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Preface  

This i s  t h e  f i r s t  of a s e r i e s  of papers devoted t o  t h e  s tudy 

, o f  i t e r a t e d  loop spaces.  Our goa l  i s  t o  develop a simple and 

coherent  theory which encompasses most of  t h e  known r e s u l t s  about 

such spaces.  We begin wi th  some h i s t o r y  and a d e s c r i p t i o n  of  t h e  

des ide ra ta  of such a theory.  

F i r s t  of a l l ,  we r e q u i r e  a r ecogn i t ion  p r i n c i p l e  f o r  n-fold 

loop spaces.  That i s ,  we wish t o  spec i fy  appropr ia te  i n t e r n a l  

s t r u c t u r e  such t h a t  a space X possesses  such s t r u c t u r e  i f  and 

only i f  X i s  of t h e  (weak) homotopy type of an n-fold loop 

space. For t h e  case  n= 1, S t a s h e f f l s  not ion [281 of an A, space 

is  such a r ecogn i t ion  p r i n c i p l e .  Beck [5] has given an e legan t  

proof of a r ecogn i t ion  p r i n c i p l e ,  b u t ,  i n  p r a c t i c e ,  h i s  recogni- 

t i o n  p r i n c i p l e  appears t o  be u n v e r i f i a b l e  f o r  a space t h a t  i s  no t  

given a p r i o r i '  a s  an n-fold  loop space.  I n  t h e  case  n = - , a 

very convenient r ecogn i t ion  p r i n c i p l e  i s  given by Boardman and 

Vogt ls  not ion [81 of a homotopy everykhing space,  and, i n  [71, 

Boardman has  s t a t e d  a s i m i l a r  r ecogn i t ion  p r i n c i p l e  f o r  n < o o  . 
We s h a l l  prove a r ecogn i t ion  p r i n c i p l e  f o r  n e w  i n  s e c t i o n  

13 (it w i l l  f i r s t  be s t a t e d  i n  s e c t i o n  I) and f o r  n =M i n  s e c t i o n  

1 4 ;  t h e  l a t t e r  r e s u l t  agrees  (up t o  language) wi th  t h a t  of 
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Boardman and Vogt, but our proof is completely different. By 

generalizing the methods of Beck, we are able to obtain immediate 

non-iterative constructions of classifying spaces of all orders. 

Our proof also yields very precise consistency and naturality 

statements. In particular, a connected space X which satisfies 

our recognition principle (say for n =oo)-is not only weakly 

homotopy equivalent to an infinite loop space Bo XI where spaces 

Bi X with Bi X = SLBi + 
X are explicitly constructed, but also 

the given internal structure on X agrees under this equivalence 

with the internal structure on B,x derived from the existence of 

the spaces Bi X. We shall have various other consistency state- 

ments and our subsequent papers will show that these statements 

help to make the recognition principle not merely a statement as 

to the existence of certain cohomology theories, but, far more 

important, an extremely effective tool foy the calculation of the 

homology of the representing spaces. 

An alternative recognition principle in the case n = oo is 

due to Segal [27] and Anderson [l, 21. Their approach starts with 

an appropriate topological category, rather than with internal 

structure on a space, and appears neither to generalize to the 

recognition of n-fold loop spaces, 1 <  n <  M ,  nor to yield the 

construction of homology operations, which are essential to the 

most important presently known applications. 

The second desideratum for a theory of iterated loop spaces 

is a useable geometric approximation to anSn)( and RwS")( = lim QnsnX 
e 

In the case n = 1, this was first obtained by James [151. For nt-, 

Milgram [22] obtained an ingenious, but quite intricate, approxi- 

mation for connected CW-complexes. In the case n =oo, such an 

'approximation was first obtained by Dyer and Lashof [unpublished] 

and later by Barratt [4] , Quillen ~unpublished] , and Segal [27] . 
- n  n We shall obtain simple functorial approximations to X 

for all n and all connected X in section 6 (a first statement 

is in section 2). Our result shows that the homotopy type of fin$")( 

is built up from the iterated smash products xLi' of X with 

itself and the classical configuration spaces F ( R ~ ;  j) of j-tuples 

of distinct points of R". Moreover, in our theory the approxima- 

tion theorem, together with quite easy categorical constructions 

and some technical results concerning geometric realization of 

simplicia1 topological spaces, will directly imply the recognition 

principle. This is in fact not surprising since finsn)( and RmSMX 
are the free n-fold and infinite loop spaces generated by X and 

should play a central role in any complete theory of iterated loop 

spaces. 

The third, and pragmatically most important, requirement of a 

satisfactory theory of iterated loop spaces is that it lead to a 

simple development of homology operations. The third paper in 

this series will study such operations on n-fold loop spaces, 

n < m, and will contain descriptions of H,(Q"s"x) for all n as 

functors of H, (X). The second paper in the series will study 

homology operations on Em spaces and infinite loop spaces and will 

apply the present theory to the study of such spaces as 

F, F/O, BF, BTop, etc. It will be seen there that the precise 



geometry t h a t  al lows t h e  recogn i t ion  p r i n c i p l e  t o  be  app l i ed  t o  

t h e s e  spaces i s  no t  only w e l l  adapted t o  t h e  cons t ruc t ion  of 

homology opera t ions  b u t  can a c t u a l l y  be used f o r  t h e i r  e x p l i c i t  

evaluat ion.  Statementsof some of t h e  r e s u l t s  of  t h e s e  papers may 

be ' found i n  [20]. 

Our b a s i c  d e f i n i t i o n a l  framework i s  developed i n  s e c t i o n s  1, 

2, and 3. The no t ion  of "operad" def ined i n  5 1 a r o s e  simulta-  

neously i n  Max K e l l y ' s  c a t e g o r i c a l  work on coherence, and conver- 

s a t i o n s  wi th  him l e d  t o  t h e  p r e s e n t  d e f i n i t i o n .  Sec t ions  4 through 

8 a r e  concerned wi th  t h e  geometry of i t e r a t e d  loop spaces and wi th  

t h e  a p ~ r o x i m a t i o n  theorem. The d e f i n i t i o n  of t h e  l i t t l e  cubes o p a d s  

i n  5 4  and of  t h e i r  a c t i o n s  on i t e r a t e d  loop spaces  i n  $5 a r e  due 

t o  Boardman and Vogt [8].  The r e s u l t s  of 9 4  and $5 inc lude a l l  of 

t h e  geometry requ i red  f o r  t h e  cons t ruc t ion  of homology opera t ions  

and f o r  t h e  proofs  of t h e i r  p r o p e r t i e s  (Cartan formula, s t a b i l i t y ,  

Adem r e l a t i o n s ,  e t c . )  . The observat ions  of $8, which s impl i fy  and 

genera l i ze  r e s u l t s  o r i g i n a l l y  proven by Milgram [23] , Tsuchiya [33] , 

and myself wi th in  t h e  geometrical  framework developed by Dyer and 

Lashof [ l l l ,  i nc lude  a l l  of t h e  geometry requ i red  f o r  t h e  computa- 

t i o n  of t h e  Pontryagin r i n g  of t h e  monoid F of based homotopy equi- 

valences  of spheres .  Our key c a t e g o r i c a l  cons t ruc t ion  i s  presented 

i n  5'9, and f a m i l i a r  s p e c i a l  cases  of t h i s  cons t ruc t ion  a r e  d iscussed 

VII 

proven i n  '$13 and 114 and a r e  d iscussed i n  g15. A conceptual  under- 

s tanding of these  r e s u l t s  can be obta ined by reading $1-3 and $ 9  

and then f13,  r e f e r r i n g  back t o  t h e  remaining s e c t i o n s  f o r  t h e  

geometry a s  needed. 

The r e s u l t s  of $10 and $11 w i l l  be used i n  [21] t o  s impl i fy  and 

genera l i ze  t h e  t h e o r i e s  of  c l a s s i f y i n g  spaces of  monoids and of 

c l a s s i f i c a t i o n  theorems f o r  var ious  types  of f i b r a t i o n s .  

It is  a p leasure  t o  acknowledge my debt  t o  Saunders Mac Lane . 

and J i m  S tashef f ,  who read pre l iminary  vers ions  of  t h i s  paper and 

made very many h e l p f u l  suggest ions .  Conversations wi th  Mike 

Boardman and J i m  Milgram have a l s o  been invaluable .  

i n  310. This cons t ruc t ion  l e a d s  t o  s i m p l i c i a 1  spaces ,  and a v a r i e t y  

of t e c h n i c a l  r e s u l t s  on t h e  geometric r e a l i z a t i o n  of s i m p l i c i a 1  

spaces a r e  proven i n  $11 and 312. The recogn i t ion  theorems a r e  
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1. Operads and $-spaces 

Our recognition principle will be based on the notion of an operad 

acting on a space. We develop the requisite definitions and give a pre- 

liminary statement of the recognition theorem in this section. 

To fix notations, l e t u  denote the category of compactly generated 

Hausdorff spaces and continuolis maps, and let 3 denote the category of 

based compactly generated Hausdorff spaces and based maps. Base-points 

will always be denoted by * and will be required to be non-degenerate, in 

the sense that (X, *) i s  an NDR-pair for  X r . Products, function 

spaces, etc.,  a r e  always to be given the compactly generated topology. 

Steenrod's paper [ g o ]  contains most of the point-set topology required for 

our work. In an appendix, we recall the definition of NDR-pairs and prove 

those needed results about such pairs which a r e  not contained in [go] .  

An operad i s  a collection of suitably interrelated spaces k(j), the 

points of which a re  to be thought of a s  j-adic operations X' X. Pre-  

cisely, we have the following definitions. 

Definition 1 .l. An operad consists of spaces F (j) ru for j 2 0, 

with c ( 0 )  a single point t , together with the following data: 

(a) Continuous functions y : & (k) X 2" (j,,) X . . . X &(jk) (j), 

j = jsJ such that the following associativity formula i s  

satisfied for al l  c r &(k), ds r c ( j s ) ,  and e r (it): t 

y(y(c; dl' ' ' ' ' dk); el' . . . ' e.) = y(c; f 
J 

, , l .  2 fk)J 



where f = y(ds; ejIt , .. . ,.e Y and . . . + js-* t 1 jiS ... + js 

f =:: if j = O .  

(b) An identity element 1 E k ( 1 )  such that y(1; d) = d for d E $ (j) and 

k k k 
y(c; 1 ) = c for  c E C(k)$  1 = (1,. . . , 1 )  E (1) . 

(c) A right operation of the symmetric group C .on & (j) such that the 
j 

following equivariance formulas a r e  satisfied for  a l l  c s %(k), 

ds E &(jS), U E  Ck. and T E Z : 
s js 

and ~ ( c ; d ~ r ~ ,  . . . , vk) = y(c; di ,  . . . , % ) ( T ~  63 . . . 63 T ~ ) ,  

where u(jl,. . . , j ) denotes that permutation of j le t ters  which 
k 

permutes the k blocks of let ters  determined by the given partition 

of j a s  u permutes k let ters ,  and T G3 . . . 
1 

G3 -rk denotes the 

image of (-rip.. . , T ) under the evident inclusion of Z. X . . .X  C 
k 

1 jk 
in  Z . 

j 

An operad i s  said to be Z-free if Z acts freely on (j) for  all j. A 
j 

morphism + : + e bf operads i s  a sequence of Z.-equivariant maps 
J 

+ (j) + ) such that + (1) = 1 and the following diagram commutes 
1 

Definition 1.2. Let X E and define the endomorphism operad & 
X 

0 
of X as  follows. Let Ex(j) be the space of based maps X' -. X; X = n, 

and eX(0) i s  the inclusion * + X. The data a r e  defined by 

( 1  ~ ( f i  9,. . . . . gk) = f(gi X . . . X gk) fo r  f 6 X(k) and gs r LX(js). 

(b) The identity element 1 r E X(l)  i s  the identity map of X . 
(c) (f u ) ( ~ )  = f(uy) for  f E EX(j). .u E Z and y s xJ, where C. acts on xJ 

jy , J 

An operation 6 of an operad on a space X i s  a morphism of operads 

6: e- g, and the pair (X, 6) i s  then said to be a (r-space. A morphisrn 

f: (X, 8) + (XI, 8') of $-spaces is a based map frX -C X' such that 

foQ.(c) = e!(c)ofJ for  all  c E (j). The category of <-spaces i s  denoted 
J J 

by CJ [dl. 

It should be clear  that the associativity and equivariance formulas in 

the definition of an operad merely codify the relations that do in fact hold 

in EX. The notion of an operad extracts the essential information contained 

in the notion of a PROP, a s  defined by Adams and MacLane [ I d  ] and topo- 

logized by Boardman and Vogt [ 8 1. 

Our recognition theorem, roughly stated, has the following form. 

Theorem 1. 3 .  There exist Z-free operads en, 1 5 n 5 co, such that 

every n-fold loop space i s  a -space and every connected gn-space has 
n 

the weak homotopy type of an n-fold loop space. 



In the cases n = 1 and n = m, the second statement will be valid with 

rl and 6, replaced by any A operad and E operad, a s  defined in 
m 03 

section 3. 

Perhaps some plausibility arguments should be given. Let 
be any 

operad, and let (X. 0) r 6 [TI. F o r  c r 6 (2), B ~ ( C ) : X ~  - X defines a 

product on X. If F (i) i s  connected, then * i s  a two-sided homotopy identity 

for  0(c); indeed, the requisite homotopies a r e  obtained by applying e1 to any 

paths in  &(1) connecting 1 to y (c; *, 1) and 1 to y (c; 1, a). Similarly, if 

e ( 3 )  i s  connected, then 0(c) i s  homotopy associative since y(c; f ,  c) can be 

connected to y(c; c, 1). If c ( 2 )  i s  connected, then ~ ( c )  i s  homotopic to 

~ ( c T ) ,  where T e Z2 is the transposition, and therefore Q(c) i s  homotopy com- 

mutative. It should be c lear  that higher connectivity on the spaces 6 (j) will 

determine higher coherence homotopies. Stasheff's theory of A -spaces [ 2 8 ]  
m 

states essentially that an H-space X is  of the homotopy type of a loop space 

(i. e., has a classifying space) if and only if it has all  possible highor coherence 

homotopies for  associativity. It i s  obvious that if X can be de-Loped twice, 

then its product must be homotopy commutative. Thus higher coherence 

homotopies for  commutativity ought to play a role in determining precisely 

how many times X can be de-looped. Fortunately, the homotopies implicitly 

asserted to exist in the statement that a suitably higher connected operad acts 

on a space will play no explicit role in any of our work. 

The spaces (j) in the operads of Theorem 1.3 will be (n-2)- 
n 

Thus, if n = m, i t  i s  plausible that there should be no obstruc- 

tions to the construction of classifying spaces of a l l  orders .  In the cases 

1 < 'n  < m, ;he higher homotopies guaranteed by the connectivity of the rn( j )  
- 

a r e  o i ly  part of the story. It i s  not true that any c - s p a c e ,  where C( j )  

i s  (n-2)-connected, i s  of the homotopy type of an n-fold loop space. Thus 

Theorem 1.3 i s  considerably deeper in these cases than in the degenerate 

case n = 1 (where commutativity plays no role) o r  i n the  limit case n = co. 

Since the notion of an action Q of an operad 6 on a space X is  

basic to all of our work, it may be helpful to explicitly reformulate this notion 

in te rms of the adjoints C(j)  x X' - X of the maps Q ~ :  6 0 )  + Ex(j); 
these adjoints will also be denoted by 0 j ' 

Lemma 1.4. An action 8: C - EX determines and i s  determined by 

maps 0.: c ( j ) X ~ j  + X ,  j 2 0  (eO:* f X), suchthat  
J 

(a) The following diagrams a re  commutative, where 2 j = j and u denotes 

the evident shuffle homeomorphism: 

(b). Bi(i;x) = X  for X E  X, and 



(c) ~ . ( C V '  ) - e.(c; vy) f o r  c e C(j),  a- r Z 
and y E xJ. J 

j' 

Amorphism f :(X,B)-+(X' ,B')  in C [ 7 ]  i s a m a p  f : X - + X 1  in T s u c h  

that the following diagrams commute: 

We complete this section by showing that, for  any operad C , the 

category of r - spaces  i s  closed un l e r  several  standard topological con- 

structions and by discussing the product on 
(-spaces. These results will 

yield properties of the Dyer-Lashof homology operations in the second paper 

of this se r ies  and will be used in the third paper of this se r ies  to study such 

spaces a s  F/O and F / T O ~ .  The proofs of the following four lemmas  a r e  

completely elementary and will be omitted. 

Lemma 1.5. Let  (X, 8) r C [ r] and let  (Y, A) be an NDR-pair 

in  . Let x( '  A) E denote the space of maps (Y, A) + (X, +), with 

(non-degenerate) base-point the trivial map. Then ( x ( ~ ' ~ ) ,  8 (YyA)  1 6  c [nt 
where 8 A) : C (j) X (x"' * x ( ~ ~ ~ )  i s  defined pointwise: j 

In particular.  (QX,ne)  and (PX, P8) a r e  in [TI, where Q 8 = 8 (1, and 
P8 = 8"' , and the inclusion i:QX 4 PX and end-point projection p: PX * X 

a r e  & -morphisms. 

7 

Lemma 1.6. (+, 0) E 6 [y 1, where each 0 i s  the t r ivial  map; if 
j 

(X, 8) r C[T], then the unique maps + - X and X 
* in a r e  

$ -morphisms. 

Lemma 1.7. Let I: (X,0) + (B, 0") and g: (Y, 0') ' (B, 0") be 

B 
c-morphisms .  Let X X Y C X X Y denote the fibred B product B 

( x Y )  f )  ( )  of f and g in  7. Then ( X X  Y , 0 X  0') i s t h e  

fibred product of f and g in the category B C [ n ,  where 

(8 XB 8 1 ) ~ :  (j) X (X x B y ) j  -+ X X Y i s  defined coordinatewise: 

B (ex el).(c: J ( x ~ . Y ~ ) .  . . . , (x.. J J  Y.)) = ( 8 j ( ~ ; ~ 1 .  . . . .xj), ej(c; Y ~ . .  . . , yj)). 

In particular,  with B = +, (X X Y, 8 X 8 ' )  i s  the product of (X, 8) and 

(Y, 8') in  the category [ 31, and the.diagona1 map A : X + X X X is 

thus a 6 -morphism for any (X, 8) E [TI]. 

The previous lemmas imply that any morphism in 
[TI can be 

replaced by a fibration i n  [ 3. 

L e m m a 1 8  Lei  £:(X,e) + (Y,B1) b e a m o r p h i s m i n  c[r]. Define 

Y I  
(2,s) E C [r] by letting ? = I X X (Y ) be the e4 fibred product of f and g. 

Y I  
where g(w) = w(0) f o r  w E Y , and by letting 8 = 0 X ( 0 )  . Then the 

ru 
r\J N N  

inclusion i: X + X, the retraction r: X + X, and the fibration f: X + Y a r e  

al l  r -morph i sms ,  where i(x) = (x, w ~ ( ~ ) )  with w (t ) = f(x), r(x, W) = X, 
f ( 4  

rJ 

and f(x, w) = w(1). 



8 

Finally, we consider the product on a 6-space.  The following lemma 

i s  the only place in our theory where a less  stringent (and more complicated) 

notidn of 6-morphism would be of any service. such a notion i s  crucial to 

g(d) = y(c; d, d)v, where v E C gives the evident shuffle map 
2j 

(X X x)' -+ X' X X' on X2j. An examination of the definitions shows that 

if d E 6 (j) and z E x2j ,  then 

Boardman and Vogt's work precisely because the H-space structure on a f+)(d~z)  = eZj(f(d). z) and $ ( 0 ~ 8 ) ~ ( d ,  r )  = B2j(g(d), .). J 
&-space plays a central role in their theory. In contrast, our entire 

If x. is embedded in 2 by cr + ~ ( 2 ,  . . . , 2), in the notation of Definition J 
geometric theory could perfectly well be developed without ever explicitly 2j 

i 'i(c)J then and g a r e  x -equivariant. Our hypotheses guarantee that 
mentioning the product on &-spaces. The product i s  only one small part j 

and g are -equivariantly homotopic, and the r esult follows. 
of the structure carr ied by an n-fold loop space, and there i s  no logical 

j 

reason for  i t  to play a privileged role. 

Lemma 1.9. Let (X, 0) e 6 (7) and let  $ = ~ ( c ) :  X' + X for  some 

fixed c e C(2). Let $2 = $ and 0. = $(I x $. ) :  X' - X for  j ) 2. 
J 3-1 

(i) Ii (j) i s  connected and d i C (j), then @(d):xl -+ X is homotopic 

to the iterated product 0 . 
j 

(ii) If d ( j )  i s  22.-free and '& (2j) i s  contractible, then the following 
J 

diagram is Z.-equivariantly homotopy commutative: 
3 

(0 x el j  
x (7 x XI' r x x x  I 

Proof. (i) $. = 0(c.), where c = c and c = ytc; 1, cjel)  for  j > 2. 
3 J 2 j 

Any path in &(j) connecting d to c provides the desired homotopy. 
j 

(ii) Define maps f and g from c ( j )  to c (2 j )  by f(d) = y(d; cJ) and 



2. Operads and monads 

In this section, we show that an operad determines a simpler mathe- 

matical structure, namely a monad, and that c -spaces  can be replaced by 

algebras over the derived monad. We shall also give a preliminary state- 

ment of the approximation theorem. The present reformylation of the notion 

of & -space will lead to a simple categorical construction of classifying 

spaces for Cfn-spaces in section 9. We f irs t  recall the requisite cate- 

gorical definitions. 

? Definition 2.1. A monad (C, p, q) in a category J consists of a I 

(covariant) functor C: 7 + 7 together with natural transformations of 

functors p: c2 - C and q: 1 + C sucV that the following diagrams a re  com- 

mutative for all  X E 7 : 

rJ A morphism $ : (C, p, q) + (Ct, pt,  ql) of monads in $ i s  a natural transforma- 

tion of functors +: C -+ Ct  such that the following diagrams are  commutative 

for  all  X E 7 : 

and ccx d c l c I x  

. C'X cx -- C'X 

Here squares (and higher iterates) of natural transformations P: C + C' a re  

defined by means of the commutative diagrams 

Thus a monad (C, p, q) is ,  roughly, a "monoid in the functor category" 

with multiplication p and unit q, and a morphism of monads i s  a morphism 

o l  "monoidsl'. Following MacLane, we prefer  the t e rm "monad" to the more 

usual t e rm "triple". operationally, in our theory, the t e r m  monad i s  par- 

ticularly apt; the use of monads allows us to replace actions by operads, which 

a r e  sequences of maps, by monadic algebra structure maps, which a re  single 

maps. 



Definition 2.2. An algebra (X, 5) over  a monad (C, p, q) i s  an  object 

X E 'J together with a map 5: CX + X in 7 such that the following diagrams 

a r e  commutative: 

A morphism f: (X, 5) -+ (XI, 5') of C-algebras i s  a map. f: X + X1 in J such 

that the following diagram i s  commutative: 

cx Cf r CX' 

The category of C-algebras and their  morphisms will be denoted by C [ r ] .  

We now construct a functor f rom the category of operads to the category 

of monads in  , where 7 i s  our  category of based spaces.  In o rde r  to 

handle base-points, we require  some preliminary notation. 

Notations 2 .3 .  Let C be an operad. Define maps rr.: (j) -c c ( j - l ) ,  

0 5 i < j, by the formula u.c = y(c; s.)  f o r  c s j), where 
1 G( 

Thus, in the endomorphism operad of X s , (rr;)(y) = f ( ~ . ~ )  fo r  f : ~ '  X 
j-1 

and y r X , where s.:xj-' + X' i s  defined by 

Construction 2.4. Let be an operad. Construct the monad (C, p, q) 

associated to Cf a s  follows. F o r  X E r ,  le t  denote the equivalence 

relation on the disjoint union c ( j )  X xJ generated by 

j 2 0  

c ,  y) c (c, siy) for  c s C ( j ) ,  0 5  i < j, and y e  xj-': and 

(ii) (ccr, y) R$ (c, cry) fo r  c E (j), (I. E t: j ' and y E xJ. 

Define CX to b e  the set  1 c ( j )  X x~/(E). Let  FkCX denote the image of 
k j20 

t (j) X X' in CX and give F k CX the quotient topology. Observe that 
j =O 

Fk - lCX i s  then a closed subspace of F k CX and give CX the topology of 

the union of the FkCX. FoCX i s  a single point and i s  to be taken a s  the base- 

point of CX. If c s c (j) and y s xJ, let  [c, y] denote the image of (c, y) 

Y 
in  CX. F o r  a map f:X +XI in  ? , define Cf:CX' CX1 by 

Cf[c; y] = [c; fj(y)]. Define natural  maps p: c%- CX and q: X CX by the 

formulas 

(iii) p[c, [dl, yl], . . . [s. ykI] = [Y(c: dl 9 dk), Y1, . . . yk] 

js 
for  c E c ( k ) ,  ds E < (jS), and ys E X ; and 

(iv) q ( x ) = [ l , x ]  fo r  X E X .  

The associativity and equivariance formulas of Definition 1.1 imply both that 

p i s  well-defined and that p satisfies the monad identity p. p = p. Cp ; the 

unit formulas of Definition 1.1 imply that p. Cq = 1 = pq. If +: 6 + i s  

a morphism of operads, construct the associated morphism 'of monads, also 

denoted +, by letting +: CX + C'X be the map defined by 

+ L C ,  YI = [+j(c), yl f c s (j) and Y r xJ. 



The association of monads and morphisms of monads to operads and . 

morphisms of operads thus constructed i s  clearly a functor. Of course, to 

validate the construction, we should verify that the spaces CX a re  indeed 

in 7 for  X E J . We shall do this and shall examine the topology of the CX 

in the following proposition. We first fix notations for certain spaces, which 

a r e  usually referred to in the literature a s  "e quivariant half -smash products. 

Notations 2. 5. Let W E %  and let n act from the  right on W, where n i s  

any subgroup of 2 Let X E 7 and observe that the left action of 2 on xJ 
j' j 

induces a left action of n on the j-fold smash product x"]. Let e[W, n, X] 

[ j  I denote the quotient space W X X /(%), where the equivalence relation % i s  

defined by (w, *) (w', *) for  w,wl E W and (wcr, y) w (w, try) for  w E W, 

[jl 
U E  n ,  and y E X . 

The spaces CX a r e  built up by successive cofibrations from the spaces 

e [C (j), Cj,  XI. Precisely. we have the following result. 

f l  Proposition 2.6. Let be an operad and let X e J . Then 

(i) (FjCX,Fj-lCX) i s anNDR-pa i r fo r  j Z 1 ,  and CXr  5 ;  

(ii) F.CX/F CX i s  homeomorphic to e[ (j), C XI; 
J j -1 j ' 

(iii) c:T+ is  a homotopy and limit preserving functor. 

Proof. It i s  immediate from the definitions that 

It follows easily that each F.CX J i s  Hausdorff, hence, .by [30, 2.61, com- 

pactly generated. Since (x, *) i s  an NDR-pair by assumption, there i s  a 

representation (h., u.) of (X, *jJ a s  a 2 -equivariant NDR-pair by 
J J  j 

N N 

~ e A m a A . 4 :  Define h. : IXF.CX+ F.CX and u .F.CX+ I by the formulas 
J J J j' J 

N 

h.(t,  J z) = z and c . ( z )  J = 0 for z E Fjel CX, and - 
h J .(t, z )  = [c, h.(t, J y)] and z.(z) J = u.(y) J for  z = [c, y], c E F ( j )  and y E(X-*lJ. 

Then ( x . , ~ . )  J J  represent (F.CX, J F j - *CX) a s  an NDR-pair. By [30,9.2 and 9-41, 

CX E U and each (CX,F.CX) J i s  an NDR-pair. Therefore CX E 7. Par t  (ii) 

i s  now obvious. F o r  (iii), if ht: X -t X1 is  a hornotopy, then Cht: CX + CX' 

i s  a homotopy, and i t  is evident that C preserves limits on directed sys- 

rJ 
tems of inclusions in J . 

We shall see in a moment that the CX a r e  c - spaces ,  and our approxi- 

mation theorem can be stated a s  follows. 

Theorem 2.7. F o r  the operads C n of the recognition principle, there 

i s  a natural map of Gn-spaces ct n : CnX - an.Shx, 1 L n  Lm, and a n is a 

weak homotopy equivalence if X i s  connected. 

+ 
In fact, nnsn defines a monad in J , and the natural transformations 

ct n : C n + ansn will be morphisms of monads. This fact will provide the 

essential link connecting the approximation theorem to the  recognition principle. 

We now investigate the relationship between -spaces and C-algebras, 

where C i s  the monad associated to the operad . 



Proposition 2.8. Let be an operad and let  C be its associated 

monad. Then there i s  a one-to-one correspondence between c -ac t ions  

8: e + Ex and C-algebra s t ructure maps 5: CX + X defined by letting 

8 correspond to 5 if and only i f  the following diagrams a r e  commutative 

(where a i s  the evident composite C (j) X X' + F .CX + CX). Mo=eover, 
j J 

this correspondence defines an isomorpilism between the category of 

-spaces and the category of C-algebras. 

Proof. By the definition of the spaces CX, a map 5: CX + X 

determines and i s  determined (via the stated diagrams) by a sequence of 

maps 8 (j) x X' - X  such that 8j-l(uic, Y) = 0.(c, siy) and 
j' J 

0.(cu, y) = Qj(c, o y ) .  Since u.c = y(c; s.), the maps 0 given by a c - ac t i on  
1 j 

. 8 do satisfjr these formulas. F o r  a given map 6: CX + X ,  the relation 

5.p = 5.C5 i s  equivalent to the commutativity of the diagrams given in 

Lemma 1.4(a) for  the corresponding maps 8 and the relation cq = 1 i s  
j' 

equivalent to 8 (1,x) = x for  a l l  x c X. Thus a map 6: CX X i s  a 
1 

C-algebra s t ructure map if and only if the corresponding maps 0. define an  
J 

action of on X. The last  statement follows fromihe observation that if 

.-- 
(X,e) and (X',g1) a r e  C-algebras and if f:X --XI is a map in J , then 

f . 5  = 5l.Cf if and,only if f8. = B ! ( ~ x  f3) for  a l l  j. 
3 J  

Henceforward, we shal? use the le t ter  8 both for  c-actions and for  

the corresponding C-algebra s t ructure maps. Thus the maps 

0 . C(j) X X' - X which define a -action should now be thought of a s  
j ' 

cokponents of the single map- 8: CX + X. 

, ' We should observe that  the previous proposition implies that CX i s  

the f ree  & -space generated by the space X, in  view of the following 

- standardlemmaincategorytheory.  

Lemma 2.9. Let (C, p, q) be a monad in a category 3 . Then 

(CX, p) E C[ 5 ] fo r  X E 5 , and there i s  a natural isomorphism . 

(: H O ~ ~  (X, Y)  + HornC[ ( ( c x ,  PI,  ( y ,  5)) 
-1 

defined by - ((f) = 5. Cf ; (-' i s  given by $ (g) = g. q. 

The preceding lemma states  that the forgetful functor U: C [ g ]  * 3- 

defined by U(Y, 5) = Y and the f ree  functor Q c[J] defined by 

QX = (CX,p) a r e  adjoint. We shall  l a te r  need the following converse re -  

sult ,  which i s  also a standard and elementary categorical observation. 

Lemma 2.10. Let (: Hom, (X, UY) -+. Hom (QX, Y) be an adjunction 
J x 

between functors U: 7 + and Q: r-, . F o r  X E 7, define 

1 q = 4- (1 ): X -) UQX and define 
QX 

p = u$(luQx): uauax - uax . 
Then (UQ, p, q) i s  a monad in  7 . F o r  Y E X , define 

6 = ~ ( ( 1 ~ ~ ) :  UQUY -- UY. 

Then (UY, 6) E UQ [ 3 1, and 6: UQU -c U i s  a natural transformation of 



functors + . Thus there i s  a well-defined functor V: 7- u Q [ ~ ]  

given by VY = (Y, 5 )  on objects and Vg = Ug on morphisms. 

Of course, V i s  not an isomorphism of categories in general. How- 

ever, if the adjunction $ i s  derived a s  in Lemma 2.9 from a monad C , 

with 7 = c[S], then it i s  evident that the monads UQ ahd C a r e  the 

same and that V i s  the identity functor. 

3. Am and E operads 
03 

We describe certain special types of operads here and show that the 

constructions of the previous section include the James construction and 

the infinite symmetric product. Most important, we obtain some easy - 

technical results that will allow us to transfer the recognition principle 

and approximation theorem from the particular operads c1 and Coo to 

arbi trary A and E operads, respectively. 
m m 

We firs t  define discrete operads f i  and f i  such that an Uf/l -space is 

precisely a topological monoid and an 'R-space i s  precisely a commutative 

topological monoid. 

Definition 3 .l. (i) Define %'~(j) = Z. for  j 4 1,  and let  e denote the 
J j 

identity element of Z , e = . Let 711 (0) contain the single element e . 

Define y(e . e. , . . . , e ) = e j = C j s ,  and extend the domain of definition of 
k' J~ jk j' 

y to the entire set I: X I: X . . . X I:. by the equivariance formulas of 
k j i  Jk  

Definition 1. i(c). With these data, the ?fib) constitute a discrete operad %?k. 

(ii) Define n(j) = (fjj  , a single point. Let I = f let Z. act trivially 
1' J 

on 1/L(j), and define y(f ; f , . . . , f. ) = f., j =x js. With these data, the 
k ji Jk 

%(j) constitute a discrete operad . 
Observe that if i s  any operad with each G (j) non-empty, then the 

unique functions (j) + n ( j )  define a rnorphism of operads + n, 
hence any 2 - s p a c e  i s  a $-space. 



A topological monoid G in 3 (with identity element *) determines - - 
and i s  determined by the action 9: rfi-+ & defined by letting 8 .(em): G' -t G 

G J J  

be the iterated product and extending €I to al l  of Z. by equivariance. The 
j J 

permutations in r)2 serve only to record the possibility of changing the order  

of factors in forming products in a topological monoid. Crearly a topological 

monoid G i s  commutative if and only if the corresponding action 

9:n - 6, factors through n . 
F o r  X E r ,  the monoids MX and NX a r e  called the Jam* construc- 

tion and the infinite symmetric product on X; it should be observed that the 

successive quotient spaces e [ m ( j ) ,  Xj, XI and e[ n ( j ) ,  Zj ,  X] a re  homeo- 

[j  I morphic to the j-fold smash product x[jl and to the orbit space X /X 
j' 

respectively. The arguments above and the results of the previous section 

yield the following proposition. 

Proposition3.2. Thecategories 6)n, [g]= 1vl[3 ] and r*2[$]=N[$]  

a r e  isomorphic to the categories of topological monoids and of commutative 

topological monoids, respectively. F o r  X E 2 , , and NX a r e  the f ree  

topological monoid and the free commutative topological monoid generated 

by the space X, subjectto the relation * = 1. 

We shall only-be interested in operads which a re  augmented over either 

?n o r  n, in a sense which we now make precise. Let be any operad, 

and let ?T, (j) denote the set of path components of (j). Define 

6 . C ( j )  - v0 c ( j )  by 6 .(c) = [c], where [c] denotes the path component 
. j' J 

containing the point c. The data for 6 uniquely determine data for IT 
0 

such that a i s  a discrete operad and 6 i s  a morphism of operads. 
0 

c lear ly  71. defines a functor from the category of operads to the category 
0 

of discrete operads. If @ i s  any discrete operad and i f  E :  Cf + f i  is a 

morphism of operads, then E. factors a s  the composite IT & 6 ,  where 
0 

roe : \c + \B = a .  With these notations, we make the following definition. 

Definition 3.3 . An operad over a discrete operad /$ i s  an operad 

together with a morphism of operads & : C -+ 19- such that no€ : roc - f i  

i s  an isomorphism of operads. & i s  called the augmentation of 6 . A morph- - ism +: (C , & )  -+ ( e l ,  E' )  of operads over @ i s  a m o r p h ~ s m  of operads 

+: c+ 6' such that E'+ = €  : 6 - fJ. 

We shall say that an operad & i s  locally n-connected if each (j) i s  

n-connected. Clearly an operad 6 can be augmented over if and only i f  

i t  i s  locally connected, and 5 then admits a unique augmentation. An operad 

can be augmented over bfl. if and only i f  n0C (j) i s  isomorphic to X 
j ' 

and an augmentation of is then a suitably coherent choice of isomorphisms. 

We shall say that a morphism of operads +: 4 F ' i s  a local 
equivalence, o r  a localX-equivalence, if  each + C( j )  -+ e l ( j )  is a homo- - j' 

topy equivalence, o r  a X -equivariant homotopy equivalence (that is ,  the 
- j 

requisite homotopies a re  required to be 2 -equivariant). Of course, these 
j 



are  not  equivalence r e l a t i ons  s ince  there  need be no inverse 

morphism of operads C '  -+ C. The following proposition w i l l  be 

e s sen t i a l  i n  passing from one operad o v e r m o r  n t o  another. 

Proposition 3.4. Let $:C -+ C '  be a morphism of operads 

over m o r n .  Assume e i t h e r  t h a t  $ is  a l oca l  C-equivalence o r  

t h a t  $ is  a l oca l  equivalence and C and C '  a re  C-£re-e. Then the 

associated maps $:CX -t C'X a r e  weak homotopy equivalences fo r  

a l l  connected spaces X. 

Proof. Since $:CX + C t X  is  an H-map between connected 

H-spaces, it su f f i ce s  t o  prove t h a t  JI induces an isomorphism on 

in t eg ra l  homology. By Proposition 2.6 and the  f i v e  lemma, t h i s  

w i l l  hold i f  the  maps e[C(j)  ,CjIX1 -+ eCCt(j )  ,Cj,X1 d e t e r k n e d  by 

JI j  induce isomorphisms on homology. These maps a re  homotopy 

equivalences i f  JI i s  a C -equivariant homotopy equivalence. 
j j 

I f  C ( j )  i s  C j-freeI then the  map C ( j ) x  xCjl  + C ( j ) x  xCj l  i s  
j 

c l ea r ly  a covering map and s o  determines a spec t r a l  sequence 

converging from E ~ = H , ( H  -H, ( C  ( j )  x x[j1) ) t o  H* ( C  ( j )  x x[j;) .  j ' j 

Thus i f  C( j )  and C '  ( j )  a r e  C - f ree  and $ i s  a homotopy equi- 
j j 

valence, then $I+ induces an isomorphism on E ~ ,  hence on 
J 

H*(C ( j ) ~  x [ j l ) ,  hence on ~ , ( e [ C ( j )  , P j , ~ 1 ) .  
j 

We now define and discuss  Am and Em operaas and spaces. 

Definit ion 3.5. (i) An Am operad is  a C-free operad over m 
such t h a t  E:C +mis a loca l  C-equivalence. An Am space ( ~ , 8 )  

is  a C-space over any Am operad C. 

(ii) An Em operad i s  a C-free operad over n such t h a t  E:C -+ xis  
a loca l  equivalence. An Em Space, o r  e p y  everything space, + 

( X , 0 )  is a C-space over any Em operad C.  

We have not defined and shall not need any notion of an A o r  E 
03 03 

morphism between A o r  E spaces over  different operads. 
03 co 

An operad C i s  an  E operad if and only i f  each C(j) i s  X.-free 03 J 
and contractible. Thus the orbit  space t ( j ) / z j  i s  a classifying space 

for  23 - i ts  homology will give r i se  to the Dyer-Lashof operations on the 
j' 

homology of an E space. We have required an E operad to be 23-free 
03 a, 

in  o rde r  to have this interpretation of the spaces C( j ) /z j  and in o rde r  to 

m a, have that CX i s  weakly homotopy equivalent to S X for  any E 

not to regard n a s  an E operad, although a connected n - s p a c e  i s  evi- co 

dently an infinite loop space. The following amusing result  shows that, 

for non-triviality, we must not assume & to be a local 2-equivalence in the 

definition of an E operad. 
a, 

Proposition 3.6. Let 5: be an  operad over 'n such that E : C +a 
i s  a local 23-equivalence. Let (X, €4) be a c - space ,  where X i s  a con- 

nected space. Then X i s  weakly homotopy equivalent to  
X K(T,(X), n). 

n 2  i 
Proof. We have the following commutative diagrams: 

X 1 * CX and X ' i CX 



24 

By Proposition 3.4, E i s  a weak homotopy equivalence. It i s  well-known and 

N 

easy to prove that q *: --+ s*(NX) = H*(X) may be taken a s  the definition 

- i 
of the Hurewicz homomorphism h. Thus i = B*q:, = (8:: E* )h, and h i s  a 

n, 
monomorphism onto a direct  summand of H*(X). By the proof of 

[ 1 8 ,  Theorem 24.51, this i s  precisely enough to imply the cbnclusion. 

An operad i s  an A operad if and only if each a C (j) i s  iso- 
03 0 

morphic to X. and each component of (T (j). i s  contractible. In particular,  
J 

i s  itseif an A operad. In contrast to the preceding result ,  we have 
03 

the following observation- concerning operads over i r f l .  

Lemma3.7 .  Any operad c o v e r  i s  Z-free andany  local equivalence 

+: -+ C' between operads over  'n;- i s  a local Z-equivalence. 

Proof. Each u E X must act on (j) by permuting components, 
j 

- i - I 
carrying E .  ( r )  homeomorphically onto E .  (7 u) for  Z E X.. F o r  the 

3 J J 

second statement, we may assume that it+ = E (redefining 6 by this 

equation if necessary),  and then +.. must res t r ic t  to  a homotopy equivalence 
3 - I - i 

E .  (ej) - (&j)  ( e j )  The resulting homotopies can be t ransferred by equi- 
J 

variance to the remaining components of C (j) and Gf(j), and the resul t  

follows. 

In the applications, i t  i s  essential that our  recognition theorem apply, 

fo r  n = I and n = 03, to a rb i t ra ry  A and Em operads. However, there m 

need be no morphism of operads between two A o r  two Em operads. 
03 

Fortunately, a l l  that i s  needed to circumvent this difficulty i s  the observation 

- that the category of operads has products. 

Definition 3 . 8 .  Let and G I  be operads. Define an  operad 

X c' by letting (c x F1)( j)  = C (j) X c ' ( j )  and giving C X ~ '  the follow- 

ing data:. 

(a) ( y ~ y ' ) ( c X c ' ; d  i Xd;  ,..., % x % ) = y ( c ; d i  ,..., dk)Xyl(c'; d;, . :. ,%I 

for  c X c '  E <(k) X C1(k) and ds X d i  E c ( j s )  X g1(js) :  

(b) 1 = i X i E Cf(i) x c ' ( 1 ) ;  and 

(c) ( c ~ c ' ) c r = c c i . X c ' c r  for  C X C ' E  Z ( j ) x c 1 ( j )  and U E Z  . 
j 

Then xC' i s  the product of and &jr' in the categoryof operads. The 

monad associated to X $' will be denoted C X C' (by abuse of notation, 

since we do not a s se r t  that C X C' i s  the product of C and C '  i n  the cate- 

F gory of monads in J ). 

The product of an  operad over f i  and an operad over fit  i s  evidently 

an  operad over  X @'. Since xi)nl# 8(a3 , the above product i s  inappro- 

priate for the study of operads over  . Observe that the category of 

! operads has fibred products a s  well a s  products. 
' 

I 

Definition 3.9. Let ( ,& ) and ( ); ', el) be operads over %! . Define 

an  operad ( c  v c:  .cce1) over  T(2 by letting v c' be the fibred product of E 

and in  the category of operads and letting E V &' be defined by com- 

mutativity of the following diagram : 
I 



Explicitly, ~ V C  ' i s  the sub operad of X ? ' such that (C v c')(j) i s  the 

- 1 - i 
disjoint union of the spaces E (a) X ( El.) (r) for  u E C Then 

j J j' 

(G V ~ ' , E ~ & ' )  i s  the product of ( c ,  E ) and (G', E ' )  inthe category of 

operads over . The monad asaociated to ~ ~ c ' w i l l  be denoted by C vC1.  

In conjunction with Proposition 3 . 4 ,  the following result  contains a l l  

the information about changes of operads that i s  required for  our  theory. 

Proposition 3.10. (i) Let C be an  Am operad and let  C be any 

1 
operad over . Then the projection n2: (vC'-f 6 i s  a local 8-equivalence. 

(ii) Let be an Em operad and let c l p e  any 2 - f r ee  operad. Then the pro- 

jection n . C X C' + e ' i s  a loca l  equivalence between C-f ree  operads. 2' 

Proof. (i) follows from Lemma 3.7 s ince  E" (a) i s  cont rac t ib le  - j  - 1 f o r  u  E C and therefore  nZ:Ej (0) x ( E ; ) - ~ ( u )  - (c!)- l (u)  is a  
j I 

homotopy equivalence. Pa r t  (ii) is  immediate from the  def ini t ions.  

Since (ii) depends only on the l oca l  con f r ac t ib i l i t y  (and not 

on the  C-freeness) of C ,  the  proof of our recognition pr inc ip le  

f o r  Em spaces w i l l  ac tua l ly  apply t o  C-spaces over any loca l ly  

cont rac t ib le  operad C. 

Corollary 3.i i. Let be an Em operad. Then w2: X m +?% 

i s  a local C-equivalence and therefore X 132 i s  an A operad. If 
m 

(X, 0) i s  a C -space, then (X, h i )  i s  a C X -space, ni: C X m+ c.  
~ h u s  every E space i s  an A space. 

03 03 

Since A 03 spaces a r e  of interest solely i n t h e  study of f i r s t  loop spaces, 

where commutativity plays no role, a s impler  theory of A w spaces can be 

obtained by throwing out the permutations by rneans of the following definition 

and proposition. We have chosen to describe A spaces in t e rms  of operads 
w 

i n  order  to avoid further special arguments,  and no use  shall  be made of the 

theory sketched below. 

Definition 3.12. A non-Z operad a i s  a sequence of spaces a ( j )  E u 
for  j + 0, with a ( 0 )  = *, together with the data (a) and (b) in the definition 

of an  operad. An operad determines an  underlying non-Z operad Uc by 

neglect of permutations. An action of a non-C operad a on a space X e 3- 

i s  a morphism of non-C operads 0: 3 4 ur$ X, a n 4  a [ r ]  denotes the 

category of ?$spaces (X, 0). By omission of the equivariance relation (ii) 

i n  construction 2 . 4 ,  a non-C operad determines an associated monad B 

such that the categories [3 ]  and B[ 9 ] a r e  isomorphic. The notion of 

a non-C operad over a discrete  non-C operad i s  defined by analogy with 

Definition 3 . 3 .  The product a x a' of non-Z operads $3 and &' i s  defined 

by analogy with Definition 3 . 8 .  



Let a denote the sub non-Z operad of such that a (j) = {e.). 
J 

The categories @. [TI and '??% [TI are  evidently isomorphic. A non-Z 

operad over clearly admits a unique augmentation. A non-;C, operad 

determines an operad Z n  such that XZfi  = 6 by letting Z act 
j 

trivially on a ( j ) .  In particular, ;C, &+ i s  isomorphic to n . 

Proposition 3.13. Let ( c ,  E ) be an operad over hfn, and define 

W( C , L ) = &-I( a): then w(C , L )  i s  a non-I: operad over a and the 

monads associated to $ and to w( , E ) a r e  isomorphic. Let be a 

non-I: operad over a and define W - ~ B  = (2% x.??L. iiZ).; then w-'(fi ) 

i s  an operad over and the monads associated to a and to wml( a ) 
- 1 

a r e  isomorphic. Moreover, w and w a r e  the object maps of an equivalence 

between the categories of operads over a and of non-I: operads over a. 
Proof. The first two statements follow immediately from the definitions. 

- 1. 
F o r  the last  statement, it i s  obvious how to define w and w on morphisms, 

and we must show that W W - ~  and W - ~ W  a r e  naturally isomorphic to the 

respective identity functors. Now ww- '( a ) = X & i s  evidently naturally 

isomorphic to , and a natural isomorphism 

v : ( ~  . L )  W - ~ W ( C  , & I =  ( z E - ~ ( G ) x  rn,.,) 
- 1 - 1. 

can be defined by v.(c) = (cu-', u) for  c E 6 (u) and u e I: . v i s  then 
J j j' 

- i 
givenby vri(c ,  cr) = ccr for c e & (e.) and u E Z 

J j~ j' 

It follows that the notion of an A operad i s  equivalent to the notion 
m 

of a locally contractible n6n-Z operad over a , and the notion of an A 
m 

space i s  equivalent to the notion of a a - s p a c e  over such a non-Z operad %. 

  em ark 3.14. The notion of A space originally defined by Stasheff [ 28 ]  
03 

i s  included in our notion. Stasheff constructs certain spaces K. for j ) 2; 
J 

with K = * and K = 1, these K can be verified to admit structure maps 
o 1 j 

y so a s  to form a locally contractible non- Z operad such that an A 
m 

space in Stasheffls sense i s  precisely a %-space. 



4. The Pittle cubes operads En 

We define the C-free opdrads C and discuss the topology of the 
n 

spaces Cn(j) this section. I am indebted to M. Boardman for  explain- 

ing to me the key result, 4.8 . The definition of the cn (in the con- 

text of PROP'S) i s  due to Boardman and Vogt [ 8 ]. 

n 
Definition 4. 1. Let denote the unit n-cube and let J denote its 

n n 
interior. An (open) little n-cube i s  a linear embedding f of J .in J , with 

parallel axes; thus f = f X . . . X 'f where f.: J + J i s  a linear function, 
n 

f.(t) = ( y i - ~ $ t  t x., with 0 5  a. < y. 5 1.- Define cn ( j )  to be fhe.set of those 
1 1 1  

j-tuples < c l , .  . . , c > of little n-cubes such that the images of the c a re  
'3 

pairwise disjoint. i e t  j p  denote the disjoint union of j copies of J ~ ,  

regard <c. l ,  ..., c.> a s  a map '3" - J". and topologize c n ( j )  a s  a subspace 
J 

of the space of all  continuous functions j~~ + J ~ .  Write t n (0 )  = < >, and 

n 
regard 4 >  as the unique "embedding" of the empty set  in J . The requisite 

data a r e  defined by 
ji n jk n 

(a) V(c;di ,  ... ,dk) = c -  (dl + . . . J t . . . t J + J* 

fo r  c E c n ( k )  and ds E cn(js) ,  where t denotes disjoint union; 

(b) 1 E (1) i s  the identity function; and 
n 

(c) < c i s .  . . , c . > u  = < C  ~ ( 1 ) '  * ' . "v(j) 
> f o r  U E C  . 

J j 

By our functional interpretation of <>, (a) implies that 

(d) u .<cl , .  . . ,c .> = < c l , .  . . , C . , C ~ + ~ ,  . . . , c . >  , 0 < i < j. 
J J 

The associativity;, unitary, and equivariance formulas required of an operad 

a re  trivial to verify, and the action of C on cn(j)  i s  free in view of the 
j \ 

requirement that the component little cubes of a point of C (j) have disjoint 
n 

! images. Define a morphism of operads un: cn + cnSl by 

(e) u .<c i , .  . . , c . >  = < c l X l , .  . . , c . X l >  , 1: J -+ J .  
nlJ J J 

Each u . is  an inclusion, and cm(j)  denotes the space l im cn(j) ,  with the n,j  -+ 
I 

I topology of the union. Clearly ca inherits a structure of C-free operad 

from the 
r n .  

The topology we have given the e f  (j) i s  convenient for  continuity proofs 
n 

and will be needed in our study of the Dyer-Lashof operations on F in the 

third paper of this series. The following .more concrete description of this 

topology i s  more convenient for analyzing the homotopy type of the spaces cn(j) .  

Lemma 4.2. Let c = < c  . . , C .  > E cn(j). Observe that c determines 
J 

2nj 
and is determined by the point c ( a ,  p) E 3 defined by 

c(a* B) = ( ~ ~ ( 4 ,  cl(B), . - .  3 cj(a)> cj(B)), 

i i n 3 3 n where cr = (-  , . . . , q )  E J and p = (q , . . . , q )  E J . 4 

Let U denote the topology on r n ( j )  obtained by so regarding t n ( j )  a s  a sub- 

2nj 
set  of J and let  denote the topology on (j) defined in Definition 4.1. 

n 

Then ?,(. = . 
Proof. Let w(C, U) denote the v - o p e n  set  consisting of those c such 

n that c(C) C U, where C i s  compact in jsn and U is  open in J . Let cr 

(resp. f3 ) denote the point ar (resp. p) in the r- th domain cube 3: C 'J". 
r 

n U and Vr a r e  open subsets of 3 , I 5 r 5 j, then 



It follows that any %. -open s e t  i s  v - o p e n .  Conve*rsely, consider 

W(C, U). We may assume that U is the image of an  open little cube g 

n n 
and that C i s  contained in a single domain cube J . Let C' C J r  be the 

image of the smallest closed little cube f containing C (f may be 

degenerate; that i s ,  some of i t s  intervals may be points).< Then, by 

linearity, w(C, U) = W(C1, u). Clearly c = < C  . . . , C .  > E W(C ' , U) if and 
J 

only i f  crf(0) > g(0) and c r f ( i )  < g( i ) ,  with the inequalities interpreted 

n 
coordinate-wise and with 0 = (0 , .  . . , 0 )  and 1 = ( I , .  . . , I )  in I . It i s  now 

easy to verify that w(C',  U) i s  v- open. 

Using this lemma,  we can  relate the spaces cn ( j )  to the configuration 

n 
spaces of R . We f i r s t  review some of the resul ts  of Fadel l  and Neuwirth [12] 

on configuration spaces. 

il 

Definition 4.3. Let M be an n-dimensional manifold. Define the j-th 

configuration space F(M; j) of M by 

F(M; j) = { < x i ,  . . . , x . > l x r ~  M, x r / x S  i f  r /  s )  C M ~ ,  
J 

with the subs pace topology. F(M; j) i s  a jn-dimensional manifold and 

F(M; 1) = M. Let Z .  operate on F(M; j) by 
J 

< x . . ,X.> u = < x  
J ~ ( 1 ) ~  * * lxu(j)>.  

This operation i s  f ree ,  and B(M; j) denotes the orbit space F(M; j)/Z . 
j 

Fadel l  and Neuwirth have proven the following theorem. 

Theorem 4.4. Let M be an n-dimensional manifold, n 2 2. Let 

Yo = P( and Y = { y l , .  . . . y 1 . 1 5 r < j, where the y. a r e  distinct 

points of M. Define a :F(M- Yr; j-r) -. M - Yr by 
r 

a <x l , . . . , ~  > = x  0 5 r < j-1. Then a i s  a fibration with f ibre  - r j-r  I '  

F(M - Yr+i; j - r - I )  over the point y and a admits a cross-section 
r t i '  

if i l i .  

r n n n 
Let S denote the wedge of r copies of S ; since R - Yr i s  

r n-I homotopy equivalent to S , the theorem gives the following corollary. 

j- I 
r n-1 

Corollary 4. 5. If n 2 3, then aiF(Rn; j) = 2 ni( S ); 
r = i  

T~F(R'; j) = 0 for i # 1 and a l F ( ~ ' ;  j) i s  constructed from the free groups 

r i 
at(  S ), i 5 r <.j, by successive split extensions. 

The case  n = 2 i s  classical.  B(R'; j) i s  a K(B i ) ,  where B i s  the 
j' j 

braid group on j strings, and there  i s  a short exact sequence 

1 -+ I. + B + Z: + 1 which i s  isomorphic to the homotopy exact sequence of 
J j j 

the covering projection F(R2; j) + B(RZ; j). Detailed descriptions of 

2 
I. = a lF(R ; j) and of B. may be found in Artin's paper [ 3 1; Fox and 
J J 

2 
Neuwirth [ i3] have used F(R ; j) to rederive Artin's description of B. in 

J 

t e rms  of generators and relations. 



n 
Let RW = l imR with respect to the standard inclusions. Since 

-f 

F(M; j) i s  functorial on embeddings of manifolds, we can define 

n 
F(Rco; j) = l im F(R ; j). -. 

Corollary 4.6. F(Ra; j) i s  Z .-free and contractible. 
J 

We shall also need the degenerate case n:= 1. 

i 
Lemma 4.7. n F(R ; j) i s  isomorphic to Z and each component of o j' 

i 
F (R  ; j) i s  a contractible space. 

O O ~ .  Let F = {(xi, . . . ,x j )  1 x i  < . . . < x.) c F(RL;  j). Fo  i s  
0 J 

clearly homeomorphic to the interior of a simplex and i s  therefore contractible. 

1 .  
Fo i s  one component of F(R ; J )  , and i t  i s  evident that the operation by Z j 

i 
defines a homeomorphism from F X 2. to F(R ; j). 

O J  

Theorem 4.8. F o r  i I n 5 RI and j 2 1, c n ( j )  i s  Z -equivariantly 
j 

homotopy equivalent to F(Rn; j). Therefore ti is  an A a3 operad, cn i s  

a locally (n-2)-connected 2=-free operad over for  i < n < a ,  and (Lo 

i s  an E operad. 
a3 

Proof. The second statement will follow immediately from the f i rs t  

statement and the properties of the spaces F ( R ~ ;  j). We f irs t  consider the 

case n < co. F o r  convenience, we may a s  well replace R~ by Jn. Define 

a map g: ( j )  F J  j) by the formula 

1 1 n 
(i) g < c  l , . . . ,  c .> = < C ~ ( Y )  ,..., c . (Y)>,  where y = ( -  ,..., - ) € J  . 

3 J 2 2 

F o r  c = < e l , .  . ..! c .  > 6 C,(j), write c = c X . . . X crn , where c : J -+ J 
J r r i  r s 

i s  given by c (t) = (Yrs - xrs)t + x We say that c i s  equidiameter 
r s rs '  

ofdiameter  d if y r s  - x  r s  = d  foyal l  r and s ( thuseach c r  isactual ly 

a cube, and a l l  c have the same sizie). Obviously, for each b E F(.Jn; j), 

there i s  some equidiameter c E (j) such that g(c) = b; we can radially 
n 

expand the little cubes of this c until some boundaries intersect. Thus de- 

f R e  f: F(Jn; j) -+ (j) by the formula n 

(ii) f(b) = c ,  where g(c) = b and c i s  the equidiameter element of (j) 
n 

with maximal diameter subject to the condition g(c) = b. 

The continuity of f and g i s  easily verified by use of Lemma 4.2, and f and 

g a re  clearly Z -equivariant. Obviously gf = 1. Define h: <(j) X I + rn( j )  
j 

a s  follows. Let c E (j) be described a s  above, and let d be the diameter 
n 

of fg(c). Then define 

n n 
h ( c , u ) = <  X cls(u) ,..., X c. (u)>, O S u < i ,  where 

s = i  s = i  J S  

i 
c r s ( ~ ) ( t )  = I (~-U)(Y, ,  - xrS) + udIt f 7 (uyrS + (2-u)~~. - ud) . 

~n 'words ,  h expands o r  contracts each coordinate interval c linearly from r s 

its mid-point to a coordinate interyal of length d. It i s  easy to verify that h 

i s  well-defined, Z.-equivariant, and continuous. Since h(c, 0) = c ,  
J 

h(c, 1) = fg(c), and h(f(b),u) = f(b), we see that I?(Jn; j) is in fact a strong 

nf  i Z.-equivariant deformation retract  of 6,(j). NOW embed J~ in 3 by J 
i 

x -+ (x, -) and let cr .: F(Jn; j) + F(sn"; j) be the induced inclusion. Write 
2 nlJ 

gn fo r  the map g defined in (i). Then the following diagram commutes: 



Thus we can define g = l im g . COD(j) - F(Jm; j). Clearly c_(j)  has 
OD -+ n' 

trivial homotopy groups. It i s  tedious, but not difficult, to verify that &_(j) 

i s  paracompact and EL C X and therefore has the homotopy type of a CW- 

complex, by Milnor [ 2 5 ,  Lemma 41. Therefore tOD( j )  i s  contractible and 

co 
is a C -equivariant homotopy equivalence. 

j 

We shall la ter  need the following technical lemma, which i s  an easy 

consequence of the theorem. 

Lemma 4.9. Define rt . Cn-,(j) + Cn(j) by sending each little 
n-1 ,j. 

(n-1)-cube f to the.little n-cube 1 X f, 1; J -+ J. Then LT' i s  C.- 
n-1,j J 

equivariantly homotopic to u n-1, j. 
n 

Proof. It sufficzs to prove that g-i n-I' *F(J*-'; j) * F ( J  ; j). 

1 1 n- 1 
where u (x) = (x,-) and U ~ - ~ ( X )  = (- , x )  on points x E J . Define 

n- 1 2 2 

maps T, rl: F(Jn; j) + F(?; j) by the following formulas on points 

(s,x) E J X  J ~ - ~  = Jn: 

if n i s  odd 
T(S, X) = (x, S) and r l ( s , x )  = 

(1 -s,  x) if n is even 

then TU' = u and r1 a'  = u1 hefice it suffices to prove that T i s  
n-1 n-1 n-1 n-1' 

Z .-equivariantly homotopic to r '. Let 
J 

+n: (f, a~") - (sn. e o ) 

be the relative homeomorphism defined by Toda [31 ,  p. 51, where sn C R n t i  

i s  the standard n-sphere and e = (1,0, .  . . ,0).  Toda has observed that, a s  
0 

based maps sn 4 sn,  

-1 
4JndJn (s19 - - - 2 Sn+i) = ( s i '  S3' S4' '. ' 8  'nti  ' 2) 

and 

n t i  n t i  

Obviously, these maps lie in the same component of O(n) since they both 

n- 1 have degree (-1) . They a r e  thus connected by a path k: I + O(n), where 

n - 1 n 
~ ( n )  acts a s  usual on (S . e ). Define h = + k(t)an: Jn -+ J ; then h = r 

t n o 

and h = T I .  Since each ht i s  a tAomeornorphism, the product homotopy 
i 

( h )  ( J )  + ( J )  restricts to give the desired C -equivariant homotopy 
j 

T = T I  on F ( J ~ ;  j). 

Remarks 4.10. Barratt ,  Mahowald, Milgram, and others (see [24 ] for  a 

survey) have made extensive calculations in homotopy by use of the quadratic 

e 

construction e[S n , Z ,X] on a space X (see Nptations 2.5 for  the definition). 2 
n Since F(R""; 2) i s  Z2-equivariantly hornotopy equivalent to S , 

n e[ Cnti(2), Z 2 ,  X] i s  homotopy equivalent to e[S , Z , x]. For  odd primes p, 
2 

Toda [3 2 1 has studied the extended p-th power e[wn, Zp, X] on X, where wn 

is  the n-skeleton of sOD with its standard structure of a regular Z -free 
P 

n n t  f acyclic CW -complex. W clearly maps Z -equivariantly into F ( R  ; p) 
P 



and we thus have a map 

e[wn. Zp, XI + ~ [ F ( R ~ " ,  p), E P ,XI " e[ entl(p).  Ep, XI. 

It appears quite likely that the successive quotients e[ fn(j) ,Ej ,x]  of 

the filtered space CnX will also prove to be useful in homotopy 

theory. 

5. Iterated loop spaces and the $ 
n 

We here show that rn acts naturally on n-fold loop spaces and that 

n n this action leads to a morphism of monads -+ S2 S . The f irs t  statement 
'n 

will yield .the homology operations on n-fold loop spaces and the second state- 

ment i s  the key to our derivation of the recognition principle from tpe 

approximation theorem. 

We must f i r s t  specify our categories of loop spaces precisely. Let 

z n ,  1 s n 5 m, denote the following category of n-fold loop sequences. The 

objectsof xn aresequences {Y.I o ~ i ~ n ) ,  o r  {Y.] i 2 0 )  i f n = m .  

r 
such that Y. = S2Y in J . The morphisms of a r e  sequences 

i t 1  n 

{ g i l ~ s i ~ n )  o r  {gi l  i ~ 0 )  if n =  co, suchthat  g. - 
1 - in T .  Let 

Un: rn -+ 

denote the forgetful functor defined by un{yi} = Yo and 

Un{g) = go. An n-fold loop space o r  map i s  a space o r  map in the image 

n-i F o r  n < m ,  an n-fold loop sequence has the form {S2 Y), and 

n U {S~"-'Y) = any.  rn serves only to record the fact that the space S2 Y n 

does not determine the space Y and that we must remember Y in order  to 

have a well-defined category of n-fold loop spaces. We shall use the notation 

n 
52 Y ambiguously to denote both n-fold loop spaces and sequences, on the 

understanding that naturality statements refer  to qn. Of course, X n  is 

r 
isomorphic to J . 



F o r  n = co, it i s  more usual to define an infinite loop space to be the 

initial space Yo of a bounded a-spectrum {(Yi. fi)l i 2 0) and to define an 

infinite loop map to be the initial map g o of a map {g2 : {(yi,fi)] - {(Y;, f i ) l  

of bounded Q-spectra (thus fi: Yi - QY i 4-1 i s  a homotopy equivalence and 

Qgitle f i  i s  homotopic to f i  gi). The geometric and categorical imprecision 

of this definition i s  unacceptable for o3r purposes. I have proven 'in [19  ] 

that these two notions of infinite loop spaces and maps a re  entirely equivalent 

for all  purposes of homotopy theory; we can replace bounded Q-spectra and 

maps by objects and maps of x_, naturally up to homotopy, and via weak 

homotopy equivalences on objects. Prec ise  statements and related results 

may be found in [191. 
n 

We regard a s  the space of maps (sn, *) + (X, *), where S 
i s  

identified with t he quotient space I ~ / ~ I ~ .  

Theorem 5.1. F o r  X r T, define en,j : ~ ~ ( j ) x ( Q " x ) j  +Q% as  

follows. Let c =  < c l ,  . . . , c E Cn(j) and let y = (yl. . . . . yj) E (Q%'- 

-1 - n 
Define 0 . ) to be yrcr on c (J ) and to be trivial on the complement 

n ,J 
n 

of the image of c ;  thus, for v E S 

Then the enSj define an action e n of cn on Q"x. If X = a x ' ,  then 

9 = 8  where ,S . tn - Cn+l and enil i s  the action of 
n n+lcrn' n ' n 'no 

~ ~ " x 1 .  If {yi)  r Tm, then the actions en of en on Yo = Q Yn define 

an action 0 of t'_ on Yo. The actions 8 ,  1 5 n 5 m, a r e  natural co 

on maps in ; precisely, i f  W . 
y n  ,. yn -+ Cn[ 7 ] i s  defined by 

WnY = (UnY. 8,) on objects, where en: C U Y -+ UnY i s  the C -algebra 
n n n 

structure map determined by the 0 and by Wn(g) = Ung on morphisms, 
n,j ' 

then W i s  a functor from n-fold loop sequences to C -algebras. n n 

Proof. The 0 a r e  clearly continuous and 2.-equivariant, and 
n,j J 

8 (1, Y) = y i s  obvious. An easy inspection of the definitions shows that the 
n, 1 

diagrams of Lemma-I .4(a) commute, 
and the Ont j 

thus define an action 0 
n 

of & on Q'k. If X = =I, then nnx = Qn ' l~ l  via the correspondence ycr  y1 
n 

where y(G)(t) = yl(u, t )  for  (u, t )  E X I; since cr (f) = f X 1 on little n-cubes f, n 

e = e  
n nf lun  follows. If {yi) E rm, then en = Bntl \: Cn * E and 

Yo 
therefore 8 = l i m  8 . . ey0 i s  defined. The naturality statement i s  

a = *  

immediate from the definitions. 

We next use the existence of the natural -action on-n-fold loop 'n n 
n n spaces to produce a morphism of monads C -+ Q S . We require some 

n 

categorical preliminaries. We have the adjunction 

(1) g:Hom (X,nY)+Hom (SX,Y), $f(f)[x,s]=f(x)(s) ,  
3- 3- 
where SX = X X I/++$ X I u X X a1 defines the suspension. 

By iteration of $, we have the further adjunctions 

(2) $fn:Hom ( x , ~ ~ ~ ) * H o m  (snx,Y), l s n < m .  
7 3- 

It i s  conceptually useful to reinterpret (2) a s  follows. Define 

(3) Qnx ' { Q ~ - ~ ~ ~ x  / 0 5 i 5 n) E x n ;  then U Q X = QnsnX. 
n n 



Since a morphism {g. 1 O (  i ( n} in xn is determined by gn, we have 

Hom (s%, Y)  = Hom ( QnX, { Q ~ - ~ Y } ) .  
T ; en  

Therefore ( 2 )  may be interpreted a s  defining an adjunction 

(4) %:   om (x, u ~ { Q ~ - ~ Y } )  -+ Hom (QnX, {an-'Y}) . 
7- 'n 

The $ pass to the limit case n = m. To see this, define 
n 

Geometrically, i f  QnSnX is  identified with Hom (sn, s%), then 

n+l 
J- 

(u u ( ~ ) = s ~ = ~ * ~ : s ~ A s ' = s ~ + ' + s  n X = S R X ~ S ' ,  f:sn+s%. 

Thus each u i s  an inclusion, and we can define 
n 
m m n n 

(7) QX = Q S X = lirn Q S X , with the topology of the union. 
-* 

m m 
We shall use the alternative notations QX and Q S X interchangeably. 

n n+l 
Since a map s1 + QSX lands in some Q S X, QQSX = CZX. Define 

m m 
(8) QmX= { Q S b l  i 2 0 )  E y m ;  then U m Q m X = Q  S X. 

If {yil i 2 0} E 4 and if f: X + Y = um{Yi} i s  a map in J , then we 
0 

have the commutative diagrams: 

* n+l n+i+l I I 
n t l  n+i+l Q $ (f) > Qn+l Yn+i+l 

Q S X 

We therefore have the further adjunction 

(9) $ m : ~ o m , ( ~ , ~ m { Y i } )  * Hom ( Q  x,{yi}), where 
J %o O3 

n n+i 
gm(,f)i = lirn Q $ (I): mix * Yi , i 2 0, for f: X + Yo . 

4 

- 1 
Here fgi)  = go qm , where q :X -* QX i s  the evident inclusion. 

03 

A pedantic proof that $ i s  an adjunction, together with categorical 
m 

relationships between Q X and the suspension spectrum of X,  may be 
m 

'found in.[19 1. 

Clearly (4) and (9) state that Q n X , 1 I n  5 m , i s  the free n-ford loop 

n 
sequence generated by the space X; i t  i s  in this sense that the Q S% a r e  

free n-fold loop spaces. By Lernma 2.10, our adjunctions $ yield monads 
n 

(finsn, pn, X) and functors Vn: Xn +S2 n ~ n [ 5 ] ,  with VnY = (UnY, 5,) on 

objects. Explicitly, in  te rms of iterates of the adjunction $, we have 

(10) % = $'"(1 ): X - fins% if n < m; = l im 
snx " * % .  

n n n 
(11) pn = Qn$(iQnsnx): asns"x S s + nns% if n < m ; 

n n n  
= lirn p (which makes sense since Q QX = lirn Q S Q s%). 

'm .+ n * 

n n n 
(12) E n =  Qn$"(lQnY):Q S n Y + any  if n < m ;  

m w em = lirn Q n p ( l  ):Q S Yo + Yo for {Yi) E 7, . 
* nnyn 

n n nn+l n+l 
By (5),(10), and ( l l ) ,  each u :Q S S i s  a morphism of monads, 

n 
03 m n n 

and Q S = lirn Q S a s  a monad. 
+ 

Let (Cn, pn, qn) denote the monad associated to c n ,  and observe that 

Cm = lLm C a s  a monad. With these notations, we have the following 
n 

theorem, which i s  in fact a purely formal consequence of Theorem 5.1 and 

the definitions. 



Theorem 5.2. F o r  X G and i 5 n 5 m, define an: CnX + Q"S% 

8 

to be the composite map 'nX '"'" > C n nns% A> nns%. Then 

an: Cn + finsn i s  a morphism of monads, and the following diagram of 

* 
functors commutes, where a l '  n (Y, f )  = (Y, Eman): 

Moreover, the following diagrams of morphisms of monads a re  commutative 

for n < m, and a i s  obtained from the a for  n < m by passage to 
co n 

limits : 

6 a 
n f l  > 

Proof. The fact that each pn, fn ,  and r n for the monad nnsn i s  an 

n-fold loop map and that Bn i s  natural on such maps, together with the very 

definition of a natural transformation and of an algebra over a monad, - 
immediately yield the commutativity of the following diagrams for X G J : 



The f irs t  diagram gives anqn = qn, the second gives p n a '  n = anCLn 

(Cnpn i s  inserted solely to show commutativity), the third gives enan = e n s  

.& 

a s  required for a V v  = Wn, and the last  gives cr a = a The f irs t  
n n n n  n t t g .  

two diagrams a re  valid a s  they stand for  n = a, and the third has an obvious 

analog in this case; consistency with limits i s  clear  f rom the last  diagram. 

We next show that the morphisms of monads a : Cn - finsn factor n 
i 

through niC .S for  1 ( i  < n. The following elementary categorical 
n-1 

observation about adjunctions and monads in any category 7 implies that 

i 
the natural transformations i2 a .si:niC .si -c a r e  in fact morphisqs  n-1 n-1 

of monads. 

Lemma 5.3. Let PI: Hom (X, AY) + Horn, (cX, Y )  be an adjunction, 
'5 J 

and let (C, p, q) be a monad in 7 .  Then (A C 2, p, 9 i s  a monad in , 

where, for  X E ,,'ji and 5 are  the composites 

and 
X a'-'(') > x > A C Z X .  

Moreover, if + : C - C' i s  a morphism of monads, then A@: h C Z  - AC'Z 

i s  also a morphism of monads. 

i i 
We must still construct morphisms of monads C -+a Cn , and, by n - 

the lemma, i t  suffices to do this in the case i = 1. 

Proposition 5.4. F o r  n > 1,  there i s  a morphism of monads 

pn: Cn - S2Cn-1S such that a = (Qa S) pn. Therefore a factors a s  
n n-1 n 

a co&posite of morphisms of monads 

Cn * "n-1 s - . . . - an-'c1sn-' - nnsn . 

Proof. Define pn: CnX - Q Cn SX a s  follows. Let - 
j c = < c . . . , C. > E C (j), let x = (xl, , . . , x. )  E X , and let  t E I. Write 1' J n J 

c = c X c where c' : J 4 J and c" : J ~ - '  .+ J"-'. Let r l ,  . . . . r in r r r ' .  r i' 

order, denote those indices r (if any) such that t E c I (J). Since the c r  
r 

have disjoint images, the little (n-1)-cubes c" 1 ( q ( i, have disjoint 
r '  
9 

images. Thus we can define 6 by the formula 
n 

(1) pn[c,x](t)=* if t #  \iJ c:(J), and 
r= l  

if c: (sq) = t ,  1 ( q i  i, and t {C:(J) for  r 4 { rq] . 
4 

n- 1 
It i s  easily verified that p i s  well-defined and continuous. F o r  v e S , 

n 

formula (1) and Theorem 5.1 give 

i 
t [xr ,s ,u]  if c ( s , u ) = ( t , v )  

( 2 )  
r 

Q ~ - l  s a~n[c ,xI ( t ,v)  = 4 
C* if (t,v) { ~ r n  c. 

Thus Q% ,S = cz : CnX *nnshx. The fact that p i s  a morphism of 
n n n 

monads can easily be verified from the definitions and also follows f rom the 

facts that p and S a re  inclusions for al l  X and that ru and SZa S 
n n n- 1 

a r e  morphisms of monads. 
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We conclude this section with some consistency lemmas relating 

Theorem 5.1 to the lemmas at  the end of section 1. These results will 

be needed in the study of homology operations; their proofs a r e  easy veri- 

fications and yvill be omitted. 

Lemma 5.5. Let w: ( S 2 ~ x ) ( ~ '  A) + S2n(~(Yy be the homeomorphism 

defined by w(f)(v)(y) = f(y)(v) for  y E Y and v E sn. Then w i s  a C n- 

morphism with respect to the actions (Y*A) on ( S ~ R X ) ( ~ ' * )  and en on ' n 

Q"(X(~* A)). 

In particular, w: $(a%), ~ 8 ~ )  + (nn(S2X), en) i s  a C n-rqorphism, 

where en = cr on nn((;2x). Observe that w transfers thk f i rs t  coordi- 
n 

n+ 1 
nate of S2 X (y above) to the last  coordinate. Under the identity map on 

1 
X, s28 corresponds to 8 cr' and Lemmas 1.5 and 4.9 therefore n n t l  n ' 

yield the following result. 

Lemma 5.6. F o r  X E 7 , the following diagram is commutative, and 

528 = i s  Z -equivariantly homotopic to 8 = n,j 8n+ l , j oc rL , j  j nTj jcrn, ' 

Lemma5.7.  Let f :X-*B and g :Y-*B b e m a p s i n J .  Identify 

PB n 
d ( x  xB Y) with s2% X n Y as  subspaces of X any.  Then the 

 an^ k -actions 8 and 8 X 
n n n n a r e  identical. In particular, en agrees with 

e i x  en 0; nn(xx Y) = a % x n n y .  

Remarks 5.8. Lemma 1,9(ii) i s  obviously inappropriate for  the study of 

the product on n-fold loop spaces for n < co. Observe that Q% may be 

given the product 

SF'$: sZk x s2"x = an-' ( a x  x a x )  - nnx, 

where $ i s  the standard product. Clearly an-'$ i s  then a -morphism. 
n- 1 

Similarly, we can give S2% the inverse map an-' c : S2% -c Q ~ X ,  where 

n-1 c:nX i s  the standard inverse, and then s2 c i s  a Cn-l-morphisrn. 

The point is that the product and conjugation on H_(Q%) will commute with 
T 

any homology operations which can be derived from the action 8 of n-1 

on nnx. 



6. The approximation theorem 

This section and the next will be devoted to the proof of the approxima- 

tion theorem (2.7) and related results. The following more detailed state- 

ment of the theorem contains an outline of the proof. 

Theorem 6.1. F o r  X E 3- and n 2 1,  there i s  a space E X which n 

contains C X and there a r e  maps sn: EnX -+ Cn-lSX and 
n 

Zn: EnX -+ PC2 n - l ~ n ~  such that the following diagram commutes: 

where, if n = 1, C SX = SX and a i s  the identity map. E X i s  contractible 
o o n 

for all  X and s i s  a quasi-fibration with fibre C X for all  connected X. 
n n 

Therefore a i s  a weak homotopy equivalence for  all connected X and al l  n, 
n 

1 S n S m .  

We shall construct the required diagram and give various consequences 

and addenda to the theorem in this section. The proof that E X i s  contract- 
n 

ible and that a i s  a .quasi-fibration for connected X will be deferred until 
n 

the next section, where these results will be seen to be special cases of more 

general theorems. 

Coupled with Propositions 3.4 and 3.10, the theorem yields the following 

corollaries, which transfer our approximations for n = 1 and n = m from 

6 and Cw to arbi trary A and E operads, The reader  should recall 
1 03 00 

that a map i s  said to be a weak homotopy equivalence if i t  induces isomorphisms 

on homotopy groups, and that two spaces X and Y a r e  said to be weakly 

homotopy equivalent if there a re  weak homotopy equivalences from some third 

space Z to both X and Y. Thus the following corollary contains the state- 

ment that the James construction MX is  naturally of the same weak homotopy 

type as nSX, for  connected X; curiously, our proof of this fact uses neither 

classifying spaces nor associative loop spaces. 

Corollary 6.2 . Let X E be connected and let  6 be any A operad. 
CO 

Then the following natural maps a r e  all  weak homotopy equivalences: 

& "1 s 
h4x <- CX < 2 

(CctC1)X - CIX 
> nsx . 

Corollary 6.3. Let X E be connected and let be any Em operad. 

Then the following natural maps a r e  all weak homotopy equivalences: 

i TT 
2 

and, if 1 < n <  m, (C X C )X 
n ! 

n 
Of course, for  arbi trary (non-connected) X, we can approximate 0 S% 

by S2Cn-lSX, since SX is  connected. 



Corollary 6.4. Let X r 7 and let  be any E operad. Then the 
0 

following natural maps a r e  all weak homotopy equivalences: 

Qn2S , n n ~ l  n i l  
and, i f  1 5 n < m, Q(C X Cn)SX QCnSX S x. 

In these corollaries, all maps a re  evidently given by morphisms of 

monads. Clearly this implies that these maps a r e  H-maps, but the H-space 

structure i s  only one small portion of the total structure preserved. 

-I- 
Remarks 6.5. In [ 4 1, Barratt has constructed an approximation 1 r XI to 

m m 
51 S 1x1 fo r  connected simplicial sets  X. Implicitly, Barratt  constructs 

a "simplicia1 operad" consisting of simplicia1 sets D *Zj. If  we define 

19 (j) = I D  Pj 1 ,  then we obtain an E operad B ,  and i t  i s  easily verified 
m 

4 
that I I"x I i s  homeomorphic to D 1x1 (where D denotes the monad in ,) 

associated to /Q ). Thus Corollary 6.3 displays an explicit natural weak 

4- 03 m 
homotopy equivalence between /I' X 1 and Q S 1x1, for  connected X. Fo r  

4- 
al l  X, I' X i s  a simplicial monoid, and if I'X denotes the simplicial group 

-I- 
generated by I' X, then 1 I'X 1 i s  homotopy equivalent to qmsm 1 x I .  We 

shall describe @ explicitly in section 15. 

We begin the proof of Theorem 6.1 with the definition of a functor En 

from pairs (X,A) to spaces. EnX will be the space En(TX, X), where TX 

denotes the cone on X. 

Construction 6.6. Let (X, A) be a pair in 3 , by which we understand 

a closed subspace A of X with * r A. We construct a space En(X, A) a s  

follows. F o r  a little n-cube f, write f = f1 X f", where fl:  J -+ J and 

f l l : s~n - l  -+ J~-'; if n = 1 , then f = f .  Define & ,(j; X, A) to be the subspace 

of C (j) X xJ consisting of a l l  points ( < cl , . . . , c.> , xl , . . . , x.) such that 
n J J 

if x r  4 A, then the intersection in Jn of the sets  (C;(O), 1) X c: (Jn-l) and 

c (Jn) i s  empty for  al l  s f r. The equivalence relation defined on 
S 

j 
cn(j) X X in the construction, (2.4), of C X restr icts  to an equivalence 

j 2 0  n 

relation on En(j;  X, A). Define E,(X, A) to be the set  
j 2 0  

topologized as a subspace of C X. Since A is  closed in X, E (x,A) i s  closed 
n n 

in CnX and E ~ ( x ,  A) r % . E,(x, A) i s  a filtered space with filtration 

defined by 
F.E (X,A) = En(X,A)nF .C  X , 

J n  J n  

and F E (X, A) = *. Clearly C n(j) X A' C En(j; X, A) and thus 
o n 

C A C E,(X,A). If f:(X,A) -+ (X1,A1) i s  a map of pairs, then n 

Enf: En(X, A) + En(X1, A') i s  defined to be the restriction of C f: C X - CnX1 
n n 

to E (X, A). 
n 

The following results,  particularly Lemmas 6.7 and 6.10, show that the 

definition of E (X,A) i s  quite naturally dictated by the geometry. Observe that n 

E (X,X) = C X; at the other extreme, En(X, *) i s  closely related to C X. n n n-1 



Lemma 6.7. Let X E 1 and let [c,x] E En(X, *), where c = < cl , .  . . , c.> 
J 

and x E (X - 4)' for some j 2 1. Then j = 1 if n = 1 and 

c n  = < ci'' , . . . , c!I> E 6n-l (j) i f  n >l. There is thus a natural surjective based 
J 

map v : E (X, *) -+ Cn,lX defined by the following formulas on points other 
n n 

than * : 
(1) v [c,x]= X E  X =  C X; and 

1 0 

(2) v ~ [ c , x ] = [ c ~ ~ , x ] E  Cn-lX if  n .1 .  

Proof. Let x = (xl,. . . ,x.), xr E X - *. Fix r # s, 1 5 r ( j and 
J 

1 5 s 5 j. For definiteness, assume that c1 (0) 5 c ~ ( 0 ) .  Let t E C;(J). If n = 1, 

then t E (cr(0), 1) n cs(J), which contradicts the definition of E1(j; X, *); 

thus r # s is impossible if n = 1 and therefore j = 1. If n > 1 and if 

n 
v E cll(Jn-l). c:(Jn"), then ( t )  E ( J  ) and t r (c;(O), l),  which contradicts 

r 

the definition of & n(j; X, *). Thus the little (n-1)-cubes c: and c" have 

disjoint images and c" E C e l ( j ) .  

Notations 6.8. Let n: (X, A) -+ (Y, *) be a map of pairs in 'j- . Then the com- 

En" vn 
posite map E (x, A) E~ (Y, *) > 'n-1 Y will be denoted nn. 

n 

Since En is  a functor and v is a natural transformation, T is natural on 
n n 

commutative diagrams 

(X, A) A (Y , *) 

in the sense that C n- lgoPn = "1 n oE n f for any such diagram. 

Lemma 6.9. For X E and n 2 1, there is a natural commutative 

diagram 
C P 

cnx -----------+ E,(TX, X) n 
I 'n-l? 

Proof. Define the cone functor T by TX = X X I/* X IuX X 0, and 

embed X in TX by x + [x, 11; SX = TX/X and a: TX + SX denotes the 

N 
natural map. Define q: TX +P S2n-1 s?X by the formula 

N n- 1 
qn[x,s](t)(v)=[x,st,v] for [X,S]E TX, t ~ 1 , ' a n d  V E S  . 

Then the following diagram commutes and the result follows: 



Since a factors a s  the composite 8 C n h ,  the lemma gives half of n n 

the diagram required for  Theorem 6.1. The following sharpening of Lemma 

5.6 will lead to the other half of the required diagram and will also be needed 

in the study of homology operations on n-fold loop spaces. 

N 

Lemma 6.10. F o r  X r 7 , define 0 .: E ~ ( ~ ; P Q ~ - ' x , Q % )  - pan-'x 
n2 J 

a s  follows. Let (c, y) r & n( j ; ~  an-'X,Q%), where c = < cl ,  . . . , c 

n-1 
j> and 

y = ( Y ~ ,  . .., y.). F o r  t r I and v r S , define 
J 

yr(s)(u) if cr(s*u) = (tsv) 
h) 

otherwise 

Then the following diagram is  commutative: 

N 

v r c"(J"-'). Thus the f i rs t  and second parts of the definition of en, have dis- 
r 

n- 1 
joint domains. Of course, yr(s)(u) = * for  u E a1 , and i t  follows that 

r, w 
i s  continuous. By comparison with Theorem 5.1, en, - 

- On, j 
on 

j 

c n (j) x ( f id .  i s  defined in Lemma 1. 5, and the commutativity of the 

bottom square follows from that lemma. The commutativity of the triangle i s  

immediate from the definitions, since u1 i s  given by f + 1 X f on little n-1,j 

(n-1)-cubes f. 

N 

Lemma 6.11. F o r  X r y  , the maps hn(j,pn"-'~,S2%) -+ pan-' X en, j. 
PJ 

induce a map 0 n : E n ( P S ~ ~ - ~ X , C ~ % )  -+ pnn-lX such that the following diagram i s  

commutative (where, if n = 1, 0 = 1 : X -+ X): 
0 

Proof. The definition of & (j; P S ~ ~ ' ~ X , Q % )  gives that if  q # r and 
n 

y # nnX, then no element of c (3") has the form (t,v) with t 2 c1 (1) and 
r 9 r 

14 N .-J N 

. (cry y) = 0 .(c, uy) and 0 l ( u i ~ ,  y) = 0 .(c, siy), in the Proof. en, 
n, J n, j- ny J 

rcl 

notation of Construction 2.4, and therefore 0 i s  well-defined. The previous 
n .  

m 
1:mma implies that 0 n - - 'n on Cnn%. Clearly 

i f  c U ( u ) = v  and yr{S2% 
rJ 

pen[c* yl(v) = 
otherwise . 

By the definition p = v " E p and by the definition of v in Lemma 6.7 
n n n  n 

. - - and of in Theorem 5.1, pen - pn follows. 



N 
Define 2 = en. E,%: EnX = E (TX, X) -+ ~ 8 - l  STIX. Then the com- 

n n 

mutativity of the diagram in the statement of Theorem 6.1 results from 

Lemmas 6.9 and 6.11. 

We complete this section by showing that our approximations relate 

nicely to the Hurewicz homomorphism h and to the homotopy and homology 

suspensions S*. Recall that we have morphisms of monads E : C -+ N, 
n 

where NX i s  the infinite symmetric product on X; by abuse, if n = 1, E 

here denotes the evident composite C 
-+ M -+ N. F o r  connected spaces X, 1 

N 

we may identify ni(NX) with H.(X), and then h = q*: ai(X) -+ n.(NX) and 

-1 
S* = a : ni(NX) -+ ni+l (NSX), where a denotes the connecting homomorphism .. 

of the quasi-'fibration Nn: NTX -+ NSX with fibre NX ; proofs of these results 

may be found in [lo]. 

IU Lemma 6.12. Let n: (X, A) -+ (Y, *) be a map of pairs in J , and let  
& 

& denote the composite E (X, A) c 
n - CnX NX. Then the following 

diagram i s  commutative where, if n = 1, € = q: Y + NY. 

Proof. The commutativity of the left-hand square i s  obvious and the 

commutativity of the right-hand square follows easily from the definition 

of n F o r  n = 1, the crucial fact i s  that at most one coordinate x of an n. r 
element [< c l ,  . :. , c.> , xl ,  . . . , xj] r El (x, A)  i s  not in A. 

J 

Corollary 6.13. Let X E 7 be connected. Then there i s  a natural 

commutative diagram, with isomorphisms a s  indicated: - 

where a-no  : ni(X) -+ nitn(Sk) i s  the homotopy suspension. 
% * 

Proof. The triangles commute since ru n and E a re  morphisms of 

monads. The upper square commutes by the diagrams of Theorem 6.1 and 

the lower square commutes by the lemma applied to X C TX and a: TX -+ SX. 

Remark 6.14. Let M(X, A) denote the image of the space E1(X,A) under 

the augmentation &: CIX -+ MX; Gray [14] has made an intensive study of 

M(X, A), which he calls (X, A) cn ' The natural map T :  X + X/A induces 

al: E1(X, A) -+ X/A, and n 1 clearly factors (via e )  through a map 

p: M(X, A) -c X/A. If A i s  connected (and if the pair (X, A) i s  suitably nice), 

then, by Theorem 7.3 and [I+], al and p a re  quasi-fibrations with respective 

fibres C 1 A and MA, and &: C 1 A -+ MA i s  a weak homotopy equivalence by 

Proposition 3.4; therefore 8 :  E1(X, A) -+ M(X, A) i s  also a weak homotopy 

e quivalence. 



7. Cof ib ra t ions  and quas i - f ib ra t ions  

We prove he re  t h a t  En(X,A) is  aspher ica l  i f  (X,A) i s  an NDR-pair 

such t h a t  X i s  c o n t r a c t i b l e  and t h a t ,  f o r  appropr ia te  NDR-pairs ( X , A ) ,  

t h e  maps an:En(X,A) -+ Cn-l(X/A) and Cmn:CmX -+ Cm(X/A) a r e  quasi-  

f i b r a t i o n s  wi th  respec t ive  f i b r e s  CnA and CmA. Applied t o  t h e  p a i r s  

(TX,X), t h e s e  r e s u l t s  w i l l  complete t h e  proof of t h e  approximation 

theorem. They w i l l  a l s o  imply t h a t  n,(CmX) is a homology theory on 

connected spaces X (which, a f o r t i o r i ,  i s  isomorphic t o  s t a b l e  homo- 

topy theory)  . 
Theorem 7.1. Let  (XIA)  be an NDR-pair i n  7. Then 

(i) (F .E (X,A) IFj-lEn (XIA) is an NDR-pair f o r  j > 1. I n - 
(ii) I f  X i s  c o n t r a c t i b l e ,  then En(X,A) i s  aspherica1,and E (X,A) i s  

n 
c o n t r a c t i b l e  i f  X i s  compact, o r  i f  X is t h e  cone on A,  o r  i f  n=l.  

Proof. By Lemma A.5 app l i ed  t o  (X,A,*), t h e r e  i s  a represen ta t ion  - 
(h,u) of  (XI*) a s  an NDR-pair such t h a t  h(IxA) c A. By Lemma A.4, (h,u) 

determines a r epresen ta t ion  (h , u . )  of  (XI*)]  a s  an C -equivar iant  
j I j 

NDR-pair. Since any coordinate  i n  A remains i n  A throughout t h e  homotopy 

h t h e  represen ta t ion  (c .?i of (F.C XIFj-lCnX) a s  an NDR-pair which j j j I n 

was der ived from (h .  , u . )  i n  t h e  proof of Proposi t ion 2.6 r e s t r i c t s  t o  a 
I I 

r ep resen ta t ion  o f ( F  .E ( X I A )  ,F E (X,A) ) a s  an NDR-pair. The contrac- 
I n j-1 n 

t i b i l i t y  s ta tement  is  more d e l i c a t e .  Indeed, my f i r s t  proof was 

i n c o r r e c t  and t h e  argument t o  follow i s  due t o  Vic Snaith.  Le t  

g:I x X -+ X be a c o n t r a c t i n g  homotopy, g(OIx) = x , g ( t , * )  = *, and 

4(1,x) = *. Clear ly  g cannot i n  genera l  be s o  chosen t h a t  g(IxA) c A. 

For c = < cl...,c > E C n ( j ) ,  w r i t e  ci = C! x c:, c;: J -+ J, and d e f i n e  j 1 

vi (c) = 2 max, ( c i  (1) - c j  ( l l ) / X  (c) , where X ( c )  = min ( c i  (1) -c; (0)  ) . 
k f l :  l k <  j - 

Def ine  a homotopy G : I  x(FjEn(X,A)-Fj-lEn(XIA)) +F.E (X,A) by 
I n 

G ( ~ I [ ~ I x ~ - .  , x j l )  = [ c I g ( t l I x l )  ,... , g ( t . , x  ) 1,  where 
I j 

t i f  vi ( c )  ( 0 

t (1-vi ( c )  ) i f  0 5 vi (c) ( 1 

0 i f  v i (c)  ) 1 

,G i s  well-defined s i n c e ,  a s  i s  e a s i l y  v e r i f i e d ,  v i (c) ( l  impl ies  t h a t  

n- 1 
( ~ ; ( 0 )  ,1) x c i  (J ) n ck (3") i s  empty f o r  a l l  k i (and thus  t h a t  t h e  

ith coordinate  i n  X i s  u n r e s t r i c t e d ) .  G s t a r t s  a t  t h e  i d e n t i t y  and ends 

i n  F j-lEn (X,A) s i n c e  vi ( c )  ( 0 f o r  a t  l e a s t  one i and each c. Note, 

however, t h a t  G cannot be extended over a l l  of  F..E ( X , A ) .  Now assume 
I n 

t h a t  t h e r e  e x i s t s  E > 0 such t h a t  g ( I  x U - ~ [ o , E I )  c ~ ~ ~ 0 ~ 1 ) .  I f  X is 

compact, then t h e r e  e x i s t s  such an E by an easy exerc ize  i n  po in t - se t  

topology; i f  X = TA, ( j  ,v) r ep resen t s  (A,*) a s  an NDR-pair, and 

uCa,sl= v ( a )  .st h ( t , C a , s l ) =  C j ( t , a )  ,sl,  and g ( t , C a , s l ) =  Cats-st] ,  

then any E < 1 s u f f i c e s .  Define a homotopy 

H : I  F .E I n (x,A) -+ F.E I n (x,A) by H ( t , z ) =  2 f o r  z E Fj-lEn(X,A) and by 

f o r  C c , y l ~  F.E 3 n (X,A)-F j-1 E n ( X , A ) .  Then H deforms F.E I n (X,A) i n t o  
-- -- 
u j 1[0~1)  and, by t h e  first p a r t ,  u j 1 ~ 0 , 1 )  can be deformed i n t o  

F j-lEn (x,A) i n  F I .E n (XIA)  . It follows t h a t  each F I n  .E (X,A)  i s  contrac- 

t i b l e ,  and t h e  argument given by Steenrod i n  C30,9.41 shows t h a t  

E (X,A)  is  c o n t r a c t i b l e .  For a r b i t r a r y  c o n t r a c t i b l e  X I  a map n 

f:sq -+ E ~ ( x , A )  has image i n  F.E I n (Y,A n Y )  f o r  some j and some compact 
- 

Y X;  i f  E i s  such t h a t  g ( 1  x u - ~ c o ~ ~ Y )  c u  1[0,1) then the  homotopy 

H above deforms F I .E n (Y ,Any) i n t o  ~ - ~ C 0 , 1 )  i n  F 3 .E n (X,A)  , and it follows 

t h a t  f is null-homotopic. Thus En(X,A) i s  aspher ica l .  F i n a l l y ,  i f  n = 1, 

then we can w r i t e  p o i n t s  of  E1(X,A) i n  t h e  form [c ,y l  where t h e  i n t e r -  

v a l s  ci of c E C l ( j )  a r e  arranged i n  o r d e r  (on t h e  l i n e )  ; then t h e  

r e t r a c t i n g  homotopy f o r  X I  obta ined from hj-l on ~ j - '  and g on X 

by Lemma A. 3 can be used t o  deform F .E (X,A) i n t o  FjelE1 (X,A) . 
3 1 



Recall that a map p: E + B i s  said to  be a quasi-fibration if p i s  

- 1 
onto and if p*: ni(E, p (x), y) + ni(B, x.) i s  an  isomorphism (of pointed sets  

- 1 
o r  groups) for  a l l  x G B, ye p (x), and i 2 0. A subset U of B i s  said 

- 1 
to be distinguished if p: p (U) + U is  a quasi-fibration. The following lemma, 

which results f rom the statements [ 10 ,2.2, 2.10, and 2.151 of Dold and Thom, 

describes the basic general pattern for  proving that a map i s  a quasi-fibration. 

Lemma 7.2. Let p: E + B be a map onto a fil tered space B. Then 

each F.B i s  distinguished and p i s  a quasi-fibration provided that 
J 

(i) F O B  and every open subset of F.B - F B for  j > 0 i s  distinguished. 
J j-1 

(ii) F o r  each j > 0, there i s  an open subset U of F.B which contains 
J 

-1 F B and there a r e  homotopies ht: U + U and H : p (u) + p - l ( ~ )  
j-1 t 

such that 

(a) h o = l ,  h t ( F j - l B ) C F  B, and hl(U)C F B: 
j-1 j-1 

(b) Ho = 1 and H covers h, pH = h p ; and t t  
- 1 - 1 

(c) H1 : p (x) + p (hl (x)) i s  a weak homotopy equivalence for  a l l  x e U. 

The notion of a strong NDR-pair used in  the following theorem i s  defined 

in  the appendix, and i t  i s  verified there that (M ,X) i s  a strong NDR-pair f o r  any 
f 

map f: X + Y .  

Theorem 7.3. Let (X,A) be a strong NDR-pair in  , and assume that 

A i s  connected. Let n: X + X/A be the natural  map. Then 

(i) nn: En(X, A) + C n - l ( ~ / ~ )  i s  a quasi-fibration with fibre CnA ; 

(ii) Ca, s: CaoX *,,Cm(x/A) i s  a quasi-fibration with fibre C A. 
03 

Proof. (i). The maps n a r e  defined in  Notations 6.8. F o r  the case n 

n = 1, recall  that C~ (X/A) = X/A and define F ~ ( x / A )  = * and F~ (x/A) = X/A. 

The proof for n = 1 will be exceptional solely in that we need only consider 

the f i rs t  filtration, j = 1 below, and therefore no special argument will be 

given. FOGnm1 (x/A) = * i s  obviously distinguished, and we must f i rs t  show 

that any open subset V of F j C n - l ( ~ / ~ )  - Fj - lCn - l ( ~ / A )  i s  distinguished . 
By use of permutations and the equivalence relation used to define En(X, A), 

and by the definition of n any point y e n - l ( v )  may be written in the follow- 
n' n 

ing form: 

(2) y = [ < c , d > , x , a ] , w h e r e c = < c  1' ..., c .>e  C n ( j ) , d = < d l  ,..., T c $ , ( k ) ,  
J 

x e (x-A)', and a G Ak; here  if c r = c1  r X C: , c1  r : S -* S, then the inter- 

section of (cl  r (0), 1 )  X c:(Sn-$ and ds(S? i s  empty, and 

nn(y) = [cl1, $(x)] e V, where c"  = < c l i , .  . . , c!I> J e n-l(j). 

- 1 
Define q:n n (V)-).CnA by q(y)=  [d,a] for  y a s  in (2). I t i s  e a s y t o v e r i f y  

that q i s  well-defined and continuous. We claim that a n Xq:an-'(V) + V  X CnA 

i s  a fibre homotopy equivalence, and this will clearly imply that V i s  dis- 

i- 
tinguished. Define morphisms of operads u : C n l  * n and r-: t, + 6, 

by the formulas 

t + + 1 i- 1 
(3) u (f) = g X f on little (n-1)-cubes f, where g (s)  = $l+s), g (J)  = (?, 1). 

1 - 1 
(4) T-(f) = (g- X in-')f on little n-cubes f, where g-(s) = -6, 2 g (J) = (O,jJ). 

- 1 
Then define w: V X CnA * rrn (V) by the formula 



+ 
( 5 )  w([c", sJ(x)], [a, a]) = [< u (cD)* T-(d)>,x, a], where c" r cn- l ( j ) ,  

x E (X - A)', d E cn(k ) ,  and a E (for any k 2 0). 

The definition of u+ and T- ensures that the little cubes on the right satisfy 

-1 the requirements specified in (2) for  points of a (V). Clearly w i s  con- 
n 

tinuous and fibrewise over V. Now ( s  X q) w i s  the map 1 X T-, where 
n 

T-: CnA + C A i s  the associated morphism of monads to T-: 
n C n + G n .  

Since 1 T via the homotopy induced from f - ( g ; ~  1"-')f on little n-cubes f, 

1 
where g-(s) = (s - Zst),  ( s  X q)w i s  fibre homotopic to the identity map. On t n 

- 1 
points y E s (V) written a s  in (2), we have 

n 
+ 

w(sn X ~ ( Y I  = [< 0- (c*'), ~ - ( d ) > ,  x, a1 

Construct a fibre-wise homotopy 1 s w ( s  X q) by deforming d into T-(d) a s  
n 

above (without changing c,x,  o r  a) during the f i rs t  half of the homotopy and 

+ 
then deforming c into u (c") by deforming each c1 linearly to gS (without 

r 

changing T-(d), x, o r  a) during the second half of the homotopy. It i s  easily 

verified that the disjoint images and empty intersections requirements on the 

little cubes of points of T - ~ ( v )  a r e  preserved throughout the homotopy. Thus 
n 

s X q i s  a fibre homotopy equivalence and V i s  distinguished. It remains to 
n 

construct a neighborhood U of F C (x/A) in F.C (x/A) and deforma- 
j-1 n-1 J n-1 

-1 
tions of U and of T (U) which satisfy the conditions of Lemma 7.2(ii). Let 

n 
- 1 (1 ,v )  represent (X, A) a s  a strong NDR-pair, and let B = v [0, 1); by 

definition, P (I X B) C B. Define U to be the union of F C (x/A) with 
j-1 n-1 

{[c., T(X ), . . . , T(x~)] I x r  E B fo r  at  least  one index r}. 
1%: 

Let (h,u) be the representation of (x/A, *) as  an NDR-pair induced from 

(P , v )  by s, and let  (h.,u.) J J  and (1 j' v.) J be the representations of (X/A, *lJ 

j - w 

and (X, A) a s  NDR-pairs given by Lemma A. 4. Let (h., J J  u.) be the repre- 

s entdtion of (F j C n - l ~ / ~ ,  F ~ - , C ~ - , X / A )  a s  an NDR-pair given by Proposition 

IY 

2.6; then ff.(x) J < 1 if and only if x E U, and h. J restr icts  to a strong deforma- 

lu 

tion retraction h.: J I X U - U of U onto F j - l C n - l ~ / ~ .  Define 

- 1 - 1 j-1 
: I X s n (U) sn (U) by ?j(t, y) = y for y r F En(X,A), where 

- 1 
F~- 'E  n (X, A) = n n ( F j - l C n - l ~ / ~ ) ,  and by the following formula on points 

- 1 
y r s n (U) - F ~ - ' E ~ ( x ,  A) written in the form (2) 

( 6 )  zJ( t ,d=[< c, d>,P J .(t, x), a1 

+'j c-4 

P i s  well-defined since P (t, a )  = a fo r  a E A, and clearly 2' covers h. and 
J 

j-1 
i s  a strong deformation retraction of s -1 (u) onto F E ~ ( X ,  A). By Lemma 

n 
N - -1 - 1 

7. 2, it suffices to prove that if x t U and x'  = h (x) , then 7;: sn (x) -+ nn (x') 
j 1 

j - 1 
i s  a homotopy equivalence. Since 2' i s  constant on F E n (X;A), this i s  

trivial for x r F C (x/A). Thus consider a typical element j-1 n-1 

x r u -  C (x/A), say 
Fj-l n-1 

x = [ c n , ~ ( x l ) , .  . . ,T(x.)], where cl* = < c n  l " s ' y  c!'> a n d x  E X-A. 
J J 

Let P j l(xl, .  . . x . )  = (xi . . . x )  Some of the x1 lie in A. By use of per- 
J J 

mutations and the equivalence relation, we may assume that x '  4 A for r 5 i 

and x' r E A for i < r 5 j (i may be zero), and then 



Consider the following diagram: 

Here the q and w a re  defined precisely a s  in the f i rs t  part of the proof, and 

n X q and w a r e  inverse homotopy equivalences. We shall construct a 
n 

-1 N 

homotopy H: I X (x X CnA) + n (xl) from 1:- w to w o(< X 1). This will 
n j l  

imply that 2' i s  homotopic to the composite of homotopy equivalences 
1 

rJ 

w o(h X 1) 0 (nn X q). Since A i s  connected, we can choose paths p ' I + A 
j 1 r ' 

connecting x1 to + for  i < r 5 j. Define H by the formula 
r 

- j w 

Clearly H i s  well-defined, and H = P  w and H = w (h X I )  a re  easily 
o 1 1 j 1 

verified from (5) and (6). This completes the proof of (i). 

I 

(ii). Define a subspace En(j; X,A) of En(j ; X,A) by 

-!- 
t:(j ; X,A) = {(< c1,. . . , c.>, x1, . . . .xj) 1 C: = g if xr/ A], 

J 

where g-!- i s  defined in (3). Let E ~ ( x ,  A) denote the image of ~ h ( ~ ;  X, A) 
j 2 0  

in  E ~ ( X ,  A), and let nr.: E t  (X, A) -+ Cne1 (x/A) be the restriction of to 
n 

Eh(X, A). With a few minor simplifications, the proof of (i) applies to show 

that 8' i s  a quasi-fibration. We have been using E (X, A) rather than 
n n 

Eh(X, A) since the contractibility proof of Theorem 7.1 does not apply to 

Eh(X, A) ; a fortiori, these spaces a r e  weakly homotopic equivalent and can 

be used interchangeably. We now have commutative diagrams 

u 
n 

Eh(X, A) > E1 (X, A) 

I 
nS1 

I 

and 

-!- -!- 
where u -!- i s  defined by u (f) = g X f on little n-cubes f, and i i s  the 

n n 

inclusion. E h + l ( X , ~ )  was introduced in order  to ensure that 

-!- 
Cn+ln o i = u D nt Lemma 4.9 implies that cr C= u' :CnX + CntlX, n n+l ' n n 

naturally in X, and, since u1 (c) = 1 X c on little n-cubes c, we evidently 
n 

have that ut  C= uf' n. CnX -+ Cn+lX, naturally in X. Now pass these diagrams 
n 

to limits with respect to the u observing that cr 
+ f 

n+lun = un+l 
F o r  n' 

- 1 
x e c ~ ( x / A )  and y e (C n) (x), we have a commutative diagram 

00 



Clearly st is  still  a quasi-fibration; since u uf naturally, both the top 
a, n n '  

composite iu' and the bottom map uS a s  well a s  s1 induce isomorphisms 
03 03 ' m y  

on homotopy groups (ox sets). Since a t  u i s  a monomorphism, so i s  a* 

(Cms), on the left. Since u n1 i s  an epimorphism, so i s  (Can)* on the 
m:: m:: 

right. It follows that 

- 1 
(Cm-ir)*: "*(C,X' (C,") ( 4 s  Y) -+ s* (c rn (x /~ ) ,  x) 

i s  an isomorphism for  al l  x and y, which verifies the defining property of a 

quasi-fibration. 

The second part of the theorem has the following consequence. 

Corollary 7.4. F o r  any E operad tf , -rr,(CX) defines a homology 
m 7. 

theory on connected X E 7 and a,(QCSX) defines a homology theory on al l  
?. 

X E , These theories a r e  isomorphic to stable homotopy theory, and thp 

morphism of homology theories E *: P*(CX) + n*(NX) i s  precisely the stable 

Hurewicz homomorphism. 

Proof. By Proposition 2.6 and the homotopy exact sequence of the 

quasi-fibrations C X -+ C M + C T , where Tf  = M ~ / X  is  the mapping 
m c o f  m f  

cone of f:X * Y, a*(C X) satisfies the axioms for  a homology theory on m 

connected .X. Since suspension preserves cofibrations and looping preserves 

fibrations, a%(Q CrnSX) satisfies the axioms for  all  X. The natural weak 

homotopy equivalences of Corollaries 6.3 and 6.4 clearly allow us to t rans-  

f e r  the result to arbi trary E operads (, and the maps ( a  )* and 
m m 

(Qa! S), define explicit isomorphisms with neS(x) = s%(aX). The statement 
03 T 

about &+ follows immediately from Corollary 6.13. 



8. The smash and composition products 

The purpose of this section i s  to record a number of observations 

relating the maps en: Cnnnx + nnx and an: CnX + nnsnx to the smash 

and composition products, and to make a few remarks about non-connected 

spaces. The results of this section do not depend oen the approximation 

theorem and a re  not required elsewhere in this paper; they a re  important 

in the applications and illustrate the geometric convenience of the use of 

the little cubes operads. 
n n 

We identify X with the space Hom (sn, X) of based maps S + X, 

sn = In/ 81n, and we write S for the inclusion + nntlsx given by sus- 

pension of maps. 

F o r  XI Y e , the smash product defines a natural pairing 

$ 2 5  x nny + nmtn(x A Y); explicitly, 

(f A g)(s,t) = f(s)  A g(t) 

m n 
for  f e S f % ,  g e any,  s e I , and t e I . Observe that if m > l  andif  

f$:~% X nmx + nmx denotes the standard (first coordinate) loop product, 

then, for f f e n ? X  and g e nny,  we have the evident distributivity formula 
1' 2 

$(f lIf  2)" g = f$(f1'\gsf2"g) . 
Diagrammatically, this observation gives the following lemma. 

Lemma 8.1. F o r  XI Y E 7, the following diagram is  commutative: 

nmX x nmx x nny * nmx x any  

A X A  m t n  nmx x nnu x i"x x n% -a (XAY) x nmtn(x A Y) , 

where A i s  the diagonal and t i s  the switch map. 

Now the loop products in this diagram a r e  given by 9 
(c), where 

m12 - m-1 + m-1 
c = < g  X 1  , g  X1 > e t m ( 2 )  with g- and gt as  defined in formulas 

(7.3) and (7.4), and the lemma generalizes to the following computationally 

important result. 

r- Proposition 8.2. F o r  X, Y e J and a l l  positive integers m, n, and j, 

the following diagram i s  commutative: 

where A i s  the iterated diagonal and u i s  the shuffle map. 
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Proof. We must verify the formula - 
.(c,xl ,..., x.)n y = B .(c;xln Y ,..., x j ~ y )  

'm, J J m,J 

f o r  x. E 5 2 5 ,  y E Q ~ Y ,  and c = < c 1'"" c E ( j ) .  By Theorem 5.1, if 

m n 
s E I and t E I , then 

Visibly, this agrees with .(C.X,, . . . , x ~ ) ( s ) A  ~ ( f ) .  
em, J 

An equally trivial verification shows that we can pull back the smash 

product along the maps cu n in the sense of the following proposition. 

Proposition 8.3. Define a map A : CmX X CnY -+ C (X A Y) by m+n 

the following formula on points [c, x] E C m X and [d, y] E CnY, with 

c =  < c l  ,..., c.>E t m ( j ) ,  x =  (x, ,..., x.)E x', d = < d  ..., \>e  t n ( k ) ,  
J J 

1' 

and y = (yl , .  . . ,yk) E yk: 

[c ,xl  A [d, yl = [e, 21, 

where e = < c  1 Xdl  ,..., clX \ , . . . , C . X ~ ~ ~ . . ~ ~ C . X \ >  J J 

and z = ( X ~ A Y ~ , . . .  , x  1 ̂ y  ,,..., X . A Y  J 1 9 . . . , ~ . h ~ k )  3 

Then the following diagram i s  commutative: 

(where we have identified S% h S ~ Y  = X h sm t, Y A sn with 

X A Y A sm* sn = smCn(x A Y) via the map 1 A t A 1). 

We can stabilize the smash products of the previous proposition, up to 

homotopy, by use of Lemma 4.9 and the following analogous result on change 

of coordinates. 

n-1 n-1 Lemma 8.4. Let X E 'j- . Define St:52 S x -+ ans%, n 2 1, 

n-1 n-1 
by letting S t f ,  f E 52 S X, be the following composite: 

1 A f  1 sn= S'A sn - l  -----+ S x A s n - '  t 1 > x 4 s 1 t ,  sn-l = s%. 

Then St  i s  homotopic to S, where Sf = f A 1: sn -+ S ~ X .  

Proof. Let T, T I :  sn -+ sn and h: T 'J -rt be the maps and homotopy 

n-1 n-1 constructed in  the proof of Lemma 4.9. F o r  f E 52 S X and s E I, let  

Hs(f): sn - S% be the composite 

h -l 
Sn s Sn 1~ f ,SIAXASn-l t~ 1 1 h hs 

> X A S ~  > x n , s n = s % .  

Then Ho(f) = f 1 and H (f) = (t r\ 1) o ( l  r\ f),  a s  required. 1 ,  

Of course, it i s  now c lear  that the n suspension maps 

52n-l n-1 
S X -+ 5 2 " ~ " ~  and Cn 1X -+ C X obta'ined by the n choices of privileged 

n 

coordinate a r e  all homotopic. It follows easily that the smash products of 

Proposition 8.3 a r e  consistent under suspension, up to homotopy, a s  m and n 

vary. 



N 

We next discuss the composition product. Let ~ ( n )  denote the space 

of based maps sn .-+. sn regarded a s  a topological monoid under composition 

TU rJ 
of maps. Let F . (n)  denote the component of F(n) consisting of the maps 

of degree i. As usual, we write 

N 

F ( n ) = F  ( n ) u ?  (n) and SF(a )=F l (n ) .  
1 - 1 

nl n n 
F(n) may be identified with Q S , and then, by (5.6), ~ : y ( n )  + F(nt1)  

I 
n n  n t l n + l  N C) 

agrees with cr :Q S + $2 S . We write F for  the monoid lim F(n) 
n 4 

r.J 
and identify F with QSO as  a space. F o r  X r , define 

IU 

to be composition of maps. Then c is a right action of the monoid F(n)  n 
n 

on the space Q X. The diagram 

i s  evidently commutative for  al l  n L  1. Therefore, if [yi) r xCD, then 

the maps 

V 

induce a right action c :Yo X F  +Yo  of $ on Yo. Of course, 
CD 

N 

c QSOX? -+ QSO coincides with the composition product on F. The 
m' 

composition product enjoys another stability property, which i s  quite analogous 

to the result of.,Lemma 5.6. 

Lemma 8.5. F o r  X e 7 and n ) 1, define Pcn: PC?% X B(n) + PQ% 

by PC (x. f)(t) = c,(x(t), f) for x e pa%, f e F(n), and t r I. Then the 
n 

n+l 
restriction Rc of Pcn to Q X X ~ ( n )  i s  the composite 

n 

nnt1x x F(n) > nnt'x x F(n+1) Cntl ,nn+'x 

and the following diagram i s  commutative: 

The precise relationship between the smash and composition products 

i s  given by the following evident interchange formula. 

Lemma 8.6. F o r  x E Qmx, y e #Y, f E 'iJF(m), and g E p(n), 

c m (x, f )  A cn(y, g) = cmtn(x~ Y, f g) 

*-r 
Lemma 8.7. The composition and smash products on F a re  weaMy 

homotopic, and both products a r e  weakly homotopy commutative. 

Proof. F o r  f e g(m)  and g r $(n), we have the formulas 

n 
( ~ ' ) ~ g  osnf = f A g = S f 0 (sqmg 

m n n 
since ( s ' ) ~ ~  = 1 A g and S f = T A  1 . S and Sf a r e  homotopic by 

Lemma 8.4, and the result follows. 



We shall obtain an enormous generalization of this lemma in the 

= a d p a p e r  of this series.  There i s  an E operad such that 2 acts  
03 

N 

on F (so a s  to induce the smash product) in such a manner that the com- 

position product ? X -+ i s  a morphism of dg -spaces. 

Of course, there i s  a distributive law relating the lpop product jd to 

the composition product, namely 

N 

for  f , f  E n% and g E F(n-1). Diagrammatically, this gives 
1 2  

Lemma 8.8. F o r  X E 7 , the following diagram is  commutative 

The following generalized distributive law is  proven, a s  was 

Proposition 8. 2, simply by writing down the definitions. 

C 
Proposition 8.9. F o r  X E J and all  positive integers m, n, and j, 

the following diagram i s  commutative: 

. x 
(j) x (nrnf%$ x g(n)  J 

m . nmf % x F(mtn )  

~ X ~ X A ( S ' ) ~  I I 'm+n 

Cm(j) x (a "'%)j x F(mtn) j  amf% 

'Xu 1 1 j 

. 1 x c','~ 
Cm(j) x (am'% x F(mtnlJ  > m ( j ) x ( a m f n x ) j  

We can pull back the composition product along the approximation 

maps a but this fact i s  slightly less  obvious. The following reinterpre- 
n ' 

tation of the definition of the maps 8 will aid in the proof. 
n, j 

Lemma 8.10. F o r  X E , let J~ denote the wedge of j copies of 

X and let p: J~ -, X denote the folding map, the identity on each copy of X. 

Let c = c . .  c E j and y = (yl,. .., y.), yr E a%. Then 
J 

.(c, y): sn + X i s  the composite 
en, J 

- sn -L- j s  y l v . . . v y j  jx-x, P 

where T i s  the pinch map defined by F(v) = * unless v = c (u) for some r 

n 
and u, when c(v) = u in the rth copy of S . 

o n n  
We next describe C SO and %: CnS - S ; these maps play a cen- 

n 

tral role in the homological applications of our  theory. 



0 
Lemma 8.11. F o r  any operad , CS is  homeomorphic to the dis- 

joint union of the orbit spaces t ( j ) / x j  for j 2 0. 

0 0 
Proof. If S has points * and 1, then any point of CS other than 

9 can be wi.itten in the form [c, lJ], c E (j). 

Lemma 8.12. Consider an: CnsO + dsn. F o r  c E t n ( j ) ,  write 

5 
ct (c) = a [c, 11 E F.(n). Then ac (c) i s  the composite 
n n J n 

Proposition 8.13. Define a map c : CnX X CnsO + CnX by n 

k k  
cn([cy XI, d) = [y(d, c 1, x 1, 

for  c E ,(j), x = (x,, . . . , x.) E xJ1 and d E n(k). Then the following 
J 

diagram i s  commutative for a l l  n ,  1 S n < co: 

Proof. Let qn(x) = \(xl) V . . . V q (x.): jsn + 's%, where 
n 3  

n 
q (X )(s) = [xr, S] for  s E S . Since ac = en* C n x ,  i t  suffices to verify 
n r n 

the commutativity of the following diagram: 

The result follows easily from the definition of y, in 4.1. 

Note that, in contrast to the smash product, the following diagrams 

a re  commutative for  al l  n: 

C C 
n 

CnX and nnsnx X F(n) 
n 

;c nns% 

n n n 

SO Cn t l  C 

'nflX 1 n+l n f l  n4-1 n+lX 
'n+lx 

S X x F ( n f 1 )  -n S 

Of course, a : CnX fails to be a weak homotopy equivalence for  
n 

n n 
non-connected spaces X, essentially because s (52 S X) i s  a group and we 

0 

have not built inverses into operads. Conceivably this could be done, but the 

advantages would be far  outweighed by the resulting added complexity. It may 

be illuminating to compute s (a ):a (C X) + s (nns%). Recall that if S is a 
o n  o o  o 

based set (regarded a s  a discrete space), then MS (resp. NS) denotes the 

f r ee  monoid (resp., f ree  commutative monoid) generated by S, subject co the 

OJ ,.J 
relation * = 1. Let MS (resp.,  NS) denote the free group (resp.,  f ree com- 

mutative group) generated by S, subject to the relation * = 1, and let 

N r.J 
i: MS + MS (resp. , j: NS + NS) denote the evident natural inclusions of monoids. 



Proposition 8.14. F o r  X 6 J , the horizontal arrows are  a l l  

isomorphisms of monoids in the commutative diagrams 

and, if n > 1 , 

N 

Here the horizontal arrows a re  induced from the set  maps 

a0(.ln): \(XI - ao(CnX) 2nd ao(Q: To(X) + "o(~nsnx)  

nJ rc) 

by the universal properties of the functors M, N, M, and N. 

Proof. Fix b E c n ( 2 )  (with b = (bl,  b2>  where bl(l) & b2(0) if 

n = 1); then the product in C X may be taken to be 
n 

[c, XI ' id, yl = [y(b; c,  dl, x, yl 

k 
fo r  c e cn( j ) ,  x E x', d E cn(k) ,  and y E X . It follows easily that the image 

of a (X) generates a (C X) a s  a monoid. Thus the top horizontal arrows 
o o n 

a r e  epimorphisms and by the diagrams, i t  suffices to prove that the bottom 

horizontal arrows a re  isomorphisms. F o r  n ) 1, we have the evident chain 

of isomorphisms 

c\r N n 
NT (X) . H (X) &2 H (S X) S lln(snx) . a (nns"x). 

o o n o 

F o r  n = 1 ,  let X denote the component of g, where g runs through a set  
g 

of points, one from each component of X. Define open subsets U of SX 
g 

and U = U*LI{[X,S] I X E  X } for  g $  * .  
g g 

F o r  g $ h, U n U = U,, and s (U,) = * since U* i s  homotopy equivalent 
g h *  1 - 

to SX,. F o r  g $ *, a (U ) i s  f ree  on one generator, since U is  homo- 
1. 1 g  g 

topy equivalent to S(X* U X ), and therefore a (SX) = %n0(x) by the 
g 1 

van Kampen theorem. 



9. A categorical construction 

We shall here  introduce a very  general categorical "two-sided ba r  

construction". When we pass back to topology via geometric realization 

of simplicial spaces, this single construction will specialize to yield 

(1) A topological monoid weakly homotopy equivaIent to any given 

A space; 
03 

(2) The n-fold de-looping of a & -space that i s  required for- our  
n 

recognition principle; I 
(3) Stasheffls generalization [I$] of the Milgram classifying space 

of a topological monoid. I 
The construction also admits a variety of applications outside of topology; 

in  particular,  a s  we shall  show in § 10, it includes the usual two-sided ba r  

constructions of homological a lgebra.  

Throughout this section, we shall  work in the category of I 
I 

,--- 
simplicial objects in an a rb i t ra ry  category A . SiGce verifications of 

simplicial identities a r e  important, we recal l  the definition of simplicial 

objects and homotopies and then leave such verifications to t h e  diligent 

reader.  I 
Definition 9.1. An object X E i s  a sequence of objects X E 7 , 

9 

q 1 0 ,  toge therwi thmaps  a.:X + X  and s ' X  + X  in  , 
1 9  q-1 i ' q  q t l  

0 I. i 5. q, such that 

A m a p  f : X - Y  in  AT i s a s e q u e n c e  f :X + Y  o f m a p s i n  T s u c h  
9 9  9 

that 8.f = f a. and s.f = f 
1 q q+lsi' 

A homotopy h: f P g in between 
1 q  q - 1 1  

maps f, g: X + Y consists of maps h.: X -t Y 0 I i 5 q, such that 
1 q q f l '  

aoho = fq and a h = g 
q + l s  s 

Thus a purely formal homotopy theory exists i n  ,d Y , regardless of 

C 

the choice of J , and we can meaningfully speak of homotopy equivalences, 

deformation retracts ,  etc. When 7 i s  our  category of spaces, these 

notions will translate back to ordinary homotopy theory via geometric 

realization. 



We shall need a few very elementary observations about the relation- 

ship between 7 and A 3 . F o r  X r 7 , define X*e 8 7  by letting 

X = X and letting each a and s be the identity map. F o r  a map 
9 i i 

r- 
f:X + X 1  in J , define f-:X.+-+XI, in by f = f. The following 

-2- 9 

lemma characterizes maps in and out of X* in ,fT . , 

Lemma 9.1. Let X r 7 and let  Y r 7 . Then 

r 
(i) A map p:X -+ Y in J determines and i s  determined by the map 

0 

r;(p): X, -+ Y in  1 defined by T (p) = ; if 
9 

- 
i s  a commutative diagram in J , where g r T, then 

T*(P) 
> Y f*r .,. 

7*(p1) 

-2- 

! 
XI, - Y' 

i s  a commutative diagram in T. 
r 

(ii) A map h :Y + X in J such that ha = ha :Y1 + X determines and 
0 0 1 

i s  de terminedbythemap &*(A):Y + X *  in i I  definedby E (h)=h.a:: 
9 

r- 
i s  a commutative diagram in  J , where g r 7 and both hao = ha1 and 

x lao  = ?.lal, then 
€,(A) 

y-x, -8% 

,*(kl) lf- 
Y' - X I  

i s  a commutative diagram in ,d 2 . 
If F: 7 + 7' is a functor, le t  F*: 7 -dT' denote the functor de- 

fined on objects Y r 8 7 by F Y = F(Y ), with face and degeneracy 
9 9 

operators F(ai) and F(si). If y: F + G i s  a natural transformation between 

functors - 7' , let p*:F.+ -+ G* denote the natural transformation lefined .,- 

Lemma 9.3.  Let (C,y, q) be a monad in 1. Then (C*, y*, q*) i s  

a monad inBT , and the category 1 C[ 31 of simplicia1 C-algebras i s  

isomorphic to the category C=[] ] of C,-algebras. 
-2- 

Proof. The f irs t  part i s  evident f rom Definition 2.1. F o r  the second 

part, an object of either A C[ 7 ] or  CI[b ] consists of an object 

X E br  together with maps 6 . CX -c X in 7 such that (X 5 ) E C[ 5 ] 
9' 9 9 9' 9 

and the following diagrams commute: 

CX $9 >X and CX 9 > x 
1 1 I 1 



h, 
The point i s  that the diagrams which state that 5 :  C*X + X i s  a map in  8 J 

a r e  the same a s  the diagrams which state that each a. and s i on X i s  a 

morphism in  C[ 1. 

We need a new concept in  o rde r  to make our  basic construction. 

Definition 9.4. Let (C, p, q) be a monad in 7 . A C-functor (F,X) 

in a category i s  a functor F: y+T together with a natural  t ransforma- 

tion of functors X: F C  -f F such that the following diagrams a r e  commutative: 

F 
F q  

> F C  and FCC Fp > F C  

A morphism r: (F ,  h) + (F', h f )  of C-functors in i s  a natural  t ransforma- 

tion r:F + F I  such that the following diagram i s  commutative: 

F C  
T > F'C 

This definition should be compared with the defintion of a C-algebra: 

a monad i n  7 can act  f r om the left on an object of 5 and f rom the right 

on a functor with domain 7 . The following elementary examples will play 

a central  role in  a l l  of our  remaining work. 

Examples 9.5. (i) Let (C, p, q) be a monad in . Then (C, p) i s  itself 

2 a C-functor in 'j-. Since (CX, y) E C[  7 ] and p: C X -+ CX i s  a morphism 

in C[ 1 ] fo r  any X E 7 , (C, p) can also be regarded a s  a C-functor in  

C[ 3 1, bb  abuse of language. 

(ii) Let a: (C, p, q) -+ (D, V ,  I;) be a morphism of monads in  7 . Recall 

that i f  (x, 5 )  i s  a D-algebra, then a * ( ~ ,  c) = (X, 5 .  a)  i s  a C-algebra. 

Analogously, if (F, X) i s  a D-functor i n  7 , then a * ( ~ ,  X) = (F, X. F a )  i s  a 

C-functor in  7 , in  view of the following commutative diagrams: 

> F C  and FCC FP >F C 

In particular,  by ( i ) ,  (D, v .  Da) i s  a C-functor in  D[ 7 1; composing 

D: 7 -t D[ J ] with a*: D[ ] + C[ 71, we can also regard  (D, v .  Da) a s  a 

C-functor in  C[ 7 1. Clearly a: (C,  y) + (D, v. Da) i s  then a morphism of 

C-functors in  C[ 7 1. 

(iii) Let  $: Hom (X, AY) -c Hom (BX, Y) be an  adjunction between 
"j Y 

functors A :v-.c 7 and 2: 7 +?.T . Let   AX,^, c )  be the monadin  I]- 

- 1 
which resul ts  by Lemma 2.10; thus I; = $ ( 1 B ) and v = A$(lA,). 

Clearly ( B , $(in , )) i s  a AX-functor i n  T. 



(iv) Let  a: (C, p, q) -+ (AX,  v , c) be a morphism of monads in , with 

A X a s  in (iii). Obviously $(a) = @(l)  Xa : XC + Z. Thus, by (ii) and (iii), 

(X, $(a)) i s  a C-functor in and 

i s  a morphism of C-functors in C[ 7 1. 

Construction 9.6. Construct  a category 3 ( r  , v) and a functor 

B*: ; M ( T , ~ )  --AT a s  follows. The objects of ( r  ,v) a r e  t r iples  

((F, XI ,  (CY P, (X, 511, 

abbreviated (F, C, X), where C i s  a monad i n  5 , F  i s  a C-functor in  ?r 

and X i s  a C-algebra. Define B&F, C, X) by 

B (F ,C ,X)  = FC%, 
9 

with face and degeneracy operators  given by 

a, = x , X : F C ~ X - , F C ~ - ~ X  

i-l ai = F C  p , p:  C9-iflX , C9-& , O < i < q ,  

a = F C ~ - ' C  , .g:cx-x 
9 

i 
s = F C ~  I ?: cq-& + cq-if* X ,  o s i l q  
i 

A morphism ( a ,  +, f): (F, C, X) + (F', C', XI) in a3 ( 3  , /V) i s  a t r iple  

consisting of a morphism +: C -. C1 of monads in  3- , a morphism 

a: F + +*F' of C-functors i n  , and a morphism f: X + +*XI of C-algebras, 

where +*TI and +*XI a r e  a s  defined in Example 9.5 (iii). Define 

he r e  T + ~ : F C ~  + F ' ( c ' ) ~  i s  a natural transformation of functors 4 , 

and a+% i s  defined by commutativity of the diagram 

The following observation will be useful i n  our  applications. 

Lemma 9.7. Let (F, A )  be  a C-functor in 'u- and le t  G: ~ r *  T' 

be  any functor. Then (GF, GX) i s  a C-functor in v' and 

i n  A?' fo r  any C-algebra X. 

We next show that, a s  one would expect, B*(C, C, X) can be regarded 

a s  a "simplicia1 resolution of Xu.  This special case  of our  construction was 

known to Beck [ 5 ] and others. The proofs of the following two propositions 

consist  solely of applications of Lemma 9.2 and formal  verifications of 

simplicia1 identities. 



Proposition 9.8. Let  (C, p, q) be a monad i n  7 and le t  

(X, E) E C[ I]. Then E*(E): B*(C, C, X) + X* i s  a morphism in .dc[ 3 ] 

and T*(~):X* + B,(C, C, X) i s  a morphism in AT such that 
.I. 

E * ( $ ) o T * ( ~ ) = ~  on X,. Define hi:B ( C , C , X ) + B  (C,C,X), O S i < %  
T 9 s+l  

Then h i s  a homotopy in 8T f r om the  identity map of BJC, C,X) to 
T 

~ * ( q ) ~ * ( g ) ,  and h. (q) = T (q) f o r  all i. Thus X, i s  a strong deforma- 
1 9 9 +-i .,- 

tion re t rac t  of B ~ ( C ,  C, X) in A 3 . 

Analogously, if for fixed F and C we regard  B*(F, C, CY) a s  a 

functor of Y, then this  functor can be  regarded a s  a "simplicial resolution 

of F". 

Proposition 9.9. Let  (C, p, q) be a monad in 5 , l e t  (F, A) be a 

C-functor in , and le t  Y E . Note that (FY), = F,Y,. Then 
.I. I . I .  

€,(A): .,- B*(F, C, CY) + Fz* and T,(F~)I F*Y* + B_(F, C, CY) a r e  morphisms 

i n  dv such that &(h)er*(Fq) = 1 on FLY* . Define ,- .I. 

h.: B (F, C, CY,) B (F, C, CY), 0 2 i l q, by 
1 9  s+l  

hi= s 
9. ' ' 'it* O ~ ~ i + ' q .  ait1...a q :FC~+'Y + F C ~ + ' Y ,  ,,:Y + CY . 

Then h i s  a homotopy in d Y f r o m  T * ( F ~ )  0 &*(A) to the identity map of 

B,(F, -. C, CY), and h.4 T (Fq) = T (Fq) fo r  a l l  i. Thus F P ,  is a strong 
1 9  s+* ?. .I. 

deformation re t rac t  of B*(F, C, CY) in i w .  

The following two theorems resul t  by specialization of our  previous 

results to  Examples 9.5. In these theorems, we shall  be given a morphism 
.b 

of monads a : C + D, and the functors a T  which assign C-algebras and 

C-functors to D-algebras and D-functors will be omitted f rom the notations. 

The reader  should think of a a s  the augmentation & : C + M of-the 

monad associated to  an A 00 operad, o r  a s  one of the morphisms of monads 

n n 
a n : C n + 52 S , o r  a s  the composite of a n and a n : C X Cn -t Cn, where C 

i s  the monad associated to an E operad. 
03 

Theorem 9.10. Let a: (C, p, ?) + (D, v , t;) be  a morphism of monads 

(i) F o r  (X, 5) E C[ TI, B&D, C, X) i s  a simplicial D-algebra and there  a r e  

natural  morphisms of simplicial C-algebras: 

E*(E) i s  a strong deformation retraction in  7 with right inverse  T * ( ~ )  such 

that B,(ff, T 1 , 1 )  a~;I(" l )  = I-*( L: 1: X* + B*(D, CY XI. 

(ii) F o r  (X, 5') E D[ 71, the r e  i s  a natural  morphism 

~ ~ ( 5 ' )  .,. : C,X) + X, 

of simplicial D-algebras such that &,,(5')0 T*( f; ) = 1 on X* and such that 

e,(E1)"*(a, ... 191) = &*(E1ff): B,(C, C, X) -.. X,. T 



(iii) F o r  Y E 7 , the re  i s  a natural strong deformation retraction 

E,(J " Da!): BAD$ T C Y  CY) + D,Y* 

of simplicial D-algebras with right inverse  T,(D~). 

When D = AX, a s  in example 9.5, we can "de-lambdarr a l l  par ts  of 

the theorem above; applied to a! : C -L finsn, this fact will-lead to the n-fold 
n n 

"de-looping" of C -spaces. 
n 

Theorem 9.11. Let  a: C + AX be a morphism of monads i n  7 , 
where AX resul ts  f rom an adjunction $: Hom (X, AY)'.+ Hom (2X;Y). 

5- 'v- 
(i) F o r  (X, 5) E cL.7 I, B,(AZ, C,X) = AaB,(Z, T .a. C,X). 

(ii) F o r  Y E , ( AY, ~ $ ( l ) )  E AX[ ] and there  i s  a natural  morphism 

E*B(1): ... B*( -P 2, C, AY) + Y, 

i n  dv ; &*(~8(1))  = A, &,$(1): f l * B , ( ~  , C, AY) + A*Y* . 
(iii) F o r  Y E 7 , the re  i s  a natural  strong deformation retraction, 

&*$(a): -.- B&(Z, .,. C, CY) -+ Z,Y, 

i n  dv with right inverse  T+(B q), q: Y + CY. 

Remark 9.12. We have described ou r  basic construction in the form most 

suitable for  the applications. However, a s  pointed out to  m e  by MacLane, 

the construction admits a more  aesthetically satisfactory symmetr ic  generali-  

zation. If C i s  a monad in  7 ,  then a left  C-functor (E, 5) f rom a category 

r 1\/1 i s  a functor E: U* J together with a natural  transformation 

5: CE + E such that c 0 p = 50 Cg and (q = 1; thus it i s  required that EX 

admit a natural s t ructure  of C-algebra for  X E N .  No? w e  can define 
,\ 

B,(F, C, E),  a functor f rom ra to where (F, h )  i s  a ( r ight)  C-functor 

i n  T , by 

B,(F, C, E)(X) = B,(F, C, EX) 

on bbjects X E U . Since an object of i s  equivalent to a functor from 

the unit category (one object, one morphism) to , our  original construction 

i s  a special case. In the general context, B,(F, C, C) i s  a simplicial resolu- 

tion of the functor F and B,(C, C, E)  i s  a simplikial resolution of the 

functor E. 



10. Monoidal categories 

The construction of the previous section takes on a more familiar form 

when specialized to monoids in monoidal categories. We discuss this speciali- 

zation here in preparation for the study of topological monoids and groups in  

[21] and for use in section 15. 

A (symmetric) monoidal category (21, ,a, *) i s  a category (UI together 

with a bifunctor @ : ?.L XU -+U and an object * E U such that @ i s  

associative (and commutative) and * i s  a two-sided identity object for  @ , 

both up to coherent natural isomorphism; a detailed definition mpy be found 

in MacLane's paper [ 171. F o r  example, a category U with f+ite products 

(and therefore a terminal object *, the product of zero objects) i s  a symmetric 

monoidal category with i ts  product a s  ; we shall call such a category 

Cartesian monoidal. Observe that if U i s  a (symmetric o r  Cartesian) monoidal 

category, then so i s  dU , with @ defined on objects X,Y E du by 

(X@Y)q=Xq@Yqa 8 . =  8.@8. and s i =  s s  andwith * =  (*)*. 
1 1 1  

A. monoid (G, p, q) in a monoidal category U i s  an object G E U 

together with morphisms p: G @ G -+ G and q: * + G such that the following 

diagrams are  commutative: 

These diagrams show that (G, p, q) determines a monad in U , which we shall 

still  denote (Gap, q), by 

GX = G@X 

A left G-object (X, 5) i s  an object X E U together with a map 5: G@ X - X 

in such that 5 q =  1 and c(p@ I) = t (1  @ 5). Thus a left G-object i s  pre- 

cisely a G-algebra. On the other hand, a right G-object (Y, A) determines a 

G-functor in U , which we shall still denote (Y, A) ,  by 

YX = YsBX and h(X) = A @ l : Y @ G @ X + Y @ X .  

Thus a triple (Y, G, X) consisting of a monoid G in U and right and left G 

objects Y and X naturally determines an object (Y, G, X) of a(U, &), 

and B*(Y, G,X) i s  a well-defined simplicial object in 21. . Of course, 

B ~ ( Y , G , X )  = Y G ~ X =  Y@G@ ... @ G@X, qfactors  G, 

with the familiar face and degeneracy operators 

a. I , a p q i  ii o < i < q ,  
i f  1 a = i q @ g  , = I  ~ ~ g ~ l * ~ - ~  i f ' O ( i 5 q .  

9 i 

Let us write a (U) for the evident category with objects (Y, G,X), as  above. 

If U i s  symmetric and if (Y, G, X) and (Y I ,  G1, XI) a re  objects of @ (U), 

then, with the obvious structural maps, (Y @ YtnG@ GI, X@X1) i s  also an object 

of a (u ), and we have the following lemma. 



Lemma 10.1. Let U be a symmetric monoidal category and let 

(Y, G, X) and (:Yt, G', XI) be objects of a( U). Then there i s  a com- 

mutative and associative natural isomorphism 

of simplicia1 objects in U. 

Proof. Since 'U. i s  symmetric, we have shuffle isomorphisms 

and these a re  trivially seen to commute with the a. and s 
i ' 

Now suppose that (L1 i s  a monoidal category which i s  aiso Abelian. 

Then objects of JU determine underlying chain complexes in U with 

i 
differential d = (-1) ai ; moreover, if h: f r g i s  a homotopy in d u  

i 
in the categorical sense of Definition 9.1, then s = >: (-1) h. i s  a chain 

homotopy from f to g in the usual sense, ds f sd  = f - g, by direct 

calculation. Therefore, regarding BJY, G, X) a s  a chain complex in U , 

we recover the usual unnormalized two-sided bar  constructions, together 

with their contracting homotopies when X = G o r  Y = G. To normalize, 

-we quotient out the sub-complex generated by the images of the degeneracies. 

Of course, if U i s  the category of (graded) modules over a commutative 

ring R, with @ the usual tensor product over R and :: = R, then a monoid 

G in  3- i s  an R-algebra and left and right G-objects a r e  just left and right 

G-modules 

When U i s  our Cartesian monoidal category of (-based) topological 

spaces, geometric realization applied to the simplicia1 spaces B=(Y, G, X) 

will yield a complete theory of associated fibrations to principal G-fibrations 

fo r  topological monoids G. The following auxiliary categorical observations, 

which mimic the comparison in [ 9 , p. 1891 between uhomogeneous" and 

"inhomogeneous" resolutions, will be useful in the specialization of this 

theory to topological groups and will be needed in  section 15. 

F o r  the remainder of this section, we assume given a fixed Cartesian 

monoidal category . F o r  X E ?J- , le t  E denote the unique map X + * 
and let A: X -* X X X denote the diagonal map. A group (G, p, q,y) in U 

i s  a monoid (G, p, q) in '& together with a map K: G -+ G in ?.& such 

that the following diagram commutes: 

1 x X  G X G  - G x G  

Cons';ruction 10.2. Define a functor D* : U-t by letting 

qt;l D X = X  , 
9 

with face and degeneracy operators given by 

ai 

and s. = ii x A x iq'i: xq'l + Xqf2 
1 



products in  the sense that the shuffle isomorphisms between 
x q+-1 x yq+* 

$[g*Y.. .~glg s st-1 1 = (g1g2~~~gqt1.~2-~~gqti'...'gqgqt~.gqt1 1 
and (X X Y ) ~ "  define an associative and commutative natural isomorphism and 

-1 - - 1 - 1 - 1 
between D,X .,- X D,Y -- and D,(X .,. X Y) in  dU. Therefore, i f  (G, p, q ,  X) i s  a ff 9 (gl*. • 3 gqti) = [glg2 Y g2g3 3 .  

Y ~ ~ g ~ ~ ~ l g ~ ~ ~  • 

group in  U , then ( D ~ G ,  D,p, Daq, DG) i s  a group in and if (X, 5) i s  a 

left G-object, then (D+X, D+E) i s  a left D,G-object. ..- By Lemma 9.2, if 

T a X -+ xqt' i s  the iterated diagonal, then T :  X -+ D X  i s  a map in 2% . 
d T T 

If G i s  a group in  U ,  then ra: Gt + DaG i s  a rnorphism of groups in 821. 

In particular, left and right DtG-objects determine left and right Ga-obj ects 

(that i s ,  simplicia1 G-objects) via T* . 

'Visibly these a r e  inverse functions. F o r  g e G, we have 

([giy...,gqlgqtl)g = [gl Y . . .  Y E  lg g and (gi . a - . .  gqtl)g=(glg ..... gqtlg), s st1 

- 1 
and a and a a r e  thus visibly G-equivariant; they commute with the face 

and degeneracy operators by s imilar  inspections. 

In line with Proposition 9.9 and the previous result  we have the follow- 

Proposition 10.3. Let (G, p, q ,x) be a group in u. Define 
ing observation. 

@,: B+( a ,  G, G) -+ D$G .,- Proposition 10.4. Let X e U and let  q : -+ X be any map in U . 
by letting a - G ~ ~ ~  -+ G ~ "  be the map whose i-th coordinate i s  E - i ~  PqtZ-i~ 

d 
Define hi: Dq(X) + Dqtl(X), 0 5 i 5 q , by the formula 

12 i 5 qt1, where p.: G' -+ G i s  the iterated product (pl = 1, p2 = p, 
J 

pi = P(l X pi-1) if j > 2). Then na i s  an isomorphism of simplicia1 right 

-1 i-1 
G-objects ; a i s  the map whose i-th coordinate i s  8 X p(1 X X) X &q-i Then h i s  a strong deformation retraction of Da[X) onto (,)<, -,. . 

9 

if I L i L q  a n d i s  c q x i  if i = q t 1 .  Proof. Since :: i s  a terminal  object in U, ~q = 1 on and 

Proof. Of course, the proof consists of easy diagram chases, but Ea0~*(7))  = 4 on (a)* . It i s  t r ivial  to verify that h i s  a homotopy from 1 

some readers  may prefer  to see formulas. Thus suppose that objects of to T+(?) e, such that h. 0 T (q) = 1 9  

have underlying sets  and write elements of B (a, G, G) and of D G in the 
9 9 

respective forms 



11. Geometric realization of simplicial spaces 

We shall use the technique of geometric realization of simplicia1 spaces 

to t ransfer  the categorical constructions of the previous sections into construc- 

tions of topological spaces. This technique i s  an exceedingly natural one and 

has long been implicitly used in classifying space constfuctions. Segal [ 261 

appears to have been the f i r s t  to make the use of this procedure explicit. 

In this section and the next, we shall  prove a variety of statements to the 

effect that geometric realization preserves structure; thus we prove here  that 

realization preserves cel l  structure, products (hence homotopies, groups, etc. ), 

connectivity, and weak homotopy equivalences. Base-points a r e  irrelevant in 

this section, hence we shall  work in the category U of compactly generated 

Hausdorff spaces. 

Let A denote the standard topological q-simplex, 
9 

A = {(to ,..., t ) I  0 j t i l i ,  t i =  1 1 ~ ~ ~ "  . 
9 9 

Define 6i:A + A and u.:A + A fo r  0 A i l  q by 
q-* q 1 q+1 q 

hi(to, .. . , t ) = (to,.  . . ,ti-1, 0, t., . . . , t ) 
q- 1 q- * 

and 

Definition 11.1 . Let X E Au. Define the geometric realization of X, 

denoted I X 1 ,  a s  follows. Let W = X X A where X X A has the 
q, 0 4 9 '  9 P 

product topology (in U ) and 2 denotes disjoint union. Define an equivalence 

relation a on by 

(aix,u)  w ( x , ~ ~ u )  for  X E X  U E  A 
9 q-1 ' 

(six,u) M (x,riu) for  X E X  U E A  . 
q ' st* 

9 
As a s e t ,  x ( )  Let F 1x1 denotethe imageof XiXAi in 1x1 

9 i = O  

and give F I X  I the quotient topology. Then F I X  I i s  a closed subset of 
9 9 

F IX I , and I X  I i s  given the topology of the union of the F I X  I .  The 
s+1 9 

class  of (X ,U)E  in 1x1 wi l l bedeno tedby  Ix,ul.  If f : X + X 1  i s a m a p  

in d q ,  define If] :  I x I +  1x11 by I f ]  lx,uI = If(x),uI. Observe that i f  

each f is an inclusion (resp.,  surjection), then If 1 i s  an inclusion (resp.,  
9 

surjection). 

Of course, if X i s  a simplicial set,  then the classical  geometric 

realization of X, due to Milnor, coincides with the geometric realization of X 

4 
regarded as  a discrete simplicial space. Fur ther ,  if X denotes the under- - 
lying simplicial s e t  of a simplicial space X, then I X  I = I X  I a s  se t s  and 

rJ 

therefor* any argument concerning the se t  theoretical nature of / x / applies 

automatically to I X  1 .  The following definition will aid in  the analysis of the 

topological properties of I x I .  



9 

Definition 4.1. 2. Let X e AU. Define sX = U s X C Xqtl . We 
j=o j s 

say that X i s  proper if each (Xqii, sX 9 ) i s  a strong NDR-paiiand that X 

i s  strictly proper i f ,  in addition, each (Xqtl, skXq), 0 5 k 5 q, i s  an NDR- 

pair via a homotopy h: I X X + X such that 
q t i  qt1 

A point (x, u) E X X A is  said to be non-degenerate if x is non- 
9 9 

degenerate and u is interior (or i f  q=O). 

Lemma 11.3. Let X e Aq-4. Then each point of -jf: i s  equivalent to a 

unique non-degenerate point. If X i s  proper, then each (F 9 1x1, F 9-1 1x1 ) 

i s  an NDR-pair, I X  I e u, and F 1x1 /F I X  I i s  homeomorphic to 
9 q- 1 

sq(xq/"xq-i). 

Proof. Define A :f? + 3 and p :Z -3 by the formulas - 
(1) A(x,u) = (y, rj . . . r. u) i f  x = s . . . s y where y i s  non-degenerate 

1 J~ jp j1 

and O < j  < ... < j p ;  and 
1 

( 2 )  p (x,u) = (ai . . . a. x, v) if u = si . . . si v where v i s  interior and 

1 9 9 1 

O C i  1 <... < i  4 - 

By [ 18,14.2], the composite A *  p car r ies  each point of T into the unique 

equivalent non-degenerate point. Now 
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If X i s  proper, then (X X A X X aA U sX X A ) i s  an NDR-pair by 
9 9' q 9 q-1 q 

LemmaA.3 and 1x1 e U by [30,9 .2and9.4] .  There i s  an evidentone- 

to-one continuous map 

F ~ ~ x I / F ~ - ~ I X I = ( X  X A ) / ( X  X8A u sX X A ~ ) - S ~ ( X ~ / S X ~ - ~  9 9 9  9 q- 1 1 

determined by X q - +  Xq/sxq-* and any homeomorphism of pairs 

9 9 
(A aA ) - (I , a1 ); the continuity of the inverse map follows easily from s' s 
[30 r4.41. 

As an immediate consequence of the lemma, we have the following 

proposition. 

Proposition 11.4. Let X be a cellular object of j'u , in the sense 

that each X is  a CW-complex and each 8. and s i s  a cellular map. 
9 i 

Then 1x1 is  a CW-complex with one (ntq)-cell for each n-cell of Xq- s X ~ - ~ .  

Moreover, if f: X * XI i s  a cellular map between cellular objects of A a 
(each f i s  cellular), then If 1 i s  cellular. 

9 

As in the case of simplicial sets, geometric realization i s  a product- 

preserving functor since we a r e  working in U . 
Theorem11.5. F o r X , Y e u ,  themap  ~ T ~ ~ x I T ~ I : ( x x Y I ~ I x I x ( Y ~  

i s  a natural homeomorphism. Its inverse t; i s  commutative and associative, 

and is cellular i f  X and Y a r e  cellular. 



Proof. We recall the definition of 3 , which i s  based on the standard 
P 

triangulation of A X A Consider points 
P a 

u ( o , . y t ) ~  A and v = ( t o , . . . ~ f l ) E  A 
P P 9 9 

0 
w ( .  .. L W  '+'-' be the sequence obtained by ordering the elements of 

n 
{um) v {v ) and define w E A by p+q 

Let i < . . . < i and j1 < . . . < jp be disjoint sequences (not uniquely 
9 

determined) such that wjS E {um) and w i  E v n  .  hen 

U = U .  . . . .  u i w  and v = u  .... U . W .  

I* 9 31 3p 

If x E X and y E Y define 
P 9 * 

Y V  = l(Si . . . s  x, S . - . s  Y),wI. 
q i1 jp j1 

It i s  easy to verify that g i s  well-defined and ipverse to /pi l  X IpZ/  by u$e 

of Lemma 11.3 (compare [18 ,14.3]), and the commutativity and associativity 
- 1 

of 5 follow formally f rom the commutativity and associativity of g . The 

continuity of 5 , and the cellularity statement, follow from the commutative 

diagrams : 

Here K(i, j) denotes the set  of points of A X A which can determine given 
P 9 

i sequences i = ( i  ) and j = (jS) a s  above, 
r s = si ... 6 and 

i 
9 1 

sJ = s . . . s , a(i, j)(u,v) = w, and the a a r e  quotient maps. 
jp j1 

Corollary11.6. Let f : X - + B  and p : Y + B  b e m a p s i n  d U .  Then 

I X xB Y I i s  naturally homeomorphic to 1 X / XI I I Y 1 ,  where 

B 
(X X Y)  = {(x, y)l f (x) = p (y)) c X X Y gives the fibre product in 8U . q 9 q 9 9 

Proof. An easy verification shows that the restriction of 6 to 

B 1x1 X I B I l Y l  takesvalues in I X X  Y I  a n d i s  inverse to 

Corollary 11.7. The geometric realization of a simplicia1 topological 

monoid ( s r  group) G i s  a topological monoid (or group) and i s  Abelian 

if G i s  Abelian. 

There %re two obvious notions of homotopy in  the category dU, namely 

that of a simplicia1 map I * X  X -c Y and that given categorically in 

Definition 9.1. We now show that geometric realization preserves both types 

of homotopy. 



Lemma 11.8. Let X a u .  Then Ix,] maybeidentif iedwith X. 

Proof. X = F~ ~ x , I  = IX,I since al l  simplices of X = X a r e  - 1. 9 

degenerate for q > 0 .  

Corollary 11.9. Lf h : I % X X + Y  i s  a m a p i n  d u a n d i f  h i :X+Y i s  

defined by h (x) = h(i, x) for x a X and i = 0 o r  2 = 1,  then the com- 
i ,  q 9 

5 
posite IX  1x1 d I I , X X ]  lhl> 1 Y 1 i s  a homotbpy between 1 ho 1 

and / h i [ .  

Proof. F o r  t a I, Ihlc(t, I x , u / )  = Ih(t,x),uI by the definition of 5. 

Corollary11.10. Let h: f = g  beahomotopybetweenmaps  

f ,  g: X -. Y in IU , as  defined in Definition 9.1. Then h determines a 

homotopy %: IX  1x1 -+ I Y /  between If1 and I g l .  
Proof. Let A[1] denote the standard simplicial 4-simplex [18, p. 143, 

regarded as  a discrete simplicial space. By [18 , Proposition 6.2, p. 161, if it 

i s  the fundamental 1-simplex in A[*] and we define H: A[1] X X + Y by 

s i , x) = a itlhi(x) , x a Xq , Hq(s q-1' ' Si+lsi-i. . . 0 1 

then H i s  a map of simplicial sets ,  and therefore also of simplicial spaces 

(since the h. and a a r e  continuous). Now Ih[l]l i s  homeomorphic to I i 

and the composite 

I X  1x1 -+ IA[i]l X 1x1 I A [ I ] X X I  A I Y ~  
fu 

gives the desired homotopy h between If 1 and I g l .  
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We next relate the connectivity of the spaces X to the connectivity 
9 

of 1x1. 

Lemma 11.11 . F o r  X a dv, a. I X  1 = T T ~ ( X ~ ) / ( ~ ) ,  where i s  the 

e'quivalence relation generated by [a x] [alx] for  x a X . here [y] de- 
0 1' 

notes the path component of a point y a X 0' 

Proof. X determines a simplicial set  a (X) with q-simplices the 
0 

components of X and, by [18 , p. 29 and p. 651, our assertion i s  that 
9 

a I X / = T  lao(x)I.  If ( x , u ) a X  X A  q > 0 ,  andif  f : I + A  i s a p a t h c o n -  
0 0 9 q' 9 

necting u to the point 6 'A then the path ?(t) = I x, f(t) 1 in  I X  I connects 
0 0' 

Ix,ul t o a p o i n t o f  X = F o l ~ I .  If x e X  then g ( t ) =  Ix,( t , l - t ) l  i s a  
0 1' 

path in I X  I connecting a x to a x. The result follows easily. 
0 1 

Theorem 11.12. F ix  n 2  0. If X i s  a strictly proper simplicial 

space such that X is (n-q)-connected for  al l  qr n ,then 1x1 is n-connected. 
4 

Proof. F o r  n = 0, this follows from t h e  lemma. F o r  n = 1, we may 

assume that X is connected for  q ) 2, since otherwise we can throw away 
'4 

those components of X whose intersection with the simplicial subspace 
9 

of X generated by X and XI i s  empty without changing the fundamental 
0 

group of I X  I .  Then IS2,x 1 i s  weakly homotopy equivalent to nlX 1 by 

Theorem 12.3 below and therefore 1x1 i s  simply connected since IQ,x[ is  

connected. (For  technical reasons, this argument does not iterate. ) Now 

assume that n 2 2. By the Hurewicz theorem, i t  suffices to prove that 

d H ~ ~ 1 x 1  = 0 for  i c n .  Wec la imtha t  H.F 1x1 = 0 for i ( n  anda l l  q)O. 
1 9  



Fo 1x1 = Xo i s  n-connected, and we assume inductively that 

N 

Hi(Fq-l lXI)=O for  i ( n .  Since ( F I X I ~ F  1x1) i sanNDR-pa i r ,we  
q q- 1 

rJ 
will have that H.(F I X  I) = 0 for i ( n provided that 

1 9  
N 

Hi(Fqlxl/Fq-, I X I ) = O  for  i c n .  Since F I x I / F  1x1 ishomeomorphic 
9 q- 1 

M 

to sq(X /SX ), it suffices to prove that Hi(X /SX ) = 0 for i (P-q; 
9 q-1 9 q-1 

since X i s  (n-cl)-connected and (X sX ) i s  an NDR-pair, this in turn 
9 qa s-1 

N 

will follow if we can prove that H.(sX ) = 0 for  i < n-q. We shall in fact 
1 q-1 

show that 

) = 0 for  i s n i l - q  , 0 ( k (  q. 

We may assume, a s  part  of our  induction hypothesis on q, that 

k 

Ri( U 'jXqe2 ) =  0 for  i ( n t 2 - q  and 01.kS.q-1. 
j=O 

Observe that s.:X -+ s.X and aj: s ~ X ~ - ~  + X a r e  inverse homeo- 
3 q-1 3 q-1 q- 1 

IV 
morphisms, 0 5 j < q. Thus H ~ ( ~ ~ x ~ - ~ )  = 0 f o r  i s n i l - q .  Assume 

k- 1 
inductively that g i (  U s X ) = 0 for  i < n t l  -q. Since X i s  strictly 

j =  o j 9-1 

proper, the excision map 

i s  a map between NDR-pairs, and we therefore have the M yer-Vietoris 

exact sequence 

If s y =  s.z fo r  j < k ,  then y =  a s.z = s a z; since s s = s s 
k 3 k t 1  J j k k j  j k - l a  

it follows that 

k- 1 k- 1 

k- 1 k- 1 

Now sk: u s X - U sks jXq-2 i s  a homeomorphism, with inverse 
j = o  j 9-2 j = o  

ak. By the induction hypothesis and the above exact sequence, 

k 

fii( u sjxq-l ) = 0 for  i (n i l -q ,  a s  required. 
j = O  

Theorem 11.13. .Le t  f:X + Y be a simplicial map between strictly 

proper simplicial spaces. Assume that each f i s  a weak homotopy 
9 

e quivalence and that either I X  I and I Y I a r e  simply connected o r  that 1 f 1 
i s  an H-map between connected H-spaces. Then If 1 i s  a weak homotopy 

e quivalence. 

Proof. By the Whitehead theorem, it suffices to prove that If 1 
induces an isomorphism on integral homology. In outline, the proof i s  the 

same a s  that of the previous theorem. One shows that F If 1 i s  a homology 
4 

isomorphism by induction on q and the same sequence of reductions a s  was 

used in the previous proof, together with the naturality of Mayer-Vietoris 

sequences and the .five lemma. 



We complete this  section by recalling a result due to Segal [ 2 6 ]  on 

the spectral sequence obtained from the homology exact couple with respect 

to an a rb i t ra ry  homology theory k* of the filtered space 1x1, where X i s  

a proper simplicial space. Observe that k (X) i s  a simplicial Abelian 
9 

group for  each fixed q; thus, regarding k (X) a s  a s h a i n  complex with 
q 

d = (-l)'(ai), , there i s  a well-defined homology functor H*~*(X) such 

that H k (X) i s  the homology of k (X) in degree p. By [18 ,22.3], 
P 9 9 

~ * k q ( X )  i s  equal to the homology of the normalized chain complex of k (X), 
9 

and the p-chains of the lat ter  chain complex a r e  easily seen to be isomorphic 

to k (X sX ). 
9 P' P-1 

Theorem 11.14. Let X be a proper simplicia1 space and let k* be 

a homology theory. Then EL  X = H k (X) in the spectral sequence ( E ~ x )  
P9 P q 

derived from the k, exact couple of the filtered space I X I .  
1. 

Proof. E 1  X = k  (F I X I , F ~ - ~ I X I ) ,  and dl  i s theboundary  
P 9 pfq p 

operator of the triple (F 1x1 , F  1x1 , F ~ - ~ I x / ) .  The result follows from 
P P-1 

Lemma 11.3 and the following commutative diagram: 

Here A = 8A i s  the (p-1)-skeleton of A and X i s  the (p-2)-skeleton. 
P P P P 

6jAp-ly ai i s  the inclusion (A p)+ (A A')' and (-1)l(1 X u i ) *  P" P' P 

i s  an isomorphism by the Mayer-Vietoris sequence of the p t l  pairs 

(X X A , X  xAi). The maps 6.: (ApWl,A ) + ( Ai) a r e  clearly relative 
P P P  P P-1 P' P 

homeomorphisms. On the left, the maps a r e  

and 
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(The other map v i s  defined similarly, from (8.X I)*, and the maps n 
1 

a r e  the evident quotient maps. ) Now the upper left rectangle commutes 

by a check of signs, the upper right and lower left rectangles commute by 

the naturality of a and of S*, and the tr'iangle commutes by the face 

identifications used in the definition of the realization-functor. 

Of course, {E'x) i s  a right half-plane spectral sequence 

(E X = 0 if p < 0). The convergence of such spectral sequences i s  dis- 
P9 

cussed in [ 6 1. The following observation i s  useful inthe study of products 

and coproducts in {E~x).  

Lemma 11.15. F o r  X,Y r &Us 5 :  I X I X  I Y I  -+ ( X X Y I  i s  filtration 

preserving, and the diagonal map A: I x I -c I X  I X I X  I i s  naturally homo-- 

topic to a filtration preserving map. 

Proof. 5 (Fplx1 x ~ ~ 1 x 1 )  C Fptqlx x Y I by the definition of in 

Theorem 11. 5. F o r  the second statement, define g.: An - A for i = 0 and 1 
n 

anda l l  n 2 0  asfollows. Let u = I t  o, .  . . , tn) E An. Let p be the least  

integer such that t + . . . t t 7 1/2 and define 
0 P 

P-1 
g0(u) = &n. . . &p+l (2to, . . . , 2tp-l 9 1 - C 2ti) 

i = O  
and 

Then g. induces G.: 1x1 1x1 such that G. i s  homotopic to the identity map; 
1 

thus A i s  homotopic to the filtration preserving map (G X G )"A. 
0 1 

i 2. Geometric realization and S*, C and G?, 
9 '  r 

In this section, we investigate the behavior of geometric realization 

with respect to the functors S*, C*, and defined on d ~ ,  where is 

our category of based spaces. F o r  X r d J  , we give 1x1 the base-point 

r r Xo = Fo I X  I : if X i s  proper, then i t  follows from Lemma 11.3 that * 
i s  non-degenerate and that I X  I r 7 . 

Proposition 1 2.1. Realization commutes with suspension in  the sense 

that there i s  a natural homeomorphism T: I s+X I + s I X  1 for  X r 4f . 
Proof. Define ~ l [ x , s ] , u /  = [ l x , u l , s ]  for  x r X  s r  I, and u a b  

q' Q 
It  i s  trivial to verify that T i s  well-defined and continuous, with continuous 

inverse. 

The following pleasant result i s  more surprising. Its validity i s  what 

makes the use of simplicia1 spaces a sensible technique for the study of 

Theorem 12.2. Let be any operad and let  C be i ts  associated 

monad in 2 . Then there i s  a natural homeomorphism V :  I C*X I + C IX 1 
for  X r such that the following diagrams a r e  commutative: 



If (X, 6) E LC [ 3.1, then ( I X  1 ,  / 6 I v-') E C[ 7 ] and geometric realization 

therefore defines a functor ~ C C  5 3 * C [TI. 

Proof. Consider a point I [c, xi, . . . , x.], u 1 E I C*X I , where c E k (j), 
. J 

xi E X and u E A Define v by the formula 
q* q- 

Clearly v i s  compatible with the equivariance and base-point identifications 

used to define CX and with the face and degeneracy identifications used in 
9 

the definition of the realization functor. F o r  the latter,  observe that 

cai[c, xl , . .  . , x.] = [c, aixl,. .. , a.x.1 
J 1 J  ' 

and similarly for  the Cs.. In view of this relationship between the iterated 

products xJ and CX, we can define v-' by 

-1 
(3) v [c, I xi¶ ui 1 .  . . . , I x., U.  I ] = I [c, Y1, . . . , yj], v I ,  where the iteration 

J J  

5 . : l X ~ j +  ~ X ' J  of 5 i s  givenby 
J 

5j(Ix13~11 ,.. . Ix.,u.I) J J  = ., Y ~ ) , v I .  

5 1 By the associativity of 5, 5 i s  unambiguous. By the commutativity of 5 ,  v 
j 

i s  compatible with the equivariance identifications, and i ts  compatibility with 

- 1 
the remaining identifications i s  evident. The continuity of v follows from 

that of 5 and i t  i s  clear  from Theorem 11.5 that v and v-' a r e  ideed 
j' 

inverse functions. The commutativity of the stated diagrams i s  verified by 

an easy direct calculation from (2) and the formulas in Construction .2.4, and 

A 
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these diagrams, together with trivial formal diagram chases, imply that 

( I X ~ , ~ S ~ V - ' ) E  C C T I  if ( X , ~ ) E  .Jc[~-I. 

The relationship between ~ Q ~ X  1 and $ 2 1 ~ 1  i s  more delicate. Indeed, 

if 'X i s  a discrete simplicial space, then each S?X = * and therefore 
q 

IS2,x'l = *, whereas S ~ I X  I i s  obviously non-trivial in general. 

Theorem 12.3. F o r  X E A5 , I P * x /  i s  contractible and there a r e  

natural maps 7 and y such that the following diagram commutes: 

Moreover, if X i s  proper and each X is  connected, then I p = l  i s  a quasi- 
q 

fibration with fibre I s ~ , . x ~  and therefore y: lS2*xl + S2lX 1 i s  a weak homo- 
T 

topy e quivalence. 

Proof. The standard contracting homotopy on PY, Y E 7 , i s  natural 

in  Y; therefore, when applied to each PX this homotopy defines a simplicia1 

contracting homotopy I*X P*X + PSX. Thus I P,X I i s  contractible by .,- 

Corollary 11.9. F o r  f e PX u E A and t E I, define 7 by the formula 
q' q' 

(4) 
rJ 
ylf ,uI( t> = If(t),uI . 

It i s  trivial to verify that i s  a well-defined continuous map which restr icts  

to an inclusion y: IQ,X 1 + S2 I X  I and satisfies py = 1 p* 1 .  The last  statement 

will follow from Lemma 12.6 and Theorem 12.7 below. 



Before completing the proof of the theorem above, we obtain an  iin- 

portant consistency statement which interrelates  our  previous th ree  results.  

Theorem 12.4. F o r  X s d j  , the iteration yn: lR> 1 -+ Rnlx 1 of y 

i s  a morphism of C n -algebras, and the following diagram i s  commutative: 

Proof. We must  prove that the following diagram commutes: - 
n cnyn 

cnln* x I 
I 

and it clearly suffices to prove the coinmutativity of the diagram obtained by 

- 1 
replacing v by v. Thus consider 

y = l[c.fl, ..., f jl,uI s Icn$f - 1 ,  where 

c = < c  ,..., cj>r"(j), f i sR"xb  and u r  A Let v r  I ~ .  If v /  U C ~ ( J ~ ) ,  
1 s' 
n n 

then y Ien,l(y)(v) = * = enoCny o v(y)(v); and if v =  c. (v'), then, by 

Theorem 5.1 and the definitions of v and y, 

n n n 
en. C,Y v(Y)(v) = en[c.y Ifl.ul ,..., Y I f j y ~ I I ( ~ )  

= ynlfi,uI (v') = Ifi(vt), ul 

n 
= 1 en[c,f,, . . . .fjl(v), ul = y len,l (Y)(v) . 

/'- 

Thus $ i s  indeed a morphism of C -algebras. Since cu i s  defined to n n 

be the composite en- ",a, the commutativity of the following diagram gives 

n n  n 
Here R r 0 y 0 1 qn, 1 = \: I x I -+ nnsn 1 x 1 by an easy explicit calculation. 

In o rde r  to  complete the proof of Theorem 12.3, we shall  prove a 

general result  relating geometric realization to fibrations. We require some 

notations and a definition. 

F o r  B s U , le t  iIB denote the space of all paths I + B. F o r  a map 

p : E - c B  i n % ,  define 

r ( p )  = I (e , f )  I p(e) = f(0)1 C E X iIB. 

Define P :IIE -+. r ( p )  by ~ ( g )  = (g(O), pg). Recall that p i s  a Hurewicz 

fibration if and only if there exists a lifting function A : r ( p )  + IIE such that 

aX = 1. In the applications, A i s  usually "homotopy associativeH in the 

sense that if f ,  g E lIB satisfy f(1) = g(O), then the two maps p-'f(0) + p-' g( l )  



defined respectively by sending e to X(h(e,f)(l), g)(l) o r  to  X(e, gf)(l) 

a r e  homotopic. 

Definition 12.5. Let p: E + B be a map'in &. Observe that if 

T = T: IIEq r r ( p d ,  then n..,: II,E - ~ ~ ( p )  i s  a map in dU . We say  that 
q .,- T 

p i s  a simplicial Hurewicz fibration if there exists a map 1,: r,(p) -+ II,E 

such that n*X, = 1 and such that the following associativity condition i s  

satisfied. 

(i) If f ,  g E IIB satisfy f(1) = g(0) and if x* and y, denote the discrete  
9 

simplicial subspaces of B generated by the q-simplices x = f(0) and y = g(l), 

- 1 
then there exists a simplicial homotopy H: I*X p-l(x*) - p . (Y*) such that 

-1 
f o r  any i-simplex e of p (x,), with pi(e) = yx for  a composite y of face 

and degeneracy operators (y exists by the definition of x d ,  

and 
Hi(l, e) = Xi(% y(gf))(l) 

We observe that the following statements, which shall  be used in  conjunction 

with (i), a r e  valid in any simplicial Hurewfcz fibration; in  (ii) and (iii), 

- 1 
e denotes an i-simplex of p (x,) with p(e) = yx, a s  in  (i). 

(ii) If h: I -+ IIB satisfies h(t)(O) = x and h(t)(l) = y for  a l l  t E I, then the 
9 

formula H. (t, e) = 1. (e, yh(t))(l) defines a simplicial homotopy 

- 1 -1 
H: I*X P (x,) -C P (Y*). 

(iii) If c(x):I -+ B 9 i s  the constant path a t  x E B 9' then the formula 

- 1 - 1 
~ . ( t ,  1 e)  = Xi(e, yc(x))(t) defines a simplicia1 homotopy H: 1,Xp (x,) * p (x*) 

-1 
which s ta r t s  at  the identity map of p (x,). 

The standard naturai constructions of Hurewicz fibrations apply 

simplicially; the only example that we shall  need i s  the path space fibration. 

Lemma 12.6. F o r  X E l a ,  p*: P,X -+ X i s  a simplicia1 Hurewicz 

fibration. 

Proof. Choose a retraction r: I X I -+ I X 1 U 0 X I such that 

(0,zt) , o s t ~ i / ~  
r ( s ,O)=  (0,O) and r(1, t )  = 

2 - 1 1  , 1 / 2 ~ t & l  

F o r  Y E and p: PY * Y, define X: r ( p )  = IIPY by the formula 

where e E PY, f E IIY, and e(1) = f(0). Clearly X i s  a lifting function and 

X(e, f ) ( l )  = fe  i s  the standard product of paths. Thus if f, g E IIY and 

f(1) = g(0), then 

X(X(e, f)(l) ,  g)(l) = g(fe) and X(e, gf)(l) = (gf)e 

Now define X 
= X:r(pd 

-c IIPX By the naturality of X, X, i s  simpl'icial, 
9 9' 

and clearly n,X* = 1. Condition (i) of Definition 12.5 i s  satisfied since the 



evident homotopies defined for  each fixed y a r e  easily verified to fit together 

to define a simplicial homotopy. 

Theorem 12.7. Let p: E + B be a simplicial Hurewicz fibration, in 4 5 ,  
- 1 and let F = p (*). Assume that B i s  proper and each B i s  connected. 

q 
Then I p 1 : 1 E 1 + I B I i s  a quasi-fibration with fibre I F  I ; 

Proof. We f irs t  define explicit lifting functions for the r e s t r i c t i o n s  of 

o ... o : A  -+ A t o  t h e  inverse  image of A - a A  
9 q q' We s h a l l  de f ine  jl jr q+r 

by the inductive formula (u r A , f r n(Aq-a~q)  ,o . - 0  f (0 )  : qf r 5, ir 

and it remains to define y.: r (uj) + II( A ). Thus let (u, f) r ~ ( c r . ) .  Let 
J sf1 J 

f (s)  = (to(s), . . . , tq(s)) r Aq. Since cr.(u) = f(O), 
J 

for some a,  0 5 a 5 1 (a  is  well-defined s i n c e  t .  (0 )  >0 ) .  Define y by 3 j 

Visibly, Y.(u, f)(0) = u and u.y.(u,f) = f, hence ~ y .  = 1. Corresponding to J J J  J 

the relation U.U. = u u. for  i <  j, we have y. = 
1 J j-1 1 J,i Y i Y j - l *  by an easy 

verification. This implies that 

If a = 0 o r  a = 1 above, then y.(u,f)(s) J r Im 6 j o r  Im 6j+l, and i t  i s  an 

easy matter to verify the formula 

- 1 
We can now show that I pI : 1 p 1 (v) + V i s  a Hurewicz fibration for any open 

subset V of F q 1 B I  - F q- 1 I B 1, where, if q = 0, F - l  / B 1 = ,d. We must 

C 

definealiftingfunction Xq:I ' ( /p l ) - I I lp l - l (v) .  Of course, byLemma11.3, 

we have that 

ITVCII(B - S B  ) x n ( a q - a a ) .  
q 9-1 q 

Let (1 e, w 1 ,  (ft, f t t ) )  E I' 1 where (e, w) E E X A i s  non-degenerate, 
q f r  qf r  

f t : I + B  - s B  and f": I + A - aA Necessarily, we have 
9 q-1' 9 q' 

'qtr (e) = s . . . s ft(0),  where cr . . . cr. w = fn(0) 
j r  4 j l  J r  

4 

(as in the proof of Lemma 11.3). Define X 9 by the formula 

N 

Since X* i s  simplicial, formulas (1) and (2) show that X Cl respects the 
N 

equivalence relation used to define / E 1 ,  and i t  follows easily that X 9 i s  con- 

tinuous. Clearly & q = 1, a s  required. We have now verified (i) of 

Lemma 7.2, and i t  remains to verify (ii) of that lemma. F ix  q > 0. Let 

(k, v) be the representation of 



a s  a strong NDR-pair obtained by use of Lemma A. 3 from any given 

representations of (B sB ) and (Aq, a A )  a s  strong NDR-pairs. Define 
9' q-1 9 

U c F I B  I to be the union of F I B  I and the image of V-'[O, 1) under the 
9 q- 1 

evident map B x A -+ F I B I .  Define h :U 3 U by h (x) = x for 
9 9 9 t t 

x E F I B I  andby 
q-1 

(6) ht lb,ul  = Ikt(b,u) 1 for (b,u) E B x A with v(b,u) L 1. 
9 9 

Then h i s  a strong deformation retraction of U onto F I B  I .  To lift h, 
q- 1 

let  (e , w) E Emf Am+r 
be a typical non-degenerate point such that 

- 1 
l e , w /  E l p l  (U) where, a s  in  Lemma 11.3, 

'mtr 
(e) = s ... s .  b and u =  a. . . . c  w 

j r  J1 J1 J r  

determines the non-degenerate representative (b, u) of I p  1 ( 1 e, w I ) .  Here 

m 6 q and we define H by the formulas 

(7) H(t, le,  w 1 )  = I Xmfr(e, s .  . . . s c(b))(t), w 1 if m c q, where 
J r  j l  

c(b):I --+ Bm is  the constant path a t  b; and 

(8) H(t, le ,wl)  = I X  ( e ,  s . . . s .  f l ) ( t ) ,Y.  (w, fll) (t) I if m = q, 
q f r  jr J~ J,. . . j l  

where fl:I B and P1:I ---? A a r e  the paths defined by 
9 9 

fl(t) = T k (b, u) and fl'(t) = K k (b, u) (here T and 7i2 
I t  2 t  1 

a r e  the projections of B x A onto its factors) 
9 9 

Here the  y . can be applied t o  t he  paths f n  i n  A (even though 
jr- 9 

f n  does no t  have image i n  A a A 1 because i f  f n  ( 0 ) ~  a A then 
9 9 9' . 

f n  is the  constant path a t  f "  (0) and the  def in i t ion  above of 

yjr.. . (w, f "  1 *,is therefore  unambiguous. 
j 1 

that y. (w,c(u)) = c(w)), and that H covers h and deforms 
J ~ .  . . j l  

I I -' (U) into 1 1 -IF I B I . It remains to verify that 
9- 1 

-1 - 1 
HI: 1 p / (x) + I p I hl (x) i s  a weak homotopy equivalence for each x E U. 

I If x E F 1 B 1 , then hl(x) = x and H i s  itself a homotopy 
q- 1 

-1 
1 H : 1 1 ( x )  1 1 (x). Thus assume that x / F I B I . In the notation 

q- 1 

of (8), let x = I by ul = If1(0), flt(0) 1 ,  so that hl(x) = If l ( l ) , f l ' ( l )  1 .  Let 

g: I -. B be any path connecting g ( ~ )  = fl(0) to g(1) = *, and let  
9 
- 1 - 1 

g' = g. f' : I  -t B where fl (t) = f l ( l  - t); g' i s  then a path c o ~ e c t i n g  s ' 
fI(1) to *. We shall f i rs t  construct a homotopy equivalence 

rJ 

f(u): I lb,uI + I F  I fo r  any path f: I + B such that  f(0) = b and f(1) = * 
9 

and for any u E A We shall then complete the proof by showing that the 
9' 

following diagram i s  homotopy commutative. 

I 

1 Thus fix f: I + B with f(0) = b and f(1) = *. Let ~ [ d  denote the standard 
! 9 
I 

j simplicia1 q-simplex [18, p. 141 regarded a s  a discrete simplicia1 space, 
1 

I 
i and let g: A[s] -* B be the unique simplicia1 map such that r(i 9 ) = by where 
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i (Aq in  [18]) i s  the fundamental q-simplex in  A[d. Let E(b) denote the 
9 

- 1 
Definition 12.5 and g' = gf' imply that gl(f"(l)) -HI i s  homotopic to the 

B 
simplicia1 fibre product E X ~ [ q ]  of p and Ti;. Define 

map I :  p l ( x )  F definedby 

f,:E(b) + F X A[d by 

fi(ey Y id = ( k  i(ey yf)(1), -tidy (12) ~ l e , w l =  11 q f r  ( e , s  jr  . . . s  jl g)( l )y yj ...jl (w, ftl)(l)  I 
r 

where e E E satisfies ~ . ( e )  = yb = yT( i  ) for  some composite y of face i 9 Finally, define L: I X I 1 (x) + I F  I by the formula 

and degeneracy operators.  Define f i l : F  X ~ [ q ]  -+ ~ ( b )  by 

- 1 
fi-'(e, y i d  = ( hi(e, yf )(I). y i d ,  e r F and yi r Ai[d. 

i 9 

-1 By (i), (ii), and (iii) of Definition 11. 5, f ,  and f, a r e  inverse fibre homo- -. -- 

topy equivalences over ~ [ d .  Therefore, by Corollary 11.6, the following I 
composite i s  a f ibre  homotopy equivalence over I A[d I = A . 

q' i 
- 1 

F ix  u E A u =  li u I .  In I E /  XIBIAq, p2 
9' s' (u) may be identified with 

-1 1 Ib, U I  , and the above composite res t r ic t s  to give'the desired homotopy 

Pd - 1 
e quivalence f(u): 1 / I by u 1 + I F  I .  Finally, consider the diagram (9). Let 

1 e, wl E I - l(x) be as  described above formula (7). We then have 

(1 0) z ( f " ( ~ ) ) l e , w l =  11 (e , s  ... s g ) ( l ) , w l ,  and 
Crtr jr jl 

(11) 2'(fN(l))oH1 l e , w J  

(13) L(t, l e ,w l )  = lhCrtr(eYs j r  • . . s  j1 g)(l). yj r . . . jl (w, ftt)(t) I 

Then L i s  a homotopy f rom ;(fl1(0)) to the map I . 



13. The recognition principle and A spaces 
CD- 

We now have at our disposal a l l  of the informatibn required for the 

proof of the recognition principle. We prove our basic recognition theorem 

for  n-fold loop spaces, n < CD, and discuss Am spaces here; Em spaces 

will be studied in  the next section. We f irs t  fix notations for  our geometric 

constructions. 

CI 
Let (C, p, q) be a monad in J , le t  (X, 5 )  be a C-algebra, and let 

(F, h ) be a C-functor in 7; these notions a re  defined in Definitions 2.1, 

2.2, and 9.4. Then Construction 9.6 yields a simplicial topological space 

B,(F, C, X), and we agree to write B(F, C, X) for  i ts  geometric realization 
1. 

I B*(F, C, X) I ,  a s  constructed in Definition 11.1; B defines a functor 

@ (7, 7 ) .+ T, and we write B(a,  +, f) = I B* (P, +, f) I for  a morphism 

4 c 
(P, +, f) in 8 ( J , J ). Many of our C-functors F in will be obtained 

by neglect of structure from C-functors (also denoted F) in the category 

C-- D[Y] of D-algebras, for some monad D in J . Then B,(F,C,X) i s  a 
T 

simplicial D-algebra, but this need not imply that B(F, C,X) i s  itself a 

n n 
D-algebra. F o r  example, this implication i s  not valid for D = 1;2 S . HOW- 

ever, by Theorem 12.2, if D i s  the monad in  7 associated to an operad a , , 
a s  obtained in Construction 2.4, then realization does define a functor 

& D[ 71 + D[ r] and B therefore defines a functor (S (J, D[ TI) + D[ J 1. 

We shall write T( 5 ) = IT*( 5 )I:Y -c B(F, C,X) for  any map 

5 : Y + FX in and a e  shall write E ( ~ )  = I Ea(e) 1 : B(F, C,X) + Y for any 

map a:FX + Y in such that the following diagram i s  commutative: 

a = x  
FCX 

0 
s- FX 

Here re( 5 ) and & *(T) a r e  defined in Lemma 9.2, and I Y, I = Y by 
Y 

Lemma 11.8; T and & a r e  natural, in the evident sense. 

We must dispose of one minor technical point before proceeding to the 

theorems. Since we wish to apply the results of the previous two sections, 

we shall always tacitly assume that B*(F, C, X) i s  a strictly proper 

simplicia1 space, in the sense of Definition 11.2. This i s  in fact a harmless 

assumption, at least when C i s  the monad associated to an operad & , in 

view of the results of the appendix. In Proposition A. 10, we show that % 

can, %f necessary, be replaced functorially by a very  slightly altered operad 

which maps onto C and i s  such that B*(F, C1,X) i s  strictly proper for  

reasonable functors (such a s  1;2, S, C, C1 and their composites) and for  

-spaces (X, 9) such that (X, *) i s  a strong NDR-pair. If (X, *) i s  not 

well-behaved, for  example if * i s  degenerate, then Lemma A. 11 shows 

that (X, 9) can be replaced by (XI, 9') E [T] where (XI, *) i s  a strong 

NDR-pair. 



In our basic theorem, we shall assume given a morphism of operads 

T: 3 + % n, where p i s  the n-th little cubes operad of Definition 4.1 

and M i s  some other operad; a s  in Construction 2.4, we shall also write 

T for  the associated morphism of monads D + Cn. Observe that if Y e 5 
then (any, B n ~ )  E D[ J], where 0 i s  a s  defined in Theorem 5.1, and, by 

n 

Theorem 5.2, Bn coincides with the composite 

Here $: Hom (X, QY) + Hom - (SX, Y) i s  the standard adjimction homeo- 7 J 
morphism of (5.1) and an: Cn + T$sn i s  the morphism of monads constructed 

in Theorem 5.2. Of course, we are  identifying the notions of & ,-space 

and of C -algebra via Proposition 2.8, and similarly for  . Since 
n 

a T:D -+ finsn i s  a morphism of monads in 7 , (sD, mn(anrr)) i s  a D-functor 
n 
e 

in J by Examples 9.5. Thus, if (x,$) E ~ [ z ] ,  then B(sn,D,X) i s  de- 

fined. With these notations, we have the following theorem, which implie_s,,' 

the recognition principle stated in Theorem 1.3. 

Theorem 13.1. Let T: D 4 C denote the morphism of monads 
n 

associated to a local equivalence a:D+Cn of C-free operads. Let (X, S )  

be a D-algebra and consider the  following morphisms of D-algebras: 

(i) ~ ( 5 )  i s  a strong deformation retraction with right inverse T( 5 ), 

where 5 : X -+ DX i s  given by the unit 5 of D. 

(ii) B(a a, 1 , l )  i s  a weak homotopy equivalence if X i s  connected. n 
n - 

(iii) y i s  a weak homotopy equivalence for  al l  X. 

n 
(iv) ' The composite y Q B(a a, 1 , l )  or ( '5  ): X + anB(sn, D, X) coincides 

n 

with the adjoint of ~ ( 1 ) :  S ~ X  + B(sn, D, X). 

(v) B(sn, D, X) i s  (m4-n)-connected if X i s  m-connected. 

Moreover, the following conclusions hold for Y E 7. 

(vi) & $n(l): B(sn, D, any)  -+ Y i s  a weak homotopy equivalence if Y i s  

n-connected; fo r  all Y, the following diagram is commutative and 

~ ~ & $ ~ ( l )  i s  a retraction with right inverse $ - n ~ ( l ) :  

n 
(vii) &$(ona):B(sn, D, DY) + S Y i s  a strong deformation retraction with 

n 
right inverse T(S f; ). 



Proof. &(c) and ~ ( a  ~ , 1 , 1 )  a r e  morphisms of D-algebras since 
n 

E*(c) and B*(a ~ , 1 , 1 )  a r e  morphisms of simplicial D-algebras by 
n 

Theorem 9.10. By Theorem 9.11, we have 

Thus yn i s  a well-defined morphism of D-algebras by Theorem 12.4. 

Now (i) and (vii) hold on the level of simplicia1 spaces by Theorems 9,10 and 

9.11 and therefore hold after realization by Corollary 11.10. By the approxi- 

mation theorem (Theorem 6.1) and Proposition 3.4, each composite 

a a :D n n  q '*Ix + 52 S D X i s  a weak homotopy equivalence i f  X i s  connected, 
n 

and (ii) follows from Theorem 11.13. P a r t  (iii) follows from Theorem 12.3; 

here  X need not be connected since each n i s n ~ %  for i < n  i s  certainly 

connected. P a r t  (iv) i s  trivial (from a glance at  the explicit definitions) and 

(v) follows from Theorem 11.12. Finally,  he upper triangle in the diagram 

of (vi) commutes by the naturality of & , since tjna;l= en, and the lower 

n n n 
triangle commutes by the naturality of y , since En = 52 (P (1) and 

n E $ ~ ( P ~ ( ~ )  = S2:E*$n(1) by Theorem 9.11 and since y reduces to the identity 

n n 
on 52 Y = IQ,Y,[; the fact that &(Pn(l) i s  a weak homotopy equivalence for 

n-connected spaces Y follows from the diagram. 

B(sn, D,X) should be thought of a s  an n-fold de-looping of X. As such 

for  Y E , B(sn, D, any) should give back Y but with its bottom homotopy 

groups killed. This i s  the content of part (vi). Similarly, DY approximates 

n n n 
52 S X, hencp B(s~ ,D ,  DY) should give back S Y. This i s  the content 

. . 
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of part' (vii), but with a curious twist: the proof of (vii) in no 

the approximation theorem and the result i s  valid even when 

n n 
nected, 'in which case DY fails to approximate 52 S Y. 

way depends on 

Y i s  not con- 

F o r  (X, 5) E D[ 7 ], the diagram 

x <* B(D,D, X) > s ~ ~ B ( s ~ ,  D, X) 

i s  to be thought of a s  displa.ying an explicit natural weak homotopy equivalence 

n n 
between X and 52 B(S , D, X) in the category of D-algebras. The use of 

weak homotopy equivalence in this sense i s  essential: i t  i s  not possible, 

in general, to find a morphism f:X + 52- of D-algebras which i s  a (weak) 

homotopy equivalence. F o r  example, if D = C n and if X i s  a connected 

~ - a f ~ e b r a  (that is ,  a connected commutative monoid) regarded as a 'n - 

algebra by pull-back along the augmentation E :  Cn + N, then, for any space 

n 
Y, the only morphism of C n -algebras from X to 52 Y i s  the trivial map! 

Indeed, for any such f, commutativity of the diagram 

implies 9 I% 1 (c, f(x)) = f(x) for x E X and a l l  c E & n (1 ), and a glance at the 

definition of en in Theorem 5.1 shav s that this implies f(x)(s) = * for al l  

s E sn. 



Thus we cannot do better than to obtain a weak homotopy equivalence 

of D-algebras between a given D-algebra X and an n-fold loop space, 

and it i s  clearly reasonable to demand that an n-fold de-looping of X be 

(n-1)-connected (hence n-connected if X i s  connected). Subject to these 

two desiderata, the n-fold de-looping of X i s  u n i ~ e  up to weak homotopy 

e quivalence. 

Corollary 13.3. Under the hypotheses of Theorem 13.1, if 

i s  a weak homotopy equivalence of connected D-algebras, where Y i s  

n-connected, then the diagram 

n 
displays a weak homotopy equivalence between Y and B(S , D, X). 

Proof. = &(In(l) 0 B(1, 1, g) by the naturality of E ; e (In(l) i s  

a weak homotopy equivalence by the theorem and ~ ( 1 ~ 1 ,  f) and B(1,1, g) 

n a r e  weak homotopy equivalences by Theorem 11.13 since S D% and s ~ D ~ ~  

a r e  weak homotopy equivalences for all q (as follows readily from the 

n n n q  
approximation theorem: S (52 S ) is certainly a functor which preserves 

weak homotopy equivalences). 

simplicia1 constructions based on monads i s  due to Beck [ 5 1. 

In that paper, Beck sketched a proof of the fact that (in our terminology) 

n n 
i f '  (X, 5) is a Q S -algebra, then the diagram 

displays a weak homotopy equivalence between X and Q ~ B ( s ~ , Q ~ s ~ , x ) .  

Of course, our results prove this and add that ~ ( 5 )  and yn a re  morphisms 

n n 
of Cn-algebras (not of Q S -algebras) and that 

~ ( 1 ,  ,my 1): B(sn, Cn, X) -+ B(sn, finsn, X) 

i s  a weak homotopy equivalence if X i s  connected. Unfortunately, the 

n n 
only Q S -algebras that seem to occur "in nature" a r e  n-fold loop spaces, 

and Beck's recognition theorem i s  thus of little practical value. 

The little cubes operads a re  of interest because their geometry so 

closely approximates the geometry of iterated loop spaces; for precisely this 

reason, a recognition principle based solely on these operads would also be 

of little practical value. We have therefore allowed more general operads 

in Theorem 13.1. We next exploit this generality to obtain our recognition 

principle for A 03 spaces, a s  defined in Definition 3.5. Recall that the 

category of operads over m of Definition 3.3 has the product 'C7 described 

in Definition 3 . 9 .  In view of Proposition 3.10, the following theorem is  an 

immediate consequence of Theorem 13.1 and Corollary 13.2. 
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Theorem 13.4. Let C be any A operad, le t  D = C E l  and 6(4,: B(M, C, G) + G i s  a morphism of monoids and the 
OD 

le t  $: I° and r: M + C l  be the projections. Then r i s  a local diagram is 
(hence €14) is a weak ewivalence 

x-ewivalence of operad. Therefore, if (X, 8) i s  a co-ected -space, if G i s  connected): 

then there exists one and, up to  weak homotopy equivalence, only one con- 
( ) > B(M, C, G) 

netted space Y such that (X, €I$) i s  weakly homotopy e quivdent a s  a 

@ -Space to (QY, e l r ) ,  namely Y = B(S, D,x). 

Of course, Theorem 13.4 implies that a connected A space x i s  G < B(M, My G) 
OJ 

homo top^ ewivalent to a topological monoid, namely the M~~~~ loop 
2 

(vl 
 ye^, ~ ( Y . ~ ~ ) : ~ ( ~ , ~ , C Y ) + M Y y  v:M + M y  i sas t rOng 

space AB(Sy D* - As was f i r s t  proven by Adams (unpublished), a more i 
I 

deformation rectraction of topological monoids (that i s *  the required 

direct construction i s  possible. Recall that, by Proposition 3.2, the notions 

of topological monoid and of M-algebra a r e  equivalent. 

Theorem 13.5. Let be any A_ operad and let 6: C -+ M be the 

morphism of monads associated to the augmentation F + . Let (X, 8) 

be a C-algebra and consider the following morphisms of C-algebras: 

x < '(') 
B(C,C,X) U B(M, C, XI. 

(i) ~ ( 8 )  i s  a strong deformation retraction with right inverse ~ ( q ) ,  

where q: X + CX i s  given by the unit q of C. 

(ii) B(6, 1, 1) i s  a weak homotopy equivalence if x i s  connected. 

(iii) B(M, C, X) has a natural s t ructure of topological monoid. 

(iv) If (G, 4) i s  an M-algebra (that i s ,  a topological monoid) then 

deformation i s  given by morphisms of monoids h ) with right inverse t 

7Wd. 

Proof. In view of Theorem 9.10 and the fact that, by Proposition 3.4, 

6: CY -+ MY i s  a weak homotopy equivalence i f  Y i s  a connected space, the 

theorem follows f rom the facts that geometric realization preserves homo- 

topies (Corollary 11. lo), weak homotopy equivalences (Theorem 11.13), 

monoids (Corollary 11.7), and C-algebras  h he or em 12.2). 

Like Theorem 13.1, the result  above implies i ts  own uniqueness 

statement . 
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C o r o l l a r ~  13.6. Under the hypotheses of Theorem 13.5, if spaces and infinite loop sequences 

(xa 9) <- (x', 9') -L (G, $6) Our recognition principle fo r  E - spaces, a s  defined in Definition 3- 5 ,  
OD 

is a weak homo to^^ equivalence of connected D-algebras, where (G, $) is will follow from Theorem 13.1 by use of the product (Definition 3.8) in the 

an M-algebra, then the diagram cate,ry o ierads  and passage to limits. Throughout this section, will 

B(1Y 1,f)  denote a fixed E operad, @ will denote the product operad X & - 

B(MY C; X) < B(M, C, XI) l y  > B(M, C, G) G CO 

, =  m, and a: $2 n +  & ,  and %: 62 ,- w a d e n o t e  

a weak homotopy equivalence of topological monoids between G the projections. By Proposition 3.10, the a a r e  local equivalences, n 
and B(M, C,X). 

and ~h~~ rem 13.1 thus applies to the study of a -spaces. The inclusions n 

of Definition 4.1 (e) give r i se  to inclusions Remarks 13- 7. By Corollary 3.11, any E space i s  an A space ; by a3 a, 

, 1 x .,; 0 - , and i s  the limit of the an for  finite n. 
the previous theorem any connected A space i s  weakly homotopy equivalent 03 

CO 

A. in Construction 2.4,. we write C, Cn, and Dn for  the monads in to a to~ologic;tl  monoid. These two facts a r e  the starting point of ~~~~d~~~ 

associated to c. 6,. aid  Dn ,  and we u s e  the same letter .$or morpkisms 
and VO@'s proof C 7 8 I of the recognition principle for  E spaces. m 

of and fo r  their associated morphisms of monads in 7 .  We let 
Given an m they construct a homotopy equivalent monoid and show 

vn: D:.* D and b: 1 - D denote the product and unit of D . 
that the monoid can be given a structure of E space such that the (monoid) n n n 

CO 
A connected C-algebra (X, 8) determines a D -algebra (x, 8+n) for  

product commutes with the (operad) action. Then, a s  we shall see in  n 
n 

al l  n 2 1 and thus has an n-fold de-looping B(S , D , X) by Theorem 13.1. [''I3 the classify% space of the monoid inherits a structure of E space n 
m 

By the definition of the functor B* in Construction 9.6, the following and the argument can be iterated. While conceptually very natural, this 

lemma will imply that the B ( S ~ , D  ,x) fit together to form a (weak) line of argument leads to formidable technical complications; a glance at n 

Lemma 9 reveal one major source of difficulty, and another source 
Q-spectrum . 

6 

i of difficulty will be discussed in section 15. 
I 
E 



Lemma 14.1. Let q = Q-I (1): 1 + nS. Then, for all  n 2 1, 

(sn, mncan -,I) - cnsn", amn+' ~an,lTnt, T ~ ) )  

N 

i s  a morphism of D -functors in J . Therefore, for  al l  i 2 0, the 
n 

i j i t j  
functor QS = l im a S inherits a structure of D ;functor in D_[T]  

-+ m 
j i t j  j 

by passage to limits from the actions S2 I$ (a  i t j ~ i t j )  of Ditj on 

Proof. The f irs t  statement holds since the following diagram is  

commutative: 

~" (a , -~ )  I asnt' 
n n n  

" n n n  q s n s  > nSntl n n nsni'u s n s  n s n t l  n+lsnt l  > ns n 

n -1 n t l  n t1  
Here u = S 2  $ ( l ) :nnsn+n S , a s i n f o r m ~ l a ( 5 . 5 ) ~  and 

n 

U ( Y T  = a  U P  = a  
n n n  n t l n n  n+lTntlTn 

by Theorem 5.2 and the definitions of 

i 
the IT and T Since QS i s  defined by passage to limits from the 

n n 

inclusions 
i i t j .  j i+j + itj-tl 

U.S = n j q s  .n s s 
3 

2 

the second statement does follow from the first. 

We precede our recognition theorem for  E spaces with two further 
m 

lemmas. These will lead to a structural description of the homotopy type 

of the n-fold de-looping of a D -algebra which i s  based on D itself, 
m 03 

rather than on D Recall that, by Proposition 5.4, there a r e  morphisms n 

of monads pn: Cn + QCn-l S such that a = (Qa S)pn . We require the n n- 1 

analogous result for the Dn. 

Lemma 14.2. There exist morphisms of monads 6 : Dn * i2D S 
n n- 1 

for  n > 1 such that the following diagrams a r e  commutative: 

Proof. Recall that S2D S i s  a monad in 5 by Lemma 5.3. Let 
n- 1 

X E 7 . By Definition 3.8 and Construction 2.4, a typical point of D X 
n 

has the form [(d, c), y], where d E C (j), c = < c l , .  . . , c > E %,(j), and 
j 

j y E X . F o r  t E I, write 

Bn[ca yl(t) = [ < c i  , . . . , c" >, 21 , 
1 

1'. 

where c = c' X c" with c' : J + J, the rk a r e  those indices r such that 
r r r  r 

i 
t E C' (J)? and z E (SX) i s  a s  determined in the proof of Proposition 5.4. r 

By Notations 2.3 and Definition 4.l(d), we can choose degeneracy operators 



u o . . . , u  such that 
kl kj,i 

u ... u C = < C r  *..., C > . 
kl kjei 1 

r. 
1 

We define 6n b y  the  formula  

~ ~ [ ( d ,  c), y](t) = [(u . . . u d, < c" *. . . , c" >)* z] . 
kl kj -i rl 

r. 

It is then e a s y  to  ve r i fy  that 6n is a well-defined morph ism of monads 

such that the s ta ted diagrams commute. 

Le t  6..: Ditj + aiD.si denote the composite morphism of monads 
1J J 

i 
and define p..: Citj ~ C . S  similarly.  Define lim: Dm -' niD si by 

1J J m 

passage to  l imi t s  over  j. 

i 
Lemma 14.3. Le t  X..:D.S'D~+~ + D.S be  the  composite 

13 J J 
i 

v .S 
> D . D . ~  J > D . S ~  . 

J J J J 

i 
Then (D.S ,X..) is a D -flmctor in D . [ T ] ,  and 

J 1J i t j  J 

and 

i j i t j  a.-r.sl: (DjS , Xij) - ( d s i t j Y a  $ (aitjsitj)) 
J J 

a r e  morphisms of D -functors in  D.[ 71. By passage to  l imits  over  j, 
i t j  J 

i 
D. m s inher i ts  a s t ruc tu re  of D m -functdr in D m [  71, with action 

i 
and amvooS : Dmsi + is a morph ism of D -functors in  D [ J]. 

m m 

i 
Proof. D.qi(6. .) = Djti(l) 0 DjS bij, and it is t r iv ia l  to  ver i fy  that 

J 1J 
i i 

v.Sia D.ti(l) gives D.si a s t ruc tu re  of D.S -functor in D . [ T ]  by u s e  
J J J J J 

i 
of Lemma 5.3. Thus (D.S , X..) i s  a D -functor i n  D.[T ] by Example 

J 1J i t j  J 
i 

9.5(ii). The following two commutative diagrams show that r.S and 
J 

i 
a. s . S  a r e  morph i sms  of D -functors in D .[ 71, and thus complete 
J J it j J 

the  proof: 



j j i  
Q s m (6,) 

> I i S j  i 
cr.7r.S Q S (~.lr.S 

Q ~ S ~ D . S ~  J J > &jdSi+j 
J J J I 

The upper left and bottom rectangles commute since T and a lr a r e  
j . j j  

natural and a r e  morphisms of monads.  he' upper right rectangles commute 

by Lemma 14.2 and Proposition 5.4, which imply that 

and 

Recall that by Theorems 5.1 and 5.2, if Y = {Yi) < m y  SO that 1 
Y. = QY then (Yo, 0 lr ) i s  a D -algebra and 0 : CmYo + Y factors 
1 i+lY m 00 "! m o 

i 
1 

a s  the composite 1 
a = l im cr 
m * n m m  

5, = 1Lm ~ ~ $ ~ ( l )  

CcnYo > Q  s Yo 
> Y  e 

0 

We shall write W: * Dm[ ] for  the functor given on objects by ' 

WY = (Yo, Bmlrm). Recall also that if Z E 7 , then Q Z denotes the free cn 

i 
infinite loop sequence {QS Z) generated by Z, a s  described in formulas 

(5.7), (5.8), and (5.9). 

We retain the natations of the previous section for our geometric 

constructionsa and we have the following recognition theorem for  E -spaces. 
m 

Theorem 14.4. Let (X,$) be a Dm-algebra, and regard X a s  a 
/ 

D -algebra via the restriction of to D X C D X. Then the following 
n n a, 

i s  a commutative diagram of morphisms of D -algebras for  a l l  i 2 0 and 
j 

j > l :  

Define an infinite loop sequence BaX = {B~x) by 
1 

m 
and, for  i )  0, define a morphism y of Dm-algebras by 

ym = l im + ~ : B ( Q s ~ , D _ , x )  +. BiX. 



Consider the further morphisms of D -algebras 
03 

~ ( a _ r r _ s ~ ,  1, l) :  B(D_s~, D_, X) - B( asi, D_, X) 

and 

&(El : B(Dm, Dm, X) - X 

(i) ~ ( e )  is a strong deformation retraction with right inverse ~ ( 5  00 ), where 

5, i x + D X i s  given by the unit 5 of Dm . 
CO CO 

(ii) ~ ( a  n. si, 1 , l )  i s  a weak homotopy equivalence i f  i > 0 o r  if i = 0 
03 03 

and X i s  connected. 

(iii) yCO i s  aweakhomotopy equivalence for all  i and X. 

m 
(iv) The composite y B(ao3.rrC0, 1 , 1 ) ~ ( 5 ~ ) :  X + BOX coincides with 

- 1 
L = 1 $ ~ ( l ) ,  ~ ( l ) ,  S ~ X  + B(s~,  D X). 

-+ j' 

(v) B.X i s  (m+i)-connected if X is m-connected. 
1 

(vi) Let Y = {yi} E .< , and define w-: B WY + Y by 
03 

w = l im $a micj(l): BiWY + Yi 
i + 

d, $i+j(,-):d,($+j i+j (where , Di+j.n yi+j) + d y i t j  1. 

Then w i s  a weak homotopy equivalence if Y i s  i-connected and, for al l  
i i 

Y, the following diagram i s  commutative and w i s  a retraction with right 
0 

inverse L : 

(vii) Let Z E CJ/ . Then the composite 

i s  a strong deformation retraction in q with right inverse the 

adjoint  too(^ c,) of L 5, : Z + B D Z. 
0 03 

Proof. In view of the definitions of Construction 9.6, the specified 

spaces and maps a re  well-defined by Lemmas 14.1 and 14.3. The diagram 

commutes by the naturality of 4 (since r. = dq) and by the definition of 
3 

i co 
Y j t l  Of course, &(E), B(amrmS , l a  I),  and y a r e  morphisms of 

Dm-algebras by Theorems 12.2 and 12.4. Now (I) follows from Proposition 

9.8 and Corollary 11.10, (ii) follows from the approximation theorem 

 h he or em 6. l), Propositions 3.4 and 3.10, and Theorem 11.13, and (iii) 

follows from Theorem 12.3. Pa r t s  (iv) and (v) follow from the correspond- 

ing parts of Theorem 13.1 by passage to limits. F o r  (vi), i s  well-defined 

since the following diagram commutes by the naturality of & and of y 

and by the fact that y = 1 on S2Z = l.S2,z,l, Z E 7 : 



The commutativity of the diagram in (vi) follows by passage to limits from 

i 
Theorem 13.l(vi). If Y i s  connected, then w = w i s  a weak hom'o- 

o o i 

topy equivalence by parts (i), (ii), and (iii) and the diagram; it follows that 

w i s  a weak homotopy equivalence i f  Y i s  i-connected. F o r  (vii), the 
i i 

n 
explicit deformations of B(S , Dn,DnZ) given by Proposition 9.9 and 

Corollary 11.10, and the loops of these homotopies, a r e  easily verified to 

yield deformations - 
hiat 

of B.D Z in the limit such that S2hi+l, - hi, . 
1 0  

The fact that $ (cg ) i s  the right inverse to wB (a a ) follows by 
00 03 00 0003  

passage to limits from Theorem 13.1(vii) and the definition (5.9) of (Pa. 
9 

Up to weak homotopy equivalence in ,, there i s  only one con- 

nective Y E q such that WY is  weakly homotopy equivalent a s  a 

Dm-algebra to a given connected D -algebra X. 
a3 

Corollary 14.5. If (X, f )  6 
f 

( f Y o  e m )  i s  a 

weak homotopy equivalence of connected D OD -algebras, where 

Y = { ~ i )  E and each Yi i s  connected, then the diagram of infinite 

loop sequences 

displays a weak homotopy equivalence in Xm between Y and BODX. 

Proof. By Theorem 11.13 and passage to limits, each functor Bi 

preserves weak homotopy equivalences between connected D OD -algebras; 

since Y. = S2Yitl' each Yi i s  i-connected, and therefore each w i i s  a 

weak homotopy equivalence by the theorem. 

Since our de-loopings B. 1 a r e  not constructed iteratively, we should 

verify that B i+ j X is  indeed weakly homotopy equivalent to B.B.X. 1 J To see 

this, define functors d: r_ - ra for all integers j by letting the i-th 

space Q?Y of d ~ ,  i 2 0 ,  be 

Observe that if j 2 0, then the zero-th space of d j y  i s  Y j' Clearly 

daky = S2jfky for all j and k, and a0 = 1. We have the following 

addendum to part (vi) of the theorem. 



Corollary14.6. If Y e  x_ j and SZ. 1 Y i s  connected for  a l l  i, then 

a: B OD W ~ Y  -+ d~ i s  a weak homotopy equivalence in X _. In particular, 

i f  (X, 5) i s  a D 03 -algebra and if j 2 0 o r  if j = 0 and X i s  connected, 

then, for  i2.0,  

. B.B.x = B~WSZ-~B_X -+ R;~B_X = *B X 
i' 1 J 

i t j  

i s  a weak homotopy equivalence. 

We require one further, and considerably less  obvious, consistency 

result. Recall that if an operad acts on a space X, then, by iterative use 

of Lemma 1.5, the same operad acts on each G?'x, i > 0. We thus obtain 

i 
functors Q : D,[T] + ~,[5], and we wish to compare the infinite loop 

sequences SZiB_x and B_R~X, at least for  Dm-algebras which ar i se  

from C -algebras. To this end, let r1 n = 1 X u i  : 
- , where 

u' : - & n+l i s  the inclusion of Lemma 4.9 (which gives the f i r s t  
n 

coordinate the privileged role). Let r 1J 
+ Bit  denote the composite 

morphism of operads 

and define r1 . + Dm by passage to limits over j; this makes sense 
ico ' 

since I- ' = It follows easily from Lemma 4.9 that T' 
i+j " I-ij i, j+1 ' Tj  

ico 

is a local Z-equivalence of operads. 

Proposition 14.7. F o r  i > 0, le t  D1 S' denote the functor D S 
i 

w 00 

regarded a s  a D -functor in D [TI  via the action 03 03 

~ h i n  &( e *  D_mi(l)): B(DLS~, D nix) + X i s  a well-defined morphism of 
03 ' 

Dm-algeb~as for any D -algebra (X, t ) ,  and E(( 0 D bi(l)) i s  a weak co 00 

homotopy equivalence i f  X i s  i-connected. 

Proof. Let 5.: D n'x + nix denote the D -algebra structure map - 1 0 3 -  co 
i determined f rom 5 by Lemma 1.5 (the previous notation Q 5 would be con- 

fusing here). We claim that 5 .  factors a s  the following composite: 

i Since r: results by replacing each little m-cube c by the m-cube 1 X c, 
1co 

the proofs of Lemma 14.2 and of Proposition 5.4 imply that 

6im';03r(d, c). Y1'. - 9 Y 1(s) = [(d, c), ryl, 81. . . [Y.. sl1 
j J 

for  d E % (j). c t &,(j), yr t nix, and s E . 
i Since mi(l) i s  the evaluation map, $ [y, s] = y(s), li is indeed equal to the 

stated composite by Lemma 1. 5. Therefore the following diagram i s  com- 

mutative, and this implies that e(5.D mi(l)) i s  well-defined by Lemma 
03 

9.2, Construction 9.6, and the definition bf X. in Lemma 14.3: 
100 



i 
Moreover, by the naturality of .$ and of y , the following diagram i s  also 

commutative: 

Here 6 T.' .D -+niDt si 
i w  103' a, m is a morphism of D -functors in Dm[J] 

w 

by a simple diagram chase from Lemma 5.3. By Theorem 14.4(i) and 

i 
Theorem 12.3, €(ti) and y a r e  weak homotopy equivalences. F o r  con- 

nected spaces 2, TI : DmZ -+ D Z and 6iw: D_Z -+ n b  s * ~  a r e  weak 
100 00 m 

homotopy equivalences by Proposition 3.4 and by the approximation theorem 

i i 
( s h e  n OD T m = S2 n m r m S 0 6 .  1m ). By Theorem 11.13, B(limriw, 1.1) i s  

thus a weak homotopy equivalence if X i s  i-connected and, by the diagram, 

~ ( 5  0 ~ ~ ( ' ( 1 ) )  i s  then also a weak homotopy equivalence. 

Lemma 14.8. Let (X, 041 ) be the Dm-algebra determined by a 
m 

C-algebra (X, 0). Then 

B ( ~ , T ; ~ , I ) : B ( D ~ S ~ , D _ , X )  + B(D_s~,D_,x)  

i s  a well-defined morphism of D -algebras and i s  a weak homotopy 
m 

equivalence if X i s  connected. 

Proof. Since Dm + C i s  the projection, we obviously have 

i 
= +w~im . In view of the definition of D ~ S  , (1, T ; ~ ,  1) i s  thus a 

morphism in the category @ ( T , D [  T I )  of Construction 9.6 and 

1 

B(1, T ~ ~ ,  1) i s  well-defined. The last part follows from Proposition 3.4 

anc? Theorem 11.13. 

By combining the previous lemma (applied to n k  instead of to X) and 

proposition with Theorem 14.4 and Corollaries 14.5 and 14.6, we obtain the 

i 
desired comparison between S2 B X and ~ ~ 0 %  for C-algebras (X, 0). 

m 

Theorem 14.9. Let (X, 8) be a C-algebra and let  t = 04,. 

Assume that X i s  i-connected. Then the diagram 



displays a weak homotopy equivalence of D -algebras between (X, E) 
0 

and W R - ~ B  0%. Therefore the infinite loop sequences B X and 
m m 

S 2 - i ~  0% a r e  weakly homotopy equivalent. 
m 

Remark 14.10. Observe that i f  Y r % _, then aiWY and W ~ Y  have 

i the same underlying space, namely 0 Y and respective actions 
0' 

0% 0 r and ern* r . By passage to limits , Lemma 5.6 implies 
m a3 03 

i i 
that the action 0 0 of Cm on R Yo derived in Lemma 1. 5 satisfies 

m 

O'Qm = ern- r! (where r! i s  defined from the rt a s  T !  was defined 
103 1m n 100 

i f romthe  T '  = 1 ~ < ) .  T h e r e f o r e n 0  IT - O T . ~ T .  a n d ,  
n co a j - ' m  m : m y  

by Proposition 3.4, the action maps D ~ ~ ~ Y ~  + d Y  of 0 % ~  and 
0 

i W 0 4  a re  weakly homotopic (at least  if R Y i s  connected). 
0 

.- . 

A 

15. Rema'rks concerning the recognition principle 

The purpose of this section i s  to indicate the intent of our recognition 

theorem for E m spaces in pragmatic te rms,  to describe some spectral 

sequences which a r e  implicit in our goemetric constructions, to discuss 

the connectivity hypotheses in the theorems of the previous section, and to 

indicate a few directions for possible generalizations of our theory. We 

shall also construct a rather curious functor from -free operads to 

Em operads. 

Of course, Theorem 14.4 implies that a connected E space X co 

determines a connective cohomology theory. Pragmatically, this i s  not 

the importance of our results. A cohomology theory cannot be expected to 

be of very much use without an  explicit hold on the representing spaces. 

Ideally, one would like to know their homotopy groups, and one surely wants 

a t  least  to know their ordinary homology and cohomology groups. Our re -  

sults a r e  geared toward such computations via homology operations derived 

directly from the E structure, and i t  i s  crucial for these applications that 
al 

the homology operations derived from a given C-algebra structure map 

i 
Q:CX A X ,  where & i s  any Em operad, necessarily agree with the 

t 
i 

homology operations derived on the equivalent infinite loop space BOX from 

the canonical C -algebra structure map Q :C B X - + B O X .  In the 
m co c o o  

I 
1 notations of Theorem 14.4, our theory yields the following commutative 

I 
I diagram, in which the indicated maps a re  al l  (weak) homotopy equivalences: 
I 



Thus the given geometry 8: CX 4 X i s  automatically transformed into the 

li t t le cubes geometry Boo: CmBoX 4 B X. The force of this statement 
0 

will become apparent in our  subsequent applications of the theory to such 

spaces a s  F and BTop, where there will be no direct geometric connection 

between the relevant E operad & and the operad gm. 
m 

We indicate one particularly interesting way in which this statement 

can be applied. With (X, 0) a s  above, le t  f: Z -, X be any map of spaces. 

By use of the adjunction $ of (5.9), we obtain a map of infinite loop 
a3 

sequences g = $ ( ~ f ) :  Q Z + BmX such that the following diagram i s  
w CD 

Obviously g i s  a map of C -algebras, by Theorem 5.1. On mod p 
0 cD 

homology then, identifying H*(X) with H,(B X) via I,* and using Theorem 
9- 0 

14.4(iv), we a r e  guaranteed that (g )* t r a n s f c r ~ n s  the ho~nology operations 
0 
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on QZ coming f rom e m : Cm QZ 4 QZ into the homology operations on X 

i coming f rom 8: CX -+ X. Since H*(QZ) i s  f reely generated by H&Z) 
i 

under homology operations (see [ 20 , Theorem 2.51 for  a precise statement), 

it fbllows that (g )* i s  completely determined by  f*  and the homology opera- 
0 

tions bn H*(x). 

Theorem 14.9 will have several  important concrete applications. 

F o r  example, the spaces occuring in Bott periodicity a r e  a l l  % -spaces 

for  an appropriate E -operad & and the various Bott maps X * QX' 
m 

(e.g., X = BU and X1 = SU) a r e  al l  % -morphisms, where SWE' has the 

% -space s t ructure determined by Lemma 1.5 from that on XI. Via 

Theorem 14.9, i t  follows that our  spectra  B X a r e  weakly homotopy 
m 

equivalent to the connective spectra  obtained fromthe periodic Bott spectra 

by killing the bottom homotopy groups. Less  obvious examples will a r i se  

in  the study of submonoids of F. 

We should observe that our  constructions produce a variety of new 

spectral sequences, in view of Theorem 11.14. Probably the most interesting 

i r 
of these a r e  the spectral sequences { E X) derived by use of ordinary 

i 
mod p homology in Theorem 11.14 from the simplicia1 spaces B*(D*S ,D,,X) 

of Theorem 14.4, where X i s  a connected D -algebra and i >  0. Of 
00 

i 
course, B(DmS ,Dm, X) i s  weakly homotopy equivalent to the i-th de-looping 

i 
B.X of X. F o r  each j and q, the homology H (D S D j X) i s  a known 

q m  * 

functor of H&(X), determined by [ 20 , Theorem 2.51, since D may be 
7. a3 



replaced by Q, The differentials 

a r e  in principle computable f rom knowledge of the homology operations on 

H*(x); these operations determine H (a.), and the H (a.) for  i < j depend 
9 J 9 1 

only on the additive structure of H*(x) a s  they a r e  derived f rom natural  

transformations of functors on 7 (with known behavior on homology). 

i 2 
Therefore E i s  a well-defined computable functor of the R-algebra 

H*(x), where R i s  the DyerLLashof algebra ( see  [ 20 I), and { i ~ r ~ )  con- 

verges to H*(B.x). It appears unlikely that these spectral  sequences will 

be of direct computational value, but they a r e  curious and deserve further 

study. In particular, one would like'to have a more precise description of 

i 2 
E X, perhaps a s  some homological functor of H*(X), and, in the case  i = 1, 

1 r 
one would like to  know the relationship between { E X} and the EiIenberg- 

Moore spectral sequence (derived by use  of the Moore loop space on BIX) 

H,(X) 
converging from Tor  (Zp, Zp) to H*(B1X).. 

Although al l  of our  cofistructions of spaces and maps a r e  perfectly 

general, the validity of our recognition principle i s  restr ic ted to connected 

Em spaces since i t s  proof i s  based onthe approximation theorem. A necessary 

condition for  an H-space X to be homotopy equivalent to a loop space i s  that 

X be group-like, in  the sense that T (X) i s  a group under the induced pro- 
0 

duct. It i s  t r ivial  to verify that a homotopy associative group-like H-space 

the identity element. It follows that a group-like E space X i s  weakly m 

1 homotopy equivalent to an infinite loop space since both X and the Abelian 
1 

0 

f group T (X) are. Such a statement i s  of no pragmatic value since the i - 0 

equivalence does not preserve the E m space structures: there a r e  many 

F 2 0 
examples (such a s  S2 BU and QS ) of Em spaces with non-trivial homology I 

i 

I operations on zero-dimensional c lasses  but, a s  a product, Xo X vo(X) has 

i only trivial homology operations on such classes  ( see  [ 20 , Theor e m  1.11). 
t 
1 A more  satisfactory result  can be obtained by reworking everything 

1 i n  the previous section with C, C and D replaced by the monads QCS, 1 j' j 

I X . S ,  and S2D.S. Of course, any S2D S-algebra i s  a Dm-algebra by pull- 
J J 03 

back along 'D *S2D S, a ~ d  therefore any S2D S-algebra i s  a group- 
6103' m m m 

like Em space Given a S2D m S-algebra (X, c), define = { gix ] by 

and consider the following spaces and maps: 

u) 

By Theorems 12.2 and 12.4, &($), B(s2am~03S, 1, l ) ,  and y a r e  morphisms 

of Dm-algebras (not of W m S-algebras). &(c) i s  a homotopy equivalence 



the resd t ing  map 0: CX -* X to be such that the various ways of composing 

been generalized so a s  to show that the various simplicia1 spaces a re  

strictly proper) the maps y03, y, and B(a T S, 1 , l )  a r e  weak homotopy 
03 03 

equivalences by Theor em 12.3, the approximation theorem, and Theorem 

11.13. It follows from the commutative square that the map B(G?LT~S, 1 , l )  

i s  also a weak homotopy equivalence. Thus (X, fj) i s  weakly homotopy 

equivalent a s  a D -algebra to w ~ ~ x .  The remaining results of the 
03 

previous section can be similarly reproven for  QD S-algebras, with a l l  
03 

connectivity hypotheses lowered by one (e. g., Y. need only be (i-1)-connected 

in the analog of Theorem 14.4(vi)). We omit the details since no applications 

a r e  presently in view. 

Finally, we mention several possible generalizations of our theory. 

There a r e  various places where it should be possible to replace strictly 

commuting diagrams by diagrams which only commute up to appropriate 

homotopies. The technical cost of weakening the notion of operad surely 

cannot be justified by results, but the notion of & -space might profitably 

be weakened. It would be useful for applications to BO and BU with the 

tensor product H-space structure if a l l  reference to base-points could be 

omitted, but this appears to be awkward within our context. A change in a 

different direction, suggested by Stasheff, i s  to define the notion of a homotopy 

6 -space by retaining the commutativity with permutations, degeneracies, 

a n d  unit that we have required of an action 8 of & on X, but only requiring 

0 and p: C2 + C to obtain maps C% -t X agree up to appropriately co- 

herent homotopies. 

This possible refinement to our theory is related to an objection that 

might be raised. We have not proven, nor have we needed, that a space X 

whichis  homotopy equivalentto a n E  m space Y i s  itself a n E  space. 
03 

This was proven by Boardman and Vogt [ 7 , 8 ] (and was essential to their 

proof of the  recognition theorem)by means of a change of operads. 

With a recognition t!leorem based on the  notion of a homotopy 

& -space, such an argument might be unnecessarj. Al ternat ively,  

t h e i r  argument may general ize  t o  replace a homotopy c-space by 

a &-space, fo r  a r e l a t ed  operad&. Of aourse, one would expect 

t he  notion of a homotopy g-space t o  be homotopy invariant .  Indeed, 

l e t  f :X + Y be a homotopy equivalence with homotopy inverse g,  

where (Y, 6 )  E & c 71. Define 6 ' : CX -+ X t o  be the  composite 

By Corollary A .  13, we may replace f by its mapping cylinder (at the price 

of growing a whisker on ) and thus assume that f i s  an inclusion, and 

we may then assume that X i s  a strong deformation retraction of Y with 

retraction g.. Now gf = 1 trivially implies that 8'1 = 1 on X, but 8' 

fails to define a C-algebra structure map since the third square in the follow- 

ing diagram only homotopy conimutes: 



CCf CCX - c c y  -=4> CY L c x  Cf > CY 

Intuitively, this i s  a minor deficiency which should evaporate with the study 

of the notion of homotopy -spaces. 

Similarly, the notion of a morphism of -spaces can certainly be 

weakened to an appropriate notion of homotopy $ -morphism (most simply 

between actual -spaces but also between homotopy -spaces). The 

maps f and g above ought then to be homotopy & -morphYms. AS 

further examples, one w, uld expect ~11e product on an Em space to be a 

homotopy morphism (see Lemma 1.9) and one would expect the homotopy 

inverse of a -morphism which i s  a homotopy e cpivalence to be a homotopy 

& -morphism. Our theory avoids such a notion at  the negligible cost of re -  

versing the direction of certain arrows. We have not pursued these ideas 

since they a r e  not required for any of the immediately visible applications. 

Finally, we point out the following procedure for constructing new- 

operads from old ones. 

Construction 15.1. Let $ be an operad. Define Qg(j)  = I ~ * c ( j )  1 where 

D : u-382./, i s  the functor defined in  Construction 10.2. Then a i s  an * 
operad with respect to the data specified by 

(a) a('d) = I%-dI:me(k)x @ e ( j l ) x . . . ~ & C ( j k ) 4 @ ~ ( j ) ,  j =  2 js, where 
-7. 

we have used the fact that D* and realization preserve products to 

identify the left-hand side with 1 D&(G(k) X c ( j  ) X . . . X G(jk)) 1 .  
T 1 

(b) The identity of i s  1 E &(I) = F I D,c(l) I .  
0 T 

(c) The right action of . on g;)E(j) i s  the composite 
J I "*<I 

ZQWx t 1Xi7*i > I p G ( j )  I X I D * ~ ~  I = I~ , (g ( j )xZ$  I - inpj). 
where r* i s  defined in  Construction 10.2 and d i s  the action of 2 

j 
On 

By Proposition 10.4 and Corollary 11.10, each QE(j) i s  contractible hence, 
- 

by (c) ,  Qi2& i s  an E operad if $ i s  a 2 -free operad. 
a3 

The Em operad =@In has been lrnplicitly expioited by Barrat t  [4] 

(see Remark 6.5). This operad i s  trclmically convenient because DX i s  a 

topological monoid for  any X E J ; indeed, the product i s  induced from the 

evident pairings 

e:@(j)x b i ( k i = / ~ ~ ( G ~ x ~ ) I + I ~ * t .  I =Q(jtk) 
J +k 

by the formula [d,y] [d l , y ' ]  = [ d @ d i , y , y i ] .  
- 



APPENDIX 

We prove the technical lemmason NDR-pairs that we have used and 

discuss whiskered spaces, monoids, and operads here.  

Definition A. 1. A pair  (X, A) of spaces in U i s  an NDR-pair if 

- 1 
there  exists a map u:X * I such that A = u (0) and a homotopy 

h:I X X -, X such that h(0, x) = x fo r  a l l  x E X, h(t, a) = a for  a l l  

(t, a )  E I X A, and h(1, x) E A for  all  x E ~ - ~ [ 0 , 1 ) ;  the pair  (h, u) i s  said to  

be a representation of (X, A) a s  an NDR-pair. If, further,  ux C 1 for  a l l  X, 

so  that h(1, x) E A for  al l  x E X, then (X, A) i s  a DR-pair. An NDR-pair 

(X,A) i s  a strong NDR-pair if uh(t,x) < 1 whenever ux 4 1; thus, if 

- 1 
B = u [0, l ) ,  i t  i s  required that (h, u) res t r ic t  to a representation of (By A) 

a s  a DR-pair. 

By f 30,7. I], (X, A) i s  an NDR-pair if and only i f  the inclusion A C X 

is a cofibration. There i s  l i t t le practical difference between the notions of 

NDR-pair and strong NDR-pair in view of the following example and the dis- 

cussion below of whiskered spaces. 

Example A. 2. Define the (reduced) mapping cylinder M of a map f:X * Y f 
r 

i n  J to be the quotient space of X X I f Y obtained by identifying (x, 0) with 

f(x) and (*,t) with * E Y. Embed X in M by x -L (x, l ) .  It i s  trivial that 
f 

( Z f , x )  i s  an NDR-pair, where i s  the unreduced mapping cyclinder, but 
f 

f must be ~ e l l ~ b e h a v e d  near  the base-points to ensure that (M ,X) is an f 

NDR-pair. Thus le t  (h,u) and (j ,v) represent (XI 6) and (Y, *) a s  

NDR-pairs and assume that vf(x) = u(x) and j(t, f(x)) = fh(t, x) f o r  x E X 

and t E I. Then (k, w) represents (M , X) a s  an NDR-pair, where 
f 

0 5 s _c l / 2  
w(y) = v(y) and w(x, s )  = 

1 1 2 s  s $ 1  

If (h, u) and (j, v) represent (XI *) and (Y, *) a s  strong NDR-pairs, then 

(k, w) represents .(M , X) a s  a strong NDR-pair. Of course, (Mf,Y) i s  f 
1 

represented a s  a DR-pair by (u', h'), where U I ( ~ )  = 0, uf(x, s) = - s  2 ( ), and 

ht(t, y) = y and h'(t, (x, s)) = (x, s( l - t ) )  . 

We have frequently used the following result  of Steenrod [30,6.3]. 

Lemma A.3. Let (h,u) and (j ,v) represent (X,A) and (Y,B) a s  

NDR-pairs. Then (k, w) represents the product pair 

a s  an  NDR-pair, where w(x, y) = min(ux, vy) and 



Further, if (Y, B) i s  a DR-pair, then so i s  (X, A) X (Y, B), since vy c 1 

for  all y implies w(x, y) 4 1 for al l  (x, y). 

The proof of the following addendum to this lemma is  virtually the 

same a s  Steenrod's proof of [30,6.3]. 

Lemma A. 4. Let (h,u) represent (x, A) a s  an NDR-pair. Then 

NDR-pair, where u. (xl, . . . , x.) = Y - ux.1 and 
J J J 

with 

(wj/uxi) if some w. w in  j # i 
J 

t.. = 

if a l l  w. aw.  j # i 
J 1 

The followirg sharpening of [30  ,7.2] is slightly less  obvious. 

Lemma A. 5. Let (By A) and (X, B) be NDR-pairs. Then there i s  a 

representation (h, u) of (X, A) a s  an NDR-pair such that h(I X B) C B. 

Proof. Let (j, v) and (k, w) represent (B, A) and (X, B) a s  NDR- 

pairs. Define f: I X B + I by f(t,b) = (1-t)w(b) + tv(b). Since B + X i s  a 

cofibration, there exist maps 7: 1 X X + X and nd I X X + I which make the 

following diagrams commutative: 

O X B  r I x B  OXB-IXB 

0 x x ' + I X X  OXX 2 I X X  

D6fine u by u(x) = max(31, k(1, x)), w(x)) and define h by 

It i s  easy to verify that the pair (h. u) has the desired properties. 

We shall shortly need the following lemma on unions, in which the 

requisite verifications and the continuity proof a r e  again simple and omitted. 

Lemma A .  6. Let Ai, 1 $ i 6 n, be subspaces of X, and let  (h., ui) 
1 

represent (X, A.) as an NDR-pair. Assume that 

(a) h . ( I x A . ) C  Ai for i c  j and 
J 

(b) . u . x q 1  implies u .h . ( t , x )< l  for i L j ,  t a - I  and x a  X. 
J J 1  

Then (j,v) represent (X, A 1  u . . . U A ) as  an NDR-pair, where - 
n 

vx = min(u x, . . . , u x) and 
1 n 

.4 

ti 
with 

t min u.x/u.x i f  some u.x < u.x C j # i  J .1 

t = 
i 

if al l  u.x,u.x . 
J 1  



The functors we have been studying preserve NDR-pairs and strong 

NDR-pairs in a functorial way; the following ad hoc definition will con- 

veniently express this for  us. 

Definition A.7. A functor F: 7 * 7 i s  admissible if any representa- 

tion (h,u) of (X, A) a s  an NDR-pair determines a representation (Fh, Fu) 

of (FX,FA) a s  an NDR-pair such that (Fh)t = ~ ( h ~ )  on X and such that, 

for  any map g:X -+ X with ug(x) < 1 whenever u(x) C 1, the map 

Fu: FX -t I satisfies (Fu)(Fg)(y) ( 1 whenever Fu(y) c 1, y E FX. As 

examples, S, C, and $2 a re  admissible (where C i s  the monad associated 

to any operad C ), with 

(su)[x, s] = U(X) , x E X and s E I ; 

(Cu)[c, x, , . . . ,x .]  = max u(x.), c E (j) and x. E X; 
J i 

(&)(f) = max uf(s) , f  E S2X. 
s e  I 

Clearly any composite of admissible functors i s  admissible. 

We now discuss whiskered spaces, monoids, and operads. Growing a 

whisker i s  a standard procedure for replacing a given base-point by a non- 

degenerate base-point. F o r  our purposes, what i s  more important i s  that 

the new base-point i s  strongly and functorially non-degenerate. 

Definition A. 8 (i) Let (X, *) be a pair in  u, * E X. Define 

X1 = X vI ,  where I i s  given the base-point 0 in forming the wedge, and 

give X' the base-point 1 e I. (XI, 1) i s  represented a s  an NDR-pair by 

( h , ~ ) ,  where u(x) = 1 and h(t,x) = x for  x E X and, for s E I, 

if s g 1/2 s +  st  if s & 1/2 
u(s) = and h(t, s )  = 

2-2s if s +1/2 s + t - s t  if s >, 1/2 

Let L :X * X1 and p = h 1 : X1 X denote the evident inclusion and 

retraction. If f: (X, *) -. (Y, *) i s  a map of pairs,  let f '  = f v 1:X' + Y' ; 

I then, by Example A. 2, (MQl,X') - i s  a strong NDR- pair (since uf' = u and 

h f' = flht), and (Mf , ,  Y1) i s  a DR-pair. 
t 

(ii) Let G be a topological moooid with identity e. Then G' i s  a topological 

mondid with identity 1 under the product specified by the formula 

g s = g = s g  for  ~ E G  and S E I  

I aed the rewirement that the product on G1 restr ict  to the given product on G 

and the usual multiplication on I. The retraction p: G1 -F G is  clearly a 

E 
i morphism of monoids. 

(iii) Let t be an operad; to avoid confusion, let e denote the identity 

element , c(1) .  Define a new operad c' and a morphism p: - t of 

operads by ~ ' ( j )  = (;; (j) a s  a 2.-space, with p = 1, for j > 1  and by 
J j 

1 )  = c ( I ) \  as  a monoid under yl, with pl the refraction; the maps y' 

I a r e  defined by commutativity of the diagrams 



for  j = j t . . . + jk # 1 o r  k # 1. Of course, ~ ' ( 0 )  = * = C (0). 
1 

Lemma A. 9. Let C and Cf denote the monads in  associated to  

an pperad 6 and i t s  whiskered operad < ' . Let X e 7 . Then there  i s  a 

naturpl homeomorphism x f r om the mapping cylinder M of q: X + CX 
T 

to C'X such that the following diagram commutes: 

C'X 

(where i and r a r e  the standard inclusion and retraction) 

Proof. On CX c M let  X: CX C'X be the evident inclusion, and 
T 

define ~ ( x ,  s )  = [s,x] for  (x, s )  E XX I, where s E I c ('(1)' on  the right. 

Sjnc.e 
(x, 0) = q(x) = [e, x] E M and fO,x] = [e, x] E CtX, 

."l 

x i s  well-defined, and the remaining verifications a r e  easy. 
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Proposition A. 10. Le t  be an operad and l e t  C' be the monad 

in 7 associated to 6'. Let X be a Ct-algebra and F a C'-functor 

in (e. g., X a -space and F a C-functor). Assume that F i s  an 

admissible functor and that (X, *) i s  a strong NDR-pair. Then B,(F,C', -I. X) 

i s  a s t r ic t ly  proper simplicia1 space. 

Proof. Let (h,u) represent  (X,*) a s  a strong NDR-pair. As shown 

i n  Definition A. 7, (h, u) determines a representation (Ch, Cu) of 

(CX, C*) = (cX, *) a s  a strong NDR-pair. Clearly Ch t o q = q o h  t and 

Cu ~q = U, hence, by Example A. 2, (M X) i s  a strong NDR-pair. By the 
qY 

lemma above, ( M ~ .  X) i s  homeomorphic to (c'x, qlX) and (h, u) thus ex- 

plicitly determines a repre  sentation of (C 'X, q'X) a s  a strong NDR-pair. 

Write D = C t  to  simplify notation, and le t  

Y = B  (F,D,x) = FD'"X and A i = I m s i C Y ,  
qf 1 

i 
where s = F D  $ , q t : ~ q - i X  + Dq'l-iX . 

i 

Now (h, u) determines a representation ( ~ 9 % ~  D ~ - ~ U )  of (Dq-5 ,  *) a s  a 

strong NDR-pair and, with X replaced by D ~ - ~ x ,  we have just shown that 

this representation explicitly determines a representation, (ki, wi) say, of 

i 
(Xlqti -fC, q'Dq'fCj a s  a strong NDR-pair. Since FD i s  admissible,  

(hi, ui) = (FD%~, FD~W.) i s  then a representation of (Y, A.) 1 a s  a strong NDR- 

i 
pair. Since FD q' i s  a natural  transformation, the following diagram 

commutes fo r  i < j and t E I: 



Therefore h.(I X A.) C A .  for  i C j. By Definition 11.2, B*(F, D, X) will 
J 

be strictly proper if i t  i s  proper and, by Lemma A. 6, B*(F,D, X) will be 

proper provided that u.y < 1 implies u.h.(t, Y) C 1 for  i (  j, t E I and 
J J l  

y E Y. By our definition of an admissible functor, this will hold provided 

that . . , j-i (DJ-'w.)k.(t, x) 4 1 whenever (D w.)(x) '< 1 , 
J 1  J 

q+l-.& . . 
for  i i j ,  ~ E I  and X E D  . Here ki and DJ-',w. a r e  explicitly de- 

J 

termined by the original representation (h,u) of (X, *) as  a strong NDR- 

pair, and the result i s  easily verified by inspection of the definitions. 

The requirement that (X, *) be a stong NDR-pair i s  no real  restriction 

in  the proposition above in iriew of the following lemma. 

Lemma A. 11. Let 8 be an action of an operad % on a based space 

X E 2 . Then there i s  an action 8' of 1: on Xf such that p:Xf + X is a 

morphism of -spaces. 

Proof: L e t '  I, : X C X1 and define 8: : Ip (j) X (xt jJ  - Xt by 
J 

Here x x. E I C Xt ; both parts of the domain a r e  closed, and both 
1"' J 

definitions yield 0 = * on the intersection. The requisite verifications a r e  

all  straightforward. 

The following lemma is  relevant to the remarks. a t  ihe end of $ 15. 

Lemma A. 12. Let (Y,  0) E C [ I,. le t  Y Z, and let h:I X Z + Z 

be a homotopy such that 

h(1, z) = z, h(t, Y) = y , h(0, z) E Y , and h(ttl, z) = h(t, h(tl, z)) 

for  z E Z, y E Y,  and t, t t  E I. Then there i s  an action of 6 ' on Z 

such that the retraction r = h o : Z + Y is  a morphism of &'-spaces. 

cJ 
Proof. Define 8 on (j) X zJ by commutativity of the diagram 

j 

and define $ = h on I X Z C dl) X Z. The requisite verifications a re  
1 

again completely straightforward. 



c o r o l l a r y . ~ . l ~ .  E ( Y , ~ ) G  C [ T ]  and f:X+Y i s a n y m a p i n J  

h) 

then there is  an action 9 of C on Mf such that the retraction r: MI* Y 

/ 

is  a rnorphism of c' -spaces. 

in Example A. 2, and apply the lemma. 
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