d i rec t  prespectrum l e v e l  

def in i t ion  of 9N i s  uninterest ing when applied t o  spectra .  (compare Adams 

[ 3,§7].) However, there  i s  a simple re la t ionsh ip  between m N  and ( ? l N ,  and we 

s h a l l  use t h i s  re la t ionsh ip  t o  complete t he  proof of Theorem 9.5. We index 

G-prespectra and spectra  on A and J-prespectra and spectra  on AN i n  t h e  r e s t  of 

t h i s  sect ion.  The following r e su l t  i s  t he  spectrum leve l  version of a cohomological 

observation of Costenoble . 

Theorem 9.8. ( i )  For G-CW prespectra  ( o r ,  more general ly,  C-inclusion 

G-prespectra) D ,  there  is a na tura l  weak equivalence of J-spectra  

( i i )  For G-CW spectra  D ,  there  is a natural  weak equivalence of J-spectra 

Proof. ( i )  As observed above I. 3.5, we have an isomorphism 

N 

Since D is a C-inclusion G-prespectrum, so is E ~ [ N ] A D .  Thus L on the  r i gh t  i s  

given by passage t o  col imits  (as  above I. 2.2) and t he  a space of (i3 [ N I A L D ) ~  

is G-homeomorphic t o  

A -A 
N 

A -A 
N 

(colim Q " ( E ~ [ N ] A D - ) ) ~  k o l i m ( Q  n ( % [ ~ ] A ~ _ )  N. 

QI t h e  other  hand, t h e  ,th space of LmND i s  

N N 
A -A 

N N 
A -A 

colim Q DN = colim Q " ( " E [ N I * D ~ ) ~ .  
9 q 

N N 
The inclusions SAq-An + SAq-4 induce a map from the  f i r s t  col imit  t o  t h e  second, 

and t h i s  map i s  a weak J-equivalence by applicat ion of adjunctions and Proposition 

9.3 t o  t h e  calculat ion of homotopy groups. A s  n var ies ,  these  maps specify t he  

desired weak J-equivalence 

( i i )  We deduce ( i i )  by applying ( i )  t o  K r D ,  obtaining 

We can use t h i s  r e su l t  t o  r e l a t e  f ixed points  of spaces t o  fixed points of 

spectra  . 
Corollary 9.9. Let X be a G-CW complex. Then there  a r e  na tura l  weak 

equivalences of J-spectra 

(where Cm re fe rs  t o  J on the  l e f t  and t o  G i n  t h e  middle and on the  r i gh t ) .  

4n Proof. Let {C X) denote t h e  suspension G-CW prespectrum of X ,  so t h a t  

A, N A, C'X = L{C X). Obviously 9 { C  X) i s  t h e  suspension J-CW prespectrum 

lb" {C xN}. The equivalences r e su l t  by applicat ion of par t  ( i )  of the  theorem t o  

A, {C X) and of pa r t  ( i i )  t o  zmx. 

Of course, we can apply the  r e su l t s  above t o  t h e  study of H-fixed point 

WGH-spaces and spectra  associated t o  G-spaces and spectra ,  where WGH = NGH/H. 

Proposition 9.10. ( i )  I f  E is  a J-prespect-, then E = Q ~ ~ * E * E ,  where 

is: G@AN + G@'A is t he  prespectrum l eve l  change of universe functor. 

( i i )  I f  E is  a J-CW spectrum, then 

is a weak J-equivalence . 
Proof. ( i )  ~ * E * E  has ,th space hence i ts  N-fixed point s e t  is 

E, back again. 

( i i )  We may as  well  assume t h a t  E = LE1, where E1 is a J-CW prespectrum. By 

pa r t  ( i )  and the  discussion above I. 3.5, Theorem 9.8( i )  gives a weak J-equivalence 



The map q i s  given on spaces by the composite 
N N 

A -A 
colim ~1 n ~ '  

9 
N N -1 A - A  

(colim a "n ) N  

N N 
A ~ - A ~  A -A A -A 

(colim n "(n q~ q ~ l ) ) N  q 

and it follows by inspection tha t  cn  i s  the identi ty map of E. 

Proposition 9.11. (i) I f  D i s  a G-CW prespectrum, then there i s  a spacewise 

equivalence of G-prespect ra 

(ii) If  D i s  a G-spectrum concentrated over N, then D i s  isomorphic t o  
N 

E ~ [ N ] A E # ( D ~ )  in  ~ G B A .  
N N 

Proof. (i) For each n, the  inclusion Ef [ N ]  AD: + E ~ [ N ]  nDn i s  a G-equivalence 

with homotopy inverse r n ,  say. Let s;l be the composite G-equivalence 

where e:  SO + SAn-4 i s  the inclusion. It i s  easily checked that  the s; specify 

a w-map ( i n  the sense of 1.6.2) 

By 1.8.8, s f  i s  spacewise homotopic t o  an actual  map s.  
N - 

( i i )  By hypothesis, D = E ~ [ N ] A D  i n  h ~ h .  Thus we have the chain of isomorphisms 

i n  ~ G A A  

W e  have now proven Theorem 9,5. Clearly a large part  of the point is the 

fa i lure  of smash products t o  commute with passage t o  fixed points on the spectrum 

level. However, as the following resul ts  show, we do have such commutation 

relat ions for J-spectra concentrated over N. 

Proposition 9.12. (i) For G C W  spectra D and G C W  complexes X, there is a 

natural  weak J-equivalence 

( ~ ~ [ N I A D A X ) ~  = ( E ~ I N I A D ) ~ A X ~ .  

(ii) For G-CW spectra D and D l ,  there is a natural  weak J-equivalence 

Proof. (i) For G-prespectra D and G-spaces X, we clearly have 

Application of t h i s  with D replaced by KrD and use of Theorem 9.8 (ii) gives 

part  (i). 

(ii) Let A@ A be the indexing sequence {An @ h) i n  U O U. Let 

f :  U O U + U be a G-linear isometric isomorphism and l e t  A' be the indexing 

sequence {f (A, O ) i n  U. We have the external smash product and change of 

universe functors 

For G-prespectra D, D1 E GPA, we find eas i ly  tha t  

i n  J ( P ( A ~ ) ~ .  Applying t h i s  with D and D1 replaced by K r D  and K r D 1 ,  noting 

tha t  fS(KrD~KrD1 ) is equivalent t o  Krf*(DhD1 1, and using Theorem 9.8 (ii), we 

obtain (ii) from the definit ion of internal  smash products i n  section 3. 

The discussion above makes clear tha t ,  with a change of notation, a 

compulsively reasonable way t o  construct a J-spectrum EJ c J4uN from a 
N 

G-spectrum EG € GdU is t o  s e t  EJ = ( E ~ [ N I A ~ ) ~ .  This is equivalent t o  se t t ing  

EJ = Q N ~ G ,  and the construction commutes with smash products and preserves r ing 

spectra. For a J-spectrum X, we have 



For J-spaces X, we recall that C#C"X s Z"E*X. We can work with RO( J)-graded 

cohomology here, using the homomorphism E* : RO( J) + RO(G) to interpret the grading 

on the right. The following calculation of E;(x) is due to Costenoble, who proved 

it by direct inspection of colimits from the prespectrum level definition of mN. 

Proposition 9.13. Let EG c GAU be a ring spectrum and set EJ = (E)INIAE~)~ 6 J ~ u ~ .  

For a finite J-CW spectra X, E;(x) is the localization of E:( E'X) obtained by 

inverting the Euler classes xV r E;( SO) of those representations V of G such 

that vN = 0. 

Proof. Here xV is the image of the unit 1 c E;( sV) under e* , e : SO + sV. The 
statement means that, for a E RO(J), 

where the colimit runs over the indexing G-spaces V C U - uN; for V C W, the map 

E* U+W ( E#X) EE*"~( 2x1 - EG 
of the colimit system is multiplication by xw-,. For the proof, observe that the 

N 

colimit of the spheres sV is a model for I@[ N] , as we see by passage to colimits 
from the cofibration sequences s(v)+ + D(v)+ + sV, where S(V) and D(V) are the 

unit sphere and disk in V. Therefore E~(x) is the colimit over V of the groups 

111. Equivariant duality theory 

by L. G. Lewis, Jr. and J. P. May 

We here give a thorough treatment of duality in the equivariant stable 

category. For a G-spectrum E, define the dual of E to be the function 

G-spectrum 

For a based G-space X, define D(X) = D(c"x). We are concerned with the 

calculational relationship between E and DE and with the concrete identification 

of DX. 

Nevertheless, our starting point will be purely categorical. In courses since 

1970, the second author has emphasized the analogy between the stable category and 

the category of modules over a commutative ring R. In this comparison, X A Y  

corresponds to M@ N, S corresponds to R, F(X,Y) corresponds to Hom(M,N), and 

finite CW spectra correspond to finitely generated projective R-modules. The 

analogy is illuminating since many of the central facts about duality theory read 

the same way in the stable category as in the module category, where they are 

transparently obvious. In a very pretty paper j471, Dold and Puppe carried this 

analogy much futher. By discussing duality in the appropriate categorical frame- 

work, they showed that many of these facts admit purely formal common derivations. 

We present our version of their categorical discussion in section 1. 

We return to the equivariant stable category in section 2. Because our 

category of G-spectra has canonical fibration sequences as well as canonical 

cofibration sequences and has canonical function spectra, the behavior of duality 

with respect to cofibration sequences is immediately apparent. The central, 

obvious, fact is that, for a map f: X + Y and G-spectrum Z, the function 

G-spectrum F(Cf ,Z) is isomorphic to the fibre of f*: F(Y,Z) + F(X,Z). In earlier 

treatments of the stable category, point set level fibration sequences and function 

spectra did not exist, hence the comparison between cofibre sequences and duality 

was intrinsically less precise, involving use of maps not uniquely determined up to 

homotopy. Our treatment uses only canonical natural maps. Given these observa- 

tions, the basic results about duality directly generalize from orbit spectra 

C"G/H+ to arbitrary finite G-CW spectra X, the duals of orbit spectra having 

been computed in 1156. In particular, we obtain a natural equivalence 

and thus an isomorphism E*(x) E E,(DX). This section also includes an analysis of 
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the behavior of duality with respect to change of groups. 

In section 3, we give a quick derivation of the standard products in homology 

and cohomology theory and explain the interpretation of duality in terms of slant 

products. Turning from the spectrum to the space level, we describe V-dualities 

(for representations V) and give wholly space level interpretations of the basic 

notions in duality theory. In particular, we show that a G-map E: Y A X  + sV is a 

V-duality if and only if each of its fixed point maps E ~ :  Y H ~  xH + ( sVjH is an 
nH-duality, where nH = dim vH. 

In section 4, we prove an equivariant version of the original Spanier-Whitehead 

duality theorem 1130,1321 for G-spaces and G-pairs nicely embedded in G-represen- 

tations. Our treatment is particularly clean, elementary, and precise. It makes no 

use of simplicia1 decompositions or of ordinary homology and gives very simple 

concrete descriptions of the relevant duality maps. Wen nonequivariantly, we find 

this direct homotopical treatment far more efficient and aesthetically satisfactory 

then the classical one. Equivariantly, it gives much greater generality than could 

be hoped for from any argument dependent on triangulations. We make absolutely no 

claim to originality. Our treatment is essentially that of Dold and Puppe [471 and 

their students Henn and Hommel [63,64,651 whose nonequivariant work generalizes 

effortlessly to the equivariant context (as Dold and Puppe realized [47,§71) . 
In section 5, we specialize to obtain equivariant generalizations of the 

classical results of Milnor and Spanier 11131 and Atiyah [61 on the duality between 

smooth manifolds and the Thom complexes of their normal bundles. We combine these 

results with the Thom isomorphism to obtain equivariant poinoark duality in section 

6. 

In sections 7 and 8, we lay the foundations for our study of the transfer in 

chapter IV and of the Burnside ring in chapter V. The essential starting points for 

these studies are the pretransfer r(X) E T$(x) and the N e r  characteristic 

x(X) E ~:(~t) associated to a compact G-ENR X. These are special cases of the 

trace r ( f 1 E ng(~) and Lef schetz constant x(f) ( ng(pt) associated to a Gmap 

f: X -r X. We begin our study of these notions in the general categorical context of 

section 1. We then specialize to the context of finite Gspectra and prove a basic 

additivity formula for the behavior of traces on cofibre sequences. In section 8, 

we use this result to compute T ( f ) and X( f ) in terms of the nonequivariant 

traces of the fixed point maps fH and the equivariant transfers r (G/H) r ~:(G/H) 
and N e r  characteristics x(G/H) e ng(pt). 

, We have gone to considerable trouble in writing down explicit duality maps in 

this chapter. It is our feeling that the literature on duality, both equivariant 

and nonequivariant, leaves a great deal to be desired in terms of precision. The 

resulting pedantry may somewhat obscure the exposition, but its absence would surely 

obscure the mathematics. i 

91. Categorical duality theory 

Category theorists have long recognized the convenient unifying role played by 

the concept of a I1closed category1!. Such a category comes equipped with a unit 
object S, a product A :  C x C + C , and an internal hom functor F:C OP X C  + 6 . 
It is required that A be unital (with unit S), associative, and commutative up 

to coherent natural isomorphism and that there be a natural adjunction 

There are coherence theorems to the effect that all diagrams relating these data 

that reasonably can be expected to commute do in fact commute 173,741 . As is 
customary, we do not introduce notation for the unit and associativity isomor- 

phisms. We write y: X A Y + Y A X for the commutativity isomorphism and we write 

TI: X--*.F(Y,XAY) and E:  F(X,Y)nX-Y 

for the unit and counit of the adjunction. Of course, E is to be viewed as an 
evaluation map. We define the dual DX of an object X to be F(X,S). 

As indicated by our biased choice of notations, we are thinking of the stable 

category of Gspectra. However, it is useful to think in terms of such more 
familiar and elementary examples as the category of modules over a commutative 

ring R. The essential point is that there is enough information in the purely 

categorical setup to make it well worthwhile to treat duality first there before 

turning to details special to the stable category. 

Various useful natural transformations are implicit in the structure of a 
closed category & . First, we have the pairing 

whose adjoint is the composite 

In particular, with Y = Y1 = S, A specializes to a pairing 

The map q :  Z + F(S,Zn S) 2 F(S,Z) is always an isomorphism (its inverse being 
E: F(S,Z) 2 F(S,Z).\S + Z), and A also specializes to give a natural map 



In the stable category, t h i s  general nonsense map l i e s  a t  the heart of Spanier- 

Whitehead duality relat ing homology and cohomology. We obtain a natural  map 

p : X-+DDX 

by taking the adjoint of the composite 

We obtain a natural  map 

by applying adjunction twice t o  the evaluation map 

It i s  simple t o  check from the adjunction that  is an isomorphism fo r  

arbi t rary  objects X, Y, and Z. Of course A , v, and p need not be isomor- 

phisms i n  general, and a central  theme of th i s  section is the discussion of 

conditions on objects which ensure tha t  they are isomorphisms. 

Definition 1.1. An object X of i s  said t o  be f i n i t e  i f  there exis ts  a 

ttcoevaluation map" n: S -+ X h D X  such that  the diagram 

commutes. We shal l  see tha t  t h i s  implies tha t  the map v i n  the diagram i s  an 

isomorphism, so that  the coevaluation map is characterized as the composite yv-lw 

Dold and Puppe 1471 c a l l  f i n i t e  objects llstrongly dualizable" (and give a more 

complicated but equivalent def in i t ion) .  We prefer the term f i n i t e  since i n  practice 

there is always something f i n i t e  about them. Observe that  any re t rac t  of a f i n i t e  

obJect i s  f i n i t e .  

To see the in tu i t ion ,  consider the category of modules over a commutative 

ring R. If  X is a free R-module on the f i n i t e  basis {el ,~o*,en} with dual 

basis i f l ,  m 0 0 ,fn}, then we obtain a coevaluation map TI : R + X @ Hom(X,R) by 

se t t ing  . TI (1) = I: ei Q fi. Here the diagram of the definit ion asser ts  tha t  
i 

x = 1 f i (x)e i  for  a l l  x e X. It is an observation called the "dual basis theoremt1 
i 

tha t  an R-module i s  f i n i t e  i f  and only i f  it i s  f in i t e ly  generated and projective. 

We shal l  see in the next section that  f i n i t e  G-CW spectra, and thus a lso  
the i r  wedge summands, are f i n i t e  objects i n  the stable category of Gspectra.  In 
marked contrast t o  the nonequivariant case, a wedge summand of a f i n i t e  G-CW 
spectrum need not have the homotopy type of a f i n i t e  G C W  spectrum. We conjecture 

tha t ,  up t o  equivalence, the f i n i t e  G-spectra are precisely the wedge summands of 

f i n i t e  G C W  spectra. It i s  illuminating t o  think of f i n i t e  G C W  spectra and 

the i r  wedge summands as analogous t o  f in i t e ly  generated free modules and f i n i t e l y  

generated projective modules. 

For a f i n i t e  object X, the functor ( ?  ) A  DX i s  r ight  adjoint t o  the 

functor ( ? ) A X  and is therefore isomorphic t o  the functor F(X,?). The following 

two resul ts  explain these conclusions and give some consequences. 

Proposition 1.2. Let X be a f i n i t e  object of C . Then DX is a f i n i t e  object 

of & and the composites 

and 

DX "XX* s ~ ~ D X & X  A DX SS ~ D X  DX 

are identi ty maps. Therefore, for any objects W and Z of C , 

E#: & ( W , Z A  DX) + $(WAX,Z) 

i s  an isomorphism with inverse n#, where, for f :  W + Z A D X  and g: W A X  + 2 ,  

E#( f ) and n#(g ) are the composites 

f~ 1 1 W A X - Z A D X I \ X ~ Z I \ S ~ Z  

and 

W "AS 
In  ')@W*X nDX ~ Z A D X .  

Proof. By an easy diagram chase, the composite - 



is a coevaluation map for DX. The essential point is that the diagram 

commutes, where the isomorphism is the composite 

The composite (1 A ~ 1 )  is the identity map of X since the diagram 

commutes and its bottom composite ~ ( n  ~ l )  is the identity map. Modulo transpo- 

sitions, the proof that ( E A  l)(l~n) is the identity map of DX is identical. 

Proposition 1.3. (i) If X is finite, then p: X + DDX is an isomorphism. 

(ii) If either X or Z is finite, then 

is an isomorphism. 

(iii) If both X and XI are finite or if X is finite and Y = S (or X1 is 

finite and Y' = S ) ,  then 

is an isomorphism. 

Proof. If X is finite, then easy diagram chases show that p-I is given by the 

composite 

rl hl 1 A Y ~ A E  
DDX "ADDX -XADXADDX + X A D D X A D X  ~ X A S  " X 

and v-I is given by the composite 

This case of (ii) (and symmetry) implies (iii) by virtue of the commutative diagram 

In turn, this implies that v is an isomorphism when Z is finite by virtue of the 

commutative diagram 

The next two results give useful information about the duals of maps between 

finite objects. Their proofs are easy diagram chases from the results above. 

Proposition 1 .A. Let X be a finite object of $ . Then the natural composite 

is an isomorphism for any object Y. When Y = X,  6 is a canonical self-duality 

isomorphism for D X A X  and the following diagram commutes. 

That is, if we regard 6 as an identification, then we may regard yn as the 

dual of E and E as the dual of yn. 

Proposition 1.5 The dual Df: DY + DX of a map f: X + Y is uniquely 

characterized by commutativity of the diagram 



f A l  l~ E W A X  -----+.ZAYAX -ZA S z Z. 

(iii) A map n: S -+ XA Y such that the function 

If X is finite, then Df coincides with the composite is a bijection for all W and Z, where n#(g) is the composite 

~y D ~ A S  A ?-MAXADX A '>DY~YADX  SAW a x .  w WAS l h n > w A x h ~  g z  ZY. 

If X and Y are both finite, then the following diagram commutes, and its 

commutativity also uniquely characterizes Df. 

We need usable criteria for recognizing when a given object Y is isomorphic 

to DX for a given object X. In general, we have the obvious criterion that the 

functors c(?,Y) and g ( ?  AX,S) must be isomorphic. For finite X, there are 

more illuminating criteria, and these criteria also yield illuminating alternative 

characterizations of finiteness. 

Theorem 1.6. The following data relating objects X and Y of determine one 

another. 

(i) Maps E: Y A X  -t S and n: S + X A Y  such that the composites 

X "  S A X  n A 1 ~ X A y * X % ~ n ~ X  

and 

Further, maps n and E satisfy these properties for the pair (X,Y) if and only 

if the maps yn and cy satisfy these properties for the pair (Y,X). If X is 

finite and Y = DX, then the canonical maps T-, and E satisfy these properties. 

Conversely, suppose given such maps for the pair (X,Y). Then the adjoint 2: Y -t DX 

is an isomorphism with inverse the composite 

and X is finite with coevaluation map the composite 

Proof. Given (i) , E# and n# of (ii) and (iii) are inverse bijections. Given 

(ii), set W = S and Z = X and specify 17 by requiring E#(~) to be the 

identity map of X. Then ( i) holds. Similarly ( iii) determines ( i . The symmetry 
statement is easily checked and we have already seen that the canonical duality maps 

for finite X satisfy the stated properties. The isomorphism claim of the last 

statement is another easy diagram chase, and the defining diagram 

for a coevaluation is seen to commute by passing to adjoints and using that 

(nhl)(lh&) = 1. 

are identity maps. 

(ii) A map E: Y A X  + S such that the function Warning 1.7. Given a pair X and Y of dual objects, there are in general many 

choices of pairs of maps n and E displaying the duality. In particular, given 

E#: 6 (W,ZA Y)+C(W fiX,Z) any map E such that E# in (ii) is a bijection, we obtain another such map by 

composing E with any automorphism of S. 

is a bijection for all W and Z, where E#( f ) is the composite 



Remark 1.8. In the context of the theorem, there is an alternative version of 

Proposition 1.4 that is sometimes useful. If (n,~) and (~I,E') represent 

(X,Y) and (X1,Yt) as dual finite pairs, then 

and 

represent X A X ~  and YAY' as a dual finite pair. In particular, this applies 

to (n,~) and (yn,~y), giving a derived duality between X A  Y and Y AX. The 

diagram 

commutes, and in this sense n and E are characterized as duals to one another. 

Now suppose given two closed categories and ,@ with unit objects S and T. 

A (lax) monoidal functor Q: g +B is a functor Q together with a map A: T + QS and 

a natural transformation 

such that the following coherence diagrams commute. 

isomorphism. Let X be a finite object of 6 such that 

is an isomorphism. Then OX is a finite object of B ,  the natural map 
@DX + DOX is an isomorphism, and 

is an isomorphism for every 'object Y of 6 . 
Proof. For any object X of /P , we have the composite - 

(See Lewis [731 for a categorical discussion.) We say that Q is a strict monoidal 

functor if h and 9 are isomorphisms. In practice, h is usually an isomorphism 

even if 9 is not. 

Proposition 1.9. Let O:r -+ &be a monoidal functor such that A: T -+ (PS is an 

Its adjoint 2: QDX + DQX is the natural map referred to in the statement. Under 

our hypotheses on X, we also have the composite 

and it is easily checked that q and E satisfy the conditions of Theorem 1.6 (i). For 

the last part, the dotted arrow composite in the following diagram is easily checked 

to be inverse to 9.  

Dold and Puppe say that a finite object X is if the map 

9 :  OXAOY -+ o(XAY) is an isomorphism for all Y or, equivalently, for Y = DX. 

Remarks 1.10. For any closed category C, $ x e  and cop are closed categories in 

an evident way. The functor A : x $ + $ is strict monoidal with respect to the 
evident isomorphisms 

S : S h S  and 1~ Y A  1: X A X 1 ~ Y h Y t j X ~ Y A X 1 f i  Y1. 

The functor D: cop + $ is lax monoidal with respect to 

N 

n: SLDS and A :  DXADY-D(xAY); 



D is s t r i c t  monoidal when res t r ic ted  t o  the f u l l  subcategory of f i n i t e  objects. 

02. Duality for G-spectra 

We f i r s t  discuss cofibration and fibration sequences i n  the Gs tab le  category - 
h ~ d  u and show that  f i n i t e  G-CW spectra are f i n i t e  objects in the categorical 

sense of the previous section. We then re la te  duality t o  the change of groups 

isomorphisms proven in the previous chapter. 

The definit ion and basic properties of cofibration and fibration sequences are . 

the same for  G-prespectra and G-spectra as they are for  G-spaces. We define the 

cone CX = X A  I with I being given the basepoint 1. We define the path object 

PX = F(1,X) with I being given the basepoint 0.  For a map f :  X + Y, we define 

the homotopical cofibre and f ibre  of f by 

We form the sequence 

i and n being the canonical inclusion and quotient map. Each successive pair  of 

maps i n  ( C )  i s  equivalent t o  a map followed by the inclusion of i t s  target  i n  i ts 

cofibre, the inclusion being a cofibration. There resul ts  a long exact sequence 

upon application of the functor [?,ZIG for any Z. Similarly, we form the 

sequence 

I and p being the canonical inclusion and projection. Each successive pair  of 

maps in (F) i s  equivalent t o  a map preceded by the projection of i t s  f ibre  t o  i t s  

source, the projection being a f ibration.  There resul ts  a long exact sequence upon 

application of the functor [Z,?IG for any Z.  In part icular,  f ibration sequences 

give r i se  t o  long exact sequences of homotopy groups. The essential  new fact  for 

G-spectra, as opposed t o  G-spaces, is that  cofibration sequences also give r i se  t o  

long exact sequences upon application of [Z,?IG. 

Lemma 2.1. Let f :  X + Y be a map of G-spectra. Then the following sequence i s  

exact for any Gspectrum Z. 

Therefore the following sequence is also exact, where a i s  the composite 

-1 
"r* H C* H 

n;cf -pnn~x -+ "rna1x. 

Proof. Let i * ( a )  = 0, a: Z + Y. We can construct f3 and y which make the 

'following- diagram homotopy commutative. 

If  y = Cyt, then f * ( y t )  = a. 

We next describe how cofibration and fibration sequences hook up. 

Definition 2.2. For a map f : X -t Y of G-spaces, define 

11: Ff- QCf and E :  CFf-Cf 

where x e X, w e PY, and t e I, with ~ ( 1 )  = f ( x ) .  Define analogous TI and 

E spacewise for a map f : X + Y of Gprespectra. For a map f : X + Y of 

G-spectra, note tha t  

nu = am, F( af = aF(f 1 ,  cx = LCRX, and cf = L C ( R ~  1 ,  

and define 

E = LE: c F ~  = LzF(af)-+-LC(%f) = Cf; 

then define 11: Ff + aCf t o  be the (spectrum level )  adjoint of E . 

Lemma 2.3. For a map f :  X + Y (of Gspaces, Gprespectra, or Gspec t ra ) ,  the 



following diagram i s  homotopy commutative. 

The proof is elementary. Up t o  one change of sign, the top row is obtained by 

applying c t o  part  of (F) and the bottom row i s  obtained by applying Sl t o  part  

of ( C ) .  By the desuspension theorem, the f ive lemma, and the Whitehead theorem, the 

previous lemmas have the following immediate consequence. 

Theorem 2.4. For a map f :  X -t Y of G-spectra, 

q: Ff-nCf and E :  xFf 4 C f  

are isomorphisms i n  the G-stable category. 

Of course, passage t o  the stable category enta i l s  use of CW-approximation, but 

there i s  no loss of homotopical information. In the language of triangulated 

categories [121,107], the conclusion i s  tha t  cofiberings and fiberings give two 

dis t inc t  triangulations of the stable category, the negative of a cofibration 

t r iangle  being a f ibration tr iangle and conversely. 

Passage t o  function objects converts cofiberings t o  fiberings. 

Lemma 2.5. For a map f :  X + Y (of Gspaces, Gprespectra, or G-spectra) and an 

object Z ,  the sequence 

i s  isomorphic t o  the sequence 

Proof. Modulo reversal of the I coordinate dictated by our choices of basepoints, 

we may. identify PF(X,Z) with F(CX,Z). Since the functor F(?,Z) converts 

pushouts t o  pullbacks, there resul ts  an identif ication of F( Cf , Z )  with F( f*)  . 
This identif ication converts iX t o  p and r e s t r i c t s  via n* and I t o  the 

negative of the standard identif ication of F( c X , Z )  and SlF(X,Z). 

In part icular,  the dual of a cofibering i s  a fibering, and i ts negative i s  thus 

another cofibering. An easy induction on the number of ce l l s ,  together with our 

I calculation of D(G/H+) i n  11.6.3, gives the following consequence. 

Corollary 2.6. In the G-stable category, the dual of a f i n i t e  G-CW spectrum i s  

isomorphic t o  a f i n i t e  G C W  spectrum. 

We say that  a G-spectrum i s  f i n i t e  i f  it is a f i n i t e  object of ~ G A U  i n  the 

sense of Definition 1.1. Recall the c r i t e r i a  for recognizing such objects from 

Theorem 1.6. 

Theorem 2.7. Any f i n i t e  G-CW spectrum i s  a f i n i t e  Gspectrum, hence so i s  any 

wedge summand of a f i n i t e  G-CW spectrum. 

Proof. We f i r s t  show that  orbi ts  are f i n i t e  Gspectra.  Define 

t o  be the adjoint of the equivalence 

The map E# of Theorem 1.6 (ii) may be described as the dotted arrow composite i n  

the diagram 

Using the definit ion of o i n  11.6.1 and natura l i ty  diagrams, we find eas i ly  tha t  

the following diagram commutes. 



Since both maps w are equivalences, v i s  an equivalence. Thus v* and E# are 

bijections and C ~ G / H +  i s  f i n i t e  by Theorem 1.6. It follows that  a l l  suspensions 

of C"G/H+ are f in i t e .  Now consider the canonical evaluation map c :  DXA X -t S. 

Clearly 

is natural  i n  X. By the f ive lemma and the resul ts  above, the cofibre of a map 

between f i n i t e  objects i s  i t s e l f  f in i t e .  The conclusion follows by induction. 

As said before, we conjecture tha t ,  up t o  equivalence, a l l  f i n i t e  G-spectra are  

wedge summands of f i n i t e  G-CW spectra. Proposition 1.3 specializes t o  give the 

following conclusions. 

Proposition 2.8. (i) If X is a f i n i t e  G -  spectrum, then p :  X -t DDX i s  an 

equivalence. 

(ii) If  e i ther  X or Z i s  a f i n i t e  G -  spectrum, then 

is an equivalence. 

(iii) If both X and X1 are f i n i t e  G -spectra or i f  X i s  a f i n i t e  Gspectrum 

and Y = S (or  X1 is f i n i t e  and Y1 = S ) ,  then 

i s  an equivalence. 

We single out the case Y = S of (ii) since it i s  the basic spectrum level  

duality theorem. 

Corollary 2.9. i f  X is a f i n i t e  Gspectrum, then 

i s  an equivalence for any Gspectrum E. Therefore 

Here and l a t e r ,  homology and cohomology may be interpreted i n  e i ther  the 

IZ-graded -or RO(G;U)-graded sense. 

 ema ark 2.10. We have been working implicitly in a fixed G-universe U. Duality for 

the orbi t  G/H requires tha t  G/H embed i n  U. Provided that  we r e s t r i c t  

at tention t o  G C W  spectra bu i l t  up out of orbi ts  which embed i n  U, we need not 

i n s i s t  tha t  U be complete. 

We shal l  return t o  homological interpretations of duality in  the next section, 

but we f i r s t  record the behavior of duality with respect t o  change of groups. 

Proposition 2.11. Let H be a subgroup of G and l e t  L be the tangent 

representation of H a t  the ident i ty  coset of G/H. Let X and Y be dual f i n i t e  

H-spectra with duality maps c:  Y A X  -t S and q: S -t X A Y  and l e t  E and q 

correspond t o  the G-maps 

N 

E:  G b H ( Y  A X )  - S and fi: S -G K H ( X A  Z-%) 

under the isomorphisms of 11.4.3 and 11.6.5. Then G aHX and G KHz-% are dual 

f i n i t e  Gspect ra  with duality maps 

and 

where v: G KHz-% + Y is the H-map given by 11 .6 -8 and q : x + G nHX i s  the 

natural  inclusion of H-spectra. 

Proof. For G-spectra E and El, 11.4.3, 11.4.9, 11.6.5, and Theorem 1.6 give the 

chain of isomorphisms 



Thus G KHX and G rHz-% are G-dual. We obtain the specified descriptions of the 

duality maps by taking E = G rHx-% and El = S and tracing the identity map of 

G back through the chain and by taking E = S and El = G K ~ X  and tracing 

the identity map of G KHX through the chain. ' 

Proposition 2.12. Let N be a normal subgroup of G with quotient homomorphism 

E: G + J = G/N and let A be the adjoint representation of G derived from N. 

Let U be a complete Guniverse and let i: uN + U be the inclusion. Let 

X o G ~ U ~  be an N-free G-spectrum. If i*X is a finite G-spectrum, then its dual 

is N-free and therefore has the form i*Y for an N-free Gspectrum Y s GIU~. 

Let E: i*y~i*X + S and n: S + i,x~i,Y be duality maps, and let E and n 
correspond to the J-maps 

under the isomorphisms of II.4*5 and 11.7.2. Then X/N and (IAy)/N are dual 

finite J-spectra with duality maps 

and 

Here 7 is characterized (via II.2.8(i) and the freeness of X) by 

where T is the dimension-shifting transfer of 11.7.5, and 6 : X + X/N is the 

projection. Moreover, i*4 and T are dual G-maps. 

Proof. The following diagram commutes, where n: E 3' + So is the projection. 

E3 (N)'A D(i*X) F(i*X,E3 (N)') 

that 

is an isomorphism for any n. This implies that F(1, n) is an equivalence. 

Therefore n4 1 is an equivalence and D(i*X) is N-free (where of course we mean 

%hat a G-CW approximation of D( i*X) has the homotopy type of an N-free G-CW 

spectrum). By 11.2.8, D(ixX) is equivalent to iuY for an N-free Y a GBU~. Now 
let $ = iXEf: J J U ~  + GIU. For E,E1 f J ~ u ~ ,  11.4.5, Theorem 1.6, and 11.7.2 give 

the following three isomorphisms, where Gmaps are computed in U, J-maps are 
computed in uN, and we implicitly use the commutation of i* with smash products. 

Thus X/N and ( A) /N are dual. We obtain the specified descriptions of the 

duality maps by taking E = ( zAy)/N and E1 = S and tracing back the identity map 

of ( IAy)/N and by taking E = S and El = X/N and tracing through the identity 

map of X/N. Proposition 1.9 implies that E#(x/N) and E#( ( IAy) /N) are dual in 

GG~u, and the last statement follows by the characterization of dual maps in 

Proposition 1.5. 

Proposition 2.13. With N, J, and A as in the previous proposition, let X be a 

finite N-free G-CW complex. Then the G-dual of X is equivalent to C-~CODY for 

some finite N-free G C W  complex Y and some representation Z of J. Moreover, 

tie J-dual of X/N is equivalent to c-' I"( C ~ Y  /N. 

Proof. The Gdual of X is a finite N-free G-CW spectrum by the proof of 

Corollary 2.6, and the first statement follows from II.2.8(iii). The previous 
proposition implies the second statement. 

When G is finite, A disappears and this result is due to Adams [3,8.51 (who 

ascribes the case N = G to us). 

03. Slant products and V-duality of Gspaces 

We wish to interpret duality in terms of slant products, and we digress to 

define the basic products in homology and cohomology theory. Consider variable 
spectra X and XI and coefficient spectra E and E 1 .  We have the evident 

pairings 



(1) 

and 

(2) E\ : F(X,E) A F(X1 ,El ) 4 F(X AX' ,EA El . 

On passage to homotopy groups, these give rise to the external products 

(1' ) E*(X) 63 E*(X1 )+ (E)rE1 )#(XAX' ) 

and 

We also have the slant products defined by commutativity of the diagrams 

and 

(4) 

On passage to homotopy groups, these give rise to the homological slant products 

and 

(4' 

In view of the artificial and hard to remember appearance of (3') and (4'1, it 

is not surprising that no two authors seem to have chosen precisely the same 

definition of the slant products. It is convenient and sensible to rewrite these 

products in their adjoint forms 

and 

In these forms, the variables are clearly seen to be written in their most natural 

order. 

By coherence, any well formulated diagram involving the transformations (1) 

' through ( 4 )  will automatically commute. The translation of such diagrams to 

fo~rmulas relating the products (1') through (4') is immediate. In practice, of 
course, E = El is a ring spectrum and we obtain internal products by composition 

with the multiplication EA E + E. Similarly, A and \ are most often applied 

with X = XI a suspension spectrum and are then composed with A* and A, to 

obtain the cup and cap products 

Now consider a map E: Y A X + S with adjoint z: Y + DX. We may view E as 

an element of the Gcohomotopy group ng(~ A X) . Similarly, we view a map 
11 : S + X A Y as an element of the G-homotopy group n:(X A Y . 
Proposition 3.1. Let E: Y h X  + S be a map of Gspectra and let E' = ~ y :  X A Y  + S. 

Let E be a ring G-spectrum and, for H C G, regard G-spectra as H-spectra by 

neglect of structure. The slant products 

are induced by the respective composite H-maps 

If X and Y are finite Gspectra, then E/(?) and €I/(?) are both isomorphisms 

for all E, all H, and all gradings in RO(H;U) if and only if either is an 

isomorphism for E = S, all H, and all integer gradings. 

Proof. Note that coincides with the composite 

The first statement is proven by easy diagram chases. If E/(? ) : n:~ + ~:DX is an 
isomorphism for all H and n, then g: Y + DX is an equivalence by Whitehead's 

theorem, and similarly for €'/(?I. The rest follows from Theorem 1.6. 



Scholium 3.2. In an exercise [131, p. 4621, Spanier defined duality 

nonequivariantly by requiring both nxY z nXX and nxX z n*~. The redundancy has 

been copied by several later authors. 

The previous result admits a dual. 

Proposition 3.3. Let q: S + X A Y  be a map of finite Gspectra and let 

q' = yq: S + YA X. The slant products 

are induced by the respective composite H-maps 

where the adjoints are taken with respect to the canonical isomorphisms 

E#: [S,Xh Y I H 4  [DY,XIH and €#: [S,Y/r XIH+ [DX,YIH* 

The first slant product can be defined directly or by applying the definitions 

The homomorphisms ql\ ( ?  and q\( ? ) are both isomorphisms for all E, all H, 

and all gradings in RO(H;U) if and only if either is an isomorphism for E = S, 

all H, and all integer gradings. 

We now shift our focus from Gspectra to G-spaces. By 1.8.16, finite G-CW 

spectra are homotopy equivalent to desuspensions of finite G-CW complexes. In 

particular, if X is a finite G-CW complex, then D(X) is equivalent to 

z-'z"Y for a finite G-CW complex Y and a G-representation V. This is what 

brings "n-duality" into the classical nonequivariant theory and "V-duality" into the 

equivariant theory. Note that the suspension spectrum of a finitely dominated 

G-CW complex is a wedge summand of a finite G-CW spectrum and is therefore 

finite . 

a d  similarly for the second. The equivalence of the two conditions is part of 

Proposition 3.1, which also shows that these slant product isomorphisms imply many 

others. There is a dual definition based on Proposition 3.3. Of course, if c is 

a V-duality, then the adjoint of T is an equivalence C-~C"Y -t DX and C"X and 

c-~c"Y are dual finite G-spectra. 

We shall need a purely space level criterion for determining when a given map 

c is a V-duality. There is a dual criterion for maps q. 

Lemma 3.5. Let q : sV + X A Y and E : YA X -F sV be Gmaps such that the following 
diagrams become commutative upon passage to suspension spectra and the stable 

category. 

Definition 3.4. Let X and Y be based G-spaces whose suspension spectra are 

finite and let V be a representation of G. A G-map c: Y A X + sV is said to be a 

is an 'isomorphism for all H C G and all n E Z or, equivalently, if 

Here o is the sign map, a(v) = -v, and the y are transpositions. Then the 

suspension spectra of X and Y are finite and e is a V-duality. Conversely, 

if E is a V-duality, then there is a stable Gmap q such that the specified 

diagrams commute stably, and' q is uniquely characterized by the commutativity of 

either of the diagrams. 

Proof. Define 3 as above and let 

Easy diagram chases show that stable commutativity of the given diagrams is 

equivalent to commutativity of the diagrams 
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- - 
emx " l i z m ~ ~ ~ - v z m ~ ~ c m ~  and z-Vcm~ l*n*c-vcm~A and we shall see in the next section that it is satisfied more generally if X is a 

compact G-ENR. 

\ 11-r 
We should also record a purely space level description of dual maps. On the 

spectrum level, if (q,~) and (nl ,E' ) display finite pairs (E,F) and 

C"X C - ~ C ~ Y  (E',F1), as duals and if f: E -+ E1 is a map, then Df is the composite 
i 

In the second chase, we use the fact, implied by 11.5.11, that the composite 
I 

F' ; F'AS l A % - ~ l A  E ~ F  I\F1~Eln F "'~SAF = F. 
i 8 

i s = S-v* SV 4 SV S-v ' A SV A s-v = S 
I Consistency with the spectrum level duality maps ( ; i , E )  associated to space level 

1 duality maps (0,~) forces the following specification. 
is the identity (where the equivalences are given by duality maps, s-' being 1 
canonically equivalent to DS~) . The conclusion follows from the equivalence of (i 1 Lemma 3.7. Let ( n, E) and ( n ' , E ' ) be a V-duality and a V' -duality displaying 

and (ii) of Theorem 1.6. I stably finite pairs (X,Y) and (X1 ,Y1 as duals and let f: X + X1 be a map. 

i Define Df to be the composite 

The reader may prefer the following nonequivariant criterion. This result has i 

long been folklore when G is finite; we first learned it from Frank Connolly. 
i 
I y' sV a Y 1  A x ~y 1 y l  A XI A y E'A 1 S ~ l A  y. 

Theorem 3.6. Let X be a Gspace such that zmx is a finite Gspectrum with dual 
of the form z - ~ ~  f Y 1  for some representation V' and G-space Y1. Let Y be a 

G-space dominated by a finite GCW complex. Then a Gmap E : Y A X + SV is a 

V-duality if and only if its fixed point map cH: Y ~ A  xH + ( SVlH is an nH-duality 

for each H C G, where nH = dim(vH) . 
Proof. Clearly E is a V-duality if and only if zvl E : ev'Y A X + sV"' is a 

(V+V' -duality. Since zV1Y is finitely dominated and c-(~"' )zm( evY' ) is dual 

to G ~ X ,  we may assume without loss of generality that V = V1 . Let 5 : zmY + zmY' 

be the adjoint of em€ with respect to the adjunction given by the duality of 

C ~ X  and c-~c"Y'. Explicitly, 5 is the composite 

(Compare Theorem l.6( iii) . Clearly E is a V-duality if and only if 5 is a 

G-equivalence. After suitable suspension, say by W, eWc is represented by zmA 

for a space level Gmap A : zWY + zWY (by I .4 .lo) . Thus E is a V-duality if and only 
if A is a stable G-equivalence. Applying exactly the same argument on fixed point 

spaces and using 11.3.14 to check compatability of the equivariant and nonequiva- 

riant situations, we find that cH is an nH-duality if and only if AH is a stable 

equivalence. Since Y is finitely dominated, it follows from the space level 

G-suspension and G-Whitehead theorems ( e .g . Hauschild [ 591 or Namboodiri [ 115,§2 I ) 

that A is a stable Gequivalence if and only if each AH is a stable equivalence. 

The hypothesis on X is certainly satisfied if X is a finite GCW complex, 

Then the following diagram of spectra commutes. 

Further, the following diagrams of spaces commute stably, and the commutativity of 

either diagram characterizes Df. 

Also, the following composites specify a (V+V1 )-duality relating the pairs XA X' 

and YAY'. 



and 

Proof. Strictly speaking, V' @ V in the first diagram should be interpreted as 

k(V' O V), where k is the linear isometry used to internalize smash products. 

The equivalences are given by 1.7.9, 11.1.4, 11.3.6, and II.3.12(i), and the 

commutativity of the diagram is just a naturality statement. Both space level 

diagrams commute by virtue of the first diagram of Lemma 3.5, and the rest is clear. 

04. Duality for compact G-ENRts 

A Gspace X is a GENR (Euclidean neighborhood retract) if it can be 

embedded as a retract of an open subset of some G-representation V. It is a 

standard fact that a separable metric Gspace is a GENR if and only if it is a 

finite dimensional G-ANR, and it was observed by Kwasik [79] that any separable 

metric GANR has the homotopy type of a G-CW complex. Jaworowski [68,2.11 gave 

a convenient characterization of G-ENRts. In the compact case, his criterion is 

simply that each fixed point subspace must be a nonequivariant ENR. In particular, 

any finite G-CW complex is a compact G-ENR. While compact G-ENR1s have the 

homotopy types of G-CW complexes, they need not have the homotopy types of 

finite G-CW complexes, even stably. For example, locally linear compact 

topological Gmanifolds are compact G-ENR1s, but several authors have produced 

examples of such manifolds no suspension of which has the homotopy type of a 

finite G C W  complex. However, compact G-ENRts are clearly finitely dominated 

and are therefore wedge summands of finite G-CW complexes stably. Their 

suspension G-spectra are thus finite (in the categorical sense studied in the 

previous sections). A pair (X,A) will be called a G-ENR pair if X and A are both G- 

ENR's; this is true if and only if X is a G-ENR and the inclusion A C X is a G- 

cofibration. We shall construct explicit space level V-dualities for compact G- 

ENRts X and compact GENR pairs (X,A). 

For a pair of unbased spaces (X,A), defined C(X,A) to be the unreduced 

mapping cone X u CA with cone point 1 6 I as basepoint. By definition or 

convention, C(X,$) = x+. If X has a nondegenerate basepoint *, then C(X,*), 

which is just X with a whisker grown from its basepoint, is based G-homotopy 

equivalent to X. We shall prove the following version of the Spanier-Whitehead 

duality theorem. 

Theorem 4.1. Let (X,A) be a GENR pair with X embedded as a neighborhood retract 

in a representation V. Then C(X,A) and C(V-A,V-X) are V-dual. In particular, 

I 

I 
The classical Spanier-Whitehead theorem asserts that if a based finite 

polyhedron is simplicially embedded in (with respect to some triangulation), 

then X and s~+'-x are n-dual. We sketch how to think of theorem 4.1 from the 

1 point of view of complementary embeddings in spheres. 

e em ark 4;2. Think of sVtl as the unreduced suspension of sV. Embed C(X,A) in 

sVtl by using the given embedding of X at level 1/3 and letting the cone 

coordinate run from 1/3 to 1. Clearly C(V-A,V-X) is equivalent to C(S~-A,S~-X) . 
Embed the latter in sV+' by embedding V-A at level 2/3 and letting the cone 

coordinate run from 2/3 to 0.  (Draw a picture!) With these embeddings, it is 

intuitively clear that C( sV-~,SV-x) and C (X,A) are G-deformation retracts of 

each other's complements. 

We need two preliminary lemmas about mapping cones to specify the duality maps 

to be used in the proof of Theorem 4.1. For a G-map f: (X,A) + (Y,B), let C(f) 

denote the induced map of mapping cones. Clearly C is a homotopy-preserving 

functor from pairs of G-spaces to based G-spaces. Say that a Gspace X is normal 

if any two disjoint closed G-subspaces A and B of X have disjoint open 

G-neighborhoods. The proof of Urysohn's lemma goes through equivariantly to show 

that there is then a Gmap X + I which takes the value 0 on A and 1 on B. 

Just as nonequivariantly, if the topology on X is given by a G-invariant metric, 

then X is normal. 

Lemma 4.3. If U c A c X, then the excision 

induces a based Ghomotopy equivalence on passage to mapping cones under either of 

the following two hypotheses. - 0 

(i) U C  A and X is normal. 

(ii) The inclusions A-U + X-U and A + X are Gcofibrations. 
0 

Proof. (i) Let u: X + I satisfy u(x) = 0 if x 4 A and u(x) = 1 if - 
x E U. It is easy to check that the space 

(X-A) v {(a,s) I a 6 A-U and s u(x)) 

embeds as a Gdeformation retract in both C(X-U,A-U) and C(X,A). 

(ii) Collapsing the cones C(A-U) and CA to a point gives G-equivalences from 

C(X-U,A-U) and C(X,A) to 



Observe that C (X,A) A Y+ is naturally G-homeomorphic to C (X x Y ,A x Y) . We 
shall need a generalization of this fact. 

Lemma 4.4. For pairs of G-spaces (X,A) and (Y,B), define 

by the following formulas, where x E X, y E Y, (a;s) E CA and (b,t) E CB. 

If A or B is empty, then a is a G-homeomorphism. In general, a is a 

G-homotopy equivalence under either of the following two hypotheses. 

(i) A is open in X, B is open in Y, and (X x B) LI (A x Y) is normal. 

(ii) One of the inclusions A + X and B + Y is a G-cofibration. 

Proof. The homeomorphism part is clear so assume that A and B are nonempty. 

Let Z denote the double mapping cylinder 

Let w: Z + (X x B) u (A x Y) be the obvious quotient map and let p be the 

composite of w and the inclusion of (X x B) \J (A x Y) in X x Y. Then II 

induces a map 

where C(X x Y,Z) denotes the unreduced mapping cone of p .  Clearly C(w) is a G- 

equivalence whenever w is a Gequivalence over X x Y. The map a is the 

composite of C(w) and the G-homeomorphism 

$: C(X,A) A C(Y,B) +C(X xY,Z) 

specified by 

I ((a,b,l-t/2s),s) if s 2 t 

B( (a,s) A (b,t) = 

((a,b,s/2t),t) if s < t. 

Thus it remains to check that IT is a G-equivalence over X x Y under either of 

our hypotheses (i) and (ii). 

(i) Let u: (X x B) U ( A  x Y) + I satisfy u(x,y) = 0 if x d A and 

u(x,y) = 1 if y 4 B. Define q: X x B U A x Y + Z by 

Then a$ = 1 and $s - 1 via an evident homotopy . 
(ti) Here we apply the standard fact that the pushout functor preserves 

G-equivalences when applied to diagrams one leg of which is a G-cofibration. 

Henceforward, we shall often use the (categorically incorrect) notation 

(X,A) x (Y,B) = (X x Y,X x B u A x Y). 

Observe that a is associative and commutative in the obvious sense. 

Construction 4.5. (i) Choose a G-map 

which makes the following diagram commute up to G-homotopy. 

Here d is the difference map, d(v,x) = v-x; B is any closed disc about the 

origin in V and the unlabeled arrows are the obvious equivalences. 

(ii) Let r: N + X be a Gretraction of an open neighborhood N of X in V. 
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i x l  
Since A c X i s  a G-cofibration, ( X , A )  i s  a G-NDR pa i r  and there i s  a (V,V-B) x ( X , A )  .--"p(V,(V-X) L I U )  x ( X , A ) a  (N-A,(N-X) u ( U - A ) )  x (X,A)  

G-homotopy h: X x I a X such tha t  h(x,O) = x, h ( a , t )  = a fo r  a c A, and 

s = hl r e s t r i c t s  t o  a Gre t r ac t ion  U -+ A for  some open neighborhood U of A I l A X l  i n  X. The composite s r :  r - lu  -+ A i s  a G-retraction of an open neighborhood of 

A i n  V. Since X i s  compact, we may arrange tha t  N i s  contained i n  a closed ( N , ~ - ' u )  x (V,V - { O ) ) u  ( N , ~ " u )  x (V-A,V-X) x (X,A)  

disc B about the origin i n  V. Choose a G-map 

which makes the following diagram commute up t o  G-'homotopy. 

Here C (  i) i s  an equivalence since Lemma 4.3( i) applies t o  the excision i. Of 

course, when A i s  empty, U i s  a l so  empty and the diagram simplif ies accordingly. 

We sha l l  use the cr i te r ion  of Lemma 3.5 t o  show tha t  the pa i r  ( ~ , n )  gives a 

V-duality between C ( X , A )  and C(V-A,V-X) . 

Lemma 4.6. The following diagram is G-homotopy commutative. 

Proof. By an easy inspection, it suff ices  t o  show tha t  the following diagram of 

pa i rs  becomes G-homotopy commutative upon passage t o  mapping cones. 

The bottom r ight  square commutes t r i v i a l l y .  The map e i s  specified by 

e(v,x)  = (x,v-x) . The homotopy k of maps of pa i rs  specified by 

and the f ac t s  t ha t  r = 1 on X and s = 1 re1  A show tha t  the l e f t  par t  of the 

diagram i s  Ghomotopy commutative. For the top r ight  square, define 

M = {(n ,x)  I t x  + (1- t )n  E N for  0 5 t 5 1 )  c (N-A) x X 

and consider the following schematic diagram ( i n  which denotes the diagonal 

subspace of Y x Y )  . 

In each pa i r  of arrows, the f i r s t  is given by (n,x)  -t (n,n-x) and the second by 

(n ,x)  + (x,n-x). The two l e f t  arrows are i n  the same homotopy c lass  by the 

def in i t ion  of M. Since the l e f t  inclusion i s  an excision, Lemma 4.3 implies tha 

the two r ight  arrows induce homotopic maps of mapping cones. 

When A i s  empty, the following lemma completes the proof of Theorem 4.1. 

Lemma 4.7. The following diagram i s  G-homotopy commutative. 



. .  . 

r, 
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Proof. By an easy inspection, it suffices to  show that  the following diagram of basepoint. Thus we have a based cofibration sequence 

pairs i s  G-homotopy commutative. 
i 

i C(V,V-X) -+ C(V,V-A) ---bzC(V-A,V-X) 
l x i  

(V,V-X) x (V,V-B) 4 (V,V-X) x (V,V-X) - (V,V-X) (N,N-X) 1 
[ i n  which the second map i s  obtained by collapsing out V and including. Of course, 

( 0 x 1 ) ~  g I we also have the based cofibration sequence 

J l x r x l  I 
d x 1 

(V,V-B) x (V,V-X) -3 ( V , v  - {O)) x (V,v-x)~----- (V,V-X) x X (V,V-X) I A+- X+ + C ( X , A ) .  

I 
I 

Here f (v ,n )  = (v-n,n) and g ( v , v l )  = (v-v ' ,v) .  the r ight ,  I The following two diagrams are clearly G-homotopy commutative. 
i 

and (v ,n , t )  + ( v - [ ( l - t ) n  + t r ( n ) l , n )  gives a homotopy from f t o  t h i s  

composite. Similarly, we have l inear  homotopies 

(v ,n , t )  + (v-n, (1-t)v + t n )  and (v,vl  ,t)- (tv-v' ,v)  

from g ( l  x i) t o  f and from ( a  x l ) y  t o  g. 

When A i s  nonempty, points in the diagonal subspace AU obstruct the 

d e f i n i t i m  of maps f and g as above. We complete the proof of Theorem 4.1 by 

deducing the re la t ive  case from the absolute case. 

Lemma 4.8. The following diagram is a t  l eas t  stably G-homotopy commutative. 

Proof. By Lemmas 3.5 and 4.6, we need only show that  the map E in the diagram i s  

a V-duality. Observe f i r s t  tha t  there i s  a natural  G-homotopy equivalence 

where the outer cone in the domain i s  reduced rather than unreduced. In f ac t ,  5 i s  

jus t  the quotient map obtained by collapsing the cone CV t o  the basepoint and 

transposing the two cone coordinates of CC(V-X). We can use the reduced cone on 

the l e f t  since 5 collapses the l ine  through the inner cone point t o  the 

and 

A l i t t l e  l e s s  obviously, the following diagram i s  stably G-homotopy commutative up 

t o  the sign -1. 

To see th i s ,  replace sV by C(V,V - (0))  and collapse out the contractible 

G-space V. The target  csV is  then replaced by z z ( V  - {O)), where the inside 

suspension i s  unreduced. The two result ing maps in to  the new target  are eas i ly  

checked t o  d i f f e r  only by a transposition of suspension coordinates. Since we are 
working stably (compare Lemma 4.9 below), we may as well assume that  V contains a 
copy of the t r i v i a l  representation. This allows us t o  choose a G-fixed basepoint 

i n  V - (0) and pass t o  the reduced suspension, whereupon the assertion becomes 



clear. By the three diagrams above and an easy comparison of long exact sequences, 

E is a V-duality in the relative case because it is a V-duality in the absolute 

case. 

The previous proof used instances of two useful general naturality properties 

of E. 

Lemma 4.9. If (X,A) C (X1,Al) is an inclusion of compact G-ENR pairs in V, 

then the following diagram commutes. 

Lemma 4.10. Let (X,A) be a compact G-ENR pair in V and let V C V' with 

orthogonal complement W. Then the diagram 

specifies a G-homotopy equivalence 5 such that the following diagram is G-homotopy 
E 

commutative. 

The explicit geometric nature of the maps E and q often allows explicit 

evaluation of dual maps. We give two examples. 

F 
Lemma -4.11. The dual of the projection 5: X' + SO is the "Pontryagin-Thom" map 

i 

Proof. Of course, SO is 0-self dual via SO = SO A so. According to Lemma 3.7, - .  

the dual of '5 is the composite 

A simple inspection shows that this agrees with t. 

L e m  4.12. Define the "Thom diagonal" A: C(V,V-X) + X'A C(V,V-X) to be the 

composite 

Then the following diagram is G-homotopy commutative. 

Proof. This follows from the definitions of n and E, the relation 

(1A E) ( q A 1) = y, and the transitivity diagram 

We must justify the terminology used in the lemmas. 

Remark 4.13. It is often the case that V-N is a G-deformation retract of V-X, 

V-U is a Gdeformation retract of V-A, and the inclusion of V-N in V-U is a 

G-cofibration. Under these circumstances, we have natural G-equivalences 

When A is empty,, V/(V-N) is G-homeomorphic to the 1-point compactification N' 

of N. The "Pontryagin-Thom" map of Lemma 4.11 corresponds under these equivalences 

to the Pontryagin-Thom map t: sV + N' obtained by collapsing the complement of 



N t o  the basepoint. The "Thom diagonallt of Lemma 4.12 corresponds t o  the Thorn i 
i .  

diagonal A:  NC -t X+A !IC obtained from the composite i 

i 

by use of the natural  based map N+ + !IC. In the manifold context of the next 

section, N w i l l  be a tubular neighborhood of X and r w i l l  be the bundle 

projection. 

$5. Duality for  smooth Gmanifolds 1 
I 
i 

It is now a very easy matter t o  compute the duals of smooth Gmanifolds and t o  

be rather more precise about the duali ty maps than i s  customary. We shal l  need the 

precision i n  our discussion of ~ o i n c a r g  duality. We begin with the closed case. 

Let Tq denote the Thom complex of a G-vector bundle TI. 

Theorem 5.1. Let M be a smooth compact Gmanifold without boundary smoothly 

embedded i n  a G-representation V. Let v be the normal bundle and l e t  N be a 

tubular neighborhood of M i n  V. Let 

be the composite of the Pontryagin-Thom map and the Thom diagonal. Let s: M + v be 

the zero section, observe that  the normal bundle of the composite 

and l e t  

be the composite of the Pontryagin-Thom map associated t o  a tubular neighborhood 

of ( s  x 1) A and the canonical projection. Then - q and E display M+ and 

T v  as, V-duals. 

Proof. As observed i n  Remark 4.13, C(V,V-M) i s  canonically Gequivalent t o  Tv. 

Write q '  and E '  for  the duali ty maps of Construction 4.5. It i s  easy t o  check 

tha t  TI' corresponds t o  q under the equivalence. Rather than t r y  t o  obtain the 

analogous (and much l e s s  obvious) comparison of E '  and E directly,  we note tha t ,  

by the dual version of Lemma 3.5, it suffices t o  prove that  the following diagram i s  

G-homotopy commutative. 

  he compos-ite (1 * E )  ( q  A 1) i s  easily seen t o  be the Pontryagin-Thom map associated 

t o  a tubular neighborhood of the embedding 

where i i s  our given embedding of M i n  V. For a radial  embedding r: V + V of V as  

a sufficiently small open ba l l  around the origin, a second, isotopic, tubular 

neighborhood M x V -t V x M i s  specified by sending (m,v) t o  ( r ( v )  + i ( m ) , m ) .  

Clearly the Pontryagin-Thom map for t h i s  second tubular neighborhood i s  homotopic t o  

the switch map. 

The l a s t  few resul ts  of the previous section imply the following addenda. 

Corollary 5.2. The dual of the projection 5: M+ + SO i s  the Pontryagin-Thom map 

t: sV -t Tv. 

Corollary 5.3. The Thom diagonal f i t s  in to  the stably Ghomotopy commutative 

diagram 

Similarly, we have the Atiyah duality theorem for  smooth G-manifolds with 

boundary. 

Theorem 5.4. Let M be a smooth compact Gmanifold with boundary. Let V = V' x R, 

where ( M , a M )  i s  properly embedded i n  ( V '  x [O, - ) ,V1 x {O)), and l e t  v' and 

v be the normal bundles of aM i n  V' and of M i n  V. Then the cofibration 

sequence 

Tv' -Tv +Tv/Tvl -.- CTv' 

is V-dual t o  the cofibration sequence 



Proof. Since our embedding is proper, we may assume that it restricts to the 

obvious embedding aM x [0,41 + V1 x [0,41 on a boundary collar aM x [0,41 

inside M. (Use of [O ,41 rather than [O ,1 I will aid in the check that all three 

maps in the two sequences are dual to one another.) Glue another boundary collar 

aM x [ -1 ,Ol on the outside of M to obtain a manifold I? embedded in 

V1 x [ -1, -1, and let $ be a tubular neighborhood of in V' x [ -1, -1 . If 

N = fi n (VI x (-I,-)) and N1 = $ n (V1 x(-l,l)), 

then N is the normal bundle of 6 - aIi and N1 is the no-1 bundle of 

aM x (-1,l). Let 

M1 = M - (aM x [0,3) ) and N1 = Q (V' x (I?,-) 1. 

Then N1 is the normal bundle of M - ( aM x [0,2 1 1. Via a direction reversing 

homeomorphism from the interval [0,11 to the interval [0,31, we obtain an 

identification of C ( aM+) with M/ ( aM u M1 under which the boundary map 

becomes homotopic to the quotient map 

The horizontal arrows are equivalences im the commutative diagram 

By Theorem 4.1 and our comparison of C( aMt) to M/( aM u MI), the left column is 

V-dual to the sequence 

E@ inspection, the right column is equivalent to the sequence 

where 3 is the pullback of vt along the projection aM x [ 1,2 1 + aM. Since 

there is an evident equivalence T3 2 Tv compatible with the inclusions T3 + Tv 

and Tvl + Tv, this proves the result. 
, 

As in Theorem 5.1, it is easy to write down explicit descriptions of the 

relevant duality maps Q and E.  For example, Q: sV + M/aM ATV can again be 

described as the composite of the Pontryagin-Thom map t: sV + Tv/Tvl and the Thom 

diagonal A: Tv/Tvl + M/aMhTv. We leave the remaining cases to the reader. 

In our treatment of ~oincark duality, we shall need a technical result on the 

relationship between local and global duality on manifolds. 

Proposition 5.5. Let M be a smooth compact G-manif old smoothly (and properly) 

embedded in a G-representation V with normal bundle v. Let x E M - aM have 

isotropy group H, let Z be the fibre at x of the normal bundle of Gx c M and 

let W be the fibre at x of v. Extension of G/H E Gx C M to a slice 

G xHZ + M gives rise to a lllocal Thom map" t,: M/aM + GfnHsZ (where M/aM is 

interpreted as M+ if aM is empty). The bundle inclusion G xHW + v gives rise 

to an induced map jx: G+hHsW + Tv. The maps tx and jx are dual to one another. 

Proof. We shall prove that the following diagram commutes. 

(Compare Lemma 3.7.) Here n is the composite At, as above, and c is the 

explicit duality map of Proposition 2.11. This makes sense since if L is the 

tangent H-representation of G/H at the identity coset, then L O Z 0 W is 

H-isomorphic to V, so that zLsZ and sW are V-dual H-spectra. Note that c 

depends on a choice of H-equivalence zLsZh sW + sV, and we are free to insert a 

sign if we choose (see Warning 1.7); cy is again a duality map by Theorem 1.6. A 

little diagram chase shows that the composite around the top can be written in the 

f orm 



where 5 is the G-homeomorphismn specified above 11.4.1 and g is the G-action 

map. The H-map a is specified by commutativity of the diagram 

where u is as defined in 11.5.5. Let n: v + M -be the bundle projection. 

Clearly ~(WAV) = * unless v is in the copy of v in the chosen tubular 

neighborhood of M, n(v) is in the slice G xHZ, and, in there, is in the slice 

L x Z used in 11.5.5. Therefore a factors through lhtt, where 

tt : sV -+ sL, sZA sW = SV is a Pontryagin-Thom map H-homotopic to the identity 

determined by the various embeddings in sight. Regard tt as an identification. 

Then, for w,wt E W, A E L, and z E Z, 

where (A,z,wt ) E Tv is to be interpreted as the point w' in the fibre of v at 

the point (A,z) E L x Z C G xHZ C M. On the other hand, jXhl can be written as 

the composite 

where 

Since L x Z is H-contractible, this neighborhood in M contracts to x. Thus, up 

to the sign introduced by interchange of w and w' (see 11.5.111, a and B are 

H-homotopic. We may alter E (and thus a) by the same sign and so obtain the 

result. 

Remark 5.6. We have restricted the material above to smooth Gmanifolds for 

simplicity and our own security. However, using the foundational material developed 

by Lashof and Rothenberg [821 and its generalization from finite groups to compact 

Lie groups, it seems that one can carry out everything above and in the next section 

in the more general context of locally linear compact topological G-manifolds. The 

essential point is that such manifolds are compact G-ENR's and have slices, normal 

bundles, tubular neighborhoods, and boundary collars with the usual properties. 

As noted by Atiyah [ 6  1 , Theorem 5.4 implies a duality theorem for the Thom 
complexes of vector bundles over closed manifolds. 

8 

i 
Theorem 5.7. Let M be a smooth compact G-manifold without boundary smoothly 

i 

I embedded with normal bundle v in a G-representation V. Let g be a real 

G-vector bundle over M and let q be a complementary bundle with respect to a 

G-representation W, g @ q = M x W. Then Tg is (VceW)-dual to T(v @3 q). 

Proof. We' may give g a smooth structure. If Dg and Sg denote the unit disc - 
and~unit sphere bundles of 5 then Dg is a smooth G-manifold with boundary Sg 

and Tg = Dg/Sg. Thus Tg is Z-dual to Tw, where w is the normal bundle of a 

suitably nice embedding of Dg in a G-representation Z. Let IT: Dg + M be the 

projection. Clearly the tangent bundle of Dg is n*(r Q g), where r is the 

tangent bundle of M, and of course n* ( r Q g ) 63 n* ( v Q q ) is the trivial bundle 

V Q W over Dg . This implies that w + V O W is stably equivalent to n* ( v 0 q) 63 &. 
Interpreting duality maps stably, Tg is (V Q W Q Z ) -dual to CWTw and thus to 

CzTn*(v@ q). Therefore Tg is (V OW)-dual to Tn*(v@ q). Since n is a 

G-homotopy equivalence, Tn* ( v Q q) is G-homotopy equivalent to T ( v @ n ) . 

56. The equivariant ~oincar; duality theorem 

We begin by describing the Thom isomorphism of an oriented G-vector bundle g 
over a G-space Y. If i: G/H + Y is the inclusion of an orbit, then itt is of 

the form G xHW -+ G/H, where W is the fibre H-representation at i( eH) . Thus 
T(iXg) = G+A H~W. Let E be a commutative ring G-spectrum. (We index 

G-spectra on a fixed complete G-universe.) Let E: RO(G) -+ Z be the augmentation, 

Definition 6 .l. An E-orientation of g is an element a of RO(G) such that E (a) 
-a 

is the fibre dimension of g together with a class p E EG(T6) such that the 

"* * 
restriction of p to EG(T(i g) ) - i:(sW) is a nH(~) generator for each orbit 

inclusion i: G/H -t Y with fibre representation W. 

,* 
The definition makes sense since EH( SW) , regarded as graded over RO(H), is 

a free nH(E)-module on one generator, where x:(E) is also understood in the 

RO(H)-graded sense. 

If Y is Gconnected, there is an obvious preferred choice for a, namely the 

fibre G-representation V at any fixed point of Y. Here any fibre H-represen- 

tation W as above is isomorphic to the restriction of V to H. For general Y 

and g, there is no obvious preferred choice for a, and the existence of an 

orientation implies restrictions on the coefficients n:(E). If p E E;(T~) is an 

orientation of g and W is the fibre H-representation at i(eH) for an orbit 
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inclusion i: G/H + Y, then i*(u) 6 i;(sW) = IT:-~(E) must be a unit. If a # w, associated to the orientation. If M is a compact E-oriented smooth Gmanifold 

the existence of such a unit forces a certain amount of periodicity in the theory. with boundary, then the analogous composites 

If A C Y is a Gcofibration, the relative Thom diagonal 

A: Tg/T( g /A) -ic Y/AA Tg 

gives rise to a cup product 

(where T( g /A) is a point if A is empty) . An ,easy homotopical proof of the 

following equivariant Thom isomorphism theorem is given in X55. 

-a 
Theorem 6.2. Let p E EG(T~) be an orientation of the G-vector bundle 5 over Y. 

Then, for a G-cofibration A c Y, 

is an isomorphism for all @ E RO (G . 

Now specialize to the context of smooth Gmanifolds. 

Definition 6.3. A smooth G-manifold M is said to be E-orientable if its tangent 

bundle T is E-orientable, and an orientation u of T is also called an 

orientation of M. If M has boundary, then the smooth boundary collar theorem 

shows that the normal bundle of the embedding aM + M is trivial. Giving it the 
-1 

canonical orientation ' I E EG( X( aMt) 1, we obtain a unique orientation all of aM 

such that all O I is the restriction of 11 to aM. 

&re the relative Poincar: duality isomorphisms. The element [MI = D(1) in 

Ea(M,aM) is called the fundamental class associated to the orientation. 

Theorem 5.4 and a direct comparison of definitions give the following result. 

1 

Proposition 6.5. The ~oincar; duality isomorphisms are all given by the cap product 

with the fundamental class. In the case of manifolds with boundary, the following 

diagram commutes. 

The fundamental class of an E-oriented G-manifold admits a local description, 

as in the nonequivariant case. 

-a 
Let 1-1 "GT(T) be an orientation of M. Embed M in a G-representation V Definition 6.6. Let M be a smooth compact Gmanifold. For x M-aM, let 

and let rL denote the normal bundle of the embedding. Let v s E;-~(T ( T') ) be tx: M/aM + G+ hHsZ be a local Thom map at x (as in Proposition 5.5 ) , where H is 

the unique orientation such that v 0 11 is the canonical orientation in the isotropy group of x and Z is the fibre at x of the normal bundle of Gx c M. 

EV( c~M+). We obtain the ~oincar; duality isomorphism by combining Atiyah duality, An E-fundamental class of M is an element a of RO(G) such that E( a) = dim M 

Spanier-Whitehead duality, and the Thorn isomorphism. and an element [MI r E~(M, aM) such that the image of [MI under the composite 

Definition 6.4. If M is a closed E-oriented smooth G-manifold, then the composite E:(M, c(Gf A$') " f(sLIZ) 

of the Thom and Spanier-Whitehead duality isomorphisms is the Poincar; duality 

isomorphism. The element [MI = D(1) in Ea(M) is called the fundamental class 

H is a n*(E)-generator of F~(S~+' for each x s M- aM. If aM = $, the same 

definition applies with M/aM interpreted as M'. 

Proposition 6.7. Let M be a smooth compact Crmanifold smoothly (and properly) 

embedded in a G-representation V. Then the Spanier-Whitehead-Atiyah duality 



isomorphism 

restricts to a bijective correspondence between E-orientations of rL (and thus 

of r and M) and E-fundamental classes of M. 

Proof. Let tx: M/aM + G'A H ~ Z  be as in Definition 6.6, let W be the fibre of 

rL at x, and let L be the tangent space of G/H at eH. Thus V is 

isomorphic as an H-representation to L + Z + W. If jx: G+A H ~ w  + T(T') is 

induced by the inclusion of G xHW in rL, then the top square of the following 

diagram commutes by Proposition 5.5 and the bottom square commutes by Proposition 

2.11. 

The result follows from the diagram and the definitions. 

Scholium 6.8. In the nonequivariant case, the previous result is given in Switzer 

[137,14.181. As Stong observed, Switzer's proof fails because it relies on 

[137,14.91, which is false. Our proof escapes the difficulty in [I371 by connecting 

global orientations and fundamental classes directly rather than via local 

orientations and fundamental classes. 

57. Trace maps and their a6ditivity on cofibre sequences 

To begin with, we return to the categorical context of section 1 and assume 

given a closed symmetric monoidal category G with unit S, product A ,  and 

internal hom functor F. We introduce a general categorical notion of a trace map. 

Definition 7.1, Let X and C be objects of c, with X finite, and let 

f: X + X and A: X + X A C  be morphisms of t. Define the trace of f with 

respect to A, denoted r(f), to be the composite 

. .  . 

n 
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If C = S and A is the unit isomorphism X E XA S, then T ( f ) is denoted 

X( f and called the trace (or Lef schetz constant) of f . If f is the identity 

map, x(f) is denoted x(X) and called the Euler characteristic of X. If 

C = X, we call A a diagonal map; here, if f is the identity map, r(f) is 

denoted r(X) and called the transfer (or pretransfer) of X. 

To see the intuition, the reader should check for himself that the "trace1' 

x(f) of a linear transformation f: X + X on a finite dimensional vector space X 
really is the usual trace and that, if X is graded, the "Euler character is ti^'^ 

x(X) really is the usual Euler characteristic. The verification will show the 

essential role played by the transposition y, with its associated sign. 

In the context of Gspectra, the transfer and Euler characteristics will be 

central to the work of the next two chapters. There only the identity map f will 

be used, but we shall work with general maps in this chapter with a view towards 

applications in equivariant fixed point theory. 

In practice, C is usually a tlcoalgebral' and X is a "right C-comodule". This 

means that C has a coassociative coproduct A: C -t CAC with a two-sided counit 

(or augmentation) 5: C + S and that the following diagrams commute. 

X A X A C  and X 

The second diagram clearly implies that eer(f) = x(f) for any map f: X -+ X. We 

shall refer to our given map A: X + X A  C as a coaction of C on X even when we 

don't assume the extra data just specified. 

Since ( f ~ l ) n =  (1nDf)q and ~ ( l ~ f )  = c(Df~l), easy diagram chases show 

that the same map r(f) is obtained by inserting any one of the four composites 

1A f 
I A A  I A A  1 Af - D X A X ~ D X A X  -DXAXA c and DXAX ----~DXAX~C 0fni-;;i~~xhx.nc 

between yq and E. This fact aids in the verification of the formal properties of 

the trace, which we catalog in the following series of lemmas. 

Lemma 7.2 (Unit property). X(f) = f for any map f: S + S. 

Lemma 7.3 (Fixed point property). Let C coact on X and let f: X + X and 

h: C + C be such that (f 4 h ) ~  = Af. Then hr(f) = ~(f). 

Lemma 7.4 (Invariance under retraction). Let C coact on X and D coact on Y 

and let k: X + Y, kt: Y + X, and h: C -t D be such that klk = 1 and 

( k ~ h ) ~  = Ak. Then hr(f) = r(kfkl) for any map f: X + X. 



In particular, we can take C = D and give Y the coaction (khl)hkl induced by 

the coaction on X. When k is an equivalence, we view this as a homotopy invariance 

property. 

Lemma 7.5 (Commutation with products). Let C coact on X and D coact on Y 1 
and give X A Y the coaction 

by CAD. Then .r(.f~g) = .r(f)~.r(.g): S z SAS + CAD fop any maps f: X + X and g: Y + Y. 

In practice, and in the next lemma, '$ is an additive category and the 

functor A is bilinear. We then write v for the biproduct (which is the wedge 

sum in our categories of spectra and the direct sum in the usual categories of 

modules). Here D(X v Y) z DX v DY and X VY is finite if X and Y are finite. 

Lemma 7.6 (Commutation with sums). Let C coact on X and Y and give X vY the 

coaction 

X v Y  "(x(XC)V (YAC) ( X V Y ) ~  C .  

Then, for any map h: X V Y  + Xv Y, ~ ( h )  = ~ ( f )  + ~(g), where f and g are the 

restrictions X + X and Y + Y of h. 

The force of this result is that the cross terms X + Y and Y + X of h 

make no contribution to ~(h), as one would expect of a trace function. 

Proposition 1.9 has the following immediate consequence. 

Proposition 7.7. Let (P: Q + f i )  be a monoidal functor whose unit map A: T + QS is an 

isomorphism. Let X be a finite object of such that 4: (PX A (PDX + m(Xn DX) is 

an isomorphism. Let C coact on X and give (PX the coaction 

- 
We.now focus attention on the category hG8U of Gspectra, where we either 

assume that ' U is a complete G-universe or restrict attention to G-CW spectra 

built up out of cells G/H+A en such that G/H embeds in U. 

Lemma 7.8. For any integer n, x(sn) = (-lIn. If a G-spectrum C coacts on a 

finite Gspectrum X and znx is given the coaction 

Then .r(znf) = (-lln.r(f) for any map f: X +X. 

Proof. Under the equivalence s - ~  - D S ~  adjoint to the standard equivalence 

S-"A Sn - So, x(~n) corresponds to the transposition 

which has degree (-lIn. By Lemma 7.5, T(I?~) = X(~n)~(f). 

Proposition 7.9 (Invariance under change of groups). Let H C G  and let X be a 

finite H-spectrum with a coaction by an H-spectrum C. Give G MHX the coaction 

by G KHC. Then the following diagram of Gspectra commutes for any H-map 

f: X + X, where .r(G wHS) is defined with respect to the diagonal coaction of 

G kHS z ~'G/H+ on itself. 

Proof. Let Y = DX. Proposition 2.11 gives explicit maps displaying G kHX and 

G as dual finite G-spectra. We note that the composite 

by (PC. Then the following diagrams commute for any map f: X + X. appearing there coincides with the composite 

since these two G-maps give the same H-map when precomposed with 

I-I : X A Z-% + G wH(X A I-%) . Now direct inspection of definitions and easy diagram 
chases show that, with the notation of Proposition 2.11, ~ ( 1  IX f) is the composite 
G-map 

f' 
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.., Nhl s -%- G wH(x~ C-$1 *G %(YA x n (G %c) ) G(YA X) A (G kHc) b~ K~ C ,  commute up to Ghomotopy. Let Z denote the cofibre Y ukCX and construct 
G-maps h: Z + Z and A: Z + Z AC such that the middle squares commute strictly 

where $ is the composite H-map and the right squares commute up to Ghomotopy in the diagrams 

Visibly, this last composite coincides with 

Here the composite H-map 1 
t 

agrees with the composite 

Y lno4yA (G y - L )  a y .  so. 

i 
(Actually, pn: s - ~  + So is the dual of ~ - ~ e ,  e : So + SL; compare 11.6.12. ) We 

may express T(G wHS) as the composite 
1 
j 

Now a further easy diagram chase, which uses that the composite 

is the identity, gives the conclusion. i 

f t 

The rest of this section will be devoted to the proof of the following result, 

whose space level implications will be discussed in the next section. 

Theorem 7.10 (Additivity on cofibre sequences). Let X and Y be finite 

G-spectra coacted on by a G-spectrum C and let f: X + X, g: Y + Y, and k: X + Y be 

G-maps such that the diagrams 

X A Y  and X L Y  

and 

where i and n are the natural inclusion and quotient maps. Then 

~ ( g )  = ~ ( f )  + ~(h). In particular, with C = S, x(g) = x(f) + X(h). 

Proof. It is important to note that no compatibility between f and g and the 

coactions is required. By abuse of notation, we agree to write B/A for the 

cofibre of a map A + B, not necessarily a cofibration, throughout this proof 

(except in the case of Z) . There will always be a canonical relevant map A -+ B in 

sight. We write i: B + B/A and n: B/A + CA generically for the resulting 

canonical inclusion and quotient map. The construction of h and A is a standard 

use of homotopies, exactly as on the space level. Since T(c~) = -~(f), it suffices 

to prove that ~ ( h )  = ~ ( g )  + ~(zf). By Proposition 1.4, ~ ( h )  coincides with the 

composite 

and similarly for T (g ) and T ( zf . In the special case of Euler characteristics, 
the last few maps can be replaced by E: DZ A Z + S. We claim that all parts of the 

diagram on the following page commute in the Gstable category. This will prove the 

result for Euler characteristics. To handle the general case, we need only expand 

the bottom left corner of the diagram by replacing E: DZnZ + S by 

(~hl)(lh~)(l~h): DZAZ + C, and similarly for Y and EX. The maps 1 ~ g  

and 1 A h  induce self-maps of the three cofibres displayed (in quotient notation) 

in diagrams I and 11, and the maps lh A induce coactions by C on these 

cofibres. It is easy to verify that these induced maps fit into naturality diagrams 

with respect to the maps D i ~ l ,  l~ IT, l~ i, DTA 1, and j appearing in the cited 

diagrams. These naturality diagrams and the diagrams obtained by smashing I and I1 

with C make clear that the general case will follow from the special case. 
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To prove that our diagram commutes, we require precise control on maps between 

fibres (or, equivalently by the discussion at the start of section 2, between 

cofibres) , and we work with our explicit dual function spectra. The following 

diagrams commute on the level of spectra since we have a spectrum level adjunction. 

The composite &(Dnl\i): DCXnY + S  is equal to ~(lhT)(l~i) and is thus the 

trivial map of spectra. If j denotes the inclusion of DZAZ in the cofibre of 

D a ~ i ,  there results a canonical extension E of E: over j. This gives I in our 

main diagram, and I1 commutes by the second and third diagrams above. Diagrams 

I* and 11* are the duals of diagrams I and 11. 

Diagram I11 is an identification up to equivalence of the map Dj as the 

homotopy fibre of Di AT: DZA Z -t DYA CX. To obtain this diagram, recall the 

general maps 6: DBAA + D(DAAB) of Proposition 1.4. These maps are only natural 

on the stable category level, because the commutativity isomorphism for the smash 

product and the remaining maps specifying 6 involve inverting weak equivalences. 

However, on the spectrum level, 6 is given by a chain of natural maps going in the 

right direction and natural weak equivalences going in the wrong direction (the 

latter coming from 11-3-12 and the proof of 11.1.7). Given spectrum level maps 

a: A + A' and $: B' + B, we can work our way stepwise along the chain to obtain a 

canonical chain of weak equivalences representing 6 ( a, $1 in the comparison of 

fibration sequences 

On the left, a should be interpreted as the projection of the homotopy fibre of 

DB ha onto DB hA, but we can use section 2 to replace it by a map in a cofibre 

sequence, as indicated by the notation. This diagram specializes to give 111. Our 

precise construction of &(a,$) shows that it is natural in a and B, and IV is 

just a naturality diagram. Its unlabeled bottom arrow is given by the two canonical 

comparisons of homotopy fibres, or of desuspensions of cofibres, given by the 

commutative diagram 
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D Y A Y  3 C-'c(lh n )  <- D A )  - - - + - c - ~ c ( D ~ A ~ )  = D C X h C X  Here Cfr\Cg is equivalent t o  (XAY)/ (XAB AAY) , hence the l a s t  quotient i s  

1 1 1 1 /A '  equivalent t o  C (XAB LI AAY) . The boundary map in question agrees under the 
D i h  1 D Z h Z  l A n h  D Z h C X  equivalence with the composite D Y A Z  - 

 AT l ~ i n l  
DY 4 CX DY A CX X A B U A A Y  - X A Y  - X A Y / A A B .  

Of course, the desuspended cofibre on the l e f t  i s  just  DY A Y and that  on the r ight  This factors through 

is canonically equivalent t o  DCXA EX. This fac t  gives the unlabeled equivalence a t  

the bottom of V, and that  diagram can then be checked t o  be an identif ication of 
X A B  U A A Y  = X A B  A A Y  

AnB (m) v(-) A A B  

canonical maps 6.  
i n  the obvious fashion, and translation back t o  cofibres gives the conclusion. 

We define a '  = j a  t o  obtain diagram VI .  Then 2 '  is the boundary map of the 

natural  cof ibre sequence 1 
I 88. Space level  analysis of trace maps 

Here CX and DY are equivalent t o  the cofibres of i: Y + Z and h: DCX + DZ, 

and the commutativity of V I I  i s  a special case of the following lemma. 

Lemma 7.11. Let f :  A + X and g: B + Y be maps of G-spectra and l e t  i: X + Cf 

and j :  Y + Cg be the inclusions in to  the i r  cofibres. Then the boundary map 

I We here use the addit ivity of the trace on cofibre sequences t o  analyze i t s  
i 

behavior on suspension spectra, and we agree t o  use the same l e t t e r  for a map of 

spaces and i t s  induced map of suspension spectra. The essential  point i s  t o  

determine equivariant traces i n  terms of non-equivariant traces and equivariant 

Euler characterist ics of orbi t  spaces. As we shal l  see i n  chapter V, the l a t t e r  are 

typical  basis elements of the Burnside ring A ( G )  2 n t ( p t ) ,  where n; denotes 

unreduced stable Ghomotopy. 

Suppose given a compact GENR pair  (X,A) and a map of pairs f :  (X,A)  + (X,A) 

with induced map C( f ) :  C(X,A)  + C(X,A)  of unreduced mapping cones. Let i: A + X 
t 

i n  the natural  cofibre sequence 1 be the inclusion. The coactions A :  X+ + X+A X+ and ( I A ~ + ) A :  A+ + A%X+ are 

compatible and induce the coaction 

i s  the sum of the two natural  composites 
of X+ on C ( X , A )  . We can use Construction 4.5 t o  give an expl ic i t  space level  map 

which represents the stable map - r (C( f ) ) .  We assume the notations of the ci ted 

construction, so tha t  r: N + X i s  a retraction of a neighborhood N of X i n  

and some representation V and s :  X + X r e s t r i c t s  t o  a retraction U + A of a 

! neighborhood U of A i n  X. 

Proof. We may assume that  f and g are inclusions of subcomplexes i n  G-CW 

spectra and replace cofibres by actual quotients. The given cofibre sequence then 

be~omti!~s 

Lemma 8.1. The following diagram i s  Ghomotopy commutative. 



Here $(n)  = ( n , s r ( n ) )  for n E N-A and $(v,x) = ( v - f ( x ) , f ( x ) )  for  

(v,x) E (V-A) x X. 

From t h i s  description, it i s  easy t o  derive a cr i ter ion for the vanishing of 

~ ( C ( f 1 )  i n  terms of the fixed points of f .  

Proposition 8.2. If  f has no fixed points in the complement of A, then 

T ( C ( ~ ) )  = 0 and therefore x ( C ( f ) )  = 0. I f ,  further,  f - 1 as a map of 

pairs,  then ~ ( g )  = 0 and therefore x(g) = 0 for every stable G-map 

g: C"C(X,A) + ~ " C ( X , A ) .  

Proof. If  f has no fixed points i n  X-A, then 

factors through ( ( V  - {O)) x X , ( V  - (0))  x X ) .  I f  f = 1, then C($) = C ( w ) ,  

where w(v,x) = (v-x,x). For any map g, ~ ( g )  factors through the map obtained by 

applying C - ~ C "  t o  the bottom row of the diagram i n  Lemma 8.1 with C($) replaced 

by C ( w ) .  

We shal l  calculate . r (C( f ) )  i n  general, and we begin by calculating 

T ( f ) e nE( G/H) for a self  -map f of an orbi t  space G/H+A sn, where G/H+ coacts 

on G/H+A 9 via  the suspension of the diagonal on G/H+. By homotopy 

invariance ( Lemma 7.4) , we could just  as well view G/H: sn as  

C(G/H x en,G/H x 9-l) coacted on by (G/H x en)+. As usual, l e t  WH = NH/H, 

where NH i s  the normalizer of H i n  G, and observe tha t  WH = (G/HIHe Write 

T ( X )  = T (  C"X+) for an unbased G-space X. 

Lemma 8.3. Let f :  G/H+AS" + G/H+AS" be any G-map. Let e ( fH)  = 0 i f  WH i s  

i n f in i t e  and e ( f )  = X(fH)//WH/ i f  WH i s  f i n i t e ,  where x ( fH)  i s  the 

nonequivariant trace of the H-f ixed point WH-map fH: WH: sn + WH'A sn. Then 

~ ( f )  = (- lIne(f  ) T ( G / H ) .  

Proof. I f  WH contains a c i rc le  group, then G/H has a fixed point free self  

G-map homotopic t o  the ident i ty  and r ( G/H) , T ( f ) , and x ( fH)  are a l l  zero. Thus 

assume that  WH i s  f in i t e .  Passage t o  H-fixed points gives a bijection 

I f  n':> 0, t h i s  is the integral  group ring ZIWH]; i f  n = 0, it is WH and may 

be viewed as a subset of Z[WH] . We may write f = c nww, where w r WH i s  
WE WH 

regarded as a self  G-map of G/HtnS". By Lemma 7.6, r ( f )  = C % T ( W ) .  I f  

w f e,  the map w is fixed-point free and ~ ( w )  = 0, and of course 

r ( e )  = ( - l In , (G/H)  by Lemma 7.8. Clearly the nonequivariant t race  x(fH)  i s  equal 

t o  ne 1 WH I , and t h i s  implies the result .  

We wish t o  compute p ( C ( f ) )  for a map of pai rs  f :  (X,A)  + ( X , A ) ,  but it i s  

useful t o  proceed in  greater generality and compute ~ ( f )  for a l l  maps 

f :  X/A + X/A and not just  those induced by maps of pairs.  We l e t  X+ coact on 

X/A via the canonical equivalence C ( X , A )  = X/A. 

 heo or em 8.4. Let (X,A)  be a pair  of G-CW complexes such that  X/A is f i n i t e  

and l e t  f :  X/A + X/A be a ce l lu lar  G-map. Let 

be the composite of the inclusion of an orbit  and the 1% characterist ic map for  

some enumeration of the ce l l s  of X-A. Let fi: G/Hf;sni + G/Hi*sni be the map 

induced by f on the ix wedge summand of the n i x  skeletal  subquotient of 

X/A. Then 

Proof. The conclusion follows inductively by use of homotopy invariance (Lemma 

7.41, addit ivity on wedges (Lemma 7.6), the previous lemma, and Theorem 7.10 applied 

t o  the inclusions of skeleta ( x / A ) ~ "  + ( x / A ) ~ ,  the res t r ic t ions  of f t o  

skeleta, and the coactions ( x / A ) ~  + ( x / A ) ~ A x +  o b t a i ~ e d  by res t r ic t ion  from any 

cel lu lar  approximation of the diagonal coaction X/A + (x/A)Ax+. 

Remark 8.5. When A is empty, the theorem applies t o  compute T ( f + )  for  a map 

f :  X -t X. When X i s  based and A i s  the base vertex, it applies t o  compute 

~ ( f )  for  a based map f :  X + X. These two elements of n g ( ~ )  d i f f e r  by the 

summand of ~ ( f + )  coming from the base vertex of X. We have a corresponding 

dist inction between the traces x ( f+)  and x ( f  i n  n $ ( p t )  . 
Remark 8.6. If  X is a f i n i t e  G-CW spectrum and f :  X + X is a ce l lu lar  G-map, 

then the same formal argument applies t o  give the formula ( f ) = Z ( f ) i n  
i 

ng(  S) , where fi: G/H>sni + G/H>sni i s  the map induced by f on the i% wedge 

summand of the n i g  skele ta l  subquotient of X. Since the f i  here are spectrum 

level  maps, Lemma 8.3 i s  not sufficient  t o  compute the X(fi) .  It suffices by Lemma 

7:8 t o  consider the case ni = 0, and we shal l  determine a l l  s table maps 

G/H+ + G/H+ i n  V99; a t  l eas t  when G i s  f i n i t e ,  we shal l  also determine the t races  

of a l l  such maps; see V.9.8. 
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Theorem 8.4 does not apply to general compact GENR's since these need not. r(f) = Z e(fKl(jMl*?(G/H1. 

have the homotopy types of finite GCW complexes. It also suffers from an evide 
M 

lack of invariance. We want a calculation of r(f1 intrinsic to the structure of proof. By induction up the orbit types, Lemma 7.4, Lemma 7.6, and Theorem 7.10 give 

X as a G-space, irrespective of possible cellular decompositions. For simplicity, that r(f) = Ir(fKl. Here r(fKl is computed with respect to the coaction above 

we restrict attention to the absolute case. of X' on K. Since K = L/aL, we also have a coaction by L', and it is clear 

Let X be a compact G-ENR and consider its G-subspaces 
that r(fKl in  XI is obtained by application of i: to .r(fK1 in "~(LI, 

where i: L + X is the inclusion. Applied to the pair (L,aL), the following 

result computes the latter trace and so completes the proof. It also gives further 
+x(Hl = [X / Ox is conjugate to H). 

information about e(fK). 

The orbit space X(Hl/G breaks up as a disjoint mion of path connected subspaces Lemma 8.8. Let (X,Al be a compact G-ENR pair such that X-A bas constant orbit 
M, called the orbit type components of X/G. If X is a smooth Gmanifold, then 

type G/H, A has no orbits of type G/J with (Jl 6 (HI, and (X-A)/G is 
each M is a smooth manifold. Let n: X + X/G be the quotient map. Given an 

connected. Let K = X/A, give K the evident coaction by x', and let f: K + K 
orbit type component M, let L be the closure of T-'(MI in X, let 

be any based G-map. If WH is infinite, let e(f) = 0. If WH is finite, let 
aL = L - .-'(M), and let K = L/aL. These subquotients K of X play a role 

e(f) = X(fHl//WH/. Then r(f1 = e(fIj*r(G/H), where j: G/H + X is the inclusion 
analogous to that of the subquotient spheres G/H+AS" of a finite G C W  complex. 

of any orbit in X-A. Moreover, if the nonequivariant Euler characteristic 
To obtain an analog of the skeletal filtration, observe that X has only a finite 

x(G/H) is non-zero, then e(f) = ~(f)/x(G/Hl, where x(f1 is the nonequivariant 
number of orbit types and these are partially ordered by inclusion. We may 

trace of f. If f is the identity map, then e(f1 coincides with the reduced 
enumerate them as G/H1,. -.,G/k$,, with (Hi) < (H I only if i > j. The closed j Euler characteristic of the orbit space K/G. 
subspaces 

Proof. The pair (X,Al is a retract of some finite G-CW pair (Y,Bl, and it is clear 

X. = (X / x has orbit type G/Hi with i < jl that this remains true if we excise from Y all cells of orbit type G/J with 
J 

(31 < (HI. Since any orbit of Y-B not of type G/H must map to A under the retrac- 

give an increasing filtration of X. Any G-map f: X + X preserves this filtration tion, we may as well assume that all cells of such orbit types are in 8. We also may 

and so induces quotient maps Xj/Xj-l + Xj/Xj-l. Visibly, Xj/Xjml is the wedge of as well delete from Y any cells of Y-B whose images in (Y-B)/G are not in the path 

the G-spaces K determined as above by the orbit type components M of type component containing the image of (X-Al/G. In this way we arrive at maps of pairs 
G/Hj. Thus f induces a based map fK: K + K for each such K. Moreover, the 

coaction of X; on CIXj,Xj-ll induces a coaction of X' on each K via the i: (X,A) -(Y,BI and r: (Y,Bl ---c(X,A) 

equivalence C(Xj,Xj-ll = Xj/Xj-l and the inclusion X. + X. We therefore have a J 
such that ri = 1, (Y,Bl is a finite GCW pair, Y-B has constant orbit type G/H, B 

trace r(fKl s "$(XI. 
has no orbits of type G/J with (Jl 6 (HI, and (Y-B)/G is connected. Of course, 

i and r display K as a retract of Y/B. By hmma 7.4, i*r(fI = r(ifr) in 
Theorem 8.7. Let X be a compact GENR and let f: X + X be any Gmap. Let 

ng(~1 and thus r(f1 = r*r(ifrI in ~8~x1. By Theorem8.4, 
n: X + X/G be the quotient map and let 

n 

jm: G/H C n-l(~) C X 
r(ifr> = ~(-11 ie(gi~(ji~*r(~/~), 

where the sum runs over the cells G/H x eni of Y-B, ji is the inclusion of an 
be the inclusion of an orbit in the orbit type component M. Let fK: K + K be the 

orbit of G/H x eni in Y, and gi is the self map of G/H+A sni induced by 
G-map induced by f on the quotient K = L/aL, where L is the closure of 

ifr. Since (Y-Bl/G is connected, the inclusions ji are all homotopic, at least 
w-~(M) in X and aL = L - n-l(M1. If WH is infinite, let e(fKl = 0. If WH 

if each is adjusted by an appropriate isomorphism of G/H, and the attaching maps 
is finite, let e(fKl = X(ffjl//~~/, where x(f!) is the nonequivarianf trace of 

of the cells may be adjusted so as to eliminate these isomorphisms. Thus we may 
the H-fixed point WH-map fij: KH + KH. Then 

replace all ji by the composite ij. Since ri = 1, we conclude that 



n. 
where n = ( -1) le ( gi . If WH is infinite, then r (G/H) = 0 and we may as well 

1 
set n = 0. Thus assume that WII is finite. We must show that n = e(f). If we 

compose r ( f ) with c:, where 5: X + pt is the trivial map, we find from the 

previous equation that 

This is true equivariantly, but all of our constructions remain unchanged if we 

forget the G actions, so it is also true nonequivariantly. If x(G/H) # 0,. this 

gives n = x(f)/x(G/H). We use change of groups to calculate n in general. The 

inclusion of (xH,AH) in (X,A) is an NH-map and induces a Gmap 

H 
whose quotient map is a Ghomeomorphism G'A NHKH + K. Thus r ( f ) = r ( lhNHf ) , where 
the coaction of X+ on G + A ~ ~ K ~  is the composite of lnk and the natural coaction 

of (G xNHxH)+, as in Proposition 7.9. By that result, r (f) is the composite 

Now (xH,AH) is a compact WH-ENR pair, xH-AH is WH-free, and (xH-AH)/WH is 

homeomorphic to (X-A)/G and is therefore connected. Exactly as in the first few 

steps, we conclude that 

for some integer m (jH: WH + xH-AH C xH being the inclusion of an orbit). 

Composing with E,H and noting that the nonequivariant Euler characteristic x(WH) 

is lWH1 and thuz non-zero, we see that m = x(fH)/~WH~. Applying Proposition 7.9 

again, we find that r(G/H) is the composite 

Here kt is the canonical G-homeomorphism G xN#H + G/H. Clearly 

j = k( 1 xNHjH) , and we see that m = n by comparing our descriptions of r (f . 
Finally, suppose that f is the identity map. We must show that e( f) = 'ji(K/G), 

and wea:know that e(f) = ;(KH)/ IWHI . Since WH acts freely on KH - * and 

KH/WH is homeomorphic to K/G, IWH Iz(K/G) = z(KH) by a standard homological 

argument; see e.g. tom Dieck [44,5.2.10]. 

IV. Equivariant Transfer 

by L. G. Lewis, Jr. and J. P. May 

We here study the transfer associated to equivariant bundles. The first 

problem, to be discussed in section 1, is to decide exactly what we should mean by a 

 buridl idle". There are at least three reasonable notions, of which the most 

restrictive has so far been much the most important and the least restrictive is the 

one that yields the most notationally simple and conceptually clear treatment of the 

transfer. We begin by specifying the latter notion and its cited specialikation. 

Throughout this chapter, we shall assume given an extension of compact Lie 

groups 

When we use the letter r, we often think of it as shorthand notation for the 

entire extension. All (unbased) r-spaces are to have the homotopy types of r-CW 

complexes. By a "G-bundle with total group r, structural group n, and fibre 

Fn, we understand a Gmap 

induced by the projection F + *, where X is a A-free r-space and F is any 

r-space. All group actions are to be left actions, and X xnF denotes the orbit 

G-space (X x F)/n. We think of X as the associated principal bundle of 5 (as 

will be discussed in section 1). The most important examples are the (G,a)-bundles, 

for which I' = G x n and F is a n-space regarded as a r-space by pullback along 

the projection I' + a. Various examples of (G,n)-bundles and of G-bundles which are 

not (G,n)-bundles are given in section 1. We occasionally refer to the (G,a)-bundle 

case as the classical case. 

We shall construct and analyze the transfer Gmap 

associated to a Gbundle 5. To do so, we require that F have the homotopy type 

of a compact r-ENR, and we then say that F is a "finite r-space". The main 

examples are the finite r-CW complexes, but the extra generality causes no 

difficulty and has applications (as explained in 11194). Nonequivariantly, one 

usually studies the transfer in terms of its induced homomorphism in cohomology for 

some given theory, but the utility and power of regarding it as a stable map are by 

now well understood. For example, this viewpoint makes comutation with cohomology 
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operations obvious. Things work ihe same way equivariantly. 

The first step in the definition of ~ ( 5 )  is to construct a r-map 

T(F) : S + CmF+. This may be thought of as the transfer for a bundle over a point, The naturality of the transfer with respect to the boundary homomorphism of the pair 

but it is a r-map whereas the actual transfer is a G-map. We call T (F) the is merely an instance of its naturality with respect to maps of "-free r-spectra. 

pretransfer to emphasize the distinction. In fact, r(F) arises directly from Section 3 also gives some of the basic properties of the transfer, namely those 

Spanier-Whitehead duality and has already been studied in 111097-8. We review its taken as axioms by the first author in [851, points out several easy generalizations 

properties in section 2. of the definition, and compares it to others in the literature. A major advantage 

The trick to the construction of the transfer is to insert the r-map T(F) of our definition is its convenience for the proofs of calculationally useful 

fibrewise into 5 so as to obtain the desired G-map ~(5). We accomplish this Since the two essential components, Spanier-Whitehead duality-on the 

sleight of hand by a change of universe. We assume given a complete r-universe U, 
fibre and the structure of the associated principal bundle, are neatly separated, 

fixed throughout the chapter. We regard U" as both a complete G-universe and a m- the properties of the transfer all follow directly from the properties of the 

trivial r-universe, and we let i: U" + U be the inclusion. The I'-map T (F) is  ret transfer and of the change of universe and passage to orbits functors. Thus all 

computed in U. The functor Cm: rI + rdu is the composite of i,: TAU" + raU and of the real work has already been carried out in the previous chapters. The major 

zm: rJ + rgu", so we have a map of r-spectra indexed on U 
disadvantage of our definition is that it is intrinsically restricted to Gbundles 

rather than G-fibrations. 

Since X is 8-free, 11.2.8 ensures that this map can be represented in the form 

i,? for a uniquely determined map ?: Cmxt+ C"(X x F)' of I?-spectra indexed on 

u*. When working in a =-trivial universe, it is legitimate to pass to orbits over 

IT, and ~ ( 5 )  is just ?/n. 

We generalize this definition a bit in section 3. The quoted change of 

universe theorem applies not only to C"X+ but to any r-free r-spectrum D indexed 

on u". Associated to D we have the "stable Gbundle" 

and an associated transfer G-map 

Since it simplifies notations, costs no extra effort, and has useful applications, 
we shall work in the context of these stable Gbundles throughout the chapter. If 

he chooses, the reader can disregard the generality by viewing D as simply a 

shorthand notation for c"X+. An example of the utility of the more general context 

is that it obviates the need for any special consideration of relative bundles. 

If A, is a r-subspace of X, then the cofibre of C"A+ + E"X+ is zmC(x,A), 

where C(X,A) is the unreduced mapping cone. Since the cofibre of any map of 

s-free r-spectra is a =-free r-spectrum, we immediately obtain the transfer for the 

bundle pair 

We prove the basic calculational properties of the transfer in sections 4-7. 
In section 4, we give a deferred axiom on change of groups and a number of related 

results. In particular, we describe the relationship between the transfer and our 

generalized Wirthmiiller and Adams isomorphisms. In section 5, we show that the 

transfer of a product of two bundles is the smash product of their transfers and 

give an Euler characteristic formula for the composite CT. In section 6, we give 

sum decomposition theorems and the double coset formula for the computation of the 

composite TC. In section 7, we prove transitivity relations. While all of these 

results are proven as statements about commutative diagrams in the stable category 

of G-spectra, we shall include discussions of their consequences in equivariant 

cohomology. Of course, there are analogous consequences in equivariant homology. 

Nonequivariantly, these results sharpen theorems due to Becker and Gottlieb 

[10,111, Dold [461, and Feshbach 153,541 by eliminating finiteness conditions on the 

base space. (However, we shall see in Warning 6.11 that the finiteness hypothesis 

necessarily reappears in some key applications. We are much indebted to Feshbach 

for elucidation of this point.) Equivariantly, the Euler characteristic formula 

similarly sharpens results of Nishida [I171 and Waner [1411, but all of the rest is 

new. 

The last two sections have a different flavor. In them, we rework and simplify 

the first author's paper [851 on the axiomatization of the transfer in light of our 

present much better understanding of stable bundles. Generalizing a bit further 

from section 3, we start with a general finite r-spectrum E rather than one of the 

form CmF+. We also start with a module Gspectrum jG over a ring G-spectrum 

kG and assume that our n-free r-spectrum D comes with a llcoactionll D + X; D by 

a r-free r-space X. With these data, we show in section 8 how to construct a 



transfer-like homomorphism 

finite cover. Such a 6 is necessarily a (G,zn)-bundle, where n is the 

T : ja( DA,E) + ja( D/T) cardinality of the fibre F . Taking F = {l ,2,0 0 0 ,n) and identifying yF with 

yn, we see in this case that X is the space of those n-tuples of points of Y 

from any cohomology class 8 c k;( x K,DE) and show that these "cohomological which together comprise a fibre 6-'(b), with G acting diagonally and zn acting 

 transport^^^ enjoy many transfer-like properties. by permutations. 

There is a universal choice of X which coacts on every D, namely the Again, the Gvector bundles that arise in equivariant differential topology are 

universal n-free r-space E3( a) of 11.2 .lo. In section 9, we show that any family 
4 

(G,U(~) )-bundles or (G,O(n) )-bundles, and it is this sort of bundle which is used to 

of homomorphisms T, as above, which is defined, natural, and stable for all D define equivariant K-theory. 

arises from a uniquely determined class 8 c kg(~d'(n) k,DE), where kG is the 
Thus (G,T)-bundles are central to equivariant topology, and we refer the reader 

function ring spectrum F(jG,jG). We deduce from this classification theorem for 
to [81, 82, and 1251 for further discussion. However, this is really a quite 

llj&transformsu that the standard transfer in jE-cohomology is uniquely restrictive notion, and there are numerous examples of maps which clearly ought to 
characterized by the cohomological versions of the axioms of sections 3 and 4.  By 

be G-bundles of some sort but clearly fail to be ( G,n) -bundles for any n. Perhaps 
constructing transfers for stable bundles from transfers for ordinary bundles, we the most naive example is the projection 5: X x F + X, where X and F are 
obtain an analogous axiomatization of the transfer for bundles over finite arbitrary G-spaces and G acts diagonally on their product. The only reasonable 
dimensional base spaces (or, modulo liml terms, over general base spaces) . candidate for the structural group of 5 is the trivial group, but 6 fails to be 

Throughout, cohomology is to be understood in the RO(G)-graded sense; on 

spaces, j: means unreduced cohomology . 

$1. Types of equivariant bundles 

A principal (G,n)-bundle X + X/R is a principal n-bundle and a Gmap such 

that G acts on X through n-bundle maps. It is usual to let G act from the 

right and n from the left, but with both actions on the left it is clear that X 

is just a n-free (G x n)-space. For a n-space F, 6: X xnF + X/n is the associated 

(G,n)-bundle with fibre F. For our purposes, this is the appropriate definition of 

a (G,n)-bundle. We display X and F explicitly in the total space because F 

and X play clearly separated roles in our treatment of the transfer and because we 

find it quite convenient not to insist that IT act effectively on F. 

However, when n does act effectively on F, there is a more intrinsic 

description of (G,n)-bundles. Consider a bundle 5: Y + B with fibre F and 

structural group n such that 5 is also a Gmap between Gspaces. With G 

ignored, the associated principal n-bundle of 6 is the subspace X of the 

function space yF consisting of the admissible homeomorphisms $ : F + 5-'(b) for 

b c B. Admissibility means that the composite of $ and the homeomorphism 

6: (-l(b) + F obtained by use of any coordinate chart coincides with action by an 

element of n. The IT action on F and the G action on Y induce a 

(G x -action on X if and only if the composite g$: F + 6-'(b) + 6-' (gb) is 

admissible whenever $ is admissible, and this is what it means for 6 to be a 

(G,n)-bundle. (Of course, n must act effectively on F if it is to act freely on X.) 

a (G,e)-bundle unless G acts trivially on F. Of course, such projections are 

precisely the Gbundles with total group G and structural group e, as defined in 

the introduction. 

Returning to the context of a Gmap 5: Y + B which is a bundle with fibre 

F and structural group n, where II acts effectively on F, it is natural to 

require the composites 

which entered into our description of (G,s)-bundles to be elements of some fixed 

group I' of homeomorphisms of F. Clearly r must contain a, and it imposes the 

minimal sensible rigidity on the situation to require n to be normal in I' with 

quotient group G. We claim that 6 is a G-bundle with total group r, structural 

group a, and fibre F if and only if, for each y I' with image g E G and 

each admissible homeomorphism $: F + 6-I (b ) , the composite 

is admissible. Indeed, if this condition holds, then we can specify an action of I' 

on X by y$ = g $ y-l. The usual evaluation homeomorphism X xnF + Y over X/n 5 B is 

then clearly a Gmap. Conversely, if 6: X x,F + X/n is a Gbundle with total 

group I', structural group n, and fibre F, then the admissible homeomorphisms 

$ are of the form $(f) = (x,f) for some fixed x E X, and the composite above is 

the admissible homeomorphism determined by yx. 
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Tom Dieck [36] and Nishida [I171 have studied a type of bundle intermediate verification, Since n acts trivially on the target, J, factors through a 
between (G,n) -bundles and our G-bundles with structural group a. They assume that G-homeomorphism X xaa + X over X/a. 

the given extension is split, so that r = G x n for some homomorphism (ii) For a general extension G = r/n, G is not a subgroup of r and we define Y 
y: G + Aut(n) with smooth adjoint G x a + a. Explicitly, the product on r is D = I' Xcn, where c is the conjugation action of r on its normal subgroup n. We 

given by 

for h,g c G and m,n E a. Modulo adjustment for our consistent use of left group 

actions, they define a principal (G,y,n)-bundle to be the orbit projection X + X/a 

of a n-free r-space, and they define the associated (G,y ,n)-bundle with fibre a 

r-space F exactly as we did in the introduction. When y is trivial and r = G x n 

acts on F through its projection to a, this notion specializes to that of a 

(G,a)-bundle. Of course, our definition of a G-bundle is obtained from this one by 

dropping the requirement that the extension be split. Our motivation is primarily 

simplicity rather than generality. The splitting, if present, would be completely 

irrelevant to most of our work. 

Motivation for the intermediate notion is given & 1117. For an N-free 

G-space X, where N is a normal subgroup of G, the projection X + X/N is a 

principal N-bundle and a G-map but not a (G,N)-bundle since the actions of G and 

N fail to commute. The failure is measured by the conjugation action c of G 

on N and, with s a copy of N, X -P X/N is a principal (G,c,n)-bundle. 

We have just defined "principal (G, y ,n) -bundlesr1, and we show next how to 

interpret them as associated (G,y,n)-bundles with fibre n. Without the splitting, 

a n-free r-space need have no G-action and so can't be the total space of an 

associated G-bundle. However, it is the total space of an associated 

(r,c,n)-bundle, and this is a useful point of view even in the split case since it 

keeps track of the full r-action. 

Remarks 1.1 (i) Let r = G x n and let r act on n via Y 

for g c G and m,n E a. For a principal (G,y ,IT)-bundle X, the orbit 

projection X -P X/n can be interpreted as the associated (G,y,a)-bundle 

X xnn + X/n. To see this, define a map i y :  X x n + X by the formula 

With the usual diagonal action of r on X x n and the action of r through the 

projection r + G C r on the target copy of X, iy is a r-map by an easy 

also define 8: Q -+ r by 8(y,n) = yn for yc r and n E: T. Clearly e 
restricts on IT to its inclusion in r. Thus, if X is a n-free r-space, then 

€I*X is a n-free Q-space. We conclude from (i) that the orbit projection X + X/n 
can be interpreted as the associated ( r,c, n)-bundle ( @*XI xan + X/a (as was proven 
directly in 1197.1 

Observe that a given Gmap 5: Y + B which is a bundle with fibre F and 

compact Lie structural group may well admit various descriptions as a G-bundle with 

total group I' and structural group 8. Our results in section 4 will have the 
effect of ensuring that all such descriptions lead to the same transfer G-map. 

92. The pretransfer 

The bundle context is irrelevant and r can be any compact Lie group in this 
section, As in the introduction, we consider a finite r-space F. We index 

r-spectra on any r-universe into which F embeds. This ensures that z"Ff is a 

finite r-spectrum and so allows us to apply duality theory. Specialization of 
111.7.1 gives our definition of the pretransfer T(F): S -P c"F+. 

Definition 2.1. Define the pretransfer T(F) to be the composite 

s --zI, DF+~F+ %DF+LF+& F+ *sAF+ zrn~+. 

Specialization of 111.8.1 gives an explicit space level description of T(F). 

Lemma 2.2. Let r: N + F be a retraction of an open neighborhood of F in some 

representation V and let B be a disc in V which contains N. Then the 

following diagram is r-homotopy commutative. 

Here the unlabeled arrows are inclusions or projections and J, is specified by 



q(n)  = ( n - r ( n ) , r ( n ) )  for  n C N. 

As observed i n  111.8.2, t h i s  description implies tha t  T ( F )  = 0 i f  the where 5 i s  the I'-action map. The verif ication can be made either by use of 
ident i ty  map of F i s  r-homotopic t o  a fixed point free map. 111.2.11 and 3.7 or by use of part  (i) . 

When F i s  a smooth r-manifold we can take N t o  be a tubular neighborhood 

of F and r t o  agree with the projection of the normal bundle. The description R e t m i n g  t o  the context of general f i n i t e  r-spaces, we catalog some elementary 

of T(F)  then simplifies. i 
i 

Lemma 2.3. If F i s  a smooth closed r-manifold smoothly embedded i n  V with 

normal bundle v, then T(F)  i s  the composite r-map 

sV % T (  ,, o T )  sXF+, 

where t i s  the Pontryagin-Thom map and e i s  induced by the inclusion of v i n  

v Q  T. 

This shows that  our definit ion of the pretransfer agrees with tha t  of Becker 

and Gottlieb [101. A similar comparison of definit ions goes through for manifolds 

with boundary. It i s  a standard and useful observation tha t  e could just  as  well 

be replaced by the map induced by any vector f i e ld  on F, not necessarily the zero 

f i e ld ,  Again, t h i s  implies tha t  T(F)  = 0 i f  F admits a nowhere zero r-invariant 

vector f i e ld .  

Remarks 2.4. (i) For a smooth closed r-manifold F, the dual of T(F)  can be 

described as the composite 

where A is  the Thom diagonal. One way t o  show t h i s  i s  t o  use the description of 

E i n  111.5.1 t o  verify tha t  the composite 

i s  r-homotopic t o  ( E ~ A ) A ~ .  

(ii) Let r/A be an orbi t  embedded in V and l e t  L and W be the tangent 

representation of A a t  the ident i ty  coset of T / A  and the orthogonal complement 

of the image of L i n  V. Then r (  r/A) is the r-map 

sV L r'hAsw %r+AAsV 2 sVh( r / ~ ) +  

(as  in 11.5.1 and 11.6.15) and i t s  dual i s  the r-map 

facts about the pretransfer . 
, 

Lemma 2.5. Let E and F be f i n i t e  r-spaces. 

(i) If F i s  a point, then T(F)  = 1: S + zmF+ = S. 

(ii) If k: E + F i s  a I'-homotopy equivalence, then ~ T ( E )  = T ( F ) .  

(iii) T ( E  x F) = T(E)AT(F) :  S - SAS + zW(E x F ) +  = z m ~ + ~ z W F + .  

( i v )  T(EuF)  = =(El + T ( F ) :  S + ~ " ( E u F ) '  n zm~+vzrn~+. 

Proof. These hold by 111.7.2, 7.4, 7.5, and 7.6. 

In (iii), the smash product i s  internal .  We also need the external analog. No 
new proof i s  required. Both statements are formal consequences of the fac t  tha t  the 

relevant smash product i s  a ( s t r i c t )  monoidal functor; compare 111.1.9, 1.10, and 

7.7. 

Lemma 2.6. Let Fi be a f i n i t e  ri-space, i = 1 or 2. Then 

where the external smash product hrldul x hrZiu2 + h( rl x r2)4 (ul Q u2 is 
understood, Ui being a ri-universe in to  which Fi embeds. 

We also need a consistency statement for the behavior of the pretransfer with 

respect t o  change of groups and change of universe. This again i s  a formal 
consequence of the cited categorical observations. 

Lemma 2.7. Let a: A + I' be a homomorphism of compact Lie groups. Let F be a 

f i n i t e  I"-space and l e t  aXF denote F regarded as a f i n i t e  A-space by pullback. 

Let V and U be A and r universes in to  which a*F and F embed and l e t  

j : a * ~  + V be a A-linear isometry. The functors zma* and jxa*zm from h r j  
t o  ~ A & V  are naturally equivalent, and r ( a * ~ )  : S + zm ( aXF) + agrees under the 

equivalence with jxaXr ( F) : jXaXs + jxa*zm~+.  

In part icular,  with A = r ,  the pretransfer i s  preserved under change of 

universe. Again, with AC r and V = U, the pretransfer for F regarded as  a 

I"-space i s  also the pretransfer for F regarded as a A-space. In our study of 
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transitivity, we shall need another invariance property with respect to change of j :  / r/% x eni -F 

groups. It is a special case of 111.7.9. 
be the composite of the inclusion of an orbit and the i z  characteristic map for 

n. 
Lema 2.8. Let J be a finite A-space, where A c . The following diagram of some enumeration n. of the cells of F. Then T(F) = F(-1) 'jiT( r/Ai), hence 

1 

r-spectra commutes. x(F) = ;(-1) lX(r/%). 

The most substantial of our axioms for the transfer will be a direct 

consequence of the following additivity theorem. 

Theorem 2.9. If F is the pushout of a r-cofibration fl: F3 + F1 and a I'-map 

f2: F3 + F2, where the Fk are finite r-spaces, then 

where jk: EmF; + IF+ is induced by the natural map Fk + F. 

Proof. We may replace F by the double mapping cone of fl and f2 and so embed 

F1AF2 in F with quotient EF;. The natural equivalence C(F,F1AF2) + CF; then 
fits into the commutative diagram 

The conclusion follows from 111.7.10 applied to the cofibre sequence 

As pointed out to us by Albrecht Dold, a simple direct proof of this result is 

possible based on the concrete space level description of the pretransfer in Lemma 

2.2 and the fact that the trace of a map depends only on its fixed point set 

(compare 111.8.1 and 8.2). 

We need two consequences of Theorem 2.9, the first of which is a special case 

of 111.8.4. Recall that x(F) = cr(F), where 5 : zmF+ + S is induced by the 

projehtion F + pt. 

Theorem 2.10. Let F be a finite r-CW complex and let 

There is a more invariant analog applicable to a general compact r-ENR F. 
Recall that the path components M of the various orbit spaces F(A)/I' are called 

the orbit type components of F/r, where 

F( A) = {x I rx is conjugate to A). 

Let i be the closure of M in F/ r and let aM = i-M. Define the nonequivariant 
internal Euler characteristic x(M) of .M in F/r to be the reduced Euler ' - 
characteristic of M/aM; equivalently (by the nonequivariant case of III.7.10), - 
X ( M )  = x(M) - x( aM). If F happens to be a finite r-CW complex, then x(M) is 

the signed sum of the number of cells with interior contained in the inverse image 

of M in F. In this case, the previous result directly implies the following one, 

as we see by grouping together equal summands obtained by including different orbits 

in the same orbit type component. The general case holds by 111.8.7 and the last 

sentence of 111.8.8. 

Theorem 2.11. Let F be a compact r-ENR and let jm: r/A + F be the inclusion 

of an orbit in the orbit type component M. Then T(F) = EX(M)jm~( T/A), hence 
X(F) = zX(M) X( r/h). 

Extraneous terms in the previous two theorems are eliminated by the following 

consequence of 111.8.2 (or of Remark 2.4 (ii) 1. 

Lemma 2.12. If WA = NrA/A is infinite, then T(~/A) = 0. 

Remark 2.13. Our observations about the vanishing of the pretransfer sometimes 

imply that the transfer is zero in a situation in which one would like to use it to 

prove an isomorphism. In many cases, T(F) vanishes because some group containing 

a circle acts freely on F. In Lemma 2.12, for example, T(~/A) factors as the 

composite 

where N = NrA, and T(WA) = 0 because WA acts freely on itself. In these 

situations, 11.7.5 offers a substitute for the transfer. Assume that A is normal 
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in r and that A acts freely on F. Let A be the adjoint representation of we generally abbreviate -cI .g)  to r; it is a map of Gspectra indexed on the 

r derived from A and let R = r/A. By 11.7.2, there is an isomorphism complete G-universe u". When G = e, -c(  5 is the nonequivariant transfer 

associated to the nonequivariant stable bundle 5. The definition specializes to 
[S,Z"F/A+I, 2 ~S,z-~z~F+l~, give the transfer G-map associated to a (G,n)-bundle with fibre F; here the 

%-space F is regarded as a (G x a)-space by pullback along the projection 
where the right side is computed in a complete r-universe and the left side is G X I T + T .  
computed in its A-fixed point R-universe. Let 

  em arks 3.2. (i) Note that we require no finiteness condition on the base 

spectrum. Adams [2, p. 207-2081 has advertised the desirability of having transfer 
i maps for bundles over infinite dimensional CW-complexes. When D = zmx+ for a 

be the image of r(F/A) under this isomorphism. (If A = (01, this is just 

-c(F).) These "dimension-shifting pretransfers" enjoy many of the properties of the 

standard pretransfer, such as the evident analogs of the properties in 2.5(ii), 

2.5(iv), 2.6, 2.9, 2.10 and 2.11 above. The procedure of the next section for 

obtaining the transfer from the pretransfer applies equally well in the present 

context, and we shall have occasion to use the resulting dimension-shifting 

transfers in the next chapter. 

53. The definition and axiomatic properties of the transfer 

As in the introduction, consider an extension G = r/a, a a-free r-spectrum 

D indexed on u", where U is a complete r-universe, and a finite r-space F. We 

let DA%F+ denote (DAF+)/X and think of the orbit map 

as a stable Gbundle. When D = C ~ X +  for a R-free r-space X, .g is obtained from 

the G-bundle X xnF + X/n by adjoining disjoint basepoints and applying zm. By 

11.2.8 (together with 11.1.4 and 11.3.12 (i) ) ,  the inclusion i: U' + U induces an 

isomorphism 

Definition 3.1. Let 7: D + DAF+ be the r-map such that i,(?) is l/\r(F), 

where r(F) : S + zmF+ is the pretransfer r-map. Define the transfer 

to be the Gmap obtained from ? by passage to orbits over n. 

finite CW-complex X and F is a compact smooth a-manifold, our definition of 

transfer coincides with that of Becker and Gottlieb [lo] and its equivariant version 

due to Nishida [I171 (as we shall explain shortly). 

(ii) Becker and Gottlieb [Ill used suspension ex-spectra and fibrewise duality to 

generalize their earlier transfer from bundles to fibrations with finite fibres and 

finite dimensional base spaces; see also Dold [46]. By introducing a stable 

category of ex-spectra, Clapp [26] generalized their construction so as to allow 

infinite dimensional base spaces. On the other hand, by using suspension 

ex-G-spectra and equivariant fibrewise duality, Waner [I411 generalized their 

construction to Gfibrations with finite fibres and finite dimensional base 

spaces. Generalizations of our equivariant stable categories to ex-G-spectra is 

perfectly feasible and allows the evident simultaneous generalization of the work of 

Clapp and Waner. When restricted to bundles, these definitions of the transfer also 

agree with that given here. 

(iii) The definition admits numerous variants and generalizations. We can 

replace r(F) by the trace, or twisted pretransfer, ~($1 of 111.7.1 for any 

self-map 4 of F. More generally, we can replace r(F) by any stable map 

S + c"F+. If A is a second normal subgroup of r and F is A-free, we can 

replace r (F) by the dimension-shifting pretransfer r (F,A ) : S + C-~Z'F+ of Remark 

2.13 (which is what we did in IIS7 and will do again in VS11). In fact, with a 
little care in defining DA~E, we can even replace r(F) by an arbitrary map E + E1 

of r-spectra indexed on U. This may seem altogether silly, but we shall actually 

get some mileage out of such generality in sections 8 and 9. Again, we shall 

indicate how to twist the transfer by any self-map of the total space over the base 

space in Example 8.3(vi) (as comes most naturally out of the ex-spectrum approach). 

More importantly, such generality will play an essential role in our axiomatization 

of the transfer. We defer all further discussion of generalizations to section 8. 

As the following remarks explain, we earlier found a less elementary, but more 

explicit, construction of the transfer. While it bears a closer resemblance to 

other definitions in the literature, we shall make no use of it in this chapter 



since the new definition generally allows simpler proofs. E9(a) 6 i*D = E~(IT)'AD, 

Remarks 3.3. (i) In chapter VI, we shall construct the twisted half smash product and the projection E3(  AD + D is a r-equivalence by 11.2 .l2. By (ii) applied with 

functor X wn(? ) : h r ~ u  + ~GXU", where X is a n-free r-space. For E = i,D and by the naturality of the transfer (Axiom 1 below), r: D/n 4 DA~F' agrees 

r-spaces Y, there is a natural isomorphism 

X"(X ~2)' P X *,z"Yt. 

Before we knew the results of II§2, we took 

as our definition of the transfer associated to X xaF + X/n. This approach is 

reflected in Lewis [85] and still has its advantages. For example, it lends itself 

more readily to precise calculational analysis as in chapter VIII. 

(ii) Generalizing (i), let E be any r-CW spectrum indexed on U. By 

VI.1.11, X w E is then a a-free r-spectrum indexed on Ua, and by VI .1.5 we have 

a natural identification of Gspectra 

for r-spaces Y. The collapse map F + * induces a stable Gbundle 

5: X ~,(EAF') --+ X mE, 

under the resulting composite equivalence with 

1 ~,(lhr(F)): E3(n) aai*D* E,(n) ~*(~*DAF'). 

(iv) Returning to the context of (i), suppose that X is compact. Then the 

simple prespectrum level description of the functor X IX ( 1  of VI .2.5 applies. 

Using this and the description of the pretransfer for smooth manifolds in Lemma 2.3, 

it is easy to check the agreement of definitions claimed in Remark 3.2 (i). The 

point is that the complementary sphere bundles used in VI.2.5 are exactly the same 

as those used by kcker and Gottlieb (and Nishida). 

We single out certain of the most basic properties of the transfer in the 

following list of axioms. 

Axiom 1. Naturality. The following diagram commutes for a map f: D + Dl of a- 

free r-spectra. 

and the transfer T( FJ is just the obvious map 

Axiom 2. Stability. The following diagram commutes for a representation V of 

G regarded by pullback as a representation of r. 

induced by r(F). In fact, 11.2.8 and VI.1.17 imply a natural equivalence of r- 
spectra 

under which i* carries 1 K (l~r(F) ) to lhlnr(F) : X'A E + x+~E~F+, so that 

1 K (~AT(F) ) gives an explicit description of the map of Definition 3.1 in the Axiom 3. Normalization. With F = *, the transfer associated to the identity 
present situation. bundle D/A + D/a is the identity map. 

(ii?) We can recover the full generality of Definition 3.1 by the method of (ii). 

Recall from 11.2.10 that there is a universal n-free r-space E$(A). For any A-free Axiom 4. Fibre invariance. The following diagram commutes for an equivalence 
r-spectrum D indexed on Un, 11.2.8 and VI.1.17 imply a r-equivalence k: F + F' of finite r-spaces. 
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decomposition theorem [ 53, V.141 and double coset fomnula [ 53, I1 -11 1 . 

54. The behavior of the transfer with respect t o  change of groups 

Before we can study the behavior of transfer with respect t o  change of groups 

and smash products, we must s l ight ly  generalize its definit ion and consider i t s  
Axiom 5. Additivity on fibres.  If  F is the pushout of a I'-cofibration F3 + F1 behavior with respect t o  change of universe. Thus consider a I"-universe U 1 ,  not 
and a r-map F3 + F2, where the Fk are f i n i t e  r-spaces, and i f  rk  i s  the necessarily complete, and a n-tr ivial  I"-universe Ul1 contained in ( U 1 ) " .  Let 

transfer associated t o  D I \ ~ F ~  a D/r and jk: DA,F; + DA,F+ i s  induced by the i: U1' +. U1 be the inclusion. Recall from 11.2.3 tha t  G ( U 1  , U " )  denotes the family 
canonical map FK + F, then of subgroups A of I. such that  U1 and U1I are A-isomorphic. For an E( U1 ,U1I )-spectrum 

D indexed on U" and a f i n i t e  r-space F, 11.2.6 gives an isomorphism 
T = j l ~ l  + j2r2 - j3r3. 

i*: ID,DAF+I  r+ [ixD,ix(DhFt) I r  z [ ixD~~, ixD*CrnFt~ 

There is a sixth axiom, on change of groups, It i s  more technical t o  s t a t e  and 
Exactly as i n  Definition 3.1 we define the transfer r : D/n + DnnFt associated t o  

w i l l  be explained i n  the next section. The axioms above are immediate consequences the stable G-bundle D A ~ F +  + D/n t o  be the G-map ?/n,  where ix ( ? I  = I n  r ( F) . 
of Definition 3.1 together with Lemma 2.5 and Theorem 2.9. Here we must assume that  F embeds in  U 1 ,  so tha t  r ( F )  i s  defined (see Lemma 2.2). 

Several of our constructions w i l l  force consideration of th i s  more general form 
Remarks 3.4. (i) In Axiom 1, the cofibre sequence 

of the transfer,  and i n  such cases we can make use of the following comparison t o  

the original  form. Observe that  there necessarily exis ts  a r-linear isometry D -+ D' --.p. Cf -i= CD 
j:  U'  + U, where U i s  our given complete r-universe, and that  j r e s t r i c t s  to  a 

r-linear isometry Ull + u". 
i s  a sequence of r-maps between n-free r-spectra, hence the transfer maps the 

cofibre sequence of f/n: D/n + Dl  / n  t o  the cofibre sequence of 
Lemma 4.1. The following diagram commutes in ~ G A U ~  for a n-free g ( U 1  ,U1' -spectrum f + :  DnnFt + D ' A ~ F ' .  When f comes from an inclusion A + X of n-free r-spaces, 
D i n  r&U1'. 

t h i s  immediately gives a re la t ive  transfer compatible with cofibre sequences i n  the 

bundle context (when combined with the case V = R of Axiom 2) . 
(ii) Given a G-spectrum k and a f i l t r a t i o n  of D, we obtain spectral  sequences 

for  the computation of k* ( D/n and of k* ( DA,F+ ) . The transfer induces a map of 

the relevant exact couples and thus a map of spectral  sequences. I f  D i s  a r-CW 

spectrum with i ts skeletal  f i l t r a t i o n ,  the conclusion i s  tha t  r* maps what should 

be thought of as the Serre spectral  sequence for ~*(DA,F+)  t o  the Atiyah-Hirzebruch 

spectral  sequence for kS(D/n). In the si tuation of nonequivariant bundles, G = e 

and D = Crnx+, Prieto 11191 has identif ied r* on the E2 level .  

(iii) In Axiom 2, we are using that  the smash product of a n-free r-spectrum and a 

r-space (or  r-spectrum) i s  a a-free r-spectrum. We shal l  see in Corollary 5.3 tha t  

t h i s  axiom i s  actually a special case of the behavior of r on products. When 

D = TX', it may be viewed as relat ing the transfer associated t o  X t o  the 

transfer associated t o  the bundle pair  ( X  x BV,X x SV) ,  where BV and SV are the 

unit disc and unit  sphere i n  V. 

(iv) Axioms 4 and 5 are deceptively simple looking. A s  we shal l  explain in 

section 6, they di rec t ly  imply equivariant generalizations of Feshbachls 

The proof i s  immediate from Lemma 2.7 and inspection of definitions. Actually, 
just  as long as j exis ts  and both transfers are defined, we need not assume that  

U is complete. 

Turning t o  change of groups, we assume given a map of extensions of compact Lie 

groups 



such that a: H + G is an inclusion or, equivalently, n ) c p in A .  We say 

that a: (A,p) + (r,n) is a homomorphism of pairs with quotient inclusion H c G. 

If a " ~  denotes our complete r-universe regarded via a as a A-universe, then 

a*Un is p-trivial and, for any Y c A with YJ n p = e, a*Un and a * ~  are 

isomorphic as Y-universes since U ( Y )  n n = e. Therefore, if D is a p-free 
* * 

A-spectrum indexed on a*un, then D is an [ (a U,a u')-spectrum. Of course, 

a * ~  need not be A-complete, but we nevertheless have a transfer 

associated to DA a*Ft + D/p, where a*F denotes a finite r-space F regarded as 
* 

a A-space (since a F certainly embeds in a*~) . The condition a-l( n ) c p also 

implies that r D is a n-free r-spectrum (since its cells are of type r/a(~) 

where Y n p = el, hence we also have a transfer 

By 11.4.10, we have a natural isomorphism 

in G~U' for E in A~~*U', and this permits a comparison of the above two 

transfers . 
- 

Axiom 6. The following diagram commutes in hGlUx for a homomorphism of pairs 

a: (~,p) + (r,n) with quotient inclusion H C G and a p-free A-spectrum D 

indexed on u*un. 

The proof is immediate from Lemma 2.7 and the commutation of i* with the 

relevant change of group functors given by 11.4.14. We have the following 

homological interpretation (in which we retain the hyyotheses of the axiom). 

Proposition 4.2. Let E be a Gspectrum indexed on UT. Then the following 

diags,ms are commutative, where L is the tangent H-representation at the identity 

coset of G/H. 

and 
I 

Proof. These are immediate consequences of the natural isomorphisms of 11.4.3 and 

II.6,5 together with Axiom 6 (and Axiom 2, which allows us to regard zLr on the 
bottom left as a transfer). 

We single out some special cases in the context of (G,n)-bundles. 

Examples 4.3. (i) Suppose that p is a subgroup of n, r = G x IT, A = G x p, 

and a: A + I' is the obvious inclusion. For E E ABU', 

by 11.4.10. Let F be a finite n-space. Axiom 6 asserts that, for a p-free 

(G x p) -spectrum D, the transfer associated to DA F+ + D/p agrees with the 
P 

transfer associated to (n r D) A ~ F +  + D/p. In particular, if 6 : X xnF + X/n is a 
P 

(G,n)-bundle whose structural group reduces to p, so that X r n x Y for a 
P 

principal (G,P)-bundle Y, then the transfer for 6 regarded as a (G,n)-bundle 

agrees with the transfer for 6 regarded as a (G,p)-bundle. 

(ii) Suppose that a = p/a for a normal subgroup a of p, r = G x n, 

A = G x p, and a: A + I' is the obvious quotient homomorphism. For E c A&u", 

by 11.4.10. Let F be a finite a-space. Axiom 6 asserts that, for a p-free 

(G x p)-spectrum D, the transfer associated to DA F+ + D/p agrees with the 
P 

transfer associated to (D/u)A,F+ + D/p. In particular, this says that, when p 

acts ineffectively on F with kernel a, the transfer for a (G,p)-bundle with 

fibre F agrees with the transfer for the same bundle regarded as a ( G,p/o) -bundle. 
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(iii) Suppose that p = n, r = G x n, A = H x n, and a: A + I' is the inclusion a x 1: H x n + G x n for some a: H + G, letting D = zmx+ for a principal 
determined by an inclusion H C  G. For E E AAU', (~,n)-bundle X, and using that the functors jXaXL". and z'a* are isomorphic, we 

see that application of jxaX to the transfer G-map associated to the (G,n)-bundle 

(r ~c~E)/n s (G P(~E)/T- 5 :  X xnF + X/T gives the transfer H-map associated to 6 regarded as an (H,n)-bundle 

via a. When a: H + G is an inclusion, we may set U' = u and take j to be the 

Axiom 6 asserts that, for a n-free (H x n)-spectrum D, the G-map G VHT extending the identity; this gives the case mentioned before the proposition. 

transfer H-map associated to the stable (H,n)-bundle DnnFt + D/n agrees with the (ii) For a different special case of (i), let E: G + J be a quotient homomorphism 

transfer G-map associated to the extended (G,n) -bundle (G wHD)~,Ff + (G K ~ D )  /n The 'with kernel N and take a: A + I' to be E x 1: G x n + J x n. Here our 
homological interpretation is of particular interest in this case. original U is a complete (G x n) -universe and we may take UN as our complete 

( J x n) -universe and let j : UN + U be the resulting inclusion of 

There is another, simpler, compatibility property for H C G. The transfer (G x n)-universes. If E is a n-free (J x n) -spectrum indexed on UNx', then 

G-map associated to a (G,n)-bundle may be viewed as an H-map and, as such, it may be jxa*~ is an N-trivial n-free ( G  x n) -spectrum indexed on U' and the two resulting 

identified with the transfer H-map associated to 6 regarded as an (H,T)-bundle. transfers are related by jxaXr = T. In particular, with N = G, this relates the 

This property generalizes as follows to arbitrary homomorphisms a: H + G. Here nonequivariant transfer of 6 :  EhnFt + E/n to the equivariant transfer of 5 

a*~n need not be H-complete (in contrast to the situation in Axiom 61, hence we regarded as a Gtrivial stable (G, n )-bundle. 

must bring in a change of universe as in Lemma 4.1. 
The previous example is of particular interest when E is obtained by passage 

Proposition 4.4. Assume given a map of extensions 
to orbits over N from an (N x n)-free (G x TI-spectrum. In this situation, but 
revertiw more generally to our original extension G = r/n, we have the following 

1-n-A-H-1 analog of Proposition 4.2. As usual, F is a finite r-space and U is our 
complete r-universe. 

1 1  l a  J a  

1 - r -  G-1. ~roposition 4.6. Let G = I'/a and J = G/N. Let A 3 n be the inverse image of 

N in r, so that J = r/A. Let EJ c J~U' and EG G GBU' and assume given an 
Let U1 be a (complete) A-universe and let j: a * ~  + U1 be a A-linear isometry. $N)-equivalence E#E~ + EG (where E# = j,E*, E: G + J and j: uA = (Un)N c un). 
Let D be a n-free r-spectrum indexed on u". Then jxaXD is a n-free A-spectrum Let D be a A-free r-spectrum indexed on UA. Then the following diagrams are 

indexed on ( U ) " and the following diagram commutes. comutative, where A is the adjoint G-representation derived from N. 

Proof. If Y C I' and Y n a = e, then T/Y is triangulable as a finite n-free and 

A-CW complex. It follows as in 11.4.13 that a*~, and thus j*a*~, is a n-free 

A-spectrum. The rest is clear from Lemmas 2.7 and 4.1 by inspection of definitions. 

As in Lemma 4.1, as long as we make hypotheses which ensure that the transfers 

are dbfined, we need not assume that U and U1 are complete here. 

We again single out some special cases in the context of (~,n)-bundles. Proof. The stable J-bundle DnAFf + D/A is obtained by passage to orbits over N 

from the stable G-bundle DnnFt + D/n. While uA need not be G-complete, D is 
Examples 4.5. (i) Let F be a finite a-space. Taking a: A + I' to be 
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an ~( ~ , ~ ~ ) - s ~ e c t r u m  since it is A-free, and there is thus a transfer Gmap We.begin with a result on external products. 

r : D/n + DA,F+. It is immediate from the definitions that r/N is the transfer 

J-map of DA~F' + D/A. Lemma 4.1 identifies j*r as a transfer. The diagrams are Theorem 5.1. For i = 1 dnd -i = 2, assume given an extension Gi = ri/ni, a 

thus direct consequences of the naturality of the isomorphisms of 11.8.1 (and Axiom complete ri-universe Ui, a ni-free ri-spectrum Di indexed on u:~, and a finite 
2, which allows us to regard T as a transfer) . ri-space Fi. Then the following diagram of (G1 x G2)-spectra indexed on 

Example 4.7. When r = G x n in the proposition, A = N x n. Here F is a finite 
un1 @ un2 commutes, where all of the smash products are external. 

N 

n-space and D is an (N x n)-free (G x n)-spectrum, we can identify DA~F+ + D/A I 

Dl/? D2/n2 = ( D ~ A D ~ ) / ( T ~ x T ~ )  

with (D/N)A~F+ + D/(N x n), and we have a map of stable (G,n)-bundles 
TAT 1 I -c 

( j*~)n~F+ + j*(D/N)An~'. Comparing with Examples -4.5 (ii) , we find that the 
identifications of transfers of the proposition factor through the resulting, 

naturality diagrams. 
Proof. While U1 @ U2 need not be a complete ( r1 x r2) -universe, Din@ is an - 

The basic source of suitably related pairs of spectra EJ and EG is &(U1 @ u2,uY1 @ ~;~)-s~ectrum since its cells are given by orbits (rl x r2)/(Al x A2) 

explained in 11.8.6. In particular, when N = G, Proposition 4.6 relates the with Aio ni = eo Thus the right hand transfer is defined as in the previous 

transfer in E: and EF to the transfer in E* and Ex, where EG is a split section. The conclusion follows from Lemma 2.6 and the commutation of external 

G-spectrum with associated nonequivariant spectrum E as in 11.8.4. smash products with the change of universe functors used to define the three 

transfers in sight. To give a concrete illustration, let H C G and consider the projection 

5 : EG x G/H + EG. The orbit bundle c/G is the natural bundle BH + BG. Writing 

EH for EG regarded as an H-space and using the evident bundle map from 5 to 
We use change of groups to internalize this result. 

G/H + *, we obtain the following special case. 
i Theorem 5.2. With the hypotheses of Theorem 5.1, assume further that G1 = G2 = G 

Corollary 4.8. If kG is a split Gspectrum with associated nonequivariant 

spectrum k, then the following diagram commutes. 

and define r to be the equalizer of the projections ri + G, so that the 

following is a map of extensions. 

In the case of complex K-theory, this diagram (on skeleta) is due to Nishida 

[ 117 1 , who also verified that the left most transfer may then be identified with the 
standard induction homomorphism R(H) + R(G). 

$5. Product and Euler characteristic formulas 

The basic topological fact here is the commutation of transfer with products. 

A special case will imply an Euler characteristic formula for the evaluation of the 

compos:ite ~ 8 . r  for a (stable) Gbundle 5. The relevant N e r  characteristic 

depends on 5 and not just its fibres, but we show that the determination of when 

this composite induces an isomorphism on cohomology does reduce to questions about 

Euler characteristics of fibres. 

Choose the ri-universes Ui so that uY' = uZ2 = unlXA2 for a complete r- 
universe U. Then the internal smash product D1*D2 is a (nl x n2)-free r-spectrum 

indexed on u~~~~~ and the following diagram of Gspectra indexed on u~~~~~ 
commutes, where all of the smash products are internal. 

N 

A D2h2 = (DlhD2)/nl x n2 

TAT 1 I 

Proof. The Guniverse u~~~~~ has complementary rl, r2, and summands in U1, 
71 xn n xn a xn 

U2, and U, hence we can extend the G-linear isometry U 0 U + U 



198 

used to internalize the smash product to a r-linear isometry j : AX(U1 0 U2) + U. ~esults.a cup product 

Then the internal smash products here are obtained from the external smash products 

of the theorem by applying the functor jxA*. We obtain the conclusion by 

applying jxni to the diagram of the theorem and using Proposition 4.4 to identify 

the resulting arrow j,~*r as a transfer. and a cap product 

Of course, we can always construct the required universes Ui by adding 

appropriate summands to the complete Guniverse u ~ ~ ~ ~ ~ .  In the context of 

(G,n)-bundles, we start with stable (G,ni)-bundles Di and construct the stable 

(G,nl x n2)-bundle %AD2. If Di = zmq, then -D1AD2 = zw(X1 x x2It. Here 

ri = G x ni, r = G x nl x n2 and A: r + r1 x r2 is induced by the diagonal map 

of G. 

Either specializing to the case where one of the stable Gbundles is an 

identity map and quoting Axiom 3 or arguing by direct inspection of definitions, we 

obtain the following generalization of Axiom 2. We revert to our usual context of 

n-free r-spectra D indexed on U' and finite r-spaces F, where U is a 

n: jL(D) 8 k;(X) --+~F(D) 

arising from the external products (2') and ( 4 ' )  of 11153, and these endow 

jii~) and ji(~) with k;(x)-module structures. 

Of course, we are free to replace X+ by C"X+ (or to view X+ as shorthand 

notation for ' c%+) . We are interested in coactions by r-free r-spaces on n-free 
r-spectra, and in this case we continue to write A for the induced composites 

complete r-universe. 
where the q's are the quotient maps, and for the induced maps 

Corollary 5.3. Let E be any Gspectrum indexed on u". Then DAE is a n-free 

r-spectrum indexed on U" and the following diagram of G-spectra commutes, where 
D/n + (x/n)+hD/n and DhnFt+ (X X~F)+A(DA~F+). 

all smash products are internal. 
I Observe that the first two of these are maps of a-free r-spectra which both induce 

the third map on passage to orbits over IT. The fourth map arises in the evident 
way by use of the diagonal on F. The naturality of the transfer, the previous 
corollary, and elementary chases give diagrams relating A, r, and 6 .  

Corollary 5.5. Let A: D + X'AD be a coaction of a a-free r-space X on a n-free 

r-spectrum D. Then the following diagram of G-spectra commutes. 

We want to use this result to obtain homological formulas involving cup and cap e 
products. Here we need appropriate diagonal maps. While these are obviously 1 i (x/*)+hD/n D/n 

' . D\F+ 4 ' A Y (X/n)fn D/n 

present when D = C"X+, it is again simple and useful to proceed in greater 

generality. The following definition makes sense for any compact Lie group I'. 

Definition 5.4. A coaction of a r-space X on a r-spectrum D is a map 

A: D + x++D of r-spectra such that the following counit and coassociativity 

diagrams commute. 

D ';x+~D and D A Y X + ~  D 

There result formulas relating the transfer to cup products and cap products. 

Corollary 5.6. Let kG be a (commutative) ring G-spectrum and let jG be a kG- 

module G-spectrum. Then 

For a (commutative) ring r-spectrum kr and a kr-module r-spectrum jr, there 
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r*(w) y = r*(w y~*(y) for w c G(x xnF) and y P jG(~/n) of the f.ormulas of Corollary 5.6. 

x Ur*(z) = T*(~*(X) z) for x e kE(~/n) and z c ji(~$~+) 

u n r*(w) = 5*(rx(u) n w) for u € jf(D/n) and w 6 G(x XJ) 

r*(u)A 5*(x) = r*(ur\x) for u e jf(~/n) and x € kE(~/n) 

With w taken to be the identity element, the first formula implies an Euler * * 
characteristic formula for the computation of 5 T . 

(ii) If A is a coaction of X on D and E is any r-spectrum, then A A ~  is a 

coaction of X on DAE. The case of interest is when X is a n-free r-space, D 

is a n-free I'-spectrum, and E is a s-trivial r-spectrum, as in Corollary 5.3. 

(iii) As pointed out in Remark 3.3 (iii) , the projection E3 (w )+AD + D is a 
r-equivalence for any n-free r-spectrum D, by 11.2.12. The inverse of this 

equivalence specifies a coaction $ of Eg(r) on D. This example plays a 

\miversal'role. For any n-free I"-space X, there is a unique r-map 

A: X + E3( n) , and ( A A ~  A = $ whenever X coacts on D via A (as we see by 

composing with the projection). 

Definition 5.7. kfine the Euler characteristic ~ ( 5 )  associated to the G-bundle Since X( 5 ) is only defined for space level G-bundles 6 : X xnF + X/n, we 

6: X xnF + X/n to be rf(l) 6 e(~/n), where kG is any given ring spectrum. In ignore the more general context henceforward in this section. We want to determine 
* 

represented form, ~ ( 5 )  is the composite 

zrn(x/n)+ A zm(x xn~)+ AS -"-ckG, 

where p is the collapse map and e is the unit of kG. 

when ~ ( 6 )  E q(X/n) is a unit. Observe that, by the previous example, this holds 

for all X (and a given fixed F and kG) if and only if it holds for X = E3(n 1, 
in which case rXS* is an isomorphism for every stable Gbundle 5: DA,F+ + D/n. 

We need to relate ~ ( 5 )  to x(F), and for this purpose we must first study 

the case when the base Gspace X/n is an orbit G/H. Here X must be an orbit 

r/h, but there are in general many possible choices of A for a given choice of 
Theorem 5.8. Let the n-free r-space X coact on the IT-free r-spectrum D and let H. Since X is n-free, A c: 3(~); that is, A fl n = e. The composite A C r + G maps 
jG be a module G-spectrum over a ring G-spectrum kG. Then the composite A isomorphically onto H. Let a: H + r denote the composite of the inverse of 

* 
jl(~/n) j;(D "F+) 2 jG(D/n) * 

is multiplication by the Euler characteristic X( 5) e G(x/~). 

We shall shortly restrict to the space level and discuss conditions which 

ensure that ~ ( 5 )  is a unit, but we should first display some examples of coactions 

on stable G-bundles to which the general considerations above apply. 

Examples 5.9. (i) Of course, a r-space X coacts on z?'. If A is a r-subspace 

of X and C(X,A) is the unreduced mapping cone, then X coacts on zrnC(X,A) via 

More generally, if A1 and % are r-subspaces of X with union A, then the 

diagonal of X and the r-equivalence of 111.4.4 give a r-map 

c(x,A) c(x x x,x x % u q x x) = c ( x , ~  )h~(X,A2)e 

Via diagrams like those of Corollary 5.5, we can prove the evident relative versions 

this isomorphism and the inclusion of A in r. We call a the fibre representa- 

tion of the orbit r/A (and think of it as defined up to conjugation in TI. For a 
general n-free r-space X and base orbit G/H C X/n, we say that a is the fibre repre- 

sentation of X at G/H if the pullback of X over G/H is r-homeomorphic to r/A. 

Our finite r-space F has the Euler characteristic x(F) = 6*r(F) c ~F(s), 
6: F + pt. If a: H + I' is a fibre representation, then, regarding F as a finite 

H-space via a, we obtain an N e r  characteristic X(aXF) , n;(S). Equivalently, 

X(a*~) is the image of x(F) under a*: nF(S) + n$(S). We continue to write 

X(a*F) for its image in k;(S) E ~;(G/H) when kG is a ring G-spectrum. 

Lemma 5 .lo. Let A E 3( n) determine the fibre representation a: H + r . Then the 
Gbundle 5: (T/A) xn F + r/An may be identified with the extended G-map 
1 XHE: G xHa*F t G/H and the following diagram of G-spectra comutes. 

Therefore ~ ( 6 )  = x(a*F) in the ring ng(G/H) t ni(S). 
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Proof. Since (r/A) x F is r-homeomorphic to r xAF and (I' xAF)/n is +trivial, (ii) is due to Nishida [117, 4.71. The most important case of (ii) 

G-homeomorphic to G xHaXF, the identification is clear. The diagram results by occurs when G acts trivially on F, so that X(a*~) is the image of the 

application of Axiom 6 to the inclusion of pairs (~,e) + (r,s) with quotient 0 classical N e r  characteristic of F under the unit Z + kG(S)e 
inclusion H C G, with D in Axiom 6 taken to be the sphere A-spectrum (which of 

Of course, in practice one usually localizes appropriately to obtain the unit 
course is e-free). 

conditions of the theorem. Nonequivariantly, when G = e, connectivity is a 

negligible hypothesis and (i) and (ii) have the same content. Equivariantly, 
Example 5.11. Let r = G x II and let F be a 8-space. Here any A r  IT) has 

Gconnectivity is an annoyingly strong hypothesis. One is stuck with (i) and should 
the form A = { (h, p (h) ) 1 h s H} for some subgroup H of G and homomorphism , 

localize so as to invert all X(a*~). We shall not pursue the relevant techniques 
p: H + s. The corresponding fibre representation a: H + r is given by 

here. Application of (i ) in ordinary RO( G) -graded cohomology gives the following 
a(h) = (h,p(h)), and of course a*F = p*~. This+recovers the usual description of 

conclusion; see [ 89, Thm Bl . 
(G,s)-bundles over orbits as extended bundles G xHpX~. 

We insert two criteria for an element of kg(~) to be a unit. 
Theorem 5.14. If G is a finite p-group and 6: Y + B is a finite Gcover whose 

fibre F has cardinality prime to p, then the composite G-map 

Lemma 5.12. Let kG be a ring G-spectrum and let u r kg(B), where B is a 

G-CW complex. Then u is a unit if either of the following conditions hold. 

(i) The image of u in kg(G/H) is a unit for each orbit G/H C B. 
becomes an equivalence upon localization at p. In fact, the conclusion applies to 

(ii) B is G-connected with basepoint * and the image of u in kg(*) is a 
any stable G-bundle of the form 6 : DA~F' + D/s. 

unit. 

Proof. First note that condition (ii) implies condition (i) since, if B is $6. The sum decomposition and double coset formulas 
G-connected with basepoint *, then any inclusion G/H + B is homotopic to the 

projection G/H + * (because there is an H-path connecting * to the image of the We here exploit the homotopy invariance and additivity on fibres axioms to 

orbit eH). Thus assume (i). We show that u acts isomorphically on k:(~). prove Feshbachts sum decomposition and double coset theorems. We also discuss the 

Since u acts on the Milnor liml exact sequence for k:(~), we may as well assume equivariant analogs of Feshbachts applications of the double coset formula, this 

that B has finite dimension n. The result certainly holds for n = 0, and an being an area where much further work remains to be done. 

easy Mayer-Vietoris sequence argument from the pushout diagram describing B in 
We shall use the same letter for a map of spaces and for its induced map of 

terms of its n-cells and (n-1)-skeleton gives the conclusion by induction on n. 
suspension spectra. We shall also use the same letter for a map of finite 8-spaces 

We obtain the following result by combining Lemmas 5.10 and 5.12. 
and for its induced map of stable bundles with these spaces as fibres. For a 8-free 

r-spectrum D and a subgroup A of r, we write <(A,r) for the stable bundle 

D%(~/A)+ + D/s and r(A,r) for its associated transfer map. 
Theorem 5.13. Let B = X/8 for a G-bundle 5: X x,F + X/IT and let k~ be a ring 

G-spectrum. Then X( 5 )  E kg(~) is a unit if any of the following conditions hold. With these notations, the following two decomposition theorems are immediate 

(i) X(a*~) s k$(S) is a unit for each a: H +  r such that G/H embeds in B consequences of the pretransfer level assertions of Theorems 2.10 and 2.11. 

with fibre representation a. 

(ii) B is Gconnected with basepoint * and X(.a*~) , k;(S) is a unit, where Theorem 6.1. Let F be a finite r-CW complex and let 

a: G + I' is the fibre representation at *. 
(iii) B is G-free and the classical nonequivariant Euler characteristic 

x(F) c k;(S) is a unit. 
be the composite of the inclusion of an orbit and the i x  characteristic map for 

Part (iii) is the special case of (i) in which only the trivial isotropy group some enumeration of the cells of F. Then, for any 8-free r-spectrum D, 

and thus only the classical Euler characteristic appears. When B is finite and 



~ h u s  E.(a,n) i s  a stable (G,n)-bundle and has a transfer ~ ( a , a ) .  

As above Theorem 2.11, write F/r as a disjoint  union of orbi t  type path 

components M and l e t  X ( M )  be the internal  N e r  characterist ic of M i n  F/T. Theorem 6.3. Let p and a be subgroups of n and l e t  o\n/p be the double 
coset space regarded as the space of orbi ts  under a of the homogeneous space a/p. 

Theorem 6.2. Let F be a compact r-ENR and l e t  jm: r / ~  + F be the inclusion of Let {m) be a se t  of representatives in n for  the orbit  type component 

an orbit  in the orbi t  type component M. Then, for any a-free r-spectrum D, lmanifolds- M of o\n/p and l e t  x ( M )  be the internal  Euler characterist ic of M 

i n  a\n/p. Then, for any a-free ( G  x a)-spectrum D, the composite 

Let o and p be subgroups of n and l e t  6 (0,l-r) be the evident quotient i s  the sum over M of x ( M )  times the composite 

map D/o + D/=. We would l ike  t o  obtain a double coset formula for the computation 

of ~ ( ~ , n ) c ( o , n ) ,  where r(p,w) is the transfer associated t o  ~ ( p , a ) .  Here for D/ 0 
' + ~ / p ~ f l o  & D / p .  

the f i r s t  time our general context causes rea l  d i f f icul ty .  It is not clear what 

equivariance C ( U , ~ )  has or tha t  it i s  the sor t  of stable bundle for  which our Here pm = mpm-l and cm i s  induced by the l e f t  n-map n/pm + n/p  given by r ight  

methods provide a transfer.  We shal l  return t o  the general context a t  the end of multiplication by m. In symbols, 

the section, but un t i l  then we shal l  take r = G x a and work in the context of 

stable ( G ,  a )  -bundles. Remember tha t  a principal ( G , n )  -bundle i s  the same thing as a 

a-free ( G  x r)-space. 
Proof. The isotropy group under o of the point mp E n/p i s  pmn a, and we l e t  

Thus consider a a-free ( G  x n)-spectrum D indexed on u", where U i s  a 

complete ( G  x n)-universe. As i n  11.4.8 and 11.4.15, the n-action 4: a tx D + D is 

a ( G  x a)-map and gives r i s e  t o  the following commutative diagram of a-free 

I be the inclusion, s (  pmn a )  + smp for s e a. Observe that  jm coincides with the 

composite 
n K,D z ~ ~ ( n / a ) +  

C 

a/pmn a c n/pm a n / p .  

With the isomorphism again coming from 11.4.10, we see from our description of 
F By 11.4.10, we have an isomorphism of G-spectra 6(a,n) tha t  we have a commutative diagram 

D/U = ( A  K ~ D ) / I T ,  

and c(o,n) i s  just  the composite G-map 

N 

D/o = ( n  raD)/n 'In * D/n 
By Axiom 6 ( in the context of Example 4.3 (i) ) and Axiom 1, 

or, equivalently, 
r (p ,n ) [ ( a ,n )  = (4 t .n1 )~(6 ) .  



206 

By application of the previous decomposition theorem to 6, 

T( 5) = CX(M) jmr( pmr, a, a) 
M For example, if a is a torus in the double coset theorem, then all terms 

vanish except those indexed on fixed point orbit type components M, that is, those 

By a simple diagram chase from our initial observations, with pmn a = a; of course, T (a, a) = 1, and all terms vanish if there is no m 

such that a C pm. If a C p C n and a is a maximal torus in n, then the fixed 

(d+)jm = cm~(pmnu,pm) e ~oint subspace {mplo C p) of a\n/p is the finite set Wno/Wpo and each x(M) = 1. 

'~ndeed, if a c pm, then m-lum is a maximal torus in p and is thus equal to 

We obtain the conclusion by combining these relations. 6 for some n E P, SO that mn E Nn(a) and m E Nn(aIP. Therefore, as proven by 

Feshbach [53,541 when G = e, the following result is an Mediate specialization 

Of course, if p has finite index in n, then M is the point mp and of the double coset theorem. 

x(M) = 1. Here the result has the same form as the classical double coset formula 

in the cohomology of finite groups. Corollary 6.7. Let D be any n-free (G x n)-spectrum. 

The most important case occurs when D = c-(G, n)+, where E(G, n) is the (i) If p is the normalizer of a maximal torus a in n, then 

universal principal (G, n)-bundle . Here E( G, n) /p is a classifying G-space 

B(G,p) for any p c n  and the result takes the following form. r(~,n)t.(a,n) = t.(o,p): D/a +D/p, 

Corollary 6.4. The composite hence ~mt.(a,~)* = 1mg(o,n)* in j*(~/a) for any G-spectrum j. 
(ii) If p is a maximal torus in n, then 

ZmB(G,o)+ A CmB(G,n)+ ' ;- CB(G,~)+ 
r(p,a)~(p,n) = Zcm: D/p -D/p, 

is the sum over M of x(M) times the composite 
where the sum ranges over a set {m) of coset representatives for W,p. 

C 

B G  a )  ' 5. C~B(G, pm no)+ -J-+ Z~B(G, pm)+ * Z~B(G, p)+o (iii) If p is normal and of finite index in n, then 

Remarks 6.5. Taking G = e (and restricting to skeletal, we obtain the main 

theorem of Feshbachls paper [53]. Feshbach later gave a separate argument for the 

generalization of the double coset formula to Bore1 cohomology, namely 

k:(~) = k*(~n xJ) for a rspace Y and nonequivariant theory k 154,11.21. In 

fact, one need only apply Theorem 6.3 to E ~ ( E ~  x Y )+ to read off this 

generalization. 

It is to be emphasized that the double coset formula depends only on the 

structure of fibres and thus has the same form and can in principal be exploited in 

the same way equivariantly as nonequivariantly. In particular, the following 

consequence of Lemma 2.12 serves to eliminate terms. 

where the sum ranges over a set {m) of coset representatives for n/p. 

(For example, p might be the identity component of n.) 

Still following Feshbach, we insert a definition which will allow us to state a 

best possible reduction theorem for the computation of j*(~/n) in terms of 

j*( D/p) for a subgroup p of n. 

Definition 6.8. An element y r j*(~/~) is said to be stable (or n-stable) if 

Proposition 6.6. If Wp = Nnp/p is not finite, then 

r( p,~) : D/n -+ D/p 



is an isomorphism if jG is localized away from I w I .  
Theorem 6.9. Let the a-free (G x n)-space X coact on the n-free (G x n)-spectrum (iv) If p is normal and of finite index in n, then 
D and let jG be a module Gspectrum over a ring G-spectrum kG. Let p c n and 

consider S = ( p, n Suppose that X( c ) ( kg( X/n 1 is a unit. Then s*: j;(X/n) -- j;(~/p)~/~ 

I S*: jX(D/n) --+j*(~/p)~ , is an isomorphism if jG is localized away from 1 n/p 1 . 
Moreover, with the assumption on the base space X/n dropped, cX in (iii) and 

is an isomorphism. (iv) is still an epimorphism. The same conclusions apply with X replaced by any 

Proof. For y E jX(D/p)', an immediate calculation from the double coset and N e r  n-free (G x n)-spectrum on which X coacts. 
* * characteristic formulas shows that 6 T (y) = uy, where Proof. In (i), X(n/P) = 1. In (ii), *(n/p) is prime to p. The last statement - 

holds since Corollary 6.7 implies that S*T*(~) = wy for stable elements y, 
u = ~ ~ ( ~ ) ~ ( ~ ( p ~ n p , p ) )  kg(X/p). where w = I W  I or w = I n/p 1 . For (iii) , note that this formula already holds for 

W-fixed elements and thus implies that all such elements are stable. The rest is 
Applying this relation to 1 = cX(l) c kg(~/p)~, we find that S*rX(l) = u, so clear from Theorem 6.9. * * 
that u is a unit. Since T 5 (z) = X(g)z for z a ji( D/I ) , the conclusion 
follows . 

With B = X/w and F = n/p, Theorem 5.13 gives three criteria for the 

requisite unit condition. While the first criterion is unfortunately the one 

relevant to classifying spaces B(G,n) and thus to the theory of equivariant 

characteristic classes, the last two lead to the following omnibus theorem. When 

G = e, it contains Feshbachls results in (531 and their improvements along the 

lines of [ 54, 11.21 . 

Theorem 6.10. Let jG be a Gspectrum. Let X be a principal (G,n)-bundle, let 

p c n, and consider 5 = ~(p,n): X/p -+ X/n. Assume that X/n is either 

G-connected with trivial fibre representation G -+ rr at the basepoint or Gfree. 

(i) If p is the normalizer of a maximal torus in n, then 

is an isomorphism. 

(ii) If p is the inverse image in the normalizer of a maximal torus of a 

p-Sylow subgroup of the quotient Weyl group, then 

is an isomorphism if jG is p-local. 

(iii) If p is a maximal torus in IT with Weyl group W, then 

Warning 6.11. When we say that a nonequivariant spectrum j is T-local for a set 

of primes T, we mean that its homotopy groups are all T-local or, equivalently, 

that the natural map j -+ jT is an equivalence, where jT = jnMZT. Here MZT is 

the Moore spectrum z - ~ z ~ s ~ ,  S$ being the localization of S1 at T. If we start with 

a general spectrum j and form its localization jT, then j;(~) = j*(~) @ ZT for 

finite CW complexes B but not for general CW complexes, because localization 

at T fails to commute with infinite products and inverse limits. Our unit 

criteria of Lemma 5.12 depended heavily on the wedge axiom and so apply only to 

theories represented by local spectra, not to localized theories jx( ? ) @ ZTe Thus 

parts (ii) through (iv) of Theorem 6.10 do not apply to jX(?) @ ZT without a 

finiteness condition on the base spaces. In fact, the (nonequivariant) K-theory of 

classifying spaces of finite groups provides obvious counterexamples. Note, 

however, that the surjectivity in parts (iii) and (iv) clearly does apply to 

jX(?)  @ ZT in full generality, by the proofs given. The moral seems to be that one 

should learn how to exploit part (i) rather than the more familiar but less general 

part (iii). This warning applies verbatim equivariantly. 

Returning to our original context, we ask how generally there is a double coset 

formula for non-trivial extensions r. There is a reasonably satisfactory answer 

when I' is a split extension G xyn. Here we restrict attention to subgroups o 

and p of n invariant under the action of G given by y. We define I', '= G x o Y 
and identify ro/o with G. Here again 11.4.8 and 11.4.10 give isomorphisms of 

G-spectra over D/n 
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D/o n (I' K~ D)/n n Dnn(r/rUlt Dlo ~ ( o ~ n !  D/n T(P,~?.~/~ 
u 

for a 8-free r-spectrum D. Thus c(u,n): D/u + D/n is a stable G-bundle and has a is the sum over M of x(M) times the composite 

transfer ~(u,n). We need some observations and notations to state the double coset m m m 
formula in this context (and we shall leave verifications to the reader). "" " >')-*G K ~ ~ ( D / ~ ~ ~ ~ )  p p  ) * D / ~ ~  %D/P. 

Define an action of G on o\v/p by the formula 
proof. In outline, the argument is the same as the proof of Theorem 6.3. One has a 

6ommutative diagram g(cnnp) = uy(g)(m)p 

+ b A  1 
for g E G and m E n. Then the orbit map uL~/p -t (u\n/?)/G can be identified ~ r / r ~ +  r wr A ~ ~ ~ ( r / r ~ ) +  b / p  

u 
with the map u\n/p + ru\r/rp which sends ump to rumr When y is trivial, 

P * 
G acts trivially and this map is an identification. I s(P,~) 

For m a n, define rm = r, n ( rp lm; explicitly, 
D/ 0 

t(u,n) * D/n 

rm = , r m  r c p and (g-l) (mlrm-l s a). 

Define % = rm/o n $ and note that embeds in r,/o = G; when y is trivial, 

this embedding is an isomorphism. 

For a n-free r-spectrum D, D/o n pm is an %-spectrum but not a Gspectrum. By 

11.4.8 and 11.4.10, we have a stable G-bundle 

and we let 

.rl(onpm,u): D/o -G ~%(D/onp~) 

be its transfer. Since (rp)m/pm E G, D/pm is a G-spectrum and the %-map 

6(un$,pm): D/unpm + D/pm extends to a G-map 

With these notations, we have the following generalization of Theorem 6.3. 1 
i 
i 

Theorem 6.12. Let n = G x x and let a and p be y-invariant subgroups of n . 
Y 

Let {m) be a set of representatives in n for the orbit type component 

manifoJds M of the orbit space (u\n/p)/G and let x(M) be the internal Euler 

characteristic of M in (o\n/p ) / G .  Then, for any n-free r-spectrum D, the 

composite 

and one evaluates ~ ( 6 )  by use of Theorem 6.2. Since the fibre of 6 is I'/rp 

regarded as a I',-space, it is the double coset space r,\r/rp rather than o\n/p 

which enters at this point. The remaining details are a bit tedious but 

straightforward and are left to the reader. 

There is an analog of Corollary 6.4 obtained by taking D to be zrn~(G,y , * I + ,  
where E(G,y,n) is the universal principal (G,y,n)-bundle. Here E(G,y,n)/p is a 

classifying G-space B(G,y,p) for any y-invariant p c n (but of course pm and 

u n pm are generally not y -invariant ) . 

Remark 6.13. A check of details shows that the only properties of o c n and 

r, c r used in proving Theorem 6.12 are that u is normal in I', , I', n n = u, 

and (To) n = r . We say that such a group r, is a n-complement of u in I' ; it 

is not uniquely determined. Provided only that both a and p have s-complements, 

the statement and proof of the theorem remain valid without the requirement that r 
be a split extension. The only subtle point here is the specification of the action 

of G on u\n/p. One identifies G with r,/~, uses r = (r )n to write an element of G 
P 

-1 in the form yno for y c Tp and n e n, and sets (yno)(ump) = o(ynnly )p. 

The following remarks apply in the generality of the previous one. 

Remarks 6.14. (i) By the transitivity theorem of the next section, the transfer 

T ( a /l $, a) factors as the composite 

I 
I Here T is specified in terms of the pretransfer G-map T(G/%) as 



(ii) If we forget about G in Theorem 6.3, then it and Theorem 6.12 give two 

different calculations of .r(p,a)~(o,a) as a nonequivariant map. The first uses 

o\a/p directly while the second uses (o\a/p)/G and compensates by use of the 

change of groups G pc ( ? )  . When G/% is finite, G (x E is nonequivariantly 
Hm % 

equivalent to 1 G 1 copies of E and ( i) shows that r ( o 6 pm, o is 1 G/% 1 
copies of ~(or\$,o). This is compensated for by the difference in the N e r  

characteristics of the two formulas. When G/% is not finite, one can apply 

Theorem 2.10 nonequivariantly to T in (i) to obtain the first formula from the 

n 
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J be any finite 0-CW complex. (In this section, we use cell structures so we 

must at least restrict to finite 0-CW homotopy types.) Define F = P x,J. The 

resulting r-bundle 5: F + K with total group O, structural group a, and 

fibre J is to be our bundle of fibres. In the classical case, P is to be a 

a-free ( a x o) -CW complex and J a a-CW complex, so that F and K are finite 

a-complexes and 5 is a (IT, o) -bundle with fibre J regarded by pullback as a 

(G x a,o)-bundle. (In practice, a does not act effectively on K, but this 

chuses no problems by Example 4.3 ( ii ) . ) 
As usual, we assume given a a-free r-spectrum D indexed on ua. Since F 

and K are finite I'-spaces, our r-bundle ; induces a map 

second. In both cases, the idea is that the second decomposition results from the l~,5 
DnaFt r D,,~K+ 

first by assembling nonequivarlant transfers into equivariant maps. 

(iii) In (i) , T I  (on pm,o) vanishes if W is not finite and, perhaps more 

usefully, r(on pm, o) vanishes if Wr ,rm not finite. The latter group can be 
<\ D/a P 

m 
identified with the subgroup 

of stable Gbundles, and of course 5 and 5' have transfer G-maps T (6 ) and 

{s( o n  $1 1 s c o and ysy-ls-l s o n pm for ,all y s rm) 
f ~(5'). With these notations and hypotheses, our transitivity theorem reads as 

follows. 

1 of wo(onPm). - 
Theorem 7 .l. ( i ) The following diagram commutes in hr4 U. 

87. Transitivity relations f 
I 

Dold studied the transitivity of his fixed point transfer in [46,§71. ?(K)/ \F) 

Consideration of transitivity in terms of the Becker-Gottlieb definition seems not 
+ T( 5 r C ~ F +  

to appear in the literature. In our context, it seems most natural to consider 

transitivity for stable bundles built up from bundles of fibres. 
(ii) The Gmap In,<: DA,F+ + DA,K+ is a stable Gbundle with total group 8, 

structural group p, and fibre J and the following diagram commutes in ~GBU'. 
To handle equivariance, we assume given a commutative diagram 

D/ IT 

in which both the rows and the columns are extensions of compact Lie groups. In the 

classical case, these extensions are all to be trivial; that is, r = G x n, 

p = IT jc a, and 8 = G x a x o. To fix universes, let U1 be a complete O-universe 

and let U = (U' ) Then U is a complete r-universe and Ua = (U' )P is a complete 

G-universe. 

Let P be a finite a-free 8-CW complex with orbit space K = P/o and let 

Proof. (i) If P is given as a pushout of a cellular inclusion P3 + P1 and a 

cellular map P3 + P2, where the Pi are all o-free 8-CW complexes, then F 

and K inherit pushout structures and the map J + * induces a map from the 

pushout diagram for F to the pushout diagram for K. By additivity and 

naturality, the result for 5 will follow from the result for its pullbacks over 

the Pi/a. Ely induction on the number of cells of P and by further use of 

additivity and homotopy invariance to handle spheres and cells, we see that the 

result will hold for all P if it holds for P = 8/Y!, where Y! n a = e. Let Q/Y 

have fibre representation a: A E Y! C Sl, where A c I". Then, by Lemma 5.10, 
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r( 5) : rm(n/~a)+-+ zm( (Q/Y x,J)+ i;v = L~AT( J) : ~'E*DAP+AS --, 

can be identified with ~y Definition 3.1 again, v/n = v/p is the transfer r ( l ~ ~ ~ ) ,  and the desired 
diagram is obtained from the previous one by passage to orbits over n. 

1 rAr ( a*~) : 1. wAS +I' m~ma*~+. 

In view of Theorems 6.1 and 6.2, the following multiplicativity formulas for 

Therefore (i) holds in this case by Lemma 2.8. the N e r  classes of bundles are easy consequences of part (i) of the theorem and 

(ii) b t  E*D denote D regarded as an Q-spectrum. We observe fi??st that the naturality of the transfer on pullbacks. Nonequivariantly, results like this 

is a p-free Q-spectrum. In fact, by consideration of product cells, the are usually proven using the Serre spectral sequence. 

verification quickly reduces to the space level observation that cx(I'/h) x Q/Y is 
p-free if A n n = e and y r\ = e (by a simple check from our initial diagram of corollary 7.2. Let ji: r/Ai C r/Ai x eni + K be the inclusion of an orbit in 
extensions). Since the quotient homomorphism Q + G factors through T, we find by the i g  cell for some enumeration of the cells of K and n. let ci: Fi + r/Ai be 

use of 11.4.10 that the G-map the pullback of 5: F + K along ji. Then x(F) = J(-1) 1x(5i)r(r/~i). 
1 

can be identified with the evident G-bundle 

Corollary 7.3. Let jm: I'/A + K be the inclusion of an orbit in the orbit type 

component M and let 5,: Fm + r/A be the pullback of 5: F + K along jm. 

Then x(F) = M CX(M)X( cm)r(r/A). 

Here Lemma 5.10 explains how to compute the relevant Euler characteristics of 

bundles over orbits. 

Let i: U" + U, it: U" = (u1)P + UI, and j: U = ( ~ 1 ) ~  + U1 be the inclusions, so We give some examples of situations in which part (ii) of the theorem applies. 
that it = ji. If we smash the diagram of part (i) with i,D, we obtain a 

commutative diagram I 

in hl'dU. 
- 

Referring back to Definition 3.1, we see that this diagram arises by 

I application of in to a diagram of the form 

Examples 7.4. (i) If we prove Corollary 5.3 directly, then it and transitivity 

imply Theorem 5.2. Here the bundle of fibres is just the projection F1 x F2 + F2, its 

structural group o being trivial, and we start with the extension n1 x n2 + r + G 

used in Theorem 5.2. In fact, for any (nl x n2)-free r-spectrum D, not necessarily 

of the form DlAD2, we obtain transitivity for the transfers associated to the diagram 

in Xrdun and that T1/n = r(tl) and y/n = ~(5). Similarly, r(5) = ;(5)/a for a 

map Y( 5) in hntu such that 

in hn&J1 . Therefore = v/a for a map v such that 

There is also a version of this example for the external smash products, relating 

the external version of Corollary 5.3 and transitivity to Theorem 5.1. 

(ii) In the classical case, with P = n and J a a-CW complex, we obtain 

transitivity for the diagram of transfers associated to the diagram 



(iii) For a general r ,  suppose that  a C IT has a a-complement ro  C r ,  as  i n  

Remark 6.13. Replacing a c p c R i n  our original  diagram of extensions with 

C n x ra C x , taking P = r with ( r  x ra)-action given by the l e f t  action 

of I. and r ight  action of r,, and l e t t ing  J be a f i n i t e  ro-CW complex, we 

obtain t r ans i t iv i ty  for  the diagram of transfers associated t o  the diagram 

( i v )  The theorem implies the t r ans i t iv i ty  of the transfers associated t o  any 

composite of f i n i t e  G-covers. To see t h i s ,  suppose given f i n i t e  G-covers 

Let $ have f ibre  K = { l , ~ a ~ , n )  and h have f ibre  J = {l,e--,m) and l e t  

F = K x J. The projection c: F + K may be viewed as  a ( ~ J c , ,  1,)-bundle, where 

the wreath product c,[c, ac ts  on F via  

and ac ts  on K through the projection c ,Jc ,  + zn. While 5 i s  of course a 

(G,   bundle, the factorization ( = $h implies a reduction of i t s  s t ructura l  

group t o  C,IZ~. In f ac t ,  the associated principal (G,1,Jzrn)-bundle X of 5 i s  

the space of w-tuples ( y k J j )  r yF such that  the yk j j  together comprise a 

f ib re  5-'(b) for some b e B and the y k j j  for fixed k together comprise a 

f ib re  h-'(zk) fo r  some zk e $-'(b). It i s  easy t o  check that  ( * I  may be 

identif ied with the composite 

( v )  Thinking nonequivariantly, with G = e,  suppose given a o-bundle h: Y + Z and 

a n-bundle JI: Z + B (where of course the indicated groups are the structure 

groups). Let 5 :  F + K be the o-bundle obtained by r e s t r i c t ing  h t o  a f ibre  K 

of JI. The theorem requires the n action on K t o  l i f t  appropriately t o  F. 

Without some such res t r ic t ion ,  we would have no control over the structure group of 

the composite tlbundlell $A, which might not even be a compact Lie group. (I t  would 

require some work even t o  determine exactly when $h is necessarily a bundle.) 

58. Cohomological transports 

As usual, we assume given G = r / n  and a complete r-universe U, We shal l  

construct and study certain transfer-like homomorphisms 

j:( D ~ ~ E )  * j:( D / T ) ,  

 where D - is a n-free r-spectrum indexed on U" and E i s  a f i n i t e  r-spectrum 

indexed on U. With E = 1°F' fo r  a f i n i t e  r-space F, the transfer w i l l  be a 

special case. 

We must f i r s t  make sense of the relevant smash products. Let i: Un + U be 
the inclusion. Since D i s  n-free, i*DhE i s  n-free. By 11.1.8, the natural  

map i * i * ~  + E i s  an 3( n)-equivalence. By 11.2.2, it thus induces a r-equivalence 

Therefore D ~ * E  is an expl ic i t  model for  the n-free r-spectrum which represents 

i * D G  in the universe Un. The existence and uniqueness (up t o  equivalence) of 

such a spectrum was proven i n  11.2.8 (ii). By abuse of notation, we agree t o  
write D&E for D&*E throughout t h i s  section and the next. We shal l  usually be 

dealing with the Gspectrum D A ~ E  obtained by passage t o  orbi ts  over n. Since 

passage t o  orbi ts  presupposes use of Un, it should be easy t o  remember tha t  DhE 

i s  indexed on Un and not on U. It follows directly from 11.2.8 and the study of 

smash products in I153 that  DAE inher i t s  good formal properties from i*DhE. We 

catalog what we need. (For th i s ,  E need not be f in i t e . )  

- 
L e m  8.1. (i) DAE i s  functorial  i n  D with respect t o  maps i n  hr,&Un and 

- 
functorial  in E with respect t o  maps i n  hr4U. 

(ii) For n-free Di 6 rdUn and for Ei 6 rdU, there i s  a natural equivalence 

1 ( iii) For C r ~IU', there i s  a natural  equivalence 

i f  C E GIu~,  then t h i s  equivalence passes t o  orbi ts  t o  give 

( i v )  For I"-spaces F, there is a natural  equivalence 
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DAC"F+ = D~F+. 

(v) For n-free r-spaces X, there is a natural equivalence 

C?+AE = x K E. 

(vi) A coaction A: D + X+AD induces a coaction, also denoted A, 

(DAEIAC -( (X+AD)AE)AC = X+A( (D~E)~c), 

where C E rdua and the equivalence comes from two applications of (iii). 

Proof. Only ( iv) and (v) require comment. For ( iv) , simply note that 

by 11.1.4 and 11.3.12. In (v) , X K E E r~u* denotes the twisted half smash 

product to be constructed in chapter VI, and it is essential not to confuse this 

with the ordinary half smash product Xtn E c rAU. By ~1.1.17, 11.1.4, and 11.3.12, 

and it follows that 

We shall make considerable use of the spectra X oc E, but we only need the 

formal properties following from the equivalences just displayed, not the explicit 

construction. 

We can now define the homomorphisms we wish to study. 

Definition 8.2. Let jG E GBU'~ be a (left) module spectrum over a (not necessarily 

commutative) ring spectrum kG c GAU", let A: D I X+AD be a coaction of a n-free 

r-space X on a n-free r-spectrum D E T@J?', and let E E r&J be a finite 

l'-spectrum with canonical duality map q: S + FADE. Define the intertwining 6 

of A and n to be the composite G-map 

where the second map is induced by the equivalence of Lemma 8.1 (ii) . For 
0 c k$(X wnDE), define the llcohomological transport of 8" 

by sending a class f: Dn,E + eajG of degree a E RO(G) to the class 

where the last map is given by the action of kG on jG. Similarly, define the 

nhomological transport of 8" 

by sending a class f: sa + D / n ~ j ~  to the class 

We shall of ten apply T ( 0 ) with D replaced by DAC for some C G&un, and we 

then use Lemma 8.1 (iii) to rewrite it in the form 

We shall not discuss homological transports in detail since their behavior is 

parallel to that of cohomological transports; we delete the adjective henceforward. 

In our earlier work, we always restricted attention to commutative ring 

spectra. We allow non-commutativity here since we shall exploit the function ring 

spectrum kG = F(jG,jG) in the next section. For calculational, as opposed to 

theoretical, applications, commutativity is essential, and some of our results below 

will require it. Again, the most important case calculationally is D = emX+, but 

the case of interest for the theory of the next section is X = E3(n) with its 
natural coaction on arbitrary D given in Example 5.9 (iii). 

Transports include all of the generalizations of the transfer mentioned in 

Remarks 3.2 (iii) . 

Examples 8.3 (i) We may take kG = S for any jG, using the unit equivalence 

S A ~ ~  = ' as the module action. Here ~ ( 8 )  is just the induced homomorphism J:: 
[ ( ~ A I I ~ I  . 

( ii Let f : S + E be any map in h r ~ u  ( such as a pretransfer r : S + z'F') and 

define 0(f): X &,DE + S to be the composite 



where p is the collapse map. A little diagram chase shows that 

(iii) With E = zrnF+, we obtain a transport 

for each class 0 s k g ( ~  K~DF') . We sometimes refer to r ( 0 ) as the generalized 

transfer determined by 0. By (i) and (ii), the standard transfer of Definition 3.1 

and the twisted transfer of Remarks 3.2 (iii) are special cases. 

(iv) For a E RO(l'), we can replace E by C"E and so obtain transports 

from classes 0 e k g ( ~  K,z~E). Applying this and (ii) to the dimension shifting 

pretransfers S + 6-*zrnF+ of Remark 2 -13, we obtain the dimension shifting 

transfers of Remark 3.2 (iii) . If u s RO(G), then C? permutes through our 

constructions and we obtain 

from 0 r k;(~ K~DE). All of our results below apply to these dimension shifting 

transports since they are obtained by specialization of our original framework. 

However, signs due to transpositions of suspension coordinates may be needed in some 

of the resulting cohomological formulas. 

(v) With E = S, hence DE = S, we obtain a transport 

from each 0 P k;(x/n). Clearly r( 0) is just left multiplication by 0 with 

respect to the product induced by A: D/n + x/ntl\D/n. We shall shortly use this 

example to obtain a general Euler characteristic formula. 

(vi) This section may be viewed as a disguised form of manipulations of Spanier- 

Whitehead duality for ex-spectra. The spectrum X H~DF+ is the ex-spectrum over 

X/r Spanier-Whitehead dual to the suspension ex-spectrum associated to the bundle 

X xnF + X/n. Upon making this rigorous (which we shall not do here), we see that 

any map X xnF + X xnF over X/n induces a self map of X &,DFt. Composing with 

B(T):'XM~DF' + S, where r is the pretransfer and 0(r) is as in (ii), we see 

that we can twist the standard transfer by any self-map of the bundle. 

the properties of the transfer developed in the previous sections. Since the proofs 

are easy and are much the same as those already given, they will be sketched or 

omitted. We shall not spell out hypotheses unduly; we simply assume whatever data 

are needed to make sense of the statements. We begin with naturality properties. 

Proposition 8.4. Let 0 s k g ( ~  K,DE), where X coacts on D. 

I (i) If. X' coacts on D' and if f: D1 + D and g: X1 + X are r-maps such 

that (ghf)a1 = Af, then the following diagram commutes, where 

0' = (g KX1)*(0). 

(ii) If g3: E + El is a r-map, then the following diagram commutes, where 
0' = (1 KT~$)*( 0). 

Y 

(iii) If k1 acts on j1 and if 11: k + k1 is a ring map and v: jG+ jh is 
G G G G 

v-equivariant, then the following diagram commutes. 

We next record analogs of the main change of groups results in section 4.  
Recall the discussion above Axiom 6. 

Proposition 8.5. Let a: + (~,n) be a homomorphism of pairs with quotient 

inclusion H C G. Let D be a p-free A-spectrum indexed on a*~" and coacted on 

by a p-free A-space X. If 



then the .following diagram commutes. 

* N *  

ji(~A a E) = jG((r waD)nlrE) 
P 

Proof. For E r TJU, 11.4.9 and IIo4,10 imply a natural isomorphism 

in G&u". This gives the isomorphisms of the statement. The coaction of X on D 

induces a coaction of I' x,X on r waD, namely the composite 

where the isomorphism is given by 11.4.9. Since the A-universe aXU need not be 

complete, we must extend Definition 8.2 just as at the start of section 4 in order 
to make sense of ~ ( 0 )  on the left. The conclusion follows by inspection of 

definitions. 

There are also analogs of Lemma 4.1 and Proposition 4.4, which we leave to the 

reader. The analog of Proposition 4.6 is perhaps more interesting and reads as 

follows . 

Proposition 8.6. Let G = r / ~  and J = G/N. Let A 3 II be the inverse image of 

N in l", so that J = r/A. Let kJ r JduA be a ring spectrum and 

j c JBU' be a kJ-module spectrum. Assume given 3(N)-equivalences of G-spectra 

p: €#kJ + kG and v: c#j + jG such that p is a ring map and u is 

p-equivariant. Let D be a A-free r-spectrum indexed on uA and coacted on by a 

A-free r-space X. If 

Then the following diagram commutes (where i: uA C U" ) . 

i Proof. The isomorphisms come from 11.8.1. Application of i* to the coaction of 
I -  X on D gives a coaction of X on i,D. The conclusion follows by inspection of 

g definitions. 
I 

i 

Turning to products, we easily see that Theorem 5.1 directly generalizes to 
1 

transforms by use of the obvious external pairings. We record the analog of the 

more useful internal product formula of Theorem 5.2. 

Theorem 8.7. Assume given extensions G = ri/ni, i = 1 and i = 2, and let r be 

the' equalizer of the projections ri + G. Let Ui be a complete ri-universe so 

chosen that u:' = u;~ = u ~ ~ ~ " ~  for a complete r-universe U. Let Di be a 

1 xi-free Ti-spectrum indexed on U? and coacted on by a xi-free ri-space Xi, let 

1 Ei be a finite ri-spectrum indexed on Ui, and let hG and jG be module spectra over a 

comutative ring spectrum indexed on urlXT2. If ei c k;(xi k .DEi) and if 
"1 

is their external product, then the following diagram comutes 

When h~ = jG = k, the product on Q can be used to replace h($jG by on 

the right. 

Proof. Let A: I. + rl x r2 be the natural homomorphism and let j : A* ( Ul @ U2 ) + U be 

a I?-linear isometry as in the proof of Theorem 5.2. The smash product ElAE2 must be 

understood as obtained by application of the functor jXAX: ( r1 x r2)A(u1 O U2 + rdU 
to the obvious external smash product. With this interpretation, we have a natural 

equivalence of Gspectra 

and, with El and E2 finite, a natural equivalence of r-spectra 

This makes sense of all the external products used. The coactions of the Xi on 



the Di induce a coaction of X1 x X2 on D1W2 in the evident way, and the rest 

of the argument is like the proof of Theorem 5.2. 

If kG were not commutative, we would have to regard as a class in 

(kGAkG)-cohomology. We would still obtain the diagram, but it would not be possible 

to use the product on % to replace kGAkG by kG when hG = jG = kG. 

The first part of the following result is a direct generalization of Corollary 

5.3, but the remaining parts are more useful. 

Proposition 8.8. Let 0 6 kg(x mDE) and let C 6 G~u". 

(i) Regard F( C, jG) as a %-module spectrum via the natural map 

k&F(C,jG) + F(C,kGnjG) and the action of kG on jG. Then the 

following diagram commutes, where the isomorphisms are given by the smash 

product and function spectrum adjunction. 

(ii) The following diagram commutes, where kG is given its natural left 

action on itself in defining ~ ( 0 )  on the left. 

(iii) If kG is commutative, the following diagram also commutes. 

When kG is commutative, these diagrams lead to analogs of all of the formulas 

of Corollary 5.6. In the absence of commutativity, only some of the formulas work. 

We need appropriate Euler characteristics to obtain an Euler characteristic 

formula. Here we restrict attention to generalized transfers, taking E = c"F+. 

Definition 8.9. For 0 E k g ( ~  R~DF') , define 

where p :  -F+ + S is the collapse map. Here we use the identification 

X K ~ S  i zW(x/n)+ and recall that, on spaces, kt is understood to mean unreduced 

cohomology. 

Proposition 8.10. Let 0 r k g ( ~  K*D(F') 1. Then the composite 

is multiplication by X( 0) c kg(~/n) . Moreover, if X( 0) is a unit for some 

class 0, then the diagram 

is an equalizer, where the si are induced by the projections F x F + F. 

Proof. By naturality, r ( 0) g* is the transport r ( X( 0 ) ) associated to the map 

X( 01, and r( X( 0) is multiplication by X( 0) by Example 8.3 (v) . For the second 
statement, suppose that ~ ( 0 )  is a unit and define 

and 

Here the latter r ( 0) is defined since X coacts on DAF+ ( compare Lemma 8.1 . 
* * Then fg* = 1, gn; = 1, and gn2 = 5 f, the last by naturality. This proves that 

the diagram is in fact a split equalizer in the sense of [ 92, p. 145 1 . 
In view of the criteria for X( 0) to be a unit given in Lemma 5.12, it is 

important to understand the behavior of generalized transfers for bundles over 

orbits. With the preliminaries in and above Lemma 5.10, Proposition 8.5 implies the 

following generalization of that result. 
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Lemma 8.11. Let A E .J( IT) determine the fibre representation a: H + r. If r ( 6) : jz( DA~E) -+ jz( DA~K) . 

e t ~;(D(~*F+) z kg( r/n .,D(F+) 1, 
Everything done so far in this section can be generalized to this context by 

then the following diagram commutes. simply inserting K wherever appropriate. To study transitivity, observe that 
I 

This can be used in conjunction with the evident generalization of Theorem 

5.13. 

 heo or em 8-12. let 6 e g ( ~  *PF+). With the Euler characteristic of 

E: X x$ + X/n and of its fibres replaced by the Euler characteristic 

~ ( 6 )  e e(~/n) and its pullbacks along inclusions of orbits, the criteria for 

X( S )  to be a unit in Theorem 5.13 apply equally well to X( 8) . 

Additivity on fibres is a distinguishing property of the standard transfer and 

its dimension-shifting analogs, hence we cannot expect versions of the results of 

section 6 to hold for generalized transfers. (However, the second part of 

Proposition 8.10 is closely related to such results as Theorem 6.9.) 

The main input of the transitivity theorem of section 7 was the transitivity 

of pretransfers given by Lemma 2.8. That input was processed by means of facts 

which can be generalized to the context of transports, provided that we first 

generalize the latter notion. 

Definition 8.13. Let K and E be finite r-spectra and observe that there is a 

duality map 

Exactly as in Definition 8.2, if X coacts on D there results an intertwining 

of A: D -r X'AD and .ot , and any class e e k & ~  w,(DEhK) induces a 

cohomological transport 

i there is a canonical composite 
i 

, - w: X wnDE lr(ln')%~ K~(DEAKADK) + (X rIT(DEnK) )n(X rrITDK), 

The second map being induced by the diagonal of X and a transposition. Assume 
I given 

t 
i 0 c ~:(XK~(DEAK)) and $ ~kg(x&,DK) 
i 

I 
1 and define $08 = w*(e~$) E kg(x K~DE). Note that kG need not be assumed to be 
1 

I commutative here. With these notations and hypotheses, we have a transitivity 
i 

statement. 

I 

Proposition 8.14. The following diagram commutes. 

A large part of the proof of Theorem 7.1 consists of the verification that, in 

the special case there, the relevant generalized transport r(8) can be reevaluated 

as an ordinary transport (as in Definition 8.2). This part of the argument can be 

generalized, but we desist. 

09. Classification of transforms and uniqueness of transfers 

We first show that all families of homomorphisms 

which are suitably natural and stable in D arise from cohomological transports. We 

then use this result to give an axiomatic characterization of the transfer in 

j &cohomology . 
Definition 9.1. Let jG e GdUn and let E e rdU be finite. A jz-transform for 
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E is a family of homomorphisms ( *  ) , one for each n-free D E rgun , which satisfy A *  
~:(D&~E) ji(~) - jG( (DbnE)hC) 

the following cohomological versions of Axioms 1 and 2. 

Axiom C.1. Naturality. The following diagram commutes for any map f: D + D' of 

n-free r-spectra. A * 1. 
9 jG(D/n~c) 

(fATl)* * 
J;(D'~,E) *jG(DfInE) 

We s& that a ki-transform for E is multiplicative if Axiom C.2' holds for 1. the product action of kG on itself; here Axioms C .1 and C.2' imply Axiom- (3.2. 

ji(D/n) . 
Proposition 9.2. Let r be a ji-transform for E. If kG is the function ring 

spectrum F( j G, jG) , then the homomorphisms 
Axiom C.2. Stability. The following diagram commutes for any representation V 

of G and any n-free I'-spectrum D. T: ~ ~ ( D A ~ E )  Z ji( (D\E)~J~) --+ jg(~/n*j~) Z ~~(D/IT) 

( ( xVD) nnE) j ;( D~,E) 
specify a multiplicative ki-transform such that Axiom C.2' holds for jG considered 

as a kG-mOdule under evaluation. 
F 

Proof. It is clear that r for k: satisfies Axioms C.1 and C.2 since r for 
t ji does so. Observe that Axiom C.2 implies the corresponding axiom with V i 
1 replaced by any !3 c RO(G). For the action of kG on jG, the diagram of Axiom 

Here the unlabeled isomorphisms are given by suspension and application of the 
C.2' can be rewritten in the following form, where a,@ c RO(G) . 

natural equivalence 

for C c GAU" (of Lemma 8.1) to C = sV. More generally, we can use this 
equivalence to extend a ji-transform r to a family of homomorphisms 

r: ji( (DA,E)AC) + ji(D/nA~) 
For f: (DnnE)njG + xajG and g: C + x@jG, f ~ g  is the composite 

natural in both C and D. We use this extension to relate transforms under a 

product axiom. Let jG be a kG-module spectrum and suppose given ji and 

ki-transforms for E, both denoted r. 

Axiom C.2'. Commutation with products. The following diagram commutes for €UV 

n-free D E r8un and any C 6 GAU'. 

L and the axioms imply that r (f~g) = T (f )~g. If we replace C by C4jG here, we 
obtain the diagram of Axiom C.2' for the action of kG on itself. 

Recall from Example 5.9 (iii) that E~(IT) coacts naturally on n-free r-spectra 

D. Propositions 8.4 and 8.8 imply that we have the following examples of transforms. 

Proposition 9.3. Let kG be a ring spectrum and let 0 s k;(E3(n) K,DE). For any 

kG-module spectrum jG, the cohomological transports 



specify a jE-transform for E such that Axiom C.2' holds. and another easy chase shows that (firr116 =: 1 here. The axioms imply the 

commutativity of the following diagram. 

We shall prove that all examples are of this form. Observe that ~3(n) w DE is 

a n-free r-spectrum with n-orbit G-spectrum E3(a) K,DE. 
ki( (~3(n) k DE)hnE) @ jt(~An~) '@'>k;(~3(n) k>E) @ ~ ~ ( D A ~ E )  

Definition 9.4. Let kG e G~u" be a ring spectrum and let E e I'JU be finite. 

Define the test class + ,  * - jG( (E3( n) K~DE) A (D=E) ) 

4 e kg( (~3(n) u DE) %El 
r 

to be the composite of the unit e: S + kG and the cohomotopy test class 
I 
I 
1 If fi e g((~3(n) tx DE)A,E) is the test class and f e j;(Dn$), then 6*(finf) = f by 
1 
I inspection and 6*( r(6)~f) = r (  e(r) ) (f) by Definitions 8.2 and 9.4. 

where the equivalences are given by Lemma 8.1, E is the canonical duality map, 

and p is the collapse map. Define the characteristic class 

of a kE-transform r for E to be the image of 4 under 

Theorem 9.5. Let jG be a module spectrum over a ring spectrum kG r G~U' and 

let E r rdu be finite. If r is the $-transform for E given by the transports 

of a class 0 e k$(~§(n) x,DE), then 0 = 0(r). Conversely, if 0 is the 

characteristic class of a given $-transform for E and if Axiom C.2' holds for a 

j&transform r for E, then + = ~(0). Therefore multiplicative ki-transforms 

for E are in canonical bijective correspondence with elements of kg(~9(s) K~DE) 

and also, if kG = F(jG,jG) , with j&transforms for E. 
I 

Proof. The last clause follows from Proposition 9.2. With D = E3( R ) w DE, 

Definition 8.2 gives an intertwining map 

and an easy chase shows that (1~pS)b = 1, where 4 is the cohomotopy test class. 
The first statement follows by a comparison of definitions. For the converse, 

Definition 8.13 (with K = E)  and Lemma 8.1 give an intertwining map 

There is a dimension-shifting analog of ji-transforms and an analogous 

classification of them in terms of dimension-shifting transports. 

Taking E = X"FS, we may view the theorem as giving a classification of 

generalized transfers for stable bundles with fibre F. We shall use this result to 

prove that the standard transfer in ji-cohomology is characterized by the 

cohomological versions of Axioms 1 through 6. To make sense of Axioms 3 through 5, 

we assume given a j&transform r for 1°F for each finite r-space F; these 

axioms then read as follows. We require finite r-spaces to be equivalent to 

finite r-CW complexes throughout the rest of this section. 

Axiom C.3. Normalization. For any n-free I"-spectrum D, r: j:(D/n) + j;(D/n) is 

the identity homomorphism. 

Axiom C.4. Fibre invariance. The following diagram commutes for any T-free 

r-spectrum D and any equivalence k: F + F' of finite r-spaces. 

Axiom C.5. Additivity on fibres. If F is the pushout of a r-cofibration 

F3 + F1 and a I"-map F3 + F2, where the Fi are finite r-spaces and if 

ik: DA,F~ + DI\,F+ is induced by the canonical map Fk + F, then 



Theorem 9.8. The only ji-transfer is the standard one. 

To make sense of Axiom 6, we assume given a jf;-transform r for each finite 

A-space F whenever ( A,p) is a subpair of (r,a) with quotient inclusion H C G. This is a consequence of an apparently weaker result. 

Since we assume that A is contained in r, our complete r-universe U is also 

complete as a A-universe, in contrast to the more general situation studied in Theorem 9.9. If kG is a ring spectrum, then the only multiplicative $-transfer 

section 4. In the context of (G, a)-bundles, where r = G x a, it is sensible and 

sufficient to restrict attention to the case H = G and A = G x p. 

Axiom C.6. Change of group invariance. If (h,p) is a subpair of (r,a) with 

quotient inclusion H C G, then the following diagram commutes for any p-free 

A-spectrum D and any finite r-space F. 

Definition 9.6. Let jG be a Gspectrum. A ji-transfer is a collection of 

homomorphisms 

one for each subpair ( A, p) of ( r, r) with quotient inclusion H C G, each p-free 

A-spectrum D, and each finite A-space F, such that Axioms C.l through C.6 hold 

for each theory jf; (as ambient theory). If jG = is a ring spectrum and Axiom 

C.2" also holds for each kf; (for the action of kH on itself), we say that the 

transfer is multiplicative. 

Here we let jH denote jG regarded as an H-spectrum and we observe that 

F(jG,jG) regarded as an H-spectrum is F(jH,jH). Proposition 9.2 extends 

immediately to the context of transfers. 

Proposition 9.7. Let r be a jbtransfer and let Q = F( jG, jG) . Then the 
homomorphisms 

specify a multiplicative $-transfer. 

I is the standard one. 

' 

To deduce Theorem 9.8, we simply note that Theorems 9.5 and 9.9 imply that any 

given jG-transfer and the standard jG-transfer are determined by the same 

characteristic classes in ~;(EY( p) rx DFt), kH = F( jH, jH) , and are therefore equal. 
P 

Proof of Theorem 9.9. Assume given a multiplicative kG-transfer r .  Proceeding 

inductively, using the descending chain condition on closed subgroups of r, it 
suffices to prove that the given transfer 

is the standard transfer for all a-free r-spectra D and all finite r-spaces F 

under the inductive hypothesis that 

is the standard transfer for all p-free A-spectra D and all finite A-spaces F 

when ( A, p is a proper subpair of ( r, a) with quotient inclusion H C G. The 

cohomological version of Theorem 6.1 is an immediate consequence of our 

cohomological axioms, hence it suffices to prove that r agrees with the standard 

transfer when F is an orbit r/A. (It is for this step that we require F to be 

equivalent to a finite r-CW complex.) If A = r, the conclusion is immediate 

from Axiom C.3. Thus assume that A f r, let p = A AT, and let H = A/p. By 

Theorem 9.5, 

where 8 is the characteristic class of T, namely the image of the test class 
0 
kG((E3(n) K D~/A+) na r/d) under 

The standard transfer admits the same description. Embed r/A in a r-represen- 
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Dn,E = tel <vnZ~nh$ 

of r/A. Then the dual of r/$ is r By 11.4.9 (and Lemma 8.1), We have a 

canonical equivalence 

U(n) n ( I '  rrASL) = I. ~~(E3(n) rx s-~), 

and E3( n) tx s - ~  is a p-free A-spectrum. By Axiom C.6, the last transfer can be i 
I 

8 

identified with i 
! i 

and similarly for the standard transfer. The desired equality of transfers is now 
i 

j 
immediate from the induction hypothesis. i 

1 
i 

In principle, the proof gives an inductive construction of the standard i 

transfer that makes no use of the pretransfer. 

In practice, one generally starts with a jz-transfer defined only when 

D = c"X+ for a n-free r-space X, perhaps with X restricted to be finite or 

finite dimensional. Here one must work with pairs (X,A) or with nondegenerately 

based n-free I'-spaces Y. If T is defined in the based context, we define T on 

unbased pairs (X,A) by considering the unreduced cone C(X,A). If T is defined 

in the unbased context, we define T for based spaces Y by exploiting the 

canonical equivalence 

(The infinite dimensionality of E3(a) is of no concern since we shall be working 

modulo liml terms.) Thus the based and unbased contexts are essentially 

equivalent. We shall discuss the based context for technical convenience, although 

the motivating applications deal with unbased pairs. 

We claim that, modulo liml terms, a j&transform T for E defined on based 

a-free (finite dimensional) r-complexes Y, that is, on D = c"Y, extends uniquely 

to a jd-transform defined on all D. To see this, let {Wn) be an indexing 

sequence in the r-universe U (as in I§2). If Vn = w:, then {Vn) is an 

indexing sequence in u". For D E rBUn, let Dn denote the component space 

D(Vn). Since n acts trivially on Un, the Dn are n-free if D is n-free. By 

I .4.9, we have a canonical equivalence 

D - tel x-Vnxx 
and thus, if D is n-free, a canonical equivalence 

for E E rgU. We define 

^ * 
jG(D~nE) = lim J:( Z-vnX%nAn~) 

and have a liml exact sequence 

a+vn-1 
0 -limljG ( E"D~A$) -~~(DA~E) -~̂ $DA,E) -0 

When restricting attention to finite dimensional Y, we may replace the Dn by 

suitably large skeleta of the component spaces of a G-CW Q-prespectrum 
approximating D (as in 198) without altering any of the groups in sight. We 

^ * define jG-transforms and jG-transfers exactly as in Definitions 9.1 and 9.6, 

replacing all represented cohomology groups by inverse limit cohomology groups. (Of * course, using the natural map jG t 3:, we could replace 3; by j; in the 
domains of all homomorphisms.) 

Proposition 9.10. A jd-transform for E defined on D = e@'Y for all based n-free 
^* (finite-dimensional) I'-spaces Y induces a unique jG-transform for E defined on 

all n-free I'-spectra D. The analogous statement for jktransfers also holds. 

The proof is immediate by passage to limits. Our arguments above go through 

unchanged to give inverse limit versions of the classification of transforms and the 

axiomatization of the transfer. Using the proposition and restricting back to 

spaces, we obtain an axiomatization of the transfer for based bundles YA~F' + Y/n 
or for unbased bundle pairs (X x$, A xaF) + (X/n, A/n). 

Theorem 9.11. The only jktransfer defined for based bundles with finite 

dimensional base spaces (or for unbased bundle pairs with finite dimensional base 

spaces) is the standard one. 

The reader is referred to [851 for a version of the axiomatization of the 

transfer which applies when given a fixed rather than a variable fibre. Here Axioms 
C.3 - C.5 no longer make sense and a more sophisticated normalization axiom is used 

in their place. 
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V. The Burnside ring and splittings in equivariant homology theory maximal ideals. Moreover, as pointed out by Araki 141 , ef:~(~) (p) is isomorphic 

to eYL~(wL) (p). (Of course, localization at (0) is rationalization. ) 

by L. G. Lewis, Jr., J. P. May, and J. E. McClure The situation for general compact Lie groups is much less satisfactory. Here 

When G is a finite group, the Burnside ring A(G) is the Grothendieck ring 

obtained from the semi-ring of isomorphism classes of finite Gsets; addition and 

multiplication are given by disjoint union and Cartesian product. While A(G) is a 

classical object, it is a fundamental insight of Segal (1261 that A(G) is 

isomorphic to the ser& stable homotopy group T~(S). In a series of papers 

[4O-441, tom Dieck defined and studied the Burnside ,ring of a compact Lie group and 

generalized the isomorphism A(G) z T~(s) to that context. 

Tom Dieck defined A(G) in terms of the nonequivariant Euler characteristics 

of the fixed point spaces of compact G-ENR1s (our finite G-spaces). We find it 

more illuminating to work with the equivariant Euler characteristics of finite 

G-spaces. The point is that these are defined as elements of T~(s), and their use 

clarifies the isomorphism A(G) z T~(s) . (Tom Dieck defined equivariant Euler 

classes in R ( G )  z K~(s), but these invariants depend only on no(G) and are too 

weak to serve as a basis for the construction of A(G) ,) . 

We study equivariant Euler characteristics in section 1. Additivity on cofibre 

sequences reduces their calculation to the case of orbit spaces G/H, where a 

connection with degrees of maps between spheres is easily established. This allows 

the analysis of equivariant Euler characteristics in terms of nonequivariant Euler 

characteristics of fixed point spaces. 

We define the Burnside ring A(G) , prove that it is isomorphic to n8( S) , and 
observe that the isomorphism commutes with various natural homomorphisms in section 

2. We analyze the prime ideals of A(G) in section 3. We relate its idempotent 

elements to the perfect subgroups of G in section 4. Most of the results in these 

sections are due to Dress [48] when G is finite and to tom Dieck [40-441 in 

general, but we include several useful addenda. Section 4 ends with the 
generalization to compact Lie groups of a result of Araki [41 for finite groups 

which states that ~?A(G) is isomorphic to ~ ~ A ( W L ) ,  where ef: is the idempotent 

determined by a perfect subgroup L (and 1 denotes the trivial perfect subgroup 

of WL = NL/L). 

We study localizations of A(G) in section 5, following Dress [481 and others 

[44,4,56,1471 when G is finite and tom Dieck [40,41,441 in general. Here the two 

cases differ sharply. Say that a finite group is p-perfect if it admits no normal 

subgroup, of index p. We allow the case p = 0, agreeing that any finite group is 

0-perfect. Each p-perfect subgroup L of a finite group G determines a primitive 

idempotent ef: r A(G) and A(G) (p) is the product over conjugacy classes 

(I) of its subrings ~EA(G) (p), these being the localizations of A(G) (p) at its 

A(G) (p) is not the product of its localizations at its maximal ideals and these 

localizations are not determined by idempotents. Nevertheless, we show that the 

rings A(G)(p), and also all modules over these rings, are determined sheaf 

theoretically by their localizations at maximal ideals and that these localizations 

can be computed in a reasonable algebraic way. We are grateful to Spencer Bloch for 

tutorials on the relevant sheaf theory. The ring A(G) (0) is absolutely flat 

(equivalently, von Neumann regular), and we include some general algebraic 

information to give a feel for such rings. We are grateful to Irving Kaplansky for 

tutorials on this material. 

From our point of view, the force of this algebraic analysis is its 

implications in homology theory. We explain in section 6 how techniques of 

induction and reduction to subquotients simplify the calculation of the pieces into 

which homology and cohomology groups split along the splittings of A(G) and its 

localizations. 

By the work in chapter 11, we can associate a J-spectrum EJ to a G-spectrum 

EG for any subquotient group J of G. Generalizing a result of Araki [41 from 

finite groups to compact Lie groups, we prove that if L is a perfect subgroup of 

G, then 

for any finite G-CW complex X. When G is finite, we reprove and concatenate 

results of Araki [A1 and tom Dieck [441 to show that if L is a p-perfect subgroup 

of G and if VL is a p-Sylow subgroup of WL (with VL the trivial group in the 

case p = 01, then 

where E&(X~)?~ is the kernel of the difference of projections homomorphism 

Since E~(x)(~) is the product over (L) of these groups, this result gives a 

complete determination of E:(x) in terms of groups E: (XLlinV for appropriate 
(P) 

subquotient p-groups J of G. Observe that all reference to A(G) ( p )  and its 

idempotents has disappeared from this final calculational conclusion. The analog in 

homology is also valid, and here X need not be finite. It should be remembered 



that EJ depends on the representation of J as a subquotient of G and not just We prove a generalization of the splitting of $(Y) cited above in section 

on J as an abstract group. In particular, with p = 0, we obtain a complete 10. We assume given a normal subgroup KI of a compact Lie group r with quotient 
determination of the rationalization of E: and E$ in terms of various group G and give a splitting theorem for the computation of Iznz'%,zD*II I. for 

nonequivariant subquotient cohomology and homology theories. (Actually, it suffices based G-spaces X and I'-spaces Y. There is one summand for each r-conjugacy class 

for this to localize away from ( G I  rather than to rationalize.) 
I of subgroups A of IT, and that summand is 

The results described so far give little information about localizations of 

homology and cohomology theories at prime ideals of A(G) when G is a general 

compact Lie group. After giving some preliminaries concerning universal 

(9' ,9)-spaces for pairs 3 C 3 ' of families of subgroups of G in section 7, we 

explain in section 8 how one might construct such localizations topologically by 

concentrating theories between pairs of families. Following tom Dieck 142,441 in 

homology, we also give analogous constructions of the parts of homology and 

cohomology theories determined by idempotents e: in A(G) and of the 

localizations of homology and cohomology theories at multiplicative sets of Euler 

classes of representations of G. 

The last three sections concentrate on equivariant stable homotopy theory. 

Except for reliance on section 7, which gives key lemmas on adjacent pairs of 

families, they are largely independent of the rest of the dhapter. We begin section 

9 by explaining an alternative approach to the isomorphism A(G) z T~(s). This is 

based on the case Y = So of the splitting 

which holds for arbitrary based Gspaces Y. Here Ad(G) denotes the adjoint 

representation of G and the sum runs over the conjugacy classes of subgroups of 

G. The splitting results by combining a theorem of tom Dieck (381 with our 

generalized Adams isomorphism of 11.7.2. We then use this splitting to analyze the 

full subcategory @G of the stable category whose objects are the orbit spectra 

c"G/H+. Together with earlier work in this book, this analysis completes the 

technical preliminaries needed to fill in all details of our announcement (881. 

There we explained how to use the equivariant stable category to construct ordinary 

RO(G)-graded cohomology theories with coefficients in Mackey functors, where a 

Mackey functor is a contravariant additive functor6G + Qb. As explained in 1881, 

the particular Mackey functor displayed in Proposition 9.10 leads to a transfer 

homomorphism 

in ordinary cohomology for any G-CW homotopy type X and any H C G. We shall 

return to the study of these theories in [901. 

tPC='x, z'%+.wl~~~lW/W,, 

where W = WrA(= NrA/A), W1 = WnA, E is the universal WnA-free WrA-space, and A 
is the adjoint representation of WrA derived from WnA. As we explain in -section 

11, this splitting implies a decomposition of the n-fixed point Gspectrum ( c"Y)~ 
as the wedge over (A) of the suspension G-spectra of the G-spaces 

This analysis generalizes our comparison between the equivariant and nonequivariant 

forms of the Segal conjecture in [891, It will be used to obtain an interesting 

generalization of the Segal conjecture, concerning universal n-free r-spaces, in 

[1061. 

81. Equivariant Euler characteristics 

Recall from 111.1.1 that a "finite G-spectrum" is one for which duality 

works. The finite G-CW spectra and their wedge summands are the main (and, we 

conjecture, the only) examples. Recall too that a "finite Gspacetl is one of the 
homotopy type of a compact G-ENR; its suspension G-spectrum is finite. 

Specialization of III.7,l gives our definition of Euler characterisitics. 

Definition 1.1. Define the Euler characteristic x(X) r T~(s) of a finite 

G-spectrum X to be the composite 

For an unbased finite Gspace X, define x(X) = X(~"X+). For a based finite 

G-space X, define 3x1 = X( z'?). 

It will follow from our results below that X(X) is the classical Euler 

characteristic of X when G = e. By 111.8.1, we have an explicit topological 

description of X(X) when X is a compact G-ENR. 



Lema 1.2. Let r: N + X be a retraction of an open neighborhood of X in some 

representation V and let B be a disc in V which contains N. Then the 

following diagram is Ghomotopy commutative. 

Here the unlabeled arrows are inclusions or projections and w is specified by 

~ ( n )  = n-r(n) for n E N. 

As usual, it follows that x(X) = 0 if the identity map of X is Ghomotopic 

to a fixed point free map. 

We catalog some elementary facts about Euler characteristics. 
1 

1 

Lema 1.3. Let X and Y be finite G-spectra. 

( i x( S) is the identity element of n8( S) . 
(ii) x(*) = 0, where * is the trivial G-spectrum. 

(iii) x(X) = x(Y) if X is Gequivalent to Y. 

(iv) ~(XAY) = x(X)x(Y). 

(v) x(XvY) = x(X) + x(Y). 

(vi) X ( ~ n ~ )  = (-lInX(x). 

Proof. These hold by 111.7.2, 7.4, 7.5, 7.6, and 7.8. 

The key property of Euler characteristics is their additivity on cofibre 

sequences, which follows from 111.7.10. 

Theorem 1.4. If Z is the cofibre of a map X + Y of finite Gspectra, then 

x(Z) = x(Y) - x(X). 

By induction on the number of cells, this has the following consequence. 

Theorem 1.5. If X is a finite G-CW spectrum and v(H,n) is the number of 

n-cells of orbit type G/H in X, then 

characteristics x(M), where M runs over the path components of X(H)/G The 

x(M) were specified above IV.2.11, and that result implies the following one. 

Theorem 1.6. If X is a compact G-ENR, then 

These results focus attention on x(G/H). Recall that WH = NH/H, where NH 

is the normalizer of H in G. 

Lemma 1.7. If WH is infinite, then x(G/H) = 0 and X((~/~)K) = 0 for all K. If WH is 

finite and G/H embeds in a representation V, then x(G/H) is represented by a G-map 

f : sV + sV such that deg ( f '1 = I ( G/H) I for each K such that WK is finite . 
Proof. Of course, ( G/HIK is nonempty if and only if ( K) < ( H) . Since the 
tangent space of WH = (G/HIH at e is the H-fixed point space of the tangent 

space L(H) of G/H at eH, WH is finite if and only if L(H) contains no 

positive dimensional trivial summand. If (K) & (H) and WK is finite, then WH 

is finite since L(H) is a summand of L(K). Since WH acts freely on (G/HIK, 

the first statement is now clear (compare IV.2.12) . Thus assume that WH and WK 

are finite. As in IV.2.4(ii) and 11.6.15, x(G/H) is represented by the composite 

where V = L(H) @ W. If K is not subconjugate to H, then fK is clearly 

trivial. Thus assume that (K) 6 (HI. Conjugating if necessary, we may assume 

that K C H. By Bredon [ 18, 11.5.71, ( G/HIK has finitely many WK orbits and is 

thus a finite set. Its tangent space L(H)~ at eH is therefore zero and vK = wK. 
Thus fK is the composite 

where E collapses (G/H)~ to a point and tK is obtained by embedding ( G/HIK 

in VK, extending to an embedding of small copies of VK around the points of 

(G/H)~, and collapsing out the complement. It is obvious from this description 

that the degree of fK is the cardinality of (G/HIK. 

Define a homomorphism of rings dK: n;( S )  + Z by representing an element of 
T~(s) by a G-map f: sV + sV and taking the degree of fK: SvK + SvK. The results 

For a G-space X, X( = {x 1 ( Gx I = (H) I .  Define the nonequivariant internal I 
above have the following consequence relating equivariant and nonequivariant N e r  

I characteristics. Euler characteristic X(X(H)/G) to be the sum of the internal N e r  f 
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Corollary 1.8. Let X be a finite Gspace. Then 

Proof. The previous results and standard arguments with nonequivariant Euler 

characteristics give 

This leads to a criterion for the equality of the equivariant Euler 

characteristics of two finite G-spaces. Since the following result is a special 

case of more general ones [44,45,601, we shall content ourselves with a sketch of 

its elementary obstruction theoretic proof. 

Proposition 1.9. Let V be a complex representation of G. Two Gmaps 

f ,g: sV + sV are G-homotopic if and only if deg( fH) = deg(gH) for all H such 

that WH is finite. 

Proof. Necessity is obvious. Assume the equality of degrees. By induction u the 
H E 

orbit types of V, it suffices to show that, for each H C G, f = g: sV + sV as 
H H 

WH-maps under the inductive hypothesis that f = g: T' + T' as WH-maps, where 

TvH denotes the union over isotropy groups J 3 H, J f H, of the spaces SvJ. 

Since the inclusion TvH + SvH is a WH-cofibration and WH acts freely on the 

complement, the obstructions lie in the groups 

These groups are zero unless i = dim VH and WH is finite, in which case the I 
i 

group is Z and maps isomorphically under projection on orbits to 

(The verification of these claims is easy since our assumption that V is complex 

ensures that dim vJ 6 dim VH-2 when J is an isotropy group of V which properly 

contains H.) The obstruction to a WH-homotopy maps under the projection on orbits 

to the obstruction to a nonequivariant homotopy, and the latter is of course 

deg fH - deg $I. 

Corollary 1.10. For finite Gspaces X and Y, x(X) = x(Y) if and only if 

x(xH) = x(yH) for all H such that WH is finite. 

Now,recall the classical congruences for nonequivariant N e r  characteristics. 

Lemma 1.11. Let X be a finite G-space. 

(i) If G is a torus, then x(xG) = *(X). 

(ii) If G is a finite p-group, then X(~G) E x(X) mod p. 

Proof. Theorem 1.6 applies as it stands to the computation of the nonequivariant - 
Euler characteristic of a finite G-space X, and of course X(G)/G = xG. In (i), 
*(G/H) = 0' for all proper subgroups H. In (ii) , x(G/H) 5 0 mod p for all proper 

subgroups H. 

Following tom Dieck and Petrie [451, we use Corollary 1.8 to obtain a general 

set of congruences relating the Euler characteristics x(xK). Let I~(C) denote the 

number of generators of a finite cyclic group C. 

Proposition 1.12. Let V be a complex representation of a finite group G and 

let f: sV + sV by any Gmap. Then 

E ~G:N~lp(C)de~(f~) = 0 mod /GI, 
(C) 

where the sum ranges over the conjugacy classes of cyclic subgroups of G. 

Corollary 1.13. Let V be a complex representation of a compact Lie group G and 

let f: sV + sV be a Gmap. Let H be a subgroup of G such that WH is 

finite. Then 

X IMI:NH n NK1,(K/H)deg(fK) = 0 mod /WH/, 
(K) 

where the sum ranges over the NH-conjugacy classes of groups K such that 
H C K C NH and K/H is cyclic. 

Proof. Apply the proposition to the WH-map fH. 

Corollary 1.14. Let X be a finite Gspace. Let H be a subgroup of G such 

that WH is finite. Then 

Z [NH:NH n NKI~(K/H)~(x~) E 0 mod lWH/, 
(K) 

where the index of summation is as in the previous corollary. 

Proof. Apply the previous corollary to a Gmap f which represents x(X) and use 

Corollary 1.8. 



For completeness, we recall the proof of Proposition 1.12 from 1431. Let 

b(G,Vl r KG(sV) be the Bott class 18,1251. Since &(SV) is a free R(G1-module on 

the generator h(G,V), there exists a € R(G1 such that 

X - - v 
f*b(~,vl = ab(G,Vl, where f : K~(s')-K~(s I. 

Let a(C) a R(C) be the restriction of a. Since b(G,Vl restricts to b(C,Vl€ - 
KC(Sv1, we also have , 

* - v  - v  fxh(c,vl = a(Clb(C,Vl, where f : Ec(S I - KC(S I. 
C 

Write V = vC O VC as a C-space and let e: SV + SV be the inclusion. Then 

x u  c x x  * - "  - v C  
e f  = (f ) e ,  where e:KC(Sl-KC(S ) .  

If A-l(Wl denotes the alternating sum z(-llkhk(W1, then 

and of course (fC)* is multiplication by deg(fcl . Therefore 

in R(C1. Evaluating characters on a generator xe C and using that h-l(VCl(xl # 0, 
we see that 

At this point, we use our hypothesis that G is finite. Standard representation 

theory gives the relation 

r a(x) f 0 mod /G I .  
xeG 

Grouping elements of G as generators of cyclic groups and conjugates thereof, we 

find immediately that 

Remark 1.15. Tom Dieck 140,441 defined the Euler characteristic of a compact 

GENR X to be the element 

where iii(x;c) has its induced action by G (which depends only on the finite 

group G/GOL Our definition is related to his by exx(X1 = x(X1, where 

e,: ng(S) + Kg($) = RLGI is the unit homomorphism for equivariant K-theory. A 

eharacter-theoretic proof based on 140, Prop. 221 should be possible. 

Alternatively, since both Euler characteristics are appropriately additive, it 

suffices to check the formula when X is an orbit or, more generally, a smooth 

closed G-manifold. Now exX(Xl G K;(SI is the product of 1 c K;(s) and 
* * 

x(X) = r i; (11 r n;(Sl and is thus the transfer of 1 e K;(XI. As show by Nishida 

1117, 5.1 and 5.31, the transfer r :  KG(Xl + KG(Sl is computable in terms of the 

topological index in such a way that the relation r(l) = x(X) is easily verified. 

I $2. The Burnside ring and ng(~l 

We exploit our study of Euler characteristics to define A(G1 and prove that 

it is isomorphic to ng(S1. While our initial definition is a bit different from 

his, we emphasize that most of the results in this section and the next two are due 

to tom Dieck 140-441. 

Definition 2.1. Define the Burnside ring A(G) to be the set of equivalence 

classes of finite G-spaces under the equivalence relation specified by X - Y if 

x(X1 = x(Y1 in ng(S1. The addition and multiplication on A(G1 are induced by 

disjoint union and Cartesian product. We write 1x1 for the equivalence class of a 

finite G-space X; -[XI = IK n Xi, where K is any compact ENR with trivial 

G-action such that x(K) = -1 nonequivariantly. 

By Lemma 1.3 and Corollary 1.10, A(G1 is a well-defined commutative ring 

and x specifies a well-defined ring monomorphisn A(G1 + ng(~l. We shall see 

shortly that x is an isomorphism. 

Remark 2.2. We are working implicitly in a Guniverse U which contains all 

irreducible representations of G. We define A(G;Ul similarly for a general 

universe U, but restricting to compact G-ENRts which embed in U. Everything in 

this section applies equally well in the more general context. 

We need notations for certain sets of subgroups of G. 

Notations 2.3. Let KG denote the set of closed subgroups of G and X denote 

the set of those closed subgroups H such that WH is finite. Let rG and 4G 

denote the sets of conjugacy classes of subgroups in C G  and 3G, respectively. 



We record some finiteness results concerning these sets. Part (i) was pointed 

out by Palais [118, 1.7.271 and parts (ii) and (iii) are due to tom Dieck [41; 44, 

5.10.8 and 5.9.91. 

Theorem 2.4. (i) rG is a countable set. 

(ii) QG is a finite set if and only if the Weyl group WT acts trivially on 

the maximal torus T. 

(iii) There exists an integer b such that IWH/wOH I < b for every He {G, 

where WOH denotes the component of the identity in WH; therefore the 

set of orders lWHl for (H) E QG has a least common multiple n(G). 

We begin our study of A(G) by recording some direct consequences of the 

results of the previous section. Recall that the degrees of maps of fixed point 

sets give ring homomorphisms dH: ng(S) + Z. 

Proposition 2.5. For H C G ,  define $H = dH o x:A(G) + Z. Then 4H[XI = x(xH) 

for a finite G-space X. 

Proposition 2.6. Additively, A(G) is the free Abelian group on the basis 

{ [ G/KI I ( K) E QG) . For a compact G-ENR X, 

Proof. By Theorem 1.6, we need only check that the [G/K] are linearly 

independent. If mKIG/KI = 0 and some nK # 0, we may choose an ( H I  which is 

maximal among those (K) such that nK # 0. This leads to the contradiction 

It follows, of course, that A(G) is the Grothendieck ring of finite G-sets 

when G is finite. It also follows that A(G) could just as well have been 

defined in terms of finite G-CW complexes rather than compact G-ENR's. 

Proposition 2.7. For any x E A(G) and any (K) E @(G), 

If x = [G/J], then the integers nH are all non-negative. If T is a maximal 

torus G, then [G/TI~ = IwTI[G/TI. 

Proof. It suffices to consider x = [XI. Here the product is [X x G/K], and it 

is clear that only orbits type G/H with (H) 6 (K) appear in X x G/K. The 

coefficient of [G/K] is computed by applying +K. If X = G/J, then 

Here (G/J x G/K) /G E (G/J x G/K) $NH C (G/ J x G/K) H / ~ ~  (where 

X(H) = {x~(G,) = (HI) and XH = {x/G, = H)). Since (G/J)~ and (G/K)~ are 

finite sets, nH is just the cardinality of a finite set. For the last 

statement,. (HI G (T) and WH finite imply (HI = (T). 

We require a little topological algebra to proceed further. For a metric 

space X with bounded metric, we give the set J% of closed subsets of X the 

Hausdorff metric 

d(A,B) = max{sup d(a,B), sup d(A,b)) 
ae A be B 

The space 18X is complete or compact if X is so. In particular, starting with a 

bi-invariant metric on G, we topologize CG as a subspace of RG and then 

topologize 3G as a subspace of 6G. 

Lemma 2.8. (i) dG is a closed subspace of RG. 
(ii $G is a closed subspace of CG. 

(iii) The action of G on C G  by conjugation is continuous. 

(iv) With the orbit space topology, rG and @G are totally disconnected 

compact metric spaces, and QG is a closed subspace of TG. 

Proof. We give a sketch, referring the reader to tom Dieck [44,5.6.11 for 

details. Part (i) is a direct verification from the definitions. Part (ii) follows 

from the facts that subgroups in small neighborhoods of a subgroup H are 

subconjugate to H [18,II. 5.61 and that if H 3 K with K E 3G then H c 3G. 

Part (iii ) is clear and part (iv) follows by countability (Theorem 2.4( i ) and part 

(ii). 

If G is finite, A(G) is effectively studied by using the ring homomor- 

phisms $K to embed it in a product of copies of Z. For general compact Lie 

groups G, such a product is too big to be of much use and we use the topology on 

QG to obtain the appropriate substitute. 

&finition 2.9. Give Z the discrete topology and define C(G) to be the ring of 

continuous ( =  locally constant) functions QG + Z. Observe that, by the compactness 

of QG, such a function takes only finitely many values. For a Gmap 

f: sV + sV, the degree function, d( f) (K) = deg fK, is clearly continuous. Let 

d: ~E(s) + C(G) be the resulting ring homomorphism and define 



4 = dx: A(G)--B. C ( G ) .  We conclude from Theorem 2.4 (iii) that  n(G) annihilates C ( G ) / A ( G ) .  When 
I I 

G i s  f i n i t e ,  t h i s  fac t ,  and thus Lemma 2.10 and the theorem, are easily proven 

Since x is a monomorphism by definit ion and d i s  a monomorphism by Proposition I d irectly from the congruences. We shal l  give a different proof tha t  x i s  an 

1.9, 4 i s  a monomorphism. I isomorphism i n  section 9. 

We shal l  prove the following resul t  i n  section 5. 

Lemma 2.10. Upon tensoring with Q, 4 becomes an isomorphism of rings. 

Granting th i s ,  we obtain the following conclusions. 

Theorem 2.11. Consider the commutative diagram 

Additively, C ( G )  is  the free Abelian group generated by {aKI ( K )  E @GI, where a~ 

i s  the unique element such that  /WK 1 aK = $[G/K]. A continuous function a: @G + Z 

is i n  the image of 4 i f  and only i f ,  for  each ( H I  6 @ ( G I ,  

c [NH: NH n NKI F I ( K / H ) ~ ( K )  z 0 mod I w H I ,  
( K  

where the sum runs over the NH-conjugacy classes of groups K such tha t  H C K C NH 

and K/H i s  cyclic and where II(K/H) denotes the number of generators of K/H. 

Moreover, x i s  an isomorphism of rings. 

Proof. By Corollary 1.13, any cc E I m  d, hence any a E Im4, sa t i s f i e s  the 

specified congruences. Since x and d are monomorphisms, the l a s t  statement w i l l  

therefore follow from the second. Since WK acts freely on the f i n i t e  se t  

( G / K ) ~  when ( H )  < ( K )  and WH i s  f in i t e ,  IWKI divides +[G/KI  and aK i s  

present in  C ( G ) .  We must show that  any a c C ( G )  i s  an integral  l inear  

combination of the aK. J3y the promised Lemma 2.10, a f t e r  tensoring with Q we can 

write a = ZqKaK, qK P Q. Let ( H I  be maximal such that  qH # 0. Then aK(H) = 0 

i f  ( K )  # ( H I  and qK # 0, while aH(H) = 1. Thus a(H) = qH and qH is  an 

integer. Repeating the argument on cc - qHaH and i tera t ing,  we conclude that  a l l  

qK E Z.  Finally, suppose given a satisfying the specified congruences. We may 

write a = CnKaK, nK E 2. To prove tha t  a E Im$, it suffices t o  prove that  

I W K ~  divides nK fo r  each ( K )  . Choose ( H )  maximal with nH # 0. The 

Remark 2.12. We defined A ( G )  i n  terms of f i n i t e  Gspaces and observed that  we 

could instead have res t r ic ted  t o  f i n i t e  G-CW complexes. It i s  obvious that  we 

cbuld jus t ' a s  well have worked with based f i n i t e  Gspaces or based f i n i t e  G-CW 

complexes and reduced Euler characterist ics;  in t h i s  context, additive inverses are 

given by suspensions. It i s  also clear that  we could have started with f i n i t e  

1 G-CW spectra and the i r  Euler characterist ics.  Finally, a f t e r  the fac t ,  we see 

that  A ( G )  could have been defined i n  terms of f i n i t e  Gspectra X and the i r  Euler 

characterist ics.  Although we have no a pr ior i  formula for the calculation of 

x ( X )  as a l inear  combination of the x ( G / H )  i n  t h i s  generality, there necessarily 

i s  such a formula for each X since X (  X) i s  an element of IT:( S) . 
There are various maps relat ing Eiurnside rings which correspond appropriately 

t o  maps between stable homotopy groups (or cohomotopy groups). 

Definition 2.13. Let a:  H -+ G be a homomorphism of compact Lie groups. Define a 

ring homomorphism a*: A ( G )  + B(H) by sending a f i n i t e  G-space X t o  X regarded 

as a f i n i t e  H-space via a. Since xK = x ~ ( ~ )  for  K c H, BKa* = $a(K)  . When a 

i s  an inclusion, we write a* = rfi (or  r for short)  and ca l l  it the 

res t r ic t ion .  When H C G and g c G, we write cg: A ( H )  + A ( ~ H ~ - ' )  for  the 

isomorphism induced by the conjugation isomorphism g ~ g - l  -+ H. 

Lemma 2.14. The following diagram commutes for a :  H + G. 

Definition 2.15. For H C G, define induction rfi: A ( H )  + A ( G )  (o r  r for  short)  

by sending a f i n i t e  H-space Y t o  G xHY. Clearly ( G  xHy ) K  i s  empty and thus 

= 0 i f  K C G i s  not subconjugate t o  H. By inspection, i f  K C H and 

WGK i s  f i n i t e  (so that  ( G / H ) ~  i s  a f i n i t e  s e t ) ,  then ( G  xHylK i s  homeomorphic 

t o  the disjoint  union over a s e t  {g) of coset representatives of ( G / H ) ~  of the 

spaces Y g ' l ~ ,  hence rnKrfi = Z +  . 
g g Kg 

i 
coeffic'ient of a(H) in the a congruence i s  one and the remaining a(K) are i 

i We record the basic algebraic properties of rfi and then i t s  relationship t o  
zero by the maximality of ( H ) .  Therefore a(H) = nH i s  divisible by I w H I .  i 

cohomotopy. The former can be derived by direct  inspection and use of the 
Repeating the argument on a - nHaH and i tera t ing,  we conclude that  n~ i s  i 

i homomorphisms $K or by quotation of resul ts  about the transfer i n  cohomotopy. 
divisible by 1 WK 1 for  each ( K )  . 



Lemma 2.16. (i) rfi: A(H) c A(G) is a morphism of A(G)-modules, where A(G) 

acts on A(H) through $ (Frobenius reciprocity). 

(ii) The composite rgrs: A(G) -+ A(G) is multiplication by [G/HI. 

(iii) For subgroups H and K of G, the composite rgrfi: A(H) -r A(K) is the 

sum, over a set {g) of representatives in G for the orbit type 

component manifolds M of K\G/H, of X ( M )  times the composite 

$3, Prime ideals in A(G) 

For H C G, let q(H,p) denote the prime ideal $il(p) of A(G), where 

(p) C Z; here p is zero or a prime number. When necessary for clarity, we 

mite q(H,p;G) instead of q(H,p) to indicate the ambient group. 

, proposition 3.1, Let q be a prime ideal of A(G) and let p = char A(G)/q. Then 

there exists a unique (K) e @G such that q = q(K,p) and I W K ~  f 0 mod p. 

Proof- Of course, the second condition is vacuous if p = 0. Consider - 
1 L__ 

where Hg = g~g-l ( double coset formula) . * 

I 

Lemma 2.17. Let K C  H C G and g r G and let n: G/K + G/H and cg: G/H~ + G/H 
I 

be the canonical G-maps. Then the following diagrams commute. 

Definition 2.18. Let N be a normal subgroup of G with quotient group J. 

Define a ring homomorphism 4: A(G) + A(J) by sending a finite G-space X to the 

finite J-space xN. Since J,E* = 1, 8 :  G c J, $ is a split epimorphism. If 

N C H C G and K = H/N C J, then (xN lK  = xH and thus $KJ, = I$~. The kernel of 

J, is spanned by those [G/Ll, (L) E a, such that L does not contain N; 

equivalently (by an argument like the proof of Proposition 2.61, a E Ker $ if and 

only if $H( a) = 0 for all (HI E mG such that H contains N. 

Lemma 2.19. Let N be a normal subgroup of G with quotient group J and 

define $: n8(so) + nY(So) by passage to N-fixed points on representative maps of 

G-spheres. Then the following diagram commutes. 

I 

This set is non-empty since it contains (GI, hence it contains a minimal element 
1 

(K). By Proposition 2.7 and minimality, 
i 

x-[G/Kl 5 k(x)[G/Kl mod q 

for any x E A(G). Since [G/KI 4 q, x $(XI mod q and thus q = q(K,p). Of course, 

$KIG/KI = IWKl  f 0 mod p. If (J) also satisfies q = q(J,p) and I W J ~  ,z! 0 mod p, then 

$KIG/JI E $JIG/Jl f 0 mod p 

and (G/J)~ is non-empty. Similarly (G/K) is non-empty, and this implies (J) = (K) . 

Corollary 3.2. (i) Every proper containment of prime ideals of A(C) is of the 

form q(K,O) C q(K,p) for some (K) E @G and p > 0. 

(ii) A(G) is Noetherian if and only if @G is finite. 

(iii) Any ring homomorphism from A(G) to an integral domain factors through 

$K for some (K) € @G. 

(iv) If (J) 4 @G, then $J = k for some (K) e @G. 

Proof. Part (i) is clear and implies (ii) since a Noetherian ring can have only 

finitely many minimal prime ideals [16,11§4.3 Cor 3 to Prop 141. Part (iii) holds 

since the kernel of such a ring homomorphism is a prime ideal; (iv) is a special 
case of (iii . 

Theorem 2.4 (ii) shows that A(G) generally fails to be Noetherian when G is 

not finite . 
We next study when q(H,p) = q(J,p) for (HI # (J). For p = 0, the answer 

is entirely satisfactory. 
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Proposition 3.3. Let H and J be closed subgroups of G. .proof. Part (i) follows from Lemma 1.11 and Proposition 2.5. For (ii), the inverse 

(i) If H a J and J/H i s  a torus, then q(H,O) = q(J,O). image in NH of a p-Sylow subgroup of WH i s  a group K as required. For (iii) , 
(ii) If ( K )  is  the unique element of QG such that  q(H,O) = q ( ~ , ~ ) ,  then, it suffices by uniqueness t o  show that  t h i s  group K s a t i s f i e s  l W K l  f 0 mod p 

up t o  conjugation, H 4 K and K/H i s  a torus. when / B / H ~  I f 0 mod p. Since K/H is a p-Sylow subgroup of WH, it suffices t o  

(iii) If ( H )  c QG and (J) a QG, then q(H,O) = ~ ( J , O )  i f  and only i f  show that  NK C NH. Thus l e t  g a NK and consider ~g = g~g- l .  The groups H, 

( H I  = ( J ) .  ~ g ,  and K a l l  have the same ident i ty  component, hence H/ ( H  n ~ g )  i s  a quotient 

Proof. Part (i) follows from Lemma 1.11 and Proposition 2.5 and part  (iii) i s  

immediate from Proposition 3.1. In view of (i) and the uniqueness of ( K ) ,  t o  

of H/HO and thus has order prime t o  p. However, H / ( H  f7 ~ g )  i s  also isomorphic 

t a  a subgroup of the p-group K / H ~ .  Therefore H = ~ g .  

prove (ii) it suffices t o  construct K such that  H Q K, K/H is  a torus, and WK I 

i s  f in i t e .  We claim that  the inverse image in  NH of a maximal torus T i n  WH is I 

The following resul t  has no counterpart for general compact Lie groups -and 
plays a major role i n  many applications. 

a group K as desired, and we need only check that  WK is f in i t e .  Let S be a 

maximal torus of WK and l e t  L be the inverse image of S i n  NK. Since L/K = S, 

conjugation of K by an element of L is homotopic t o  an inner automorphism and 

therefore, by [35, 38.11, equal t o  a n  inner automorphism. Since H i s  normal i n  

K ,  it i s  thus also normal i n  L. The extension 1 + T + L/H + S t 1 shows that  

L/H i s  a torus. By the maximality of T, S = e and WK i s  f in i t e .  

The analog for p > 0 i s  l e s s  satisfactory.  ~ e f o r e  s ta t ing  it, we record an 

obvious consequence of Proposition 3 .l. 

Corollary 3.4. Fix p > 0 and l e t  Q(G;p) be the subset of QG consisting of 

those ( K )  such that  IWK / ,T! 0 mod p. Then every prime ideal  of A ( G )  of residual 

characterist ic p has the form q(K,p) for precisely one ( K )  a Q(G;p). 

Remark 3.5. We may topologize @(G;p) as a subspace of QG, but it need not be a 

closed subspace. To see th i s ,  consider the sequence of subgroups 

$ = Dn x D2n x D3n of the subgroup K = O(2) x O(2) x O(2) of 0 ( 6 ) ,  where Dn 

denotes the dihedral group of order 2n. The normalizer of # i n  0 (2 )  i s  

DZn. In O (  6 6) , NKn = K2, and 1 ( f 0 mod 3. However, K is the closure of the 

union of the %, and I W K l  z 0 mod 3. (We are indebted t o  Dale Peterson and David 

Vogan for pointing out t h i s  example.) 

Proposition 3.6. Let H and J be closed subgroups of G and f i x  p > 0. 

(i) If H Q J and J/H i s  an extension of a torus by a f i n i t e  p-group, then 

q(H,p) = q( J ,p ) .  

(ii) If ( H I  a Q ( G )  and l W H l  E 0 mod p, then there exis ts  K such tha t  

( K )  a QG, H a K, and K/H i s  a f i n i t e  p-group. 

(iii) ':If ( H )  a QG and I H / H ~ /  f 0 mod p, where Hg i s  the component of the 

identi ty in H, and i f  ( K )  i s  the unique element of Q(G;p) such tha t  

q(H,p) = q(K,p), then, up t o  conjugation, H aK and K/H is a f i n i t e  

p-group . 

Proposition 3.7. Let G be f i n i t e  and, for  H C G, l e t  Hp be the (unique) 

smallest normal subgroup of H such that  H/$ i s  a p-group. For ( K )  a c(G,p), 

q ( ~ , p )  = q(K,p) i f  and only i f ,  up t o  conjugacy, C H C K. Therefore 

q(H,p) = q(J ,p)  i f  and only i f  (5) = ( J p ) .  
Kp 

Proof. Given H, l e t  K be the inverse image i n  NHI, of a p-Sylow subgroup of 

Then $ 4  K and K/$ i s  a p-group, hence 5 = + It suffices t o  show 

that  I W K /  f 0 mod p, and t h i s  w i l l  hold i f  NK C NHI,. If g E NK, then $ a  K 

and K/% i s  a p-group. By minimality, $ = $. 

For a general compact Lie group G and subgroup H, Propositions 3 .3( i i )  and 

3.6(i)  show that ,  i f  ( K )  i s  the unique element of QG such that  q(H,O) = q(K,O), 
then q(H,p) = q(K,p) for every prime p. Given ( H I  c QG and a fixed prime p, 

one can reach the unique element ( K )  E Q(G;p) such that  q(H,p) = q(K,p) by 

t ransf in i te  i te ra t ion  of Proposition 3 .6 ( i i ) .  That i s ,  one can s t a r t  with H1 = H 
and construct an expanding sequence {Hi} i n  @G such that  Hi a  Hi+l and 

Hi+l/Hi i s  a p-group. One may not reach an Y, such that  1% 1 f 0 mod p a f t e r  

f in i t e ly  many steps. For example, the dihedral groups D2i i n  O(2) a l l  s a t i s fy  

I W D ~ ~  1 z 0 mod 2. In tha t  case, one can pass t o  the closure J of the union of 

the %. Certainly q( J ,p)  = q(Hi,p) for a l l  i since XHi = xJ fo r  any given 

f i n i t e  G-CW complex X and a l l  sufficiently large i. One can then again apply 

Proposition 3 .6 ( i i )  i te ra t ive ly ,  s tar t ing  with J ,  and so on. Eventually one must 

reach K such that  l W K l  f 0 mod p. This discussion raises an open problem. 

Question 3.8. If H C JC K and q(H,p) = q(K,p), is  q( J ,p) = q(H,p)? 

We thought the answer was yes un t i l  the f ina l  proofreading of t h i s  book, when 

we noticed a gap i n  our proof. The answer i s  clearly yes i f  G i s  f in i t e ,  by 

Proposition 3.7. In general, we can enlarge K as  above t o  arrange tha t  ( K )  a @(G,p). 

We can also apply Proposition 3 .3( i i )  t o  obtain H <J HI such tha t  H' /H is a torus. 
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( I f  we enlarge J t o  J 1  t h i s  way, we need not have H' C J 1  .) Then H1 f'l J a H1 , (2 )   he. se t  of par t i t ions  {Uj 1 j r J} of Spec A as a disjoint  union of nonempty 

H1/H' A J i s  a torus, and thus 

q ( ~ , p )  =  HI ,p) =  H HI n J ,P) .  

open subsets. 

(3)  The se t  of families { I j  1 j E J} of non-zero ideals such that  A i s  the 

direct  sum of the I 
j * 

As above, we can find a possibly t ransf in i te  ascending chain connecting H1 t o  K. Given {ej 1 ,  the corresponding {Uj } and { I .  J } are specified by 

The intersection of t h i s  chain with J connects H' PI J t o  K n J = J. We would l ike  

t o  say tha t  a l l  groups L i n  the new chain define the same prime ideal  q(L,p),  but we 
Us  J = V((1-e . ) )  J and I.  J = ( e . ) .  J 

do not see a way around the fac t  tha t  the closure of a union U(Hi n J )  may be quite 

different from the intersection of J with the closure of the union of the Hi. In part icular,  Spec A i s  connected i f  and only i f  0 and 1 are the only 
idempotent elements of A. 

Warning 3.9. For H C G, @H and (PG need have l i t t l e  t o  do with one another. For i  his motivates us t o  compute the se t  of components of Spec A ( G ) .  We denote 

example, there may be no (K) E. G such that  ( K )  c ( H I ,  as  the inclusion of a th i s  s e t  nSpeC A ( G )  and topologize it as a quotient space of Spec A ( G ) .  We need 

( f i n i t e )  subgroup i n  a c i rc le  makes clear. Thus one must consider general conjugacy some notations and recollections. 

classes when comparing prime ideals i n  A ( G )  and i n  A ( H ) .  

~ o t a t i o n s  4.1. Recall tha t  a compact Lie grouy i s  said t o  be perfect i f  it i s  equal 

Remark 3.10. Proposition 3.1, Corollary 3.2, and part  ( i) of both ~ ropos i t ions  3.3 to  the closure of i t s  commutator subgroup. Let BG denote the se t  of perfect 

and 3.6 remain valid for the Burnside ring A ( G ; U )  of a general (2-universe U.  ere closed subgroups of G and topologize @G as a subspace of CG.  Let IIG denote 

the IG/HI such that  G/H embeds i n  U form an additive basis. None of the r e s t  the se t  of conjugacy classes of groups i n  pG and give IIG i t s  topology as an 

of the resul ts  above generalize t o  t h i s  context since they a l l  s t a r t  with a given orbit  space of @ G o  Let G ( ~ )  denote the closure of the commutator subgroup of 

subgroup H and proceed by constructing another subgroup K, and G/K need not G and, inductively, l e t  G ( ~ + ' )  = ( G ( ~ )  ) ( I ) .  Recall tha t  G i s  said to be 

embed in U when G/H does. In part icular,  when G i s  f i n i t e ,  G/K, need not 
I 

solvable i f  it is an extension of a torus by a f i n i t e  solvable group and that  t h i s  

embed in U when G/H does; see Nmboodiri [115,§81 for  an example and a context a holds i f  and only i f  there exis ts  k such that  G ( k )  = e. 

in which t h i s  fa i lure  matters. 

94. Idempotent elements in A ( G )  

Tom Dieck proved the following fac ts  about these notions [42; 44995.9 and 
1 

 heo or em 4*2. (i) G has a unique minimal normal subgroup Ga such that  G/Ga 
We begin by recalling the relationship between idempotents and prime ideals i n  is solvable, and Ga i s  perfect. 

a general commutative ring A. Of course, for an idempotent e, eA is the (ii) There exis ts  an integer k = H G )  such that  ~ ( k )  = % for  every closed 
localization of A obtained by inverting e. Recall tha t  the prime ideal  subgroup H of G. 
spectrum Spec A i s  defined t o  be the se t  of prime ideals of A topologized by (iii)   he functions H + H(') and H + Ha from C G  t o  i t s e l f  are continuous, 
l e t t i ng  the closed subsets be those of the form and @ G  i s  a closed subspace of CG. 

( i v )  EG i s  a closed subspace of TG and i s  thus a to t a l ly  disconnected 

compact metric space. 

(v) If  G is a f i n i t e  extension of a torus, 1 + T -t G -, F + 1, and E i s  
fo r  an ideal  I. The open se t s  D(a) = {P ( a ( P} for  a A form a basis for t h i s  the kernel of the conjugation homomorphism F + Aut T, then IIG i s  
topology. Later we shal l  also make use of the subspace Max A of maximal ideals. f i n i t e  i f  and only i f  F/E i s  solvable, in  which case @G i s  already 

4s explained, for  example, i n  Bourbaki (16, 11.4.3 Prop. 151, the following f i n i t e  . 
three i e t s  are in bijective correspondence for any given f i n i t e  indexing se t  J .  

The l a s t  part  h p l i e s  tha t  IIG is in f in i t e  for  most c lass ica l  Lie groups G. 
(1) The se t  of families {ej 1 j c J )  of non-zero orthogonal idempotents with sum 1. The next three resul ts  are also due t o  tom Dieck [42; 44, 95.111; we include s l ight  

variants of h is  proofs. 



Lemma 4.3. For a given H C G, a l l  prime ideals q(H,p) are i n  the same component 

of Spec A ( G )  as q(Ha,O). 

Proof. There i s  a f i n i t e  normal sequence 

such that  each Hj/Hj+l i s  e i ther  a torus or a cyclic group of prime order. By 

Propositions 3.3 and 3.6, q(Hj ,p j )  = q(Hj+l,pj) for some p j (possibly 0 ) .  Since 

the closure of q(H,O) i n  Spec A ( G )  clearly contains a l l  q(H,p), and similarly 

for  the other H j ,  the conclusion follows. 

Proposition 4.4. &fine 8: IIG t n Spec A ( G )  by sending a conjugacy c lass  (L) t o  

the component containing q(L,O). Then $ i s  a homeomorphism. Therefore G is  

solvable i f  and only i f  A ( G )  contains no non-trivial idempotent elements. 

Proof Def a: QJG + liG by a(H) = ( H a ) .  Then the solid arrow part  of the 

following diagram commutes by the lemma, where q sends ( ( H I ,  ( p )  t o  q(H,p). 

GG x Spec z Spec A ( G )  

Define yq(H,p) = ( H a ) .  To see tha t  y i s  a well-defined function, it suffices t o  

check that  (Ha)  = (Ka)  , where ( K )  i s  the unique element of GG such t h a t  

q(H,p) = q(K,p) and I W K ~  ji 0 mod p. Since Ja = Jk i f  J Q J 1  and J 1 / J  i s  

solvable and since the function sending H t o  Ha i s  continuous, t h i s  follows from 

the procedure for reaching ( K )  from ( H )  described above Question 3.8. Clearly 

y makes the diagram commute. We shal l  see in Proposition 5.7 below that  the 

surjection q i s  a continuous closed map. Since anl is  continuous by Theorem 

4.2, it follows that  y i s  continuous. Since IIG i s  t o t a l ly  disconnected, it 

follows further tha t  y factors through a continuous map 6 :  =Spec A ( G )  t nG. 

Obviously B6 and 60 are the respective identi ty functions. Since IIG i s  

Hausdorff and nSpec A ( G )  i s  compact, 6  i s  a homeomorphism with inverse 0 .  

With Lemma 4.3, t h i s  implies an algebraic description of the support of an 

idempotent i n  terms of perfect subgroups. 

Corollary 4.5. For an idempotent e 6 A ( G )  and a subgroup H of G, +H( e )  = 1 i f  

and onlyZif  (e l  = 1. 
a 

Let eL, or e;, denote the idempotent corresponding t o  a component B(L) ,  

where L i s  a perfect subgroup of G. Thus 

Of course, i f  L i s  normal i n  G, then (Ha)  = (L) i f  and only i f  Ha = L. In 

part icular,  writing 1 for the t r i v i a l  perfect subgroup, 

8 

1 i f  H i s  solvable 
$(el) = 

0 otherwise 

It is i n  general quite d i f f i cu l t  t o  express eL in terms of the standard bas is  
{[G/Kl I ( K )  € @GI. When G i s  f in i t e ,  Yoshida [147,3.11 has given a precise 

formula. Araki 14, Cor B1 used Yoshida's formula t o  prove that  ~ ; A ( G )  i s  

isomorphic t o  e!fL~(wI,). We give a variant of Araki's argument which avoids use of 

Yoshida's formula and so works t o  prove t h i s  isomorphism for general compact Lie 

groups. 

Theorem 4.6. Let L be a perfect subgroup of G and se t  N = NL and W = WL. 

Then res t r ic t ion  from G t o  N and passage t o  L-fixed points induce isomorphisms 

of rings 

~ G A ( G )  A ~ : A ( N )  A~~A(w). 
6 

I Proof. Observe f i r s t  tha t  i f  ( K )  6 & i s  the conjugacy class such tha t  

q(L,O) = q(K,O), then, up t o  conjugacy, L i s  a normal subgroup of K and thus 
I K is a subgroup of N. Therefore WGN is f i n i t e  (even though WGL need not be) .  

Since 4 r G 
= cbH f o r  H C N, it is clear tha t  

i 

where ffjjG is an idempotent orthogonal t o  efj. We define 
I 

for  a A ( G ) .  By Definition 2.15, rnKr; = 0 i f  K i s  not subconjugate t o  N and 

G - 
~ K ' N  - 4g-lKg 

i f  KC N and WGK is f i n i t e ,  where g runs through a se t  of coset represent- 

a t ives  for ( G / N ) ~ .  It follows easily from the defining formulas for the 
idempotents and consideration of G-conjugacy versus N-conjugacy t h a t  



Define an additive homomorphism T: efjA(N) + ~:A(G) by letting 

T(eEJ6) = e:TG,(eEJfi) 

for $ s A(N) . We claim that T = p-l. By Frobenius reciprocity, 

G G G  N G  ( rp) (eLa) = eLTN(eLrN( a) = e:eEa = e:a. 

By the double coset formula, 

N N G  G G  N N G G  N 
(pr)(eL8) = eLrN(eLTN(eLfi)) = eLrNTN(eL~) 

where g runs through a set of representatives in G for the orbit type component 

manifolds M of N\G/N. We may take one g to be the identity element; the 

corresponding M is the identity component of the finite group WGN, and it 

follows that the corresponding summand is eF$. We claim that the remaining 

It is easily checked by calculating h's that 

In the case Lg C N, Ng n N is the normalizer of Lg in N and we know that 

and 

The last formula implies that 

Let x = rNg c ( $1 . By the formulas above and Frobenius reciprocity, 
N%N g 

for those g such that Lg C N and Lg # L, that is, g f e. 

For the second isomorphism of the theorem, observe that the restriction of 
i 

I I I+: A(N) + A(W) to efjA(N) is a monomorphism since Ker I+ consists of those $ 

such that mH($) = 0 for all (HI s @N with L C H and e! annihilates such 
i 

i elements. Since mK$ = mH for K = H/L C W, $ (et) = ey and $ sends efjA(N1 to 

~:A(W) . Let E : N + W be the quotient homomorphism. Since mHc* = m E  (H) for 
H C N, cX(ey) = efj + ffj, where ffj is an idempotent orthogonal to efj. Define 

(: ~:A(W) + effn(N) by letting. ((eyy) = eflcf(y) for y r A(W). Clearly I+c is the 

identity, hence I+ is an isomorphism with inverse c. 

$ 5 .  Localizations of A(G) and of A(G)-modules 

We begin by calculating the localizations of A(G) at its prime ideals. 

Proposition 5.1. (i) For (K) E @G, the localization of A(G) at q(K,O) is 

the canonical homomorphism 

(ii) For (K) E @(G;p), let @(G;K,p) be the subspace of @G consisting of 

those (J) such that q( J,p) = q(K,p) and let 

Then the localization of A(G) at q(K,p) is the canonical homomorphism 

A(G) -(A(G)/I(K,p) (p). 

Proof. With an evident interpretation of notations, we may view (i) as the special 
case p = 0 of (ii) . It will follow from Proposition 5.7 below that @ (G;K,p) is 

a closed subspace of @G. We first show that I(K,p) coincides with the kernel 

I' = {a1 there exists $ 4 q(K,p) such that afi = 0) 

of the localization of A(G) at q(K,p). Clearly I' C I(K,p) since $ 4 q(K,p) 



implies B 4 q(J,O) for (J) E @(G;K,p). To show that I(K,p) C It, we let 

a r I(K,p) and construct $ 4 q(K,p) such that CX$ = 0. For each (J) E @(G;K,p), 

+ J( a) = 0 and we can choose an open neighborhood UJ of (J) in @G such that 

i$H( a) = 0 for all (H) e UJ. The complement C of the union of the UJ is a 

closed subspace of the complement of @(G;K,p). For (L) E C, there is an element 

BL of q(L,O) which is not in q(K,p), by Corollary 3.2(i). Then mM( f3L) = 0 

for all (MI in some open neighborhood of (L) in C. Since C is compact, some 

finite product of the BL will be an element B 4 q(K;p) such that mL ( $1 = 0 for 

all (L) e C. Clearly a$ = 0. 

We show next that q(K,p) is the only prime ideal of residual characteristic p 

which contains I(K,p). Indeed, suppose that q(H,p) f q(K,p). For each 

(J) r @(G;K,~), there exists an element y~ in q( J,O) which is not in q(H,p). 

Since @(G;K,p) is compact, some finite product of the y~ will be an element y 

in I(K,p) but not in q(H,p). Thus, if x 4 q(K,p), then the ideal generated by 

the image of x in (A(G)/I(K,p) (p) cannot be contained in any proper prime 

ideal. 

For (H) r @G, let ZH denote Z regarded as an A~G)-module via mH. The 

proposition and its proof have the following immediate consequences. 

Corollary 5.2. (i) mK: A(G) + ZK induces an isomorphism upon localization at 

q(K,O), and (A(G)q(K,~) )q(H,~) = 0 if (HI # (K). 
(ii) x mJ: A(G) + x ZJ induces a monomorphism upon localization at 

(J) (J)r @(G;K,p) 

~(K,P), and (A(G)q(K,p))q(H,p) = 0 if (HI 4 @(G;K,p). 

We must remember here that infinite products need not commute with localiza- 

tion. We record another useful vanishing result along these lines. 

Lemma 5.3. Let H and K be subgroups of G with (K) E @G and regard A(H) as 

a A(G)-module via rfi. 

(i) A(H)~(~,o) f 0 if and only if (K) < (HI. 

(ii) If p > 0 and G is finite, A(H)q(K,p) f 0 if and only if (5) s (HI. 

(iii) I n  general, if p 2 0, A(H)q(K,p) f 0 if and only if there is a subgroup 

of H such that q(L,p) = q(K,p). 

Proof. It is easily checked by use of Propositions 3.3 and 3.7 that (i) and (ii) 

are implied by (iii) . Clearly A(H)q(K,p) f 0 if and only if 

(A(E) - q(K,p) n Ker r: = +. 

Now a e Ker rfi if and only if +L( a )  = 0 for all L C H while 

a E A(G) - q(K,p) if m d  only if mK( a) f 0 mod p. Obviously these conditions are 
contradictory if q(L,p) = q(K,p) for some L C H. Conversely, assume that 

q(L,p) f q(K,p) for all L C K. For each (L) 6 I'G such that (L) G (H) , choose 
BL e q(K,p) such that mL(BL) = 0. Then %(BL) = 0 for all (MI in some 

I neighborhood of (L) . Since the set of (L) e rG with (L) G (HI is easily seen 

to be a closed and hence compact subset of rG, some finite product of the BL is 

& element of (A(G) - q(K,p) ) n Ker rfi. (Question 3.8 is relevant here .) 

In the rest of this section, we shall be concerned with localizations of 
A(G) at sets of integer primes. For a subring R of the rational numbers, we 

adopt the notations 

A(G;R) = A(G) BzR and C(G;R) = C(G) BzR. 

The prime ideals of A(G;Q) = A(G) (0) and of A(G;Z(p)) = A(G) will be denoted 
by the same names q(K,O) and q(K,p) as in A(G). Clearly 

When G is finite, the previous results admit convenient reinterpretations in 

terms of idempotents in A(G)(p) Recall from Proposition 3.7 that Kp denotes the 
smallest normal subgroup of H such that H/% is a p-group. We allow p = 0, in 

which case we set Ho = H. Gluck [561 and Yoshida [I471 gave explicit formulas in 

terms of the standard basis {[G/Hl) for the idempotents appearing in the following 
analog of Theorem 4.6; the isomorphisms p and IJJ are due to Araki [ 41 (whose 

proof relied on Yoshida's formulas). 

Theorem 5.4. Let G be finite. Let L be a p-perfect subgroup of G (or any 

subgroup if p = 0) and set N = NL and W = WL. Then the idempotent ef, 6 C (GI (p) 
such that 

lies in A(G)(p). Restriction from G to N and passage to L-fixed points induce 

isomorphisms of rings 



and ~:A(G) is also isomorphic to the localization of A(G) at q(L,p). 

Moreover, 

Proof. When p = 0, the result is an easy consequence of Lemma 2.10. It is clear 

from section 3 that Spec A(G)(p) is the disjoint union of open and closed subsets 

each containing exactly one of the prime ideals q(L,p) and all of the prime 

ideals q(H,O) such that q(H,p) = q(L,p). For any idempotent e E A(G)(p), 

$H(e) is obviously the same (either 0 or 1) for each H defining a given 

q(L,p). The presence in A(G)(p) of the cited idempotents of C(G)(p) now follows 

from the standard commutative algebra reviewed at the start of section 4. The 

homomorphisms p and $ are defined and shown to be isomorphisms precisely as in 

the proof of Theorem 4.6. The evident homomorphism e:~( G) (p) + A( GIq( L,p) is an 

isomorphism by Proposition 5.1. The last statement holds since the identity element 

of A( G) is the sum over ( L) of the orthogonal idempotents e:. 

When W is a p-group, for example when L = %, ey , is the identity element. 
As observed by Araki [41, there is an analog of this result for A(G;R) for 

any R C Q. For example, the statements about rationalization remain valid if we 

only invert all primes dividing the order of G. Rather than pursue this, we return 

to general compact Lie groups G. Here we cannot expect localizations at maximal 

ideals to be determined by idempotents. We shall see shortly that Spec A(G;Q) is 

homeomorphic to QG. If we had idempstents et r A(G;Q) as in the finite case, 

then points of Spec A(G;Q) would be open and closed subsets and QG would be 

discrete. Although A(G)(p) is not the product of its localizations at maximal 

ideals, it can nevertheless be computed in terms of these localizations. To show 

this, we must recall some elementary sheaf theoretical facts. 

Let A be a commutative ring. Then A is isomorphic to the ring 

r (Spec A,;) of global sections of the structural sheaf over Spec A; see e.g. 

Hartshorne [58, 11.2.21. More generally, an A-module M is isomorphic to 

r (Spec A,M) [ 58, 11.5.11 . Here M is the sheaf over Spec A associated to M. 
N 

Explicitly, for an open subset U of Spec A, M(U) is the set of functions 

s : U + - I I Mp such that s( P) E Mp and s is locally constant in the sense 
PEU 

that, for each P (: U, there is an open neighborhood V of P in U, an element 

m E M, and an element a E A such that, for each Q E V, a E Q and s ( Q) = m/a in 

Mg. If*, hp: M + Mp denotes the localization of M at P, then the formula 
N 

$(m) ( P) = hp(m) for m e M specifies a natural isomorphism $: M + r ( Spec A,M). 
The intuition is that to know a point of M it suffices to know its localizations 
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Now let i: Max A + Spec A be the inclusion of the subspace of maximal 
N 

ideals. Using open sets of Max A, we can specify a sheaf M over Max A exactly 
N 

as above. By the same proof as for Spec A N [ 58, 11.5.11 , the stalk of M at P 

is Mp. We have the direct image sheaf i,M over Spec A [58, p.651. Using 

distinguishing subscripts Max and Spec, we see that restriction of local 

sections 

N N N 

MSpec(U)-+=%,(U n Max A) = (i*MMax)(U) 

N N 

specifies a map of sheaves MSpec + Thus we have a map of ringed- spaces 

[58, P-721 

(Max A,A) +(Spec A,A) 

and an associated ring homomorphism 

N N 

i*: r(Spec A,A) -+r(Max A,A), 

and similarly in the module context. For any A-module M, we have a homomorphism 
N 

$I: M + r(Max A,M) such that the diagram 

/ i *\ 
r (Spec A,U) - r (Max A,$) 

commutes. Since any open subset of Spec A which contains a maximal ideal P also 

contains all prime ideals Q C P (this being obvious for the basic open subsets 

D(a)), the local constancy condition makes clear that two global sections on 

Spec A coincide if they coincide on Max A. Thus i* is always a monomorphism. 

It is usually not an isomorphism. However, it is an isomorphism when A has the 

property that if a prime ideal Q is contained in two ideals P and P1, then 

either P C P1 or P1 C P. In general, the only possible way to extend a section 
N - 

s E r(Max A,M) to a section t E r(Spec A,M) is to let t(Q) be the image of 

s(P) in Mg = (%IQ whenever Q is a prime ideal contained in a maximal ideal 

P. The specified condition on prime ideals ensures that t is well-defined and 

locally constant. 

Returning to A(G), observe that every prime ideal of A(G)(0) is maximal and 
I 

that a prime ideal of A( G) (p) is contained in at most one other prime ideal. 

Combining the discussion above with Proposition 5.1, we arrive at the following 

at all prime ideals. 



procedure for computing modules over these rings in terms of their localizations at 

maximal ideals and for computing these localizations. 

Theorem 5.5. Let A = A(G)(p), where p is zero or a prime, and let M be an 
N 

A-module. Then the canonical homomorphism I$: A + ~(Max A,A) is an isomorphism of 
N 

rings and the canonical homomorphism I$: M + r(Max A,M) is an isomorphism of 

A-modules. Moreover 

(i) If A = A(G) (0) and (K) r QG, then Mq(K,O) = M/q(K,O)M. 

(ii) If A = A(G)(p) and (K) r @(G;p), then Mq(K,p) = M/I(K,p)M. 

Of course, for a particular M, it may happen that Mq(k,O) Or Mq(~,p) is 
N 

zero for all but finitely many (K). When this holds, r(Max A,M) is just the 

product of the localizations of M at the q(K,O) or q(K,p) . 

We next determine the spaces Spec A(G;R) and Max A(G;R) in terms of the 

space QG for R c Q. We use the following general algebraic result, much of which 

is in Bourbaki [ 16, I194 Exer 171 or tom Dieck [ 44, 5.7 .lo] . 

Proposition 5.6. Let C(X,R) be the ring of continuous functions from a totally 

disconnected compact Hausdorff space X to a discrete commutative ring R. 

(i) The function q: X x Spec R + Spec C(X,R) specified by 

is a homeomorphism. 

(ii) If R is an integral domain, then evaluation at x induces an isomorphism 

from the localization of C(X,R) at q(x,P) to the localization of R at P. 

Proof. (i) Let e: R + C(X,R) embed R as the subring of constant functions. Then 

e*: Spec C(X,R) + Spec R is continuous and exq(x,p) = P. Let Q r Spec C(X,R) 

and let Y = n a-'(p), where P = e*~. We claim that Y consists of a single 
a cQ 

point x and that Q = q(x,P). Given the claim, the rest of the proof requires 

only an elementary check that q and its inverse are continuous. We first show 

that Y is non-empty. The topology on X has a basis of open and closed subsets 

U, and such U have characteristic functions K(U) E C(X,R) which take the 

value 1 on U and 0 off U. Suppose that Y is empty and choose e Q such 

that BX(x) # P for each x r X. Then choose an open and closed neighborhood Ux of 

x such ,that f3,(y) = fix(x) for y r Ux. Choose a finite subcover {Ui I 1 G i 6 k) of 

the cov& {Ux) and let Bi be the i.% fix. Set si = pi (Ui) , ti = and 

t = siti 
= isj 

and define ai = tif3i~(Ui). Then ai(y) = t / P for y E Ui and 

ai(y) = 0 for y / Ui. Since 

we find inductively that ~ K ( U ~ U  * * *  d . 1  E Q for 1 4 j 4 k. Thus e(t) r Q 
J 

and t E P. This contradiction establishes that Y contains some element x. 

Clearly e(P) C Q C q(x,P). If a E q(x,P), we can choose an open and closed 

U of x such that a(y) = a(x) E P for y E U. Then 

K(U) *a = ~(U)*ea(x) E Q and K(U) 4 ~(x,P), 

hence a E Q. Since q(x,P) # q(y,P) if x # y (as we see by considering 

characteristic functions of disjoint open and closed neighborhoods of x and y), 

Y = {XI. 
(ii) the kernel of the localization C(X,R) + C(X,R)q(x,p) is 

In fact, equality holds here. If a c q(x,O), then a(y) = 0 for all y in some 

open and closed neighborhood U of x and thus a~ ( U) = 0 and a r I ( x, P) . For 
any f3 E C(X,R), f3 z ef3(x) mod q(x,O), hence e induces an isomorphism 

R + C(X,R)/q(x,O). The conclusion follows. 

Observe that C(G,R) = C(QG,R) for R C Q. 

Proposition 5.7. For R C Q, the function 

q: QG x Spec R -Spec A(G;R) 

is a continuous closed surjection. For R = Q, it is a homeomorphism. For 

R = Z(p), q induces a homeomorphism y(G;p) + Max A(G;Z(p) 1, where Y (G;p) is the 
quotient space of QG obtained by identifying each closed subspace GI (G;K,p) , 
(K) E Q(G;p), to a single point. 

Proof. The map $*: Spec C(G) + Spec A(G) is a surjection. It is closed by 

inspection or by the observation that C(G) is integral over any subring because 
any a E C(G) is a linear combination of idempotent functions. (See [ 9 ,  Eker 1 

( p. 67) I for the fact that I* is closed when I : A + A' is an inclusion such 
that A' is integral over A.) The same holds for any R c Q, and the rest is 

clear. 

2-% Remark 5.8. The composite @(G;p) C @G + y(G;p) is evidently a continuous i/ 

bijection. However, since Q(G;p) need not be a closed subspace of GIG (by Remark 

3.51, this composite need not be a homeomorphism. 



Proposition 5.7 leads to the promised proof of Lemma 2.10, which asserts that 

is an isomorphism. It is now clear that @ 9 1  induces a homeomorphism on passage 

to Spec. By Propositions 5.l(i) and 5.6(ii), A(G;Q) and C(G;Q) localize to 

Q at their respective prime ideals q(K,O), hence @ Q 1  localizes ,., to an 

isomorphism. In view of the natural isomorphism A = r(Spec A,A), a ring 
homomorphism A + A' is an isomorphism if and only if it induces a homeomorphism on 

passage to Spec and an isomorphism upon localization at corresponding prime 

ideals. 

As observed by tom Dieck (411, this has the following consequence. 

Corollary 5 -9. The natural map A(G) + C(G;Q) is the inclusion of A(G) in its 

total quotient ring and 4: A(G) + C(G) is the inclusion of A(G) in its integral 

closure in C(G;Q). 

Proof. Every non zero divisor of C (G; Q) is a unit, hence C( G; Q) is its own 

total quotient ring. Any a E C(G;Q) which is integral over the image of @ takes 

values in Z . 

(iii) If A is absolutely flat, then every finitely generated submodule of a 

projective A-module is a direct summand and every projective A-module is a 

direct sum of cyclic submodules. 

(iv) If A is absolutely flat, then Spec A is a totally disconnected compact 

Hausdorff space, two ideals I and J are equal if and only if 

I V( I )  = V( J) , and the following conditions on an ideal I are equivalent. 

(a) The closed set V( I) is open. 

(b) I is finitely generated. 

(c) I is generated by an idempotent element. 

(dl A/I is a projective A-module. 

A(G;Q) is an example of an absolutely flat (or von Neumann regular) 

commutative ring. To give a feel for the nature of such rings, we record without 

proof the results of some exercises in Bourbaki [16; I§2 Exer 16-18, IIt3 Exer 9, 

By Proposition 5.6 and criterion (dl or (e) of (ii), C(X,R) is absolutely 

flat for any totally disconnected compact Hausdorff space X and field R. 

$6. Localizations of equivariant homology and cohomology theories 

In section 4, we showed how to split A(G) and thus every A(G)-module in terms 
t of idempotents associated to perfect subgroups of G. In section 5, we showed how 

f 
to calculate A(G)(p) and any module over A(G)(p) in terms of localizations at 

I194 Exer 16-17] and Kaplansky [71; Exer 22 (p. 64) I . 
Proposition 5.10. Let A be a commutative ring. 

(i) The following are equivalent for an element a 6 A. 

(a) a E (az). 

(b) (a) is a direct summand of the A-module A. 

(c) A/(a) is a flat A-module. 

(dl (a) 0 I = a1 for all ideals I. 

(ii) The following conditions on A are equivalent. 

(a) Every element a E A satisfies the conditions in (i). 

(b) Every finitely generated ideal of A is a direct summand. 

(c) Every A-module is flat. 

(dl A has no non-zero nilpotent elements and every prime ideal of A is 

: maximal. 

(el The localization of A at each of its maximal ideals P is the field 

the ideals q(K,p) and gave algebraic descriptions of these localizations. We here 

specialize to homology and cohomology groups and use the topology to obtain further 

information. We work in the stable category GG~u, where U is a complete 

An idempotent e a A(G) may be viewed as an idempotent map e: S + S. Via 

Y = SAY, e induces an idempotent map e: Y + Y for each G-spectrum Y. Of course, 

idempotent maps induce splittings just as they do in the nonequivariant stable 

category. We let eY be the telescope of the countable iterate of e and find 

that Y is equivalent to eY~(1-e)Y. Since telescopes commute with smash 

products, eY is equivalent to  SAY and ~(YAZ) is equivalent to YheZ. For any 

G-spectrum X, [X,eYIG is just the A(G)-submodule e[X,YIG of [X,YIG If 

K H C G with J = H/K, we let YJ be the J-spectrum (E3[ KI AY)~, as explained 

and justified in 1199. With these notations, we have a stable category level analog 
of Theorem 4.6; when G is finite, it is implicit in Araki [A]. 

Theorem 6.1. Let L be a perfect subgroup of G with associated idempotent 

ei E A(G) and set N = NL and W = WL. For G-spectra X and Y, there are 

natural isomorphisms 



Proof. Let n: G/N+AX + X be the projection and T: X + G/N+AX be the associated 

transfer (defined in IV93). With A(G) and A(N) replaced by [X)YIG and 

IG/N+AX,Y lG  E IX,Y I N  and with rg and r! replaced by n* and r*, the 

isomorphism p and its inverse r are constructed and shown to be inverses by 

verbatim repetition of the proof of Theorem 4.6. The relevant formulas, Frobenius 

reciprocity and the double coset formula, are still available by IV§ §5,6. 

If 3 [Ll is the family of subgroups of N which do not contain L, then 

n$(efjY) = 0 for K e 3 [LI since r$(efj) = 0. In the language of II§9, this says that 

efjY is concentrated over L. By 11.9.2 and 11.9.5, *the functor ( ?  lW: &AU + <W$uN 

induces an isomorphism 

We claim that (efjyIW can be identified with eY(YW). By 11.9.12, the functor ( ?  l w  
commutes with smash products, so it suffices to check our claim for Y = S. By - 
11.9.5, the functor (?IW is an equivalence from a full subcategory of hNfl to 

hWWN and therefore preserves splittings induced by idempotent maps. Thus 

(efjslW = ( e f j ) ~ ,  (efjlW: % + %. By 11.9.9, % can be identified with the sphere 

W-spectrum and, by Lemma 2.19, the map +: A(G) + A(W) agrees under this 

W identification with ( ?  )W: IT;(S) + no(%). Therefore (efj)W = ey by the proof of 

Theorem 4.6. 

Remark 6.2. Under the change of groups isomorphism 

the isomorphism p coincides with (p)*, where 

The formula rg(e2) = efj + ffjJG in the proof of Theorem 4.6 implies that efjy is a 

wedge summand of e;Y regarded as an N-spectrum, and p is characterized as the 

G-map whose composite with the evaluation N-map F~IG,~!Y) + e!Y is the resulting 
A 

projection. Clearly p is an equivalence. Its inverse is the composite 

and the middle isomorphism is given by 11.4.9. 

Remembering that eE( Z ~ Y )  - ~nefY and (ZAY)~ ZflYW for Gspectra Y and 

Z and that ( z ~ x ) ~  = zrn(XL) for G-spaces X (by 11.9.9)) we obtain the following 

homological consequence. 

corollary-6.3. Let EG be a G-spectrum, write EN for EG regarded as an 

N-s;pectrum, and let % be the associated W-spectrum. Let X be a G-space. For 

cx E RO(G), let B = r$ a) r RO(N) and y = BL r RO(W) . Then there are natural 

isomorphisms 

and 

With XL replaced by Xw, these assertions generalize to G-spectra X. 

Just as Theorem 5.4 on p-perfect subgroups of a finite group G parallels 

Theorem 4.6, so we have a stable category level analog of Theorem 5.4 which 

parallels Theorem 6.1. The proof is exactly the same except that we replace the 

arbitrary G-spectrum Y in the discussion above by its localization 

Y(p) = XAMZ(~), where MZ(p) is the Moore Gspectrum (obtained by applying i,, 

i: uG + U, to the nonequivariant Moore spectrum with trivial G-action). 

Theorem 6.4. Let G be finite. Let L be a p-perfect subgroup of G (or any 

subgroup if p = 0) with associated idempotent e: r A(G) (p) and set N = NL and 

W = WL. For G-spectra X and Y, there are natural isomorphisms 

Here (Y(p) IW - (YW) as follows from either 11.9.9 and 11.9.12 or the 

standard algebraic characterization of localization. There is an evident analog of 

Remark 6.2. Before stating the homological consequence analogous to Corollary 6.3, 

we interpolate an easy induction theorem. It is due to Kosniowski [761 when G is 

finite and to tom Dieck 144, 7.5.31 in general. We agree to write 

lx,ylG = lX,YIG when convenient. 



Theorem 6.5. Let p be zero or a prime and l e t  ( K )  6 @ G  i f  p = 0 and ( K )  € @(G;p) 

i f  p > 0. For G-spectra X and Y,  define ( [ x , ~ ] l ( q ( ~ , ~ )  )inv t o  be the kernel of 

the difference of projections homomorphism 

Then the projection G/K+AX -t X induces an isomorphism 

In part icular,  for a G-spectrum EG, 

G - K inv and E;(X) inv 
E * ( X ) q ( ~ , p )  - E * ( X ) q ( ~ , p )  ~ ( K , P )  ~ ( K , P )  ' 

Proof. The assumption on ( K )  ensures tha t  l W K l  is  prime t o  p and thus tha t  

[G/KI is  a unit in A ( G ) q ( K , p ) .  When G i s  f i n i t e ,  the conclusion follows by 

Dress' induction theory [49, 501 from the observation that  the induction 

homomorphism 

i s  onto since rfirfi is multiplication by [G/K]  . The proof in general i s  an 

application of the extension of Dress1 theory t o  the compact Lie case tha t  i s  

implicit in section 9 below. We have a complex 

n )C 

Here dn = E (-1)' n i  where, for 0 G i G n, 
i = O  

is the projection which collapses the ix copy of G/K t o  a point. When localized 

a t  q(K,p), t h i s  complex acquires the contracting homotopy specified by 

sn = lG/H1 -IT:. We replace Y by zaEG t o  obtain the resul t  about E ~ ( x ) .  We 

replace X by SO and Y by X A Z ~ E ~  t o  obtain the resul t  about E$(x). 

Remark 6.6. One could use wir thmkler ls  isomorphism t o  identify E&(x) with 

E ~ ( G / K ~ + x )  (with a dimension s h i f t )  and define inv t o b e  the kernel of " E * ( X ) q ( ~ , p )  

the difference of transfers associated t o  the projections G/K+AG/K+AX. Using a 

complex with d i f ferent ia ls  given by transfers,  one could prove that  E $ ( x ) ~ ( ~ , ~ )  i s  

also isomorphic t o  ll$(x)lnV q(K,p) l l .  This approach is taken i n  144, 7.5.31, where 
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F $ ( ~ )  i s  actually defined t o  be E!( G/K+AX) ; i n  general, t h i s  definition i s  

incompatible with our preferred definit ion i n  terms of representing spectra. 

We shal l  use the following special case i n  conjunction with Theorem 6.4. 

~xample 6.7. Let K be a p-%low subgroup of a f i n i t e  group G. Certainly 1 WK 1 
i s  prime t o  p, so the induction theorem applies. Since K i s  a p-group, Kp = 1 

[the t r i v i a l  subgroup) and q(K,p) = q(1,p) .  Thus localization a t  q(K,p) i s  the 

same as localization a t  p followed by multiplication by ef. Since Hp = 1 i f  

and only i f  H i s  a p-group, we see immediately tha t  rg (e f )  i s  the ident i ty  
element of A ( K )  and rg( e:) = 0 for any non-trivial p-perfect subgroup L 

of G. Therefore localization of E;( and E! a t  q(K,p) i s  the same as  

localization a t  p, and similarly for the complexes used i n  the proof of the 

induction theorem. We write E ; ( X ) ~ Y  and E ~ ( x )  for the resulting invariants. 

We can now put things together t o  prove the reduction t o  subquotient p-groups 

promised in the introduction. 

Theorem 6.8. Let G be f in i t e .  Let L be a p-perfect subgroup of G (or  any 

subgroup i f  p = 01, se t  N = NL and W = WL, and l e t  V = VL be a p-Sylow 

subgroup of W (or  the t r i v i a l  subgroup i f  p = 0 ) .  Let EG be a Gspectrum, 

write EN for  EG regarded as an N-spectrum, l e t  % be the associated 

W-spectrum, and write EV for % regarded as  a V-spectrum. Let X be a 

G-space. For a e R O ( G ) ,  l e t  13 = r i ( a )  r R O ( N ) ,  y = gL r R O ( W ) ,  and 

S = r!( y ) r RO(V) . Then there are natural  isomorphisms 

# 

and, i f  X i s  f i n i t e ,  
b 

Therefore, with X f i n i t e  i n  the case of cohomology, 

With XL replaced by XW, these assertions generalize t o  G-spectra X, and the 

assertions about rat ionalization only require localization away from I G I . 
Proof. The f i r s t  statement makes clear how t o  interpret  the grading i n  the - 
statement about products. We must r e s t r i c t  t o  f i n i t e  X i n  cohomology since 

localized spectra do not represent algebraic localizations of cohomology groups i n  



general (since localization fails to commute with infinite products and thus with 

lim and liml). The conclusions follow from Theorem 6.4, Theorem 6.5, Example 6.7, 

and the splitting of A(G)(p) in Theorem 5.4. 

Remarks 6.9. (i) If p = 0 or if p > 0 and p is prime to \GI, then the 

VL are trivial groups and the 6 are integers. Thus, in these cases, the theorem 

reduces calculations to the study of Z-graded nonequivariant homology and cohomology 

theories which, by 11.9.13, are related to the originally given theory in terms of 

localizations obtained by inverting Euler classes. 

(ii) Here is an example to show the necessity of the finiteness assumption on X 

in the case of cohomology. Let p = 0 and G = L = N and consider X = EG. 

Since (EG)~ is empty, E:((EG)~)(~) = 0 no matter what E: is. However, 

~~E:(EG) (0 )  need not be zero. For an explicit example, consider complex 

K-theory; ~ ( E G )  is the completion of R(G) at its augmentation ideal. If G is 

cyclic of order 2, ;(G) = Z O i2 additively and [GI acts by multiplication by 

2 on Z and as zero on i2. Since e8 = 1-1/2[G1, ~~K;(EG)(~) E i2 @Q. 

97. Preliminaries on universal (3' ,fi-spaces and adjacent pairs 

Recall the language of families and universalg-spaces from 11.2.1 and 

11.2 .lo. For an inclusion 3 C 3' of families in G, there is a G-map Ep + E3; ' , 
unique up to G-homotopy, and we define E(3',3) to be its (unreduced) mapping cone 

with cone point as basepoint. If H 6 3 , then E( 4' , 3)H is the basepoint, so 

that E(3' , 3 )  is a based 3'-space. If H F 3'- J , then E(3 ' , !31H is equivalent 
to SO. If H F 3 , then E(gl is contractible. When 3 is empty, E3 is 

empty; we interpret E('f,$) as ~3'. When 3' is the family of all subgroups of 

G, denoted 3_, we may take EE' to be a point; we write E(gm,4) = E3 as in 

1139. We say that the pair (3 ' ,3) is adjacent if 3 '-3 consists of a single 
conjugacy class. Easy cofibre sequence arguments yield the following 

observations. Note that an inclusion of pairs ( € ' , e )  + ( 3 ' , 3 )  induces a Gmap 
E(c',E) + N ~ I  ,g) .  

Lemma 7.1. For 3 c 3' ,  EL)' ,J) is G-equivalent to (E3' )+4E"d. 

Lemma 7.2. For 3 C 3' C ? I 1 ,  the cofibre of the induced map E($',,?) + E(9",3) is 

equivalent to E(3",5' ) . 

We", concentrate based G-spaces between 3 and 3' by washing with E(# ' ,a), 
and similarly for G-spect~a. 

Lemma 7.3. If X is an 3-CW spectrum, then E(+',~)AX is Gcontractible. 
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proof. -The projections E~+AX + X and (EST )+AX + X are both Gequivalences by 

11.2.12, and the conclusion follows. 

For Gspaces X, the commutation of smash products with passage to fixed 

points allows sharper statements. Recall that Xd denotes {x / Gx f13 } and that, 

if X is a GCW complex, then X3 is a subcomplex. The &Whitehead theorem 

implies the following results. 

Lemma 7.4. If f: X + Y is a map of G-CW complexes such that fH: xH + yH is an 

equivalence for H 3' - 3 ,  then lhf : E( 3 ,3) AX + E(3 ,3 )4Y is a G-equivalence . 
In particular, the inclusion X + X induces a G-equivalence E(~:~)Ax + E(3',3)AX. 

J a 

The following formalization of induction up orbit types provides us with an 

operationally analogous result for maps of Gspectra. It could be stated in terms 

of weak equivalences, but the represented form is more convenient for reference in 

the applications. Let 3 I H  denote the family of subgroups of H in 3 and 
observe that E 3  regarded as an H-space is E(31H). 

Proposition 7.5. Let 3 c 3' and let f: Y + Z be a map of Gspectra. 

(i) If f,: [X,YIH + [X,ZIH is an isomorphism for all H F 5 and all 
H-spectra X, then 

is an isomorphism for all G-spectra X and all 3-spectra W, such as 

W = C~E~'. 
N N 

(ii) If (l~f)*: [x,E(~~H)AYI~ + [x,E(~~H)Az]~ is an isomorphism for all 

H E 3'-  3 and all H-spectra X, then 

is an isomorphism for all G-spectra X. 

(iii) If (l~f),: IX,E(32,$l)~YIG + [X,E(J2,J1)~ZlG is an isomorphism for all 

adjacent families (S2,g1) with 3 C C g2 C 4' and all G-spectra 

X, then 

is is isomorphism for all G-spectra X. 

Provided X is finite, (i)-(iii) also hold for localized horn sets. Moreover, 
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(i)- (iii) , but not the i r  localized versions, remain valid i f  the spectra or spaces We.now have a l l  of the preliminaries needed for  the next section, but we shal l  

smashed with Y and Z are instead smashed with X. need further ' infomation for the proof of the sp l i t t i ng  theorem in section 10. We 

on space level  hom sets  i n  the r e s t  of t h i s  section. 
Proof. By the l i m l  exact sequence, we nay assume that  X i s  f i n i t e  throughout. 

By wirth&llerls  isomorphism and the standard change of groups isomorphism, the 
 emm ma 7 * 6  For G-CW complexes X and Y, the projection q: X + X/X3, induces 

hypothesis of (i) implies tha t  
a bijection 

and 
a d  the inclusion j : Xg + X induces a bijection 

are isomorphisms for a l l  H E 3 and a l l  X. By induction on the number of c e l l s  

for f i n i t e  W and passage t o  colimits i n  general, we s t i l l  have such isomorphisms 

when G/H+ i s  replaced by an 3 -CW spectrum W. This proves both versions of (i) , 
the al ternate version also being a special case of the 3-Whitehead theorem, 

N N N 

11.2.2. Using that  E (g1 ,3 )  2 (EB ' )+AE~.  and that ,  as an H-space, E51 = ~ ( 9 1 ~ )  i s  

H-contractible i f  H E  3 , we see tha t  (ii) and i t s  al ternate version follow by 

applying (i) and i t s  al ternate version with 3 replaced by 5 ' ,  W taken t o  be 
N 

( ~ 3 ' ) + ,  and f replaced by l ~ f :  E3rY 4 ;3*~ or by F (1 , f ) :  F(%?,Y) + F ( & , z ) .  

We prove (iii) by applying t ransf in i te  induction t o  the collection of 

families , ordered by inclusion, such that  c $ C 9 and 

i s  an isomorphism for  a l l  X. Since G has only countably nany conjugacy classes 

of subgroups, any to t a l ly  ordered subset of has a cofinal sequence {ei). I f  

= u ti, then t e l  ECi i s  a universal C -space and t e l  E(fi,3) i s  

G-equivalent t o  E (e ,g ) .  Thus 6 E by an easy colimit argument. Therefore $ has 

a maximal element &.  If G were not equal t o  3 '  and H was a subgroup of G 

minimal among those i n  3'-c, then the long exact sequence associated t o  

3 c GC ( H I  by virtue of Lemma 7.2 and the hypothesis on adjacent families would 

imply that  6 U ( H I  was i n  c, contradicting the maximality of e .  The a l ternate  

version of (iii) i s  similar, using the liml exact sequence t o  handle the 

telescope. As usual, for the localized versions, one must remember tha t  the l i m l  

exact sequence i s  no longer available. 

0b$erve that  3 I H  i s  the family @ = @(HI  of a l l  proper subgroups of H 

when (3 ' , 3 )  i s  an adjacent pai r  with 3 ' -3 = ( H I .  In practice,  we apply (ii) t o  

adjacent pairs t o  verify the hypothesis of (iii). 

Proof. Since E (  9' ,g) is an 3'-space, any G-map f :  X + E ( 9 '  , ~ ) A Y  must send - 
x3' 

t o  the basepoint, and similarly for  homotopies. The ce l l s  of X not in X 
3 

are of orbit  type G/H with H e 3 ; since ~ ( 3 ' , 3 ) ~  i s  contractible for such H, 

the statement about j* holds by induction up the re la t ive  skeleta of (X,X3). 

Note tha t ,  apart from the base vertex, a l l  ce l l s  of ( X  /X , )  are of orbi t  3 3 
type G/H with H E 3'- a. We apply the lemma t o  obtain information about passage 

t o  H-fixed points when (a1,3)  i s  an adjacent pair  with 3'-  3 = ( H I ,  and we l e t  

N = N H  and W = W H .  

Lemma 7.7. If $ I - $ =  ( H I ,  then ~ ( 3 ' , 3 ) ~  i s  W-equivalent t o  EWt. 

Proof. Since E J ~  i s  empty, ~ ( 3 '  ,31H = [ (E4' Certainly ( ~ 3 '  l H  i s  

contractible, and it i s  W-free since (E3' l M  i s  empty i f  H i s  a proper subgroup 

of MC N. 

Lemma 7.8. If 3 ' - 3 = ( H  and X i s  a G C W  complex such tha t  every isotropy 

group Gx which properly contains H has a t  l eas t  one element in N-H, then, for 

any Y, passage to'H-fixed points specifies a bijection 

Proof. Consider the commutative diagram 

* 
[X/X , ,E(3' ,3)"YIG I X , E ( 3 ' ,  3) Y I G  

3 
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i n  which we identify (X/XJ l H  with i t s  homeomorph xH/$ . Our hypothesis on X s' ,3)hY1 
m 
A IX"E( 3'  ,T I  ' A ~ n ] G  

ensures tha t  every element of x!' i s  fixed by some nonidentity element of W. 

Therefore (qH)* i s  a bijection (by Lemma 7.6 applied t o  E( {1} , + )  = EWt ) . Since 

q* i s  also a bijection,  it suffices t o  prove tha t  @H on the l e f t  i s  a 

bijection.  Thus assume that  XJI = {*}. Then xH = X: and @H factors as the 

composite 

* 
[X,E(J ' , 5 ) h Y I G  & IX3,E(J1 ,B)4YIG ' I X ~ , E W + A Y ~ I ~ .  

Since j* i s  a bijection by Lemma 7.6, we may asSume tha t  X = X3. Then a l l  ce l l s  

of X,  apart from the base vertex, are of orbit  type G/H and the action map 

G + A ~ X ~  r X i s  therefore a G-homeomorphism. This clearly implies tha t  mH i s  a 

bijection ( compare Bredon [ 18, 11.5.12 1 ) . 

Scholium 7.9. The hypothesis on X i s  necessary. For example, i f  H i s  a proper 

subgroup of G such that  H = N and i f  X = Y = SO, then mH has domain the 

1-point se t  nnE(3' , dlG and range the 2-point se t  noso. The lemma was stated 

The maps q* and (qn)*  are bijections by Lemma 7.6 and the maps m y  Yd @ ~ / n  
are bijections by Lemrna 7.8. 

$8. Concentration of homolopy and cohomology theories between families 

The resul ts  of section 6 give a quite satisfactory picture of localizations 

when G i s  f in i t e .  The lack of a unique smallest subgroup defining a given prime 

ideal q(K,p) prevents us from obtaining such a nice picture when G i s  a general 

compact Lie group. However, by focusing on the largest  subgroup defining q(K,p), - 
without such an hypothesis in  [38, Satz 11. we can obtain an interesting topological interpretation of localization a t  q(K,p) 

that  may work i n  general. We can also obtain an analogous interpretation of 

We shal l  also need an elaboration of the lemma* multiplication by an idempotent of A(G)  determined by a perfect subgroup of G. 

These resul ts  generalize the isomorphisms of Theorems 6.1 and 6.8, which deal 

Lemma 7-10. Let n be a normal subgroup of a compact Lie group I' with quotient with idem~otents of A ( G )  or, i f  G i s  f in i t e ,  A ( G ) ( p )  determined by normal 

group G. Let (3 1 , g )  be an adjacent pair  i n  r such tha t  3 ' -4 = ( I) , where perfect or p-perfect subgrou~s. AS an aside, we give an analogous generalization of 

TI c Y C I". Then 11.9.13, concerning localizations a t  Euler classes. 

: [X,E(al , J ) ~ Y I  ,-+ [ x \ E ( ~ '  , j ) % ~ " ~  

i s  a bijection for any F-CW complexes X and Y. 

Proof. Here E(3' ,3In = E(B1/n,3/ll), where g/n i s  the family 

{n/n 1 n:c ~c r and R E  31 

These resul ts  a l l  deal with concentrations of homology and cohomology theories 

between families. There are two natural  ways t o  concentrate a cohomology theory 

between 3 and 3 ' ,  but there is only one natural  way t o  so concentrate a homology 

theory. 

h f i n i t i o n s  8.1. Let 3 c 3' and l e t  EG and X be Gspectra.  
G (i) Define E13',31 and E [ ~ ' , $ I ;  t o  be the homology and cohomology 

theories represented by E (3 , J )  n E, . 
i n  G, and similarly for 3 ' ; clearly (J ' / II ,O/II)  i s  an adjacent pair  with (ii) Define 

" 

p /n: - $ / n  = (%'/a). Observe that  (XSl ) n  = ( x " ~ ,  lTI as  a G-subcomplex of xn. Let 

~ $ 1 ~ '  ~91 (x) = ~ $ ( ~ ( 3 ' , 3 )  X )  and E;[3' ,3] (x)  = E ; ( E ( ~  1 ,!J) x) .  
w = N ~ (  Y ) / Y  z NG( Y / T I ) / (  y/fl) 

In homology, these notions clearly coincide, 

and consider the following commutative diagram. 
E[3 ' , ~ I $ ( x )  = E$[ 3J ,31 ( X I .  
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In cohomology they are quite dif fereot , and ~:[d ,3l is represented by the G 
proposition 8.4. Let 6 = {HlrH(e) = 01, 3' = {HlmK(e) = 1 for some K 3 H}, 

function G-spectrum F(E(3' ,8) ,EG). and 3 = g l n  & . For Gspectra X and Y, there are natural isomorphisms 

The second definition is implicit in Comer and ~loyd [35] and explicit in tom e[E(3' ,~)AX,Y]~ E e[X,YIG z e[X,E(3' ,3)hYIG. 

Dieck [ 441 . The first definition is new and is forced by our work here and in 
1199. Lemma 7.2 implies the existence of long exact sequences connecting these proof. Since +K(l-e) = 1 if K 4 ' , Lemma 8.2 gives that multiplication by 

CC_ N N 

theories, and Lemmas 7.3 and 7.4 imply vanishing and excision properties of the 1-e is an isomorphism on the groups [E~'AX,YI~ and [X,EB1~YIG. Therefore 

theories given in (ii). Proposition 7.5 implies invariance properties that are the by e is zero on these groups. Since 3 c 4, (E9)E is empty and 

crux of our work in this section. lemma 8.3 gives that ~ [ E ~ + A x , Y I ~  = o and ~ [ x , E s + ~ Y I ~  = O. The conc~usion follows 

In the next few results, which are essentially due to tom Dieck [421 (but see from the long exact sequences obtained from the cofibre sequences 

Scholium 8.5), e is a fixed idempotent element of A(G). We state results in 

stable category terms, but the interest is in their homological and cohomological 

interpretations. 

(EJ' )+-s0-+,"3' and ~3'- (ES' )+  - E(J' ,Y). 
Lemma 8.2. Let 3 t d 1  be families such that +H(e) = 1 for He 3'-3. For all Scholium 8.5. We would like to use Lemma 8.2 to conclude that multiplication by e 

G-spectra X and Y, multiplication by e is an isomorphism on the groups is an isomorphism on the groups involving E(~',J). We have 

[X,E(bl ,&)hYIG and [E(3' ,s)AX,YI~. 
3 ' - g =  {H I J C H C K for some J and K such that +J(e) = +K(e) = 1). 

Proof. We may assume that 3 and 9' are adjacent with 9' -3 = (HI. f3y 

Proposition 7.5(ii), it suffices to show that multiplication by e, that is, by 
N N 

rfi( e 1, is an isomorphism on IX,EBAYI and [ E@AX,Y I H, where (P is the family of 

proper subgroups of H. Since mH(e) = 1, rfi(e) = IH/HI + ,Z aj[H/J] for some 
(J)<(H) 

integers aJ. Since multiplication by [H/J] is obtained by smashing maps with the 

composite 

N 

and since E (P is J-contractible if J f H, multiplication by [H/J] is zero and 

multiplication by rfi(e) is the identity. 

Lemma 8.3. Let 6 = {H I mJ(e) = 0 for all J C  H} = {H I rfi(e) = 0). For 

G-spectra X and Y and a G-CW complex W, the inclusion We + W induces 

isomorphisms 

Proof. ~t suffices to show that e [X,ZhY] = 0 and e[ ZhX,Yl = 0 for all 

,!$ -CB: complexes Z. If Z = znG/H+, this holds because rice = 0. The 

conclusions follow for finite Z by induction and for general Z by colimit and 

liml exact sequence arguments. 

Clearly 3 ' - 3 contains @ I $( e) = 1 }, but the inclusion can be proper. For 

example, if e = 1-eL where L is a perfect subgroup of G other than 1 or 

Ga, then +l(e) = +G(e) = 1 but gL(e) = 0. This point is missed in 142, 151, 

where it is assumed that 3' - {H 1 &(el = I} is a family. Fortunately, this 

assumption is warranted when e = e~ for a perfect subgroup L of G. In this case 

because J C H C K and (Ja) = (L) = (Ka) imply that (Ha) = (L). 

Using the scholium and Lemmas 8.2 and 8.3, we obtain the following homological 

implications of Proposition 8.4. 

Corollary 8.6. If X is a G-CW complex and EG is a Gspectrum, then, with 
G e = { ~ l r ~ ( e ~ )  = 01, 3' = {HI %(eL) = 1 for some K 3 H), and 9 = 3'n E ,  
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There is an analogous sequence of results for localizations, but here, because proof. . m e  second isomorphism is immediate from Theorem 6.5 and the first. Efy our 
of the limitations of the localized version of Proposition 7.5, we are forced to use definitions, 
only our first definition of concentrated theories. In the next few statements, 
p is zero or a prime, K is a subgroup of G with I W K ~  finite and prime to p, 2'- g =  {H / (HI c (K) and q(J,p) = q for some J C H). 

and q is the prime ideal q(K,p) of A(G). We agree to write [x,YlG = IX,YIG for 

notational convenience. view of the maximality of (K) among conjugacy classes (HI such that q(H,p) = q, a 

yes answer to Question 3.8 implies that 

Lemma 8.7. Let 3C 3 '  be families such that q(H,p) = q for He 9'-3. For , 

finite G-CW spectra X and general G-spectra Y, the natural map 7.'- 3 = {H I q(H,p) = q). 

is an isomorphism. 

Proof. Let f c A(G)-q. It suffices to show that multiplication by f is an 

isomorphism on [X,E(21,7)h~~Tp). The argument is precisely the same as the proof 

of Lemma 8.2; the essential point is that if q(H,p) = q, then 

rfi(f) = mH(f)[H/HI + Z aJIH/JI with mH(f) prime to p. 
(J)<(H) 

Lemma 8.8. Let E = {H 1 q(J,p) # q for all J C H) = {H I A(HIq = 0). Let X 

and Y be G-CW spectra and W be a G-CW complex. If X or W is finite, the 

inclusion W -+ W induces an isomorphism E 

if W is finite, the inclusion W + W induces an isomorphism 

~hus [x,E(~' ,3)nY1TP) n [x,E(~ ',~)AYI~ by Lemma 8.7. Since (E9Ie is empty, 

Lemma 8.8 implies that IX, ( E ~ ) + A Y I ~  = 0. We claim that Ix,%~AYI~ = 0. The first 

isomorphism will follow from the claim and the evident long exact sequences. To 

prove the claim, it suffices to show that I X , E ( ~ ~ , ~ ~ ) ~ Y ] ~  = 0 if 3IC g 1 C J 2  

and (32,31) is an adjacent pair, say $2 -gl = (J). Since (J) (K), q(J,p) # q. 
Lemma 8.7 again, 

hence 

This is zero since (A(GIq( J,p) Iq = 0 by Corollary 5.2. 

Remembering that E"3 = E(3,,3), we obtain the following homological 

IWAX,YI;-[W AX,YI;. consequence. 
t 

Proof. Lemma 5.3 gives the agreement of the two specifications of c .  It suffices Corollary 8.10. Let X be a GCW complex and EG be a Gspectrum. Then 

to show that, for an f$ -CW complex Z, [X,Z~YI; = 0 if X or Z is finite and 

[ZAX,Y 1; = 0 if Z is finite. This is clear if Z = Z~G/H+ and follows by Ef(xIq z E13' ,31f(xE) (p) E (EI~,, ~~KI?((x~) (p) linv 

induction if Z is finite. If X is finite, we can pass to colimits to conclude 

that [X,ZAYI~ = 0. and, if X is finite, 

Proposition 8.9. Let q = q(K,p) with I W K ~  finite and prime to p and let 

c =  {H I q(J,p) f q for all J C H), 3' = {H I (HI < (K)), and 

3 = 6 n 3 ' .  Assume that G is finite or that the answer to Question 3.8 is yes. 

Then,for finite G-CW spectra X and general G-spectra Y, there are natural Remarks 8.11. (i) By Lemma 5.3, we see that X = G * X ~  if p = 0 and e 
isomo6phisms 

Xt = G.XKp if G is finite and p > 0. 

( ii) Even for finite X, the corollary fails if we try to use the usual version, 

E;[3 ,I] (XI, of cohomology concentrated between 3 and 3 ' . For an explicit 
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counterexample, let p = 0, let G = K be cyclic of order 2, and N N  let X be a proof. As in the proof of I1 -9 -1 3, the colimit over V C U1 of the spheres sV is 
point. Here 3' = ?_ and = 3 = {l }; E 3 = EG and we write E 3 = EG. We have an a model for 'E& and the maps sV + sW of the colimit system are induced by 
exact sequence inclusions e: SO + s ~ - ~  and so induce multiplication by Xw-v 

Take E; to be complex K-theory K:. We have KG~(EG) = 0, K;(P~) = R(G), and The conclusion follows (in all gradings by the generality of X and y). 
"* " 

K~(EG) = ~ ( G I  = Z + i2. If we had KG(EG) (0) n I$(pt)q, then, since 

R(GIq = Q, we would have the impossible exact sequence corollary 8.14 For G-CW complexes, there are natural isombrphisrns 

We complete this section with an analogous result, due in homology to tom Dieck 

144 1 , which relates localizations defined by Euler classes to concentrations between 
families. A special case was given in 11.9.13. 

Let F = FG be a module spectrum over a ring spectrum E = EG. We have Euler 

classes xV = e* ( 1 ) e ~;(~t) , where e: SO + SV is the inclusion and 

1 e :;(sv) = g(pt) is the identity element. Clearly x ~ + ~  = xvxw and xV = 0 

if V contains a trivial summand. Let U' c U be the sum of countably many copies 

of each of a chosen set of representations of G; U1 need not be a subuniverse 

since it need not contain a trivial representation. Let S = {xV I V C U'}. Then 

S is a multiplicative subset of the RO(G)-graded ring g(pt) . Let be the 

family of subgroups H of G such that U1 contains an H-trivial representation. 

With these notations and hypotheses, we have the following results. 

and, if X is finite, 

Remark 8.15. Again, the analog for FLI Bm,$l fails. With X a point and 

Ut = U - ITG, already provides a counterexample when G is cyclic of order 2. 

$9. Equivariant stable homotopy groups and Mackey functors 

One can reprove the isomorphism A(G) i n:(s) by specializing the following 
general splitting theorem for equivariant stable homotopy groups. Let Ad(G) 

denote the adjoint representation of G. 

Lemma 8.12. Let X and Y be G-CW spectra and W be a G-CW complex. If X 
or W is finite, the inclusion W + W induces an isomorphism Theorem 9.1. For based G-spaces Y, there is a natural isomorphism 

if W is finite, the inclusion We -+ W induces an isomorphism 

S-~(Y~F);(W~X) -+s-~(Y~~F);(w~*x). 

Proof. The image of xV in E;(G/H) = g(pt) is zero if vH f 0, so 

S-'E;(~~) = 0 if He 8 .  The rest is as in Lemma 8.8. 

Note that the sum here is over rG, not (PG. However, WH is finite if and 

only if Ad(WH) = 0, and the space EWH'". I : ~ ~ ( ~ ) Y +  is clearly connected if 
WH 

Ad(WH) # 0. 

Corollary 9.2. For based G-spaces Y, there is a natural isomorphism 

$E(Y) t I: H~(wH;;~(Y~) 1. 
Theorem 8.13. For finite G-CW spectra X and general Gspectra Y, there is a (HIE (PG 
natural isomorphism 

Proof. For a finite group W and based W-space X, the standard filtration of EW - 
leads to a spectral sequence converging from (W;?, (X) ) to ii* ( EW'A~X). In total 
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degree 0, the spectral sequence collapses to an isomorphism H()(w;?~[) " YO(m% wX). (p : G/K +. G/H is a composite of a conjugation cg: G/K + ~/~-lKg and a canonical 

Of course, for any W-module M, HO(W;M) 5 M/( IW)M, where IW is the projection i: G/gmlKg -+ G/H, where g-lKg C H, we see that each equivalence class 

augmentation ideal of the group ring Z[W]. a representative of the form 

We shall prove a generalization of Theorem 9.1 in the next section and we shall 

there write down an explicit homomorphism e which gives the isomorphism. A diagram 

chase from the definition of 0 leads to explicit generators for the group 
Since ncg = n if g 6 H, we see that all equivalence classes are still 

Y~(Y). The relevant chase is a specialization of that at the end of section 11 and pepresented if we restrict attention to one group K in each conjugacy class 
will therefore be omitted. (K) E @H. Of course, the G-homotopy class of x is determined by a component of 

xK. If x and X' correspond to components with the same image in nO(xK/wHK), 
Corollary 9.3. ;!(Y) is the free Abelian group generated by the composites 

then X' ' xcg for some g € NHK Thus we obtain a complete set of representatives 

if we restrict attention to one x corresponding to each component of xK/wHK. 
Under the isomorphism 

N N 

where r is the transfer, y: G/H+ + Y is the based G-map such that y(eH) = y, 

H runs over a set of representatives for the conjugacy classes in QG, and y 

runs over a set of representatives in yH for the non-basepoint components of 
( zmX+ ) r ( n) corresponds to the composite 

yH/WH. 

With Y = SO, this says that ng(~) is the free Abelian group generated by 

the Euler characteristics X(G/H) for (H) E QG. This shows directly that where x = x(~K) (as we see by 11.6.15 or IV.5.101, hence our homomorphism is an 
X: A(G) + S) is an epimorphism, which was the substantive step in the proof that isomorphism by Corollary 9.3. 
x is an isomorphism. 

There is a useful conceptual variant of the previous corollary. 

Corollary 9.4. Let X be an unbased G-space. For H c G, the group 

[ Z m ~ / ~ + , ~ m ~ + ] G  is isomorphic to the free Abelian group generated by the equivalence 

classes [+,XI of diagrams 

of space-level Gmaps, where K C H and WHK is finite. Here ((p,~) is 

equivalent to (+',xl) if there is a G-homeomorphism 6:  G/K + G/K1 such that 

+'c = (p and X'S = x inthe diagram 

In the rest of this section, we use this corollary to study the stable orbit 
category @G, namely the full subcategory of ~G%U whose objects are the 

suspension spectra ZmG/Hf. We would like to express composition in 6 G  in 

concrete space level terms. In principle, this could be done by use of the double 
coset formula, but the details are unmanageable in the compact Lie case and 

unilluminating in the finite case. In the latter case, 8 G  embeds as a full 

subcategory of a category with a purely algebraic definition and an obvious 

composition law. To explain this, we need a categorical construction. Recall that 

a category is preadditive if its hom sets are Abelian groups and composition is 

bilinear; is additive if, in addition, it has finite coproducts (which are then 

also finite products; see [92, VIII921). 

Construction 9.5. Let 6 be a category which satisfies Axioms (Ml) and (M.2) of 

Dress [49, p. 2011: 

(Ml) & is small, in the sense that it has a set of isomorphism classes of objects, 
Proof. We would obtain the same equivalence relation if we allowed +IS = (p. Map and has finite limits and coproducts; in particular, it has pullbacks, a 

the specified group to [ xmG/Hf ,zmx+1 by sending [+,XI to the composite terminal object, and an initial object. 

(zaX+)r(+). Clearly this gives a well-defined homomorphism. Since any Gmap 
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(m)  In a commutative diagram proof. Clearly 2 G sa t i s f i e s  Axioms (M1) and ( W )  . Define a functor st3 G + ~ G ~ U  

• 1 by sending F t o  Z-F' and sending a morphism I$ t o  ( i r n X t ) o ~  ( 4 ) . More 
2% 1 j 1  ~1 

1 
expl ic i t ly ,  given the diagram E A P F of f i n i t e  G s e t s ,  we may view as a 

I disjoint  union of f i n i t e  G-covers (provided we allow the empty cover, whose transfer 
- - J = + A ~ B < ~  B i s  necessarily zero),  and $ has a well-defined transfer T ( +  ) : C ~ E +  + c"P+. Our 

i n  which i and j are the canonical maps, the squares are pullbacks i f  and 

only i f  i1 and j 1  represent C1  as the coproduct of A' and B1 .  

We construct an additive category S d ,  which we think of as a kind of stabil ization 

of 6 , in two steps. F i r s t ,  define a category S'C (sometimes called the category 

of spans of 6 by l e t t ing  S+G have the same objects as 6 and l e t t ing  i t s  

morphisms from C t o  D be the equivalence classes [ + , X I  of diagrams 

c P D i n  C , where ( $ , X )  - ( $' , X )  i f  there i s  an isomorphism E : P + P1 

i n  & such that  $ '5  = $ and = X .  The composite of and [$,w]: D +  E 

i s  displayed as [$$,wxl in the diagram 

i n  which the square is a pullback. Define a sum on t h i s  hom set  by l e t t ing  

[$,XI + , x l  1 be J ($,$ '  1, ( x , x '  I ,  where 

( + , $ l ) :  P l l p 1  -c and ( X , x 1 ) :   PUP^ +D 

are the maps i n  canonically induced by the given pairs.  Clearly t h i s  sum i s  

commutative and associative. I t s  zero element i s  the unique diagram C t P + D in 

which P i s  the i n i t i a l  object of 6 . Composition i n  S+G is bi l inear  since 

pullbacks in 6 preserve coproducts ( t h i s  being part  of Axiom ( E l ) .  The desired 

category SG is obtained from S+C by the Grothendieck construction. That is, the 

objects of S e are the objects of S+C (and thus of $ ) , and its morphisms are 

formal differences of morphisms of s?. By construction, Sd  is a preadditive 

category, and Axiom (M2)  implies tha t  coproducts in become coproducts in  Se, 

so tha t  S$ is additive. 

functor i s  well-defined by the naturali ty and t r ans i t iv i ty  of the transfer,  and it 
extends uniquely t o  an additive functor S3G + GGIIU. The extended functor i s  an 

'isomorphism on hom se t s  by Corollary 9.4. 

- 
Remarks 9.7. The inclusion S3G + hG8U sends disjoint  unions t o  wedges &d 

Cartesian products t o  smash products. It also preserves duality. To see t h i s ,  

observe that  S3G i s  self-dual. Indeed, the contravariant functor D: S3G + S3G which 

i s  the identi ty on objects and sends a map [$,XI : E + F t o  the map [x,$I : F + E 

provides an expl ic i t  isomorphism between S3G and i t s  opposite category. ( I n  fac t ,  

th is  works for any category t; as i n  Construction 9.5.) To see that  D 

corresponds t o  Spanier-Whitehead duality i n  ~ G A U ,  l e t  

rl = [ ( , A ]  : * ---9.F x F and E = [ A , C ] :  F x F -p*, 

where 5: F + * i s  the projection t o  a point. The diagram 

Proposition 9.6. Let G be a f i n i t e  group and l e t  3 G  be the category of f i n i t e  

G-sets and G-maps. Then S G  i s  isomorphic t o  the f u l l  subcategory of the stable 

category whose objects are the suspension Gspectra C-F+ for  F E 3 G .  

F x F F x F  

and i t s  symmetric analog with A x 1 and 1 x A and 5 x 1 and 1 x 5 

interchanged demonstrate tha t  n and E display C"F+ as  a self-dual f i n i t e  

G-spectrum. An equally t r i v i a l  diagram chase shows that  [$,XI and lX,$1 are 

dual maps. 



Remarks 9.8. For a map f: F + F in S S ,  111.7.1 specifies a trace ~(f): 3 + F 

with respect to A and a Lefschete constant x(f): * + *. To compute these maps, 

it suffices by additivity to consider the case when F is an orbit G/H and f is 

given by a diagram G/H d- G/K --% G/H. Here, by use of the duality maps n and 

E and inspection of the diagram 

? 

G/K pullback ,G/K 

we find easily that x(f) = 0 if $ f  o and x(f) = [E$,&+] if $ =  w e  

Similarly, ~ ( f )  = 0 if $ f w and ~ ( f )  = [~$,$1 if $ = w e  

The original motivation for the introduction of the categories S+~G and 

S3G was not this connection with the stable category but rather the connection with 

Mackey functors. Lindner [911 defined s+~G, observed that it has finite products, 

and proved that a product-preserving contravariant functor S ~ G  + is precisely 

the same thing as a Mackey functor in the sense of Dress [49,501. Since preserving 

products is equivalent to preserving addition on hom sets, such a functor extends 

uniquely to an additive contravariant functor S + This description of Mackey 

functors is the starting point of the first author's systematic algebraic study of 

Mackey functors in 1871. Together with Proposition 9.6, it implies the following 

claim from [881. A direct computational proof based on double coset decompositions 

is also possible. 

Proposition 9.9. For a finite group G, a Mackey functor determines and is 

determined by an additive contravariant functor 0 G +ad.  

As in [881, for a compact Lie group G we define a Mackey functor to be an 

additive contravariant functor @G + (kt%. lk this generality, our lack of control 

over composition in O G  makes it difficult to construct Mackey functors 

algebraically. Together with formal properties of the stable category already 

developed, the following example completes the construction of the orbit transfer 

in ordinary cohomology that we outlined in [88]. 

proposition 9.10. There is a unique Mackey functor Z: @G + ab with the following 
properties. 

(i) On objects, Z( c"G/H+) = Z for all H C G. 

I ( ii) Qn maps ZmG/Ht + Zm( G/H1 + induced by G-maps f : G/H + G/H1 , Z( Cmf+) is 
the identity homomorphism. 

( iii On transfer maps T : Zm( G/H' ) +  + Crn~/H+ induced by Gmaps G/H + G/HI given 

by inclusions H C H', L(T) is multiplication by the Euler characteristic 

x(H1/H) . 
proof. Actually, by application of the double coset formula to the pullback diagram - 

one can show that ( iii follows from ( i) and ( ii ) , but we shall give a different 
argument. The uniqueness of Z is immediate from Corollary 9.4. The problem is to 

show that the specifications (i)-(iii) are compatible with composition in OG. We 

show this indirectly by displaying Z as a quotient Mackey functor of the Burnsi.de 
ring Mackey functor A: 8G + specified by 

Here the last form of the definition displays the functoriality of A. Define 
I(ZrnG/Ht) to be the kernel I(H) of the augmentation E: A(H) + Z. Here, for a - 
finite H-space Y, ~ [ y ]  is the nonequivariant Euler characteristic of Y. We claim 

that L is a subfunctor of A. To see this, it suffices to check that if 

a :  Z"G/K+ + ZmG/Ht is a G-map, then oX(I(H)) C I(K). By Corollary 9.4, it 

suffices to check this when a  is induced by a map n or c as in Lemma 2.17 and 
g 

when a  is a transfer. In the first case, this is immediate from the cited 

lemma. In the case of a transfer, this follows from the lemma and the formula 

for K C  H and a finite K-space Y; the formula holds by the multiplicativity on 

bundles of nonequivariant Euler characteristics. Now define L = A/I. Clearly Z 
satisfies (i) and (ii), and (iii) holds by the formula just cited. 
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Notations 1002. Fix A C II, where II is a normal subgroup of r. 
(i) Let * N  denote the nomalizer of A in r and W denote N/A. 

We here formulate and prove our generalization of Theorem 9.1. Fix a normal (ii) Let N' = N n II, so that N' is the normalizer of A in II, and let W' = N'/A. 

subgroup n of a compact Lie group r and let E3(n; I') denote the universal (iii) Let L denote the tangent N-representation at the identity coset of r/N. 

a-free r-space (denoted E$(II) in the previous chapter, but we want to indicate the (iv) Let A denote the adjoint representation of W derived from Wt . 
total group here). Let Ad(n;r) denote the adjoint representation of r derived (v) Let E denote the universal W'-free W-space. 

from II, that is, the tangent space of II at e with r action induced by the Of course, N' is a normal subgroup of N, W' is a normal subgroup of W, 

conjugation action of r on II. For based r-spaces X and Y and integers n, we I and, since II is normal in r, the product NII is a subgroup of r. 
agree to write 

Lemma 10.3. (i ) The identifications 

x ,  } = znr"x, z"rlr, 
W/Wt n N/N1 = N/N n II n NII/II 

where the right side is computed in a complete r-universe U. Let G = r/II and 

regard G-spaces as r-spaces by pullback. With these notations, we have the display W/W' as a subgroup of G = T/E. 

following splitting theorem. (ii) L contains no A-trivial summands; that is, LA = 0. 

(iii) NII has finite index in r, hence W/W1 has finite index in G. 

Theorem 10.1. Let X be a based G-space and Y be a based r-space. Assume either proof. (i) is clear. For (ii) , it suffices to show that the path component of 
that X is a finite G-CW complex or that II is finite. Then there is a natural eN in (r/NlA consists of the single point eN. Let a: I + ( r/NlA be a path 
isomorphism 

where the sum runs over the r-conjugacy classes of subgroups A of II. 

starting at eN. We may lift a to a path E: I + r starting at e. For t c I, 

= S N  is A-fixed, hence As c $N and thus 4t1Aztti N for all A r h 

Define Z: A x I t N by ?$(A) = &-:A&. Since Ft is a homotopy through 

homomorphisms, [35, 38.11 implies that $ ( A) = ne1%( A)n for some n c N and 

all A E A. Since Z0(h) = A and nc N, iil(~) E A and thus El E N and 

a1 = eN. For (iii), observe that L = L' + L" as an N-representation, where L' 

We shall shortly display WrA/WnA as a subgroup of G and so fix an action of is the tangent NII-representation at eNn E r/Nn and L" is the tangent 

this group on X; the remaining group actions are the evident ones. If we set N-representation at eN E NII/N. Since r/NII n G/(NII/II), II and thus also A acts 
II = r and rename it G, then Theorem 10.1 reduces to a slight generalization of trivially on L' . By (ii), L~ = 0. Therefore L' = (L' l A  = 0 and Nn has finite 

Theorem 9.1. Of course, the adjoint representations here are all zero when G is index in r. 
finite. As will be explained elsewhere 11061, Theorem 10.1 then implies an i 

f 

interesting generalization of the Segal conjecture. The homomorphism 8 is the sum over r-conjugacy classes (A) of homomorphisms 

We shall write down an explicit natural homomorphism 8 from the sum displayed 

in Theorem 10.1 to {X,Y};; 8 is defined for any X, and we shall prove it to be 

an isomorphism when X is finite. When II is finite, 8 specifies a morphism of 

cohomology theories for each fixed Y, and the liml exact sequence will imply 

that 0 is an isomorphism for all X. In general, the sum is infinite, hence the 

wedge axiom fails, and we cannot expect 8 to be an isomorphism for all X. 

Virtually all of our work proceeds one A at a time, and, in an attempt to 

avoid &readable clusters of symbols, we fix abbreviated notations to be adhered to 

throughout this section and the next. 

The definition of will use the change of group and universe functor 

where E: N + W is the quotient homomorphism and j: uA + U is the inclusion of 

the A-fixed point N-universe in our complete r-universe U. Recall that E# 

preserves suspension spectra in the sense that E#X' n I'E* on GW~. 



Definition 10.4. &fine BA by commutativity of the diagram 
N " - {x, c~(E'~Y) }f: 

{X,E+A~, z%')(/Wt A {x,E+AY 1 

Here ?* is a generalized Adams isomorphism given by 11.7.2, u is a Wirthrnuller 

isomorphism given by 11.6.5, c is the standard r-homeomorphism 

p is the collapse map r xNE + {*I, and X is the composite 

# i 
{X,E+AY~~; {X,E+AY~I! A {x, Z~(E+AY) I!, 

where i : E'AY A = ( zL( E+AY ) ) + CL( E+AY ) is the inclusion of the A-f ixed point set. 

We wish to prove that e = C BA is an isomorphism when X is finite. For 
( A) 

each fixed X, e is a morphism of homology theories in ' Y. As in Proposition 7.5, 

it suffices to prove that 0 is an isomorphism when Y is replaced by E(gt,3)~Y 

for any adjacent pair of families (3 '  ,3) in r. The first part of the following 

lemma shows that, in this situation, the domain of eA is zero for all but one of 

our summands ( A). 

Lemma 10.5. Let (g t ,3 )  be an adjacent pair of families in I' with jl- 3 =  (a). 

(i) If (a A TI) f ( A), then EkE(3' ,3) A is W-contractible. 

(ii) If ($2 n n) = (A), then ( xNE) a is nonequivariantly contractible. 

Proof. ( i ) . Consider EfhE(3 , 3 )  A as an N-space. For K C N, EK is empty 

unless K n n C A and E( 3' , 3YM is contractible unless ( hlo = ( a) . Thus 
E+A E(3 ' ,3 )  A is N-contractible unless there exists K C N such that both 

K n TI C A and (AK) = (a). Replacing a by a conjugate if necessary, we may 
assume that $2 = AK. Then A C a and thus A c $2 n TI. Conversely, 

and thus A = n TI. 
( ii) We may assume that A = a n TI. Since TI is normal in r, this lmplies 

that a is contained in N. Let (y,x) P (17 xNE)', y 6 I' and x P E. Then 

y-l~y , is contained in the isotropy group Nx of x and 

Y-hy = (y-lay) n n C N , ~  n c A. 

and (y,x) = (e,yx) with yx e ER. 

to the contractible space En. 

is a finite G C W  complex, we have 

coliml CVfX, zVy1 I. 
VC u 

{x,Y)I~ = 

coliml zVx, zV~-nYl 
V C U  

It follows that 

and similarly for the other groups appearing in Definition 10.4. In view of that 
definition and the previous lemma, we need only check that the component maps A 
and ( pthl 1, of OA are isomorphisms when Y is replaced by E(3l ,3)hY, where 

3 I- 3 = (a) with ( Q TI) = ( A). It is an easy matter to interpret these maps in 

terms of space level colimits, and we claim that they are both colimits of 

bijections. For ( p\ 1) *, this is immediate from Lemma 7.4 and the contractibility 
of (I. xNEIa. 

Thus it remains to consider A. Passage to A-fixed points on representative 
maps gives a homomorphism 

An immediate inspection shows that @A is the identity, hence it suffices to show 

that @ is an isomorphism. As an N-space, E(3' , 3 )  is E(3' IN,~~N). Of course, 

the pair (9' I N, 31 N) need not Se adjacent; ( a) 1 N is a disjoint union of 

N-conjugacy classes (Y), and it is clear by inspection of fixed points that 

E( 3' I N, 31 N) is equivalent to the wedge over ( Y of the spaces E(E , E l  , where 
(El ,&)  is an adjacent pair in N with e ' - c =  (a). The map @ breaks up as a 

corresponding sum. Since YJ is r-conjugate to a and a n TI is r-conjugate to 

A, IJ n TI is r-conjugate to A, say Y n n = YAY-'. Clearly E+AE( E '  , El is 

N-contractible unless Y A TI C A, in which case y N and Y n TI = A. Thus, 

with E(3 ' ,3) replaced by E(c , E l ,  the source and target of @ are zero unless 

Y = A, in which case A C Y C N  and @ is a colimit of bijections by Lemma 7.10. 

011. Fixed point spectra of suspension spectra 

We here reinterpret Theorem 10.1 as a calculation of fixed point spectra. 

Precisely, with the notations above that theorem, we have the following spectrum 

level splitting theorem. 
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Theorem 11.1. Let G = I'/II. For based r-spaces Y, there is a natural equivalence E# = i* E* : h( W/WI )AU*--+ hwmA 
of G-spectra 

E# = jXcX: ~ W A U ~ - + - ~ A U  
Ad(W,A;W A) 

( Cmy) " v Cw ( G + A ~ ~ ~ / ~ ~ ~ [  E3( wfi;wrA )+%IIA~ 9 1 1 ,  
(A) E# = hEX: hun-hr~u 

where the wedge runs over the r-conjugacy classes of subgroups A of 11. 

Here Cm on the left refers to r and C" on the right refers to G. If we 

set II = r and rename it G, then Theorem 11.1 is a reinterpretation of Theorem 

9.1. For finite G, we proved this reinterpretation in [@I, where we used it to 

prove the equivalence of the equivariant and nonequivariant forms of the Segal 

conjecture and to derive a generalization of the Segal conjecture in the context of 

classifying G-spaces B(G,II) for principal (G,II)-bundles. In this connection, we 

conjectured the following result [89, Remark 111. 

Corollary 11.2. Let G and II be finite groups. Then there is an equivalence of 

G-spectra 

where S is the sphere (G x n)-spectrum and the wedge runs over the conjugacy 

classes of subgroups A of II. 

Proof. Set r = G x II and Y = SO in Theorem 9.1 and note that WrA = G x W,A. 

We shall write down an explicit map 6 from the wedge sum in Theorem 11.1 to 

(z?)~, and we shall deduce that 5 is an equivalence from a diagram chase 

relating 5 to 8. Again, we work one A at a time, and we adopt Notations 

10.2. A little care is needed in fixing universes in which to work. Let U be a 

complete r-universe. We index r-spectra on U, G-spectra on u', and W-spectra 

on UA. We shall be using a transfer associated to W1-free W-spectra, and such 

spectra would normally be indexed on the complete W/W1 -universe UN1 = ( u ~ ) ~ ~  . 
However, in view of Lemma 10.3( i) , the universe Un , being Nn/II-complete, must also 
be W/Wt -complete. Thus the inclusion U" UN1 is a W-equivalence and we may index 

our W1-free W-spectra on u'. We have a triangle of inclusions 

We shall write E generically for quotient homomorphisms and E# for corres- 

ponding change of group and universe functors on stable categories. Thus we have 

Upon .restriction to W/Wt-spectra, the last functor agrees with the composite of the 

, first tw?. In each case, E# is left adjoint to the appropriate fixed point 

functor going the other way. Moreover, each composite &#zm is isomorphic to 

c~E*; thus, when applied to suspension spectra, the functors E# will be omitted 

from the notations. 

The map 5 is defined to be the wedge sum of maps 

of Gspectra indexed on U\ To define c,, it suffices to specify its adjoint map 

of r-spectra indexed on U. To simplify notation, consider a general W/W1-space Z; 

we are thinking of Z = E + A ~ , C ~ Y ~ .  In view of Lemma 10.3(i), we have a 

r-homeomorphi sm 

The projection rkNz + r+"Nnz may be viewed as a based ( r,NII)-bundle with fibre 

NE/N since it can be written in the form 

where r x NII acts on rkz via the left r action on r, the right NII action 

on r, and the NII action on Z derived from Lemma l0.3(i). By IV.3.1, we have a 

transfer map of r-spectra indexed on U 

r:  zm( ~'A~~Z) Cm( ~'A~z) 

Here CW commutes with change of groups; that is, 

zm(rthNz) 2 r x ~ ~ ~ z ,  

and similarly for the domain of r. Now suppose that Z = (CA~)/W1, where F is a 
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based W1-free W-space. By 11.7.5 (and the relat ion i x z m  E z m ) ,  we have a 

dimension-shifting transfer map 

T :  zmz - C ~ F  

of W-spectra indexed on uA. Applying the change of group and universe functor 

associated t o  E: N + W, we may view r as a map of N-spectra indexed on U. 

Taking F = E'AY', we define cA by commutativity of the following diagram of 

stable r-maps. J3y an abuse jus t i f ied  by the commutativity relat ions relat ing zm t o  

a l l  functors i n  sight,  we suppress zm from the notation. 

i.1 
Y . ( r  x N ~ ) k y  "+A~(E+AY) 

To prove Theorem 11.1, it suffices t o  check that  the G-map 5 induces an 

iosmorphism on .!//IL for  a l l  subgroups IS of r which contain II . By the il-fixed 
The four l i t t l e  squares are just  na tura l i ty  diagrams, the two l i t t l e  tr iangles point adj unction, 
clearly commute, and the unlabeled arrow i s  defined by commutativity of the bottom 

subdiagram. Since r u d  = ?*, the l e f t  ve r t i ca l  composite i s  en. The composite 

from the top r ight  t o  the bottom l e f t  is (rA)*. Thus it only remains t o  check that  

for any n s Z and D E TAU. For a G-space T and G-map 5: Z-T + D' with 
the top r ight  subdiagram commutes, and for t h i s  Z can be any W/W1-space. 

adjoint r-map e: C-T + D, the following diagram commutes, where X i s  T/K+ or Recalling that  w i s  induced by a map of the same name (as  in  11.6.2) and that  

any other G-space. E# = k * ~ *  in t h i s  subdiagram, we see that  it suffices t o  prove that  the following 

diagram of Gspect ra  commutes 

In particular,  ( agrees up t o  isomorphism with (cA)*E#. We shal l  prove 

that  the following diagram commutes. 

Here v i s  the r-map which coextends the N-map 

Here w i s  a Wi r thd l l e r  isomorphim given by 11.6.5; no representation occurs i n  k*FW/W~ [ G , z m Z ) +  k*zmZ E zmZ 

t h i s  instance of w by Lemma 10 . ' j ( i i i ) .  Granting the diagram, it i s  clear tha t  

Theorem 10.1 implies Theorem 11.1. obtained by applying k* t o  the evaluation W/W1-map regarded as an N-map. Since 
the maps w here are equivalences, t h i s  diagram w i l l  commute i f  it commutes with 

To chase our diagram, abbreviate Z = E + A ~ ~ ~ % ~  and F = E+nYA. We may expand the maps w replaced by the i r  inverses 9. By 11.6.8, the maps $ are  
the diagram as follows. 
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coextensions of maps p ,  so tha t  - the l a s t  diagram w i l l  commute in hrdu i f  the V I .  mis ted  half smash products and extended powers 

following diagram commutes i n  hNSU. 

k , ~  
by L. G. k w i s  Jr., J. P. Iv?ay, and M. Steinberger 

k,Yz 4 
k, ( G "W/W xmz ) 

112 112 The extended powers of spectra used in [Hml are special cases of a general 

cooz 4 
IJ r txNnemz 

three stage ~0nst ruct ion i n  equivariant stable homotopy theory. One s t a r t s  with a 

Yk functor from some category t o  the category of Gspectra,  one forms a twisted half 

Nl'I kNzmz <l r wNn(NI?  K ~ Z * Z )  bmash product defined on G-spectra, and one then passes t o  orbi ts  with respect t o  

- I 
G or to  some subgroup H of G. In part icular,  with H = G = c D - gRm + 8Rm 

j '  j '  . 

cLcmz 4 
lJ r K ~ Z ~ Z  i s  the composite of the three functors 

Here the top rectangle commutes i n  view of the space level  identif ication of the 
E a E( J  ) from 6Rm t o  X .  J d ( ~ ~ ) j  

maps p given i n  11.6.9. The trapezoid in the middle commutes by the naturali ty 
E - t E C  K E  

j from of p.  The trapezoid a t  the bottom commutes by the t r ans i t iv i ty  of l~ given i n  z j d ( ~ m ) j  t o  c . AR" J 

11.6.13(b). The r ight  tr iangle commutes by ~ V . L + . j ( i i i ) .  The l e f t  t r iangle commutes E +. E/c j from c . A R ~  t o  B R ~ .  

by the space level  identif ications of p and r (see 11.6.9 and 11.5.5 fo r  l~ and 
J 

IV.3.l and 11.6.15 for r ) and the space level  homotopy of 11.5 *9; al ternatively,  The f i r s t  and th i rd  functors have already been defined, and t h i s  chapter i s  devoted 

th i s  tr iangle i s  implied by 11.6.16. 
t o  the construction and analysis of twisted half-smash products of Gspaces and 

G-s~ect ra*  A s  usual, G i s  t o  be a compact Lie group throughout. When we turn to 
extended powers, t h i s  generality w i l l  make it a simple matter to  replace G by 

G x X and so obtain the extended powers DjE of a G-spectrum E via composite 
j 

functors 

On the level  of spaces, we have the definit ion 

X i x Y  = x + n y .  

If G ac ts  on both spaces, it acts  diagonally on X P ~  Y.  Now replace Y by a 

G-spectrum E. Then X+ A E i s  a perfectly good G-spectrum. We ins i s t  tha t  t h i s  

i s  not what ought t o  be meant by a twisted half smash product, and we agree t o  

reserve the notation X D( E for genuine twisted half smash products. These w i l l  be 

given by a very different construction. Nevertheless, our insistence on the 

dist inction notwithstanding, it w i l l  turn out tha t  twisted half-smash products are 

i n  fac t  equivalent t o  composites of change of universe functors and untwisted half- 

smash products X+ A ( ? ) . This fact  i n  no way diminishes the impor-Lance and u t i l i t y  

o f ' t h e  new construction: the relevant change of universe functors are simple to  

define but impossible t o  analyze effectively . 
Recall from I191 that ,  for  G-universes U and U' , Q ( u , U '  denotes the 

function G-space of l inear  isometries U a U 1 .  As pointed out in 11.2.11, 
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of G for  which there exis ts  an H-linear isometry U + U 1 .  The "twisting1' in our 

construction i s  encoded by a Gmap x : X -+ .) ( U ,  U 1  ) . For there t o  be such a map, X 

must be an 3-space, and we agree once and for a l l  tha t  X i s  always required t o  have 

the homotopy type of a G C W  complex and thus of an 3 -CW complex. There i s  then a 

unique homotopy class of G-maps X .  For E E G 4 U, we shal l  construct x w E E G&U1.  

Homotopic G-maps wi l l  lead t o  canonically equivalent spectrum level  functors, and we 

shal l  use the notation X IX E for the resulting functor on the level  of stable 

categories. This dichotomy between spectrum level  and stable category level  

functors and maps must be kept in mind throughout the theory t o  follow; in 

part icular,  we use the notation z for isomorphisms of spectra and the notation =: 

for isomorphisms i n  the relevant stable category. 

For c lar i ty ,  we catalog the properties of our functors i n  section 1, deferring 

the detailed constructions and proofs un t i l  section 2. We study coherence diagrams 

relat ing smash products and twisted half smash products in section 3. Throughout 

the f i r s t  three sections, we work with G-spectra for  our fixed ambient group G. 

The homotopical behavior of our functors x F E is, governed by the nature of 

the family S(U,U1 ) . For example, i f  there is a G-linear isometry f : U -U1 , 
then $ ( U , U 1  i s  Gcontractible and there i s  a natural  equivalence 

This degeneracy w i l l  play a crucial  role i n  our theory, for  instance i n  our study of 

ce l lu lar  chains in  Chapter V I I I .  The point is that  x oc E is  given by a f a i r l y  

complicated construction, whereas X+ A f*E i s  quite simple t o  analyze. In the 

application t o  ce l lu lar  chains, G w i l l  be the t r i v i a l  group, another group R 

w i l l  act  on everything in sight,  and the previous resul t  w i l l  compute the underlying 

nonequivariant spectrum of the n-spectrum x rx E. More generally, we can apply the 

resul t  t o  compute the underlying G-spectrum of the ( G  x n)-spectrum x F E when 

G x n ac t s  on everything in  sight and there i s  a G l i n e a r  isometry U -+ U' . We 

study t h i s  si tuation in de ta i l  in section 4, the essential  point being an analysis 

of the behavior of the action of n with respect t o  the Gequivalence (*I. 

Finally, i n  section 5, permutation groups make the i r  f i r s t  expl ic i t  appearance 

in our development of equivariant stable homotopy theory. Here we discuss the 

extended powers x t~ ~ ( j )  for a G-spectrum E and subgroup n of z j '  

The reader i s  urged to  skip sections 3 and 4 on a f i r s t  reading. These 

sections are f u l l  of technical coherence diagrams. While essential  t o  the theory, 

it cannot be pretended that  t h i s  material makes interesting reading. 

be familiar with the definit ions of 192. 

meorem 1.1. Let a and a' be indexing se t s  i n  Guniverses U and U 1 ,  l e t  

x be an (unbased) G-space, and l e t  x : X + Q (u,  U '  be any G-map . Let E c Gda 
md El E -G  Jp' .  Then there are functorial  constructions of G-spectra 

x K E c G A U '  and F [ ~ , E ' )  E G A a .  

For fixed X, these functors are l e f t  and r ight  adjoint:  

The functor x K E preserves colimits i n  both variables. The functor F[x,E1) 

preserves l imi ts  in E1 and converts colimits in x t o  l imi ts .  

Functoriality in x refers  t o  the category of G-spaces over Q (U ,  U1 1, and 

colimits in x are to  be taken in t h i s  sense. We have the following behavior with 
respect t o  subobjects; compare I§8. 

Proposition 1.2. The functor x K E preserves injections, closed inclusions, and 

intersections of closed subobjects i n  both variables. If A i s  a closed G-subspace 

of X, a = X ( A ,  and D i s  a closed G-subspectrum of E, then 

The constructions enjoy the following basic invariance properties. 

Proposition 1.3. The functors x w E and F[x, El) a re  independent of the choices 

of indexing se t s  and G-universes in the sense that  they commute up t o  coherent. 

natural isomorphism with the various isomorphisms of categories of G-spectra 

specified in  I .2.4 and I .2.5. 

The most elementary examples are those with X a point. 

Examples 1.4. A G-map {*} + 9 ( U, U '  1 is  clearly jus t  a choice of a G-linear 
isometry f :  U - U 1 ,  and we shal l  see tha t  f D( E = f* E r G gU1 for  

E r G ~ U  and F [ ~ , E ' )  = f * ~ '  c G A U  fo r  E' e G A U I .  
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Perhaps the main in teres t  in the r ight  adj oints F L X ,  E t  ) i s  tha t  t he i r  

existence and properties yield simple proofs of the resul ts  we want about x oc E. 

In part icular,  the commutation isomorphisms involving F [ X ,  Ei ) in the following 

resul t  are eas i ly  checked, and the isomorphisms involving x w E follow formally, 3C , *  
by 1.3.5. 

F[x,a D l )  = a F[x,D1) and x F ( G  war E )  h wa ( X  x El; 

Proposition 1.5. For a Gmap x: X + J ( u , u t  ) and for Y e Gd, E e Gm 9 and ~f X = G xa Y and x i s  the G-map extending an H-map $: Y + J ( U , U 1 ) ,  there are 

E1 E G a b t ,  there are natural  isomorphisms 
.natural  isomorphisms 

( $  ix aXD) and FIX,F [ G , E I  ) )  Z F ~ [ G , F [  ~ , E I  ) ) . 
( E  A Y )  Vx K E)  A Y and F ( Y , F I ~ , E I  1 )  "[x,F(Y,Et ) 1; 

See I184 for the relevant definit ions.  The following remarks are based on 

11.4.15 and w i l l  play an important role in the technical work of section 4. 

The following commutation re la t ion  is a b i t  more delicate.  Remarks 1.9. The special cases with H = e give isomorphisms 

Proposition 1.6. For a G-map X :  X + ~ ( U , U '  ) with X compact, for V F 0 and x w ( G  a E)  " K ( X  (X E)  and F [ X , F [ G , E I  1 )  F I G , F [ ~ , E I  1 )  

V1 e @ I  with V 2 V t  as G-modules, and for Y E G@, there is a natural  for E e Aa and Ete d a' . Gn the r ight sides, x i s  viewed simply as a map, 
isomorphism of G-spectra with G actions ignored. We have the following compatibility diagrams for the 

H A ~ ~ ~ Y  2 A ~ ~ Z " ( X +  n Y) . monad structure maps: 

For noncompact X, the conclusion holds a f t e r  passage t o  the stable category. 

Of course, there may be no V t  E a t  with V 2 V t  . A more general resul t  

applies t o  compute X K A ~ C P  for such V, but i t s  statement requires more 

notation; see Proposition 2.15. 

X K G K E  X R G K G K E ~ ' ~  X X G G E  

X "  E 112 and I I.? 112 
G K X K E  G P ( G K X K E - - ~  G K X W E .  

The f i r s t  isomorphisms of Proposi.tion 1.5 have the following analogs for the 

variable X ,  the r ight  adj oint  isomorphism again being easy and implying the other. Moreover, for  a Gspectrum E, the G action on x o( E is given by 

Proposition 1 . 7  Let X: X + 9 ( U ,  U t  ) be a G-map, W be a Gspace, and 

n: X x W + X be the projection. For E e G,4& and Et E G XIQ1, there are natural  

isomorphisms 

(xn)  r E " ( X  E)  A W+ and FIXn,E1 ) 2 F(W+ ,FIX,E '  ) ) - 
We have one l a s t  se t  of commutation relat ions.  The f i r s t  of each of the 

following pairs w i l l  be immediate from the constructions and w i l l  imply the second 

by 1.3-5. 

Proposition 1.8. Let X: X + Q ( u , u l )  be a Gmap and a:  H + G be a map of Lie 

groups. For D E G A k ,  Dl e G A&', E e HA& , and E1 e HA&', there are natural  

where 5 gives the G action on E. The dual assertions are valid for the 

comonad F[G,?).  As  suggested by our notations, a comparison of definit ions shows 

that  i f  y: G + J ( u , u )  i s  specified by y ( g ) ( u )  = gu, then 

y K E = G K E and F[y,E) = F[G,E). 

The resul ts  on hand suffice t o  analyze the behavior of x cx E with respect to  

cellular  structures.  The essential  point i s  the following lemma on equivariant 

ce l l s  . 
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Lemma 1.10. E: G/H x eP + d ( U , U f  ) be a G-map with res t r ic t ion  where the wedge ~~s over the p-cells of X paired with the sequential (n-p)-cells 
9 

u t o  G/H x SP-', p 2 1, and l e t  e a GBU be the q-cell ( G / J ) + A  C S ~ ,  of E (of & dimensions r ) ;  6; and 0E-l are res t r ic t ions  of to cel ls  and 

r 2. ~ e t  L = G/H x G/J+ Then there is a canonical isomorphism of pairs the i r  boundaries, and the mP fnml i s  obtained by f u n ~ t o r i a 1 j . t ~  from the ce l l s  
of X and E. The conclusions follow. 

~t i s  clear from the case Y = I+ of Proposition 1.5 tha t  x IX E preserves 

Proof. This i s  immediate from Propositions 1.2, 1.5, and 1.6 by use of any fixed homotopies in  the variable E. We conclude that  it preserves G-cw homotopy 

chosen space level  homeomorphisms 'types. By 1.5.13, the following resul t  i s  an immediate consequence. 

( ( e ~ ) + ~  CS4-1, (,P)+A ~ 9 - 1  u (@-')+A csq71) = ( C S P + ~ - ~ , S P + ~ - ~ )  corollary 1.12. If X :  X + Q ( U ,  U f  ) i s  a G-map, where X i s  a G-CW co~plex, then 
the functor F[ X,  E' ) preserves weak equivalences in Ef  and the pair 

for a 1 and 2 1; the case q = 1 accounts for a l l  non-positive dimensional x w E and F[  X ,  E' ) induces an adj oint  pair  of functors relat ing the stable - 
c e l l s  by virtue of Proposition 1.6 applied to  the respective Canonical shift categories hG8 0c and KG d a' . 
desuspension functors flrzw 

We remind the reader tha t  functors such as x K E which need not preserve weak 
The discussion above 11.3.8 applies verbatim here, and We obtain the following equivalences pass t o  the stable category by composition of the given functor with 

r e su l t .  CW-approximation. 

It is easy t o  check that  x K E preserves homotopies over .d ( U , U 1  ) in i t s  
meorem 1.11. kt X: X + J ( U , U 1 )  be a Gmap, where X i s  a G-CW complex, and space variable. However, it i s  v i t a l  t o  our theory that  we can deal with more 
let E be a G-cw spectrum. men x 6 E may be given the sequential general homotopies, in  part icular those arising from homotopical properties of 

Q (u ,u '  i t s e l f .  ?he following i s  the l a s t  of our l i s t  of resul ts  t o  be proven in  
( X  w Eln = the next section. Although not d i f f i cu l t ,  it i s  the technical heart of our ent i re  p+q=n 

theory. 
and the skeletal  f i l t r a t i o n  

where xp i s  the res t r ic t ion  of x t o  the p-skeleton of X and { ~ ~ l q  2 0} and 

{$Iq r Z} are the sequential and skeletal  f i l t r a t ions  of E. These f i l t r a t ions  

are functorial  with respect t o  ce l lu lar  maps of X over J ( U ,  U '  ) and bice l lu lar  

maps of E. If X or E i s  G t r i v i a l  or i f  G i s  f i n i t e ,  then x r E i s  a 

G-CW spectrum with respect t o  these f i l t r a t ions .  In general, x w E has the 

homotopy type of a G-CW spectrum. 

Proof. Since Eo i s  t r i v i a l ,  so i s  ( X  cx ElO = xO * EO. For n 2 1, ( X  K E l n  i s  

given by the pushout diagram 

'Beorem 1.13. Let X be a G-CW complex and l e t  it: X + X x 1', t = 0 and 

t = 1, be the standard inclusions. Let JI : X x I + .9 ( U, U '  ) be a G-map and l e t  
E be a G-CW spectrum. Then 

i s  an equivalence. 

Thus homotopic G-maps X + ( U, U '  ) induce equivalent functors. Since any two 

such G-maps are in  fact  homotopic, by the 3-universality of 4 ( U,U1  1, we obtain the 
following generalization of 11.1.7 (which is the case X = I*}). 

Theorem 1.14. The functors x ~ ( 7 ) :  G A U  + G bU1 induced by varying G-maps 

X :  X + . b ( u , U t  ) become canonically and coherently naturally equivalent on passage t o  

the stable categories i~ U and ;G 4 U '  . The same conclusion holds for the 

functors Fix,? : G 1 U' + G SU. 
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As usual, the second statement follows from the first by conjugation. 

Henceforward, we denote the stable category level functors by 

X w E and FIX,E1 1. 

We show next that these functors depend only on the G-homotopy type of X. 

Theorem 1.15. Let f: X 1 4 X  be an equivalence of GCW complexes and let 

X: X +. (U,U1) be a G-map. For a G-CW spectrum E, 

is an equivalence. Therefore f b( 1 and F[f,l) induce natural isomorphisms 

between functors on stable categories. 

Proof. Let g: X 4 X 1  be an inverse equivalence with homotopies h: 1 = fg and 

h': 1 = gf. We have the following commutative diagrams: 

k E/ jio H 1 
fxl 

and 

The maps i0 M 1 and il ix 1 are equivalences, hence so are h rx 1 and 

h1 a 1. Thus g w 1 is injective and surjective on homotopy groups by the first 

and second diagrams respectively. By the first diagram, f M 1 is also a weak 

equivalence and thus an equivalence. 

In the next three results, we calculate the twisted functors X H E and 

F[X,E) as composites of change of universe functors and untwisted functors 

x+A(?) and F(x+,?). 

Theorem 1.16. Let f: U + U1 be a G-linear isometry. Then there are natural 
I 

isomorphisms 

of fdctors on stable categories. 

Proof. We may calculate X # E by use of the G-map w(f) which sends all of X 

to the point f. By Proposition 1.7, 

That is, twisted half smash products with trivial twisting maps are ordinary half 

smash products. 

Of course, there may be no G-linear isometry f: U -t U1. In practice, it is 
very o.ften the case that there is a G-linear isometry in the other direction, and 

this returns us to the context studied in IIS2. 
8 

Theorem 1.17. Let i: U1 +. U be an inclusion of G-universes. Then there- are 

natural isomorphisms 

X a E = X+A iXE and FIX,E1 ) = F(Xt,ixE1 ) 

of functors on stable categories. 

proof. Consider i*: Q(u,u') +&(u,u). For X: X +$(U,U1), an easy inspection of - 
definitions (compare Proposition 3.1 below) gives 

i*(x r~ E) 5 K E. 

Applying Theorem 1.16 to the identity map U +. U, we conclude that 

i*(X K E) = X'AE. 

Thus X tx E s G 8 U1 is a U1-representation of X+A E E G IS- U. By uniqueness (see 
11.2.6) , it suffices to check that X+A i*E is also a U' -representation of X'A E. 

To see this, consider the map 

By 11.1.8 and 11.2.4, E is an 3-equivalence, where 3 = 3(U,U1). Since X is 

an 3 -CW homotopy type, 1 A E is a Gequivalence. (We are implicitly using CW 

approximation and the 3 -Whitehead theorem; compare 11.2.2 and 11.2.13. ) The second 
isomorphism follows from the first, the equivalence If,&, and the Yoneda lemma. 

If there are no G-linear isometries connecting U to U1, we use a little 

trick to concoct some. 

Theorem 1.18. Let i: U1 -t U O U' and f: U -+ U O U1 be the evident inclusions. 

Then there are natural isomorphisms 
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X t x  E = X+A iXfXE and F[X,E1) = F(x+,fXixE')  $2. Constructions of x cc E; proofs 

of functors on stable categories. We shall  need several variant constructions of X tx E, with different emphases 

Proof. Observe that  the families 3 ( U , U t )  and 3 ( U  0 u ' , u ' )  are equal and and virtues. In a l l  of i t s  guises, the core of the construction is  the use of mom 

consider f X : J ( u @ U l , U ' )  +d(U,U1). For yl: X + 9 ( U Q U ' , U 1 ) ,  another easy complexes t o  codify the changes of indexing spaces dictated by X ;  We codify th is  
core in  the following definit ion and lemmas. 

inspection (compare Proposition 3.1 again) gives 

( f X y )  E - yl r f * ~ .  
$finit ion- 2 -1 * Let X : X + Q ( U, U '  ) be a Gmap and suppose given indexing spaces 

We can use fXyl t o  compute X u E, and application of the previous theorem t o  i X x v -------4 x x v ' 
gives the conclusion. \, J 

X 

We have another curious description of X M 

Theorem 1.19. Let 3 = 3 ( U , U 1 )  and l e t  E3 be 

4 ( U ,  U l  ) . men there are natural isomorphisms 

E. specified by (x,v) + ( x , ~ ( x ) ( v ) ) .  Since the ~ ( x )  are Gl inea r  isometries, the 

image i s  a G-subbundle and has an orthogonal complement 5(V,V1 1 .  Let n ( V , V 1 )  be 

a universal$-space (such as  the sphere G-bundle obtained from c ( V , V T )  by one-point compactification of f ibres  

and l e t  T(V,V'  ) be the %om complex obtained from q ( V , V 1  by identifying a l l  of 

the points a t  i n f in i ty  . 
x E . xtA ( ~ f  6 E) and F I X , E ' )  = F ( ? , F I E ~  , E l ) )  

We write T(X;V,V' ) instead of T ( V , V t )  when the base space requires expl ic i t  

identif ication.  Note tha t  
of functors on stable categories. 

Proof. Since X has the homotopy type of an 3 - C W  complex, the projection T(X;V,V' ) "+ hH T(Y;V,V1 ) 

nl: X x E3 + X is a G-homotopy equivalence ( compare 11.2.12) . Let 

X :  X + ~ ( u , u ' )  and w :  E$ + J ( u , u ' )  be Gmaps. We have equivalences when = G xH Y and X i s  the G-map extending an H-map 1: y + , $ (u ,u I )  

v1 K 1 
X x E 4  ( X ~ l )  K E = (wn2)  K E xt"(w p: E )  Lemma 2.2. 1f V C W and V' C W '  are indexing spaces in U and U' and 

X: X +J ( u , u ' )  i s  a G-map such that  x ( X )  ( V )  C V '  and x ( X )  ( W )  C W ' ,  then there 

given by Theorem 1.15, Theorem 1.13, and Proposition 1.7, respectively. are canonical homeomorphisms 

We conclude by pointing out how various claims i n  [H,, I S 1 1  follow from the 

resul ts  above . 
Remarks 1.20. When G ac t s  t r i v i a l l y  on U 1 ,  we define X wG E = (X K E)/G. 

With X K G  E here corresponding t o  W rn E there, [Ha, 1.1.1 1 follows from 

Proposition 1.5 and 1.3.8 (which shows that  passage t o  orbi ts  commutes with x W ) .  
Part (i) of [H,, 1.1.21 holds since W K ~ ( ? )  i s  a l e f t  adjoint, part  (ii) resu l t s  

from Proposition 1.5, and part  (iii) follows from the r e t r ac t  of mapping cylinders 

characterization of cof ibrations and parts  (i) and (ii) . Proposition 1.8 and 

II.4'.10 together imply [Ha, 1.1.41 . ?he maps I ,  a ,  f3 and 6 promised in 

[H,, 1311 w i l l  be constructed in  section 3 below. 

T(V,V1 ) A sV 2 X+ A sV' 

and 

T ( V , V 1 )  .\ s ~ ' - ~ '  T ( W , W t )  A s ~ - ~ .  

Proof. The f i r s t  homeomorphism i s  obvious from the definit ion.  For the second, 
there i s  an evident isomorphism 

.-, 
r ( V , V '  O E' = t ; ( W , W 1  Q E ,  

where E :  X x (W-V) + X and E ' :  X x (W' -V ' )  + X are the projections. Explicitly, 

the f ibres  over x of these Whitney sums are 
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( V ' - X ( ~ )  ( V ) )  @ (W1-V' ) and ( W 1 - X ( ~ )  ( W ) )  @ (W-V) the inclusion being given by Lemma 2.3 (and transpositions ) . 

Upon applying x(x) t o  W-V i n  the second sum, we obtain an isomorphim with Of course, for E E GIA, we could then define 

W1-X(x)(V), which i s  exactly the f i r s t  sum. The required homeomorphism follows on 

passage t o  lhom spaces. X W E  = L(x IX RE) E G ~ A ~  . 
We shal l  also make use of a re la t ive  addendum- This definition, which was May's original  one, has the merits of brevity 

concreteness, and m y  of the Chims of the previous section could be verif ied 

hmma 2.3.  ~f v c w and V l  C W 1  are indexing spaces in  U m d  U ' ,  is a 
directly from i t* Further, as  We shal l  show a t  the end of the section, the 

closed of Y, and X: Y + $ (u ,  U '  ) is a G-map such that x ( ~ )  
res t r ic t ion  t o  f i l t e red  G-maps resul ts  i n  no rea l  loss  of generality. ~n 5he 

and x ( y ) ( ~ )  c W ' ,  then there i s  a canonical closed inclusion p r e s ~ e c t r m  level ,  t h i s  i s  the definit ion of choice, and it i s  the one used, for 
example, in McClurels work i n  [Ha, V I I I .  

Nevertheless, t h i s  i s  not the best possible definit ion.  For one thing, the 
proof. me left side is homeomorphic t o  the subspace T ( X ; W , W ' )  " sW-v the 

tying of indexing sequences t o  x i n  t h i s  noninvariant way makes functorial i ty in - 
r ight  side. x awkward t o  handle. For another, there seems t o  be no way t o  define an adjoint 

F [x ,D ' )  e G@A for  Dl E G a l .  One attempts t o  construct such prespectra by sett ing 
These observations suggest the following definitionso 

F[x,D1 ) (Ai)  = F( T ( X i ; ~ i , ~ ; )  ,DIA;) 

Definitions 2.4.  A X :  X + 9 ( U , U 1  ) i s  said t o  be Compact if for each 

indexing space V in U there i s  an indexing Space V1 in U' such that 
finds that the maps of Lemma 2.3 go the wrong way t o  allow the specification of 

y ( ~ ) ( ~ )  c V I .  me &map x i s  said t o  be f i l t e red  i f  X i s  the union an 
structural  maps. 

,,panding sequence of closed G-subspaces such that  the restriction of X to 
The definit ive definit ion of x tx E i s  a s  a spectrum level  colhit. men 

each Xi i s  compact. If X i t s e l f  is  compact, then any X is If is 

the union of an expanding sequence of compact G-subspaces, then any X is 
is and is f i l t e red  by Xi = X for a l l  i, we need only use Lema 2.2 in 

2*5 ,  and the specification above works perfectly well to define an 

For f i l t e red  X ,  we have the following simple definit ion.  
adjoint FIX,D1). We shal l  give a more elaborate coordinate free reformulation of 

our functors x tx D and FIX,D1) for  compact X .  l h i s  w i l l  allow us t o  define 

level  functors for general x by passage t o  colimits and l imits over 
Definition 2 - 5 .  kt X: x + J ( u , u ~  ) be a f i l t e red  G-map Choose indexing 

re s t r i c t ions*  It would be awkward and unprofitable to  give a prespectrum sequences A = {Ail in u and A I  = {A:) i n  U'  such that  x ( X i ) ( A i )  C A i  
level version of the new definit ion,  and we shal l  make no attempt t o  do so. men 

each i and l e t  B~ = A . + ~ - A ~  and B i  = Ai+l-Ai .  For D G@A, define 
is f i l tered,  the new definit ion of x K E w i l l  be equivalent t o  the old one. 

Y K D E WA1 by 

with s t ructura l  maps b i  
T ( x ~ ; A ~ , A ~ )  A DA, A s 

n I, 

For our coordinate free definit ion,  we require a formalism in  terms of which we 

can discuss pairings of spaces V i n  U with spaces V1 i n  U '  such that  

x ( X )  ( V )  C V'  for a given compact x . The following notion i s  analogous t o  tha t  of 
a Galois connection. 

Definitions 2.6 .  Let and @ be indexing se t s  i n  U and U1 and regard a 
and a as par t ia l ly  ordered by inclusion. A connection ( p ,v : d + d' is  a pai r  

of order preserving functions 1~ :a + @I and v : + a such that  pV C V1 i f  and 

only i f  V C vV1, where V c d and V' c a'. It follows that  p(0)  = 0 and the 

following conditions hold. 
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(i) V c vpV and pV = pvpv for V 6 0,. The homeomorphisms are given by Lemma 2.2 and adjunction, and the transitivity 
(ii) uvv' C V' and vpvV' = VV' for V' e a' . diagram of 1.2,l is easily checked. The functor FLX,?) preserves G-spectra. 
A connection (cl,v) :a+ a1 is a subconnection of a connection (a,T :a + &I For E E ~ d a ,  define 

if a c IP3, a' c a' , and both pV c oV for all v E a and TV' C vV' for all 

VIE a'. x K E = L(x CK RE) E Ghal. 

This notion allows the following basic definition. We retain the notations of the definition in the following three lemmas. These 

iive the desired adjunctions and the invariance properties necessary for our later 
Definitions 2.7. Let X: X + .# (u, U' ) be a compact G-map. Say that a connection passage to colimits and limits. 
(p ,v :CL -t CLl is a X-connection if 

x(X)(V) C pV for all V E  a 

or, equivalently, if 

X(X)(~V') C V 1  for all V1 E a'. 

Fix a X-connection ( p, v) . For D E GBQ, define x . K  D E G P ~ '  by 

Lemma 2.8. The functor x ( ? ) is left adj oint to the functor F [ x ,? ) on the 

prespectrum level and thus also on the spectrum level. 

Proof. Let D E G@a and Dl c GP~'. Given a map f: x oc D + Dl, define a map - 
g: D + F[x,D1) by letting its V~ component be the dotted arrow composite in the 

with structural maps 

Similarly, for D' G\P(k', define F[x,D1) E GPOlby 

F[x,D' ) (V) = F(T(V,PV) ,D' (pV) ) 

with structural maps 

th where ?: is the adj oint of the ( uV)- component of f and the homeomorphism is 

given by adjunction and Lemma 2.2. Conversely, given g: D -t F lX,D1 1, define 
th f: x K D + D' by letting its (V' )- component be the dotted arrow composite in 

the diagram 

th where is the adjoint of the (vV' )- component of g and the homeomorphism is 

again given by Lemma 2.2. A pleasant verification, to which (i) and (ii) in 

Definitions 2.6 provide the key, shows that these are well-defined inverse 

bijections of hom sets. 

Lemma 2.9. ?he functor x v D preserves injection and C-inclusion prespectra 

(but not inclusion prespectra or spectra), and the conclusions of Proposition 1.2 

hold on both the prespectrum and spectrum level. In particular, for a closed 

G-subspace A of X and a = X I A  and for E E GA& and E'  E G A W ,  there are 

natural closed inclusions and projections 

i a K E + x M E and F[x,E' ) + F[a,E' 1. 
E 
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Proof. The X-connection (p,v) is also an a-connection. The prespectrum level under intersections and a' is closed under sums. 'Ihen (p,v) and (p' ,v' ) are 

assertions hold by inspection and imply the spectrum level assertions by 1.8.3 and both subconneitions of the X-connection ( p+p ' ,v n v ' ) specified by 

1.8.5. 

(p+pt)(v) = p v +  M'V and (vnvl)(vl) = V V ~ ~ V ~ V ' .  
Recall the change of indexing set equivalences 4 and $ from 1.2.4. 

(Contrary to our usual conventions, sums need not be orthogonal here.) 
Lemma 2 .lo. Let (p,v) : d + 0' be a X-subconnection of a X-connection (iii) If A and A' are indexing sequences in U and U' such that 

(0,~): t3-t &' . For E E G%a, El e GAQ', F E GAS, and F' c G A $ ,  there are i(x) (Ai) c A; for all i, then Ajuq specifies a X-connection A + A'. The 

natural isomorphisms of G-spectra functor x x ( ? )  : G P A  -t GPAI coincides with that specified in Definition 

2.5 (with Xi = X for all i). 

x *, $E "' (X K~ E) and FO[x,$'E1 $Fp[x,E1 1; (iv) For arbitrary indexing sets in U and a' in U1, choose indexing 

sequences A C and A' C a ' such that (XI (Ai C A; for all i and define 
," 

x a V  + F h m ' ( x k ,  F) and FpIX,+'F1) = 4FaIX,F1). 

Here the subscripts indicate the relevant connections. 

Proof. Since 4 and I$ are inverse adjoint equivalences, 1.3.5 shows that any one 
t h 

of these isomorphisms implies all the others. The following is the V-- 

component, V E Q  , of a natural isomorphism FpIX,+'~") + +Fa[x,F1): 

As usual, the homeomorphism is given by Lemma 2.2 and adj unction. 

The following examples give content to our formalism. 

Examples 2.11. Let X: X +- 9 (u,u' be a compact G-map. 

(i) Let a and a' be the standard indexing sets in U and U' , Cefine 

and 

pv = ~ ( x )  (V) for V E a 
xe X 

VV' = n x(x)-l(~') for VIr at. 
xe X 

Then (p,v) is a X-connection, called the canonical X-connection. It is a 

S U ~ C O M ~ C ~ ~ O ~  of any other X-connection -t a' . 
(ii) Let (p,v) and ( U' , v l  ) be X-connections &+ fi' , where is closed 

pV = A; for the smallest i such that V C Ai 

and 

vV1 = A. for the largest i such that A; c V' . 

Then (p,v) is a X-connection a+- a' which extends the X-connection A -t A' of 

(iii). 

(v) If X = C*) and x = f: U + U1, the canonical X-connection reduces to 

fl=f(V) and vV'=f-' (v' 1. 

The identifications of Examples 1.4 follow by comparison with 11.1.1. 

(vi) For any indexing set a in U, (1,l) : &+ a is a y-connection, where 

y: G -t +.!(u,u) is the action map. Direct inspection gives the last assertion of 

Remarks 1.9. 

We put things together to prove the following invariance result. 

Proposition 2.12. Let X: X + d (U, U' ) be a compact G-map. Then, up to canonical 

natural isomorphism, the functors x w E and F [x, E1 ) between G && and G dllb? 
are independent of the choice of connection used to define them (and of the choice 

of a at). 
Proof. We use an argument supplied by Elmendorf . Let ( p ,v) : +- a ' be any 

X-connection. Choose an indexing sequence A' in q' and let % = V A ~  By 

discarding some of 'the A?, we can arrange that + # Ajrl for all i. Since % 
need not be 0, A = {Ai) need not be an indexing sequence. Nevertheless, we can 

apply Example 2.11 (iv) to obtain a X-connection ( c r , - c ) :  rd j  + A' from A and 
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A', where n and n '  are the standard indexing sets in U and U' . It is ea take colimits over the finite subcomplexes of X. 

checked that (il,vI is a subconnection of (o,?), and of course so is the 
m e  derivation of Theorem 1.1 from the compact case consists of elementary 

canonical X-co~ection 19 + A ' . Let 6: G d 4  + Gda and yi: Gda + G.b@ be the 
orical nonsense. Its adjunction results from the calculation 

change of indexing set equivalences. Two applications of L e m  2.10 give that, 

for E a GAa, x x E constructed by use of the given connection is naturally Gd@'(x x E,E1I " lim Gd(L8(a LX E,E1) 
isomorphic to 4(X x $El, where x K yiE is constructed by use of the canonical 

connection. Using subsequences of unions of sequences, it is not hard to check t 
a i m  Gda(E,F[a,E')) 

this isomorphism is independent of the choice of A ' .  

w 

= Gha(E,FIX,E1)1, 
Turning to the study of general maps X; we can now make the following fi 

definition. 
e the first and last isomorphisms are given by the definition of colimits and 

ts. lhe compatibility of the adjunctions of Lemma 2.8 with the maps of the 
Definition 2.13. For a Gmap X: X -t J(u,u') and for E t GAL and E' a Gda', t systems that is required to deduce the middle isomorphism results from the 
define 

t that the maps 

x p E = colim a P E € ~bal and FIX,Es1 = lim F[a,ET1 € Gdk, 
a a 

a a E + B K E and PIB,E'l t Fla,E'l 

where the colimit and limit are taken over all compact restrictions 
e conjugate natural transformations in the sense of 1.3.5. The statements about 

a :  A C X + d (u,u' I of x with A closed in X. 
limits in x in lheorem 1.1 are standard exercises in colimits commuting with 

limits and limits commuting with limits. 
Tn more detail, choose an a-connection Lu ,v  ) for each a and use these a a 

connections to define the functors a s E. If A C  B C X and B = is compact, Tne derivation of Proposit.inn 1 2  requires some point-set topology. By the 

then (il , v ) and (il ,v  1 are both a-connections. The previous proposition finitions of colimits of spectra and prespectra, 
a a B B 

yields an isomorphism from a u E to a a E defined with respect to 

L e m  2.9 yields an inclusion of the latter in B a E. m e  colimit is taken over x r E = L colia r E) 

the resulting composites a w E + B n E. If B C C C X  and y = xlC is also 

compact, the resulting composite a M E + B K E + y w E agrees with the 

correspondingly described map a r E -P y r E by the coherence of the isomorphisms 

and inclusions involved and a naturality diagram for their commutation. Thus the (eolim e(a K El)(V') = colim((a K E)(V')l. 

eolimit is well-defined, and a similar check shows that, up to canonical natural 

isomorphism, it is independent of the initial choices of connections. ch a K E + B w E is a closed inclusion, space level colimits of directed systems 

f inclusions preserve finite limits, and the forgetful functor e preserves 
When a and a' are the standard indexing sets, the construction becomes ts. Therefore the compact case of Proposition 1.2 implies its conclusions on 

completely canonical. We take (11 ,v ) to be the canonical a-connection and see 
a a the level of colimits of prespectra. Since these colimits are easily checked to be 

that ( u  ,u ) is then a subconnection of ( u  v ) .  This allows direct use of 
a a 5 '  B injection prespectra and L preserves finite limits on such prespectra, the desired 

Lemmas 2.9 and 2.10 to obtain the naps of the colimit system. One can reobtain the spectrum level conclusions follow. 
construction for general CL and a' by transporting this canonical construction 

along the equivalences 4 and yi. 
Most of Proposition 1.3 has already been checked and the rest is trivial. lhe 

comutation relations of Propositions 1.5, 1.7, and 1.8 are easy. For example, the 
Writing the domain of each campact a as the colimit of its compact suhspaces crucial isomorphism 

and reducing the resulting double colimits to a single colimit, we find that we 

could just as well take colimits over compact suhspaces A rather than over the X " z-Y " z-(x+ A Yl 
larger set of compact restrictions. When X is a G-CW complex, we could and 
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follows e i ther  from the f i r s t  homeomorphism of Lemma 2.2 and inspection of Proposition 2.15. Let X:  X + J (u ,u '  be a G-map and l e t  V B and Y E Gd. If 
t h  

definit ions or from 1.3.5 and the observation that  F[x,E1) has zero- space x i s  compact and x ( X )  ( V )  C V '  , there i s  a natural  isomorphism of Gspectra 

F ( x + , E ~ ) .  

By 1.3.5 again, the following lemma implies the f i r s t  assert ion of Proposition x K nVzrny -. A ~ ' I - (  T(V,V'  A Y )  . 
1.6 (which only needs x t o  be compact). 

For general X, there i s  a natural  isomorphism of G-spectra 

Lemma 2.14. Let X:  X + J (u ,u ' )  be a compact Gmap. For V E &  and V 1  L ~ I  

with V V' and for El E ~d a', FiX,E1 ( V )  i s  naturally homeomorphic to  

F(X+,EV' 1. 

Proof. Fix a X-connection ( p , v )  . By 1.4.2, we may a s  well asume V' 1 p V. 

Using s t ructura l  homeomorphisms, adjunctions, sV ̂. sV', and Lemma 2.2, we obtain 

the chain of natural  homeomorphisms 

where the colimit i s  taken over the compact res t r ic t ions  a: A + & ( U , U 1 )  of x and 

the VA are so chosen that  a(A) ( V )  C VA. 

Proof. In the compact case, we may choose a X-connection ( ~ , v )  with pV = V ' ;  - 
in  general, we may choose a-connections (p,,v,) with paV' = VA. For E' E G h a t ,  

various adjunctions and definit ions give the following chain of natural  isomorphisms 

of hom sets ,  and the conclusion follows by the Yoneda lemma: 

When x i s  not compact, we may not be able t o  choose our connections 

( p a , v a )  SO that  V '  1 paV for  a l l  a .  To get around th i s ,  choose a l inear 

isometry f :  U'-U' with image orthogonal to  V'  . We can choose connections 

( p h , v h )  for fox with V '  1 p h  V for a l l  a .  The homeomorphisms just  proven then 

,., = l i m  G 3  (T(A;V,paV)  A Y,E1(paV)) 

pass t o  l imi ts  to  yield 

F[foX,E1 ( V )  "(x+,E'v' . 
The only resul t  of section 1 yet t o  be proven i s  Theorem 1.13. We shal l  deduce 

it from the following special case of Theorem 1.15. 

l3y 1.3.5, it follows that  fox a AVzwy A v ' z w ( X  w Y ) .  By use of a path Lemma 2.16. Let X be a subcomplex of a G-CW complex Y such that  the 

connecting f t o  the ident i ty  in 9 (U' , U 1 )  and quotation of Theorem 1.13 ( t o  be inclusion i: X-+Y i s  an equivalence. Let $: Y + Q ( U , U 1  ) be a compact Gmap and 

proven shor t ly) ,  the l e f t  side becomes isomorphic t o  x r A ~ X ~ Y  on passage t o  the l e t  x = $oi. Let E be a G-CW spectrum. Then 

stable category. 
i ~ l :  X K E + $ W E  

The following analog of Proposition 1.6 computes p( AVC?f for  general 

indexihg spaces V as a colimit of appropriate sh i f t  desuspensions. 
is an equivalence. 

Proof. Let ( P, v) : a+ a' be a $-connection. By standard homotopical properties of 

G-bundles, the maps 

T(X;V,pV)  + T(Y;V,pV) 



induced by i are equivalences. Thus, for D e G6 & and D1 E G P a 1 ,  

i oc 1: x K D + $ K D and F [ l , i ) :  F[$,D1 ) + F [ x , D ' )  

are spacewise equivalences. In part icular,  for E1 E G A  CL1,  

i s  a weak equivalence. We cannot pass so readily t o  the spectrum level  on the 

twisted half smash product side. For E E GAU, x K RE and $ rx RE need not be 

inclusion prespectra, and L i s  only known to  preserve spacewise (weak) 

equivalences when res t r ic ted  t o  inclusion prespectra. However, by Corollary 1.12, 

our G-CW hypotheses allow us t o  t o  pass t o  the stable category. Here 

i rx 1: x K E + $ K E i s  conjugate t o  the natural  isomorphism F [ i , l )  and i s  thus a 

natural  isomorphism by 1.3.5. 

When I): X x I + & ( U,U1  ) i s  compact, 'Iheorem 1.13 follows immediately from the 

lemma. For the general case, we have the following commutative diagram for any 

compact G-spectrum K, where 6 runs through the re t r ic t ions  of $ t o  A x I for  

f i n i t e  subcomplexes A of X: 

The horizontal arrows are isomorphisms by 1.5.3. Letting K run through the sphere 

G-spectra and passing to  homotopy classes, we see that  it K 1 on the right i s  a 

weak equivalence and therefore an equivalence. 

We shal l  need one more resul t .  While somewhat technical in  nature, it sheds 

considerable l ight  on the inner workings of our definit ion of x K E. The crux of 

our applications of twisted half smash products i s  the construction of G-maps 

x M E + El. In view of our lack of a convenient coordinate-free prespectrum level  

description of x oc E, it i s  not obvious how t o  recognize such maps i n  elementary 

space level  terms. ?he following resul t  gives a quite simple and concrete solution 

to  th i s  problem. 

Proposition2.17. Let X:  X - t 4 ( u , u 1 )  be aGmap. For V E  b. and V I E  @ I ,  

l e t  A ( V , V I  ) C X denote the Gsubspace consisting of points x such that  

x(x)(V) C V 1 .  Then, for E E GAQ,  and E1 F- Glut, a map 5: x M E -t El in G d a l  

determines and i s  dete'rmined by maps ~ ( x ) :  E + X ( x ) * ( ~ l )  in  Gb& for points 

specified by 5( [x ,v l l  h 7 )  = o ( < ( x )  (y )  A v1 for x c A ( V , V 1  ) ,  v1 E V1 - x(x)  ( V ) ,  

and y EV are continuous. 

proof. Given 5, define c (x )  t o  be the adjoint of the composite 
C__ 

x(x),(E) + x k E A E'  . 
t h  Note tha t  ( ( x )  has V- map EV + E 1 ( ~ ( x ) ( V ) ) ,  so the definit ion of <he 

functions 5 makes sense. To check continuity, l e t  a be the res t r ic t ion  of x 
to any compact subspace of A(V,V1 for some fixed V and V1 . By (iii) and ( i v )  

of Ekamples 2.11, we may choose an a-connection ( ~ l , , v ~ )  such that  v,V1 = V . With 
t h  

th i s  choice, 5 i s  precisely the V-- map of the map of prespectra 

as we see by res t r ic t ing  a t o  points. Conversely, assume given maps ~ ( x )  with 

the prescribed continuity property. Let a = X I A  be any compact res t r ic t ion  of 

x and l e t  ( ,v ) be an a-connection. For V1 E a1 , , (A)  (vV1  C V 1 ,  hence 
a a 

A c A( vV1 , V 1  . mere resul ts  a map 

Since the definit ion of 5 gives complete control of these maps on points, it i s  

easy t o  check that  they specify a map of prespectra a a RE + RE!. By application 

of L, there resul ts  a map of spectra a D( E + El. These maps are compatible a s  a 

varies because of the evident compatibility on res t r ic t ion  t o  points of X. They 

thus pass t o  colimits t o  yield x rx E + El. It i s  clear tha t  these two 

constructions are inverse to  one another. 

B e  only remaining piece of unfinished business i s  t o  connect up our two 

definit ions of x N E and t o  discuss the generality of f i l t e red  G-maps. For the 

moment, write x kf D for  the functor specified i n  h f i n i t i o n  2.5. 

i 
i Proposition 2.18. Let X: X + ( U,U'  ) be a f i l t e red  G-map and l e t  A and A' be 

indexing sequences i n  U and U 1  such that  X ( X i ) ( A i )  C A; for  each i. For 

D E G PA, L( x rf D )  i s  naturally isomorphic t o  x M LD. 

Proof. Inspection of Definition 2.5 shows tha t  

x kf D = colim Xn K f  D, 
n 
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where G: Xn + 9 ( U,U1 ) i s  the sub f i l t e red  Gmap of x obtained by f i l t e r ing  93. Re.lations between smash products and twisted half smash products 

]h by the Xi for i < n with higher f i l t r a t ions  constant a t  X,. On the other 

hand, x K LD a s  defined in Ikf in i t ion  2,13 is also a colimit, and the compact maps In t h i s  rather technical (but elementary) section, we consider various natural  

G are cofinal in the l i m i t  system used there. A Xn-connection A + A' is  maps relat ing smash products t o  twisted half smash products and produce precursors 

specified by % tr%, Ai -A; and A; -+AO for i 5 i < n, and A. H A ;  of the coherence diagrams for extended powers displayed in  [H,, I $21. Tho kinds 

for i 2 n. With t h i s  connection, we obviously have of proof are used. The simpler pattern just  follows the standard general 

prescription of f i r s t  checking things on the prespectrum level  for compact Gmaps, 

( % x f  D) (Ai )  = ( % R D ! ( A . )  f o r  i > n .  ' then passing t o  the spectrum level  by use of L, and f ina l ly  passing t o  colimits 

over compact res t r ic t ions .  Ihe resul ts  requiring only such simple arguments are 

Since they d i f f e r  only in t he i r  i n i t i a l  terms, %*cxf D and P D yield presented f i r s t .  The l a t e r  constructions and diagrams depend on application of 

precisely the same spectrum on application of L. This gives a compatible family of Theorem 1.13 t o  homotopies produced by the homotopical properties of J (U ,  U'  ) . We 

identif ications 

where the second isomorphism follows by 1.3.5 from the obvious equality 

F[%,LE') = @[%,El) for  E ' e  ~ 6 4  

shall  indicate expl ic i t ly  a l l  places where Theorem 1.13 i s  used, and we t a c i t l y  

assume i t s  G-CW hypotheses a t  those places. 

The following resul t  introduces three of the four maps we wish t o  study. 

Proposition 3.1. (i) Let X: X + J(u,u ')  be a Gmap and l e t  x e X be a G-fixed 

point, so tha t  e = X (  x) i s  a Gl inea r  isometry. For E E GdQ. , the inclusion 

i: {x) + X induces a natural  map 

Since L commutes with colimits, the conclusion follows. 
I = i K 1: e*E = ~ ( x )  # E + x P E 

t 

Remarks2.19. Write U and U' as  inf in i tesums 1 (Vk)" and 1 ( V i ) " ,  
k >l k >l 

where the Vk and V i  are irreducible representations. Then define subspaces 

Z, of Q(u ,u ' )  for  n > 1 by 

in GALL', where b. and b' are indexing se t s  i n  U and U '  . 
(ii) kt xl: X1 -9 (U1 ,Ui )  and x2: X2 +9(U2,u;) be Gmaps and define x1 @ x2 

t o  be the composite 

and l e t  Z be the union of the Zn. We refer  t o  Z as  the space of bounded l inea r  
where s i s  the direct  sum map. For Ei E Gabi, there i s  a natural  isomorphism 

isometries U + U' . The inclusions h: + (U ,  U' are obviously compact, hence 

the inclusion q :  Z +$ ( U,U1 ) i s  f i l t e red .  By inspection, i f  f E Z,  then Z is  
a :  (xl  P El) A (x2 K E2) + (xl @ x2)  * (El E2) closed under the homotopies used t o  prove 11.1.5, and it is easy t o  see tha t  i f  

there exis ts  an H-linear isometry U + U ' ,  then there exis ts  one in Z. Therefore 
i n  G d @ &$I, where $ and a; are indexing se t s  in Ui and U i  . 

11.2.11 applies t o  show tha t  the inclusion of Z in $ (U ,  U' ) is a Ghomotopy 
(iii) Let X :  X + $ ( U , U ' )  and X I :  X' + Q ( u ' , u " )  be G-maps and define @ x t o  

equivalence. Since any composite X + Z + 9 ( U,U' ) may be f i l t e red  by the inverse 
be the composite 

images of the Z,, res t r ic t ion  t o  f i l t e red  maps would resul t  i n  no r ea l  loss  of 

generality. Indeed, there would be no substantive changes in  the theory as  a whole 
X I  x x -S(UI , u q  J ( U , U ~  1 S J I U , U ~ I ) ,  

if we were t o  replace 9 (U ,  U' ) by Z throughout. 

where c denotes composition. For E E G A a ,  there i s  a natural  isomorphism 
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B :  X' rx (X k E) + (x' @ P E assertion is based on Propositions 1.6 and 2.15 and is not much more difficult. 

in G La1', where & and a'' are indexing sets in U and U" . our main goal in this section is to give precursors and analogs of most of the 

diagrams of [Hm, 1.2 -8-1.2.15 1 . Upon specialization to extended powers 
Proof. Part (i) is trivial. For (ii), assume first that x1 and x2 are 

and use of operads, these will lead to proofs of the cited diagrams in VII§l. (The compact. If (pi, vi ) : bi + 6; are xi-connections, then their sum gives a 

(xl x2)-connection al @a2 +IL; @a; for which the prespectrum level isomorphism 
, 2 . 1 5  admits no non-tautologous precursor on the level at which we are 

a is immediate by inspection of the relevant mom complexes. Passage to spectra is 
presentlg working.) In most of these results, we shall not state precise 

immediate and passage to non-compact maps x follows by the cofinality of sums of i 
compact G-maps among all compact restrictions of x1 Q x2. Part (iii) is similar, 

using composites of connections. 
which should be obvious from context. The following result gives precursors of 

[ H ~ ,  1.2.8, 1.2.9, and 1.2.131. 
Observe that the operation a, is given by compositions 

Lemma 3.3. The following commutativity and associativity diagrams relating (f' ax)(x)=f1 ox(x) or Of)(xl) = X 1 ( ~ ' )  o f  
and commute on the level of spectra. 

when XI or X is a single point with image f1 or f. Such special cases will 

occur ubiquitously in our work. 

The maps just defined are compatible with their evident space level counter- 

parts, an assertion made precise in the following result. It should be kept in mind 

that the same notation xm is used for the functor from G-spaces to Gspectra for 

all choices of indexing sets and G-universes. 

[(x, @ x,) o tl P (E2 El) Proposition 3.2 . The following diagrams of spectra commute 
Here, in t K 1, t is the transposition map 5 x 5 + 5 x 5. (i) z m ~ = z m ( { x ) + ~ ~ )  zm(i+r\ ,, y) 

A 1 (ii) (xl El) (x2 K E2) A (x3 K E3) Q x,) K (Elh E2)1 A (x3 P E3) 

I a 
(xl K El) A (x2 @ x3) " (E2n E3)1 (xl @ x2 @ x3) K (El A E2 A E 

(ii) zm(x;h y1 $ 4  y2) zm(l A A l)bzm(X; n A yl n y2) 3 

(iii) a x1 tx x P E a,x') IX x P E 

(iii) c"(X'+A X + A Y )  z"((X1 x X)" AY) 

Analogous assertions hold with all functors zm replaced by suitable functors 

Proof. The isomorphisms are given by Proposition 1.5, (i) is just a naturality 

diagram, and (ii) and (iii) are easily checked by our general prescription. The 
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Proof. In ( i) ,  t uc 1 makes sense since a t r i v i a l  diagram chase gives tha t   fini it ion 3.5. Let n: X x X + X be the projection on the f i r s t  coordinate and 

( x1 @ x2) o t = I t  o ( x2 0 Xl ) 1 t . A similar verif ication is needed for  ( i v )  . The observe that  . nA = 1, hence xnA = x . For E 6 GJU and Y 6 G 3 , define 

proofs are a l l  easy and proceed via our general prescription. 

6 = A i~ 1: x p ( E A Y )  + ( x n )  w ( E A Y )  ( X  K E)  A ( X + A Y ) ,  

We next construct the fourth map we wish t o  study. We take G = H x IT here -In 
order t o  f a c i l i t a t e  comparison with the maps already given. In practice,  we where the isomorphism i s  given by Propositions 1.5 and 1.7 (and transposit ion).  

replace G by G x a. The case relevant t o  the applications of [Hm] is  H = e. mpliiitly, the prespectrum level  version of t h i s  map i s  induced from the standard 
lreduced diagonal maps 

Definition 3.4. Let G = H x IT. Let X: X +,$ ( U , U 1 )  be a G-map, where X i s  a 

G-CW complex, and l e t  f : U 8 U a  U and f : U' @ Ut+ U 1  be G l i n e a r  

isometrics . For G-CW spectra E,F 6 G J ~  , we shal l  construct a natural  map 

i n  h ~ d a ' ,  where @ a n d  are indexing se t s  in U and U '  . Consider the 

following diagram: 

Since f*  and fAsA are both G-maps, there i s  a G-homotopy h: f *  = f$sA. 

Composing with x and applying Theorem 1.13, we obtain an isomorphism 

i n  X G S ~  I .  The required map 6 is  defined by commutativity of the diagram 

The following mixed space and spectrum level  analog of 6 played an important 

role in McClure ' s work in [ Hml . 

obtained by use of the bundle projections from the diagonal maps of the t o t a l  spaces 

of the bundles q ( V , V t )  of Ikf in i t ion  2.1. 

We have the following compatibility assert ions.  

Proposition 3.6. The following diagrams commute in  the stable category. 

where the top map 6 i s  (1 A t A 1) o ( A  A 1 A 1).  

where the unit isomorphism of II.3.12(i) i s  used twice. 

Proof. With E = zmY and F = zmz, the equivalence appearing in Definition 3.4 

reduces under the isomorphisms of Proposition 1.5 t o  the t r i v i a l  equivalence induced 

by the standard inclusions X + X x I c X, independent of the choice of h. Here 

the remaining components of 6 are evaluated by Proposition 3.2, and part  (i) 

follows. Part (ii) requires more work, and the argument provides a good 

i l lu s t r a t ion  of how t o  exploit the f u l l  generality of Theorem 1.13 and Corollary 

1.14. Iet i and i' include U and U t  as  the f i r s t  summands of U O U and 

U' 8 U '  . By 11.3 :12 (i) and various uses of isomorphisms B ,  one finds tha t  diagram 

(ii) reduces t o  the following one : 



The bottom right equality holds since i' s XIT = ( X  Ca o i. The equivalences a l l  

come from application of Theorem 1.13 t o  homotopies derived from properties of 

~ ( u , u '  1, and the commutativity requires use of 'Beorem 1.15 t o  process a similarly * 
derived homotopy between homotopies. In deta i l ,  l e t  h: f = f,l: s A  be used i n  the 

construction of S and l e t  j :  1 = ( f i l s  and k: 1 = ( f l i ' ) *  be homotopies, 

derived from paths i n  &u,u)  and $(u '  , U 1  ) connecting 1 t o  f i  and 1 t o  

f ' i ' .  kt 
* * *  * K = i*h: ( f i )  = i f = i f;sA = fiiXSA = f i i :  = ( f l i t ) * .  

Then 5, j ,  and k are homotopies between maps from 9 ( U , U V  t o  i t s e l f  such tha t  

jl = ", f$ = kl, and j0 = ko. 'Bus these homotopies together specify a G-map 

where n2 i s  a 2-simplex. This i s  an (H,T)-bundle map, and so i s  the projection 

onto the f i r s t  coordinate. Regarding n2 as the cone on a A 2  we see tha t  any 

homotopy between these G-maps provided by the universality of Q ( U , U 1  yields an 

extension n of m over A 2 .  With $ ( U,U '  ) abbreviated t o  W, n maps the 

following commutative diagram into W, the arrows being given by the faces of I 

and A 2 : 

Using x t o  map i n  the corresponding diagram with W replaced by X and quoting 

Theorem 1.15, we obtain a commutative diagram of twisted half smash products and 

equivalences between them for any variable spectrum. Applying t h i s  t o  E A Y and 

applying natura l i ty  t o  the r ight  leg of the tr iangle,  we obtain the desired 

commutative diagram in  the form 

x ( E  A Y )  
A K l  * ( x ~ ) W ( E A Y )  

f l  % % 
( X  @ f o i)  9 ( E n y )  5 [ f '  @ ( X  @ X ) A  o i l  H ( E  AY) % ( f '  m i f@ x n )  P (En Y). 

Lemma 3.7. The following commutativity and associativity diagrams commute in  the 

stable category. 

Proof. The commutativity isomorphisms y and the unlabeled associativity 

isomorphisms are as  specified in  11.3.12. Identifying the four corners of the f i r s t  

diagram as  single twisted half smash products by use of isomorphisms a and B ,  

one finds tha t  it reduces t o  

Here t '  o ( X  8 X )  = ( X  0 X )  (P t, t and t '  being the transpositions on U @ U 

and U' 0 U' . The r ight  square is a natura l i ty  diagram. The top and bottom l e f t  

equivalences are induced by homotopies 

* * 
h: f* = f4sA and txh:  ( f t )  = t f4sA = ( f ' t l )*sA.  

The l e f t  and middle ver t ica l  equivalences are induced by homotopies 

f* = ( f t ) *  and f;sA = ( f ' t ' )*sA 

givenby paths f-f t  i n  J ( u @  U,U)  and f l - f ' t '  i n  $-(u' @ U ' , U 1 ) .  Clearly 

these four homotopies together specify a G-map 

By the universali ty of 3 ( U  0 U,U1 1, t h i s  map extends over the square. Application 



hsrTP abbreviated notations by sett ing of lheorem 1.15 yields a commutative diagram of equivalences of the shape 

which gives the commutativity of the l e f t  square on passage t o  the stable 

category. The argument for the associativity diagram i s  precisely similar except 

tha t  one has s ix  homotopies t o  contend with, quotes the universali ty of $ ( u3, U1 1, 

and applies Theorem 1.15 t o  a diagram of the shape- 

hmma 3.8. Let ~ ( x )  = e for a G-fixed point x c X. ,Then the following diagram 

commutes i n  the stable category: 

Proof. The top equivalence is derived from any path in 1 ( U  0 U, U1 ) connecting 

ef t o  f l ( e  8 e l ,  and the commutativity of the top square is  immediate from the 

definit ion of 6 .  The bottom square i s  a natura l i ty  diagram. 

and g' = ( f i  + f i ) ( l  8 t 8 1). 'he unlabeled isomorphisms 

homrnutati;ity of the external smash product with usages of 

F2, 

" u2, 

combine the 

a and B e  

o X )  K f,(E 

Here X: X + Q ( U , U ' ) ,  x ' :  X +  $ (u ' ,u" ) ,  and concomitant isometries f ,  f l ,  and 

fI1 are given. 

Proof. Identifying vert ices as  single twisted half smash products and using 

naturali ty diagrams and the diagram of Lemma 3.3, one finds that  part  (i) reduces t o  

the comparison of two equivalences 

3C 
Here the evident sum of the homotopies f i  - f i , s ~  used t o  obtain the f i r s t  

equivalence determines (v ia  transposition) an appropriate homotopy for obtaining the 

second. With t h i s  choice, the two equivalences are exactly the same. Similarly, 

identifying vert ices of the second diagram as single twisted half smash products and 

using natura l i ty  diagrams based on the definit ion of 6 together with the diagrams 

of Lemma 3.3, one finds that  part  (ii) reduces to  proving the commutativity of a 

The following resul t  i s  a precursor of [Ha, 1.2 .141 . diagram of equivalences 

Lemma 3 -9. The following diagrams commute in  the stable category. ( x '  o x  a, f )  K (E h F )  

9 \I 

(i) [xl Y f13C(El~Fl ) l~  I x 2  I f2*(E2hF2)1 Q x 2 )  rr [fl*(ElAF1)Af2*(%~F2)1 o f1sa)0 oc (E A F) - ( f " s ~ " ) ( ~ '  0 w ( E  A F ) .  

Here ~ ( S A I  x S A )  = S A I ~ C : J ( U ' , U ~ ~ )  x ~ ( u , u ' )  + Q(U + U,Ufl  + Ul1 ) ,  where A ,  A ' ,  

and A" are the diagonals of Q ( U, u1 ) , J ( u l  , U" ) , and J ( U ,  UI1 . In terms of given 

homotopies 

Here xi: Xi +d(ui,u;), f i :  Ui @ Ui + Ui, and f;: U! 1 1  63 U! + U; a re  given and we 



h: f* - fisn, h: .!.(u,u' ) x I + l(U @ U,U' 

h8 :(fl)* - fis~', h' : ~(u',u") x I + L(u' 0 U',U") 

h": f* = f;sps, h": J(u,u") x I + J(u @ U,U1'), 

The three homotopies ~(u',u") x$(u,U1) x I +$(u 0 U,UI1) inducing the 

equivalences above are c(l x h), c(ht x SA), and hN(c x 1). These give a 

triangle of homotopies and, as usual, one can fill the triangle by universality and 

deduce the conclusion by Theorem 1.15. 

Finally, the following observation relating 6 to the transfer was used by 

McClure in [H,,IX§71. Here it is convenient to pass to orbits over IT. 

Lemma 3.10. Assume that U is n-complete and that U' = u'. Then the following 

diagram commutes for any finite a-space Y . 

Proof. Our assumptions on U and U' ensure that Q(u,u') and X in Definition 

3.4 are A-free, so that 6 there is a map of n-free G-spectra, G = H x IT, and they 

also allow the indicated passages to orbits over n. On the bottom left, note 

that f*( ? ) fi Y+ = f* ( ? A Y+) . The transfers are associated to "stable bundles" 
obtained by collapsing Y to the non-basepoint of SO, as in TV.3.3(ii) . (Here we 
use Proposition 1.5 to identify x P,(F A Y') with I (X K F) n Y' I /n) . The map 
fh[l~.rl on the right is itself a transfer, by TV.5.3, the map 6 on the bottom is 

a map of the relevant stable bundles, and the diagram commutes by the naturality of 

the transfer. 

84. Untwisting G-homotopies and n-actions 

We now change our point of view. So far, G has been a perfectly arbitrary 

compact Lie group. We retain that convention, but consider G-spectra as the 

underlying ground objects of (G x n)-spectra. While n will later be restricted 

to be'a permutation group, it can be any compact Lie group in this section. See 

II.4.15(v) for generalities about (G x n)-spectra, which we think: of as 

n-spectra in the category of G-spectra. 
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We assume that U is a (G x .K)-universe on which IT acts effectively and 

that U' is a (G x a)-universe on which n acts trivially. We assume also that 

there exists a G-linear isometry f: U + U'. These assumptions ensure that 

~(U,U! is n-free and G-contractible. By 11.2.11, 3 (u,u' is a universal 

3(u,Uf)-space. In practice, U' is Gcomplete, and a slight modification of the 

proof of IIe2.4(ii) shows that 3 (U,U' ) then coincides with the family 3(w) of 

subgroups of G x n which intersect a trivially. As explained in IV51, this 

*ems tha-t; d (U,U' ) is the total space of a universal principal (G,n)-bundle. 

Let X be an 3(U,U1 1-CW complex. If U' is Gcomplete, this just-means 

that X is a n-free (G x IT)-CW complex and thus the total space of a principal 

( G  x a)-bundle. In general, there may be further restrictions on the isotropy 

groups of X. In any case, there is a unique homotopy class of (G x R)-maps 

X: X +$(u,u' 1. We are interested in the calculational analysis of the twisted half 

smash products x K E E GA@' for E c GJa, where GL and a1 are fixed chosen 
indexing sets in U and U'. 

Our basic tool is the natural pair of equivalences of Gspectra 

provided by Theorem 1.16, where f: U-U' is any chosen G-linear isometry, w(f) 

maps all of X to the point f, and h: x - w(f) is a G-homotopy provided by the 

G-contractibility of &u,u' 1. As in this diagram, we shall generally abbreviate 

maps of the form i K 1 to i throughout this section. We think of h as an 

uuntwisting G-homotopy" and (A) as an untwisting G-equivalence between the twisted 

half smash product x w E and the untwisted half smash product X+A f*E. 

Of course, f and h are not X-maps. For this reason, f*E and 

h & E are not n-spectra. The calculational utility of ( A )  depends crucially on 

the analysis of its behavior with respect to the action of n. It is this analysis 

and the analysis of the behavior of (A) with respect to the transformations of the 

previous section that are our subjects here. When we come to studying cellular 

chains in chapter VIII, we shall find it an easy matter to compute C* (x' A f*E) , 
and the present analysis will allow us to deduce the structure of C*(X IX E) as a 
n-complex. In this application we shall take G = e and a finite, but the 

relevant geometry all works in full generality. 

We emphasize before we begin that it is essential for the precise calculational 

control we want that the diagrams in all of the following lemmas commute on the 

level of spectra, before passage to the stable category. Lettered diagrams will 

generally be used to express the stable category level implications of these 

technical diagrams. 
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We f i r s t  note tha t ,  up t o  a suitable diagram of equivalences, the equivalence Lemma 4.1. For a Gspectrum E, the following diagrams commute: 
( A )  i s  independent of the various choices made. Thus l e t  x : X + $ ( U, U 1  ) be 

another ( G  x n)-map and l e t  h l :  x1  c! w(fl ) be another untwisting G-homotopy. Let 

j : x = X t  be a ( G  x n)-homotopy and l e t  k: w(f) = w(fl ) be a G-homotopy provided 

by a G-path in d ( U , U 1  ) connecting f t o  f 1  . Then there i s  a G-map 

which r e s t r i c t s  t o  h, k, h1 , and j on the four sides of the square. There 

r e su l t s  a natural  diagram of Gequivalences 

in  which the maps of the top row are ( G  x n)-equivalences. It i s  in th i s  sense 

that  the equivalence ( A )  i s  independent of the choices of X ,  f ,  and h .  

The essential  idea behind our analysis of IT actions i s  t o  take seriously the 

discussion in 11.4.15 and Remarks 1.9. This shows that  IT actions on G-spectra can 

be ent i re ly  understood in terms of morphisms of G-spectra. That is, we concentrate 

on the n-free ( G  x n)-spectra n K E generated by Gspect ra  E. To allow 

quotation of Theorem 1.13, we always assume tha t  E has the homotopy type of a 

G-CW spectrum. By abuse, we agree t o  l e t  n denote both our given group and the 

G-map n -+ J(u,u) specified by the action of n on U. The abuse i s  jus t i f ied  by 

the l a s t  sentence of Remarks 1.9, which shows that  the two possible interpretations 

of A k E yield one and the same spectrum. We specialize ( A )  t o  a calculation of 

the underlying G-spectrum of IT LX E by choosing an untwisting G-homotopy 

d: TI = ~ ( l ) ,  where 1: U + U i s  the identi ty.  This gives natural  equivalences of 

G-spectra 

The following resul t  computes the monad structure G-maps n : E + a uc E and 

p :  s tx n uc E + n w E in terms of the monad structure G-maps 

n: E = { l } ' ~  E + n t  A E and p:  ( n  x n) ' "  E + n t "  E 

induced by the inclusion n :  { l}  + a and product p :  n x n + IT. Since q i s  a 

cofibration, we may assume that  d ( 1 , t )  = 1 for  a l l  t .  

and 

Here T: n x n x % + $ ( U , U )  i s  a G-map which r e s t r i c t s  t o  d m n ,  ~ ( 1 )  o d, and 
d ( p  x 1) on the faces of A2. A l l  maps not labeled n or p are G-equivalences. 

Proof. Since a Q p = A @ n and w ( l )  Q p = w ( l )  CB ~ ( 1 1 ,  d (p  x 1) i s  a homotopy 

between n a n and w ( l )  a w ( l ) ,  and of course the notation d a A suppresses a 

transposition. The r e s t  i s  immediate by natura l i ty  and Theorem 1.15. 

The roof of the preceding diagram i s  just  the natural  equivalence 
+ + 

n o( n K E = A A T  A E  obtained by composing two equivalences ( C ) .  When E i s  a 

( G  x n)-spectrum, we re l a t e  5 t o  nth E by attaching the following monad action 

and natura l i ty  diagrams t o  the l e f t  sides of the previous diagrams. 

Lemma 4.2. For a ( G  x TI-spectrum E, the following diagrams commute: 

and E p 5  
+ 

n A n D t E  



Of course, these observations apply equally well with U replaced by U' , and .f*(n+A E) *if o w(l)l ec E = [w(l) Q f] K E 

we let dt: r = ~ ( 1 )  be an untwisting G-homotopy n x I + J(Ut,Ut). 
The top equivalence (C) trivializes by Remark 4.3. 

. . 
Remark 4.3. Since n acts trivially on U', n = w (1 ) and we may take d' to be 

the constant homotopy. Then (C) trivializes and may as well be replaced by the Lemma 4.5. For a G-spectrum E, the following diagram commutes: 

natural identification i xl i xl + 1 1 ~ i  + 

~ K X K E  O ~ ~ K ~ K E  ~ ~ x K E  O_ n h h ~ ~  zlnil an + X + hf*E 

Proof. Since x is a n-map, we have for u c U that 

'bus $ (i .e . , $ ~c 1) makes sense. By passage to adj oints, it is easy to see 

that this isomorphism is the one to which the recommended proof of Proposition 1.8 

leads. 

The following result relates (A), (C), and (Dl via a diagram of the form 

Here the bottom right identification comes from Proposition 1.5 and is obtained by 

smashing X+ with the natural isomorphism 

All maps in the diagram are isomorphisms or G-equivalences and, modulo the 

identification f * ( A  E) = T+A fXE, the right vertical composite is 

Proof. The map k: X x n x I +J (U,Ut is an untwisting G-homotopy 
x @ n = w(f) @ w(l), hence j = k(@ x 1) is an untwisting G-homotopy 

a 0 x = w(l) 0 w( f ) ; here both right side composites are constant at f . 
The G-maps 

M: n x~ x % ~ ( U , U ' )  and N: x x n x +$(u,u~) 

restrict on the boundary of 
A2 to the three homotopies dictated by the sources of 

the unlabeled arrows with targets M x E and N x E. As usual, these maps are 

obtained by universality, and the rest follows by naturality and Theorem 1.15. 

For a ( G  x n)-spectrum E, the diagram 

should be viewed as providing a calculational substitute for an action of n on 
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f , ~ .  Here we attach the diagram of the following lC?mma t o  the bottom left that inclusion K = (1) K C  n x K. The map 0 ( i .e . ,  0 rx 1) i s  well-defined since, 

of the preceding lemma t o  obtain a diagram of the form for o E n,  k E Kp and u E U, 

( C )  + ( A )  + + 
n F X K ~  = n ,., X K E  =  AX A ~ , E = ( ~ x x ) + A ~ , E  ( n  @ K @ n )  e (o ,k ) (u )  = ( T  @ K @ n)(o,k,o -1 ) ( u )  

I@ = o [ ~ ( k )  (o ' l u )~  = [ o r ( k ) l  ( u )  = ; (o,k)(u).  'I ( A )  + l h (F)  
K E z x h f , ~ -  x t h n + A  f , ~  = ( X  x = ) + A  f * ~  the Oomposite (1 K 1 5)$"0 i s  Certainly a well-defined G-map. ma t  it i s  

also a a-map is not obvious but w i l l  drop out from the fact  tha t  it i s  the inverse 
isomorphism t o  the ( G  x r)-map G .  In terms of the isomorphism ( D l ,  1 i s  the 

L e m  4.6. For a ( G  x n)-spectrum E, the following diagram commutes : 

~ W ~ N E ~ ' % ~ ~ ; P E  ( D ) z ; w  T k E uE- K w E. 

Let i = x r l ) :  r x K + ( n  x K )  x n ,  SO t ha t  $(o,k) = (o ,k ,o) .  The evaluation 

of ( D )  in kmma 4.4 implies tha t  ;i i s  the composite 

For ( G ) ,  r eca l l  tha t  the n action map 6 of x rx E is  the composite of 

~ ~ ~ K ' E L ( ~ @ K ) F E & ( ; @ ~ )  K E  $-I 
- 

1 K 5 and the isomorphism (Dl. : r r n r ~ u ; ~ ~ .  

Unfortunately, we are not quite finished with equivariance diagrams. While the 

previous resul ts  suffice t o  compute the ce l lu lar  chains C,(X r n  E) when G = e ,  

Brunerls work in [Hal required a precise homotopical analysis of the successive 

quotients (X" n E)/(xn-' K~ E ) ,  where xn i s  the n-skeleton of X. This analysis 

w i l l  be based on the following resul t ,  which i s  just  an expl ic i t  description of a 

special case of the l a s t  isomorphism of Proposition 1.8. 

Lemma 4.7. kt K be a G-space and l e t  K :  K + $ ( u , u 1 )  be a Gmap. kt 
- 
K :  n x K + .,).(lJ,ul ) be the associated ( G  x r)-map. Define 

0 :  n x K + n x K x n by o(o,k) = (o,k,o-'1. men, for a ( G  x n)-spectrum E, 

the composite 

By t r i v i a l  computations, the composite 

and the analogous composite with the roles of 0 and $ reversed both reduce to  

1 x 1 x 0, 11 : 11) + n .  Using t h i s  observation, the monad iden t i t i e s  
gri = 1 and ~ ( 1  K 5) = { p ,  the associativity of 6, and the natura l i ty  of 

6, 0, and $, we can now check that  our two maps are inverse isomorphisms by easy 
diagram chases. 

We also need a diagram of the form 

- 1 ~ 1 ~ 5 ~  (C) + ( A )  
' - l . r n n ~ H n v E  ~ M K K E  ~ K K K E  = ~ A K V E  + + 

* ( ~ @ K @ T )  WE .-. K F E - a A K n f,E 

(H is isomorphism of ( G  x n)-spectra; i t s  inverse i s  the ( G  x n)-ma~ ( A )  
K K  E = ( n  X K ) + A ~ * E C  - lA ( F )  ( n  x ~ ) + h  (*+A f,E) = 

n :  ~ K K x E + X K E  

obtained by freeness from the G-map n : K K E + ; H E. 
the of n in terms of the n action 5 = (1 a. 5)  (D) on 

Proof: The idea here i s  t ha t  7 K E and a u K K E may be viewed as  analogs of 
- 

and the definit ion $ = @ (1 x n )  in the previous proof, we see that  such a 
( *  x K)+A Y with two different n actions, namely the diagonal action and the l e f t  

diagram is obdXIined by attaching the following diagram t o  the top row of diagram (G) 
action on n ,  where Y i s  a n-space. Our maps are analogs of the standard inverse of Lemmas 4.5 and 4.6, with x replaced by K. 
n-isomorphisms present i n  tha t  si tuation.  Of course, q is  induced from the 
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Lemma 4.8. For a G-spectrum E, the following diagram commutes: n x Kn-l - xn-', 

i x l  0 
i x l  + 1 

l n i O  + lh i l  + + 
n ~ c ~ ~ E + d l k ~ k E + n ~ ~ b ( E - - - - - - + . n ~ j  p ( E + n A K A f * E  

1 
n 

1 
n x L  -Ir" 

l ~ n  1 pm 11.. P A  ( n d )  1 ~ n h l  
i x l  i x l  + - 1&i0 + 1 A i l  + 0 1 

1 where $-1 i s  a disjoint  union of Gspheres and & i s  the disjoint  union 

a 1 ~ c d l  E- n r, r w E - - r n * h  K E- n ~ ( n  x K ) ~ ~ * E .  of the corresponding G-cells. Observe that  i s  G-homeomorphic t o  
- 

Here h is any untwisting G-homotopy for  K ,  hence j = h(q x 1) is an untwisting ( f / n ) / ( x n - l / n )  . kt X, denote the res t r ic t ion  to  xn of the ( G  x *)-map 

G-homotopy for  K. X: X + ( U , U '  ) and l e t  An and K ~ - ~  be the Gmaps obtained by res t r ic t ion  of Xn 
t o  ~ and Qml, SO tha t  and Tn-l are the res t r ic t ions  of xn t o  

Returning t o  a ( G  x n)-spectrum E, we combine kmma 4.1, diagrams ( G I  and n Ln and K n - l 0  For ( G  x n)-spectra E, there are natural isomorphisms of 
( H I ,  and the fac t  tha t  11 i s  a IT-map t o  obtain the following schematic diagram. ( G  x n)-spectra 

It calculates the maps of the inner square i n  terms of simple space level  maps and 
N 

our substi tute (F) for  a a action on fwE. (X, E ) / ( ~ n - l  " E )  "< E ) / ( < - ~  K E)  = ( n  K An w. E ) / ( n  tx K ~ - ,  K E) . 
( p  x l ) ~ ~  r ( n  x K ) + A  f , ~  

Il+ + 
( I )  ( n x n x K ) A n ~ f * E  

1 A (F) 

4 

When n acts t r i v i a l l y  on U ' ,  there resul t  natural  isomorphisms 

By res t r ic t ion  of X ,  h and w(f)  and passage to  quotients, diagram ( A )  induces an 

equivalence of G-spectra 

Proof. The functor x ac E preserves pushouts over ( U ,  U' i n  X ,  hence the 

f i r s t  pair  of isomorphisms i s  immediate from Lemma 4.7. Since passage t o  orbi ts  

over R i s  a l e f t  adjoint, it preserves pushouts and quotients and, by 11.4.15 

( i v ) ,  n x E/n = E for a G-spectrum E. The second pair  of isomorphisms follows. 

The f ina l  G-equivalence i s  obvious and can be viewed as obtained by passage t o  

orbits  over n from an analogous ( G  x n)-equivalence 

Here $(cr,k) = (cr,k,cr) a t  the top and w ( u , ~ , k )  = (cr~ ,k ,u)  a t  the bottom l e f t .  ( n  An k E ) / ( n  K ~ - ~  P E )  ( n  r~ LA hf,E)/(n K K:-~ hf*E).  

The reader may find it instructive t o  replace f*E by a n-space Y and 

chase the outer diagram on elements. He w i l l  find that  K i s  a dumm;y variable and Calculationally, the l e f t  n actions on these ( G  x a)-spectra correspond t o  the 
t h i s  i s  just  the standard conversion of n actions on ( n  x K)+n Y mentioned a t  natural  diagonal a action on (x, K E ) / ( X , - ~  K El, an assertion made precise by 

the s t a r t  of the proof of Lemma 4.7. diagram ( I )  . 
The application t o  (xn rn E ) / ( x " - ~  a n  E )  goes as follows* 

Finally, we turn t o  the relationship between the maps I ,  a ,  B ,  and 6 and 

untwisting G-homotopies . Of course, I is only a G-map since f = (x )  : U + U1 is  
Propo6;ition 4.9. Let the n-skeleton xn of the n-free ( G  x a)-cw complex X be 

only a G-linear isometry. (We use the l e t t e r  f for consistency with diagram 
given by the pushout diagram ( A )  . ) On the other hand, a and f3 are obviously ( G  x n )-isomorphisms, a fac t  'w 

have already exploited in  the case of 8, and Definition 3.4 constructs 



6 as  a ( G  x IT)-map provided that  we s t a r t  with ( G  x IT)-linear isometrics 

f 2 :  U@ U -r U and f i :  U '  Q U '  + U ' .  

(We add subscripts here t o  avoid confusion with our fixed f .) Observe that  the 

discussion of wash products i n  I I§3 applies here with G replaced by G x IT 

since .=k (u ,u )  and J(u' , U 1  ) are ( G  x .)-contractible. 

In the following resul t ,  we use the expl ic i t  spectrum level  definit ion of 6 

instead of passing t o  the stable category. Otheryise our notations are s l igh t  

variants of those of Proposition 3.1 and Ikf in i t ion  3.4, with G replaced by 

Proposition 4.10. For a Gspectrum E, the following diagrams comute, where a l l  

homotopies are untwisting G-homotopies. 

Here i: { x } ~  X and h: x = w(f) i s  assumed t o  sa t i s fy  h ( x , t )  = f for a l l  t .  

Here w = (1 x t x 1)(1 x 1 x A ) :  X x XI x I r X x  I x X' x I, h and h' are 

eiven untwisting G-homotopies x = w(f) and X I  = o ( f l l  and j = (h  @ hl)w i s  the - 
result ing untwisting G-homotopy x @ 

= w(f @ f l ) .  

Here w =  (1 x t x 1)(1 x 1 x A ) :  XI x X  x I + X I  x I x X x I, h and h1 are  

given untwisting G-homotopies x = w(f 1 and = w(fl ),  and hn = (h '  a, h)w i s  

the result ing untwisting G-homotopy o = w ( f l f ) .  

Here the r ight  hand map 6 i s  evaluated as the formal composite 

1/;i 0 + 
I &  i d h  f,f2*(E4 F)  I* 'BX'A ( f f2 ) , (E6F)  -X A j R (En F) d X+A g,(Eh F) 

6 1 I A A l  

where g = f j ( f  @ f and j is a path i n  J(u @ U,U1 from f f2 '  t o  g. 

Proof. The assumption in (i) ensures tha t  h ( i  x 1) K E = I'A f,E and i s  jus t i f ied  
since i is a cofibration. The top r ight  identif ication i n  (iii) i s  given by 

Proposition 1.5 and can be expressed i n  terms of isomorphisms B. Now par ts  
(i) - ( iii) are immediate. In part  ( i v )  , the maps 6 are t o  be interpreted as  formal 

composites, as i n  the second diagram, and the f i r s t  diagram i s  t o  be interpreted a s  
commutative on the spectrum level  when suitably expanded and f i l l e d  in. Since we 
have already given a plethora of such diagrams, we leave the deta i l s  as an exercise 

for  the interested reader. 

r 

Remark 4.11. If  we redefine 6 by replacing A: X -r X x X by a 

I ( G  x IT)-cellular  approximation A ' ,  then, i n  the stable category, the new map is 

i equal t o  the old map i n  view of the spectrum level  commutative diagram 
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m (X CB x)kl E (EnF), r ~ ( j )  = v o,E(j) + E(j) 

Ti1 o cn 
m (~(3 X)~'l w (EnF) has 3 component the isomorphism o just specified. 

-1 
where k: A - A'. That is, we must actually replace A by h'il io0 Of course, As in the previous sections, extended powers are best studied in appropriate 
all claims about diagrams commuting in the stable category remain valid for the new equivariant categories. That is, we keep track of equivariance and only pass to 
6. In the diagram of (iv) above, A is now replaced by A', and this will allow ~rbits at the last possible moment. This results in greater precision and 
calculation of 6 on cellular chains when G = e. 8 

generality and simplifies various proofs. It is also essential to the key 

definitions of the next chapter. In line with this, it is sensible to work more 
$5. Extended powers of Gspectra generally with 

While the full generality of the previous section has its uses, the application 

to extended powers is based on restriction to the case when IT is taken to be a 

subgroup of a symmetric group C We fix a complete G-universe U and regard it 
j ' 

as a C .-trivial (G x X .  )-universe. With left action by permutations, ~ . f  is a 
J J 

(G x Cj )-universe with effective Cj action. We regard 9(Uj ,U) as a left G and 

right Ci-space, with (fo)(u) = ~(Du). It is a universal principal (G,C.)-bundle. J 
J 

We fix an indexing set in the Guniverse U 'and we let a j  = {vj I V  E a )  
be the resulting "diag~nal'~ indexing set in the (G x C. )-universe d . 

J 

We also fix a subgroup IT of C and a IT-free (G x IT)-CW complex X. In . j 
line with our conventions on 4(uJ ,U), we regard X as a left G and right 

n-space. Let X: X + .$(d ,u) be any chosen (G x IT)-map. 

For E E GIQ, , we define x K, th 
E"), the )c. extended power of E, to be 

the orbit spectrum ( x tx E(') )/n. We write X pn E(') for x a E") regarded as 

x ( E ~ A  AE.) e G 
J 

for Er e GAL rather than just with x K E"). For o e n, right multiplication 

0: X + X leads to the dotted arrow composite 

When all Er = E, this is the left action by o-' on x r E"). Clearly it might 

happen that some but not all of the Er are equal and that n permutes blocks of 

equal variables among themselves. We can still pass to orbits and so obtain more 
general variants of extended powers. Since these variants play a ro1e.b our 
definition of operad ring spectra, we give a notation which allows us to be precise. 

- 
a spectrum in the stable category h G U .  It is independent of x by Theorem 1.14. 

Notations 5.1. Let p be a partition of the set ;i = {l,.n-,j) into k 
The essential, obvious, point here is that the j-fold external smash power n-invarfant subsets. We may think of p as a function + & p-l(s) being the 

E(j ) E G &  ~ - j  is a (G x n)-spectrum under permutations. It is worthwhile to be * subset. In the most interesting case, n is the group of all permutations 
precise about this. For o E n and G-prespectra Dr, 1 < r < j,  emut tat ion of 

which fix each set P-' (s and is denoted n[p] . Suppose given spectra Fs for 
smash products (from the left) 1 6 s t k. If Er = Fp(,) for 1 t r < j, then 

specifies the external commutativity isomorphism ' E is defined. Of course, the uniqueness assertion of Theorem 1.14 still applies, and 

U :  o,(D1 A o . 0 AD. + D A * * * A D  
o1(l1 ol(j)' 

there are evident analogs of Propositions 5.2 and 5.3 below. We shall say that a 
map is defined or a diagram commutes Irwith all possible equivariance" if whenever 

variables coalesce with respect to a partition p, the map is a r[pI-map or the 
Here o, 

enters because the permutation above implicitly also permuted indexing 
diagram commutes i.ri the stable category of (G x ~[pl )-spectra and so passes via 

spaces. This passes to spectra via L. The n action 
orbits to a commutative diagram in Z~drdCil.. 
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Formally, the stable category level functor X II, E(j ) is the composite of course, on passage to stable categories, the shift desuspensions nV here 

may as well be replaced by the geometric desuspensions 2. 
(j) 

KG,~& ( ? )  r h ( ~  x n),&aj X' (?)>h(~ x * ) d a m -  hGd&. 

 marks 5.4. (i) If the bundle S(V',~,V') over A of Definition 2.1 has total 

This formulation raises a technical question. As usual, we must approximate E by space Z, then the space 

a G-CW spectrum before passage to the stable category. However, it is important 

to know that we dont$ have to reapproximate E(j ) by a (G x n)-ON spectrum. We 
(j) T(A;v', p g j  h 7 

shall prove the following result at the end of the section. 
f the Thom complex of Z x Y(') + A x Y(') by the Thom complex 

Proposition 5.2. If E is a GCW spectrum, then E(j ) has the (G x n)-homotopy x {*I .  Of course, when G = e, this relative Thom complex has a 

type of a (G x n)-CW spectrum. whenever the larger bundle named is orientable (see e.g. IX15 

By Theorem 1.11 and I .5.6, we already know that the functor x tx ( ?  ) (ii) Since X is a n-free (G x n)-CW complex, the colimit may be taken over 

preserves (G x a)-CW homotopy types and the functor (?)/n carries (G x 8)-CW its finite subcomplexes. In practice, the skeleta of X are finite and the colimit 

spectra to G-CW spectra. may be taken over them or over any conveniently chosen cofinal subsequence of 

In m a g  respects, the depth of the construction x wn E") lies in the 
(iii) When G = e, U = Rm, and V = Rn, is simply some R ~ ( ~ )  with q(a) 

initial j power functor. This fails to commute with wedges, pushouts, smash 
s~fficiently large that ~(A).(R") C R ~ ( ~ ) .  Here T(A;R~~,R~(~)) is the Thorn 

products with spaces, and most other constructions of interest, the deviations 
complex of the n-bundle c q( a) - ncj over A, where c is the q-dimensional 

leading to much of the calculational power of the construction. The commutation 9 
trivial n-bundle A x Rq and cj is the n-bundle A x (R1I5 with diagonal n 

relations that do hold are crucial. 
action on the total space. Explicit computation is quite practicable; see Bruner 

[H,, V§2 1 for examples. 
Proposition 5.3. For a based G-space Y and for V e a, there is a natural 

isomorphism 
The following result allows us to recognize maps of spectra defined on extended 

powers in terms of concrete space level data; it is related to McClure's work in 

chapter [Hm,VII I . 
in (G x n)d&j and there are natural isomorphisms 

and 

Proposition 5.5. Let E, E1 E G A L  A map E , :  x E(') + Et in G ~ U  

determines and is determined by maps E,(x): (eE)(')'+ X(x)X( 9.3' ) in G B ~  for 

points x r X such that E,(x) o T = E,(XT) for 1: E C and the functions 
j 

specified by c( [X,W]A ylt, 0  . o h  y. ) = o(E,(x) (yl A 0 0  Ay n W) for x E X such that 
J j 

x(x) (V) C W, w , W - x!x) (V), and yr e EVr are continuous. 

Proof. By adjunction,, the prespectrum level maps E,(x) determine and are 

determined by spectrum level maps Lg(x): E(j) + x(x)*(~t 1, and the continuity of 

L (discussed above 1.3.5) implies that the given continuity statement is equivalent 

to the continuity statement of Proposition 2.17. Thus that result implies that a 

G-map 5: x rx ~ ( j )  + Et determines and is determined by Gmaps E,(x) making the 

in G ~ Q ,  where the colimit is taken over the compact restrictions 

a: A C X +Q (u~,u) of x and a ( ~ )  ( ~ j  ) C vavj. 

Proof. The first isomorphism is an immediate verification from 11.3.6. The others 

hold'before passage to orbits by Propositions 1.5 and 2.15 and follow as written 

since passage to orbits commutes with colimits and with , by I .3.8. 

functions 5 continuous. The formula E,(x) o T = ~ ( X T )  makes sense since 



and i s  equivalent t o  the n-equivariance of the corresponding map 6 .  

We have l e f t  one unfinished piece of business. 

Here the r ight side i s  a ( G  x p)-space by pullback along the inclusion 

i: G x p + P ~ G  given by transposition and the diagonal on G. Now 11.4.8 implies 
an isomorphism of ( G  x p)-spectra 

Proof of Proposition 5.2. E ( j  ) has the sequential and skele ta l  f i l t r a t i o n s  91 F " * i ( p l ~ )  nL a(e  A 0 . .  h e q j ) ] ,  

obtained i tera t ively  from 11.3.8. Inductively, it suffices t o  prove that ,  fo r  , 

n 2 0, the domain of the attaching map for the construction of ( ~ ( j  ) from where eqr i s  viewed as a n  I$,-spectrum. Again by 11.4.12, it suffices t o  consider 

( ~ ( j  ) ), has the ( G x n )  -homotopy type of a ( G x- n ) -CW spectrum. This domain may q1 m n 

be written as the wedge of boundaries of d is t inc t  j-fold smash products of ce l l s  the L-spectrum F1 = a ( e  A * 0 A e q  ) . We agree $0 write eP, = A rzme r ,  where 

of E, and the wedge summands may be grouped in to  orbi ts  under the action of +. i i mr and nr are specfied by 

It suffices t o  consider a single orbi t ,  and we choose an orbi t  representative 9 9 

I J Let V = R ' 63 O a e  6 R * C (R 1"'. The definit ion of r 

9, -l-qr 03 e '=AUcmeT i f  ~ , ) l  and e = A  c e l  i f  % G O .  

ml i m i 
_ _ 2 implies tha t  V is a 

Let p c s be the subgroup of elements of n which f i x  F. Then it i s  easy t o  see p-space and thus a K-trivial Lspace,  and 11.3.6 implies an isomorphism of 

tha t  the given orbi t  i s  isomorphic as  a ( G  x s)-spectrum t o  I,-spectra 

By 11.4.12, the extension of group actions functors preserve CW homotopy types, 

hence it suffices t o  consider the ( G  x p)-spectrum F. Since ce l l s  are smash 

products with orbi ts ,  we may write 

91 F = [(G/H1) X - O X  ( G / H . )  ]+A a ( e  A . e e  h e q j ) .  
J 

Let {K1,-0,K.) be a subsequence of {H1,oe,H.) consisting of one group for each 
J 

i 

q1 dis t inc t  c e l l  in  the sequence {eH, , - 0  , e 2 }  and l e t  the c e l l  corresponding t o  
F 
i 

I J 

Ks appear as times i n  t h i s  sequence. Of course, the Ks need not be d i s t inc t  i 

E 
since the same group may index more than one c e l l  (a fact  obscured by our notations, I 1 
which ignore the source of our ce l l s  in the structure of E l .  Let 

i 
K = x 0 x < and embed K i n  ~j according t o  the positions i n  which 

corresponding ce l l s  appear. The elements (a ,k)  fo r  a E p and k E K specify a 

subgroup L of the wreath product p j ~ ,  and we have an identif ication of 

( G  x p )  -spaces 

By 1.5.14, the functor ~~x~ preserves L-CW homotopy types. The space level  

boundary here can easily be subdivided t o  a p-CW complex and thus a K-trivial 

L-CW complex and the conclusion follows. 

In the case G = e, we shal l  say more about the c e l l  s tructure on ~ ( j )  and 

on x x, ~ ( j  ) in ~11152. 



V I I .  Operad ring spectra 

by L. G. Lewis Jr . ,  J .  P. May, and M. Steinberger 

The notions of structured ring spectra with which [H,] was primarily 

concerned presupposed sequences of extended j-fold powers with suitable in ter -  

relationships as j varies. The appropriate framework for defining such sequences 

i s  given by the notion of an operad originally introduced for the study of i te ra ted  

loop spaces. We reca l l  the definit ion i n  section 1 and use it t o  complete the 

derivation of the coherence diagrams promised i n  -[Ha, 1821. In part icular,  we 

shal l  see that  a l l  of the diagrams occurring in the definit ion of an operad l i f t  t o  

natural  commutative diagrams relat ing the associated extended powers of spectra. 

This l a s t  fac t  leads i n  section 2 t o  the definit ion of a n  action of an 

operad G on a spectrum E in terms of maps c  : cj r E(' ) -+ E. Actually, there 

are two variants of the definit ion.  For -spectra, the diagrams relat ing the maps 

c j  are required t o  commute on the level  of spectra. For Tc-spectra,  or 

g-spectra up t o  homotopyll, these diagrams are only required t o  commute i n  the 

stable category. Of course, C -spectra are z d  -spectra by neglect of structure.  

When & i s  an E, operad, we c a l l  g-spectra E, ring spectra and h6-spect ra  H, 

ring spectra. This notion of an Em ring spectrum i s  equivalent t o  tha t  originally 

specified by f i y ,  Quinn, and Ray [99] ,  and t h i s  notion of an Hm ring spectrum i s  

equivalent t o  tha t  specified i n  [H,, I§ 31 . The former notion i s  appropriate t o  

in f in i t e  loop space theory and, in part icular,  t o  the study of oriented bundle and 

fibration theories. Such applications were the theme of [991. The l a t t e r  notion is  
- appropriate t o  applications in stable homotopy theory, as  was the theme in [H,]. 

From the stable homotopy point of view, the main in teres t  in Em ring spectra i s  

that ,  as discussed i n  [H,, 1841, the machinery of multiplicative in f in i t e  loop 

space theory constructs a plethora of interesting examples of Em ring spectra and 

thus of Hm ring spectra. We conclude section two with a discussion of A, r ing 

spectra; Robinson's paper [I241 on the Kunneth and universal coefficients theorems 

i n  generalized cohomology theories is based on the use of such spectra. 

The r e s t  of t h i s  chapter is concerned with free operad ring spectra. The 

free $ -space CX generated by a based space X was constructed i n  197, $21, and 

t h i s  construction has played a central  role in i tera ted  loop space theory and its 

applications. In section 3, we construct a spectrum CE from a uni ta l  spectrum 

E and a suitable llcoefficient system1' Ck; . In section 4, we show tha t  CE is the 

free c-spectrum generated by E when i s  an operad. 

h l p h  Cohen [341 observed tha t  the formal properties of our construction CE i: 

lead t o  an extremely simple conceptual proof of the stable sp l i t t i ngs  

of Snaith l1291 and F. Cohen, May, and Taylor 1301. Going further,  and following up 
l a t e r  conversations with R. Cohen, we show in section 5 that  h i s  proof can also be 

applied t o  obtain the multiplicative properties of the generalized James maps which 

give the spl i t t ing .  These properties were f i r s t  proven by Caruso, F. Cohen, May, 

and Taylor 123,321 using space level  combinatorial constructions of the James 

maps. A s  explained in [321, these properties yield an algorithm for the calculation 

of the homological behavior of the James maps. This algorithm was effectively 
(exploited- by K u h n  [771 and was the main technical tool  in his  l a t e r  proof of the 

Whitehead conjecture [781. 

In view of the work i n  the previous chapters, we find it simple and natural  t o  

continue working i n  the equivariant context throughout t h i s  chapter. Thus G i s  

again t o  be an arbi t rary  compact Lie group, and a l l  spaces and spectra are t o  be 

G-spaces and G-spectra, even when we neglect t o  mention t h i s  assumption. In 
part icular,  t h i s  means that  we are generalizing the ci ted sp l i t t i ng  theorems and 

analysis of James maps t o  the equivariant se t t ing ,  as was f i r s t  done by Caruso and 

May working on the space level .  As we shal l  point out a t  the end of section 5, t h i s  
implies a generalization of Snaith 's  stable spl i t t ings  of spaces anz% t o  stable 
spl i t t ings  of equivariant loop spaces Crvx when G i s  f in i t e .  

In t h i s  chapter, we use T rather than y for  the commutativity isomorphism 

E A  F = FA E. 

$1. Operads and extended powers 

Definition 1.1. A Goperad C is a sequence of G x z -spaces C. for  j 2 0, 
j J 

with G acting on the l e f t  and r acting on the r ight and with Co a single 
j 

point *, together with G-maps 

fo r  a l l  k 2 0 and js 2 0 and a G-fixed unit element 1 a tl. These data are 

subject t o  the following axioms. 

(i) The following associativity diagram commutes, where j = jl + 0.0 + jk, 

i = i l +  0.0 + ij, gS = j1 + 0.e + js, and hs = i + ..a + i 
gs-l+l gs ' 

shuffle k 

k l x (  x y )  



(ii) The following unit diagrams commute: 

and 

(iii) The following equivariance diagrams commute, where o r Zk, T~ c lj s , 
( j ,  . , j r z permutes k blocks of l e t t e r s  as  o permutes k 

j 
l e t t e r s ,  and rl ? a .  me r r I: i s  the standard block sum permutation: ' 

' 

k j 

and 

We have gone t o  the trouble t o  write out diagrams for c l a r i ty  i n  the 

generalization t o  diagrams of extended powers t o  be given shortly. Henceforward i n  

t h i s  chapter, a l l  operads are understood t o  be G-operads. 

Definition 1.2. A n  operad & is said t o  be &free i f  the Cj are the t o t a l  

spaces of principal  (G,Z.)-bundles. J It i s  said t o  be an Em operad i f ,  i n  

addition, these bundles are universal. i s  said t o  be ce l lu lar  i f  the Cj are  

( G  x c.)-CW complexes. 
J 

Now l e t  U be a G-universe ( a s  specified i n  182) . 

Remark 1.3. There i s  a more general notion of an Emu operad, for which C j i s  

required t o  be a universal J ( U ~  ,U)-space and thus t o  be ( G  x a)-equivalent t o  

J (uJ ,u)  ; compare 11.2.11. 

Example 1.4. Let xj = (d ,U)  with i t s  usual G x I: j action. Let 1 r kl be 

the identi ty map and define structure maps y as composites 

J($ ,,k) composition -5. 
Then % is an E m  operad and i s  an Em operad i f  U i s  complete. dl i s  called 

the l inear isometrics operad of U. 

I More examples of operads are given i n  section 5 and i n  [621, where equivariant 

in f in i t e  loop space theory i s  developed. When G = e,  more examples appear i n  

[97,99, and 1341 . In part icular,  there i s  a ce l lu lar  operad b such that  Bj i s  

precisely the canonical universal C.-bundle E6 . see [97,p. 1611. 
J j ' 

We use operads t o  define canonical extended powers. As usual, f ix  an indexing 
se t  a in U. 

Definition 1.5. Let be a Z-free operad and assume given a morphism of operads 
t h  x: & +Z with j- component x For E r G$@ and a c Z j  , define 

j ' 

DT(C,E)  = x j  K ~ E  ( j )  and D ~ ( c , E )  = x j  a i j  E ( j ) e  

In part icular,  with the convention E(') = S, DO(&,E) = S for a l l  & and E. As 
they stand, these are well-defined spectra i n  G8a.  When working i n  the stable 
category ZGIU, the same symbols w i l l  denote the corresponding constructions 

obtained from the composite of 
x j  and any chosen z .-free ( G  x Z j  )-CW 

J approximation + . These constructions for different Em operads are  

canonically equivalent, hence i n  t h i s  case we often abbreviate notation t o  

X 

DaE = D,(d,E) and D.E = Dj (&,El  
J 

The notation agrees with the space level  notation i n  Cohen, May, and Taylor 

L 301 . A s  there, the definit ion i s  also useful when 6 i s  only a coefficient 
system; t h i s  notion w i l l  be recalled and the extra generality exploited i n  sections 

3-5. By VI.5.3, we have the fundamental re la t ion  

In practice, & i s  a product operad 6' x Z and the map x : + X i s  just  the 

projection. This use of products resul ts  i n  no rea l  loss of generality since the 
other projection &+ &I has jG map a weak ( G x Z . )-equivalence i f  g' i s  

J 6-f ree . 
When G i s  f in i t e ,  we can take 

rCj 
t o  be the realization of the t o t a l  

singular complex of rj. We see that  t h i s  construction takes G-spaces t o  G-CW 
complexes by looking a t  orbi ts  of simplices i n  the t o t a l  singular complex. 

By 



functorial i ty and preservation of products, the re. J are the spaces of a ce l lu lar  

operad Y,  and the natural  weak equivalences G j  + g  specify a morphism of 

operads. Thus res t r ic t ion  t o  ce l lu lar  operads resul ts  in no rea l  loss  of 

generality. This argument f a i l s  for general compact Lie groups because passage 

through the simplicia1 category resul ts  i n  loss  of continuity and so f a i l s  t o  carry 

G-spaces t o  Gspaces. We believe tha t  a more sophisticated construction would 

obviate the d i f f icul ty .  In any case, CW approximation i s  only used on passage t o  

the stable category, where any result ing homotopies cause no di f f icul ty  by virtue of 

VI.1.13 and 1.14. In part icular,  they cause no di f f icul ty  i n  transporting the 

diagrams t o  follow t o  the stable category. When G = e, the E, operad "9 may be 

taken as a CW-approximation of C ( the  structural  maps only agreeing up t o  

appropriately equivariant homotopy, of course). 

We turn t o  the coherence data promised i n  [H,, I821 and needed t o  make sense 

of the definitions i n  the next section. In f ac t ,  three of the four families of maps 

t j ,  a j j k ,  f i j j k ,  and 6 j discussed i n  [H,, I821 are special cases of a single 
general family derived from the maps a and fi of VI83 and the structural  maps y 

of operads. We assume given a X-free operad & and a morphism of operads 

X:  + 2 throughout the res t  of th i s  section. We adopt the notation 

and similarly for sums and composites of the xj ;  here the notation i s  ambiguous, 

because products of the G j 1 s  can be domains of both sums and composites, but which 

operation i s  intended should be clear from context (compare VI.3.l). 

Definition1.6. (i) For k , O ,  js  , 0 ,  and j = j1 + m e * +  jk and for  G-spectra 

ES,, r Gd&, 1 < s c k and 1 G r c j s, define a map 5 as the dotted arrow 
composite i n  the diagram 

(Here empty smash products are t o  be interpreted as  S.) 

( ii) Assume given a G f  ixed point c J . s cj, with cl = 1, and l e t  

= x ( c  ) :  U~ + U. For a G-spectrum E c Gda, define 
f j  -:j j 

and . 

f i j  ,k:  Dj ( t , D k (  C,E) ) + D ( t , E )  jk 

by passage t o  orbi ts  from the following instances of res t r ic t ions  of maps 5: 

11) H {c.) k E(') + el IX g. K E'" 1. e. r E( ')  
J J J 

Of course, 1 is jus t  {c . } r E(' ) + c .  tx E(' ) , but the more complicated des- 
j J J 

cription makes diagrams involving it special cases of general diagrams involving 5. 
The equivariance needed t o  make sense of a and f i j  , i s  contained i n  the 

j ,k 
following resul t ,  which shows that  a l l  diagrams i n  the definit ion of an operad pass 

t o  coherence diagrams relat ing extended powers. 

Proposition 1.7. The following diagrams of G-spectra commute, t he i r  variables being 
arbitrary G-spectra; unspecified notations are taken from the definit ion of an operad. 

and 



j 

and ekw(/f,cj ~~1 s . r=1 / \ " E  '9' 

1 

Proof. In the l a s t  diagrams, the l e f t  actions by permutations are as  specified 

above VI.5.1. Inverses appear naturally because of our convention of using r ight  

actions by permutation groups on the component spaces of operads. The verif ications 

require only the diagrams defining operads, the diagrams of VI.3.3 and the diagrams 

i n  many variables they imply, and natura l i ty  diagrams. 

On passage t o  the stable category, these spectrum level  diagrams lead t o  some 

of the diagrams displayed i n  [Ha, I821 and t o  many others when some but not a l l  of 

the variable spectra are equal. Before discussing - t h i s ,  we introduce the maps S j .  

We shal l  be working i n  the stable category hGdU in the r e s t  of t h i s  section. We 

use the notation A for  both internal  and external smash products, relying on 

context t o  determine the intended interpretation (compare 11.3.11). 

Definition 1.8. For Gspect ra  E and F, define 

by passage t o  orbi ts  from the composite 

j 
where g i s  the composite of f2  and the evident shuffle j ,2 

"j : 
U' @ U~ "U @ u ) ~  and the isomorphism i s  obtained by use of a,  6 ,  and the 

commutativity of the external smash product. The map 6 i s  constructed in VI.3.4 

by use of the pullback along of a ( G  x x .  1-homotopy h: 2 x I +Z between 
Xj  J j 2 j 

the (G,Z.)-bundle maps e , f : r j  +t2j specified by 
J 

e (g )  = y ( g ; f i ) ~ j  and f ( g )  = y(f2;g,g).  

I f  G i s  an Em operad, but not in general otherwise, the requisi te homotopy can 

be obtained i n  G rather than i n  X . 

The re s t  of t h i s  section i s  devoted t o  the proofs of the following omnibus 

coherence assertion and of a resul t  about transfer promised in [H,]. The reader i s  

invited t o  skip t o  the next section. 

357 

Recall tha t  a Gspace X i s  said t o  be Gconnected i f  a l l  of i t s  fixed point 

se ts  xH are connected. 

Theorem 1.9. The transformations i j ,  a j j k ,  o j j k ,  and 6 are natural  with 
j respect t o  morphisms of operads over and are compatible under xm with the i r  

space level  analogs. With D.E replaced by Dj(&,E), a l l  diagrams displayed i n  
J 

Lemmas 1.2.8 through 1.2.14 of [Hal  commute i n  the stable category KGB& 
provided t h a t ,  for 1.2.8, 1.2.11, and 1.2.14, each gj is Gconnected; the diagrams - 
displayed i n  I .2.15 commute i n  h ~ d &  i f  i s  an Em operad. 

proof. The natura l i ty  i n  i s  evident. The compatibility with xm i s  implied by - 
VI.3.2 and 3.6 and i s  expressed by the diagrams displayed above [Hm,.1.2.61 and 
the following diagram, whose commutativity i s  implied by V I  -3.6 ( ii ) : 

Here the top map 6 i s  obtained by passage t o  orbi ts  from 
j 

where 6 i s  as specified i n  VI.3.5. 

Proof of [Hm, I .2.81. The commutativity relat ion %,j o r  - a  i s  deduced from 
the diagram j ,k 

of Proposition 1.7 (iii), where a e Z2 i s  the transposition. Here a ( k , j )  

disappears on passage t o  orbi ts .  When res t r ic ted  t o  {c2a}, the top map a i s  the 

t r i v i a l  part  of the commutativity isomorphism r specified i n  11.3.12 (ii), and we 
have 

%, j  O a = a'  j ,k' 
where a' is d e f i n e d w i t h r e s p e c t t o t h e b a s e p o i n t  c a .  

j ,k 2 
A G-path from c2 t o  c a induces an equivalence r 1  from the domain of a t o  

2 j ,k 
the domain of a! which s a t i s f i e s  a '  o r '  - a and agrees with the 

J ,k j ,k j ,k 
nontrivial  part  of the commutativity isomorphism. Since r = a r l ,  

%, j  ' - a j ,k follows. The associativity re la t ion  
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o (ai . h l )  = a i,j+k o (1 A a ) A x v-I 
" i+j  ,k , J  j ,k i ~ : x ~ ~ x ~  

i s  similar. Both composites here are res t r ic t ions  of special  cases of traversal  of 

the diagram of Proposition 1.7 (i) in the counterclockwise direction. Traversing 

these diagrams clockwise, we see tha t  these composites are given by three variable v.xv -1 
1 i 

defined with respect t o  the basepoints ~ ( c ~ ;  c2,1) and -e2ix~;x< 
I 

L;X<X c;x e; maps a and a; 
f , j  ,k , j  ,k 

( c2; 1 ,c2 ) . A Gpath  in c3 connecting these points gives an equivalence a of 

domains which sa t i s f i e s  a' = a. o a and agrees with the associativity 
i , j , k  l,j,! 

isomorphism of 11.3.12 (iii) (use of whlch is implicit i n  the asserted "equality"). 

Proofs of [Ha, 1.2.9 and 1.2.131. These are both special  cases of Proposition 1.7 

(i) and thus already commute on the level  of spectra. 

Proofs of [H_, 1.2.10 and 1.2.121. These are easily deduced from VI.3.7 and ~1 .3 .8 .  

The operad structure is irrelevant here, and these lemmas apply t o  a l l  j-fold 

extended powers X sCj , ( j )  
After Passage t o  extended powers, the bottom part of the diagram commutes by 

Proof of [Ha, I .2 .-I1 1 . The re la t ion  a o ( 1. A I .  = I j+k would be a special Proposition 1-7,  while the homotopy used t o  transport the upper part  of the diagram 
j,k J J  

case of Proposition 1.7 (i) i f  cj+k were ~ ( c ~ ;  * A G-path i n  t 
c j ,  +k to a c ~ ~ u t a t i v e  diagram in the stable category i s  precisely the same as  the 

connecting these points leads t o  an equivalence which implies the required equality level the homo to^^ used t o  define 6i. The need for a & level  homotopy forces 

i n  the stable category. Similarly, the second diagram of [H,, 1.2 .ill would be a the res t r ic t ion  t o  Em operads. 

special case of Proposition 1.7 (i) i f  the i t e r a t e  ak , 0.0,  k were interpreted a s  Finally, we prove a generalization of the promised resul t  [ H , , I I . ~ . ~ I  about 
the res t r ic t ion  of t ransfer-  We need some notations. Let J = ( j l , u o , j k )  be a par t i t ion  of j ,  so 

5: c. w (ek R E 
( j k )  tha t  j = jl + 0 0 0  + jk, and l e t  zJ = c -.. x j k C  x j .  j 1 Let be an Em J operad and define 

t o  c j  r ej. This interpretation i s  valid in  the stable category. E ( j  ) 

Proof of [Hm, 1.2.141. The diagrams here resul t  from laborious chases based on the 

diagrams of VI.3.9, both of i t s  diagrams being needed for  each o f - the  diagrams of 

[Hm, 1.2.141, and various natura l i ty  diagrams. The source of the commutativity 

isomorphism 1 A r ~l appearing in  the f i r s t  diagram of [H,, 1.2 .I41 is the 

reduction of d t o  the equivalence induced by a path between isometries when it is  

applied t o  a one point domain G-space. 

Proof of [Hm, 1.2.151. Identifying a l l  vert ices of the asserted diagram as  

extended ( i j  + i k ) g  powers of E and noting which permutations occur i n  

arranging tha t  the variables E appear in the same order a t  each vertex, we find 

a f t e r  another laborious chase that  the diagram i n  question reduces t o  traversal  of 

the exterior of the following diagram of domain G-spaces, i n  which the unlabeled 

arrows are obtained by res t r ic t ing  t o  c2 i n  a l l  variables e2: 

Choose a G-fixed point ck r Ek. In Definition 1.6, r e s t r i c t  t o  the point ck and 
se t  a l l  ES,, = E. The result ing specialization of 5 is a ( G  x E .  )-equivalence. 

J 
On passage t o  orbi ts  over CJ, it gives a G-equivalence 

Of course, i f  we compose 5 with the evident projection 

we obtain a map aJ as in Definition 1 . 6 ( i i ) .  Now 6 i s  a "stable bundle" and so 

has the transfer r given by N.3.3. We specified a seemingly different map rJ i n  

[H,,11.1.41. 



Theorem 1.10. The following diagram commutes for any Em operad & and G-spectrum E. 

Again, l e t  a be an indexing se t  i n  a Guniverse U regarded as a 

Proof. Let ( k ) ~  denote the wedge of k copies of E. The j -fold external smash 

product ( ( k ) ~ ) ( j )  decomposes ( G  x L )-equivariantly as a wedge of terms, one of 
J 

which may be identif ied with 

c . - t r iv ia l  ( G x 6.  ) -universe for  a l l  j > 0. Let 6 be a &free operad together 
J J 

with a morphism of operads : G + & . When working in the stable category, we 

t ac i t ly  assume tha t  i s  ce l lu lar  (or  agree t o  apply ce l lu lar  approximation 

without change of notation).  Recall the many variable generalization of extended 

powers in VI.5.1. 

Definitions 2.1. Let E c G A  b and regard E as  a C .  - t r iv i a l  
J 

( G  x C )-spectrum for a l l  j > 0. A structure of 6-spectrum on E consists of 
J 

maps of ( G  x C .  -spectra 
J 

Let A: E + ( k ) ~  be the diagonal and l e t  nJ: ( ( k ) ~ ) ( j )  + z j  k C J ~ ( j )  be the : E E j > 0, 
projection. By [H,,I1.1.41, qJrJ i s  obtained by applying the functor j kCJ(? )  

t o  the composite such that  the composite C1i1: E + c1 K E + E i s  the ident i ty  map and the following 

diagram of spectra commutes, where k ,' 0, j 2 0, and j = 31  jk: 
( j )  

T i  : k 

and using the identif ication t kC ( z j  M E( j  ) ) = cj K ~ ~ E ( ~  ) . In view of IV.3.3, 
CJ 

it suffices t o  identify r j with t i e  map 

l ~ r :  ~ ( j )  = E(j)A S + E ( j ) A  ~ w ( ~ . / ~  ) +  cz x .  pC E ( j ) .  
J J  - E 

J J  

The diagonal A i s  homotopic t o  

Inp: E = z-13 A s ~ + c - ~ E  A ( k ) ~ l  = (klE, 

i 

A structure of ?;c -spectrum on E consists of maps 6 ,  in the stable category 
- J 
h(G x E .  Ida such that  el = 1 and the above diagram commutes with a l l  possible 

J 
equivariance; tha t  i s ,  it commutes i n  x( G x n ) A a  for the largest  subgroup 

- 
t IT of C; for  which a l l  maps i n  the diagram are defined i n  h( G x n)B& . Here we 

where p:s l  + (li)sl i s  the k-fold pinch map of the c i rc le .  It i s  now easily seen 

tha t  ~j for a general G-spectrum E is obtained from TJ  for E = S by smashing 

with ~ ( j ) .  The map ~j for  E = S i s  easily identif ied with the pretransfer 

r:  S + C m ( C j / C J ) +  as described in  11.6.15. In fac t ,  i f  we take the 

J 
embed Ck and C x *  a o x  C i n  c via 

j 1  jk j 

u - u(jl ,aaa,jk) and ( T ~ , ~ ~ o , T ~ )  - T~ @ass@ T ~ .  

C representation V there t o  be Fd with the permutation action and embed 
j - For example, i f  js = i for  a l l  s ,  then T = Ck/Ci.  

C j / C J  as  the orbit  of a point with isotropy group CJ,  then the Pontryagin-Thom 

map sV + ( C . / C  ) + A  sV i s  C homotopic t o  the composite 
J J  3-  We have evident notions of morphisms of c-spectra and of h(;b -spectra, and 

passage t o  stable categories evidently induces a functor from the category of 

-spectra t o  the category of h e  -spectra. 

i If  C1 i s  Gcontractible,  then 11: E + e l@ E is an equivalence by VI.1.15 
i 
I and, modulo th i s  equivalence, el is required t o  be the identi ty.  On passage t o  
i 

orbits ,  two special cases of our diagram become 



Comparing with the definit ion,  [Ha, 1.3.11 read G-equivariantly, of - an Hm ring 

spectrum, we see immediately tha t  i f  i s  an Em operad, then an hG spectrum i s  

an Hm ring spectrum by neglect of structure. In fac t ,  there i s  no loss  of 

information. 

- 
Proposition 2.2. h Ha ring spectrum i s  an hc -spectrum for any Em 

operad d: . 
Proof. We must show that  the part icular diagrams just  displayed imply the general 

diagram of Definition 2 .l. Let {il , e 0 e , im} be the se t  of d is t inc t  j s, l e t  

p: & + g  be the par t i t ion  p ( s )  = q i f  js =.iq, and l e t  kq = lp- l (q) l .  Then 

( iq) 
Let F = C i n ~ E  As in VI.5.1, we have 

Q 

k 
Let I$ e Ck be the permutation needed t o  rearrange 

s = l  
Proposition 1.7 and diagrams implied by the definit ion of an Ha ring spectrum 

yield the commutativity of each in ter ior  c e l l  of the following diagram. In f ac t ,  

t h i s  much requires only that  the C be Gconnected. However, when & is an 

Em operad, i s  an equivalence by VI.1.15 and the commutativity of the X ,~*Q,$  
in te r io r  ce l l s  implies the comutat iv i ty  with a l l  possible equivariance of the outer 

square. 

The basic formal properties of 
Hm ring spectra, as developed i n  

[Hm, I. 3.2-3.41, d i rec t ly  generalize t o  KG -spectra provided only that  each 

& ' i s  G-connected. In part icular,  the following resul t  holds. 

Proposition 2.3. Assume that  each &. i s  G-connected. The sphere spectrum i s  an - J- 
h6 -spectrum and the smash product of h(l: -spectra i s  an -spectrum. An - 
h e  -spectrum i s  a ring spectrum whose unit and product are maps of <C -spectra. 

The following resul t  compares the present definit ion of a c-spectrum t o  that  

originally given by May, Quinn, and Ray [ 99, I V  .l. 1 I . We regard elements of 
l inear isometries U~ + U via xj .  j as 

Proposition 2.4. *Let E c GAQ. A structure of t; -spectrum on E determines and 

is determined by maps of G-spaces 



for  j 2 0, c e C j ,  and Vr e a which sa t i s fy  the following, properties; here, 

when j = 0, cO( * )  i s  interpreted a s  a map SO -+ Eo. 

( i) The following diagram i s  commutative, where c e k, ds e j = j 1 + 0 a +  j k ' j 

b = y(c;dl,...,dj) e C j ,  and Ws = ds(Vj 
1 s-1 S 

with Ws = (0) i f  js = 0: 

(ii) c1 (1 ) : EV + Ell is the ident i ty  map, where 1 e C1 i s  the unit .  

( iii) The following diagram is commutative, where c e and r e r j  : 

( i v )  For v r r a  and W a a ,  l e t  V = V1 @ . 0 0 0 V  j and l e t  A(V,W) C C j  be 

the subspace of those c such -that  c(V) C W; then 'the function 

specified by r ; ( [ c , w l ~ y ~ ~  - 0 ~ y . 1  J = o ( t . ( c ) ( y l *  J 
- 8  A Y ~ ) A  w) fo r  

c e A(V,W), w e W - c(V), and yr e Ellr i s  continuous. 

(v)  For VrC Wr and c e C j ,  the following diagram i s  comutative, where 

V = V1 @ e o e Q  V and W = W1 @ w e * @  W ' 
j j ' 

cw-cv 

Proof. ,Parts (iii) and (v )  are simply the space level  transcriptions of the - 
assertion that  the 5. ( c are maps of prespectra ( eE) ( j  ) + c*( eE) such tha t  

J 
c . ( c )  o + = S . ( c r ) ,  and ( i v )  i s  the continuity condition of VI.5.5. Thus tha t  J J 
resul t  and a comparison of (i) t o  the diagram of Definition 2.1 imply the 

conclusion. 

The continuity condition ( i v )  i s  stronger than that  prescribed i n  [99 1 , but the 

ehange has no ef fec t  on the resul ts  there. 

~ e i a r k s  2.5. For a Goperad c, the fixed point spaces ~7 comprise a 

nonequivariant operad under the fixed point maps yG and induced I: actions. 
j 

Moreover, i f  C i s  an Em G-operad, then gG i s  an Em operad, i n  the sense tha t  
each ~7 i s  1.-free and contractible. Recall tha t ,  for a G-spectrum E, E~ i s  

J 
obtained by f i r s t  res t r ic t ing  t o  indexing spaces i n  the fixed point universe uG 
and then passing t o  fixed points spacewise. It i s  clear from the proposition tha t  

E~ i s  a  spectrum i f  E i s  a C-spectrum. Thus the fixed point spectra of Em 

ring G-spectra are Em ring spectra. An elaboration of th i s  observation shows 

that  E~ i s  an h ~ ~ - s ~ e c t r u m  i f  E i s  an h~ -spectrum. 

Remark 2.6. Due t o  the in t r icacies  in our construction of extended powers, our 

f i r s t  definit ion of C-spectra i s  hard t o  interpret  on the prespectrum level. In 
constrast, the space level  maps 6. ( c  1 and conditions ( i - ( i v )  make perfect sense 

J 
with E replaced by an arbitrary prespectrum D G G ~ Q .  Moreover, with the 

resulting notion of a G -prespectrum, it i s  clear tha t  the functor L carr ies  

c-prespectra t o  C-spectra, 

As i n  [Ha, I. 3.7 I , we also have space level  analogs of the notions of - 
$-spectra and hC -spectra. 

Definition 2.7. A Co-space is a Gspace X with basepoint 0 together with 
I . \  

based ( G  x 1.1-maps 5 . C j  K x ' ~ '  + X such tha t  51~1 = 1 and the diagram of 
J j ' 

Definition 2.1 commutes with E replaced by X. (The map 5,: So + X then gives 
V 

X a second basepoint 1.) An xc0-space i s  a space X with maps 

. in E(G x 1 .I3 such that  el = 1 i n  hG3 and the same diagram commutes i n  
-J h(G x n)J fo r  the J largest  possible n c I:,. A C -space or KC -space Y is defined 
similarly, but without 0 and with the ; having domains C x y j ;  yf = Y ~ I O )  - j j 
is then a r0-space or h &0-~pace. 

The comparison'between space level  and spectrum level  definit ions proceeds 

exactly as  in [Ha, 1.3.8-3.101, hence we omit the details .  A s  there, we obtain 



natural  maps F. r* ( E o ) ( j )  + (C. M ~ ( j ) ) ~  by applying C .  p ( ? )  t o  the evaluation 
J J J 

map E: + E and passing t o  adjoints. 

Proposition 2.8. Let X be a Go-space. Then zrnx i s  a C-spectrum with 

s t ructura l  maps 

Let E be a C-spectrum. Then Eo = slmE i s  a Po-space with s t ructura l  maps 

Moreover, 11: X + QX = ~"z"x is  a map of E 0-spaces and E: cmnrnE + E i s  a map 

of -spectra. Therefore em and am r e s t r i c t  t o  an adjoint pair  of functors 

relat ing the categories of co-spaces and c-spectra. The same conclusions apply t o  
- 
hCo-spaces and i$-spectra. 

The action on Co-spaces and C-spectra i s  thought of as  multiplicative. 

On the spectrum level ,  an additive structure i s  implicit and gives r i s e  t o  an 

additive H-space structure on the s e r a  space level .  To express the f u l l  s tructure 

present, one uses a second, additive, operad action on co-spaces suitably related 

t o  the given multiplicative action. We shal l  not be precise about t h i s  here, 

referring the reader t o  [99,102,1341 for deta i l s .  The basic ideas run as  follows. 

There is a canonical Em operad K which acts on in f in i t e  loop spaces. There is 

an associated free X -space functor K,  and KX i s  a eo-space i f  X i s  a 

6-space. A (X, t )  -space is a )(-space and a C o-space X such tha t  the additive 

action KX'X i s  a map of %-spaces. There is also a natural  map KX'QX of 

0-spaces. I f  E is a C-spectrum, the previous resul t  implies tha t  cO: QEO + Eo 

is a map of to-spaces. Since the additive action on Eo i s  the composite 

fo r  some fixed d and a l l  j 2 0 and q E Z. There i s  a natural  equivalence of 
dq ( j )  Ck tx (y cdqE, 'k' with a wedge of smash products of spectra ej ix ( E E) , and, 

by use of the product E 2 l 2  on E, the maps 6 induce maps 
j 

We require V zdqE t o  be an %-ring spectrum with respect t o  these maps; compare 
9 

'[H,, 184 and VII861. While t h i s  notion is not of much practical  value except in the 

case of Em operads, i t s  use w i l l  be convenient i n  the discussion of the Thorn 
isomorphism in  1x57. 

I f  one i s  uninterested in  commutativity, one can develop an analogous theory by 

dropping a l l  reference t o  permutation groups. As i n  [97,531, we refer t o  non-C 
operads when no C j  actions are considered. we ' say that  a non-e operad e i s  an 

A, operad i f  each Cj i s  G-contractible. By an Am ring spectrum, we understand 

a $ -spectrum for  some Am operad over Z . Of course, an Em ring spectrum i s  

an Am ring spectrum by neglect of structure. Simple chases based on (i) and (ii) 

of Proposition 1.7 and the obvious relat ion f ~ g  = ( f ~ l )  ( L g )  give the following 

resul t .  

Lemma 2.10. Let 1: be an A, operad over Z and l e t  E E Gdd . Then G-maps 

c j  : C K E ( j  ) + E give E a structure of C-spectrum (or  of h~ -spectrum) i f  el I = 1 - 
and the following diagrams commute (or  commute i n  hG8&), 1 < i < k. 

KEo +QEo *Eo, it follows tha t  Eo is  a V(,C)-space. An up t o  homotopy reworking That i s ,  we need consider only those diagrams i n  Definitions 2.1 with js = 1 
of t h i s  discussion presents no di f f icul ty  and leads t o  the conclusion tha t  the - and C1 replaced by 1 E cl for a l l  but one index s. Nonequivariantly, the 

space of an 3 -spectrum is an h(K,g)-,space When i s  an Em operad, 
- in teres t  in A, ring spectra ar ises  from the theory of A, ring spaces [I001 and 

(X,C)-spaces are called Em ring spaces and h (~ ,g ) - spaces  are called H, r ing 
from the i r  central  role i n  Robinson's very interesting paper 11241. There X j  i s  spaces. (Warning: in [99] and [102], t i s  used for operads which ac t  additively 
denoted LIE((R")~,R')  and X v ( E l &  nEj)  is denoted xtAEl6 ... n~~ (by 

and kl is  used for  operads which ac t  multiplicatively.) abuse, of course, since the l a t t e r  has another quite different meaning). 

Remarks 2.9. There is also a generalization t o  arbitrary operads (: over Y of Scholium 2.11. Robinson says tha t  he i s  working i n  Boardman's stable category, but 
the notion of an H: r ing spectrum introduced in [H_I for  the study of homology 

he quotes May [99,1001 for  the existence of interesting examples of A, r ing 
and cohomology operations. AXI %d-spectrum i s  a spect rm E together with maps 

spectra. In fac t ,  May's different but equivalent version of Boardman's category was 
5.: C. lx (Zd4E)(j) -cdjqE 
J J  originally introduced precisely because of i ts much greater convenience for  the 

construction of structured ring spectra. Robinson i s  quite precise as  t o  what fac ts  
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he needs, and we have given all necessary prerequisites for his work. Noting that Alternatively, CX can be described 

his Lemma 1.7 applies with X replaced by any A, operad &, 'we see immediately 

from our Lemma 2.10 that an A, ring spectrum in our sense is a "ring spectrumtt in 

his sense [124,2.1] . With this interpretation, his list of examples ll24,14 -41 of 
theories having a ~bneth spectral sequence is perfectly correct and can be 

extended. 

1 x 9: &, x xr-4Cs x xS and 4 x l:cs x xr--rC x xr 53. The constructions cx and CE 

Our main objective here is to construct the free d-ring spectrum CE f%3sociated on the ds X xr indexed On $I: r + g .  We take diagram (1) as ourbasic 
to an opepad 6 augmented over 2 and a speC%rUm E With unit e: S We description of CX ~ince it generalizes most readily to a description of CE. 
also relate this construction to that of the freec-space CX associated $0 a based 

Thus, to define CE, we replace disjoint unions by wedges, Cartesian powers 
space X. The definitions of CE and CX do not employ the full operad structure xr by Smash powers E('), and products cs x xr by appropriate twisted 
of & ; they are meaningful and useful when G is only a coefficient half smash products g4 E('). TO define the latter, we assume given a morphim of 

systems X: $ + x ,  where is the linear isometrics operad 
Cefinitions 3.1. (i) Define A to be the category of finite based sets 

to our given universe U. For an injection 9: + 5 we then define 
r = {0,1,..*,r) with basepoint 0 and injective based functions. Say that an - X+ : es + rr to be either composite in the commutative diagram 
injection 4 is ordered if a < b implies $(a) < $(b); Any morphism in A is 

the composite of a permutation and an ordered injection. Any ordered injection is a 

composite of degeneracy operations a . r + r+l, 0 & q & r, where 
9' - 

(ii) A coefficient system C is a contravariant functor' from A to the category 

G U  of compactly generated unbased G-spaces such that e is a single point *. We define E(r) 
9 

to be X9 E(~) and observe that 4 induces a map 
of spaces over gr and thus a map 9 + Xr 

For an injection 4: 11 + 2, write 9: cs t on elements by +(el = c+ for 

c c &,. Thus &, is regarded as a right E -space under the permutations. A map 
of coefficient systems is a natural transformation of functors A + GU. $ M l : c  R E ( ~ ) - ~ ~ K E  (r) 

9 

An operad is a coefficient system by neglect of structure. Its degeneracy 

maps oq: Crtl + cr are given by co = Y(C;S ) for c r kr+l, where 9 9 

Many other examples of coefficient systems appear in 1301. There the space 

CX associated to a coefficient system and based space X was defined to be the 

coend 

per x xr =Us, x xr/c-,, 

where (c9,~) - (c,$Y) for c 6 cs, 4: 2 t 2, and y r xr. Here 

in G ~ A  for any spectrum E E Gdll. 

Now suppose given a unit e: S-E. Thinking of U as a based space with 

basepoint 0, we see that an injection 9: 2 + 2 induces a linear isometry 

9 : f + us The spectrum +*E(~) E G~R' is easily seen to be isomorphic to the 
external smash product EIA "Es, where = E and I$, = S if b 4 Im[mm. 
Define 

9 = f, . - a  ^fS: +,E'" ~~h ... E --+ ~('1, 

where f is the identity of E and fb = e if b / Im+. 

Definition 3.2. For a coefficient system \e augmented over and a unitax 

spectrum E r G A L ,  define CE E G A& by the coequalizer diagram 



th 
On the 4- wedge summand, g and h are defined to be 

1 IX 4: IX E(~) Z cs tx $,E"' - (s 
@ & H E  , 

the isomorphism being given by VI.3.1 (iii), and 

( r (r) 4.1:e K E  --Gr K E  . 
4 

Since S = go w E"), CE has an evident unit. 

proposition 3.5. There is a natural isomorphism 

for based spaces X. 

proof. After adjoining disjoint basepoints, the coequalizer diagram (1) can be 
_C_ 

rewritten in the form 

sinCe zm commutes with coequalizers, wedges, smash powers, and twisted half smash 
products (see 11.3.6 and VI .1.5) , application of zm converts this to the 
coequalizer diagram (2) for the unital spectrum zm(x+). 

It is easily checked that CX and CE are continuous functors of X, E, While diagrams (1) and (2) provide the most conceptual descriptions of CX 
and & (where maps of & are maps over 2 in the case of CE). Compare the and CE, they involve an inconvenient redundancy of domain summands. The only 
remarks following 1.3.4. This has the following consequence, which could also be 

essential summands are those indexed on degeneracy maps and permutations, and the 
verified by direct inspection of the constructions. effect of the I , \  latter is to collapse out the diagonal actions of Zr on Cr x Xr 

and 6 K E" I .  ~hus write xrjq for the composite 
Proposition 3.3. CX and CE are homotopy preserving functors of coefficient 

systems $ over 2 , based spaces X, and unital spectra E. "4 , xr 
'r+l er ----rer, o t q < r 

We insert some general observations about maps between coequalizers. 

Remark 3.4. If the two rows in the diagram 

(r) (r) (thatis, X ~ , ~ = X , )  andwrite& K for x K E  . 
9 r, q r, q 

Proposition 3.6. The following diagrams are coequalizers : 

are coequalizer diagrams, then a pair of maps (a,f3) such that gla = f3g and hla = $h Here the (r,q)th domain summand is indexed on 9' - r + r+l, and g and h are 

restrictions of the maps g and h of diagrams (1) and (2). 
is called a map of coequalizer diagrams. Such a pair determines a map y such that 

the right square commutes, and y is an isomorphism if a and B are 
It is generally more useful to describe CX and CE inductively in terms of 

isomorphisms. For a given f3, there is at most one y making the right square 
their natural filtrations. Thus define FsCX and FsCE, s 2 0, to be the 

commute. 
coequalizers in the following diagrams: 

If X is a based space, map SO to X+ by sending the non-basepoin~ of SO 

to theq*basepoint of X. There results a unit map e: S = zm(s0) + E~(X+ 1. We have 

the following basic consistency result. 



Note that FOCX = {*} and FOCE = S. A comparison of the defining coequalizer Of course, there is a natural isomorphism 

diagrams yields natural maps 

ls: FsCX - F s+l CX and ts: FsCE ----t Fs+lCE, 

With the obvious actions of 
and there result natural isomorphisms 

Cs,l, the two maps 

N N 

CX = colim FSCX and CE = colim FsCE. 

The space level maps 
ls 

are always closed inclusions and careful inspection of the l ~ l ~ e :  E ( ~ - ~ ) A S * S - E ( ~ - ~ ) A ~ A ~  c zStl I ( ~ ( ~ 1 ~ ~ )  
prespectrum level constructions shows that the spe~trum level maps 1 are s 

spacewise closed inclusions if e: S-E is a spacewise closed inclusion. are Cs-l -equivariant and so induce  maps 
As discussed in [ 30, $21 , the FsCX can be described inductively by n-m.ns of 

pushout diagrams (E(~-~)A s AS) --- zSt1 (E") A s). 
s 

We define U(E(~) ) to be the coequalizer in the diagram 

Clearly j coequalizes k1 and k2, hence we have an induced Is+l-map 

Here o(xS) = u o (xS) is the subspace of points of xS+' at least one of i . o(E(~) ) - E(~+l) 
s ' 

Ocqts 
whose coordinates is the basepoint and f(c,o y) = [coq,y]. Assuming that the 

9 By inspection on the prespectrum level, is is a spacewise closed inclusion if basepoint of X is nondegenerate (that is, that {*} + X is a G-cofibration) , we 
e: S -+ E is so. The composites 

conclude that the maps ls and the natural maps FsCX + CX are G-cofibrations, and 

this implies that the natural map tel FsCX+CX is a Ghomotopy equivalence. We 

also conclude inductively that if X has the homotopy type of a G-CW complex and 

the G have the homotopy types of ( G  x zs)-CW complexes, then CX has the 
induce a map 

homotopy type of a G-CW complex. 
f:&s+l* ~(E(~))----+F~CE. 

We wish to prove analogs of these statements for CE. Since the unit e: S a E  %+l 

cannot be thought of in quite the same way as the inclusion {*) + X and since we 

have no spectrum level analog of the notion of an NDR-pair, we shall have to proceed Pro~osition 3.7. For s 2 0, the following diagram is a pushout: 
more carefully and impose more stringent hypotheses. 

With the obvious actions of Cs, the map 

I he: E(')* s 4 E(~+') 

is zsrequivariant and so induces a Cs+l-map 

Proof. The definition of the FsCE as coequalisers implies that the outer - 
rectangle of the following diagram is a pushout, and the diagram commutes by our 

definitions of is and f: 



The conclusion follows by an elementary diagram ehase. 

Proposition 3.8. let E be a G-CW spectrum with a unit e: S-E which is the 

inclusion of a cellular subspectrum. Assume the es are (G x zS)-CW complexes. 

Then the following conclusions hold. 

(i) The maps ls: FsCE + Fs+lCE are Gcofibrations and 

. A  pairing, @: (&,A)--+$ of coefficient systems is a natural transformation 

d x 13 + < o V ' of functors from A x A to G-spaces. 

If & is an operad and c c c2, then the maps (c) : 
P Cq + %+, 

specified by y(c)(x,y) = y(c;x,y) give a pairing O: ( C , G )  + C; . In particular, 
we obtain such a pairing on % from any isometry f c 2 2. A pairing of coefficient 

systems over is a pairing O: (&,'M)+ 6: such that the diagram 
9 

8 
+ G o v  

commutes. That is, for p,q 2 0, the following diagram commutes, where 
$, w and x are the respective maps to x .  

(ii) The natural map tel FsCE -P CE is a Ghomotopy equivalence and CE has the 1 
homotopy type of a G-CW spectrum. 

Proof. An argument along exactly the same lines as the proof of VI.5.2 shows that 

the map i : U(E(~) ) + E~~~~~ is a ( G  x xs+l )-cofibration with quotient (E/S) 

and that (E(~+'), u(E(') ) ) has the homotopy type of a (G x Zs+l)-CW pair. It 

follows that 1 K is is a G-cofibration with quotient Ds+,(C,E/S) and that 

has the homotopy type of a G-CW pair (see 1.5.6 and VI.1.11). Now the conclusions 

follow from the previous proposition by standard arguments. 

$4. Pairings and operad actions on CE 

We show here that CE is a -ring spectrum when C is an operad over x .  
More generally, we begin by relating pairings of coefficient systems and actions of 

operads on coefficient systems to the constructions CX and CE. 

Definition 4.1. The wedge sum V : A x A + A is given on objects by gvq = P+Q 

and &n injections $: 2 + 2' and $: g + qf by 

Such pairings arise from general pairings (&f,lrjl)-$f by crossing with and 

projecting. 

The naturality of twisted half smash products and of the isomorphism of VI.1.5 

gives the following result. 

Lemma 4.2. Let 0: ( Q , R ) - ~  be a pairing over x. Let D c (G x dYn)d~P and 

Df e ( G x Z ) d uq. Then there is a natural map 
r 

9 

a: (a D) A (8 pc DI) - 
P 9 z q  Lp+, x x  ( D A  Df ) 

P 9 

in Gd U. When D = E(P) and Df = ~ ( 9 )  for E r GdU, we can pass to orbits 

over Cp+q on the right. If X E G$, the following diagram commutes: 

This carries over to the constructions CX and CE. 



Proposition 4.3. Let @: ( Q , B ) - a &  be a pairing over 2 ,  let X 6 GJ, and let the maps. I' ( C) specify a k-fold sum on a ; that is, the y ( c ) define a natural 

E e G QU be a unital spectrum. Then there are natural maps 8: AX x BX+CX of k transformation f3 + O 0 v of functors A + A. We then say that 73 is a 

based spaces and 8: AE &BE-+ CE of unital spectra such that the following diagram c-mo dule . 
commutes : 

Remark 4.5. Let a be a d -module. By use of the associativity diagram of 
# 

Definition 1.1 (i) applied to the degeneracy operators of C , we can generalize the 
first equivariance diagram of Definition 1.1 (iii) to arbitrary injections 

' 4 :  & + m. Precisely, for c e e m  and br e ajr, 1 5 r 5 k, we have 

Proof. By an elementary formal calculation, AEA BE is the coequalizer in the where b&(,) = br and bb = * r no if s / Imm and where 

diagram 

@(j,,oo*,j,): L ' j v oo.vik + j v  .*. vjl 2' j 
-1 -1 -in - 

maps j identically to L1 = -r &,, with jl; = 0 if s / Imm. 

Clearly any operad acts on itself. If C * d is a map of operads and 

acts on 3 , then $ acts on 8 by pullback. Other examples appear in [ 32 I . 
If is an operad over via X: & + X and 13 is a coefficient system over X 
via $:a + X ,  then ?3 is said to be a(; -module over X if G acts on 73 in 
such a way that $ is a map of C -modules. That is, the following diagram commutes 

for k z O  and jrFO. 

obtained by combining the coequalizer diagrams defining AE and BE. Thus, to 

define 0, it suffices to define a map from this coequalizer diagram to that 

defining CE, and maps given by the lemma provide the required restrictions to 

wedge summands. The unit of AEABE is ehe: S g  SAS-AEABE, and it is 

clear that 8 is unital. The map @: AX x BX+CX is defined analogously. The 

isomorphisms in the diagram are given by Proposition 3.5, and its commutativity 

follows from the lemma and the fact that xm preserves coequalizers. The maps 5 of Definition 1.6 (i) directly generalize to give the following 

analog of Lemma 4.2. 

We next consider iterated pairings parametrized by operads. 

Lemma 4.6. Let -8 be a &module over g. Let ESJr r G ~ U ,  1 5  s _( k and 
Definition 4.4. Let $ be an operad and a be a coefficient system. An action 1 5 r 5 js. Then there is a natural map 

of $ on Z3 is a collection of maps 

k When E = x for X e GJ, these maps are compatible with their evident 
s,r s ,r s ,r 

which satisfy the associativity, left unit, and equivariance properties specified in space level analogs under the commutation isomorphisms relating smash products a d  

the definition of an operad (see 1.1 and are such that, for each fixed c 6 Ck, 
twisted half smash products to the functor zm. 



Again, this carries over to the constructions CX and CE. 

N 

Proposition 4.7. Let be a G-module over g, let X c GJ, and let E E G &U E = {ll IX E C pl x E C r VC, BO tx E(') h C E .  

be a unital spectrum. Then there are natural maps 
The unit and associativity diagrams commute by the unit and associativity conditions 

q: E - CE, p: CCE -CE, and 5: CBE *BE in the definitions of operads and their actions on coefficient systems. The last 

statement is checked by further formal comparisons of coequalizer diagrams. 
with respect to which C is a monad in the category of unital spectra and BE is a 

C-algebra. That is, the following unit and associativity diagrams commute: Specializing to 3 = C , we obtain the following description of c-ring 

CE '' 9 CCE 4 
' CE and ' CBE 4 

' BE 
spectra. It is analogous to the description of 6 -spaces given in [97, $21. 

proposition 4.8. A -ring structure on a unital spectrum E determines and is 

determined by a structure of C-algebra on E. The functor C from unital spectra 

to C -ring spectra is left adjoint to the forgetful functor. That is, a unital 

map f: D --E from D to a I; -ring spectrum E gives rise to a unique map 

T: CD + E of < -ring spectra such that ?: o = f. 

CCCE ' 2 CCE and CCBE 2CBE 

CCE ' . CE CBE 
15 

* BE 
Proof. If 5: CE + E gives an action of C on E, then its restrictions - 
G ~ :  Cj K E(') + E give an action of C on E, and conversely by passage to wedges 

and coequalizers. The rest follows by a standard argument about monads; T can and 
The analogous assertions hold for CX and BX, and the following diagrams commute: 

must be defined to be the composite 5 o Cf. 

$5. Splitting theorems and James maps 

Proof. The spectrum CBE is the coequalizer in the diagram 
To validate Cohenls proof [341 of the generalization in [301 of Snaithls stable 

splitting theorem [1291, we must analyze the spectrum C(S V El, where the unit of 
S v E is the inclusion of the wedge summand S. On the space level, we have 

since the basepoint identifications serve only to identify points some of whose X+ 

coordinates are the disjoint basepoint either to the point of filtration zero or to 

CBE a point none of whose coordinates is the basepoint. The spectrum level analog reads 

(On a technical note, use of the full coequalizer diagram (3.21, with identity maps 
as follows. We adopt the notation D.(g,E) of Definition 1.5. 

J 

indexing some of the domain wedge summands, is essential to this description.) To 

define 6 ,  it suffices to define a map from this coequalizer diagram to that 

defining BE. Modulo use of obvious identifications and maps induced by the 

injections g, maps < given in the lemma provide the required restrictions to 

wedge summands. Remark 4.5 and the fact that the y(c) are natural transformations 

provide what is needed to show that these maps define a map of coequalizer 

diagrams. The map 11 is the special case of 5 with 3 = and the map is 

Lemma 5.1. For coefficient systems over and spectra E, there is a natural 

isomorphism 

Proof. With the notations of Proposition 3.7, but with E there replaced by S V E  - 
here, we find by the usual decomposition of ( S  v E) as a wedge of smash 



products E A 0 . 0  A E  
1 s+1' 

Ei = E or Ei = S, tha t  

as  a Xs+l-spectrum, the map is being the inclusion of the f i r s t  wedge summand. 

By an easy inductive argument based on the universal properties of wedges and 

pushouts, t h i s  implies 
S 

FsC(SvE) " Dr(G,E) 
r = O  for  a l l  s 2 0. 

We also need t o  know that  the standard equivalence c"(x+) = S V C ~ X  i s  unital .  

Lemma 5.2. Let X be a nondegenerately based G-space. Then there are uni ta l  

G-maps 

f :  z ~ ( x + )  - + S V Z ~ X  and g: S V C ~ X - - + - Z ~ ( X + )  

and uni ta l  G-homotopies h: fg = 1 and k: gf = 1. That i s ,  f ,  g, and each 

and kt are uni ta l  G-maps. 

Proof. Since em A Z ~ Z  by I .4.2 and these functors commute with wedges, it 

suffices t o  construct such a uni ta l  G-homotopy equivalence between C ( X + )  and 
1 1 1  

S v ZX, where e : S1 + Z (  X+ ) i s  the suspension of So + XI and e : S + S v ZX 

is the inclusion of the f i r s t  wedge summand. Since these maps e are  

G-cofibrations, standard arguments about cofibre homotopy equivalences show that  it 
+ 1 

suffices t o  construct a G-homotopy equivalence f :  c ( X  ) + S V CX such that  f e  = e. 

The sum of the suspensions of the evident based G-maps X+ + So and X+ + X has 

the required properties. 

Theorem 5,3. Let be a coefficient system over and l e t  X be a 

nondegenerately based G-space. Then there i s  a natural  equivalence of G-spectra 

Proof. Applying Lemma 5.2 both t o  X an! t o  CX and applying Proposition 3.5, 

Lemma 5.1, and VI.5.3, we obtain the following chain of equivalences of uni ta l  

G-spectra. 

svcmcx  = crn(cx)+ = ccm(x+) = c ( svc"x)  

We obtain the desired equivalence upon quotienting out S. 

the multiplicative properties of these "James rnapsl1. The following resul t  was 

proven in  123, 4.61 for  the combinatorial James maps defined in [301. 

Theorem 5.4. Let @ :(a, 83 ) + e be a pairing over X .  Then the following diagram 

  om mutes in  the stable category, i t s  horizontal arrows being equivalences. 

, 1 l j p d q  
C ~ ( A X  x BX) r>l p+qXr ,- V V E-(D ( o . , x ) ~ D ~ ( ~ ~ , x ) )  

r>l p+q=r 

v v C m ( @ )  
r>l p+q=r 

V L - D ~ ( C  ,XI  
r a1 

Proof. The top equivalence implici t ly uses the equivalences - 

on the l e f t  and a similar equivalence on the r ight.  The resul t  i s  a diagram chase 

from Lemma 4.2, Proposition 4.3, and the following diagram, whose commutativity i s  

an easy consequence of Lemma 5.1 and the d is t r ibut iv i ty  of smash products over 

wedges. 

Turning t o  operads and the i r  actions, we obtain the following parameterized 

version of the previous resul t .  We define 

Theorem 5.5. Let @ be a $-module over g .  Then Cm( BX)+ i s  n a t ~ r a l 3 y  iso- 

morphic as a -spectrum t o  c m ~ (  8 ,X) , where the action of C on the G-space 

D( W ,X) is obtained by passage t o  orbi ts  and wedges from the maps 
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(3,) + ( j )  
Enl:  C;"Q;~AX A - * - A  (ck x Bj x .0 -x  ) + A X ( ' )  -+-D.AX , 

J to check that  the i r  res t r ic t ions  t o  X are homotopic as maps. It i s  immediate from 1 jk the definitions tha t  both res t r ic t ions  are homotopic t o  the obvious inclusion 

where j = jl + - D O +  jk. 1 X + Dl(C,X) * 

Proof. By Propositions 4.7 and 4.8, BE i s  naturally a &-spectrum for unital  We re i tera te  tha t  everything so f a r  has been done with an ambient compact Lie 

spectra E and BCm(xt) i s  isomorphic as a 6-spectrum t o  Cm(Bx)'. As i n  the group G acting on a l l  spaces and spectra. Now l e t  V be a rea l  representation 

diagram of the previous proof, one checks that ,  under the isomorphism of Lemma 5.1, of G. As explained in de ta i l  i n  [621, there is a l i t t l e  discs operad G v  which 

the action of Q on B(Sv E)  i s  induced by the maps acts naturally on V-fold loop G-spaces nVx. The natural map X + flCVx and the 

'action m i p  of nVCvx give r i s e  t o  the composite 

v v v v av: CVX -CVR C X --+ n c X, 

of Lemma 4.6. The conclusion then follows from the compatibility statement of tha t  

lemma. and av i s  a Cv-map. If the universe U is written as Z Vi, then the l i t t l e  
discs in the Vi give r i se  via products t o  a l i t t l e  cylind&rs operad cm which 

Passing t o  adjoints from the equivalence of t -spectra C w (  BX) + + . Z m ~ ( 7 3  ,XI and acts naturally on in f in i t e  loop G-spaces. There resul ts  a natural  cm-map 

throwing away the disjoint  basepoint, we obtain a natural map of C-spaces 
am: C_X ----+ nmzmx = QX. 

j :  BX -----p. QD($,X),  
Results of Hauschild (611 and Segal [ 127 1 have the following implication. 

which we think of as a t o t a l  James map. In practice, 3 = 8 x X  and $ = c '  x , 
where d acts on t;j I .  Then j f i t s  in to  the chain of -maps Theorem 5.6. Assume that  G i s  f i n i t e  and l e t  X be Gconnected. If V contains 

a t r i v i a l  summand, then a is a weak Gequivalence; am i s  also a weak 
v 

( * I  B 'X +--- BX ----r QD(a ,X) - QD(Bt ,XI G-equivalence . 
The f i r s t  and l a s t  arrows are induced by the projection 3 + and are 

These assertions are fa lse  for general compact Lie groups G; see Caruso and 
equivalences i f  8 i s  C-free (in the sense of Definition 1.2) . We think of 

Waner [251 for  the present s t a t e  of the a r t .  
( * )  too as a t o t a l  James map. 

Under appropriate hypotheses on the action of G on 1;3 I ,  a wholly different 

combinatorial construction of a t o t a l  James map B I X  + QD(al ,X) was obtained i n  

[321. As i n  ( * I ,  the construction involved the formal inverse of a c-map which 

i s  an equivalence. 

In the most interesting cases, the multiplicative properties of the two 

constructions formally imply that  the resulting James maps are actually equivalent 

as  -maps. To see th i s ,  assume tha t  8 = t 1  and i s  C-free. Then our James 

map ( * I  can be viewed as a pair  of C -maps 

the f i r s t  map being induced by the projection e -t t l .  As explained i n  and around 

diagram B in  132, $31 (in which C and f i  correspond t o  our 13 and I ,  the 

~ame$ map there is equivalent as a F -map t o  a diagram of the same form as  (**I 

and with the same f i r s t  map. Since CX is the free e-space generated by X, t o  

see tha t  the second maps of the two diagrams are homotopic as C-maps, it suffices 

By Theorem 5.3, we have the following immediate consequence, which is an 

equivariant generalization of Snaithls sp l i t t i ng  [1291. 

Theorem 5.7. Assume that  G i s  f i n i t e  and l e t  X be Gconnected. Then there are 

natural equivalences of G-spectra 

where V i s  assumed to  contain a t r i v i a l  summand, and 

Of course, our resul ts  on operad actions transpose directly t o  these 

spl i t t ings .  



VIII. The homological analysis of extended powers 

by J. P. May and M. Steinberger 

Here we return t o  the c lass ica l  nonequivariant context of [Hml  i n  order t o  

generalize t o  spectra the standard homological fac ts  about extended powers of 

spaces . 
We gather together various preliminaries on ce l lu lar  chains and the spectral  

sequences associated t o  f i l t e red  and b i f i l t e red  spectra in section 1. 
In par t i -  

cular, we show that  ce l lu lar  theory is invariant with respect t o  changes of universe 

and compute the ce l lu lar  chains of external and internal  smash products of 
CW 

spectra. 

In section 2, we use t h i s  material and the constructions of chapter V I  t o  study 

spectral sequences associated t o  f i l t r a t i o n s  of extended powers and, in par t icular ,  

t o  compute the ce l lu lar  chains of extended powers. 

This material completes the proofs of a l l  resul ts  promised i n  [H_, I and IIII 

except the Nishida relat ions,  and these follow from the' computation of the Steenrod 

operations in the mod p homology of D E which we give i n  section 3. P 

51.  Cellular chains and f i l t e red  spectra 

Let a be an indexing se t  in a universe U ,  as i n  I§2. We assume given a 

canonical copy of Rm in U such that  i t s  subspaces Rn are i n  a. We are 

thinking of U = ( R " ) ~  for any j > 0, with R~ being the subspace spanned by the 

vectors (ei ,  - * ,e . ) . Thus Rm w i l l  be Z. -invariant when we consider questions of J 
equivariance in  the next section. 

We quickly review the definit ion of ce l lu lar  homology. Let E E g U  be a CW 

spectrum. We define 

and define d: CnE* Cn-lE t o  be 

Here a is the canonical geometric boundary map 

where in-l : 9-I @ is the inclusion and C (  in-l) i s  i ts cof ibre. We then 
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define . QE = %(C,E) and note tha t  the ce l lu lar  approximation theorem gives the 

requisite invariance. If we happen t o  know some other definit ion of homology, then 

we easily see tha t  t h i s  definit ion agrees with it. Compatibility with the usual 
space level  definit ion is clear by suspension and the following immediate 

consequence of Ia5 .4. Recall the functors Rzm from I .4.1; the hn are the sh i f t  

desuspensions by the canonical indexing spaces Rn. We also have the reindexing 
functors An on chain complexes specified by ( PC) = 

q 'q+n* , 

0 proposition 1.1. Let X be a based CW complex (with X = {*) and based 
N 

attaching maps ) . Then C, ( ?zmx is canonically naturally isomorphic t o  A~C,X,  
hl 

where C,X denotes the reduced ce l lu lar  chains of X. 

Returning t o  CW spectra, we note the obvious fac t  tha t  the u t i l i t y  of 

cellular  chains comes from the identif ication of 
CnE with the free abelian group 

generated by the n-cells of E. We shall  make considerable use of the observation 
that  not all such chain complexes ar ise  from skeletal  f i l t r a t ions .  Given any CW 
spectrum f i l t e red  by subcomplexes E,, we obtain a chain complex C,E exactly as  

above, and the construction i s  functorial on f i l t r a t i o n  preserving maps. In 
particular,  i f  E is a CW spectrum and X i s  a CW complex, we may f i l t e r  X+A E 

by i ts subspectra X+A 9. I f  X i s  contractible, then the projection x++ SO 

and the inclusion s'+-x+ induced by any choice of basepoint in X induce inverse 

isomorphisms of chain complexes between C,(X+A E) and C,E. As a f i r s t  example of 

how we shall  exploit t h i s  observation, we use it t o  study the ef fec t  of change of 

universe functors on ce l lu lar  chains. Let a1 be an indexing se t  i n  a second 

universe U 1 .  

Proposition 1.2. Let f :  U *U1 be a l inear  isometry. For a CW spectrum E c Ja, 
there is a canonical natural  isomorphism C,E C, (f,E), where f, :A@ + ALL' is  

the change of universe functor induced by f .  If g: U t U 1  i s  another l i nea r  

isometry and h: I +d(U,U1  ) is a path from f t o  g, then the following diagram 

of isomorphisms commutes: 

C,(h x El  

Proof. The functor f, preserves CW spectra by 11.1 -4 and we have 



Here f*  i s  l e f t  as well as r ight  adjoint t o  f*  because these are inverse 

equivalences of stable categories (see 1.2.7). Thus, for the f i r s t  part ,  it 

suffices t o  construct a canonical family of equivalences +n: sn + f*Sn in KdU 
such that  the following diagrams commute: 

* ,  * 
Here cS" by 1.4.3 and f c = cf since f*n h f *  by inspection and since 

C and n are inverse equivalences of stable categories ( see 1.6 -1) . Since E i s  

an equivalence of categories, the ent i re  family is uniquely determined by and 
m * 

induction up and down. Since f (0 )  = 0, we have n f S = nmS and thus 

m * 
r0 ( fXs)  = n o ( n  f S) = r o ( n m ~ )  = [sO,QSOI. 

The natural  inclusion n: So + QSO pul ls  back along these equali t ies t o  the desired * 
canonical equivalence +0: S + f S. For the second statement, f i l t e r  h r< E by its 

subcomplexes h M E ~ .  Then, by 11.1.7, 

proof. Write D = EAF.  Then D i s  a CW spectrum by 11.3.8, and we have - 

~iy easy comparisons of cofibre sequences, the (p,q)% res t r ic t ion  of the boundary 

map a : ~"/fl-l + c( /D n-2 ) i s  the wedge sum of the maps 

and 

In a ' ,  t permutes the suspension coordinate S1 past Fq/Fq-'. The switch map 

enters here and not i n  3" since we are writing suspension coordinates on the 

right. Note next tha t  there are three se t s  of sphere spectra in sight,  i n  &a, 
$ a', and A (a @ a! ) . These are related by a canonical system of equivalences 

SP A sq + sP+' such that  the l e f t  square of the following diagram commutes up 
*P,P. 
to the sign ( -1 lq  and the r ight  square commutes: 

is  equivalent v ia  i0 w 1 t o  f, ( and via  il K 1 t o  g+( En/$-' 1 Thus 

( i0 K 11,  and ( il P l), are certainly isomorphisms. The commutativity of the 

diagram is easily checked by di rec t ly  identifying Cx(h rr E)  with C,E by mimicry Indeed, we specify 
$o ,0 : S S + S t o  be the equivalence obtained by pulling back 

of the argument jus t  given, with f*  replaced by the r ight  and l e f t  adjoint n: So + QSO along the chain of equal i t ies  

f l h , ? )  of h a ( ? ) .  Here, by inspection (see VI.1.51, 

[S  S,S] = [S,F(S,S)l = [ S O , F ( S , S ) ~ I  = I S ~ , F ( S ~ , Q S ~ ) I  = I S ~ , Q S ~ I ,  
0 

n m ~ [ h , s )  = F ( I + , Q ~ S )  = F(I+,QS 1, 

the identif ication F( S,S) = F( So ,Qso) following di rec t ly  from the definit ion of 
and we l e t  +0: S + F[h,S) be the pullback of the map s ~ - - ~ F ( I ~ , Q s ~ )  with adjoint function spectra in  11.3.3. We then specify the $ by the l e f t  square and 

the composite of q: SO + QSO and the proj ection 1+---s0. P,O 
induction up and down and f inal ly  specify the $ P,9 by the r ight  square and 
induction up and down. Easy chases show that  both diagrams commute and tha t  the 

We next prove the expected behavior of ce l lu lar  chains of external smash are obtained by f i r s t  defining the $O and then the $ Now 
3 9 p,q0 

prod,ucts. 

Proposition 1.3. For CW spectra E s ~ G Q  and F r A GO- ' , there i s  a canonical K: C E @ C  E-C (EhF)  
P 9 P+9 

natural  isomorphism 

0 be ( - l l P q  times the composite 
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K :  C ~ E  @I C*F --+ C*(ECL F) . 
this isomorphism the natural commutativity and associativity equivalenoes 

where , is the inclusion. As 
be but isn't well born, introduotion Of 

sign here is the price one pays for 
~iting suspension coordinates On the right' 

7: En* F A E  and DA(EAF) 1 ( D A E ) ~  F 
With this definition, easy chases from the information given imply that 

carries the differentid d 1 + 1 @ d (with the standard sign 
to 

ce the natural twist isomorphism T :  C ~ E  @I C,F T C,F 
C*E the standard 

and the natural associativity isomorphism. ~h~ unit equivalence 
We shall need a consistency statement relating the previous two results and EI\ E-x induces the composite natural isomorphism 

cases of the isomorphisms a and Of V1'''l. 
-1 

C*(EAX) C,E @ E*x " C,E @ c,x"X & c,(E,, 

pro asition l.4 (i) u t  fl: ui-Ui and f . U -"U$ be linear isometrics an 2' 2 

letp El ~ " d  E2 be CW spectra 
&a1 and day 'hen the following The smash Product is the composite of the smash product 

isomorphisms commutes: change Of lmiverse functor, and K here is the of isomorphisms 
in Propositions I.2 and 1.3. The equivalences for the rest are defined in 

C,iflxEll 8 Cx(fZxE2) 12. They result from Paths connecting different linear isometrics, 

whisms 6, and explicit spectrum level commutativity, associativity, and unit 
rphisms. In view of Propositions 1.2 and 1.4, we need only inspect these last 
rphisms. The commutativity i s  given by the transposition isomorphism 

(iil ht f: 
"rU, and ft:  Ut -u* be linear isometrics 8x1 let be a CW F1 a FAE' When 

= @ and F = sq and the domain and range are identified 

spectrum in *hen the following diagram of isomorphisms sP1q 
in the Proofs of Propositions 1.2 and 1.3, this is seen to be a map 

gree (-l)Pq. The associativity is similar. 
the unit, one checks that the 

phism %,(En X) Efi 2% i: u c u B U, becomes +,he identity map when 
and X = Sq and the domain and range are identified 

$19 as in the 

prove analogs of these results for extended powers in the next 

the compatibility of certain canonical equivalences of 
where spectra' 

n. A general discussion of filtered and bifiltered spectra wfll help clarify 

A proof to that of Proposition 1.3 gives the following simp1er 
A CW spectrum E filtered by subcomplexes ~ i ,  gives rise to an exact 

atural, boundary map 3 :  E /E + E(En-l/En'n-21 n n-1 
of a given generalized homology theory k* yields an exaot 

natural isomorphim spectral sequence {E' ( E; k) ) ~ i t h  initial term 

C , ~  F,X C~IEAX). 
E;,~IE;~I = ks+t(~s/~,_l~ 

We put things together to deduce the behavior of internal smash products wit 

respect to chains. The conclusions are what one would expect. 

- 
Theorem 1.6. consider the internal mash product in hsu. kt E' be CW ks+t(E,/Es-ll = CS(E;kt(s) 1 

spectra in 
and let ,Y. be a based CW complex. Then there is a canonical 

is is the (bld-Atiyah-~iraebruoh) spectra sequence. we shall be 
natural isomorphism 
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interested in the f i l t e red  CW spectra associated t o  b i f i l t e red  CW spectra. [C u ( A  v B) lr? [ ( A n  B)  u D) ] + C  u ( A n  B)  W D. 

Definition 1.7. A b i f i l t e red  CW spectrum is a CW spectrum E with sub- 
1 

AV B - .1 
AV B 

complexes %,q for  integers p and q such that  E and E are P-1 , ¶. p,9-1 
subcomplexes of EpJq with intersection E p l , q l .  The associated f i l t r a t i o n  on This implies (ii ) , and (iii ) i s  clear. The l a s t  statement follows from these 

E i s  specified by identif ications by an immediate comparison of cofibre sequences. 

In practice, we usually have E ~ , q  
= * for p < 0 and a l l  q. 

Lemma 1.8. Let E be a b i f i l t e red  CW spectrum and define 

I Of course, our ea r l i e r  discussion of external smash products i s  a special 

case. We single out the following special case for l a t e r  reference. 

proposition 1.9. Let W be a CW complex with i t s  skeletal  f i l t r a t ion ,  l e t  F be 

any f i l t e red  CW spectrum, and give W+A F the induced b i f i l t r a t ion .  Then 

Then there are natural  identif ications as follows. and the d i f ferent ia l  d l  on the l e f t  agrees under the isomorphism with the 

d i f ferent ia l  d 63 1 + 1 @ d l  on the r ight.  

As i n  the proof of Proposition 1.3, the relevant Kunneth map is defined with a 

(ii) ( Ep-l ,quEp,q-l) / (  $-2, quEp-l, q-1 dEp,q-2) = sign in  order t o  make the signs work out i n  the comparison of d i f ferent ia ls .  When 

F i s  given i ts skeletal  f i l t r a t i o n ,  the associated f i l t r a t i o n  of w + A  F is the 

( iii ) (5, q/Ep,q-l)/(Ep-l, qlEp-1 ,q-1 skeletal f i l t r a t i o n  of a CW structure by inspection of smash products of c e l l s  ( a s  

in  the proofs of 11.3.7 and 3.8). 

Moreover, the boundary map a:  Es/Es-l + c ( E ~ - ~ / E ~ - ~ )  r e s t r i c t s  on the wedge 

summand gjq t o  the wedge sum of the boundary maps 02. Spectral sequences and ce l lu lar  chains of extended powers 

a ' :  E ; , ~  -m 0 and an:  EO --- CE 
0 

P-1, q P,9 p,9-1 

associated to  the f i l t e red  CW spectra 

yEP,q/EP,q-l  and y E ~ , q / E ~ - l , q -  

Proof. The definit ion implies a pushout diagram 

It is convenient t o  adopt the following abbreviated notations for our basic 

categories of spectra. 

Notations 2.1. Let d = AR" and, for j , 0, l e t  d = 4~"'. Here do = 3 by 
j 

convention. Observe that  the graded category a dj is the natural  domain of 
J '0 definition for external smash products. For n C l e t  n Jj denote the category 

j ' 
of n-spectra i n  4 and l e t  Yj denote the r ight  n-space 4 (R-3 ,RW) . With n 

acting t r i v i a l l y  on R", TA i s  also defined. 

- 
Of course, hA is the canonical stable category i n  which a l l  of the work of 

[H-I took place. 

We revert t o  the notation of [Hw, 1 9 1 1  and s t a r t  with a free n-CW complex 
and t h i s  implies (i). For any CW pairs ( A , C )  and ( B , D ) ,  we have a pushout W and a n-map a: W + Zj , where n c 1. . Let Es A be a CW spectrum. We 
diagram J 

shall  analyze the ce l lu lar  chains of H E(j ) and the spectral  sequences 



associated t o  f i l t r a t ions  of w u E( ' )  induced from n-cellular f i l t r a t i o n s  of 

E( J  ) For generality and notational simplicity, we work with more general 

n-spectra F E n i . .  We must f i r s t  discuss c e l l  s tructures on such spectra since 
J 

examples l ike  ~ ( j  ) are not IT-CW spectra. The following definit ion specifies the 

structure they do have. 

Definition 2.2. Let F E n d j  be a n-spectrum and a CW spectrum with sequential 

f i l t r a t i o n  IFn}, where FO = * and Fn+l = Cjn for  jn: Jn + Fn. Then F i s  

said t o  be a CW spectrum with ce l lu lar  IT actidn i f  the following conditions 

hold. 

(i) Each Fn i s  a n-subspectrum of F. 

(ii) Each Jn i s  a wedge of n-spectra of the form n w P sq, where sq is  the 

q-sphere spectrum with some action by p c n with respect t o  which it has the 

p-homotopy type of a p-CW spectrum. 

(iii) Each jn i s  a wedge of n-maps n R sq + Fn. 
P 

1% follows that  the skeletal  f i l t r a t i o n  {Fn} i s  also given by n-subspectra. 

Explicitly, F"" i s  the cofibre of the wedge over a l l  n-sphere orbi ts  i n  a l l  Jm 

to  sq. Unraveling our construction of sphere spectra, wedges and maps (see 

1§§2,4), we see tha t  a map of spectra sq -t ~q i s  represented on the space level  

by a map sr + V s r  for  some suitably large r. The composites above display each 

wedge summand of J as a re t rac t  of awJ. This carr ies  over t o  the space level ,  

and it follows easily tha t  each action map 5,: o*J + J is a wedge of 
isomorphisms. If  a runs through a s e t  of coset representatives for p i n  n ,  

'then IT ips: i s  isomorphic t o  the wedge. over a of the spectra  or^: and J i s  

the wedge over o of the sphere spectra F,(U~S:). 

Note i n  part icular tha t  J i s  a free n-spectrum n w sq i f  no non-identity 

element of n maps a wedge summand t o  i t s e l f .  This fact  and our assumption tha t  

W i s  n-free lead t o  the strong conclusion i n  part  (ii) of the following result .  

Proposition 2.4. (i) Let E l  d be a CW spectrum. Then E") E nJj i s  a CW 

spectrum with ce l lu lar  n action for n c z j .  
(ii) Let F E nd be a CW spectrum with cellular  n action. Then 

j 
IX F E n A  i s  a f ree  n-CW spectrum. 

(iii) Let D E nJ be a n-CW spectrum. Then D/n E A i s  a CW spectrum. 

of the attaching maps n tx sn + F". 
P Proof. Part (i i s  immediate from the proof of V I  .5.2 and part  (ii) follows easily 

1f F i s  a T - ~ ~  spectrum, then ~q in  (ii) i s  res t r ic ted  t o  be the from the proof of V I . 1 . 1 1  and the observation above. Part (iii) i s  a special case 
canonical sphere n-spectrum regarded as a P-spectrum, so that ,  by 11-4.8, of 1.5.6; note for  the free case tha t  n w E/n = E by 11.4.15 (iv). 

n w sq 2 ( n / p I t ~  sq* 
P 

Of course, we have an analogous space level  dichotomy between n-CW complexes Corollary 2.5. Let {W P and {F 9 } be f i l t r a t i o n s  by n-subcomplexes of the free 
and CW complexes with ce l lu lar  n action. Here i f  p acts  simplicially or n-CW complex W and the CW spectrum with ce l lu lar  IT action F E nb.. J Then 

differentiably on ~ q ,  then $9 can be subdivided t o  a P-CW complex and the 
w IX F is a b i f i l t e red  CW-spectrum with respect t o  {up K~ Fq}, where op is the 
res t r ic t ion  of w t o  W 

dist inction becomes negligible. P ' 

The following observation may help explain the force of the definit ion* It is Proof. By the natura l i ty  of the c e l l  s tructures in  the proposition, we need only 

u t ter& t r i v i a l  on the space level. Recall tha t  n a J = V a*J and tha t  n observe that  the intersection condition in Definition 1.7 holds before passage t o  

orbits  by VI.1.2 and s t i l l  holds a f t e r  passage t o  orbi ts  by inspection of the ce l l  
actions are given by maps 6: n rr J + J (see 11.4.15). "' 

structures. 

Lemma 2.3. Suppose given a n-spectrum J E n 8 .  J which i s  nonequivariantly 

isomorphic t o  a wedge of sphere spectra ~q (without action) and contains no non- We need the following notations t o  describe the behavior of the result ing 
spectral sequences. 

t r i v i a l  n-subspectra. Let p c n be the subgroup consisting of those ekments 

which map one of the wedge summands, sq say, t o  i t s e l f .  Then the n-map 
P 

n r sq + J which r e s t r i c t s  t o  the inclusion on sq i s  an isomorphism. 
Notations 2 -6 Let & be any homology theory defined on the stable category a. 

P P P Fix a l inear  isometry f j  E x j  and extend k* t o  the stable category Kdj by the 
proof': The maps 5,: oxJ + J sa t i s fy  6, = 1 and 5, oxS, = c,, (see 11*4*15)* definition $F = &(fj*F) for  F E dj. By 11.1.7, G F  is independent of the choice 
Taking T = dl, we find that  the composite of f j  up t o  canonical natural  isomorphism. If F is f i l t e red ,  l e t  { E ~ ( F , ~ ) }  

o*s -1 0 denote the spectral  sequence obtained from the induced f i l t r a t i o n  on fj+F. - 1 
J = oxox J A o , J  - J 
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1 a* 0 K 
With these notations, the basic calculational resul ts  on twisted half smash @E,,(v pc P F k - E : , ( ( w @ v )  I< rXP ( F j r F k ) )  

products read as follows. Their proofs w i l l  include discussions of the relevant 

algebraic T actions. 111 

Theorem 2.7. kt n c C j ,  l e t  W be a f ree  IT-CW complex with i t s  skeletal  j 8 c*v q, E,,Fk 
1 

( K @ K ) ( 1 @ T @ 1 ) ~ C , ( W x V ) 4 x p E , , ( F . h F k )  J 

f i l t r a t i o n  {wP}, l e t  w: W + r. be a T-map with r e s t r i c t ion  w t o  wP, and 
J P 

l e t  F e n4. be a CW spectrum with ce l lu lar  n action and any f i l t r a t i o n  (iii) Let Wk: wk + Q ( R ~ ~ ~ , R ~ ~ )  be the k-fold direct  sum of and l e t  be as  
J 

IFq} by IT-subcomplexes . Then 'in (ii 1. - Then the following diagram commutes for  Fjk e ( 

- - 

i n  the resulting spectral sequence, and d l  on the l e f t  agrees under the 

isomorphism with d €31 1 + 1 @ d l  on the r ight.  Moreover, i f  F = Lmx for  a 

112 111 

f i l t e red  based CW complex X with ce l lu lar  IT action, then the isomorphism of 
k 1 k 1 

C,V @ P C,(W ) @ IT E,*Fjk Q 1 * ~ , ( ~  x W ) @pjn ExxFjk 

spectra 

x m ( w  n T  X) " W k T  xmx 

induces a natural  isomorphism of spectral  sequences which, on the El-level, i s  the 

natural  identif ication 

Retaining the hypotheses of the theorem but deleting k from the notation, we 

have the following complement concerning the maps I ,  a ,  @, and 6 of VI.3.1 and 

3.4. We assume given appropriate ce l lu lar  structures and f i l t r a t i o n s  on a l l  spectra 

i n  sight. 

Theorem 2.8. (i) Let w(w)  = f and l e t  i: {w} + W be the inclusion. Then the 
j 

following diagram commutes for F E a& : 

( i v )  Let g j ,2 = f i  o v . ~ ~ ~ j  j . + R ~ ' ,  where v . ~ m j 4 i R m j + ( ~ m @ j R m ) j  j . i s t h e  
evident shuffle, and l e t  A ' :  W + W x W be any 8-cellular approximation t o  the 

diagonal map. Then the following diagram commutes for F, F' 6 rdj: 

As w i l l  be discussed i n  the proofs, these diagrams require a b i t  of inter-  

pretation t o  account for changes of isometries. 

I I When kg i s  ordinary integral  homology and F i s  given i t s  skele ta l  

i, 0 1 f i l t r a t ion ,  we have 
1 1 

CO{w} Q E,,(F) -C,W QT E,,(F) 

E ~ ( F )  = (F)  = C*(f.,F) s C,F. 
(ii)~, Let V be a free p-CW complex, p c zk, and l e t  V: V + ik be a p-map. * ,o J 

Then the following diagram commutes fo r  F. E n l .  and Fk 6 pJk: 
J J  Thus the theorems specialize t o  give the following resul t ,  i n  which we re ta in  the i r  

notations and hypotheses. Actually, Propositions 1.2 and 1.4 are also needed here 

because of the changes of isometries implicit i n  the diagrams above. 
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Corollary 2.9. There is a natural  isomorphism 

N 

C,(W ccn F) = C*W $ C*F. 

When F = C"X, t h i s  isomorphism i s  the evident composite 

C*(W rn F) 2 C * ( W + A ~  X) ? C*W @n "C*W $ C,F. 

Under t h i s  isomorphism and Kunneth isomorphisms, I,, a,, B*, and 6* coincide 

with the natural  homomorphisms 

and 

Remarks 2.10. (i) When F = E( j  ) , fj*F i s  the internal  j-fold smash power of E. 

The alternative notation Fj used i n  some of our statements i s  meant t o  suggest 

t h i s  central  case. By Theorem 1.6 and i t s  proof, we may identify C* (E' j  ) ) with 

the j-fold tensor power c * ( E ) ~  with i t s  natural  n action. 

(ii) Together with VI.1.2 and VI.4.9, Corollary 2.9 completes the proof of 

[Hm, 1.1.31. It also completes the proof of a l l  resul ts  of [H-, 1111 other than 

the Nishida relat ions.  

(iii) When W i s  contractible and F is given the t r i v i a l  f i l t r a t i o n ,  f q  = * 
for q < 0 and Fq = F for q > 0, we clearly have 

This completes the proof of [H,, 1.2.41. 

( i v )  When E i s  given the f i l t r a t i o n  by a & Adams resolution and E(J  ) i s  

i s  the composite map displayed i n  VIIe1.6. Both that  general analog and parts  
(i) - (iii) of Theorem 2.8 specialize t o  calculations of l j ,  aj ,k, and f l j  , k  on 
1 

E,, and C* and part  ( i v )  specializes to  the analogous calculations for the maps 

The res t  of t h i s  section i s  devoted to  the proofs of Theorems 2.7 and 2.8. The 
requisite geometry i s  given i n  VI94. The real  problem i s  to  keep track of 

and, as explained there, the way to do t h i s  i s  t o  work equivariantly, before 

passage to  orbi ts ,  regarding n actions as ordinary maps n K F -t F. 

Our t r i ck  of fattening f i l t r a t i o n s  by taking products with spaces allows us t o  

exploit fu l ly  the diagrams of VI94. We s t a r t  with our free 8-CW complex W and 

consider such n-spaces as n x W ,  W x C ,  IT x W x C ,  e tc . ,  where C i s  a 

contractible CW complex (such as I, A2, e tc . ) .  We f i l t e r  these spaces by the i r  

subcomplexes n x wP, wP x C ,  a x wP x C, etc.  We proceed similarly for  
T-spaces n x K ,  n x K x C,  etc. ,  where K i s  a given CW complex without 

action. Then, with X, X, and E there replaced by W, U ,  and F here, every 

single map displayed in VI94 i s  a map of b i f i l te red  CW spectra and so induces a 
map of spectral sequences. Moreover, all of the equivalences there were induced by 
maps of the form 1 x i : W x C -t W x C ' , where i i s  the inclusion of a 

contractible subcomplex in  a contractible CW complex. Clearly any such 

equivalence r e s t r i c t s  to  an equivalence i n  each bidegree and therefore induces an 

isomorphism of spectral sequences. 

To begin the proof of Theorem 2.7, abbreviate f .  = f and observe that  Lemma 
J 

1.8 (iii) and the equivalence u a F = wtn f ,F of diagram ( A )  in VI94 imply 

These give r i se  via Proposition 1.9 t o  an isomorphism 

(2)  1 N 1 
E,,(u cc F) = C,W @E,,F 

While the equivalences (1) are not n-equivalences and f,F i s  not a n-spectrum, 
VI.4.9 shows that  these equivalences nevertheless I1pass to  orbits1' t o  yield 

equivalences 

given the induced f i l t r a t i o n ,  Theorem 2.7 is the essential  s tar t ing  point for  f F -*,, x q  
Bruner' s work on the Adams spectral  sequence; see [H,, I V B  5 1 . o M F  F 

- 
P-1 n q U U p " n  q-1 wP-'/, f*Fq-l 

(v )  If  $ is a ce l lu lar  operad with ce l lu lar  structure maps y and X: k -tx i s  

a morphism of operads, then there i s  an analog of Theorem 2.8 for the calculation of ( ~ ~ / n ) / ( w ~ - l / n )  i s  a wedge of p-spheres, one for each n-basis element of 

1 E,,c and C*c before passage t o  orbi ts  but with a l l  possible equivariance, where p (W/n )  @ z [ n l  CpW, t h i s  implies the additive identif ication 



1 
We claim f i r s t  tha t  the a action induced on Exx(w K F) from the action of Here V104.2 t e l l s  US that  &F i s  a n-modde with 6, as action. 

n on a K F agrees under the isomorphism (2 )  with the diagonal action Now diagram ( G )  of VIB4 reads as follows on the : 

( the  inverse entering since we are using a r ight  n action on W ) .  We claim second 
I 

6 * 
tha t  the homomorphism 

1 N 1 1 @ 5, 1 
1 1 E,++(m@F) = C*W@E**F a C , W @ Z [ ~ ]  QE,,F Exx(w K F) ---t Exx(w g, F) 

Here +(o  €3 w) = (wo-' @ o ) ,  and th i s  proves our f i r s t  claim. 
induced by passage t o  orbi ts  agrees under the isomorphisms of (2)  and (4 )  w i t h  the 

For our EXcond Claim, note the commutative algebraic diagram 
natural  algebraic quotient map 

These claims and the fac t  tha t  the isomorphism of (2 )  iespects d i f ferent ia ls  w i l l  

imply that  the isomorphism (4 )  respects d i f ferent ia ls  and thus w i l l  complete the 

proof of Theorem 2.7. 

We regard algebraic actions as homomorphisms Z [ n l  8 ( ? )  -P ( ? )  and where ~ ( k  @ o @ X )  = k 60 o1 63 ox for w in our n-basis for C,W, o c n, and 
them to the topology as follows. Since kx carr ies  wedges t o  sums, we have x c E ~ F .  By inspection of VI.4.9, the orbi t  map from the l e f t  side of (1) t o  the 

l e f t  side of ( 3 )  i s  evaluated in terms of the r ight sides by passage t o  quotients 
k,(lrfh E) = z k , ~  = Z l n l  @ k*E from pairs of diagrams of the general form 

ocn 

- - 
for E . BY natmal i ty ,  the monad unit and product (above VI-4.1) induce the K K F  ti--LL- T D ( K I ( F  ~ a w K K F / a =  KrKF 
standard n-modde structure on z [ n ]  k , ~ .  since acts t r i v i a l l y  on R~ , we I l 
have a+A E: = a o< E here ( compare V I  -4 3) + Kt4f,F, 

For F A (not necessarily a n - s p e ~ t r ~ m  for the moment) diagram ( C  ) V18 

gives F . n tA F. This and the identif ication f,( nth F) = n A f xE give a 
+ 

where r and the orbi t  maps E are the evident geometric forerunners of 5 and E 

natural isomorphism in the algebraic diagram displayed above. Here i s  the isomorphism specified i n  
VI.4.7, the l e f t  square i s  diagram ( H I  of VI54, and the r ight square r e f l ec t s  the 

N 

k,(, I F) = k,(nth F) = Z I T I  63 k x F  fact  that  IT ac ts  on n 6 K tx F only through i t s  action on a. The spaces K 

consist of the ce l l s  or the i r  boundary spheres used t o  construct the successive 

Here ~1 .4 .1  t e l l s  us tha t  the monad unit and product of a K F induce the skeleta of W/a, as in the statement of V I  .4.9. This proves our second claim. 

standard n-module S ~ T U C ~ W ~  On Z Z[ n 1 @ k,F0 Observe that  diagram ( B )  of VIB4 shows that ,  up t o  canonical and coherent 

For F n + ,  the substi tute,  diagram (F) of VI54, for an action On isomorphism, our identif ication of El i s  independent of a l l  choices in the + 
f,F obtained by applying f, t o  the equivalence n w f n A F and action construction of diagram ( A ) .  

5: Pc F .+ F induces the composite The l a s t  statement of Theorem 2.7 resul ts  by commuting Cm through all steps 

the arguments above and noting that  a l l  of the equivalences used t r iv i a l i ze  on 



the space level .  

The proof of Theorem 2.8 i s  based on V I  .4.10. Part (i) of Theorem 2.8 is 

immediate from part (i) of VI.4.10. In part  (ii) , E$*(F. 3 A Fk) implici t ly refers  

t o  ( f j+k)x (F j  AFk), by Notations 2.6. However, upon traversal  of the diagram 

counterclockwise, we naturally land i n  E&* of the spectrum f2*( f j  x ~ j  A f k x ~ k )  . 
Via a,  6, and a path connecting f 2 J  ( f .  B fk)  t o  f j+k,  we obtain an equivalence 

For an Ha ring spectrum E, homology operations i n  &(El were defined in 

terms of a map DrE + E. By naturali ty,  the Nishida relat ions [Hw, 111.1.11 for  

the i r  commutation with homology Steenrod operations are an immediate consequence of 

the following calculation of the Steenrod operations i n  H+,(DTIE) . We agree t o  

m i t e  p S =  sqS i f  p =  2. 

Theorem 3.1. Let E be a CW spectrum and l e t  x E H (E) .  
9 I 

(i) If  - p = 2 and Zt i s  sufficiently large, then 

2 
and an induced isomorphism of spectral sequences. Use of t h i s  isomorphism i s  

t 2 -  @ ) = i x ( 8  - 25, r + q - 2s + 2 i  + 2 ) er-s+2i p i ( x )  . 
necessary to  make sense of the diagram and, with t h i s  interpretation,  i t s  
commutativity is eas i ly  deduced from VI.4.10 (ii). Part (iii) i s  similar, the (ii) 1' p > 2 and pt i s  suff ic ient ly  large, then 

relevant equivalence being t 
p e r  @ x P  = i s - p i ,  [$I + qm - ps + p i  + ) r+2(pi-s)  (p-1) (3 P: (x )P 

r+l t 
+ Slr)a(q) (s-pi-1, [-TI + qm - ps + p i  + p ) er+p+2(pi-s) (p-l) 

i €3 p,ig(x)p, 

Again, in part  ( i v ) ,  the l e f t  isomorphism involves comparison of f j *  g j ,2*(FnF ' )  
to f2* ( f j  e f .  1% ( F  A ~ 1 )  , and precisely such a comparison was involved in the 

where = ( ~ - 1 ) / 2 ,  a (q )  = - ( - l ) m % j ,  and ~ ( 2 ~ + ~ )  = E, 
= 0 or 1. 

J 
second diagram of ~1.4.10 ( i v ) .  Use of the diagonal approximation i s  jus t i f ied  by ( i i j . 1  I f  P > 2 then @(e2, €3 xP) = e2r-l Q xPe 

VI.4.11. 
Our conventions are tha t  (a ,b)  = (a + b)!/a!b! if a 2 0 and b 2 0, 

while (a,b) = 0 i f  a < 0 or b < O. Since D C w ~  C w ~  x for a based 
53. Steenrod operations in D ~ E  'pace '9 the resul t  holds by Nishida [I161 (modulo 71 correction 7~ of signs) or  

we the work of the preceding section t o  the case the standard [96, 9*41 when = xWx. Actually, the ci ted references prove the resul t  with the 
powers pt omitted from the binomial coefficients. The two versions are seen to .-free ~ ~ - ~ ~ ~ ~ l e x  w = sm, where i s  the Cyclic group of order p embedded as 
give the same answer by use of the following two facts.  usual in 1 fi1 chain complexes and homology groups are have mod 

P ' (a)  spaces, p$(x) = 0 i f  p = 2 and q < 2 i  or if p > 2 and < 2ip. c o e f f i c i e n t s  The cellular  chain group ci(W) i s  n-free On One generator eio We 
(b) (b,pt + a - b)  = 0 and, i f  p > 2, (b - l fpt  + a - b)  = 0 i f  0 5 a < b < pt. fix a n-map ,,,: w + g(p)  and write D E for W rTI E I p i  and D> for  ' E ( p ) ~  
The become cleaner when written in terms of c lass ica l  binomial coefficients where Wk i s  the k-skeleton of W. F:r a CW-s~ectrum E, we have 
since 

c*(D>) C*(Wk) BTI c,(E)*- 

~y an easy algebraic argument 196, 1.31, the mod P homologY H*(D>) has a basis 

consisting of the union of the three s e t s  
We Prove Theorem 3.1 in cohomology, and we m y  as well assume that  HxE 

( A )  { e i @ x P  ( O < i . < k ) ,  { e o @ ~ l @ s e * @ ~ p l ,  { f k @ X 1 @ O O * @ X p l *  

Here fk  runs through a basis for the kernel of dk: Ck(W)* Ck-l(W) 9 
runs 

through a basis for H* ( E) , and xl @ 0 0 .  @ X runs through a for the 
P c*(w) @TI H*(E)P. 

n-modde of elements of & (E)P not fixed by n o  The elements eo @ xP and the 

elements of the l a s t  two se t s  Span the image of H*(@ E ( ~ ) ) *  wi the Cochain dual t o  e i .  Then H ( D  E) has a basis consisting of 
* k  

TI 
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the mion of {w. @ $ / 0 < i "1, where y Tuns through a basis for '*(')J T~ = T ( w ~ ; R ~ P ~ R ~ ( ~ ) ) .  

and the dual basis t o  the second and th i rd  se ts  in ( A )  * When P ' 2~ the standard 

sign conventions give Here {q( k) 1 is 8" increasing sequence such that  .($) (Rnp) C Rq(k) ,  a d  we agree 
to take the q(k)  to  be even. Thus Tk is the Thom complex of the =-bundle 

(i+m)deg yCy,,, . 
<wi Q ~ ~ ,  ei a x p >  = (-1) k 

- nGp Over wkJ where E 9 i s  the q-dimensional t r i v i a l  

~h~ standard sign convention 6f = (-l)deg f+lfd used in def ining coboundaries in i s  the evident n-bundle 8 x + $. ~ 1 ~ 5 . 3  and ~1.5 .4 ,  

terms of boundaries implies 
' we have a- natural isomorphism 

D ~ A ~ C ~ X  " colim k ~ q (  k, xm( T~ A ) 

With these conventions, a careful check of signs gives the following Note that  i f  yk i s  the to t a l  space of nk, then Tk A, X ( P )  i s  the quotient of 

the Thom complex of 
of the theorem. 

Theorem 3.2. Assume that  &E i s  bounded below and of f i n i t e  type. Modulo the 

subspace spanned by the dual basis elements of the l a s t  w?ts in the 

* k  
following relations hold in (DnE). Moreover, the ci ted subspace i s  closed by the yk X, {* } + wk X n  {* } . Moreover, qk xn 1 i s  the pullback 

Steenrod operations. 

(i) For p = 2, 0 < j < k, and Y e  Hq(E) ,  

2 ps(w. Q Y  ) = c ( s  - 2i ,  j - s + i + q +  
J i 

(ii) For p > 2, 0 5 j < k, End y H ~ ( E ) ,  the fundamental class of sn. There resul ts  an orientation ,, H ~ ( ~ ) - ~ ~ ( T ( ~ ~ ~ ) )  

t 
ps(w. B ~ ~ )  = c ( S  - p i ,  [%I - s + i + q ?  + P ) wj+2(s-Pi) (p-1) 

J i 

t 
+ ~ ( j - l ) a ( q )  C ( S  - p i  - 1, [$I - S + i + W + P ) wj-p+2(s-pi)(p-l) 

i 
qk X n  1 the pullback of t h i s  orientation, also denoted ,,k, and we m i t e  

(iii) For p > 2, B(wZj -l B yP) ' WZj 8 yP= 4% any of the result- Thom isomorphisms in, homology. In particular,  we have 
the relat ive Thom isomorphism 

men E = C-X, meorems 3.1 and 3.2 are known. To prove them for spectra, we 

first from 1.4.7 tha t  we have a n a t ~ r a l  isomorphism 

N n m 
E = colim A C En. The c o l h i t  system in (B)  is  given by the maps 

Here is the sh i f t  desuspension and i s  equivalent t o  z-n by n 1Q70 We agree 

also write An for the desuspension isomorphism Hq( E) + Hqen;A E, * Since the 

functor D comutes with colimits, we may assume tha t  E = 
xmx for  a based 

space X. I .4.2, we also have a natural  isomorphism hnCmx A~+'Z".( ZX) hence 

we may as well assume tha t  n i s  even ( t o  avoid signs) and tha t  X i s  connected* 

Recalling the Thom complexes of VIe2.1, we se t  



where i is induced by the inclusion Tk n ~ q ( ~ + ~ ) - ~ ( ~ )  -S Tk+l of VI .2.3. From 

this description, it is easy to check that our Thom isomorphisms fit into the 

following commutative diagrams. 

Thus passage to colimits yields the isomorphism 

Both sides have bases as in (A), and we have so chosen our orientations as to 

have the following consistency statement. 

- 1 4% e i 8 xp) = ei CXI (A"X)~. 

Proof. The isomorphism ( B )  is a colimit of isomorphisms 

(D) D ~ A ~ c " ~  2 A~(~)C"(T k A IT x(P)). 

In fact, inspection of the definitions (1.4.1 and VI.2.5) of the functors 

?z" and shows that the 9(k)% space of the prespectrum level constructions 

here are both precisely Tk An X'P). The spectrum level identification of homology 

classes given by the arguments of the previous section desuspends on the prespectrum 

level to the Thom isomorphism just specified. 

Thus to prove Theorem 3.1 we need only compute the Steenrod operations in the 

relative Thom complexes Tk AIT X'P). We must first compute the Wu classes of the 

nk. Here the Wu classes of an oriented bundle E are defined by 

wi(~) = +-'pi+(l), and we write w(c) for the total Wu classes C wi(c). (By 
i s  

abuse, we are calling Stiefel-Whitney classes Wu classes when p = 2.) Recall that 

HX(.Wk/x) = EIa) @ ~{b}/(bj+l,(l - E)abj) if p > 2 and k = 2j + 

is  emm ma 3.4. (i) If p = 2, w(c,,/a) = 1 + a and therefore 

for any t such that 2t > k. 

(ii) If p > 2 and m = (p-1)/2, w(<;/-ir) = (1 + bP-l)m an td therefore 

t Proof. Since nk/" = E - q(k)/~ - n5pk/n and (1 + a)2t = 1 or (1 + b~-l)p = I for 
the cited values of t, the second clauses follow from the first. Clearly ek/, 

P 
is the restriction to wk/a of the bundle $/IT over W/n induced by the regular 

representation of IT. If p = 2, c2/v is the sum of a trivial line bundle and the 

canonical line bundle, hence w( q2/n) = 1 + a. If p > 2, cp/ n is the sum of a 

trivial line bundle and the bundles induced by the m different nontrivial 

representations of IT in SO(2). If a: W/IT -t BSO(2) classifies one such and 

x e H2(BS0(2) ) is the canonical generator (=  el), then a*( = ~b for some non- 

zero constant K e Z p  If y is the universal bundle over BSO(21, then 

w(y) = 1 + xP'le Thus w(a) = 1 + bP-I by naturality since = 1. 

H* ( wk//n) acts in the obvious way on H* ( wk xIT X(P) ) , and the lemma has the 
following immediate consequence. 

Lemma 3.5. Let y e H*(x) and let 0 c j G k. Let 

be the Thom diagonal. 

(i) If p = 2, AX[(Wj @$I Q ~ ~ ~ ~ ~ I  = (r, Zt - n - r)wj+, @ $ 
(ii) ~f p > 2, A*[(W~ Q ~ P )  @prpk1 = (r, pt - mn - r)wj+2r(p-l) y ~ .  

The following lemma, which is proven in [96, 9.31, will allow us to assemble 

the information above. 

where a = e;, and that Lemma 3.6. For a 2 0, b a 0, and c > 0, 



C ( r ,  a - r ) ( c  - r, r + b - c )  = (c ,  a + b - c ) .  
r 

IX. Thom Spectra 

by L. G. Lewis, J r .  

We put things together t o  obtain the following analog of Theorem 3.2. 

~n [121, bardman constructed the Thom spectrum associated t o  a map f :  Y -t BO. 

Proposition 3.7. Modulo the subspace spanned by the images under + of the dual Intuitively, it is clear tha t  h i s  construction generalizes t o  one yielding a Thom 

basis elements of the l a s t  two se t s  in ( A ) ,  the following relat ions hold i n  ~pectrum from any map f :  Y + BF. Primarily because of the pioneering work of 

H* ( Tk A, X(P) ) . Moreover, the ci ted subspace is closed under Steenrod operations. hahowald, - th is  construction has had numerous applications. See [ 28, 31, 33, 93, 

(i) If p =  2, 0 c j  < k, and y e  Hq(x), 1201, for example. 

ps+(wj @ 9) = ; ( S  - 2i,  j - s + i + q - n + 2t)+(wj+s-2i @ ( P ~ ~ ) ~ ) ~  
1 

(ii) If p >  2, 0 c j  < k, and y E H ~ ( x ) ,  

(iii) If p > 2 and 0 c 2j < k, g+(w2j-l  @ yP) = + ( w ~ ~  @ yp). 

In t h i s  chapter, we analyze t h i s  construction i n  de ta i l ,  producing a well- 

behaved Thorn spectrum associated t o  any map f :  Y + BG, where G is any one of the 

standard in f in i t e  groups or monoids (e.g. SO, 0, SU, U, STOF, TOP, SF or F).  Our 

expansion of Boardmanls construction t o  allow monoids involves only the introduction 

of a technical t r i ck  t o  handle the d i f f i cu l t i e s  which ar ise  because the geometric 

bar construction yields only a quasifibration when G i s  only a monoid. 

O u r  main resul t  i s  tha t ,  for sufficiently nice maps f :  Y + BG, the Thom 

spectra Mf have enriched ring structures.  In part icular,  i f  f i s  an n-fold loop 

map (1 c n G m ) ,  then Mf is an %-ring spectrum. Both n-fold loop spaces and 

%-ring spectra have Dyer-Lashof operations i n  the i r  mod p homology and we show 

Proof By the Cartan formula, pS+(wj @ yP) is the image under A* of 
that when the Thom isomorphism exis ts  ( the  usual or ientabi l i ty  conditions apply), it 

c ~ ~ - ~ ( w ~  9 yP) @ pruk. Upon application of Theorem 3.2 ( fo r  spaces) and Lemma 3.5, 
carries the Dyer-Lashof operations in the homology of M f  t o  those in the homology 

r of Y. 
we obtain expressions of the standard form but with the binomial coefficients 

Our second contribution i s  a collection of invariance resul ts  about Thom 
replaced by 

spectra. The f i r s t  step i n  any construction of the spectrum M f  associated t o  

i f  p = 2 and by 

and 

i f  p > 2. Lemma 3.6 gives the conclusions of (i) and (ii) , and (iii) i s  clear 

since 6uk = 0. 

By Lemma 3.3, we may think of +;l(ej @ xP) as the element e. J @ ( hnx)P of 

H+ ( %hnfX) , and of course hnx has degree q - n, q = deg x . Theorem 3.1 for  

E = hnz? and thus for general E follows immediately by dualization. 

f :  Y + BG is the selection of a suitable f i l t r a t i o n  on Y. Intuit ively,  the 

spectrum Mf should be independent of the choice of t h i s  f i l t r a t ion .  It should 

also depend only on the homotopy class of f .  We make these intuit ions rigorous. 

However, some caution must be exercised i n  using the homotopy invariance. For 
example, the Thom spectrum Mf derived from an H-map f :  Y + BG has a 

multiplication, but th i s  multiplication need not be commutative or associative even 

i f  Y i s .  For th i s ,  the map f must be a homotopy commutative or associative 

H-map in the sense of Zabrodsky [1481. O u r  detailed treatment of the invariance 

properties f ac i l i t a t e s  the detection and resolution of such d i f f i cu l t i e s .  

The basic source of in teres t  i n  Thom spectra i s  the i r  connection t o  cobordism, 

and it is an easy matter t o  adapt the standard discussions [80,123,1351 t o  our 

context. 

The necessary technical de ta i l s  on bundles and fibrations all appear i n  

Sections 1 and 2. Section 3 contains the definit ion of the Thom spectrum of a map 
and several basic examples - in part icular,  Mahowaldls description of the Thom 

spectrum of a map from a suspension in to  BG. Section 4 contains our invariance 
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resul ts  and a discussion of the relat ion between H-maps f :  Y + BG and ring proposition 1'2* If f :  E * B is a (Hurewicz) fibration and B is mC, then 

structures on M f .  Section 5 contains a discussion of the homology and cohomology f i s  an open map. 

Thom isomorphisms (roughly following Boardman). In section 6, we show that  the 

extended powers of the Thom spectrum Mf are Thorn spectra derived from Our basic source open maps is  the realization of certain well-behaved maps 
naturally related t o  f .  This resul t  i s  applied i n  section 7 t o  show that the of simp1icia1 spaces (see 1971 for our choice of notation).  Easy ~ o i n t - ~ ~ t  topology 
spectra derived from suitable maps f :  Y + BG are operad ring spectra* gives the following. 

Part of t h i s  material is from the second half of my thes is  [831. I would l ike  

t o  thank my advisor, Peter May, for  a l l  h i s  kind assistance in i t s  preparation and Proposition 1 * 3 e  Let f*: E* + B* be a map of simplicial spaces such that each 

the National Science Foundation for the financial support of a graduate fq: Eq * Bq is Open and 
Eq maps onto the pullback in a l l  of the commutative 

diagrams 
fellowship. I acknowledge a deep debt of gratitude t o  Mark Mahowald for sharing the 

insights into the relat ion between Thorn spectra and ring spectra which led t o  t h i s  

research. I would l ike  t o  thank Sue Niefield for several conversations which led t o  E ai , E 

my proof of the colimit preserving properties of Thorn spectra. I would also l ike  to  
(2-1 

thank Arunas Liulevicius and Stewart Priddy for several helpful conversations on f 
9 

Thom spectra. 
Ifq-. 

ai 
B 9 -B 

q-1 
§ 1. Preliminaries on sphere spaces and spherical f ibrations 

Then the geometric realization of f* i s  an open mp, 

We here define sphere spaces and thei r  associated Thom spaces, discuss the 
conversion of sphere spaces in to  spherical f ibrations and recal l  two key relat ions This can be applied t o  the two-sided bar construction of [98,s71. 

between pullbacks and colimits. 
'*4* Let G be a top0l0giCal monoid and l e t  X and Y be a left and a 

We begin with the l a t t e r .  Let 41/8 be the category of (compactly generated, 
right G-space. Then the natural  map 

we& ~ ~ ~ s d ~ r f f )  spaces over a given space B. AW map f :  Y + B yields a pullback 

functor f*:v/B +Z(/Y which assigns t o  a space g: Z + B over the pullback 
IT: B ( Y , G , X )  -+=B(Y,B,*) 

f*g : f*Z + y of g along f . The category %/B has colimits; the colimit of a 

diagram over B consists of the colimit in of the diagram together with the 

n a t u r a  map in to  B. Recall tha t  the colimit of a diagram i n  91 i s  the 

weak &usdorff quotient of the colimit of tha t  diagram in the category 

topological spaces. Here, we transcribe from 183,861 the basic r e s d t s  On the 

behavior of colimits under pullback functors* 
By an S"-s~ace, we mean a projection p: D + A together with a section 

Proposition 1.1. Let f : Y + B be a map i n  ?k . The functor f * : u /B  + u/Y A + such that (P" ( a ) ,  s ( a )  ) has the based weak homotopy type of ( ~ n ,  * 
preserves all colimits i f  and only i f  f i s  an open map* However, for f~ the ' each a A* We think of s as supplying basepoints for  the fibres of and 

functor f* preserves those colimits which are not Proper quotients Of the that these be non-degenerate. The non-degeneracy i s  automatic if the fibres 

corresponding c0limi-b~ in the category of dl topological spaceso In particular) 'pheres and can usually be arranged using Proposition 1-11 (%ti) below. 

any f*  preserves colimits of directed systems a l l  of whose maps are injections* Om the fact that ps = 1, it follows that  p i s  a quotient m p  and is a 
Osed indlusion* A (F , f )  : p + q of $-spaces, p: D + A and q: E + B, is a 

easy consequence of [15, 6.21 provides one maj or SOurce of open maps* A ir of maps F: D + E and f :  A -b B such that  the diagrams 

space B i s  said t o  be local ly  equiconnected, or LEC, i f  the diagonal A :  + * 

is a cofibration (see 151,841 ) 



41 0 41 1 

*E F induced ,spherical f ibration over s1 is P-l 
D D- RP . The generator of nnT(p) is the 

image of the -generator of n n f -'RP2 and so must be of order 2. 

f 

9 S S 
If P: D + A and q: E + B are an 9- and an @-space respectively, then 

f 6 q: D A  E + A x B, the fiberwise smash product of p and q, is the 9"-space 
A- 

whose fibre over (a ,b)  i n  A x B is p - l ( a ) ~ q - l ( b )  (see [98, p 231). The 

~ e c t i o n  of PA9 takes (a,b) t o  the basepoint s ( a ) h s ( b )  of p- l (a)hq- l (b) .  
commute and F: (p-l(a) ,  s ( a ) )  + ( q - l ( f ( a ) ) ,  s f ( a ) )  i s  a weak equivalence for  

~ o t e  that  - DnE i s  an abuse of t radi t ional  notation - it does not denote the actual 
each a E A. The map (F , f )  i s  said to  be a pullback i f  the l e f t  square above i s  a 

smash product of two based spaces, but rather the fibrewise smash product. 
pullback. We refer  t o  sn-spaces as  sphere spaces when it is not necessary t o  

mention the dimension. We need an observation about smash products. 

For an @-space p: D + A, the quotient space D/sA is denoted T(p) and 

called the Thom space of p. Passage t o  Thom spaces gives a functor T from the 

category of sn-spaces t o  tha t  of based spaces. Since the quotient map D + T(p) i s  

closed, we have the following observation. 

Lemma 1.5. Let ( F , f ) :  p + q  be a m p  of @-spaces. If (F , f )  is apul lback 

and f is a closed inclusion, then F i s  a closed inclusion. If F i s  a closed 

inclusion, then so i s  T(F, f ) :  T(p) + T(q).  

An $-quasifibration i s  an $-space whose projection is a quasifibration. An 

sn-fibration i s  an @-space q: E + B such that  q sa t i s f i e s  the homotopy l i f t i n g  

property with respect t o  maps of $-spaces; tha t  is, for  every $-space p: D + A, 

map (F , f ) :  p + q of @-spaces, and homotopy h: A x I + B with f = hi0, there i s  a 

map (H,h) : p x 1 + q of $-spaces with F = Hi0 .  Here p x 1 is the 

@-space D x I + A x I. By [ 98, p. 121, @-fibrations are necessarily ( Hurewicz) 

f ibrations. 

The long exact homotopy sequence of a quasifibration and the homotopy excision 

theorem suffice t o  describe the low dimensional homotopy groups of Thom spaces. 

Lemma 1.6. Let p: D + A be an @-quasifibration whose section i s  a cofibration. 

Then T(p) is (n-1)-connected and, i f  A i s  path connected, nn(T(p)) i s  ei ther 

Z or Z/2. It i s  Z i f  and only i f  p i s  integrally oriented. 

Proof. If A i s  path connected, then n ( T ( p ) )  must be a cyclic group generated n 
by the map = T(p ( {a) ) + T(p) coming from the inclusion of any point a of A 

i n to  A. If p is integrally oriented, then the classifying map of p l i f t s  t o  

BSF(n) and we obtain a map T(p) + MSF(n) such that  the composite sn + T(p) + MSF(n) 

is aegenerator of %(MSF(n)). Thus, %T(p) must be Z. If p i s  not integrally 

oriented, then the f i r s t  Stiefel-Whitney class wl(p) must be non-zero. Using the 

universal coefficient theorem and the Hurewicz isomorphism, we obtain a map 

f :  s1 + A such that  fxwl(p) # 0. It follows that  the Thom space T(  fXp)  of the 

Lema 1.7. For sphere spaces p i :  Di + % (1 5 i 5 n )  , T(pln p2 A . . . A p n ) i s  

naturally homeOmor~hfc t o  T(pl) T(p2) A * 0 * A T(p n ) . For a se t  of pullbacks of 
sphere spaces {(Fi,f i) :  pi + q i l l  G i < n) ,  

i s  also a pullback. 

We also need an observation about @-spaces on which a 

An $-space p: D + A is called a n-sn-space i f  D and 

p: D + A and s:  A + D are 8-maps. Note tha t  a pullback 

+-map i s  a n-@-space. 

f i n i t e  

A are 

of a a 

group 8 acts. 

+-spaces and 

-@-space along a 

Lemma 1.8. Let (F , f ) :  (p:  D + A) + (q :  E + B) be a +-map of a - ~ ~ - s ~ a c e s  such 

that (F,f is a pullback and IT ac ts  t r i v i a l l y  on q. Then the orbi t  map 

p/+: D/+ + A/+ i s  an @-space and the induced map 

i s  a map of $-spaces and a pullback. 

We shall  frequently need t o  convert maps in to  f ibrations.  We recal l  t h i s  
standard procedure here since we are going t o  use some of i t s  little-known 

properties. Our notation i s  tha t  of [98,§31, but our Proposition 1.11 shows how t o  

avoid the whisker- construction used there. 

For any B, define IIB t o  be the space 

IIB = { ( e , r )  a B[O," x [o , - ) Io ( t )  = e ( r )  for  t 2 r ) .  

We abbreviate ( 0 , r )  t o  e and define the length II: IIB + [O,CO) by R( 8) = r and 



the end-point projection p:  nB + B by p ( 0 )  = ~ ( r ) .  For any map f :  Y + B, 

define r f :  rY + B and 6: Y a I'Y by 

r f ( e ,y )  = p ( e )  and 6(y) = ( < ~ ( Y ) > , Y ) ,  

where, for b r B, i s  the path of length zero a t  b. We write r f Y  for  TY 

when it i s  necessary t o  specify f .  Note tha t  f = ( r f )  6 and that  6 i s  a 

homotopy equivalence but not necessarily a f ibre  -homotopy equivalence. The 

construction r clearly induces a functor v/B + q l / B  such that  6 i s  natural .  

Since r Y  is jus t  the pullback i n  the diagram 

rY - ITB 

where s '  i s  the section of ( r f lxq  induced by that  of q. Since 6 i s  a 

cofibration and a homotopy equivalence and s : rY + ( rf ) *E i s  a cof ibration (by 

~ h u s ,  from the point of view of Thom spaces and cobordism, it i s  a matter of 

complete indifference whether we replace q or f by a f ibration.  

The proposition below i s  a compilation of the properties of r needed i n  th i s  
chapter. The res t  of the section i s  devoted t o  i t s  proof. 

proposition 1.11. (i) The functor r takes spaces over B in to  f ibrations over 

B and therefore converts homotopy equivalences into f ibre  homotopy equivalences. 

(ii) The functor I' converts maps over B which are cofibrations into fibrewise 

cofibrations . 
behavior of r on colimits. 

(iii) If q: E + B has a section s: B + E which is a cofibration, then the 

~ ~ m m a  1.9 1f B i s  LEC , then the functor r : U/B + WB Preserves colimits ' 
associated section s :  B + rE i s  a fibrewise cofibration and rq: rE  + B i s  a 

based f ibration ( i n  the sense of [ 98, § 5 1 ) . I f ,  further,  q is an ~ ~ - ~ ~ ~ ~ i -  

~f f :  y + B has a section s:  B a Y,  then we define the associated section fibration, then rq is an sn-fibration. 

s: B + rY by s ( b )  = (<b>, s ( b ) )  e 
To prove the proposition, we need a simple observation about representations of 

Remark 1.10. ~ e t  q: E + B be an sn-space whose section i s  a cof ibration and l e t  

f :  y + B be any map. In the pullback diagrams 
~emrna 1.12. Any NDR-pair (x ,A)  can be represented by a pair  of maps 

0: X + I  and h: X---+-I1X 

such that  A = q- l (0 ) ,  q = eh, h(x)(O)  = x for x .  X, and ph(x) c A for x e X 
with ~ ( x )  < 1. 

Proof. It i s  well-known (e  .go Ilbl) that  we can represent (X,A)  as an NDR-pair 
we have by maps II: X + 1 and k: X x I + X such that  A = q- l (0) ,  k(x,O) = x for  x x 

and k ( x , t )  E A i f  q(x) < 1 and t 2 q(x) .  Define 5: X x I + X by 

f X r ~  = {(y,@,e)  I f ( y )  = p (  0) and q (e )  = e(O)I 

for t < q(x) 

( rf)*s = {(e,y,e)  I f ( y )  = e(0) and q (e )  = ~ ( 0 ) )  

mviously, r e v e r s a  of path coordinates defines a homeomorphism Y: f + ( r f )  
* 

such that  the section s: Y f rE is the composite a t i s f ~  the required conditions. 



Proof of 1.11. (i) This i s  standard (e.g. [98,3.41 and 198, p. 11,121). where .6,0 IIB and e E E with q ( e )  = e(0)  and p (0 )  = ~ ( 0 )  * H~~~ 

(ii) Let q: E + B be a map and l e t  (E ,D)  be an NDR-pair. Using the lemma 

above, select  n: E + I and h: E + IIE representing (E,D) as  an NDR-pair. v(  0,e) 
1 

t =  { for  R ( B )  G -2. 

Define 1 
2v( 0,e)P( 6 )  fo r  ~ ( 6 )  2 

: E I and h l :  (rE) x 1 4  rE and A: I + IIB i s  the map with 

nl(O,e) = n(e)  for (e,-e) E rE 

h l (O ,e , t )  = ( + ( 0 , e , t ) ,  h ( e ) ( t )  

for  (0 ,e)  E rE C IIB x E where $ ( 0 , e , t )  E IIB i s  given by 

a ( + ( e , e , t ) )  = min( t ,n (e ) )  + a ( 0 )  

for o 4 u 4 . r  = min( t ,n (e ) )  

+( e,e, t  (u)  = 
e(u-r)  for u > r  

The pair  ( n ' , h l )  represents (rE,rD) as a fibrewise NDR-pair. 

(iii) The section s: B + rE of rq: rE + B i s  jus t  the composite 

h ( e , e ) ( u ) ( v )  for  0 < v G R(h(B,e)(u))  
A(u)(v) = 

B ( V - R ( ~ (  0,e) ( u )  ) 1 for  v ~ ( h (  0,e) ( u )  ) 

Also, fit i s  the path i n  IIB of length t with 

Bt(v) = 6 (  P(  6 )  - t + v)  for v E [ O , = l .  

For 6 E RB, define g: (rq)-'f3(0) + (rrq)-'p( 6 )  by z (0 , e )  = ( ~ ( 0 , e ) ) .  Then 

the com~osite 6;: ( r q ) - l ( 6 ( 0 ) )  + (I 'q)-l(p(O)) i s  a based map so rq i s  a based 
f ibration. 

hi Note that  the composites 6; and 6 ( 0- ) are based homotopy inverses. It i s  

easy to  construct unbased homotopies exhibiting them as unbased homotopy inverses 

and t o  check that  these homotopies induce t r i v i a l  loops a t  the basepoint. Since the 
fibres of rq are nondegenerately based, the unbased homotopies can be deformed t o  

based homotopies. 

where r s  is derived from the section s:  B + E and i s  a fibrewise cofibration by If q: + i s  an sn-quasifibration, then 6: E + rE i s  a fibrewise weak 

par t  (ii) . The map 6,  being the inclusion of a fibrewise deformation r e t r ac t ,  i s  equivalence (by the long exact homotopy sequences of q and rq) and so rq is an 

t r i v i a l l y  a fibrewise cofibration. Thus, s :  B + I'E i s  a fibrewise cofibration* $-space* our observations about 5; imply that  6 i s  an $-lifting function in 

To show that  rq i s  a based fibration,  we define a based l i f t i n g  function 
the sense of [98, Po 111, and rq i s  an sn-fibration by [98,3.4] . 

6: rrE + rE for  it. Using a fibrewise version of Lemma 1.12, select  maps 
$2 Preliminaries on J-spaces 

v: rE + I and H: rE + II( rE) representing ( rE,sB) as a fibrewise fib  pair such 
- 1 

that  s(B) = v (01, v = RH, p ( H (  0 , e ) )  E s ( B )  i f  v(0,e) < 1 and 

H(e,e)(O) = (0 , e ) .  Thinking of II(rE) as a subspace of II(IIB) x IIE, we 

decompose H into a pair of maps 

We recal l  the notions of d. -spaces (or ,) -functors and d-monoids from 199, I1 . 
These provide a convenient language for talking about the usual families of 

universal sphere bundles and spherical f ibrations.  

Let 4 denote the category of f i n i t e  or countably in f in i t e  dimensional r ea l  

inner product spaces and the i r  l inear  isometries. Give inner product spaces the 
topology of the union of the i r  f i n i t e  dimensional subspaces and give the s e t  

m n '  5 i s  given by 
( V , V t  ) of l inear  isornetries from V t o  V1 i t s  compactly generated function 

space topology. AnJ -space ( X , U )  i s  a continuous functor from 4 t o  the category 

of non-degenerately based spaces together with a (coherently) unital ,  associative, 



and commutative Whitney sum w: X x X + X o $. We require X(f)  t o  be a closed 

inclusion for any morphism f in and X ( V )  t o  be the colimit of i t s  

subspaces X ( V 1 )  where V1 runs over the f i n i t e  dimensional subspaces of V. 

The category of $ -spaces has products. Ang -monoid i s  a monoid-valued 

J -space G such that  the monoid products GV x GV + GV specify a morphism of 

1 -spaces. In part icular,  we have the -monoid F with FV the monoid of based 

homotopy equivalences of the one-point compactif ication sV of V. We r e s t r i c t  

at tention t o d  -monoids G with a given morphism of -monoids G + F. We i n s i s t  

t ha t  G be group-like, tha t  i s ,  tha t  nOGV be a group for each V. We also assume 

that  the spaces GV are LEC; t h i s  follows from the nondegeneracy of the unit e 

of GV when G i s  group-valued, and it holds for  F and SF by [ 51, 11.4 and 

11.61. 

Associated t o  G, we haveg-spaces BG and EG, where EGV = B(* ,Gv , s~) ,  and 

a map o f J  -spaces n:  EG + BG. Each n: EGV + BGV i s  an open map by Corollary 1.4, 

and our standing assumptions ensure tha t  each IT i s  a spherical quasifibration 

whose section s i s  a cof ibration ( see [98, p. 31 and [ 841 ) . Note that ,  contrary 

t o  standard usage, we are writing EGV for the to t a l  space of the universal 

spherical quasifibration rather than of the associated principal quasifibration. 

If G i s  group-valued, IT: EGV + BGV i s  a numerable GV-bundle with f ibre  sV 
(egg.  [98, p. 401). 

We r e s t r i c t  at tention t o  f i n i t e  dimensional rea l  inner product spaces ( V ,  Vi, 

W ,  e t c )  i n  the r e s t  of t h i s  section. ~ h e 4  -space structure of BG gives Whitney 

sum maps 

and evaluation maps 

Js  
(ii) If V s =  @ Ws, r ,  then the diagram 

r=l 

k J s  A s=1 k A ( /\ EGW 1 
s=1 *=l S'r 

A EGVs 
s=l 

commutes and covers the corresponding diagram of classifying spaces. 

Corollary 2.2. If Z = V 63 W, then the pullback of n: EGZ + BGZ along the 

inclusion BGV C BGZ is the fibrewise smash product of n: EGV + BGV and the 

t r i v i a l  map sW + *, tha t  is, the fibrewise suspension 

Let n(V,V1 ) : E(V,V1 ) + $ (V,V1 ) denote the orthogonal complement sphere bundle 

to  the bundle map 

( T ~ , E )  : ~ ( V , V '  ) X V - ~ ( v , v '  ) X V1 

over d (V,V1 and l e t  T(V,V1)  be the associated Thom space (compare VI.2.1). 

Proposition 2.3. There is a map 

N 

E: E(V,V1 14 EGV - EGV1 

such that  the diagram 
,v 

E(V,V1 ) A EGV A EGV' 

E: ,.J ( V , V t  ) x BGV --+ BGV1 . 
For our characterization of extended powers of Thom spectra, we need the 

following description of the sphere spaces classif ied by these maps. 

Proposition 2.1. (i) The Whitney sum maps of BG and EG induce pullback diagrams 

Constant siinplicial spaces whose spaces are a l l  E(V,V1 ) or .) (V,V1 ) and whose 

face and degeneracy maps are a l l  the identi ty.  Let B*G and EnG be the 



simplicial g-spaces from which BG and EG are derived (see 198, $71 ) Define the 

simplicial map 

where k 2 0, gi r GV, ( f , x )  e E(V,V1) and y e  sV. The map y, factors through 

E(V,Vl) h E,GV to  give a simplicial map & such that  the diagram 
N 

E t  
E(V,V1) A E,GV -----+I E,GV1 

4'1 9 

( G , c )  : n ( V '  ,V") h n ( V , V f  ) ---3 q(V,VI1)  

i s  a pullback and the following holds. 

proposition 2.4. For any V, V' and V", the diagram 

n(V,V1 ' )  A n v 

Our second resul t  re la tes  t o  inclusions of subspaces. Let V C W 

V l  C W'  and l e t  Q( (W,V) ,  ( W 1  ,V1 ) ) be the subspace of 3 (w,w' consisting 
maps which take V in to  V' . Since BG i s  an >-space, the diagram 

and 

of those' 

i s  a pullback in  the simplicia1 category. The geometric realization of t h i s  diagram 
4.c (W,V) ,  ( W '  , V 1 ) )  x BGV 

i s  the diagram of the proposition and is a pullback since realization preserves (1) 
pullbacks. 

Jcv ,v l  1 J ( w , w ~  1 x B G W  

N 

We need two coherence resul ts  about the maps E j u s t  defined. The f i r s t  1 
concerns i terated use of E.  For any V, V' and V", the diagram BGV' BGW 1 ' 

E , . J ( ~ l , ~ " )  x BGV1 
commutes. Lemma 1.7 and Proposition 2.3 yield three descriptions of the sphere 

space over $ (  (W,V) ,  ( W 1  ,V'  1 )  obtained by pulling back n: EGW' + BGW' . Let 
n ( W , W 1  1, !(v,w' ) and ~ ( v , v '  ) denote the pullbacks of n ( W , W 1  1, q(V,W1 ) and 

n(V,V1 ) respectively along the evident maps of 9 ( (W,V) ,  ( W '  ,V'  1 )  into J ( W , W 1  1, 
(v,w' ) and (v,v '  ) . There are obvious isomorphisms 

- commutes where c is composition. If q ( V , V f  ) A s ~ ' - ~ '  = n(V,W1 ) T(w,w' ) A sW-'. - 

G: E ( V ' , V # I )  AE(V,V') -+E(V,V") These two isomorphisms and the obvious shuffle map provide the relat ion among our 

three descriptions above. 
is defined by 

Proposition 2.5. With the notation above, the following diagram of spaces over ,., 
C (  ( f  , X I  A (g ,y)  ) = (fg,xA f ( Y ) )  diagram (1) commutes. 

then the map of sphere spaces 



In the next section, we construct Thom spectra indexed on any universe 
U (see 

IS21 from maps f : Y + BGU. Since we consider only one universe U, we 

abbreviate BGU t o  BG. 

Remark 2.6. The space BG i s  a homotopy commutative and associative H-space with 

multiplication 

where k: U @ U + U i s  the l inear  isometry chosen for internalizing smash products 

of spectra indexed on U (see IIO3). Unit homotopies come from paths i n  X1 and 

commutativity and associativity homotopies can be written i n  the form 

category 2(/BG of spaces over BG t o  the category dQ of spectra indexed on any 

indexing se t  a i n  the universe U. 

The f i r s t  step i n  the construction of Mf i s  the selection of a f i l t r a t i o n  
f .  By a f i l t r a t i o n  of a space Y, we mean a se t  of closed subspaces F Y of 

a y indexed on a directed se t  {a) such that  Y i s  the colimit of the F Y. Note 

that , q y  indexing se t  i s  directed (by inclusion) and has a cofinal 
a 

subsequence. A f i l t r a t i o n  {Fvf : FvY + BGV I V r Q ) of f i s  a f i l t r a t i o n  of 

y by suEspaces FvY indexed on & such that  f (FvY) G BGV; we write Fvf for 

fl~~,Y regarded as a map in to  BGV. Two types of f i l t r a t ions  are especially useful. 

Definition 3.1 (i) . The canonical f i l t r a t i o n  ifv:  yV + B G V ~ V  s a of 

f :  Y + BG i s  defined by YV = ~- ' (BGv) .  The se t  {Yv) is a f i l t r a t i o n  of Y by 

proposition 1.1. This f i l t r a t i o n  is natural:  any map of spaces over BG preserves 

it. 

(ii) If {Fvf: FvY + BGV) i s  any f i l t r a t i o n  of f :  Y + BG, then the associated 

f i l t r a t ion  of r f :  rY + BG i s  {r(Fvf) : r(FvY) + BGV). The space r(FvY) is 

closed i n  I'Y since FvY and HBGV are closed i n  Y and HBG, and 

I"Y = colim r(FvY) since any path i n  HBG l i e s  i n  some IIBGV. The point of the 

associated f i l t r a t i o n  i s  tha t  the maps r(FVf : r(FvY) + BGV are f ibrations.  Note 
that the na-bural map 6:  f + rf i s  f i l t r a t i o n  preserving. Further, i f  A :  f + g 

i s  f i l t r a t i o n  preserving with respect t o  chosen f i l t r a t i o n s  of f and g, then 

rA: I'f + rg i s  f i l t r a t i o n  preserving with respect t o  the associated f i l t r a t i o n s  of 

rf and rg. 
," 

a : B G x B G x B G x I  o(oxl)xl ,  BG(U Q u @ U)  I ----l?--r BG, 

Construction 3 0 ~  * Let iFvf: FvY + BGV) and {Fvg: FvZ + BGV) be f i l t r a t ions  of 
N 

where the maps c and come from paths i n  2 and 2 3; here 2 = 3 ( , as maps f :  + ElG and g: Z + BG and l e t  A :  f + g be a f i l t r a t i o n  preserving 

i n  Chapter V I I .  This precise view of the homotopies i s  essential  for our discussion map* We a Thorn prespectrum T( f ,  {fvY)) and a map of prespectra 

of ring structures on Thom spectra i n  section 4-  Since BG i s  connected, the 

standard shearing map argument provides a map X: EG + BG giving inV~~'ses  UP t o  
TA: T ( f ,  {FVY)) --+ T(g, {FvZ)). 

homotopy . 
Using the H-space structure on BG we can define sums and products of maps 

For ' a , the space T( f , {FvY ) ( V) i s  the Thorn space T( v ) of the sphere space 
Tv: Ev + FvY classif ied by Fvf. The map 

in to  BG. For any maps f : Y + BG and g : Z + BG, we abuse notation by m i t i n g  

f x g: Y x Z + BG for the composite of f x g: Y x Z + BG x BG and 4 .  1f 

Y = Z, we define f + g: Y + BG t o  be ( f  x g ) ~ .  
T A :  T ( f ,  {FvY}) ( V )  ----+ T(g, {FvZ}) ( V )  

Obtained by passage t o  mom spaces from the map of sphere spaces induced by 
$3 .  The definit ion and basic examples of Thom spectra when n: EGV + BGV is pulled back over the diagram 

we here define the Thom spectrum M f  derived from a map f :  Y + BG and 
X FvY ---P FvZ 

describe the Thom spectra associated t o  several standard maps. Above, and in the 

remainder of the chapter, BG denotes the space BGU of the -space BG of the 

previous section. Our Thom spectrum construction produces a functor from the 
BGV 



1f v c w in , then the structure map ~ r o j e c t i o n s  T v : Ev + FvY are all quasifibrations and the sections FVY + $ are 
a l l  cofibrations. These conditions hold automatically when G i s  group-valued. We 

o: f - v ~ ( f ,  { F ~ Y } ) ( v )  - + ~ ( f ,  {Fvy)) (W) say that  f i t s e l f  i s  good i f  it admits a good f i l t r a t i o n  with respect t o  some 
indexing se t  a ;  good maps yield homotopically well behaved Thom spectra. The 

is  obtained by passage t o  Thom spaces from the map of sphere spaces induced by the obvious way around t h i s  concern about f is t o  use r t o  replace the universal 

inclusion I :  FvY + F Y when n:  EGW + BGW i s  pulled back over the diagram 
W 

BGV BGW 

Corollary 2.2 permits the identif ication of c ~ - ~ T (  f , {FVY}) ( V )  with the Thom space 

of the resulting sphere space over FvY. The natura l i ty  of th i s  identif ication 

ensures tha t  the maps Th commute with the maps o. Proposition 2.1 (ii) gives 

the coherence condition required of the maps 0 (see 1.2.1). Since the maps 

i: FvY + FwY are closed inclusions, the maps o are dosed inclusions by Lemma 

1.5. Thus, T(f ,  {F v Y}) is a Z-inclusion prespectrum (see 1.8.2). Define the Thom 

spectrum M(f,{FvY}) to  be LT(f,{FVY)) and the map MA t o  be LTA. We write 

Tf and M f  for  the Thom prespectrum and spectrum associated t o  the canonical 

f i l t r a t i o n  of f .  Clearly, use of these f i l t r a t ions  gives functors 

T: WBG and M: U/BG -A& . 

quasifibrations by universal f ibrations;  t h i s  approach was carried out in q y  thes is  

[831. It turns out t o  be technically simpler t o  exploit the following observation 

,and Remark 1.10, which show that  we may instead replace f by a f ibration.  

Lemma 3.4 ( i) .  If f :  Y + J3G i s  a f ibration,  then i t s  canonical f i l t r a t i o n  i s  
good. 

(ii) For any f i l t r a t i o n  of any map f :  Y + BG, the associated f i l t r a t i o n  of 

rf :  rY + BG is good. 

Proof. If f :  Y + BG i s  a f ibration,  then so i s  fv:  Yv + BGV since it i s  a - 
pullback of f . Also, I'(Fvf : r(FVY) + BGV is a f ibration for any f .  Pulling 

back a quasifibration along a f ibration ( fv  or  r (Fvf ) )  yields a quasifibration 

by a easy argument using long exact homotopy sequences. Pulling back an NDR-pair 
( l i ke  (EGV, sBGV) along a f ibration ( l ike  $ + EGV) yields an NDR-pair by 

[ 136, Theorem 12 I . 
For good maps f ,  M f  and Mrf are stably equivalent by Proposition 4.9 

below. When f is not good, we take Mrf t o  be the Thom spectrum of f for 

homotopy-theoretic purposes. Nevertheless, we continue t o  discuss Mf fo r  

arbitrary f because of our applications t o  extended powers. 

Remark 3.5. In our discussion of extended powers of Thom spectra, we w i l l  encounter 

Remark 3.3. ~n the appropriate special cases, t h i s  ~ons t ruc t ion  produces the n-spaces Y and T-maPs f :  Y + BG where the f i n i t e  group acts  t r i v i a l l y  on 

mom spectra, ~n particular,  the spectrum associated t o  the identity BG* If {Fvf: FvY + ~ V I  i s  a n-invariant f i l t r a t i o n  of such a map f ,  then the 

map 1: + BG i s  just, MG (cf 199, P. 751). Further, if Y i s  an c ! - ~ P ~ ~ ~  with mom spectrum M(f,{FvY)) is easily seen t o  be a n-spectrm indexed on the 

a r ight  &action and q: B(Y,G,*) + BG i s  the standard map, then Mq i s  ju s t  the t r iv ia l  n-universe U* Clearly the canonical f i l t r a t i o n  i s  n-invariant, 1f 

~h~~ spectrum M(G;Y)  of 199, p. 751 (a s  follows immediately from 198, 7*81) * Note A: f + g is a n-map preserving n-invariant f i l t r a t ions ,  then 

that  map f :  Y + BG specifies a morphism f :  f + 1 i n  U/BG and therefore a 

canonical map Mf + MG- 
The following description of the Thom spectrum of the product 

1-t i s  easy t o  see tha t  any t r i v i a l  map Y + BG yields Zmyt as a g: + BG of two maps f :  Y + % and g: Z + BG (see Remark 2.6) is an easy 

a particular,  the inclusion of E ~ W  point in to  BG yields the consequence of the way l inear  isometries enter into both the definit ion of the 

spectrum S and the t r i v i a l  map of the empty Set into BG yields the point product $: BG + BG and the definit ion of the smash product of spectra 

spectrum *. 
Since pullbacks of quasifibrations need not be quasifibrations, the 

construction Mf need not be well-behaved homotopically when G i s  only monoid- 

valued. Let us say that  a f i l t r a t i o n  {Fvf: FvY + BGV) is  "good" if the 
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proposition 3.6. For any maps f :  Y + BG and g: Z + BG, there i s  a natural then & is naturally isomorphic t o  the pushout S Uf z m ( C A ) t  i n  the diagram 

isomorphism 

+ - C ~ ( C A )  + 
N 

M(f x g)  = Mfh Mg. - s U, zm( C A I +  

We give two basic examples of Thom spectra. (iii) Let fo: Z"A + s be the map adj oint  t o  a based map A + QSO ~omotopic to 
'the composite 

Proposition 3.7. Let f :  Y + BG be a map which factors through BGW for some 

f i n i t e  dimensional subspace W of U. A & G F =  Q l s 0 ~  Q-,s0 Q,SOA Q-,sO 

( i)  The spectrum Mf i s  naturally isomorphic t o  A W z W ~ ,  where T i s  the 
Thom space of the sphere space classif ied by f :  Y + BGW and AWz' i s  the s h i f t  where the l a s t  map comes from translating the components of QSO by a map of 
desuspension functor of 1.4.1. degree -lo Then @ i s  homotopy equivalent t o  the cofibre cf0 of foe  

(ii) The spectrum Mrf i s  stably equivalent t o  A ~ ~ ~ T ~  where TI i s  the mom 

space of the spherical f ibration classif ied by f :  Y + BGW. 
i s  {gv: CAV + BGV). We can write CAV as the pushout 

Proof. (i) For V 3 W ,  Tf ( V )  = z ~ - ~ T .  Thus, on a cof inal  subset of a, Tf 

agrees with the prespectrum-level version of A w C m ~  (see I .4.1) . 
(ii) For V 3 W, write r ( f  ,V)  : r ( Y  ,V)  + BGV for 'the f ibration obtained by 

applying I. t o  f :  Y + BGV. These maps give a cofinal part  of the f i l t r a t i o n  of 

rf : r Y  + BG associated t o  the canonical f i l t r a t i o n  of f .  Let g: P ( Y , W )  + BG be 
__I_B 

the composite of r ( f  , W )  and the inclusion of BGW in to  BG and l e t  A :  g + I'f 
be the evident inclusion. Give g the (good) f i l t r a t i o n  obtained by pulling back map Tv : Ev + zAv classif ied by gv is a quasifibration by Hardie l s  

the cited f i l t r a t i o n  of rf along A. For V 3 W ,  t h i s  coincides with the in [571 and the section S : ZAv + Ev i s  a cof ibration by 184, Prop. 2.51 . 
canonical f i l t r a t i o n  and the vth sphere space T ~ :  EV + ~ ( Y , w )  i s  the fibrewise The assumption that A i s  nondegenerately based i s  needed t o  ensure tha t  (CA,A) 

suspension of T~ by s ~ - ~ ~  mus,  Mg = AwIYrk(~w/r(~,~)  ) . Since TI is equivalent i s  an NDR-pair. 

t o  Ew/r(Y , W )  by Remark 1 .lo, Mg i s  equivalent t o  A ~ ~ ~ T ~  . On the other hand, ( i i )  P ro~os i t ion  4.3 below to  the pushout description of z~ 
since the inclusion r ( Y , W )  + r ( Y , V )  is obviously a homotopy equivalence, the 

vth map of mom spaces induced by A i s  a weak equivalence for V 3 W ,  by 
comparisons of quasifibrations and cofibrations, and it follows that  MA: &Z + Mrf 

i s  a stable equivalence. 

Our second example i s  a s tabi l iza t ion of the classical  description of the mom S = M(*) ~ g .  

space of a spherical f ibration over a suspension. 
From the in 129) Po 1261 of the sphere space classif ied by gv, we 

Proposition 3.8. Let A be a nondegenerately based space, g: A + G be a based obtain obvious isomorphisms 

map, and g: CA + BG be the adjoint of the composite of 2 and the standard map 

G + QBG. zmAt &p I and z m ( c ~ )  + "p 

( i)  The canonical f i l t r a t i o n  of g i s  good. 
(ii) If f :  C"A+ + S i s  the map adjoint t o  the composite Under the diagram above becomes that  defining s uf zm( CA) +. 

N+ (iii) The pair  ( z m ( C A ) + , z ~ + )  IS homotopy equivalent t o  the pai r  
+ 0 

A+ >G+-F c Q S ,  C C ~ A ,  S ~ Z ~ A A )  by VII.5.2. Since the maps zmAC + C"(CA) + and 
+ cCCmA are 



cof ibrations,  the pushout s vf Z (  CAI + i s  homotopy equivalent t o  the pushout P 
The result for $ i s  easily seen on the prespectrum level  and the resul t  for 

~ follows by adj unction. 
in the diagram 

Let G and G1 be $-monoids augmented over F and l e t  j : G + G 1  be an 

and t h i s  is the same as the pushout 

The l e f t  ver t ica l  maps i n  the two diagrams above are identif ied with f o  by 

VII.5.2. 

I 

04. Invariance properties of Thom spectra 

augmentation preserving morphism of 4 -monoids . Denote the Thom spectrum functors 
on U/BG and ~ B G '  by M and MI respectively. 

Lemma 4.2. Let f :  Y + BG be any map 
' 

(i) ' There is a natural spectrum-level isomorphism 

(ii) There i s  a natural stable equivalence 

where I" i s  the functor converting maps into BG1 into f ibrations.  

Proof. Part (i) is an immediate consequence of [98, 7.8 I . For (ii) , define - 
V: r Y  + T I Y  t o  be the map which takes (8,y) i n  rY t o  ((Bj ),e,y). Clearly, v 

i s  a map from (Bj ) r f  t o  I" ((Bj If 1. It is a homotopy equivalence since both 

6:  Y + I'Y and 6 ' :  Y + rlY are. F i l t e r  (Bj ) r f  and r l ( ( B j  ) f )  by 

{(Bj ) I ' ( fv) :  r ( Y v )  + BGIV) and {I"( (Bj ) f v ) :  r l(Yv) + BGIV), where {fv) i s  the 

canonical f ibration of f . These f i l t r a t i o n s  of ( Bj ) rf and r 1  ( ( Bj f ) are good, 

we prove that  the spectrum Mf depends essential ly only on the homOtopy 'lass so P??oposition 4.9 below applies. 

of the composite As a resul t  of t h i s  lemma, we may think of all Thom spectra as coming from maps 

into BF or,  i f  we wish t o  consider only those Thom spectra arising from groups, 
Y h BG d B F .  from maps into BTOP. 

In part icular,  it i s  independent of the choice of the f i l t r a t i o n  of f ,  the choice 
The fac t  tha t  M ( f )  is  independent of the choice of filtration of f follows 

of G, and the choice of the indexing se t  a .  We also prove tha t  the Thom spectrum 
from the fac t  tha t  M preserves co1imj.t~. 

fmc to r  M preserves a l l  colimits. A t  the end of t h i s  section, we apply our 

invariance resul ts  t o  study ring s t ~ u c t u r e s  on Thorn spectra* ~roposi t ion  4.3. The functors 

Recall the change of indexing se t  functors $ and fJ 

T: U / B G - P ~ ~  and M:U/BG-A& 
m a  4 1. For an inclusion a C fl of indexing se ts ,  the f allowing diagrams comute 

up t o  coherent natural i s o m o r p h i ~ s .  reserve a l l  colimit s . 
Since M = LT, the resul t  for M follows from that  for T. Clearly, 

onical. f i l t r a t i o n s  commute with colimits in U B G .  For each V in Q , pulling 

ck the universal sphere space a: EGV + BGV preserves colimits by Proposition 1.1 
d Corollary 1.4. Obviously, passage t o  Thom spaces preserves colimits. Thus, 

693 A a  

and 



T preserves colimits since colimits in 8 0- are formed spacewise* The f i r s t  step in understanding the homotopy invariance of mom spectra i s  t o  

~ ~ ~ ~ l l  that  r also preserves colimits so Tr and MI. Preserve cO1imits (see mal ize  what does not work: M does not induce a functor into the stable category 

from the category with objects the homotopy classes <f>:  Y + BG and morphisms 1-91 0 

< A > :  < f>  + <g> the homotopy classes < A > :  Y + Z such that  f i s  homotopic t o  gh. 

~ ~ ~ ~ l l a r y  4 . 4  ~f { ~ ~ f :  FvY + BGV} i s  a f i l t r a t i o n  of f :  Y + B G ~  then the we shall  see tha t  the Thorn spectra induced by (good) homotopic maps are stably 
equivalent, but the equivalence depends non-trivially on the choice of the 

natural map 
homotopy- An analogous d i f f i cu l ty  ar ises  even on the level  of Thom spaces. 

is an isomorphism of spectra. 

4 

The only homotopies actually preserved by M are homotopies in  WBG, that  

i s ,  fibrewise homotopies. Such a homotopy may be described as a map in U/BG with 
domain 

Proof. mere is such a natural  map because the identi ty map 1: f + f i s  - 
f i l t r a t i o n  preserving when the domain i s  f i l t e red  by Fvf and the range is given 

"1 Y x I - y  f 
r BG, 

the canonical f i l t r a t ion .  For any W i n  &, the given f i l t r a t i o n  of f : Y + BG 

pulls  back t o  the f i l t r a t i o n  {FvFwf: FvFwY + BGV I V € 1x1 of F$ where where "1 is projection onto the f i r s t  factor. ~n the prespectrm level, it is 

FvFwY = FvY O FwY . For V 3 W, t h i s  f i l t r a t i o n  i s  the canonical one ; hence the easy to identify the Thorn spectrum of such a composite. 

natural map 

is an isomorphism. Thus, in the diagram 

Proposition 4.6. The Thorn spectrum Mf", associated t o  the composite 
L 

Tl Y x X-Y .BG 

i s  naturally isomorphic t o  Mf A X+ . 
Taking X = I as above, we obtain our resul t  on homotopies. 

Corollary 4.7. The functors T and M take homotopies i n  WBG into homotopies 

in  @a or d& and therefore convert fibrewise homotopy equivalences into homotopy 

equivalences. 

the l e f t  ver t ica l  map is an isomorphism. The bottom horizontal arrow i s  an 

isomorphism by Proposition 4.3, and the proof of that  resul t  r e s t r i c t s  t o  show tha t  
the top horizontal arrow i s  also an isomorphisme 

g u A ( f  x 1): Z L)X(Y x I)  -+ BG, 

of course, Mf is i t s e l f  the colimit of the wVf for any f i l t r a t i o n  

of f ,  and any map from a compact spectrum into  Mf factors through some wvf; 

compare 1.4.8. In particular,  using hlDma 1.6 ~d Proposition 3.7, we obtain 

the following conclusion about r*Mf0 
Z X I L Z  >BG. 

proposition 4.5. 1f f :  Y + BG i s  good, then Mf i s  (-l)-connected and, if is 

path'oomected, n0(m) is e i ther  z or z2; it i s  Z if and only if the fibrations in A 4  have a similar characterization in terms of mapping cylinders. 

composite of f and BG + BF l i f t s  t o  EK3i'- Proposition 4.6, M C0nVerts the cylinder gnl i n  ~ B G  t o  the cylinder 
"I+ in d a  and thus, by Proposition 4.3, M converts mapping cylinders in  
BG mapping cylinders ids . This gives the following resul t .  
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Corollary 4.8. The functor M converts fibrewise cofibrations into cofibrations Notice how the equivalence above depends on the choice of the homotopy. ke 
~onc i se  way *of expressing the homotopy invariance of Thom spectra is t o  say that ,  

for each space Y, the composite MI' induces a functor from the fundamental 

~ ~ ~ ~ l l  that  r converts homotopies in to  fibrewise homotopies and cOfibratior.s grou~oid Of BGY (the space of maps from Y t o  BG) t o  the homotopy category 
in to  fibrewise cofibrations by Proposition 1.11 hUL (and thus, $0 the stable category h dQ) . 

Recall from Remark 2.6 tha t  BG i s  a homotopy commutative and associative 
Working in the stable category, we can obtain much more general invariance -space* Thus, it i s  reasonable t o  inquire about the relat ion between mom spectra 

resul ts  than Corollary 4.70 d H-ma~s f :  
+ BG* We assume that  Y i s  a group-like H-space ( that  is,  no(^) 

is agroup) ,  with a homo to^^ unit e and f i s  a good map which preserves 
Proposition 4.9. 1f A: ( f :  Y + BG) + (g: Z + BG) i s  a map between good spaces s t r ic t ly  with Products and takes a specified unit homotopy for Y to the 
over BG such that  A: y + Z i s  a weak equivalence, then MA: Mf + Mg is a standard wit homo to^^ for  BG* If the unit of Y i s  a nondegenerate basepoint 
equivalence. ~n particular,  i f  f :  Y + BG i s  good, then M6:  Mf + M r f  i s  a and f :  + BO is H-map in  the classical  sense, so tha t  f +  i s  homotopic 
equivalence. to + ( f  f ) ,  then we can a l t e r  the multiplication on Y to an equivalent one for 

proof. Note first that  i f  there ex i s t  good f i l t r a t i o n s  {~, f :  F ~ Y  + BGV I v s  Q 1 
__I_ 

which is a s t r ic t  unit and a l t e r  f t o  a homotopic map f 1  s t r i c t l y  preserving the 

and {F ,~  : F,Z + BGV 1 v r a} such tha t  A: f + g preserves these filtrations unite It is then easy t o  define a multiplication on r f l y  so tha t  r f l :  r f l y  + BG 
and A: ~~y + F,Z is a weak equivalence for some cofinal subset of @, then sa t i s f ies  our conditions. Since Mrf', ~ r f  and, if f is good, ~f are all 

MA: Mf + Ng i s  a stable equivalence. This follows from all elementary argument stably equivalent, our hypotheses are not unreasonable. 

the long exact homotopy sequences for the quasifibrations classified by Fvf From the diagram 
and ~ , g  and the fac t  tha t  the sections of these quasffibrations are 

cofibrations. Taking a good f i l t r a t i o n  on f and the associated On l x e  f x f  
-y x y - - - - - - + B G  x BG 

rf ,  we obtain from th i s  tha t  MS: Mf + Mrf i s  a stable equivalence* Since 

M ~ ~ . M G  . M G . M ~ ,  it now suffices t o  prove that  MTA i s  a stable equivalence8 If 

y and z are CW complexes, then A is a homotopy equivalene% r h  is a fibre 

homotopy equivalence and MI'A is a homotopy equivalence by Corollary 4 0 ~ .  If 

and are not CW complexes, then l e t  0: Y '  + Y ,  +: 2 '  + Z and A ' :  Y '  + 

functorial  CW approximations SO tha t  + A 1  = h e .  The m P  A '  is  a homotopy 

equivalence and M ~ A  1 : Mr( f 0 ) + Mr(g+) is a homotopy equivalence by Corollary he7 

again. ~ h u s ,  it suffices t o  prove that  Mr0 : Mr ( f 0 )  + MI'f and My+ : Mr(g+ ) + 

are stable equivalences. By functorial i ty,  0: Y; + Yv and +: Z; + Zv are CW 

approximations and our i n i t i a l  argument applies t o  give tha t  and are 

stable equivalences. 

proposition 4.10 If fo,fl: Y + BG are homotopic and both are good, then Mfo 
and Mfl are stably equivalent- 

Proof. By Proposition 4.9, it suffices t o  show that  Mrfo and *rfl are stably - which asser ts  tha t  Mf has a multiplication M+ and a unit Me: s + ~ f .  
equivalent. Let f :  Y x I + BG be a homotopy between f o  and f l *  T'he re'e, M + ( f  f ,  and M + ( f  x f e )  have been identif ied with ~ f h ~ f  and M~, ,s  by 

inclusions 10: f o  + f and 11: f l  + f (from t O , t l :  Y + Y  x I) are homo to^^ rOpOsition 3.6. Also the equivalence WA s . ~f coming from the homotopy 

equivalences so the maps rlO: rf0 + I'f and I ' l l  : I'f + l'f are fibre homotopy 

equivalences. Thus, by Corollary 4.7, M r l 0  and M r l l  are homo to^^ equivalences 

and MrfO is homotopy equivalent t o  Mrflo w, using the fac t  tha t  the Unit homotopy for y covers tha t  for BG. 
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we l i k e  to say that  if Y i s  homotopy a~soc ia t ive  or commutative, then description of the smash product M ~ A  Mf, due t o  &howald [93],  which is in 

so is ~ f .  That t h i s  need not be the case i s  a str iking example of the of form% resolutions and in homotopy calculations. 

M to be a functor on homotopy classes. Recall the associativity and commutativity 

homotopies a and c defined for BG in Remark 2.6. proposition 4e120 Let Y be an H space with a homotopy inverse r: y + Y and 
assume that : + BG i s  a good, s t r i c t  8-map . Then there is an equivalence 

Proposition 4-11. Let f :  Y + BG be a good s t r i c t  H-map, as above* 

(i) ~f an associativity homotopy A for  Y can be found so that  the diagram Y + A W  = Mf,,Mf. 

A 
Y x Y x Y x I - - - - - - -  y Proof. Define A: Y x Y + y y by 

f xf xf x l  A ( ~ , Y )  = (x, +(rx ,y)  ) 

BG x BG x BG x I for ' ,ye  Since is a homotopy inverse, A i s  equivalence, 1% therefore 
induces an equivalence 

- 
commutes, then the multiplication on Mf i s  associative i n  h a .  

(ii) If a commutativity homotopy C for Y can be found so that  the diagram 

E@ Pro~osi t ion  3.6 and 4.9, M (  r f + )  i s  equivalent t o  MfhMf. The composite $A i s  

homotopic t o  the projection n2: Y x Y + Y onto the second factor,  and so, by 
~roposi t ions  4.6, 4.9, and 4.10, M( rf $A) i s  equivalent t o  Y+A M f .  

55. The Thom isomorphism 

- 
then the multiplication on Mf i s  commutative in hda* Throughout this section, E i s  t o  be a commutative ring spectrum. We follow 

N 
May [99,III*11 in defining orientations. 

proofe The maps a and c are derived from maps a:  I + 2 ( 3 )  and ': I . r X ( 2 )  - 
and Proposition 6.1 (i) applies t o  give that  the sequence 5*1e A good map f :  Y + BG i s  said t o  be oriented if there exists a - 

class J.I c EUMf such that  
J.I r e s t r i c t s  t o  a generator of the f ree  nxE-module 

E ' M ( ~ ~ )  for  each y r Y, where fy: {y} + BG i s  f evaluated a t  y. A general 

map f :  Y + BG is said to  be oriented if rf i s  oriented. 
(where is the twist map), and the corresponding sequence for  are 

the stable equivalences expressing the C ~ l N I l ~ t a t i ~ i t ~  and associativity the mash 
f liemarks 5 * 2 *  ( f )  Let g: Z + BG factor as z A y --+ BG. ~f f is ~ - ~ ~ i ~ ~ t ~ d ,  

product in the stable category j;d& (see IIB3) The required results 
then so is g *  Thus, i f  f i s  E-oriented, then so are a l l  the terms in any 

di rec t ly  from t h i s  observation. f i l t r a t ion  of f . 
(ii) Defining the or ientabi l i ty  of f in terms of rf i s  clearly the 

It be noted that ,  in the presence of the Thorn isomorphism, the homolOgy 

algebra of ~f 
w i l l  be commutative and associative when Y is - even though Mf 

is a group), the two possible definit ions agree. 
i t s e l f  may not be. (iii) If 

i s  an E,r% spectrum, then the obstruction theoretic approach 

' we a more method for obtaining spectra with ring Orientability developed i n  199,1111 applies t o  our generalized Thorn spectra. 

structures i n  section 7.  

~f the H - ~ ~ ~ ~ ~  y has a homotopy inverse r: Y + Y, then there is a - BG --a BF factors through BSF . 



434 

we describe two Thorn isomorphisms. The f i r s t  relates the mom spectrum Mf 

associated to f :  y + BG and the space Y.  he second re la tes  the 'peCtra 

M(g + f )  and Q where g + f i s  the Sum of two maps g and from into 

BG fsee Remark 2-61. The f i r s t  isomorphism is actually the special case of the 

second in which g is the t r i v i a l  map* 

From the diagrams 

"2 
Y a y  x Y ---+Y and .y A : Y x ~  

N 

Here 4: EAE + E i s  the product and 4: E + F(E,E) i s  i ts adjoint. For a closed 

subspace A Y, the relat ive diagonal gives r i se  t o  analogous mom maps making 

the appropriate diagrams commute. Replacing M(g+f) by ~f and N by y+, we 
obtain Thom maps 

we derive the reduced diagonal maps 

A: ~ f - y + * ~ f  and A: M(g + f ) - - p & ~ ~  up: Mfn E --ryt& E and 4" F(Y+,E)  ,F(w,E) 

by Proposit and thei r  compatible re la t ive  counterparts. 
closed subspace 

'he induced E-homolom and cohomology T'om maps are 

( a  1, 
: EnM(g+f) [ s n , ~ ( g + f )  A El A IS",@ AE] 

E ~ M ~  

(a"* a': & "S-~,F(@,E) I - [ s - " , F ( M ( ~ + ~ )  , E )  ] "(g+f) 

and and similarly for yt and Mf and the re la t ive  cases. 

If A c  Y i s  a fibrewise cofibration with respect t o  f ,  g or g+f as 

appropriate, then the inclusions M ( ~ J A )  c AW, M ( ~ I A ) c  4 and M ( ( ~ + ~ ) I A )  c ~ ( ~ + f )  

are cOf ibrations by Coro l l a r~  4.8. The corresponding quotient spectra (e .g 
Mf/M(f l A )  ) are then equivalent t o  the cofibres, and the homolorn and cohomology 

maps are maps betwen the long exact sequences of the pairs (M(g+f) , 
M((g+f)I*)) and (Mg,M(gl~)) or ( w , M ( ~ ~ A ) )  and ( Y , A ) .  

we ow Thorn maps from these reduced diagonals* 
Renvlrk 5-40 com~arison with the definit ions i n  IIIB3, we see that  ap  and Q H  

mf inition 5.3. For ,, E O M ~ ,  the associated spectrm-level mom are given the usual cap and Cup product with p. Explicitly, aU is the 

composites a,, and the con'fmutative diagrams 

M(g+f h E 
E,M(g+f) E,(MfMg) &E,M~ 

Q p  is the composite 





are f ibrations so, using Milnorls l i m l  sequence for the l imi t  of a sequence of % is a generator Of n++M(f 1 {Y}) , t h i s  map is an isomorphism. me proof for 

f ibrations,  we again reduce the problem t o  proving the equivalence on skeletao i s  similar. 

F~~ = 0, the required equivalences follow di rec t ly  from the definition of 

an o r i en ta t ion  For n 2 0, we have the comutbg  diagram  ema ark 5 -7-  X. 5 -4 ,  inverses of the '&om isomorphisms QLI and a h r e  
constructed* However, the construction does not provide an alternative proof of the 

M ( g + f ) n ~  E ----+- M ( ~ + ~ ) " + ' A  E - (M(gtf) " + l / ~ ( ~ + f ) " l \  E)  theorem since it uses an orientation on the inverse Xf of f :  y + BG, which 

I I I apparently caYl only be obtained by Using that  the Thorn map is 
I 

isomorphism. 

i n  which the rows are cofibre sequences and an analogous diagram fo r  @" which 

the rows are f ibre  sequences. By induction, it suffices t o  prove that  the re la t ive  

Thom maps a,*, and a p t '  of these diagrams are stable equivalences. 
' llT L 

Since yn+l i s  the cofibre of the attaching map of the (n+l) -ce l ls ,  - -- 

Mg"+l/Mg" and M(g+f )nf '/M( g+f In  have compatible wedge decompositions in to  pieces 

paah of which comes from an individual c e l l  and we oan reduce t o  the re la t ive  case ----- . 

Y = en+' and A = S" C en+lm Here en+' is contractible t o  a point y, and 

Propositions 4.9 and 4.10 and Remark 3.3 provide stable equivalences 

and 

Under these equivalences, the reduced diagonal 

A : M( g+f )~+I /M(  g+f l n  - ( ~ ~ + l / @  A wn+l 

becomes the standard equivalence 

sn+l  , *+I, s. 

$6.. Extended powers of Thom spectra 

Our basic resul t  here i s  tha t  the extended powers of the Thom spectrum Mf 
derived from f :  Y + BG are Thom spectra induced by maps constructed naturally 

from f .  The key t o  the construction of these maps i s  the action of the l inear  
isometrics operad on BG. Recall tha t  the operad for our universe U has 

spaces L = o ( uJ, U) and that  X acts  on BG via maps 8: kj x BGj + BG. For a 

map x: X + aj  and maps fr:  Yr + BG, 1 G r < j , we agree t o  abuse notation by 
writing x x II f, for  the composite of 8 and t h i s  product. The possible 

r 
equivariance of these maps can be described using the notation of VI.5.1. I f  n i s  

a subgroup of C j  , p: 1 + & i s  a n-equivariant par t i t ion  of 1 = {l ,  - a e ,  j 1 ,  
X: X +ij is a n-map, and fs: Ys + BG are maps, 1 < s < k, then x x n fP(,) is  

n 
L - 

n-equivariant i f  we l e t  n ac t  t r i v i a l l y  on BG. Thus, by Remark 3.5, 

M ( x  x ; Y p ( r )  ) is a n-spectrum. Also, we have a map 

obtained by passage t o  orbits .  In part icular,  for  any n-map X: X + X and any 
f :  Y + Bg, we have the map 

X X n  f j  : X x n  y j  - BG. 

Clearly these constructions are natural  i n  x and the i r  variable spaces over BG. 

Recall the twisted half smash products of VII1. 

(i) For maps X: X +rj and fr: Y, + BG, 1 < r G i, there is a 
pectrum-level isomorphism 

ye conclude that  the map 4, 
j 

Lh+l i s  the composite x P (r\ Mfr)  " M ( ~  x n f r )  
r=l r 

sn+ 1 ,, E I sn+lh S A E  3 Sn+lA E A  - s n + l A  E 
ich is as  equivariant as  the choices of and the f r  allow. 

(ii) For IT C Z j >  a n-mP X: X + Pj, a requivar iant  par t i t ion  p: J- + and 
uy is the res t r ic t ion  of t o  the mom spectrum M(f 1 {yj) = Sm Since 
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maps fs: Ys s BG, 1 < s c k, M(x xn ; fp(,)) is the orbit spectrum of the n- on the prespectrum-level from Lemma 1.8. The rest of (ii) follows from this fact 

spectrum M( x x ; fp( r) ) . Thus, the isomorphism of part ( i) induces an isomorphism 

j 
X ", (,Al Mfp(,)) M ( x  "p(r) 1 = 

TO relate our description of the extended powers of a Thom spectrum to the 

of operad ring structures on Thom spectra, we must relate the isomorphisms of 
In particular, for any f: Y s BG, proposition 6.1 to the maps a and B of VI.3 and the map of VII.1.6(i). 

For k 2 0 and js 0, 1 ( s (k, and for maps 
x w, (Mf)(jl z M(X X, fj). 

X: X * fk 
Proof. (i) Since M preserves colimits and commutes with the change of indexing 

set functors $ and $, we may assume that X: X s Xj is compact and we may Xs: XS * Yjs 
select the indexing sets on UJ and U and the connection between them as we 

please. We may also filter the maps fr and x x ; fr as we please. Let a be fs,r: YS,, j BG, l < s < k  and l(r(js, 

the standard indexing set on U. We use the indexing set a j  on Uj and select 

any X-connection ( u ,  v) : aJ s a. For V E 4, define vrV E A for 1 c r G j by the shuffle map 

the equation vV = vlV Q v2V Q ***@v.Vr aj. Let Yf = X x n Yr and 
J r k js k k js 

f = x x n f,: Y' + BG. Let {(fr )v: (Yr)V s BGV) be the canonical filtration of v : x x ( n  x s x ( n  Y ))-(xx n xs)x n n Y 
r s=l r=1 S ~ r  s=l s=l r=1 S'r 

fr for 1 < r < j. Filter ff by {Fvfl: FVYf s BGV) where 
j 

induces a map 

FvYf = X x n (Yr) vrv. Since ( p, v) is a x-connection, Fvf does map into 
r=l 

BGV as required. v: x x n (xS x n f 1 --+x (63 Xs) x (n n fs,J 
S s,r s s r 

Let Rf be the Thom prespectrum T(f I, {FVY1 ) )  and let R be the prespectrum- 
j 

in %/BG. Here, as always, we adopt the convention that the empty product is a 
level extended power x IZK ( A Tf, ) . For V 6 C( , point and the empty smash product is a zero sphere. 

r=l 
j 

RV = T(vV,V)A (r \  (Tfr)(vrV)) Proposition 6.2. With the notation above, the diagram 
r=l 

k j ..# k 
where (Tf,) ( vrV) is the Thom space of the sphere space classified by 

x r  ( A  s=l x , ~  r=l s9r 
- X ~  ( A  M ( ~ ~  * nfs,,)) 

= I = 

f V v :  (Yr)vrv+ BG(vrV) 
.-., 1.~1, is k 

and T( vV,V) is the Thom space defined in VI.2.1. By Lemma 1.7 and Propositions x R  ( (  @ xs) (A /\Mf 1) M(x XX(X, x n f  1 )  
s=l s=l r=1 S'r s 2.1 and 2.3, 

, jM( vl I js 
RV z RfV. 

k N k 
(X @ ( @  xs)) w ( A  --=--*M((~ ( @  Xs)) x (n 

s=l s=l r=1 S'r s=l S r Propositions 2.1 (ii) and 2.5 show that the structure maps of R and Rf commute 

with these isomorphisms, so that R E Rf. We obtain our isomorphism of spectra by commutes on the spectrum level (and therefore up to all possible equivariance) where 

applying L and quoting Corollary 4*4.  The equivariance is obvious on the the unlabeled isomorphisms are those of Proposition 6.1. 

prespectrum-level. 
Proof * Again, we may assume that x a+ the xS are compact and may select - 

(ii) That M( x x , ; fp(r)) is the orbit spectrum of M(x x fI fp(,)) follows 
whatever indexing sets, connections, and filtrations we like. We make the obvious 
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choices in terms of the given data, trace through the expl ic i t  prespectrum-level 

definit ions,  and find that  both composites i n  our diagram are given by shuffle map 

followed by identif ications of smash products of Thom spaces with Thom spaces of 

f ibrewise smash products 

Remark 6.3. Propositions 6.1 and -6.2 are abbreviated versions of general resul ts  

relat ing Thom spectra derived fro3 the Whitney sum map o: BGV x BGW + BG(V + W )  and 

the Y -space evaluation map 9 (V,W) x BGV + BGW t o  external smash products and 

twisted half-smash products of Thom spectra. These resul ts  also re la te  the maps 

a, 6 ,  and 6 of VID 3, when applied t o  twisted' half-smash products of Thom spectra, 

t o  maps of Thom spectra analogous t o  the map Mv of Proposition 6.2. When G i s  a 
group, these more general resul ts  are given i n  ~ 8 ' 6 .  We leave the monoid case t o  the 

interested reader since our primary concern i s  with Thom spectra which are operad . Thom spectra and operad ring spectra 
ring spectra. 

To re la te  the isomorphisms of Proposition 6.1 t o  the map 5 of VII .1.6( i )  , we We now s h i f t  our at tention from arbitrary maps into BG and the i r  associated 

consider an operad 6 argumented over X by maps xj : t j + x  for  j , O *  For Thom spectra t o  certain special maps in to  BG which yield Thom spectra with 

k > 0, j s  2 0 (1 < s < k ) ,  and j = j l  + j 2 +  + j k ,  and for enriched ring structures. Specifically, BG, being an %-space, i s  a $-space for 

fS,,: yS,, + BG (1 G s < k, 1 G r < j s ) ,  l e t  '; be the composite i n  the commuting any operad augmented over x ,  and the maps to  be considered are If-maps of 

diagram -spaces into BG. The Thom spectra derived from these maps have & structures.  
r example, i f  @ i s  an Em-operad, then the maps being considered are in f in i t e  

r l r x  "(kj x fl 1 loop maps and the resulting Thom spectra are Em-ring spectra. If k = LP, x ,y, 
s = l  S r=1 S'r where g i s  the nth l i t t l e  cubes operad, then the maps are n-fold loop maps and 

e Thom spectra are %-ring spectra. 

@erads act  on based spaces and the category J/BG of based spaces over BG 

places WBG i n ' t h i s  section. A l l  the resul ts  on Thom spectra i n  the previous 
ctions pass over t o  $/BG v ia  the. forgetful functor J/BG +UJBG. In addition, 

where y is the structure map of c. Clearly, provides a map e Thom spectrum Mf derived from a map f :  Y + BG i n  d / B G  has a canonical 

w it S + M f  coming from the inclusion of the basepoint {*) c Y. 
5: xk x "xj x f s , r )  * xj x (" fS,r)  

s s s r Let ~ J / B G  be the subcategory of J/BG whose objects are k-maps f :  Y + BG - 
in U/BG. The relat ion between 5 and M( 5) follows eas i ly  from ~ropos i t ion  6.2 d whose morphisms A :  ( f :  Y + BG) -+ (g: Z + BG) are g-maps A :  Y + Z over BG. 

and the natura l i ty  of the isomorphisms of Proposition 6.1. ated t o  the operad is a monad C:  3 + J ,  which takes a based space Y t o  
e associated free g-space CY. This monad induces a functor C: J/BG + &J/BG 

Proposition 6.4. For k 0 ,  j s  > 0, and f s j r :  YS,, + BG (1 < s 4 k and 
ich takes f :  Y + BG t o  Cf: CY + BG, where Cf is the unique $-map extending 

1 r j ) ,  the diagram below commutes on the spectrum-level (and so UP t o  a l l  
In fac t ,  C: $/BG + rJ/BG i s  a monad and the category cJ/BG i s  jus t  the 

possible equivariance) where the unlabeled isomorphisms are those of ~ ropos i t ion  
t e g o r ~  of algebras over t h i s  monad. 

6.1. Note tha t  i f  f :  Y + BG is a k-map, then so i s  r f :  r Y  + BG by Lemma 1.8 of 
7, p.71- Mso, i f  A: f + g i s  a map i n  EJ/BG, then so i s  rA: rf + rg. Thus 

induces a functor' from C ~ / B G  t o  C J/BG which converts arbitrary g -maps into 

brations which are c-maps. 
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h operad augmented over g also induces a monad C on the category is a coequalizer diagram over BG by VII.3.6. Thus, the bottom row of the diagram 

g e a  of uni ta l  spectra (see VII84); the functor C takes a uni ta l  spectrum 
g '  

e: S + E t o  i t s  associated free C - spectrum CE. If f :  Y + BG is i n  ~ / B G ,  v v Xr,q  6 v 6, k c  Mf(') ------ CMf 

then Mf has a canonical unit and thus an associated free C-spectrum CMf. r z O  Ocqtr h '  -rzo 

Mahowald made the key observation that  the spectra MCf and CMf should be 

isomorphic. In fac t ,  more i s  true;  M takes the space-level monad . 

C: 3 /BG + $/BG t o  the spectrum level  monad C: lea + lea a 

Mg 
V V M ( ~ r , q x f r )  ~h r V  M 

r > O  Otqtr r zO 

Theorem 7 .l. For any f :  Y + BG i n  d/BG,  there i s  a natural  isomorphism i s  a coequalizer. The top row of the diagram i s  a coequalizer by VII.3.6 i f  the 

maps g '  and h' are as  indicated there. Proposition 6.1 provides the - 

CMf E MCf isomorphisms 8 1  and O2 and ensures tha t  

such that  the following diagrams commute. 
e2ht = (Mh)el. 

CMf MCf CCMf A CMf 

I = 

.., proposition 6.2 gives tha t  
CMCf Mrl and 

112 
Mf M C C ~  MIJ a-~Cf e2gt = (Mg)el. 

Here the maps and IJ are the units  and multiplications of the two monads. Thus, there i s  a unique isomorphism 

Thus, i f  f is a map of k-spaces, then Mf i s  a 6 - spectrum with action map 

8 : CMf + MCf 
CMf " MCf ME r Mf 

where 5: CY + Y gives the action of on Y. Also, M takes maps of making the r ight hand square above commute. 

6-spaces over BG in to  maps of C -spectra. The commutativity of diagrams in the statement of the theorem follows .easily 

Proof. Let oq: cr+l + cr be the degeneracy map defined i n  VI183 for  r , 0 and from the definit ions of the units  and multiplications in VII84 and Propositions 6.1 

0 G q c r. If  xrjq: cr+l + X r  is the composite 
If Y i s  a -space whose action i s  given by the map 

xr 
xrPq: rr+l a c r - ~  

5: C Y - Y  

and the maps g and h below are defined as  in  V11.3.6, then the diagram 
and f : Y + I% i s  a -map, then the diagram 

r CY 

CY b y  

cf\ J f 

BG 

cOmmutes and 6 induces a map ME:  MCf + M f  . Our diagrams for Q and ,, imply 

CMf MGf ME R Mf 
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gives an action of t on Mf. That M takes e-maps over BG in to  maps of 6.. A:  M(g + f ) j M ( g  x f )  z M ~ A M ~  
spectra follows from the natura l i ty  of the isomorphism CMf z M C ~ .  - 

of the previous section is a map of hg-spectra.  Here we use Proposition 3.6 t o  
Remark 7.2. ( i ) If f : y + BG is a e -map, then we have already noted that  rf : identify M(g x f ) with M ~ A M ~ .  

r Y  + BG is a -map. Thus Mrf i s  a $ - spectrum. 
If  Y is a &-space, then so is Y x Y and the maps 

(ii) If f :  Y + BG i s  a c-map, then the action maps 

A: Y-+- Y x Y and r2: Y x Y-+Y 
Ej tXZjMf(J ) - , 

are c-maps Thus, if f :  Y + BG i s  a g -map, then the reduced diagonal -map 

of the -spectrum M(f) are jus t  the composites 
A: Mf- y%Mf 

t. R ~ f ( j )  "(x. x f j )  M5 *Mf 
J Z j  J Z j  i s  a map of C -spectra, where ac ts  diagonally on Y + A M ~ .  Assume that  E i s  an 

~d-spect rum.  Then W E  and Y ~ E ,  or i n  the sett ing of Remark 7.3, M ( g  + f )AE 
where 5: ej x y j  + Y gives the action of 6 On Y -  

- 
'3 and &AE, are hed-spectra with the diagonal C - action. With these observations, 

(iii) Recall tha t  the f ree  -spectrum functor preserves stable equivalences it i s  easy t o  see that  the map p is the only obstruction t o  e i ther  of the Thorn 

when the units  of the spectra in question are cofibrations. I f  {*) + Y i s  a maps @,, of the previous section being maps of hCd-spectra. 

fibrewise cofibration over BG and f :  Y + BG i s  a based map, then the unit of 

Mf i s  a cofibration by Corollary 4.8. The standard whiskering construction on Y Proposition 7 -40  Let E - be an htf - spectrum, f : y + be a c - ~ ~ ~  and 

converts any based map f : Y + BG in to  a based map f 1  : Y1 + BG such tha t  {*) + Y1 P: Mf + E be a map of h e-spectra. 

is a fibrewise cofibration over BG, and f 1  i s  a C-mp i f  f i s  by Lemma A.11 (i) The Thom map 

of [97, p.1701. It i s  easy t o  see tha t  Mfl is just  the mapping cylinder of the m,,: MCAE-Y+AE 

unit  S + Mf , so that  we are just  converting a map in to  a cofibration i n  the usual 

fashion. i s  a map of h~~ - spectra and the homology Thom map 

( i v )  In order t o  obtain the isomorphism CMf s MCf of Theorem 7.1, we need 

only assume tha t  6 is a coefficient system augmented over (see VIII3). 

Preserves Dyer-Lashof operations. - 
Remark 7.3. The. notion of an h -space Y - tha t  is, a $ -space up t o  homotopy - is - ( i i)  If k i s  an Em operad and g: Y + BG is a c-map, then the "&om map 
defined in  VII.2.7, and there i s  an obvious corresponding notion of an he-map - 
between hc-spaces. We might naively hope that  an. he-map f :  Y + BG from an - - @,,: M(g + f)rE--+ MghE 
hd-space Y in to  BG would yield an hc-Thom spectrum Mf. However, we 

encounter the same di f f icul ty  here tha t  we encounter with H-spaces and H-maps i n  is a map of hCd -Spectra and the homology Thorn map 
Proposition 4.11 - the homotopies must f i t  properly with the action of the l inear  

isometries operad on BG. a,,: E*M(g + f)-E*Mg 

Rather than attempting t o  describe the general consistency condition needed - 
for h e  structures,  we discuss here the one case of special in teres t .  Assume @serves mer-Lashof operations. 

t ha t  e is an Emmoperad, tha t  Y is a e-space, and f and g are c-maps from 

Y i o  BG. The sum map g + f : Y + BG defined in  Remark 2.6 i s  not a -map, but * By [Hm,I*3-61, if R i s  a commutative ring, f : Y + BG i s  a good - 
it is an h e  -map (see (97, p.81) and the required homotopies come di rec t ly  from the -map, and 11: Mf is a UIlital map (where HR is the Eilenberg-me Lane 

universal properties of the spaces cj. It follows eas i ly  tha t  ~ ( g  + f )  i s  an 
- 

ec t rum for R), then l,~ is an hr;-map. 

h e-spectrum and the reduced diagonal map 
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1f fo:  Y + BG and fl: Y + BG are C -maps which are good and are homotopic 
as c-maps, then it i s  natural t o  ask about the relat ion between the stable 

,., 

equivalence Mfo = Mfl of Proposition 4.10 and the structures on Mfo and 5: Z --"c r(Y x I )  

Mfl. Since the stable equivalence does not come from a map of c-spaces, it i s  not 
,.# 

c lear tha t  it respects the < structures.  be the map induced ,., by the maps 6,. The inclusions i t  : ( rty) + D, induce 
inclusions 1%: Cr tY + ,Z such that  the diagram 

Proposition 7 -6. If fo,fl: Y -+ BG are -maps which are good and are homotopic 

as  c-maps, then the stable equivalence 

- 
of Proposition 4.10 i s  an equivalence of h $-spectra. 

Proof. Sin-ce 6 :  Mfi + Mrfi ( fo r  i = 0 , l )  is a stable equivalence of 

G ~ - s ~ e c t r a  by Proposition 4.9 and Remark 7.2, it suffices t o  show that  the 

equivalence between MrfO and Mrfl given in the proof of Proposition 4.10 i s  a - 
equivalence of hc-spectra. 

Let f t :  Y t BG, t r I, be a homotopy through c m a p s  from f o  t o  flo commutes. The maps r l0,  r t l ,  C r l o A  and Crll are obviously all f ibre  homotopy 
N 

Denote the to t a l  space of r ( f t )  by rtY. For r a 0, l e t  equivalences. Moreover, the maps 10 and l1 are f ibre  homotopy equivalences 

because the homotopy inverses and homotopies for the various lo: (ray)' t Dr _ f i t  
D, = YI( rtylr c ( r (Y x I) l r  

N 

together t o  give a homotopy inverse md homotopies for  lo and similarly fo r  t l .  

~pplying M and the isomorphism of Theorem 7.1, we obtain the diagram 
and l e t  

ir: Vr x ~ ~ D ~  -+ r ( Y  x 11 

be the map induced by the action maps cr x ( rty)* t r tY c r(Y x I)  . Note that  the 
r 

inclusions to :  (ray)' + Dr and 11: ( rly)' + 4 are homotopy equivalences; 10 

has homotopy inverse k: D, + (ray)' given by 

k(e1,~1,e2,~2,0ea,er,~r) = ( ~ ; , Y ~ , ~ ; , Y ~ , ~ ~ * , @ ; , Y ~ )  N 

in  which a l l  the maps, except M (  6 )  and the action maps c0 and 51, are homotopy 

equivalences. Thus, i f  (MI'l1)-' i s  a homotopy inverse for Mrll, then 
where yi r Y ,  ei r uBG, and the paths e i  r uBG have length 1 + ~ ( 8 ~ )  and are 

given by 

O < S < l  - 
i s  a homotopy equivalence and a map of h&-spectra. 

Let Z C C r ( Y  x I) be the image of the composite 

( r ( ~  x I )  ---, C ~ ( Y  x 1) 
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X. Equivariant Thom spectra to twisted half-smash products and t o  operad actions in section 6.  Throughout, G 

by L. G. Lewis, J r .  and J. Po May i s  to  be a compact Lie group. 

We here present an equivariant analog of the theory of Thom spectra developed 

i n  the previous chapter. For technical simplicity, and t o  avoid unresolved problems 

with classifying spaces, we shall  r e s t r i c t  at tention t o  Thom G-spectra associated t o  

G-vector bundles ( a s  opposed to  spherical G-fibrations) . On the other hand, while we 

concentrated on stable f ibrations,  tha t  i s  t o  say on vi r tual  f ibrations of v i r tua l  

dimension zero, in the previous chapter, we shall  here study vi r tual  bundles of 

arbi t rary  v i r tual  dimension. As a resul t ,  the norfequivariant specialization of the 

present treatment has rea l  advantages over the specialization t o  vector bundles of 

the ea r l i e r  treatment. In f ac t ,  we shal l  introduce a new variant of the usual 

Grassmannian model for 80 that  gives a concrete geometric model for  BO x Z. 

However, we are interested primarily in the equivariant context, and our model 

for  BO x Z w i l l  generalize t o  give a very simple Grassmannian classifying space 

representing the functor KOG(X) .  While we shall  be precise about preliminaries i n  

sections 1 and 2, the reader may wish t o  consult Segal 11251 and Atiyah 17,81 for  

discussions of equivariant K-theory . We shall  concentrate on KOG for 

definiteness, but everything we do applies verbatim t o  K U G  Perhaps the most 

interesting new phenomenon we uncover concerns the usual completion map 

induced by the proj ection EG x Y + Y. We shall  prove ( i n  Corollary 6.3) tha t ,  

for  f e KOG(Y) ,  

$1. Preliminaries on G-vector bundles 

Let GU/B denote the category of (compactly generated, weak Hausdorff ) 

G-spaces over a given G-space B. Since colimits i n  GU/B are colimits i n  WB 
with th6 induced G-actions, the conclusions of IX.l.l on the preservation of 

c ~ l i m i t s  apply as stated i n  the equivariant context. 

We could develop equivariant analogs of the resul ts  on sphere spaces i n  IX§1, 

but we prefer t o  r e s t r i c t  at tention t o  G-vector bundles, by which we understand 

(G,O(n) )-bundles with f ibre  R?. See e.g. 181,1251 and I V § 1  for discussion of such 

bundles. We may give any Gvector bundle a Ginvariant  Euclidean metric, and the 

proj ection of any such bundle i s  an open map. 

The Thom G-space T(  5 ) of a G-vector bundle 5 : E + B i s  obtained by applying 

fibrewise one-point compactif ication t o  obtain a G-sphere bundle SC and then 

identifying a l l  the points a t  inf in i ty .  Up t o  G-homeomorphism, T( 5) can also be 

described as the quotient of the unit disc bundle D(5) by, the unit sphere bundle 

S( 6 ) . We think i n  terms of the diagram 

- 

where a is the section given by the points a t  - and 5 i s  specified fibrewise 

by identifying a l l  vectors of length 1 t o  the point a t  i n f in i ty  and expanding the 

interior of the unit disk radia l ly  to  f i l l  up R?. 

Maps of G-vector bundles are defined i n  the evident way, so that  a map i s  given 

by a pullback diagram. If the map of base spaces of a GbundiLe map is a closed 

inclusion, then so i s  the map of t o t a l  spaces and the induced map of Thom spaces. 

Here a( -V) c KO( BG) , and M( -V) ) i s  often denoted BG-'- Such spectra played 
The product of Gvector bundles i s  a &vector bundle, and the product of 

an important role in Carlsson's work on the Segal conjecture 1221 and i n  work on i t s  
G-bundle maps is a G-bundle map. We record the behavior of mm spaces on products. 

generalizations t o  theories other than stable cohomotopy; see l24,103,1091 They 

are singled out for at tention i n  11051. 
Lemma 1.1. For G-vector bundles 5i: E~ + B ~ ,  i 5 i 5 n,  

T h e  organization of t h i s  chapter i s  precisely para l le l  t o  tha t  of the ~ r e v i o u s  

one. We summarize the relevant information about G-vector bundles in section 1 and 

T ( e i  x * "  x &) E T ( t 1 ) "  * . * A T ( & ) .  

about a -spaces in section 2. We define our Thom G-spectra and give the i r  basic 

properties in section 3. We study the i r  homotopy invariance properties i n  section 

4. We discuss the Thom isomorphism in section 5. Finally, we re l a t e  Thom G-spectra 
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As usual, the witney sum F, @ * of G-vector bundles 5 and $ over a given aces.. For objects V and W of GQ, give the space d(V,W) of linear 

x ometries V + W the action of G by conjugation. base space is the (5 $1. There are two standard descriptions of 

T(6 (B *) correspouding to the two descriptions of Thorn spaces in the diagram above. We define GJ-spaces exactly as we defined 3-spaces, but with the following 

equivariance conditions. 

hm 1.2.  or G-vector bundles 5 and + over B, (a) Each X(V) is a nondegenerately based G-space. 
(b) Each evaluation map e : d  (V,W) x X(V) + X(W) is a G-map. 

T(SS)*(+)/T(~) E T(S @ 0) E T(D~I*($)/T(s~)*($). (c) ~ach sum map w :  X(V) x X(W) -r X(V @ W) is a G-map. 

Our treatment of Thom G-spectra is entirely based on an appropriate universal 
Here (SS)X(+), and (sg)*( $) denote the G-vector bundles obtained 

Grassmannian map of GP-spaces n: EGG + BOG, and a little discussion of 
pulling j, back along the of st, ~ic), and S( 5); T( *) is contained 

nonequivariant Grassmanns will clarify the construction. 'There is an obvious 
in T(SS)*(P) via the ~ - b ~ d l e  map induced by pulling (s5)*('4) back to * Grassmann d -space which assigns 
along a. 

Gr(V) = O(V 8 V)/O(V) x O(V) 
course, T(~<)*( is ~homotopy equivalent to T( 9 ) .  w e n  yi is the 

trivial bundle that is, the projection B x V + B, the first identification to a finite dimensional inner product space V (see 199,1811 for details.) If dim 
specializves to V - n, one thinks of Gr(V) as an approximation to Bob). Consider V C W, 

v dim W = n+k. The embedding Gr(V) + Gr(W) really involves two distinct kinds of 
T(F, "li) " T(5). partial stabilization, involving both passage to an approximation to BO(n+k) and 

an improvement of the degree of approximation. This is better seen in terms of the 
we also need some observations about the behavior of Thom spaces with respect interpretation of Gr(V) as the space of n-planes in V (B V. Here we take the 

to change of groups and passage to orbits. first copy of V in V@ V as the base plane; application of f r OLV @ V) to 

V gives the n-plane associated to the coset f(O(V) x GLV)). Now the inclusion of 
. lemma 1.3 ~f F,: E + B is an H-vector bundle, H C G, then Gr(V) in Gr(W) sends an n-plane A in V 8 V to the (nix)-plane A + (W - V) in 
G XH 5: G XH E + G xH B is a G-vector bundle and W @ W, where W - V sits in the first copy of W. Addition of W - V in the 

first copy corresponds to stabirization BG(n) + BG(n+k), while the presence of 
T(G xH F,) * G' AH T(F,). W - V in the second copy improves the degree of approximation. 

It is desirable to have actual classifying spaces on hand at the outset, and 

hma 1.4. b t  F, be a (G GI)-vector bundle, let * be a G1-trivial 
this can easily be arranged by replacing the second copy of V by P ,  the sum of 

countably many copies of V, in our original description of Gr(V). In terms of 
(0 ~ ! ) - ~ ~ ~ t ~ ~  bundle, and assume given a map 6 + + of (G x GI)-vector 
Then 6 has an orbit Gvector bundle c/G', F, + ,* factors through a Gbundle map planes, w e  may as well consider n-planes in V", the base n-plane being the first 

S/G' + *, and 
It is also desirable to obtain not BO but BO x Z as the homotopy type of 

T(6/G1 ) r T(F,)/GS. the "Grassmann" associated to an infinite dimensional inner product space. This can 
easily be arranged by allowing planes of all dimensions in P in our V% spaces 

for finite dimensional V. If BO(q,V) denotes the space of q-planes in 

52. Preliminaries on G$-spa~es (topologiaed as O(V')/O(A~) x G(V" - Aq) for any chosen base q-plane A 
th q in 

P), then the V- space of our classifying J-space is now VBO(~,V) with 

~ ~ ~ ~ l l  the $ of inner product spaces and linear isometrics from S?O 
basepoint V < BO(n,V), dim V = n. In terms of KO-theory, if a map f: X + BO(q,V) 

IX92. Let G$ denote the full subcategory of $ whose objects are G-ber product classifies the q-plane bundle 6, then we think of f as corresponding to F, - n 
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We now proceed t o  the equivariant case. For a f i n i t e  dimensional Ginner  the fora 5 - x, where 6 i s  a G-vector bundle over X and 1 i s  the t r i v i a l  

product space V, define BOG(q,V) t o  be the G-space of q-planes in vm, where ~ - ~ ~ c t ~ r  bundle X x V, modulo the relat ions 

G ac ts  by translation of planes. Similarly, define EOG(q,V) t o  be the Gspace of 

pai rs  (A,a), where A c BOG(q,V) and a c A. l e t  t - v = c ' - v l  

be the evident projection; it is clearly a G-vector bundle. Define 

BoG(V) = U B O ~ ( ~ , V )  and E O ~ ( V )  + =  E O ~ ( ~ , V )  
qL0 9 

Give BOG(V) and EOG(V) the basepoints V and ( V , O ) ,  where the base plane V 

i s  the f i r s t  copy of V in Vm. For V C W, embed EOG(V) in EOG(W) by 

sending (A,a) t o  ( A  + ( W  - V )  , a ) ,  where W - V is regarded as  a subplane of the 

base plane W. For an in f in i t e  dimensional Ginner  product space U, define 

EOG(U) t o  be the colimit of the EOG(V) for V f i n i t e  dimensional i n  U. Note 

tha t  the unique point of EOG(O, {O)) is a canonical representative for  the 

basepoint of EOG( U) . For a l inear isometry k: U + U1 , define k,: EOG( U)  + EOG( U' 

by passage t o  colimits over V' %. U1 from the res t r ic t ions  kit : EOG(V) + EOG(V1 1, 
where V = k - l ( ~ '  ) and k, sends a point (A,a) r EOG(V) t o  the point 

(kA + (V '  - kV),ka) r EOG(V1). With the sums w being given by addition of planes 

and vectors, EOG is a ($space. We specify the G-space BOG(U) s imilarly and 

have the desired universal Grassmarmian map n: EOG + BOG of 4-spaces. 

We do not claim that  BOG(q,V) i s  a classifying G-space for q-plane G-bundles, 

although t h i s  does hold i f  G is f i n i t e  and V contains a l l  irreducible 

representations of G. However, on passage t o  colimits, we obtain the following 

basic observation. 

Proposition 2.1. Let U be a complete Guniverse. Then there is a natural  

isomorphism 

v: [ x + , B o ~ ( u )  l G  + KOG(X) 

for f i n i t e  G-CW complexes X. 

Proof. We have added a d is jo in t  basepoint t o  X since the bracket refers  t o  based 

G-maps. We may as  well assume tha t  X/G is connected. Of course, 

where V runs over the indexing G-spaces in U, and a map X + BOG(V) lands i n  

some BOG(q,V). We can describe KOG(X) as  the Abelian group with generators of 

if and only i f  there exis ts  Z such that  Z 3 V, Z 3 V 1 ,  and 

a G-map f :  X + BOG(q,V), l e t  { = f * n ( q , ~ )  and define v ( f )  = 6 - V. If  

v c W, dim(W - V) = k, then 

where i*: BOG( q,V) + BOG(q + k,W) i s  the inclusion, hence v ( i n f )  = v( f )  . Thus 

V: [ x + , B o ~ ( u )  I G  + KOG(X) i s  well defined. ~f v(f )  = v ( f l ) ,  where 

f ' :  X + BOG(ql,V') c l a s s i f i e s  C 1 ,  and i f  Z is as i n  ( * I ,  then f and f 1  

become homotopic i n  BOG(r , Z )  , where r = q + dim(Z - V) = q1 + dim( Z - V1 ) . 
Thus v i s  an in j  ection. To see tha t  v is a surj ection, recal l  from Segal [ 125, 

p. 1%-135 1 tha t  any q-plane G-bundle 6 over X embeds as a subbundle of some 

W and i s  therefore a pullback of the Grassmann G-bundle of vectors i n  q-planes i n  - 
W. For any given V, we can expand W t o  contain V. Thinking of { as embedded 

using the f i r s t  copy of W i n  W" and W - V as embedded in the second copy, we 

see that  5 8 ( W  - V) is a pullback of ~ ( q  + k,W), k = dim(W - V ) .  Thus 

6 - V = 6 O ( W  - V) - W is i n  the image of v. 

For in f in i t e  G-CW complexes X, we define 

By a standard abuse, we shal.1 sometimes abbreviate BOG(U) t o  BOG. 

For any G-universe U, the passage from GJ-spaces t o  Z(U)-spaces, where 

g( U )  is  the l inear  isometries G-operad of U,  works exactly as in the nonequi- 

variant case (see [ 99, I S 1  1 ) . Thus BOG(U) i s  an r (  U )  -space and i n  part icular a 

homotopy associative and commutative Hopf G-space: the discussion i n  IX.2.6 applies 

verbatim. Since ~ ~ ( B o ~ ( U ) )  is a group, the standard shearing map argument works 

equivariantly t o  show that  BOG(U) admits a G-map X: BOG(U) + BOG( U )  which 

specifies inverse elements up t o  G-homotopy, 4 (1  x X ) A  = *. 
In the next few resul ts ,  we r e s t r i c t  at tention t o  f i n i t e  dimensional G-inner 

product spaces and say more about the relationship of the map a: EOG + BOG of G 

4 -spaces t o  G-vector bundles. We have already used our f i r s t  observation. 
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Le- 2.2. For a &linear isometry i: v + W, dim V = n and dimW = n + kj the Lemma 2..5 a The following diagram of G-bundle maps commutes, where 
of n(q + k,W) along i*: BOG(q,V) + BOG(q + k,W) is ~ ( q , ~ )  @ (u* 

Lemma 2.3. The sum maps w of EOG and BOG specify maps of &vector bundles <(V' ,V") x <(V,Vf 
x n(q,V) 

n(ql,V1) x e* x n(qn,Vn) +n(q1 + "' + qn,V1 @ O o 0  @ Vn)' 

of course, the coherence of the w (as in Me2 ( ti) ) is part of the 
c(V,V") x n(q,V) 

definition of a ($-space a 

AS in ~1.2 .I, let <(v,vt ) : E{V,VI ) + $-(v,v' denote the com~lementary AS above IX.2 0 5 ,  let d( (w,V), (Wr ,Vr ) ) denote the evident G-space of relative 
G-vector bundle to the bundle map isometries when V C W and V' C W' and let ;(w,w' 1, ;(v,w' ) ,  and ;(V,Vl ) 

denote the pullbacks of 5(W,W1 1, <(V,Wr 1, and <(V,Vt ) along the obvious maps 
(nl,c): J(V,V1) x V- k(V,v') x v' 

of J((w,v),(wl,v')) into Q(w,w'),&(v,w'), and J-(v,v~). We then have 

over 4 (V,Vr ) . Let <(X;V,V1 ) denote the pullback of <(v,V' ) along a given 

&map X: x +Q(v,v')~ - - - 
r(V,V') 0 (W' - V') 2 <(V,W1) 2 <(W,W1) 0 (El. 

E: I(v,v' ) X 8oG(q,V) +BOG(q + k,V1 ) LRmrna 2.6. The following diagram of G-bundle maps commutes, where 
k = dim V' - dim V, m = dim W1 - dim W, and s = dim W - dim V. 

is q(V,V' ) x n(q,V), where k = dim V' - dim V. 

n(p,V) over the point A 6 BOG(q,V) is the q-plane A. &fine 

E: E(V,V' ) x EO~(~,V) .-. EOG(q + k,V1 ) 

The pullback of <(V,VI1 ) along the composition map 

The canonical isomorphism <(V,V') 8 1  2 1' implies the following parametrized 
c:.J (vI ,v") x ~ ( V , V ~ )  i, 9(v,v11) neralization. 

is <(V1 ,Vfl ) x <(V,V1 ) , and c is covered by the Gbundle map - Let X: X +~(V,V') and f: Y -+ BOG(q,V) be G-maps. Then the 

N 

c: E(V' ,V") x E(V,V1 ) --p E(V,Vtl) 
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Proof. If f c l a s s i f i e s  5, then the composite around the top c lass i f ies  given bundle regarded as  a & t r i v i a l  G-bundle. Passage from &bundles over y to - 
( c ( X ; V , V 1 )  x 6 )  0 1 and the composite around the bottom c la s s i f i e s  ( X  x 5) Q 1'. their orbit  bundles over Y/G specifies the inverse isomorphism. In the previous 

These are canonically equivalent bundles. Composing the equivalence with the corollary, X and therefore X x Y i s  necessarily G f r e e ,  and E (  
f )  

evident maps of bundles over the displayed diagram of base spaces, we obtain two necessarikT factors through X xG Y in the present context. 

classifying diagrams for one of our bundles, say (X x 5) O 1' . Bg an easy 

equivariant generalization of the c lass ica l  argument in Milnor and Stasheff 1114, corollary 2.9- l e t  X and Y be G-CW complexes and l e t  : X + $ ( u , ~ " )  be a 

p.67-681 (basis vectors there being replaced by irreducible representations here, as &map, where U contains a l l  irreducible representations of G. Let n: x y + 

in the proof of 11.1.5)) th i s  information gives r i s e  to  an expl ic i t  canonical 

homot opy , 
KOG(X x Y )  2 KO(X xG Y )  

Corollary 2.8. Let U and U 1  be G-universes such that  U '  8 U z U. l e t  

X: X + J ( U , U 1 )  and f :  Y + BOG(U) be G-maps. Then the following diagram is with the element of KO(X xG Y )  obtained by passage t o  orbi ts  from the composite 

G-homotopy commutative, where i and j are the inclusions of U '  and U i n  

u1 8 u 5 u. x Y - J (U ,R~)  B O ~ ( U )  ---I B O ~ ( R ~ ) .  

X x Y -J(u,u') x BOG(U) : B O G ( U 1 )  Vhen X = EG, the Corollar'Y describes the standard map 

f j * \ i *  
a: KOG(Y) - KO(EG xG Y )  

Y - BOG(U) -BOG(U) 

i n  terms of an evaluation map E of the Gq-space ~ 0 ~ .  

Proof. This holds by the previous lemma i f  X and Y are compact. The general 

case follows by the canonicity, which gives us compatible homotopies as  we run over $ 3 .  The definit ion and basic properties of ~hom &spectra 

the compact subspaces of X and Y. 

We are thinking of the case U 1  = Rm with t r i v i a l  G-action, where U i s  a Let U be a Guniverse and index G-spectra on some indexing se t  a in U 

complete G-universe. Any isomorphism uG i Rw Q uG induces the required (such as the standard one). Our main in teres t  i s  i n  the case when U is complete, 

isomorphism U i Rm @ U, and of course the map j : BOG( U )  + BOG( U )  is a but we shal l  also make use of the case U = Rm. We sha l l  define the mom G- 

G-equivalence. The space B O ~ ( R ~ )  i s  jus t  a model for BO x Z with t r i v i a l  G spectrum M f  determined by a G-map f :  Y + BOG( U) . For convenience, we t a c i t l y  

action (and coincides with B O , ( R ~ )  ) . The G-map is : BOG( Rm) + B O ~ (  U )  factors assume throughout tha t  Y/G is path connected. Otherwise Y would be the disjoint  

through BOG( U )  and i s  a nonequivariant homotopy equivalence. On the represented union of inverse images Yi of components of Y/G and we would define Mf t o  be 

level ,  for a space Y with t r i v i a l  G-action, the composite the wedge of the spectra Mfi obtained from the res t r ic t ions  f i: Yi + BOG( U) . 
A f i l t r a t i o n  of Y i s  a collection of closed G-subspaces F.Y indexed on a 

J 
KO(Y)  - - r K O G ( Y )  ---rKO(Y) irected se t  { j )  such that  Y i s  the colimit of the F.Y. A f i l t r a t i o n  of f i s  

J 
f i l t r a t ion  of Y indexed on a (or  on any cofinal subset of a) such that  f 

i s  the identi ty,  where the f i r s t  map i s  represented by i n  and the second the s t r io t s  t o  a mP Fvf: Fvy + BOG(V) for  each V. Since Y/G is connected, each 

forgetful map. This sp l i t t i ng  is compatible with btt Periodicity and shows that nempt~ FvY maps in to  a single space BOG( qv,V), where qv = dim V + k for  some 
the spectrm representing KO: is  s p l i t  in the sense discussed i n  1158- As xed integer k depending only on f .  ( If  dim V + k < 0, then FvY is 
explained there, for a free G-CW complex Y,  the composite cessarily empty.) We c a l l  k the v i r tua l  dimension of f .  We define the 

3c anonical f i l t r a t i o n  p v )  of f by l e t t ing  Yv = ~ - ~ B o ~ ( v ) .  Clearly t h i s  
( * )  ' * 

KO(Y/G) ---+KOG(Y/G) * K O G ( Y ) ,  n :  Y---ry/G, i l t r a t ion  is natural  with respect t o  maps of G-spaces over BOG(U).  

is an isomorphism. men Y i s  compact, t h i s  i s  obvious bundle theoretically;  

. . 
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Constructions 3.1. (i) Let {Fvf: FvY + BOG(qv,V) } be a f i l t r a t i o n  of the  map If FVY) i s  a f i l t r a t i o n  of f : Y + B O ~ (  U )  , then the natural map 

f :  y + B O ~ ( U ) .  We construct the Thom prespectrum T( f ,  {FvY}) 0 If Fvy i s  empty, 

l e t  T(f ,  {FvY}) = *. Otherwise, l e t  T(f ,  {FVy}) ( V )  be the Thom space of the M(f, {FvY)) ---Mf 

q,-plane bundle classif ied by Fvf. If  V C  W, the structure map 

an isomorphism of spectra. 

o: E ~ - ~ T ( ~ ,  {FvY)) ( V )  -+a T(f,  { F ~ Y ) )  ( W )  

As in  the nonequivariant case, Mf i s  thus the colimit of the Wvf for any 

ar ises  by Lemma 2.2 from the bundle map over the inclusion FvY + FwY result ing t ra t ion  {FVY} of f ,  and any map from a compact spectrum into Mf factors 

from the commutative diagram through some MFVf; compare 1.4.8. An easy comparison of definit ions gives tha t  

the MFvf are sh i f t  desuspensions ( a s  specified i n  I .4 , l )  of Thom spaces.' 

F Y  - FwY 

1 proposition 3.4. Let f :  Y + BOG(q,V) c lass i fy  5 ,  5 = f * n ( q , ~ ) .  Then, 
,v) - BOG( qw,W), regarding f as a map t o  BOG( U )  , 

and a i s  a closed inclusion. Define the Thom spectrum M( f , {FVy)) t o  be ~f = A V Z ~ T ~ .  

LT(f,{FvY)). Write Tf and Mf for  the Thom prespectrm and spectrum so obtained 

from the canonical f i l t r a t i o n  of f .  particular, i f  f i s  constant a t  a q-plane A, then 

(ii) Let {FvY) and {FvZ) be f i l t r a t ions  of G-maps f : Y .t BOG( U )  and 

g: Z + BOG(U) and l e t  A: Y + Z be a filtration-preserving G-map over B O ~ ( U ) *  ~f = A ~ c " c ~ Y + .  
Note tha t  f and g then have the same vi r tual  dimension. Let 

If A C V, then A ~ Z ' Z ~ Y +  z A'-~Z' .~ '  by I. 4.2 men Y = {* 1, AVz'.SA shoad 

( T h ) ( V ) :  T ( f ,  {FVY))(V) - + T ( g ,  {FVz))(V) be interpreted as an "(A-V)-sphere spectrumn, where A - V i s  viewed as an element 

be the map of Thom spaces induced by the evident bundle map over A: FvY + FvZ. 
The functor M i s  invariant under changes of a ( a s  in 1.2.4) and of u (as  

The ( T h ) ( V )  specify a map Th  of prespectra and give r i s e  t o  a map MA = LTA of in 1.2.5 and 11.1.1). 

spectra. Restricting attention t o  the canonical f i l t r a t ions ,  we obtain functors 

Lemma 30 5. For indexing se t s  a C 3 i n  U,  the following diagrams of functors 
T: GWBOG(U) - - c~p& and M: GWBoG(U)  ---+-Gda. ~0Imute Up t o  natural isomorphism. 

For the l a s t  statement, we must use wedges t o  extend our functions t o  general 

G-spaces Y, with Y/G not necessarily connected, but we re ta in  our comectivity 

hypothesis below. 

Exactly as in IX.4.3, IX.1.1 and the fac t  tha t  the projections of vector 

bundles are open maps imply the following resul t .  

Proposition 3.2. The functors T and M preserve colimits. Let  k: U + U1 be a G-linear isometry. Then the following diagram 
Utes Up to  natural  isomorphism. 

' In turn, as in IX.4.4, t h i s  implies tha t  our Thom spectra are independent of k% 

the choice of f i l t r a t i o n  used t o  define them. GV/BOG( U )  - GWBOG( U I ) 
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me proofs are easy inspections of definit ions.  Another easy inspection, based proposition 3.10- Let 5 be a c lass i f iable  G-vector bundle over y and let 
on ~ e m a  1.1, shows that  the functor M commutes with dxx"nal products* g: + be a G - m a ~ o  l e t  ( s S ) * ( g ) ,  ( D ~ ) * ( ~ ) ,  and denote the 
m a  3.7. kt a and be indexing se t s  in U and U'  Then the following composite g and the Projection of the based sphere, unit disc, and unit  sphere 
diagram commutes up t o  natural isomorphism. bundles associated t o  5. Then there are equivalences, natural in g, 

w* 
G U / B O ~ (  U 1  -----tGWBOG(U (9 U '  ) M ( s S ) * ( g ) / ~ ( g )  - M( 5 + g)  - M ( D ~ ) * ( ~ ) / M ( s ~ ) * ( ~ ) .  

I Moreover; M( DO* (g )  i s  equivalent t o  &. 

We define both the product on BOG(U) and the internal  smash product On 

GA@ in terms of a given G-linear isometry k: U @ U + U. The previous results 

then have the following consequence. 

Proposition 3.8. For G-maps f : Y -+ BOG( U )  and g : Z + BOG( U )  there is a 

isomorphism of spectra ht f :  
+ B"~(q ,V)  6 and l e t  {F&: FwY + BOG(rw,W)} be a f i l t r a t i o n  

of g-  We r e s t r i c t  at tention t o  W containing V. ~~t k: u 8 u + u be the 
M(f x g)  r M f A  M g ,  

&linear isometry used t o  specify both the product on B O ~ ( U )  and the internal 
smash product functor- Then, with the obvious f i l t r a t i o n ,  the k(w @ W)f& space 

where the internal  smash product in GA& is understood* of T(f  + g)  is the mom space of the bundle classif ied by the dotted arrow, 

men z is a point with image under g the Gplane A BOG(V) f + f * g is 

addition of the A - V E RO(G;U)  . Here We Can apply ~ ~ o P o ~ ~ ~ ~ ~ ~  3.4' 

Corollary 3.9. If f = f '  + ( A  - v ) :  Y + B O G ( U ) ,  then 

~f r M ~ ' A  A ~ I Y S ~ .  

Start ing with any map f 1  and choosing A and V a ~ ~ r o ~ r i a t e l y ,  we can where i: c W  and sw = dim(W - V ) .  Let Z be Y or the to t a l  space of one of 
arrange that  f has v i r tual  dimension Zero. Thus a l l  of our Thorn are 

Our 'phere Or disc bundles over Y and l e t  h: Z + BOG(u)  be one of the obv,ious 
from those associated t o  maps of v i r tua l  dimension zero by mashing with 

G-ma~s* Then the k(W @ w)& space of T(p + h)  is the mom space of 
v sphere spectra. the bundle c lass i f ied  by the dotted arrow composite 

men Y ; in Proposition 3.8, f + g = ( f  x g)A and we can use Lemma to 

identify M ( f  + g ) . Let us say tha t  a q-plane G - b ~ d l e  5 over is 'lassif iable h C 
FwZ --+BOG(rw,W) - BOG(rw,V @ W )  

if 6 = f * n ( q , ~ )  for some indexing G-space V i n  U and some G-map 

f :  y + B O ~ ( ~ , V ) .  men u i s  complete and e i ther  G is f i n i t e  O r  Y is compact, 

eve& 6 is c lass i f iable ,  but in general there need be no V such that  BoG(q,V) 
is a genuine classifying space. When regarded as a map t o  B O G ( U ) ,  f 

to 6 - V in KOG(y), hence we agree t o  l e t  5 also denote the *p 

f + V: Y + BOG(U)*  
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~ ( f  + g) : T(pV + ( s ~ ) * ( ~ ) ) / T ( P ~  + g)  Remark 3-14. In the nonequivariant case, we obtain a second model for the classical 
Thom spectrum MO by applying the present construction t o  the inclusion of the zero 

5 ~ ( p ~  + ( D S ) * ( ~ )  ) / T ( P ~  + ( s s ) * ( ~ )  lo component in BOe(@) = BO x 2. We obtain a l lclassicall l  Thom G-spectrum MOG 

similarly, and Mf maps canonically t o  MOG for any Gmap f :  Y + BOG(U) of 

Here pv + h m y  be thought of as h - V a d ,  up t o  Ghomotopy2 is of the dimension zero. 

form pv + 6 when regarded as a map t o  BOG(U) .  The conclusions from 

Corollary 3.9 and Propositionr4.4 and 4.5 below* 54. H:omoto~~ invariance properties of Thorn G-spectra 

Q, passage t o  colimits from the proof, we obtain the following general 
This brief  section precisely para l le ls  1x54 (s tar t ing  from IX.4.6). AS there, 

conclusion. we begin with the following observations. 

Proposition 3.11. Let f and g be Gmaps Y + B O G ( U ) *  Let {Fvf: FvY +  BOG(^^,^)^ be 
proposition 4.10 For a G-map f :  Y + BOG(U)  and  space X, ~ ( f ~ )  M~, ,x+,  

a f i l t r a t i o n  of f ,  l e t  Fvf c lass i fy  Cv, and l e t  gv be the restriction of g 
where n: Y x X + Y is the projection. 

to ~ , y .  Then there are isomorphisms, natural  i n  f and g~ 

Sv * 
M(f + g) k o l i m  M((S ) (gv) - V)/M(g - V )  

4*2* The functor M: GQ/BOG( U )  + G d a  preserves homotopies and therefore 

V carries fibrewise G-homotopy equivalences t o  G-homotopy equivalences. 

colim M( (DSV)*(gv) - v ) / M (  (sgV)*(gv) - V, 
v By the discussion above n.4.8, Propositions 3.2 and 4.1 have the following 

consequence. 
B~ Corollary 4.3 below, the quotients in  the previous two propositions are 

taken with respect t o  cof ibrations * 4.3. The flInctor M converts fibrewise cof ibrations of G-spaces over 
inspection from Lemma 1.3 gives the behavior Of mom spectra with respect BOG( U )  into cofibrations of G-spectra. 

change of groups Observe that ,  for  H C G, BOG( U) regarded as an H-space is 

exactly BOH( U) 0 Even here in our Present purely bundle theoretical  context, we must replace 

,., G-ma~s f :  Y + BOG(U) by G-fibrations I'f: rY + BOG(U) so as t o  be able t o  exploit 
pro osition 3-12 a 

ht Y be an H-space and l e t  f : G XH Y + BOG( U, be the Gmap Corollaries 4.2 and 4- 3. The point i s  that  i f  A :  Y + i s  a  map over B O ~ (  U )  

induced by an H-map f :  Y + BOH( U) * Then and a G-homoto??~ equivalence O r  a G-cofibration, then the induced map r h :  TY + 

w 

Over U,  is  a fibrewise G-homotopy equivalence or a f ibrewise G-cof ibration 
Mf 5 G  t x ~ M f .  We can define r as i n  1x31 or we can Use the classical  construction based on paths 

length one- Either way, we get a functor r : GZI/B + GWB a d  a natural 
 ti^^ from k- 1.4 gives the behavior of Thorn spectra with respect to transformation 6: 1 + I' for  any G-space B. For f :  Y + B, r f :  TY + B i s  a 

passage to orbitse Observe that  i f  U is a GI-trivial (G x then G-fibration and 6:  Y + I'Y i s  a G-homotopy equivalence. As in the nonequivariant 
B O ~ ~ ~ ~  ( U) is just  B O ~ (  U) endowed with the t r i v i a l  action by * case, a G-homoto~~ equivalence which i s  a map of G-fibrations over B i s  

a fibrewise G-homotopy equivalence. me  proof of m . l , l l ( i i )  applies 
proposition 3-13. kt U be a Gt- t r iv ia l  (G  x G1)-universe, let be a equivariantl~ to  show that  I' carr ies  G-cofibrations over B t o  fibrewise 

( G  ~ l ) - ~ ~ ~ ~ e ,  and l e t  f :  Y + BOGd;l(U) be a ( G  x Gt)-map- There an G-c0f ibrations . 
orbi t  &map f/Gt : Y/G1 + BOG( U) , and As in IX54, we use I' as  a technical tool i n  the proof of our basic homotopy 

iWiu%xnce results .  
M(f/Gt E (Mf)/G1 0 

We shal l  be interested in both the Case G = {el (w i th  = Rm) and the 

case G I  = n, a f i n i t e  permutation group* 
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Proposition 4.4. Let f: Y + BOG(U) and g: Z + BO~(U) be Gmaps and let H C G- (We shall be a little fuzzy about grading here since we intend to be fussy 
A: y + z be a G-map over BOG( U) which is a weak G-homoto~~ equivalence- Then in [ 901 ) of Course , RO (H; U) = RO( H) when U is complete. Modulo the - 
MA: ~f + ~g is an isomorphism in the stable category hGaa restriction RO(G; U) + RO(H; U) on gradings, 

Proof. Observe first that if X is filtration-preserving with respect to - 
filtrations {FvY) of f and {FvZ) of g such that A: FvY + FvZ is a weak 

equivalence for all V, then 1.4.9 and the fact that Mf is independent of the 

filtration used to define it imply that MA is a weak equivalence. If we give f For a f: + BOG(U) which takes the coset eH to the ~ - ~ l ~ ~  

any filtration and give Tf the associated filtration, then this observation ' A  E BOG((i,V), we have 

applies to show that M6: Mf + Mrf is a weak equivalence, and similarly for g. 

If Y and Z have the homotopy types of GCW complexes, then X is a Ghomotopy Mf % G HH M(fleH1 s G r~~ A~SA, 

equivalence m d  MrX is a Ghomotopy equivalence by Corollary 4.2. Since 
(M~)(MA) = (MrA)(M6) by naturality, MA is thus a weak equivalence in this case* by Pro~ositions 3.4 and 3.12 Here E;( A'sA) is a f pee nf(~)-module on one 

We reduce the general case to this case by use of functorial G C W  approximation (as generator* 1 % ~  canonical generator lies in E;( AVSA), where a = A - V regarded 

in ~~4.9). m e n  G is finite, the geometric realization of the total singular as an ~ ? ~ ~ m e n t  of RO(H;U)- There may also be a generator in E;(A~SA). 1f so, the 

complex gives an appropriate approximation functor. For general G, Seymour has generator m Y  be viewed as a unit in IT~~(E) (and thus also in irl(,(E) by 

constructed an appropriate GCW approximation functor restriction for K C H) This implies that nE(~) is isomorphic to  ha(^), and 
this implication places a real restriction on the applicability of the natural 

Proposition 4.5. If fo = fl: Y + BOG(U), then Mfo is isomorphic to Mfl in the 
definition of an orientation in the equivariant context. 

.. 
stable category hGaCb 

. &finition 5 01 0 Bn E-orientation of a &map f : Y + 8oG( U) is a class ,, E$w 
Proof. Since the maps M6: Mfi + Mrfi are weak equivalences and 6 is natural, we - such that, for each y e Y, p restricts to a generator of the free $(El-module 
need only observe that, by Corollary 4.2, the diagram E;(M(~ ly) 1, where H is the isotropy group of y (so that the orbit Gy is a 

MriO Mril 
Mrf0 ---Z Mrf Mrfl 

copy of G/H). For any G-map A: Z + Y, p restricts to an E-orientation of 

~(fh), hence u restricts to an E-orientation of each M(Fvf) for any filtration 

{Fvf) of f. 
displays an equivalence between Mrfo and Mrfl, where f: Y I + BoG(u) is arUr 

G-homotopy from fo to fl. It might be objected that requiring orientations to have degree zero is unduly 
restrictive. However, the restriction is more apparent than real in view of 

Recall that BOG(U) is a homotopy associative and  omm mutative Hopf GspaCe* 
Corollar~ 3.9 and the fact that we have not restricted ourselves to maps of virtual 

~~t y be a ~opf &space and let f: Y + BOG(U) be a G-map which Preserves units dimension zero. 
and strictly commutes with products. Then Mf inherits a product Mf4 Mf + Mf 

with unit S + Mf. Note that f necessarily has virtual dimension zero on the G 
Since f : Y + BOG( U) factors as the composite 

orbit of the unit component and that the strict commutation with products can always 
be arranged at the price of replacing f by rf. If, further, Y is homotopy YAY x ~ A Y ~ B O G ( U )  
associative or commutative via a homotopy strictly compatible under f with that 

for BOG( U) , then the product on Mf is associative or commutative in hG 8a . The and since M(f Q ) - Y+A m by Proposition 4.1, we have an induced diagonal mp 

proofs are the same as those in and above M.4.11. A: M f  + Y+A Mf * More generally, for a second &map g: Y + BOG( U) , the relation 
g + = (g f) A implies that we have an induced diagonal map 

$ 5 .  The equivariant Thom isomorphism A: M(g + f, +  AM^* If A is a closed subspace of Y, then these maps pass to 
quotients to give relative diagonal maps 

Let E be a commutative ring G-spectrum and write E! and E; for the 
associated RO(H;U)-graded homology and cohomology theories on H-spectra for A: ~ f/~(f IA) +- (Y/A) A ~f 



and Explicitly, a,, is the composite 

G (yA)* G 
A :  ~ ( g  + f ) / ~ ( ( g  + f )  [ A )  -+ ( M ~ / M ( ~ \ A ) ) A  ~ f .  E,M~ -E,(M~AY ) 

+ 
@ E %  

If  A + Y is a fibrewise cofibration with respect t o  f ,  g, and g + f ,  then a l l  and @p is the composite 

quotients here are taken with respect t o  cofibrations, by Corollary 4.3. Modulo t 
caveat explained in IX.5.5, we can arrange the cited cofibration conditions on E ~ Y  A E;(Y+A Mf)  L E,w. G 

A + Y  by use of r. , 

As in the nonequivariant context, questions about the behavior of the Thom maps 

Definition 5.2. Define the Thom maps associated -to an element u a E:M~ t o  be the respect to  multiplicative structures quickly reduce t o  questions about the 

composites @,, and m" the commutative diagrams behavior of v. For example, i f  Y i s  a Hopf G-space and f and g are s t r i c t  
~ o p f  G-maps, then @,,: M(g + f )  A E + Mg nE preserves products i f  p: Mf + E 

~f A E  A A 1 > ~ + ~  Mfh E preserves products. 

@ I /A,,d Theorem 5.3. Let (Y,A)  be a pair  of G-CW complexes, l e t  u be an E-orientation 
lJ 

of f :  Y + BOG(U) ,  and l e t  A -+ Y be a fibrewise cofibration with respect t o  f 

Y+A E &  Y + E \ E A E  and t o  g and g + f for  a second Gmap g: Y + BOG( U) . Then the Thom maps 

and m,: M(g + f)/M((g + ~ ) \ A ) A  E - - + M ~ / M ( ~ \ A ) A E  

F(Y+,E)  F(Y+,F(E,E)  ) F(Y+A E,E) 

@.I I F ( l ~ p , l )  a,,: F ( M ~ / M ( ~ ~ A )  ,E)  --p f ( ~ ( g  + f ) / ~ (  (g + f )  I A )  ,E )  

F( ~ , l )  
- 

F(Mf,E) 4 F(Y+.A W,E) are isomorphisms i n  the stable category hG8U and therefore induce homology and 

cohomology Thom isomorphisms. 
N 

Here (g: E A E  +. E is the product and 4: E -t F(E,E) is i t s  adjoint. For a closed Proof. By a comparison of cofibration sequences ( fo r  @ ) or of f ibration 
1.I 

subspace A of Y, the re la t ive  diagonal gives r i se  t o  analogous Thom maps which sequences ( fo r  a,,), the re la t ive  case w i l l  follow from the absolute case. Thus we 
make the appropriate diagrams commute. More generally, there are analogous Thorn may forget about A. 

maps 
By the f i r s t  description of M(g + f )  i n  Proposition 3.11 (with the roles of 

f and g there reversed 1, the general case w i l l  follow from the case when g i s  
a,,: M(g + f )  A E ---+ N g  A E and mk F(Mg,E) - F(M(g + f )  ,El 

not present ( tha t  i s ,  the case when g projects Y t o  the basepoint of BOG( U) . 
hdeed, i f  g factors through some BOG(q,V), t h i s  reduction is another comparison 

and the i r  compatible re la t ive  counterparts. 
of cofibration o r  f ibration sequences. The general reduction for  @,, i s  obvious by 

passage t o  colimits; for  @,, it follows by passage t o  l i m i t s  from a comparison of On passage t o  the functors [Sa,?IG, we obtain homology and cohomology mom maps 
towers of f ibrations by use of the dual l i m l  exact sequence for  the computation of 

G G n! on such a l i m i t .  Thus we may forget about g. e : E,Mf - E,Y and @" EEY --+. EEMf, 
1-I 

It remains t o  ,prove that  the Thom maps 

and similarly in the re la t ive  and two map cases. By comparison with the definit ions 

in  11153, we see tha t  m,, and m u  are given by cap and cup product with p a  a,: ~f A E --Y+A E and mu: F(Y+,E) - F(W,E) 
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induce isomorphisms on ni for all H C G and all integers q. Let yn be the an orientation v x p of g x f. If Y = 2, we write v $ , for the induced 
n-skeleton of Y. To arrange that the cofibrations yn-' + yn are fibrewise ientation A*(V x of g + f. 

cofibrations without cluttering up the notations, we rely on our homotopy invasianc If p is an orientation of f: Y + BOG(U) and is an orientation of 

results of Propositions 4.4 and 4.5 and agree once and for all to tacitlg prefix , then the composite 
r to every space and map over BOG(U) in the rest of the proof - Thus Y, yn, et 

now mean rY, ryn, etc. With this convention, another passage to colimits or 

passage to limits argument shows that it suffices to consider the restrictions 

f (yn. By induction and comparisons of cofibration or fibration sequences, it ries the unit 1 E E% to the unique orientation v of g such that v + = o. 

suffices to consider the relative cases obtained by restriction of f to the i) Let p: Y + BOG(U) be the trivial map at the basepoint. Then M(p) r C"Y+ 
pairs (yn,yn-l) for n 1 0, where = 4. -By compatible wedge decompositions we take 1 e E% as the canonical orientation of p. For any g: Y G BOG(U), 

and pullback along the characteristic maps of cells, it suffices to consider the p is G-homotopic to g and 

relative case ( G xH en, G xH Sn-I ) for an E-oriented G-map f : G x~ en + BO~( U) , 
where e" = (1) and S-I = 4. Here en is contractible to a point y and we ass M(g + P)A E -+= & A  E and ml: F(Mg,E) --r F(M(g + p) ,E) 
that f(y) = A r BOG(q,V). Then Propositions 3.4, 3.12, 4.4 and 4.5 imply stab1 

equivalences are carried to identity maps under the canonical equivalence of M(g + p) with 
M g  induced by the right unit homotopy for BO~(U). 

(iv) If II and v are orientations of G-maps f: Y + BOG(U) and 

g: Y + BOG( U) and h: Y + BOG( U) is another G-map, then easy chases show that the 

and (using the projection en + {y)) following diagrams are commutative. 

(G XH en)/(G xH S"-')AW = G ixH (G/H+A snA AVsA). 

Moreover, the relative diagonal map between the left hand G-spectra corresponds 

under the equivalence to the map induced by the inclusion So + G/H+ on the right. 

We conclude that, up to homotopy, the relative Thom G-maps ,, and mu here are M(h + g) A E  

the Gmaps obtained by application of the functor G w@A ( 1 )  to the composite 
(v) The Hopf G-space BO~( U) has a homotopy inverse G-map X: BOG( U) + BOG( U) , so 

A'S~AE U~'-EAE AE at x X)A = p. For f: Y + BOG(U), we have f + xf = p and thus M(f + Xf) - f'yt. 
(ii), for any orientation II of f, there is a unique orientation XU of Xf 

and by application of the functor F(G vn,? ) to the composite H-map ch that p @ XLI = 1 E E%. By (iii) and (iv), for any g: Y + BOG(U), 

E F(E,E) F( r ~ (  AVSA,E). 
mx,: MgAE M(g + f + xf1A.E -M(g + f) A E  

On passage to nt for any K C H, these composites induce multiplication by 

0 V A  K unit , s EK( A S ) s nV-A(E), hence these composites are stable H-equivalences. 

mx': F(M(g + f) ,El * F(M(g + f + xf),E) 2 F(Mg,E) 
Remarks 5.4. (i 1 If f: Y + BOG( U) and g: Z + BOG(U) have E-orientations p 

and v, then the image of v 0 11 under the external product e hverse equivalences to m, and mu. 

E ~ N  B E ~ W  --+E~(M~AM~) 5 E:M(~ x f) If we had an a priori construction of the inverse orientations XU, the 
vious remarks would supply another proof of the Thom isomorphism. 
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Remark 5.5. Let 5 be a Gvector bundle over Y and let u 6 Ea(T~) be an G 
space of the Gvector bundle <(X;V,Vt ) of VI.2 .I, and lemma 2 -4 implies that 

orientation of 5. ~hus, for an orbit inclusion i.: G/H + Y with fibre C,(X;V,~') ev is canonically isomorphic to the G-vector bundle classified by 
W at i(eH), iX ( u) is a generator of E;(T(~*C) ) - %(sW) We E(x x f): X x FVY -+ BOG(Vt 1. Thus 

may t h w  of (c,~) as the element 6 - u r KOG(Y) together with the orientation 

,, E Eg(M(c - ) . This makes sense since Proposition 3.4 and Corollary 3.8 imply an (X ix Tf)(Vt) % T(E(~ x f))(Vt), 

isomorphism 
M( - E C Y ~ A S - ~ ,  and it $8 easy to check that the structural maps agree. 

"a 0 so that EG(Tg) = E:( C~TEJ) z EG(M( c - a) ) . Theorem 5.3 specializes to show that, Pro~osition 3-13 gives the following consequence. 

for A C  Y, 
B a+ B 

11: EG(Y,A) EG (T~,T( CIA) ) Corollary 6-2. When U' = R" with trivial &action, 

is an isomorphism for all E RO(G). x KG Mf 2 M(E(x x f)/G). 

16. Twisted half-smash products and Thom Gspectra 

We here prove a general commutation relation between twisted half-smash 

products and Thom spectra. Since we are now working in a fully equivariant setting, 

we can give a cleaner treatment than in M§6; the analogs of the results there will 

follow by the three step procedure (external smash products, twisted half-smash 

products, orbit spectra) advertised in the introduction to chapter VI. 

Proposition 6 .l. Let U and Ut be G-universes and let X: X + s( U,U' ) and 

f: Y + BOG( U) be Gmaps. Then the Thom G-spectrum M( C( x x f) ) associated to the 

composite 

is isomorphic to x ix Mf. 

Proof. Since the functor M commutes with colimits, we may as well assume that 

x is compact. Let a and Ut be our given indexing sets in U and U' and 

choose a X-connection ( 11, v)  :a + a! (as in VI.2.7) . Let 
{Fvf: FvY c BOG(qv,V)} be any filtration of f and observe that the spaces 

X x FwlY then give a filtration of E( x f since x(X) ( vV1 ) C V' . On the 
prespectrum level, 

( ec ~ f )  (V1 ) = T(X;V,V' AT( cV) , V = vVI , 

where cv is the G-vector bundle classified by Fvf. Here T(x;v,V' ) is the Thom 

Now let U be complete. Then Q ( U,RW) is a universal principal Gbundle and 

there is thus a Gmap X: EG +Q (U,ItW), unique up to Ghomotopy, and a 
corresponding twisted half-smash product functor EG w ( ? from ~ G A U  to MR-. By 
proposition 2.1 if Y is finite and by definition otherwise, 

KOG(Y) = [Y+,BO~( U) IG 

for G-CW complexes Y. By Proposition 4.5, Mf depends only on the homotopy 

class of f and thus on f as an element of KOG(Y). By Corollary 2.9, the 

transformation 

a: KOG(Y) + KOG(EG x Y) 5 KO(EG XG Y) 

induced by the projection EG x Y + Y is given by a(f) = x f)/G. Thus 

Corollary 6.2 specializes to give the following comparison. 

Corollary 6.3. For f e KOG(Y), ~(a(f)) = EG KG Mf. 

We have already observed that the functor M commutes appropriately with 
external smash products and with passage to orbits (Lemma 3.7 and Proposition 

3.13). Starting from a G-universe U regarded as a n-trivial (G x n)-universe for 

the appropriate n, we immediately deduce the equivariant analog of IX.6.1. Using 

Lemmas 2.5 and 2.6, we also read off the equivariant analogs of M.6.2 and 6.4; the 

generalizations alluded to in M.6.3 would be more natural in the present context. 
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Remarks 6.4. The relationship between Thom G-spectra and operad ring G-spectra 
Appendix. Analysis of the passage from prespectra t o  spectra 

works exactly as explained i n  IX§7 in the nonequivariant case. One need only 

replace the classifying space BG used there with the classifying G-space BOG(U) by L. G. Lewis, J r .  

used here (resolutely ignoring the conflicting uses of the l e t t e r  G I .  One must 

check that  the three easy resul ts  quoted from (971 remain valid in the equivariant 
The l e f t  adjoint L t o  the inclusion functor from the category Gda of 

sett ing,  but t h i s  presents no di f f icul ty .  The essential  points are tha t  chapter VII spectra t o  the category GBCL of prespectra appears throughout our work. It is 

applies as it stands equivariantly and that  Proposition 6.1 and its elaborations required for almost a l l  colimits, for the smash product of a space and a spectrum or  

discussed in the previous paragraph give a l l  requisi te properties of Thom G-spectra. 
of two spectra, for the change of groups functors G pcH? and most change of 
universe functors f*, and for half smash products. Many of these constructions 

To summarize, i f  GI i s  a G-operad over r (  U) , Y i s  a c-space , and 
invcjlve non-inclusion prespectra and so use the more sophisticated form of - L. In 

f :  Y + BOG( U )  is a C -map, then Mf is a -spectrum and A :  Mf + Y'A M f  i s  a 
spite of those frequent appearances, L has not become an old, familiar friend; it 

c-map. I f ,  further,  & i s  an E, G-operad and g: Y + BOG(U) i s  another 6-map, 
remains an unknown and unwelcome intruder in to  our work. Here, we offer the limited 

- introduction we are able t o  give t o  it. 
then M(a + f i s  an ht-spectrum and A: ~ ( g  + f )  + Mgn M f  i s  an he-map. In e i ther  

- 

case, i f  E i s  an hkd-spectrum and i f  p: ~f + E i s  an hr-map, then the morn map In section 1.2, we noted that  L i s  the composite of the l e f t  adjoints 

L 1 :  GBk + G ~ U  and L1': G20t + GdCL t o  the corresponding inclusion functors. 

m u :  M ~ A E  + Y + A E  or  m u :  M(g + f ) 4 E  ----+MgnE There we described L", the simpler part  of L. Here, i n  section 1, we construct 
L ' .  Most of what i s  known about L1 and L, beyond the formal consequences of 

is an hcd-map between ;$-spectra. the i r  being l e f t  adjoints, i s  derived from the i r  behavior on f i n i t e  l imits.  Section 

Given the present s t a t e  of our knowledge and calculational expertise, these 
2 i s  devoted t o  th i s .  In 198, we characterized the spacewise closed i n c l ~ s i o n s  

f ac t s  are rather esoteric here i n  the equivariant context, and it must be kept i n  
preserved by L. We return t o  t h i s  i n  section 3 and also give more information 

mind that  the relationship between operad actions and equivariant loop spaces i s  not 
about inclusions, including a proof of 1.8.1, which asser ts  tha t  a cofibration i s  a 

clear unless G is f i n i t e ;  compare VII.5.6. 
closed inclusion. Two b i t s  of unfinished business with c e l l  spectra are disposed of 

in the f ina l  section -- the behavior of maps from compact spectra t o  c e l l  spectra 

and the l a t t i c e  theoretic behavior of c e l l  subspectra. 

9 1 .  The construction of the functor L 

The functor Lt : G W L  + G%Q. is  essential  t o  a l l  of our work and yet remains 

quite mysterious. Therefore we give two approaches t o  it -- an eas i ly  followed, 

formal existence proof giving nothing more than i t s  existence a s  a l e f t  adjoint ,  and 

a longer, unattractive construction providing a l i t t l e  more insight in to  i t s  

behavior. 

Theorem 1.1. There is a l e f t  adjoint Lt : G% + t o  the inclusion functor 

Proof (by Freydt s adjoint functor theorem) . As we noted in 152, the category G 6 a  

has a l l  ( s e t  indexed) l i m i t s .  It is easy t o  check that  the limit in G@& of a 
diagram in  G M .  i s  an inclusion prespectrum and so is also the limit i n  G a  . 
Thus, the category ' G & a  has a l l  l imi ts  and the functor R '  : + G$& preserves 

limits. By Freydl s adjoint functor theorem (92,  p. 1171, the functor R 1  must have 

a l e f t  adjoint i f  it sa t i s f i e s  the following. 



476 477 

Solution Set Condition. For each prespectrum C,  there exis ts  a se t  I and an is induced by the composite on the bottom row of the following commuting diagram. 

I-indexed family of maps fi: C + Di in to  inclusion prespectra Di such that  any N 

map f :  C + D with D i n  G a  factors as f = gfi fo r  some i e  I and g: Di + D. cv a Q ~ - ~ C W  

To see that  t h i s  condition is sa t i s f ied ,  l e t  f :  C + D be a map from a 1 Qw-vy 

prespectrum C t o  an inclusion prespectrum D. Cefine a new prespectrum im f by 
-+ Q ~ - ~ J C W  

(im f ) ( V )  = image(f: CV ---p DV) f7 
A,-v S1 Am-V_ cr A,-v A -A A -W 

for each V e @. The structure maps for D induce structure maps for  i m  f making 
n C A ~  -----0 0 m c ~ n  nw-vQ 

it an inclusion prespectrum, and f factors as 'a  composite 
Here, An i s  the l eas t  indexing space i n  A properly containing W (so tha t  m G n ) .  

C cimf-D. clearly the structure maps for JCV sat is fy  the coherence condition needed for a 

prespectrum and the maps y induce a map y: C + JC. Moreover, J i s  a functor 
N 

The map f i s  a spacewise surjection. Thus we may take, as the solution se t  fo r  and y is a natural transformation. 
C ,  a family of representatives of the isomorphism classes of spacewise surjective 

maps from C in to  inclusion prespectra. This family i s  a proper se t  because a i s  Recall the notion of an injection prespectrum from 1.8.2. The basic properties 
a se t ,  for each V r Q there i s  only a se t  of isomorphism classes of quotient se t s  of J are as follows. 
of CV, and for  each quotient s e t  there i s  only a se t  of possible topologies. 

Since the proof just  given offers no in tu i t ion  about L1, we turn t o  a Lemma 1.3. Let C 6 G@& and D 6 G2& 

construction of it. Roughly speaking, our method is t o  define a functor (i) y: C + JC i s  a spacewise surj ection. 

J :  Gm---orGB& (ii) y: C + JC i s  a spacewise injection i f  and only i f  C i s  an injection 
prespectrum, and y i s  an isomorphism i f  and only i f  C i s  an inclusion 

and a natural transformation 
(iii) Any map f :  C + D factors uniquely through y: C + JC. 

y: C--+JC for C e  Gm, ( i v )  J preserves f i n i t e  products and, res t r ic ted  t o  the f u l l  subcategory of 

injection prespectra, it preserves all f i n i t e  l imi ts .  
which are f i r s t  approximations t o  L' : G6& + G3& and the unit : C + R'L '  C of 

the ( L 1 , k l )  adjunction. We i t e ra t e  J ,  possibly t ransf in i te ly ,  un t i l  we obtain Part (i) i s  included i n  the construction. For part (ii) , it i s  obvious that  
f C is an injection (or  inclusion) prespectrum, then the map y i s  an injection 

L' . 
or isomorphism) . For the converse, assume that  y i s  an in j  ection. Then for any 

V and i t s  associated A,, 
Construction 1.2. Let A = { k }  be an indexing sequence i n  a. Given C e G@& , 
define JC by 

2: cv - nA,-vcA, 
JCV = image ( 2: CV --+ n'-v~qn) for  v a, 

i s  an injection. If  V = An, then m = n+l  because we require proper containment 
where i s  the smallest indexing space i n  A properly containing V. Note the of V i n  %. Arguing by induction on n, we have that  
obvious surjection y: CV + JCV. If V C W, then the structure map 

a: cv - nAn-Vch 
JCV -QW-VJCV 

i s  an injection for any V €0. and n with VC h. Factoring such a map through 



478 479 

z: CV -- Q~W-~CW (ii) The map Y:+~: JaC + Ja+lC is an isomorphism if and only if JaC is an 
inclusion prespectrum. Moreover, if JaC is an inclusion prespectrum, then 

for V C W Ck, we have that the latter map must be an injection and C must yf: JBC + J6C is an isomorphism. 

be an injection prespectrum. The argument that C is an inclusion prespectrumif 
(iii) Any map f: C + D factors uniquely through C + JaC. 

y is an isomorphism is similar. 
proof. Part (i) follows from Lemma 1.3(i), the definition of ya, and an obvious 

For (iii), note that f: C + D must be y-l~fy by part (ii) and the B 
observation about surjections and colimits. The first half of part (ii) follows 

commutativity of the diagram from Lemma l03(ii). For the second half, it suffices to prove by induction on 6 

that' y; is an isomorphism if 6 > a and JaC is an inclusion prespectrum. If 6 

is ,a successor ordinal, this follows from Lemma 1.3(ii) and the induction . 

' hypothesis. If 6 is a limit ordinal, then J6C may be taken to be the colimit of 

. the JBC for a < B < 6 since this system is cofinal in the defining system. The - - 
result follows because this is a colimit over a diagram of isomorphisms. Part (iii) 

The first half of part (iv) follows from the structure maps for products of follows from ( ii) j ust as Lemma 1.3( iii) follows from Lemma 1.3( ii) . 
prespectra and the commutativity of products and images. Since finite limits can be 

formed from finite products and equalizers, for the second half it suffices to prove proof of Theorem 1.1 (by construction). By [92, p. 811, it suffices to show that 

that J restricted to the category of injection prespectra preserves equalizers. for each C E GVQ, there exists an inclusion prespectrum LIC and a map q 1  : C + LIC 

This can be verified by inspection. which is universal with respect to maps from C into inclusion prespectra. The 
assignment of L1 C to C can then be uniquely extended to a functor L1 : GB& + G dU . 

Now we iterate J transfinitely. 
Moreover, the functor Lt must then be left adj oint to 2 '  and q 1  must be the 

unit of the adjunction. By. Lemma 1.5(iii), for each ordinal a the map y:: C + JaC 

Definition 1.4. For each ordinal a, define the functor Ja: G@& + GPO. and for has the proper unique factorization property with respect to maps from C into 

each pair a G B of ordinals, define the natural t~ansformation Y;:. J, + Jg inclusion prespectra. Thus, it suffices to produce an ordinal a for each C in 
G@& such that JaC is an inclusion prespectra. 

(i) Jo is the identity functor and, for any a, Y:: Ja + Ja is the 

identity natural transformation. 
Since y:: C + JaC is a spacewise surjection, JaC may be described 

completely by giving, for each V c: b, the pairs of points in CV to be 
(ii) For any ordinal a, Ja+l is JJa and for ordinals a < B, y;+l = yy;. identified to form JaCV and the open sets in CV which are the inverse images of open 

(iii) If $ is a limit ordinal and C is any prespectrum, then JBC = colim J C, 
a<$ a 

where the colimit is taken over the maps yu'for a' G a < 6. For a < $, the map 

y;: JaC + JBC is the natural map into the colimit. The universality of colimits 

and the naturality of the maps yal ensure that JB is a functor and that the 

maps y; are natural transformations. 

Note that for a G B G 6, y; = yfy;. 

0 
The extension of most parts of Lemma 1.3 to Ja and y,: C + JaC, for all 

a, will not be discussed until the next section. However, the following partial 

extension is needed to complete our second proof of Theorem 1.1. 

Lemma 1.5. Let C be in G@& , D be in G3G and a < (3 G 6 be ordinals 

(i) The map ya:~a B + J B C is a spacewise surjection. 

ets in JaCV. If JaC is not an inclusion prespectrum, then Y:+l: JaC + Ja+lC 

s not an isomorphism so the formation of Ja+lC must involve either the 

dentification of more pairs of points in the spaces CV or the elimination of more 

pen sets from the spaces CV. There is only a set of pairs of points that can be 

dentified and a set of open sets that may be omitted. If the cardinality of a is 

reater than the cardinality of the union of these two sets, then Y:+~ must be an 

somorphism. For each C, we select a sufficiently large ordinal a (which may 

epend on C) and let LIC be JaC and n1 : C + LIC be y:. The second part of 

mma 1.5(ii) ensures that the choice of a, among the sufficiently large ordinals, 

S immaterial. 

. This,iterative approach to left adjoints has other applications in 
ology. For example, left adjoints to the inclusions of Hausdorff spaces into all 

ces and of compactly generated weak Hausdorff spaces into all compactly generated 
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spaces may be constructed t h i s  way. In both cases, the closure of the diagonal in that  any pair  of d is t inc t  points in %, n > 0, can be separated by a pai r  of 

X x X is used t o  form an equivalence relat ion on a space X. The associated disjoint  o ~ e n . s e t s  whose union is a l l  of %. Thus, map from a connected space 

quotient space of X i s  the f i r s t  approximation t o  the l e f t  adjoint. Also, i f  the into $ must be a constant map and %s = o for  m , 1. 

topology on JCV i n  Construction 1.2 is taken t o  be the quotient topology from 
Let Yn denote the unreduced suspension of Xn and l e t  4,: yn + Y ~ + ~  and 

C v  instead of the subspace topology from Qqo-vCpm, then J may be i terated t o  5,: Yn + s2 be the unreduced suspensions of the ea r l i e r  maps q,n ad <,. kr 
form a l e f t  adjoint t o  the inclusion functor from injection prespectra t o  prespectrum D is defined by 
prespectra. The functor L1 i s  the composite of th i s  l e f t  adjoint and the 

res t r ic t ion  of L1 t o  the category of injection prespectra. , 

Examples 1.7. It i s  natural t o  inquire about the number of times J must be and 

i terated to  obtain L1. The following two examples show that  i te ra t ion  t o  the f i r s t  

l i m i t  ordinal may be required. The f i r s t  example is quite transparent. The second, 

more sophisticated example, shows that  even restr icted t o  injection prespectra, L' 

may a l t e r  the homotopy groups of the spaces of a prespectrum i n  quite unpredictable 

ways. In both examples, we take G = e,  U = Rm and dl t o  be the standard indexing 

sequence {R"I,,~. We abbreviate cR" t o  Cn for  any prespectrum C. 

(i) Let C be the prespectrum with spaces Cn = S" and maps a: xCn + Cn+l 

being the standard identif ication ES" E sntl for  n nbt a power of 2 and the 

t r i v i a l  map for n a power of 2. Clearly LtC must be the point pregpectrum, 

but JaC i s  not the point prespectrum for any f i n i t e  ordinal a. 

(ii) We construct an inj  ection prespectrum D such that  Lt D i s  the 

suspension sphere prespectrum { s ~ ' ~ } ~ , ~  but the integral  homology groups %Dn 

vanish for m B n+2. This easily implies tha t  the natural map 

colim %+,( Dn) 4 colim k+,( (LID),)  2 

i s  zero instead of an isomorphism as  one might hope from the behavior of 

L": G2&+ GsQ. (see 1.4.8 and 1.4.9). 

I t  i s  easy t o  see tha t  (JkDIn = E ~ Y ~ + ~  i f  k i s  an integer and Jk i s  the kth 
i te ra te  of J .  Thus, i f  w i s  the f i r s t  l i m i t  ordinal, then JwD i s  the 

suspension sphere prespectrum {snt2},&. Since th i s  i s  an inclusion prespectrum, 

L I D  = JwD = { s " ' ~ } ~ ~ .  Because Yn i s  the unreduced suspension of Xn and so has 

a nondegenerate basepoint, we have suspension isomorphisms 

for m , n+2. 

02. The behavior of L with respect t o  l imi ts  

Almost everything we know ,about L: G* + GAG and L' : G& + G&d tha t  i s  not 
a formal consequence of the i r  being l e f t  adjoints follows from the i r  behavior on 

f in i t e  l imits.  

Embed S1 i n  R3 as the unit c i rc le  in  R~ C R ~ .  kt 8: I + s1 be the map Proposition 2-18 (i)  he functors L' and L preserve f i n i t e  products. 

8 ( t )  = (cos2nt, sin2nt, 0) for t~ I. 
(ii) The functor Ll1 and the functors L and L1 res t r ic ted  t o  the f u l l  

subcategory of injection prespectra preserve a l l  f i n i t e  l imits.  

Number the rational points of 1 as {rm}m,l. Let XO C R3 be the 
1 

s1 - {O(rm)}m,l and the se t  of points {(cos2nrm, sin2nrm, ;) I m 2 11; tha t  i s ,  Since L = Lt'L1, it suffices t o  prove the claims of the proposition for LI  
1 

form from s1 C ~3 by moving the point O(rm) UP the d ~ ~ ~ a n c e  ; for each and Ltl* For a given prespectrum (or  inclusion prespectrum) 6, the inclusion 

m 2 1. For n 2 1, form the space % from Xo by returning the points prespectrum LIC (or  spectrum L"C) i s  computed spacewise as a c0limi-t of a 

associated to  the rm, for 1 < m < n, t o  the i r  Proper places in sl* There are directed of spaces. Thus, t o  prove the proposition, we must investigate the 

obvio& continuous maps b: ]h + %+1 and h: % + sl* Moreover, S' is the c o m u t a t i v i t ~  of f i n i t e  l i m i t s  and directed colimits in the categom GX of 

colimit of the % and the maps 5, are the natural maps into the colimit. we are 
generated' weak Hausdorff Gspaces. We assume familiari ty d t h  the basic 

indebted t o  Andrew Berner for pointing out the spaces % and thei r  colimit. ~ 0 t e  results  on such limits and colimits i n  the category of se t s  (see [92, p. 2111 ) . 
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As  a further consequence of our resul ts  on f i n i t e  l imi t s  and directed colimits 
,., 

(c0lj-m Xa)  x (~01 im Y ) = colim(X x (colb y 1 )  
of spaces, we w i l l  obtain the nonelementary parts  of the following resul t  on the a B B a  a 

B 

units  of our various adjunctions. ,.d 

= col im(col im(~ x y ) 
a \ 

proposition 2.2. (i) me unit  111 : C + elLIC of the (L' ,  9,' ) adjunction is colim(Xa x Y ) 

always a spacewise surjection. It i s  an injection i f  and only if C is an a, B B 

in j  ection prespectrum. It i s  an isomorphism i f  and only if C i s  an inclusion ere the l a s t  colimit is indexed on the directed s e t  I x I and the l a s t  
prespectrum. omorphism i s  a purely formal resul t  on rearranging i terated colimits [92, p. 2271. 

( ii ) me unit D + g " ~ "  D of the ( LI1, el1 ) adj unction i s  always a 

spacewise inclusion. It i s  an isomorphism i f  and only if D is a spectrum* 

colim(X x Y a )  --+ colim(X x Y ) 
a a, B a B 

only if c is an injection prespectrm and an inclusion i f  and only if C i s  an i s  an isomorphism. The composite of a l l  these isomorphisms i s  the isomorphism of 
inclusion prespectrum. It i s  isomorphism i f  and only if C is a 

The surjection assertion in part  (i) above follows from the construction of (ii) kt G'K. be the category of compactly generated, not necessarily weak 

LI The isomorphism assertions in all three parts  are formal consequences of the ~ausdorff ,  G-spaces (see (83,1461 1. Colimits i n  GX are the same as the 

fac t  tha t  we are dealing with inclusions of f u l l  subcategories [92, Po 881* The corresponding ~ 0 l i m i t s  in the category of all G-spaces; colimits in  G U  are formed 

remaining assertions of part  (iii) follow from those of parts  (i) and (11) since by taking the largest  weak Hausdorff quotient of the corresponding colimit in GX . 
n: C + &LC is the composite Part (i) holds, with the same proof, in GX. . kt {xa, h i  : xa + xB 1 be a directed 

stem i n  G" with each h i  an injection and l e t  X be the colimit of the xa 
C '1' g1L1C e ln"  -, a l l L 1 l L 1 ~  = ~ L C .  (3x0 natural maps Xa + , X  are injections by the construction of colimits 

G k  . Applying part (i) for GK with Ya = Xa and IIF = h i ,  it i s  easy t o  

The assertions in parts  (i) and (ii) come from the following point set ee that  the diagonal in X x X i s  closed. Thus, X i s  in  GU and so is also 

he colimit there. 1f the maps h i  are,  i n  fac t ,  inclusions, then a typical  point- resul ts .  
argument for compactly generated, weak Hausdorff spaces gives tha t  the maps 

Lemma 2.3. ~ e t  ,' ~ l ;  : xa + xB 1, and {Y a, $ : Ya + Y 1 be two directed 'ystems + X are also inclusions [83, p. 175 ] . 
in G %  indexed on the same directed se t  1. 

GU, f i n i t e  limits cormnute with colimits of directed systems all of 
( i) The natural  map se maps are injections. 

colim(xa x Ya)  - (colim X ) x (colim Y ) 
a I  a B 1 

B 
a I 

alizers commute with colimits of directed systems 611 of whose maps are is an isomorphism. 
ections* Let IXa,hz: Xa + XB1 and {Y,, p i :  Ya +YB] be directed systems i n  

( T i )  ~f all the maps 1; are inj ections, then the colimit X of the 
k~dexed on the Same directed se t  such that  the maps A; and ,,; are dl 

in GU i s  the same as the colimit in the category of all topological spaces 
e ~ t i o n s *  kt {fa: Xa + Y,} and {g,: Xa + Y,} be a pair  of maps of directed 

than x being a proper quotient of the l a t t e r  colimit) and the ma 
and l e t  EaC Xa be the equalizer of f a  and ga. The injections 

X, + x in to  the c o l i m i t  are injections.  Moreover, i f  the maps h i  are hi 
uce rnec t ions  v i :  Ea + EB making the s e t  {Ea,$: Ea + EB} a directed system,, 

inclusions, then the maps Xa + X are also inclusions* 
and Y be the colimits of the Xa and Ya respectively, f ,g:  X t y be 

proof. (i) For any space Gu, the f ~ c t o r s  ? x and ? are left - induced by the f a  and g,, and E C X be the equalizer of f and g. 
adj o in ts  and so preserve colimits Thus re i s  a natural  map 
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8: colim E, --+ E reserves colimits there. Since l imi ts  and directed colimits i n  G J  are formed by 
a 

assigning the obvious basepoints t o  the corresponding constructions i n  GU, our 
which we must show i s  an isomorphism. The point of assuming that  the maps results  apply t o  G J  . 
and ,,;, and thus are inj ections i s  tha t  lemma 2 . 3  ii) ensures tha t  the 

c o l h i t s  of the X,, y, and Ea in G a  are the same as 4Al0se in G% (or  the proof of 2.2. A l l  that  remains t o  be proved i s  tha t  ~ . 1 "  i s  a spacewise inclusion 
category of all (&spaces). Thus, the underlying se ts  of the colimits are the and that ,  for injection prespectra, 11' i s  an injection. That I-,'' i s  a spacewise 

c o l h i t s  of the corresponding diagrams i n  the category of s e t s *  1% follows by [g2 

p. 2111 that  8 is a b i j  ection. The commuting diagram s an injection prespectrum. To show that  ~ . 1 '  : C + R'L'C i s  an injection,  it 

uffices t o  show that  y:: C + JaC i s  an injection for a l l  a. In fac t ,  we show by 
r b s f i n i t e  induction on a tha t  JaC i s  an injection prespectrum, and for a l l  

G 6, y;: JaC + JBC i s  an injection. It i s  easy t o  check that  i f  D i s  an 

injection prespectrum, then so i s  JD = J ID Also, by Lemma 1.3( ii) , y = y?: D + JD 
i s  an injection. Thus, i f  J6C and y;: JaC + JBC sat is fy  our conditions, then so 

colim Xa 4 X 
do JBflC ' JJBC and Y ; + ~  = yY;. If  6 i s  a l i m i t  ordinal and for  a l l  a < B < 6 ,  

J ~ C  and y; s a t i s fy  our conditions, then the colimit diagrams used t o  define J6C 

i n  which + i s  induced by the inclusions EaC X,, indicates tha t  it suffices are directed system of injections.  By Lemma 2 . 3 ( i i ) ,  the maps y;: JaC + J6C are 

prove tha t  + i s  an inclusion. For a < B ,  the diagram ctions and the colimits used t o  form J6C do not involve passing t o  the largest  

Hausdorff quotient. Given th i s ,  it is easy t o  check that  J6C is an injection 

Ea = Xa 

proof of 2.1. Part (i) follows immediately from Lemmas 1 .3( iv)  and 2 . 3 ( i ) ,  
~ e f i n i t i o n  1.4, and the description of L" i n  section 1.2. Part (ii) for  L1' 

E C X B  
B llows M e d i a t e l y  from Lemma 2.4. For L ' ,  since only f in i t e ly  many prespectra 

e involved i n  forming a f i n i t e  l i m i t ,  we may assume that  L' agrees with Ja for  

i s  easily seen to  be a pullback since II; i s  an i q e c t i o n .  1% follows that, me sufficiently large ordinal a. Thus, it suffices t o  prove, by t ransf in i te  

each a ,  the diagram duction on a, tha t  J a  res t r ic ted  t o  injection prespectra preserves f i n i t e  

i t s .  Recall from the proof of Proposition 2.2 tha t  J a  preserves injection 
I espectra so we may assume hereafter tha t  a l l  functors are applied only t o  

jection prespectra. By Lemma l . 3 ( i v ) ,  J = J1 preserves f i n i t e  limits, and i f  

preserve's f i n i t e  limits, so does ' Ja+l = JJ,. Assume that  B i s  a l i m i t  
dinal and Ja preserves f i n i t e  l imi ts  for a l l  a < B. By the proof of 

oposition 2.2, J B  is formed from colimits of directed system of injections. 
erefore, Lemma 2.4 ensures tha t  J B  preserves f i n i t e  l imits.  

i s  a pullback if the ver t ica l  arrows are the natU.Tal maps in to  the colimits* 

for any closed subset C of 0 E ,  = C *  That 4 ' i s  a If  C is an injection prespectrum, then, by Proposition 2.2 (i) , 
closed inclusion now follows eas i ly  from the fac t  tha t  each I, is  a closed : C + R'L'C is a spacewise continuous bijection.  Thus, LIC i s  formed from c 
inclusion. 

o ~ o s i t i o n  3.11 sheds some l igh t  on the nature of t h i s  al teration.  

Remark 2.5. me  cautious reader may have noted that  We need resul ts  on limits and 

c o l h i t s  in the category G 3  of based spaces for our applications, but tha twe  have 

worked in the category G t  of unbased spaces t o  have use of the fac t  tha t  Z 



$3. Prespectrum and spectrum level  closed inclusions 3emarks. 3.3. (i) Condition (i) of the lemma i s  a d i rec t  extension of' 1.8.4(i). 
using it, one may check that  good closed inclusions i n  the sense of Definition 3.1 

Recall from 108 the connection between equalizers and (spacewise) are also good i n  the sense of IJ8. In fac t ,  the two notions are equivalent. If 

inclusions, and i ts use in showj.,ng tha t  certain f ~ ~ c t o r s  Preserve closed 1: A + is a closed inclusion between injection prespectra which i s  not good, then 

inclusions. ~n t ha t  discussion, we noted tha t  L need not Preserve select V C W  in and d € DV, o a Q'-~AW with zD(d) = (nW-Vl)(u) such that  

inclusions and introduced a rather ad hoc concept of good closed inclusions to there is no a AV with I ( a )  = d and EA(a) = u. If D U A D  is  the prespectrm 

characterize those preserved by I. This fa i lure  of t o  preserve arbitrary e v e l ~ u s h o u t ,  then the map (DWAD)(V) + . Q ' - ~ ( D U ~ D ) ( W )  is  not an injection 

cause the two canonical images of d in ( D u A D ) ( V )  both go t o  the obvious 

However, t h i s  f a i lure  is not merely a misbehavior of L' , a s  to L1', Wit gle image of  u i n  nW-V( D U ~ D )  ( W )  . 
respect to closed inclusions. There are closed hclus ions  between x-inclusion 
prespectra which 111 

(and so L) does not preserve. Here we give an alternative 

description of good closed ~ c l u s i o n s  and t i e  them t o  the behavior of pushouts in ems directed colimits and note the use of pullbacks i n  the proof of kmma 2.4. 
the catego* of injection prespectra. Using t h i s ,  and various lemmas On general, if fXa, h i :  Xa + XB} and fl,, u i :  Y, + Y B} are directed systems 
inclusions, we show that  a cofibration between spectra must be a closed dexed On the same s e t  and {la: X, + Y a }  i s  a collection of closed inclusions 

Definition 3.1. A map I :  A + D of injection prespectra i s  a good closed inclusion olimits the X, and Y, need not be a closed inclusion. However, a pullback 
if it i s  a ( spacewise) closed inclusion, and i f  for every V C W in a , the 

diagram sures tha t  1 i s  a closed inclusion. 

AV ' 9 DV 

*j: E A X  + EAZ is a good closed inclusion satisfying condition ( T i ) .  ~n par t i -  
ar ,  if E is an injection prespectrum, and CE and EAI+ are the prespectrm 

is a sincc ATJ + IXT is a closed inclusion, it suffices t o  check %hat vex cone and cylinder of E, then the standard maps 

AV maps onto the pullback of zD and .QW-' I ;  tha t  is, for  each 6 and 

r QW-VAW with GD(d) = ( nW-vl ) ( u) , there i s  an a c A '  with I (a) = d and 1 :  E---CE and lt: E ----PEA I+, t € I 

zA(a) = 1f A is a spectrum, then any closed inClusi0n out of A must be goo 

good closed inclusfons satisfying condition (ii). Thus, if f :  A + c i s  a map 
The following extension of 1.8.4 is our motivation for considering good clo injection ~ r e s ~ e c t r a ,  then the prespectrm level  mapping cone cf and mapping 

inclusions; i ts proof is just  diagram chasing* 

bmma 3.2. kt A, C, and D be injection prespectra, I: A + D be a good eloS (i i )  h o t h e r  way t o  gain a f ee l  for  condition (ii) of the lemma is  t o  consider 
inclusion and f :  A + C be any map. Then the pushout C ufD is an injection 

special case i n  which C = * so that  the pushout is  the quotient prespectrum 
prespectrm if ei ther  of the following conditions holds 

i) f is an injection. 

ii) For every c w in a and every pai r  d, d' in - 1 (AV),  there 

element t SW-V such t h a t  zD(d) ( t )  # zD( d' ) (t) and a t  least One of In our proof tha t  a cofibration is a closed inclusion and i n  our study 

;iD(d) ( t) and GD(dl ) (t) is in - l(AW) 0 

CW spectra in the next section, we w i l l  want t o  apply the observation of Remark 

i) On mapping cones and cylinders t o  a map f :  A + C of spectra. The spectrum 
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level  mapping cone Cf is  defined t o  be the spectrum associated by L t o  the me Pair of maps r: W + Z and 1: W + W display the diagram above as  a 

prespectrum level  pushout of the maps sp l i t  equalizer ( see 192, p. 1461 ) . 

LA Rf - R G  and !?A 'PRL9.A RL(( J?A)  A I ) .  
RL1 :, Lemma 3.8. If  the diagram 

Thus, the remark does not apply directly.  However, applying L t o  the prespectrum 

level  pushout of the maps 

e f ~ ~  and l ~ ~ l  1 - " ( ~ ) ~ ~  

produces an isomorphic spectrum; that  i s ,  the spectrum level  mapping cone or 

cylinder of f :  A 4 C i s  isomorphic t o  the resul t  of applying L t o  the i s  a pullback i n  GJ , G P ~  or GAL and i i s  a closed inclusion, then so i s  f .  
corresponding prespectrum level  construction for ef: eR 4 kc.   em ark 3 .4( i )  

applies t o  the l a t t e r  construction. of maps 11,12: W +- WV Z W e  I f ,  further,  the diagram i s  a pullback, then it follows 
formally tha t  f i s  the equalizer of the pai r  ilg , 12g : Y + W, W. Thus f i s  a 

Our proof tha t  a spectrum level  cofibration f :  X + Y is a closed inclusion closed inclusion. 
z 

turns on the observation that  f i s  a cofibration i f  and only i f  the natural  map 

i: Mf + Y A 1' i s  the inclusion of a re t rac t .  To apply th i s ,  we must r e l a t e  f 
%Y taking Z = Mf and W = Y A I+ i n  the l a s t  two lemmas, we obtain our 

t o  i and record two formal observations on closed inclusions. promised resul t  on cofibrations. 

~~m 3.6. ht f :  X + Y be a map i n  G J  , GPL or GdQ.  and l e t  Mf and Y h l +  ~roposi t ion  3.9. A cofibration f :  X + Y in G3 , G@& or GAA i s  a closed 
be the mapping cylinder and cylinder i n  the same category. Then the diagram 

Remark 3.100 If Z and W in Lemma 3.7 are inj ection prespectra, then clearly 
i i s  a good closed inclusion. In the context of Lemma 3.8, i f  Y, Z and W are 

iqec t ion  prespectra and i: Z + W i s  a good closed inclusion, then so is f .  

We conclude th i s  section with a resul t  on the behavior of L1 with respect t o  

inclusions; it places a strong res t r ic t ion  on the way Lt can a l t e r  the topology of 
i s  a pullback. injection prespectra (see Remark 2.6). 

This resul t  i s  easily checked i n  Gd and follows immediately for  G@IL.  Proposition 3.11. Let A be an inclusion prespectrum, D be an ection 
Proposition 2 . 1 ( i i ) ,  Lemma 3.2, and Remarks 3.5 allow us t o  derive the spectrum ~ r e s ~ e c t r u m ,  and I : A + D be a spacewise inclusion. Then the map 

level  resul t  from the prespectrum level  one. 

L ' I :  A z LtA -LID 
Lemma 3.7. Let i: Z + W and r: W 4 Z be maps in GJ, GP& or G A a  with r i  = 1- 

Then the diagram i s  an inclusion. 
i 1 ,  

z-W W 
i r  

is an equalizer, so i i s  a closed inclusion. 
/ 
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i s  a spacewise inclusion for a l l  a. The case a = 1 is easy and implies tha t  i f  largely due t o  the good behavior of A, r e la t ive  ce l l  complexes. To obtain these 

the resul t  i s  true for  a, then it i s  also true fo r  a + 1. The resul t  for l i m i t  we must f i r s t  show that  En+l i s  an inclusion prespectrum and so is  not so 

ordinals follows from the following point se t  lemma. badly mangled by L tha t  the structure of i ts component spaces is los t .  

N N 

Lemma 3.12. Let {Ya,$: Ya + YB} be a directed system of injections i n  G and Lemma 4.1. Let j :  J + E be a map from a prespectrum level  wedge of sphere n, 

l e t  {fa: X + Ya} be a collection of inclusions with f = for a < f3. Then G-prespectra t o  a spectrum E and l e t  D be the prespectrum level  cofibre of j. 

the induced map f :  X + Y = colim Ya i s  an inclusion. Then D i s  an inclusion prespectrum. 

Proof. Lemma 2 .3 ( i i )  ensures that  the underlying se t  of Y i s  j u s t  the union of - Proof. BIY Remarks 3 .4( i ) ,  D is an injection prespectrum. Since the sphere -Q N 

the underlying se ts  of the Ya and that  f :  X + Y and the natural. maps 5,: Ya + Y Gprespectra N SH are C-inclusion prespectra, so are J and the prespectrum level  

into the colimit are injections. Since Y i s  a compactly generated weak Hausdorff cone CJ. Let V C W be i n  Q. In the diagram 

space, it suffices t o  show that  i f  K C f (X) c Y i s  compact Hausdorf f , then f 
N N 

induces a homeomorphism between K = f-'( K )  and K. Let g = f 1 and ga = f, 1 K.  
N 

The maps g, are closed inclusions since the f a  are inclusions and g,(K) = <,'(K), 
N 

which i s  closed. Let C be a closed subset of K. Then ( C )  ) = ga( C )  , which 

i s  closed for any a, so g(C) is closed. Thus g, being a closed map, i s  a 
N 

homeomorphism from K t o  K. 

$4. The point se t  topology of CW spectra 

9 
Recall the definit ions of a generalized sphere G-spectrum SH = G / H + ~  sq from 

1.4.3 and of G-cell spectra and G-CW spectra from 1.5.1 and 1.5.2. A l l  of our 

statements in t h i s  section are about G-cell spectra; however, since G-CW spectra 

are a special type of G-cell spectra, these resul ts  are, of course, d i rec t ly  
N 

applicable t o  them. In defining G-cell spectra, we worked purely on the spectrum the maps 1, !?-V~, I ' , 5iW-' 1 , J and oCa are closed inclusions, the map ZD 

level ,  describing the ( n + l ) ~ ~  stage %+1 of a sequential f i l t r a t i o n  {En} of a i s  an injection and the map zE i s  a homeomorphism. To show tha t  zD i s  a closed 

G-cell spectrum E as the spectrum level  cofibre of an attaching map jn:  Jn + E, inclusion, it suffices t o  show that  it is a closed map. Let C be a closed subset 
9 

whose domain spectrum Jn is a wedge of sphere G-spectra SH. However, as noted i n  of DV and C 1  = GD(c). It suffices t o  show that  C 1  is compactly closed. If it 

Remarks 3.5, it i s  sometimes best t o  construct a spectrum level  cofibre indirectly i s  not, then there i s  a compact Hausdorff subset K of 5 i w - v ~  such that  K n C 1  

from the prespectrum level  cofibre of an associated map. To do t h i s  for G-cell i s  not closed in K. Let {ya}aF:A be a net  in K f7 C 1  converging t o  a point yo 
9 

spectra, we recal l  tha t  the sphere SH i s  derived from a C-inclusion prespectrum in the K-closure of KO C 1  but not i n  K A C t  . Let { x , } ~ ~ ~  be the unique net  i n  
N 

N -9 
denoted SH. If Jn is the prespectrum level  wedge of the sphere G-prespectra SH C with zD(xa) = ya for a l l  a. The space DV N is the ,4 pushout of j along t and 

9 ,., N so i s  the d is jo in t  union of I ' ( E V )  and a(CJV) - ax(JV). The net  must 
associated t o  the SH i n  Jn, then the map jn  corresponds t o  a map jn:  Jn + En 

N have a subnet, which we denote { x ~ } ~ ~ ~ ,  i n  e i ther  I I ( E V )  or ~ ( c Y v )  - ~ I ( T v ) .  If  
under the ( L ,  e) adj unction. Let _be the prespectrum level  cofibre of jn. 

the subnet l i e s  i n  I '  (EV) ,  then the corresponding subnet {yB}BeD must l i e  i n  
As in Remarks 3.5, we have that  = 

N 

the closed subset 5iW-V~ ( Q'-~ENI) . Thus, yo is  also i n  t h i s  se t .  Using the 

An obvious advantage of describing En+l in terms of %+1 i s  tha t  the 
N 

facts tha t  the maps I '  and slW-v~t are closed inclusions, the map zE is  a 

component spaces %+lV, for V E  a, are re la t ive  generalized G-cell complexes homeomorphism, and the se t  C i s  closed, it i s  easy t o  argue that  the net  {xBjBeB 

made. from the spaces E,V by attaching generalized G-spheres G/H+A sZ ( fo r  Z a must converge t o  a point xo F: C with yo = ZD(xO), contradicting the assumption 
N N 

G-representation) of the sor t  introduced a t  the end of 108. The main resul ts  i n  that  yo is  not i n  C ' .  Assume tha t  a subnet { x ~ } ~ ~ ~  l i e s  i n  a(CJV) - al(JV) 

t h i s  section, on the l a t t i c e  theoretic behavior of ce l l  subspectra and on maps from and select  points {zBjBtB with a (eg )  = xB. The image of the composite 

compact spectra into ce l l  spectra, show that  the good behavior of G c e l l  spectra i s  
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~y Lemma 2 -4 and the proof of 1.4.8, E' n El1 i s  the prespectrum level  colimit of 

the % n q. . Thus, it suffices t o  prove that  % n i s  a c e l l  subspectrum of 

where E is the evaluation map, i s  compact and can meet only f in i t e ly  many of the 
# with the proper ce l l s .  This i s  t r i v i a l l y  true for n = 0. Assume ,.,- the resul t  i s  

ce l l s  added t o  EW t o  form DW. Therefore the points {zglBcB must l i e  i n  a 
true N N  for some n 0. ,v To N prove the resul t  for n + 1, we l e t  j : J + En, 

N 

f i n i t e  subwedge of the wedge CJV of cones on generalized G-spheres. This subwedge j ' :  J '  + q, and j": J" + be the prespectrum level  attaching maps associated 

i s  compact, and the net  { z ~ } ~ ~  must have a subnet converging t o  a point zoo The to  the usual spectrum level  attaching maps as i n  the introduction t o  th i s  section. 
N N N -. -. 

corresponding subnets of the nets { x ~ } ~ ~ ~  and { J T ~ } ~ , B  must converge t o  Let qtl and be the prespectrum level  cofibres of the maps 7 ,  7' 
and zDa(zo) respectively. But t h i s  subnet of { Y ~ } ~ ~ ~  also converges t o  yo. 

( N .  N 

and j"* Then = LE,+l and similarly for  Eh+l and E;+l. The prespectra 
Since nets have unique l imi t s  in the compact Hausdorff space K, zDa(zo) = Yo- r4 ,., P4 r., ,.# 

However, ;iDa(zo) must be i n  C '  since a(z0) must be in the closed s e t  C.  This J '  and J" are both subwedges of J ,  and J '  n J" i s  just  the prespectrum level  
4 N - 

contradicts the assumption that  yo i s  not in  C '  . Thus, C '  must be compactly wedge of those spheres S; which appear i n  both EA+l and Clearly 

closed and ;iD must be a closed inclusion. N N N N 

E;;+l i s  the prespectrum level  cof ibre of J ' J 'I + :,A E;;. By Lemma 
,-d A, N 

Recall tha t  a compact G-spectrum i s  a spectrum of the form A ~ Z " K ,  where 3.2, %+1, q+l and are a l l  inclusion prespectra, so L takes the 
N N 

V E A and K i s  a compact Hausdorff G-space. The following resul t ,  s tated without intersection '1 E;;+l t o  the intersection %+1 n %+l. Thus, El n El' i s  n+l n+l  
proof as 1.5.3, follows from the lemma and familiar properties of space level  ce l l  N N 

the spectrum level  cofibre of the map L( J '  n J t t )  + EA rr Ell and so is a c e l l  
complexes. subspectrum with the correct ce l l s .  

Now consider an arbitrary intersection n Ea, which may be defined as the l i m i t  
Proposition 4.2. Any map from a compact Gspectrum A~Z'K t o  a G-cell spectrum 

of a l l  the inclusions Ea + E. Let C be the c e l l  subspectrum of E which i s  
E factors through a f i n i t e  ce l l  subspectrum of E. Any G-cell spectrum i s  the 

claimed t o  be isomorphic t o n E a .  The inclusion I :  C + E must factor as the 
union of i t s  f i n i t e  c e l l  subspectra. 

composite of a map f :  C + Ea and the natural  map AE, + E because of the 

universality of OE,. Since I is  a closed inclusion, so i s  f ,  and t o  show 
Before proving th i s ,  we derive a corollary ensuring that  unions and 

intersections of ce l l  subspectra are c e l l  subspectra with behavior analogous t o  tha t  
that f i s  an isomorphism it suffices t o  show that  it i s  a spacewise surjection. A 

N 

point x i n  (nEa) ( V )  , fo r  V E a, may be identif ied with a map x: AV~"S0 +nEa, 
of the subcomplexes of a space level  ce l l  complex. 

and x i s  in  the image of f i f  and only i f  ? factors through f .  Because the 

Corollary 4.3. Let E 

subspectra. Then n~~ 
respectively, those of 

be a G-cell spectrum and {E,} be a collection of c e l l  

and UEa are ce l l  subspectra of E whose ce l l s  are,  

E which appear in a l l  of the Ea and those that  appear i n  

a t  l eas t  one of the E,. Moreover, for any c e l l  subspectrum D of E, the l a t t i c e  

ident i t ies  

D 17 (uEa) = " ( D n E a )  and D u (nEa) =n(D 0 E,) 

hold 

Proof. The l a t t i c e  iden t i t i e s  follow immediately from the identif ication of the 

unions and intersections as c e l l  subspectra containing specified ce l ls .  We begin 

the identif ication of n E a  with tha t  of the special case El n El1, where El 

and E" are ce l l  subspectra of E. Let {%) be a sequential f i l t r a t i o n  of E. 

The spectra E' and El1 have sequential f i l t r a t i o n s  {q} and {q} such that  

(and E;I) contain exactly those c e l l s  of El (or  Elt) which are also i n  E,. 

spectrum AvZmS0 i s  compact, the composite of ; and the map nEa + E factors 

through a f i n i t e  subspectrum D of E. The spectra D n C and D n Ea are  c e l l  

subspectra of D and x comes from a point i n  ( n ( D  n Ea))(V) .  Thus, it suffices 
a 

to  prove tha t  the corresponding map D n C +n(D n Ea) i s  a spacewise surjection; 
a 

that  is, we may assume that  E i s  f in i t e .  In t h i s  case, E has only f i n i t e l y  many 

dist inct  c e l l  subspectra and nE, is, i n  essence, a f i n i t e  intersection. The 
claimed c e l l  s tructure for f i n i t e  intersections follows directly from the i n i t i a l  

case of two c e l l  subspectra. 

The union LIEa i s  properly defined as the colimit over the diagram of 

subspectra obtained by considering a l l  possible intersections of the 
Ea. By the 

result  on intersections, t h i s  is a diagram of c e l l  subspectra. Since any c e l l  

spectrum i s  the colimit of i ts f i n i t e  c e l l  subspectra, standard resul ts  on 

rearranging i tera ted  colimits [92, p. 2271 give that  uEa is a c e l l  subspectrum 

of E with the indicated ce l ls .  



Proof of Proposition 4.2. For the f i r s t  part ,  l e t  {%I be a sequential f i l t r a t i o n  

of the G-cell spectrum E. By 1.5.9 and Proposition 3.9, the maps En + En+1 and 

are cofibrations and therefore spacewise closed inclusions. Any map 

f :  A'Z-K + E must factor through some E, by 1.4.8, and it suffices t o  prove tha t  

any map f :  AVZ".K + E, factors through a f i n i t e  c e l l  subspectrw of E&. Our proof 

essential ly para l le ls  the obvious inductive proof of the corresponding resul t  on a 

map from a compact space in to  a space level  c e l l  complex X. Clearly, our resul t  

holds for  EO = *. We assume the resul t  for  a l l  integers m, 0 < m < n, for  some 

integer n and prove it for  n + 1. Let j : J + E, be the attaching map used t o  

form from En and l e t  g : A ~ Z " K  + %+l/En 2 IJ be the composite of 

f :  ~ '2% + and the projection + ++l/%. Under the adjunction of 1.4.2, 

the maps f and g correspond t o  maps 

subwedges Tracing back through the adjunctions, we see that  g factors through 

the inclusion t M  + zJ,  as we suggested it should If n = 0, th i s  completes the 

proof e 

If n > 0 ,  l e t  Dn+1 be the smallest c e l l  subspectrum of containing 

c and the ce l l s  associated t o  M. Clearly %+1 must contain not only the ce l l s  

from M, but also any c e l l s  from E, h i t  by the attaching map M C J + E,. 
T~ 

include these c e l l s  from E,, we must also include any c e l l s  from h i t  by 

their  attaching maps and so forth. Since sphere spectra are compact, the induction 
hypothesis ensures that  only f in i t e ly  many ce l l s  must be added t o  C t o  form 
D ~ + ~ .  Let Dn = %+, n Q. Since C C Dn, the map A'I"K~ + E, factors through 

D ~ .  By our definit ions of Dn+l and Dn, the attaching map M c J + Q factors 

through Dn, and Dn+l i s  the cofibre of the resulting map M + Dn. Construct 
N N 

N : # +  and g: K - - - + ( I J ) ( V ) .  D ~ + ,  from Dn and M as a prespectrum level  cofibre so that  LDn+l = D,,,. The 

and 

Let 

kt K1 be the inverse image under f: of the image of %V i n  Q + l V *  The 
restriction of f l  t o  ZW-'~' factors through the inclusion ~~w c %w <+,w 

N 

subspace K I  is  closed and compact, so by the induction hYPothesis, the restriction and the map g l  factors through the inclusion c I&, since Q + ~ w / ~  1 ~ ,  

of f ,to a map AVz".Kl -+ # factors through a f i n i t e  c e l l  subspectrum C of Ene ,., N he *p f l  must factor, a t  l eas t  as a se t  map, through the map D,+~W + 

We -t t o  argue tha t  since g is a map from a compact spectrum a N N 

This through Dn+1W must be continuous because the map rnclw + \+,w 
spectrum level  wedge U, it must factor through a f i n i t e  subwedge* Then we would 

l i k e  t o  show tha t  f factors through the smallest c e l l  subspectrum of %+l 

containing c and the ce l l s  associated t o  t h i s  subwedge. To carry out this 
N N 

,gumen%, we l e t  j :  J + % be the prespectrum level  attaching mP associated 
N 

For the part of the proposition, again l e t  be a sequential 
N 

j and be the prespectrw level  cofibre of j SO tha t  En+l L%+l as i n  i l trat ion of a G-cell spectrum E. since E is the colimft 
N of the %, to show 

N 

the introduction t o  t h i s  section. Since and U are inclusion prespectra hat is the union, tha t  i s  colimit, of i t s  f i n i t e  ce l l  subspectra, it suffices 

yielding E ~ + ~  A and U by application of L, there i s  a W a w i t h  such show that  each E, is the colimit of i t s  f i n i t e  ce l l  subspectra. For 
= 0, 

tha t  and g factor as  the composites 

A 

V' -v- K f1 P Q ~ - ~ z ~ + ~ w  -c colim fi E,+~V' = E,+~V 
he for + follows from that  for E, by a similar argument, using 

V 1 3 V  

K gl + n W - V E ~  A colim n v ' - V ~ ~ ~ l  = ( Z J I ( V ) .  
V 1 3 V  

N 

f : z w m V ~  - & + l ~  and gl : Z*-'K ---r ZJW 

be the adjoints of and gl 
. The m p  gl goes from a compact space in to  a space level  wedge and so must 

N N 

factor through a f i n i t e  subwedge. Let M c J and M C J  be the 
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and change of universe 
and colimits 
and Dyer-Lashof operations 
and external smash products 
and f ibrewise cof ibrations 
and fibrewise homotopies 
and good maps 
and h Cd spectra 
and maps G -+ GI 
and maps a, B,  5 
and monads C 
and passage t o  orbi ts  
and Thom spaces 
and weak equivalences 
examples . 
extended powers of 
fo r  a map from a suspension 
from homotopic maps 



group actions on 
homotopy invariance of 
homotopy type of Mf A Mf for f an H-map 
of a G map 
o f f + g  
off x g  
of an H-map 
of a sum of maps 
of Y x X -+ Y -+ BG (or BOG) 
orientation for 

ToMf 
Thom diagonal of 
Thom isomorphism for 
twisted half smash products of 
virtual dimension of 

topological category 

torus 

trace 
and cof ibration sequences 
and monoidal functors 
and products 
and sums 
Euler characteristic as a 
for maps of spheres 
for a space-level map 
for a space of a single orbit type 
for a spectrum-level map 
Lef schetz constant as a 
of a suspension 
space-level description of 
vanishing condition for 

transfer 94, 97, 100, 101, 161, 185 
and Adarns ' isomorphism 195 
and Atiyah-Hirzebruch, Serre spectral sequences 190 
and change of groups 192, 194 
and change of universes 191 
and cof ibration sequences 190 
and (co)homology products 199 

0 nn 
and 6 
and external smash products 
and internal smash products 
and monoidal functors 
and products 
and split theories 
and suspension 
and twisted half smash products 
and wedges 
axioms 1-5 
axiom 6 
axioms for generalized transfers 

and transforms 
com~osite with projection 
dimension shifting 
double coset formula for 
for a bundle over an orbit 
generalized 
generalized and transforms 

* 
j -transfer 
09 a bundle 5 
spectrum-level from space-level 
sum decomposition of 
transitivity of 
uniqueness of 
vanishing of 

transf o m  
characteristic class of 

, classification of 
from transports 
multiplicative 
'spectrum-level from space-level 
test class for 

transport 
and change of groups 
and cohomology products 
and N-free G-spectra 
and smash products 
cohomological 
composite with projection 
Euler characteristic for 
examples 
generalized to two finite spectra as fibres 
gives transform 
homological 
naturality 
transitivity 

twisted function spectrum 60, 77, 301, 312, 316 
adjunction for 301, 313 
and change of group 302 
and change of universe 307, 314 
and colimits 301 
and deformatign retracts 61, 305, 319 
and F('Y,?), Q 302 
and limits 301 
for compact maps 
independent of connection. 31 5 
preserves weak equivalence 305 
reduction to an untwisted function spectrum 307, 314 

twisted half smash product 59, 60, 66, 67, 77, 316 
adjunction for 301, 313 
and change of group functors 302 
and CW structure 304 
and deformation retracts 61, 305, 319 
and maps a, 6, 6, 1 323, 326, 367 
and smash products 302, 323 

301, 313 
302, 319 

188 
composite of 32 3 
for compact maps 31 5 
for filtered maps 312 
generalized to T-free r spectra 217 
independent of connection 316 
of Thom spectra 439, 442, 472 
passage to stable category 305 
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Index of Adjoint Pairs of Functors 

Categories whose names begin in G, h, w, n, or some combination thereof, are 

alphabetized by the i r  remaining l e t t e r s .  

30 G l  a 12 G t &  

30 hG8 k 18 
hGC Q - 

c 3/BG 443 hG ha. 30 

The notation 

(F,G): $ --+ Cg 

means that  F: $ + d3 i s  l e f t  adjoint t o  G: ~9 + $ . The pai rs  are arranged by the 

'names of the  l e f t  adjoints. Any unnamed functor i s  an inclusion. Pairs of functors 
on the space or spectrum level  pass t o  the homotopy categories and then t o  the 

categories with weak equivalences inverted. 

( D A  ?, (P&(D,?)) :Gg + G6& 17 

(EA ?, ~ O - ( E , ? ) ) : G ~  + GdCL 17 

( ~ ? [ N I  A E'?, ?N) :KJ&# + ( E ~ I N I  ) - l < ~ b ~  

for l + N + G + J + l  110,111 

(f,,f*) :GQ u + GBU1 for f:U + U1 15, 58 

G ~ u  + GJU1 15, 58 

?, $1 :Ha + G 3  fo r  a:H c G 76 

( G + f i a ? , a X ) : H 3 + G 3  f o r a : H - G  7 5 

( G  KH ?, a*) :H@& + G@& for  a:H C G 77,78 

HA@ + G&& 77,78 

( G  pa ?, a*) : H O k  + GP&, fo r  a:H + G 79 

HAQ + GdO- 79 

(?/G, E*):~ba+ b e  20, 21, 50 

(K,k) :&PA + &$A 37 

( L , R )  :GP&+ G b a  13, 18 

36 

(L' , R '  :G@&+ G2& 475 

( L 1 l , ~ l t )  :GZa+ ~ & a  13, 475 

f o r 1  + N + G + J + l  74, 96 

( ?  x X, ? X ) : ~ ~ +  GZL 8 

( ? A X , F ( X , ? ) ) : G ~  t G 3  8 

~ s a +  GB& 17 

GAL-, GAQ 17 



( ~ * , F ~ ( G ' , ? ) ) : G ~  + H 3  for a : H C  G  76 

(aX,Fa(G ' , ? )  ) :G3  + H 3  for a:H + G  7 5 

G A P  + H L Q  

( a X , F a ~ G , ? )  ) :GO% + H P a  for a : H  + G 

G ~ U  + H A Q  

:G uG + HLY( 

( r ,  ) : K G ~ ~ * ~ G C Q  

( E * , ? ~ ) :  d u 4 G d  U  

( A ~ L " , ~ " A ~ )  : ~ 3  + G A U  

( A ~ , A ' )  :GA& ~ G A Q  

v v 
( G  ,n ) : G 3  + G a  

G d k  + G d &  

(zW,arn)  : G 3  + GAQ 

( { x ~ ? } , ? ~ )  : G 3  + G o a  
r 

(@,$) :GA;re  A G Q a  for a c n 

Index of natural transformations 

y : E ~ E '  + E ' A  E  

6:ISYAX + D ( ~ A Y )  

6 : ~  M ( E  r \F)  + ( X  IX E )  A ( X  F )  

6:x p ( E h Y )  + ( X  K E ) A ( X ' A Y )  

counit of any adjunction 



TI unit of any adjunction 

unit of any monad 

TI#: ~ ( W A  X , Z )  + C (W,Z A DX) 

u multiplication in any monad 

N - N  
S : ( ~ ~ [ N I A D )  ---p@ D  112 

5 action of any monad 
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