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Preface

- This is the first of a series of papers devoted to thé study
~.of iterated loop spaces. Our goal is’to develop a simple and
coherent theory which encompasses most of the known results about
such spaces. We begin with some history and a description of thé
desiderata of such a tHeory.

First of all, we require a recognition principle for n-fold
loop spaces. That is, we wish to specify appropriate interﬁal
structure such that a space X possesses such structure if and
only if X 1is of the (weak) homotopy type of an n-fold loop
space. For the case n= 1, Stasheff's notion [28] of an A, space
is such a recognition principle. Beck [5] has given an elegant
proof of a recognition principle, but, in practice, his recogni-
tion principle appears to be unverifiable for a space that is not
given a priori as an n-fold loop space. In the casen =oco, a
very convenient recognition principle is given by Boardman and
Vogt's notion [8] of a homotopy everything space, and, in [71,
Boardman has stated a similar recognition principle for n<eco .

We shall prove a recognition principle for n«<eo in section
13 (it will first be stated in section 1) and for n =oo in section

14; the latter result agrees (up to language) with that of
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Boardman and Vogt, but our proof is completely different. By
generalizing the methéds of Beck, we are able to obtain immediate
non-iterative constructions of classifying spaces of all orders.
Our proof also yields very precise consistency and naturality
statements. In particular, a connected space X which satisfies
our recognition principle (say for n =o0) is not only weakly
homotopy equivalent to an infinite loop space B, X, where spaées
B; X with B, X = J}.Bi 4 1 X are explicitly constructed, but also
the given internal structure on X agrees under this equivalence
with the internal structure on B X derived from the existence of
the spaces Bi X. We shall have various other consistency state-
ments and our subsequent papers will showkthaé these statements
help to make the recognition principle not merely a statement as
" to the existence of certain cohomology theories, but, far more
important, an extremely effective tool for, the calculation of the
homology of the representing spaces.

An alternative recognition principle in the case n = o0 is
due to Segal [27] and Anderson [1, 2]. Their approach starts with
an appropriate topological category, rather than with internal
structure on a space, and appears neither to generalize to the
recognition of n-fold loop spaces, 1 <n<eo, nor to yield the
construction of homology operations, which are essential to the

most important presently known applications.

The second desideratum for a theory of iterated loop spaces

is a useable geometric approximation to {2"S"X and Q7S¥X=1im Q"S"X.

*

v

In the case n = 1, this was first obtained by James [15]. For n<eo,

Milgram [22] obtained an ingenious, but quite intricate, approxi-

“mation for connected CW-complexes. In the case n =o0, such an

" approximation was first obtained by Dyer and Lashof [unpublished]

and later by Barratt [4], Quillen {unpublished], and Segal [27].
o We shall obtain simple functorial approximations to j1n5n><
for all n and all connected X in section 6 (a first statement

ig in éection 2). Our result shows»that the homotopy type of.ﬂfgn)(
is built up from the iterated smash products thj of X with -
itself and the classical configuration spaces F(RY; j) of j-tuples
of distinct poihts of R%. Moreover, in our theory the approxima-
tion theorem, together with guite easy categoriéal constructions
and some technical results concerning geometric realization of-
simplicial topological spaces, will directly imply the recognition
principle. This is in fact not surprising since ﬁ)nsnx and Sl“S“?(
are the free nffold and infinite loop spaces generated by X and
should play a central role in any complete theory of iterated loop
spaces.

The third, and pragmatically most important, requirement of a
satisfactory theory of iterated loop spaces is that it lead to a
simple development of homology operations. The third paper in
this series will study such operations on n-fold loop spaces,

n < @, and will contain descriptions of H*(QnSnX) for all n as
functors of H, (X). The second paper in the series will study
homology operations on Ee. spaces and infinite loop spaces and will
apply the present theory to the study of such spaces as

F, /0, BF, BTop, etc. It will be seen there that the precise
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geometry that allows the recognition principle to be applied to
these spaces is not only well adapted to the construction of
homology operations but can actually be used for their explicit
evaluation. Statementsof some of the results of these papers may
be found in [20].

Our basic definitional framework is developed in sections 1,
2, and 3. The notion of "operad" defined in § 1 arose gimulta--
neously in Max Kelly's categorical work on coherence, and conver-
sations with him led to the present definition. Sections 4 through
8 are concerned with the geometry of iterated loop spaces and with
the approximation theorem. The definition of the little cubes operads
in §4 and of their actions on iterated loop spaces . in §5 are due
to Boardman and Vogt [8]. The results of §4 and §5 include all of
the geometry required for the construction of homology operations
and for the proofs of their properties (Cartan formula, stability,
Adem relations, etc.). The observations of §8, which simplify and
generalize results originally proven by Milgram [23], Tsuchiya [33],.
and myself within the geometrical framework developed by Dyer and
Lashof [11], include all of the geometry required for the computa-
tion of the Pontryagin ring of the monoid F of based homotopy equi-
valences of spheres. Our key categorical construction is presented
in §9, and familiar special cases of this construction are discussed
in §10. This construction leéds to simplicial spaces, and a variety
of technical results on the geometric realization of simplicial

spaces are proven in §ll and §12. The recognition theorems are

E

VII

proven in §l3 and §l4 and are discussed in §15. A conceptual under-
standing of these results can be obtained by reading §l—3 and §9
and then §13, referring back to the remaining sections for the

geometry as needed.

T

Thé results of §10 and §ll will be used in [21] to simplify and
gehefalize the theories of classifying spaces of monoids and of
classification theorems for various types of fibrations.

It is a pleasure to acknowledge my debt to Saunders Mac Lane
and Jim Stasheff, who read preliminary versions of this paper and
made very many helpful suggestions. Conversations with Mike

Boardman and Jim Milgram have also been invaluable.
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1. Operads and C-spaces

Our recognition principle will be based on the notion of an operad
acting on a space. We develop the requisite definitions and give a pre-
liminary statement of the recognition theorem in this section.

_ To fix notations, let7l denote the category of compactly generated u
Hausdorff spaces and continuous maps, and let T denote the category of (j

based compactly generated Hausdorff spaces and based maps. Base-points

o

will always be denoted by * and will be required to be non-degenerate, in

the sense that (X, *) is an NDR-pair for X ¢ j . Products, function
spaces, etc., are always to be given the compactly generated topology.
Steenrod's paper [ 30] contains most of the point-set topology required for
our work. In an appendix, we recall the definition of NDR-pairs and prove
those needed results about such pairs which are not contained in [30].

An operad is a collection of suitably interrelated spaces c(j), the v
points of which are to be thought of as j~adic operations Xj ~X. Pre-

cisely, we have the following definitions.

Definition 1,1. An operad ¢’ consists of spaces f-.(_]) eu for j2 0,

with C(O) a single point % , together with the following data:

(a) Continuous functions vy: C(k) X Z’(ji) X.oo X C(jk) - ¢ (i)

i= = js’ such that the following associativity formula is

satisfied for all c e C(k), dg e C(js), and e, ¢ C (it):

Y(Y(C;di’""dk);e'i""’ej) = Y(C;fi""’fk)’




where fs = y(ds;e.

yeeey€, )s and
g

Fao bt Bt vy

£s==:< if JS=0.

(b) An identity element 1 ¢ c(i) such that y{1;d)=d for de C (i) and

y(c;‘ik)= c for ce C(k), 1k= (i,...,i)ec(i)k.

{c) A right operation of the symmetric group Zj “on E(J) such that the
following equivariance formulas are satisfied for all c e ;:(k),

dse C(JS), o e Ek, and T € Ejs :

Y(eosd,,... 4, ) =v(esd

200y

d Yol s eeesiy)
o 1(1) o L) Mt Yk

and y(ezd; 7 ,..0,q T ) =y(esd, .., d )T @, 0T,

where cr(ji, - ,jk) denotes that permutation of j letters which
permutes the k blocks of letters determined by the given partition
of j as ¢ permutes k letters, and +,® ... ® 1, denotes the

i k

image of (Ti""’T

k) under the evident inclusion of T, X ...X I,

in %, .
An operad ( is said to be Z-free if Z‘j acts freely on ?;(J) for all j. A

/
morphism  : C - C of operads is a sequence of Ej-equivariant maps

Lle: f G) —~ C,(j) such that \pi(i) = 1 and the following diagram commutes
G X EG )X X E (j) ——L—> £ )

q,kxq;jix...xl,ujk "’j

Cx Clipx... xE T —X— ')

s e s o

Definition 1,2, Let X ¢ J and define the endomorphism operad €
of X as follows. Let EX(J) be the space of based maps x) - X3 x° = %,

and EX(O) is the inclusion * -+ X, The data are defined by

(=) Y.(f;'gi, cees gk) = f(g,l X...X gk) for fe ‘Ex(k) and g_e &X(JS). |
(bY The identity element 1 ¢ E X(i) is the identity map of X .

{¢) (Eo)y)=£f{oy) for fe EX(j), e Zj, and y e XJ, where Ej acts on X

By el T )

An operation € of an operad f on a space X is a morphism of operads
-H] C-' EX’ and the pair (X,0) is then said to be a C—sPace. A morphism
f: (X,0) = (X',8") of g’—spaces is a based map f:X — X' such that
feej(c) = Oj(c)ij for all ce C (j). The category of C-spaces is denoted
by CIT L

It should be clear that the associativity and equivariance formulas in
the definition of an operad merely codify the relations that do in fact hold

in EX The notion of an operad extracts the essential information contained

_in the notion of 2 PROP, as defined by Adams and MacLane [16] and topo-

logized by Boardman and Vogt [ 8 ].
Our recognition theorem, roughly stated, has the following form.
Theorem 1‘3‘ There exist Z-free operads Cn’ 1 £ n < w, such that
every n~-fold loop space is a fn—space and every connected Cn—space has

the weak homotopy type of an n-fold loop space.



In the cases n=4 and n= 0, the second statement will be; valid with
;i and ;oo replaced by any A, operad and Eoo operad, as defined in
section 3,

Perhaps some plausibility arguments should be given, Let C be any
operad, and let (X,8)e CIT] For ce C(Z), Gz(c):‘X2 - X defines a
product on X, If ;’ (1) is connected, then * is a two-sided homotopy identity
for 8(c); indeed, the requisite homotopies are obtained by applying 8, toany
paths in g(i) comnecting 1 to vy(c;i*,1) and 1 to v(cs1, ¥). Similarly, if
¢(3) is connected, then 6(c) is homotopy associative since v(cs t,c) can be
connected to y(c;c,1), If f(Z) is connected, then 6(c) is homotopic to
8(ct), where Te Z)Z is the transposition, and therefore 8(c) is homotopy com-
mutative. It should be clear that higher connectivity on the spaces - ¢ () will
determine higher coherence homotopies, Stasheff's theory of Aoo—spaces [28]
states essentially that an H-space X is of the homotopy type of a loop space
(i.e., has a classifying space) if and only if it has all possible higher coherence
homotopies for associativity, It is obvious that if X can be de-luoped twice,
then its product must be homotopy commutative, Thus higher coherence
homotopies for commutativity ought to play a role in determining precisely
how many times X can be de-looped, Fortunately, the homotopies implicitly
asserted to exist in the statement that a suitably higher connected operad acts

on a space will play no explicit role in any of our work.

i _2)..
‘ j) i f Theorem 1.3 will be (n
The spaces [ (J) in the operads o

OI]I)E(:l:ed. Illlls 1f n= 0o it is pla.us ble that ther should be no ObstruC’
C 3 Ky 1 1 e

. . .
.
tions to the constr uction Qf C13-351£91n~g SPB.CeS Of 3.11 QIdeIS. In t]:le cases

b ]..( )
n < oo the lllghe]’.‘ IIOI'IIOL'OPICS g'llaIa.Ilteed by the COI}IleCtlvlty Of the g ]
1 <

, 1y part of the StOI‘y. It is not true that any C space, where C
are on

18 (Il 2) CDIuleCted, 18 Of the }101110‘:0?9 type of ann fold 1OOP space' Ih.LlS
.
Theorem 1.3 is8 COI‘lSldeIably deepeI m th.ese cases than in t]ﬁle degeIleIa.te
e 1> where (:()I!lIIll.]ta.‘:lVlty plays no r()le or 1n the 11[Illt case n = .
i ( ) 1
ca

a space X is
Since the notion of an action & of an operad C on P

basic to 3.11 Of our WOIk it I'Ila-y be h.E].pr.l to exPllCltly r fOII'I'lllla.te this notion
1 3 e

- 3Ye
m j : j @3)
n terms of the adjoints C(J) x X}~ X of the maps Gj. C(J) éX H
in te
i y 8.
these adjoints will also be denoted b j

. . . by
i nd es and is determined
Lemma i.4. An action 8: ( 5X determin

j j s % - X}, such that
maps Sj: C(J) Xxx >X%X, 520 (Go. Y,

i i =3j and u denotes
(a) The following diagrams are commutative, where ig=1

the evident shuffle homeomorphism?

! yx1 >CG <X e,
e 18] X ... X8

L) X EGOXX Fli) XX 3
]

i 1 K 209 % .

N
A

LOXCG XK XX ) XK

(b). 91(1;x)=x for xe X, and



(c) Oj(co‘; y) = Gj(c; oy) for ce 5(]), o Ej, and ye XJ,
A morphism f:(X,G)*(X',S') in C[T] isamap £ X > X' in J such

that the following diagrams commute:

. 6.
¢ xx) —d x
tx e ;
Y
C(j) X (X')J ““"“‘J—"—» X!

We complete this section by showing that, for any operad C , the

category of (—spaces is closed uniler several standard topological con-

structions and by discussing the product on C—spaces. These results will

yield properties of the Dyer-Lashof homology operations in the second paper

of this series and will be used in the third paper of this series to study such

spaces as F/0O and F/Top. The proofs of the following four lemmas are

completely elementary and will be omitted,

Lemma 1.5. Let

(X,8) ¢ C [ T and 1et (Y,A) be an NDR-pair
(Y, A)

in . Let X € :r denote the space of maps (Y, A) =~ (X, %), with

(non-degenerate) base-point the trivial map. Then (X(Y’A), G(Y’ A)) e C[T1,
where Gj(Y’A) : (r(j) X (X(Y’A))J - X(Y’A) is defined pointwise:

(Y,4), . Vo) =
ej (c; fi,---’fj)(Y) = Gj(C; fi(Y):'--:fj(Y))-
. . - (1, 31)
In particular, (2X,26) and (PX,P8) are in C [T, where 0o =8

and
Pg = Q(I’ 0)

» and the inclusion i:QX - PX and end-point projection p: PX - X.

are (~morphisms_

‘ l C 8 e tIiv a.l Ina.p s if
emina 1 6 %,0) e where ea h . 18 th trivi
Lem LA ( 2 ) [ J 3 ko b

* X +% in J are
(X,8) ¢ ([T], then the unique maps *—~X and
C-morphisms.

1 ‘}7 et f:(X,8)—~ (B,80 and Y,8 -’Be")be
g‘(:‘) (:
:(:) (1“)
emma 1.0. 54

Let X X Y C XX Y denote th.e flbre(i PIOdllCt

E -morphisms.

B .
8') is the
{(x,v)] £x) = g(y)} of f and g in 7. Then (XX Y,0X

flbIed pzoduct Of f a-n'd g mn the CategorS' C [j ]J “h‘eI e

(2] 0r).: ( ] ‘X X > X X Y is deflned COOIdlIla-tEWlse-

¥

: = RSP T L X (PSSR 9 ) B
(X781 (c1 ()77 - - b 7)) = (B5le5%) AMCHCIEARPSs

and
(XxY, 686X 8') is the product of (%,8)

In particular, with B =%,

8 m the cate ory [ i l a.Il.d the dia ()113.1 map A : X - X X )( 18
( 3 ) g C‘ 4 g -

Y

thus a c IIlOIph.lSI'Il fOI any (}:} E) € Cl j ]"

-~
e \'2 i i ( ’ can be
Th revious lemmas imply that any morphlsm in [ ]
P

s
replaced by a fibration in GCLJL

Lemma . 3 -> ' e (a] his ‘ ’ l. Defme
18. Let f.(X,G) (Y,G) be a mu rplmm C

g’
€ y lettin fibred product of { and
X,9 by letti X =X X (YY) be the fi

= \ﬁf“} for we Y and b le“j!] - < . h
where \'4 (o] y g 9 g X e') Then the
? .

[ ~ ~ 2
]]l(:h.lSlC)ll l.'X - X the :‘el:ra,cl:u)n I"X -+ X a_[].d I:he jlb ration '.X > Y are
) . ]

ith w = f(x), r{x,w) = x,
all gﬂmorphisms, where i(x) = (x, Wf(x)) with f(x)(t) f(x), »(x

and fx,w) = w(l).
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Finally, we consider the product on a C:-space. The following lemma
is the only place in our theory where a less stringent (and mor;! complicated)
notion of . C-morphism would be of any service. Such a notion is crucial to |
Boardman and Vogt's‘work precisely because the H-space structure on a
g-space plays a central role in their theory. In contrast, our entiré
geometr‘ic theor} could perfectly well be developed without ever explicitly

mentioning the product on C;spaces. The produét is only one small part
of thé structure carried by an n-fold loop space, and there is no logical
reason for it to play a privileged role.
Lemma 1.9. Let (X,8) ¢ C(T) and let f = e(c):X'2 -+ X for some
fixed c € C(z). Let ¢2= ¢ and ¢j = #(1 x¢j_1.):xj - X for j 2.
i) ¥ C(J) is connected and d ¢ & (j), then 6((‘1):}(j -~ X is homci;opic

to the iterated product ¢j .
(i) If C(J) is Zj—free and 'sf’(Zj) is contractible, then the following

diagram is Ej-e quivariantly homotopy commutative:

X (6 x 8),
) x (% x ) —d s xxX

1xg g

C(j)XXj J > X

Proof. (i .= 8(c,), where ¢_=c¢ and c, = si,c. for j>2.
(1) #;=6(c) 2 5= vlestieg ) j

Any path in ;(3) connecting d to cj provides the desired homotopy.

(ii) Define maps fand g from {(j) to C(Zj) by £(d) = v(d;¢’) and

9

g(d) = y(c; 4, d)v, where v e EZj gives the evident shuffle map

j J ¢ < 2j .
(X XXy >X'XX" on X“. An examination of the definitions shows that

if de é‘(_]) and z e XZJ; then

8,(1x #)(d, z) = 8,;((d),z) and p’(exe)j(d, =) = 0,,(g(d), 2).

~

¥ 3, is d i - i ‘
;1 embedded in sz by o=+ o{(2,...,2), in the notation of Definition

“1.1(c), then f and ~equivari .
) g are ZjAequwanan’c. Our hypotheses guarantee that

f and g are Ej—equiva.riantly homotopic, and the result follows.



2. Operads and monads

In this section, we show that an operad C determines a simpler mathe-
matical structure, namely a monad, and that C-—spaces can be replaced by
algebras over the derived monad, We shall also give a preliminary state-
ment of the approximation theorem. The present reformulation of the notion
of C -space will lead to a simple categorical construction of classﬁﬁng
spaces for (Tn—spaces in section 9, We first recall the requisite cate~

gorical definitions.

Definiti i .

inition 2.4, A monad (C,u,7n) ina category :}~ consists of a
covari : 7 T

(cov rlan’g) functor C: ] - J together with natural transformations of

functo ;G2 -
rs p:C C and 7:1 ~ C such that the following diagrams are com-

mutative for all X e j, :

Cn(X) 2 cx
cX cPxe—MCX) oy 4 oB3x B(CX) c?x
X
p{X) Cr(X) r(X)
cx cix — &) oy

A morphi .
rphism ¢ I(C,u,m) = (CL ', n') of monads in '\T is a natural transforma-

tion of fu :
nctors §:C — C' such that the following diagrams are commutative

for all Xej:

11

2
ccx —4—>CiCxX

B B!

X and

.m ul
o L BN —_—
&x c'X CX c'X

Heére squares (and higher jterates) of natural transformations {2 C —C' are

defined by means of the commutative diagrams

c?x =i > CC'X
\ 2
“’\ v

1
cICX ___..__CE..U'..’.__—--> (C’)ZX

¥

Thus a monad (C,u,n) is, roughly, a Umonoid in the functor category"
with multiplication p andunit 7, and a morphism of monads is a morphism

0% "monoids". Following MacLane, we prefer the term "monad" to the more

usual term "triple". operationally, in our theory, the term monad is par-

ticularly apt; the use of monads allows us to replace actions by operads, which

‘are sequences of maps, by monadic algebra structure maps, which are single

maps.
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Definition 2.2. An algebra (X, £) over a monad (C,p, 1) is an object

-~ .
Xe J together with 2 map £;CX =+ X in T such that the following diagrams

are commutative:

|

X —————=> CX and cex —E  ex
3 Ct - £
cx—0F L%

A morphism f:(X, ) =~ (X', £') of C-algebras is a map- f1X = X' in 7 such

that the following diagram is commutative:

Ci

cx—Ct L cxo

£ ' I3

X X1

The category of C-algebras and their morphisms will be denoted by C[ ] ]

We now construct a functor from the ‘category of operads to the category
N 5 :
of monads in J , where 7 is our category of based spaces. In order to

handle base-points, we require some preliminary notation.

N i .
Notations 2.3. Let C be an operad. Define maps ot C G~ £(-1),

0<i<j = s . j
< j» by the formula o= v(c; s‘i) for ce c(_]), where

A

i jetei i j-1-i
si-;xmxi e C(1) x T(o)x Cry-t-i,
Thus, in the endomorphism operadof X e¢ ] , (o.f)(y) = f(s y) for £ %) - x
) i M :
4 . .
and € XJ , h . J-i J . .
y where Si'X -+ X" is defined by

s = %
i(xi""’xj-i) (Xi’ CeELERE X,

-4

13

Construction 2.4. Let C be an operad. Construct the monad (C,u,m)

associated to C as follows. For X ¢ T , let & denote the equivalence

relation on the disjoint union E C(J) x X3 generated by
N _ i>0

j-4
(1)) (oje,y) ® (cys,y) for ce (), 02i<j, and ye x37% and

(ii) (co,y) = (c,oy) for ce T(j), oe Zj, and vy e xJ,

k

2 C(J) x X3 in CX and give FkCX the quotient topology. Observe that
i=0 ‘

. , ' e 3 /(s ’ ;
Define CX to be the set j.>§;) cG) % X/(~) Let FkCX denote the image of

F CX is then a closed subspace of F

k-1 kCX and give CX the topology of

the union of the FkCX. FOCX is a single point and is to be faken as the base-
point of CX., If ce C{j) and ye Xj, let [c,y] denote the image of (c,y)
in CX. Foramap £:X =X' in 7, define Cf:CX—> CX' by

Cflcsy] = [c;fj(y)']. Define natural maps p.:CZX» CX and n:X =~ CX by the
form;llas

(151)  pleldp,y,bnnnldu = Tvlerdy, s ddiyysens ¥y )

. Js
for ce (k) ds e C (JS), and y_ e X~ ; and

‘ (iv) n{x) = [1,x] for xe X.

The associativity and equivariance formulas of Definition 1.1 imply both that
i is well-defined and that p satisfies the monad identity pep = p-Cp ; the
unit formulas of Definition 1.4 imply that p.Cn=4=pn. If (; -~ ¢! is
a morphism of operads, construct the associated morphism of monads, also
denoted §, by letting W:CX - C'X be the map defined by

Ufe, y] = [¢j(c), y] for c e (:(J) and ye Xj.
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The associatioh of monads and morphisms of monads to operads and
» morphisms of operads thus constructed is clearly a functor. Of course, to
validate the construction, we should verify that the spaces CX are indeed
in T for Xe T . We shall do this and shall examine the topology of the CX
in the following proposition. We first fix notations for certain spaces, which

are usually referred to in the literature as Yequivariant half-smash products. ™

Notations 2. 5. Let W ell and let w act from the right on W, where 7w is
any subgroup of EJ.. Let Xe j and observe that the left action of Ej on Xj
induces a left action of w on the j-fold smash product X[J] Let e[W,w,¥X]
denote the quotient space W X X[J]/(N), where the equivalence relation =~ is
defined by (w, *) = (w', %) for w,w'e W and (wo,y)~ (w, oy) Ifor we W,

(51

ge m, and ye X,

The spaces CX are built up by successive cofibrations from the spaces

e[C’(j),Ej, X]. Precisely, we have the following result.

Proposition 2. 6. Let (; be an operad and let X ¢ T Then

(i) (chx,Fj_icx) is an NDR-pair for j> 14, and CX ¢ J ;
(ii) chx/Fj_icx is homeomorphic to e[  (j), Zj, X7;
(i) C:T~TJ isa homotopy and limit preserving functor.

Proof. It is immediate from the definitions that

FCX -F. CX= C(j -yl
SO - F4 0K = Ll k-

15

It follows easily that each FjCX is Hausdorff, hence, by [30, 2.6], com-
pactly generated. Since (X,*) is an NDR-pair by assumption, there is a
representation (hj’ uj) of (X,%) asa Ej-—equivariant NDR-pair by

Lernma A.4. Define Ejzl X F.CX > F.CX and (TJ.:FJ_CX—» I by the formulas

ITj(t,z) =z and ﬁ'j(z) =0 for ze Fj-i CX, and
gj(t,z)"—“ [c,hj(t,y)] and T{j(z) = uj(y) for z=1{c,y], ce {:(J) and y e(X—*)j.
Then (’ﬁj,ﬁj) represent (FJ.CX, Fj_icx) as an NDR-pair. By [20,9.2 and 9.4],
cX ¢ U and each (CX,FJ.CX) is an NDR-pair. Therefore CX ¢ j . Part (ii)
is now obvious. For (iii), ii. ht: X - X' is a homotopy, then Cht: CX - CX!
is a homotopy, and it is evident that C preserves limits on directed sys-

. * . ‘—/
tems of inclusions in J .

We shall see in a moment that the CX are C~spac es, and our approxi-

mation theorem can be stated as follows.

Theorem 2.7. For the operads Cn of the recognition principle, there

n .
is a natural map of Cn—spaces ozn: CnX - os"x , 1<n <o, and a isa

" weak homotopy equivalence if X is connected.

In fact, QnSn defines a monad in T, and the natural transformations
@ : Cr1 - "™ will be morphisms of monads. This fact will provide the
essential link connecting the approximation theorem to the recognition principle.
We now investigate the ‘relaticiznship between { -spaces and C-algebras,

where C 1is the monad associated to the operad ( .
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Proposition 2.8, Let C be an operad and let C be its associated
monad. Then there is a oné—tb—one correspondence between (J -actions
0: €~ EX and C-algebra structure maps £:CX - X defined by letting
6 correspond to £ if and only if the following diagrams are commutative

for all j: -

T,

Cl)x % i scx

er \ 3
X

(where m is the evident composite £ (j) X xd - FjCX - CX). Moreover,
this correspondence defines an isomorphism between the categox:y of

c ~-spaces and the category of C~algebras.

Proof. By the definition of the spaces CX, a map £:CX —~ X

determines and is determined (via the stated diagrams) by a sequence of
maps Sj: ¢ (5) x %) =X such that Qj_l(o'ic, y) = ‘ej(c, siy) and

Bj(cm y) =18

j(c,0'y). Since o.c = y(c;si), the maps OJ. given by a € -action

8 do satisfy these formulas. For a given map £:CX - X, the relation
E.pn=£-CE ‘is equivalent to the commutativity of the diagrams given in
Lemma 1.4(2) for the corresponding maps Gj, and the relation £n =1 is
equivalent to Bi(i,x) =x for all xe X. Thus a map £:CX =+X isa
C-algebra structure map if and only if the corresponding maps ej define an
action of ¢ on X. The last statement follows fromthe observation that if
(X, &) and (X',£') are C-algebras and if f: X - X is a map in ‘,_T , then

£-£ = £'.Cf if and only if fo, = er(ix ) for all j.

17

Henceforward, we shal} use the letter 8 both for (-actions and for
the corresponding C-algebra structure maps. Thus the maps -

ej: C(J) X XJ > X which define a £ -action should now be thought of as

‘

colmponents' of the single map 6:CX — X,

" We should observe that the previous proposition implies that €X is
the free C -space génerated by the space X, in view of the following

standard lemma in category theory.

Lémma 2.9. Let (C,p,7) be a monad in a category JJ . Then
(€X,p) e [ J 1 for X ¢ J , and there is a natural isomorphism
:Hom X,Y) - Hom CX,un), (Y,
4:Fiom .. (%, 7) o (S (7. 8)

defined by - §(f) = £ Cf ; (}J~1 is given by q)-i(g) = g.m.

The preceding lemma states that the forgetful functor U:C[J ]~ T
defined by U(Y,£) =Y and the free functor Q& J - C[J] defined by
QX = (CX,p) are adjoint. We shall later need the following converse re-

sult, which is also a standard and elementary categorical observation.

Lemma 2.410. Let Q):Hom,j (X,UY) » Hom _ (QX,Y) be an adjunction

e
between functors U: .Z - j and Q: .7’—*7\9 . For Xe 'I, define
= @'1(1QX):X -+ UQX and define
W= U¢(1UQX): UQUQOX -~ UQX .
Then (UQ,p,n) is a monadin J . For Ye x , define
£ = U(})(iUY):‘UQUY -+ UY.

Then (UY,&)e UQ[J ], and £: UQU = U is a natural transformation of
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functors zo -J . Thus there is a well-defined functor V: f"’ uQ[J]

givenby VY = (Y, £) on objects and Vg = Ug on morphisms.

Of course, V is not an isomorphism of categories in general. How-
ever, if the adjunction ¢ is derived as in Lemma 2.9 from a monad C ,

with o‘f = C[t}’], then it is evident that the monads UQ and C are the

same and that V is the identity functor.

1

3. A and E operads
0 (o)

We describe certain special types of operads here and show that the
constr}zctions of the previous section include the James construction and
the infin%te symmetric product. Most important, we obtain some easy -
technical rgsults that will allow us to transfer the recognition principle
and approximation theorem from the particular operads Ci and Cm to
arbitrary Aoo and Eoo operads, respectively.

We first define discrete operads M and 7L such that an m -space is
precisely a topological monoid and an n—space is precisely a commutative

topological monoid.

Definition 3.1. (i) Define M. (j) = Z‘.j for j 21, and let e denote the /;M),
(W% 1~
eV
. . - 9 . . .
identity element of Zj’ ey 1. Let I (0) contain the single element e : W

Define y{e ;e. ,...,e. )=e,, j=3j_,» and extend the domain of definition of '
k 3y Jk ] s '

XS, X...X3,

Yy to the entire set Z
I I

Xk by the equivariance formulas of

Definition 1. 1(c). With these data, the #.(j) constitute a discrete operad M.

(ii) Define 71(j) = {fj} , a single point. Let 1 =1£,, let zj act trivially

11

on Y.(j), and define y(f;f, ,...,f, )=f, j=2 j_. Withthese data, the
Ky o s

“TL(j) constitute a discrete operad n.
Observe that if C' is any operad with each ( {j) non-empty, then the
unique functions (7 (j) ~ VL) define a morphism of operads c-Nn,

hence any ﬂ—space is a C—-space.
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A topological monoid G in T (with identity element *) determines

and is determined by the actio;'x g: M £G defined by letting Sj(ej): Grj -G
be the iterated produ;:t and extending Bj to all of Zj by equivariance, The
permutations in m serve only to record the possibility of changing the order
of factors in forming products in a topological monoid. Clearly a topological
monoid G is commutative if and only if the corresponding action

e;M—» éG factors through 72,

For X e T , the monoids MX and NX are called the James construc-
tion and the infinite symmetric product on X; it should be observed that the
successive quotient spaces e[ M. (), Ej, X] and €] ‘ﬂ,(j),Ej,X] are homeo~
morphic to the j-fold smash product X[J] and to the orbit space X[j]/Zj,
respectively. The arguments above and the results of the previous section

yield the following proposition.

Proposition 3.2. The categories m [T 1=MT ] and N[T1=NT]

are isomorphic to the categories of topological monoids and of commutative
r~

topological monoids, respectively. For X e/ , MX and NX are the free

topological monoid and the free commutative topological monoid generated

by the space X, subjectto the relation * = 1{,

We shall only-be interested in operads which are augmented over either
WL or ‘ﬂ,, in a sense which we now make precise. Let C be any operad,

and let -n'OC(j) denote the set of path components of (J(j). Define

21

63: C(J) - f(J) by 6J.(c) = [c], where [c] denotes the path component

containing the point c¢. The data for c uniquely determine data for ‘lToC

such that woﬁ is a discrete operad and § is a morphism of operads.

Clearly 1}0 define’s a functor from the category of operads to the category

_of discrete operads. If 19 is any discrete operad and if £: C - 13 is a

Trog :Tro(: - 'n'OB = % With these notations, we make the following definition.

- Definition 3.3. An operad over a discrete operad I© is an operad C

together with a morphism of operads §£: C —~ K such that 1TOE. :TrOC - 1'9
is an isomorphism of operads. .£ is.called the augmentation of ¢ . A morph-
. .
——————— T
ism :(( ,¢) >~ (€', g') of operads over Sis a morphism of operads

g €' suchthat gy=¢ :(~>/G.

We shall say that an operad C’ is locally n-connected if each { (j) is
n-connected. Clearly an operad C can be augmented over 7’?. if and only if
it is locally connected, and : then admits a unique augmentation, An operad
C can be augmented over v\ if and only if TrOC (i) is isomorphic to ZJ. ,
and an augmentation of (: is then é. suitably coherent choice of isomorphisms.

We shall say that a morphism of operads {: & = ' is alocal
—

equivalence, or a local Z-equivalence, if each n,bj: CG) - ¢€'(j) is a homo-
A AT e s s ————

topy equivalence, or a Ej-equivariant ‘homotopy equivalence (that is, the

requisite homotopies are required to be Zj-equivariant). Of course, these
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are not equivalence relations since there need be no inverse
morphism of operads C' - C. The following proposition will be
essential in passing from one operad over 7Z or I to another.

Proposition 3.,4. Let y:C + C' be a morphism of operads

over /] or [l. Assume either that ¥ is a local L-equivalence or
that ¥ is a local equivalence and ¢ and C' are I-free. Then the
associated maps y:CX + C'X are weak homotopy equivalences for
all connected spaces X.

Proof. Since Y:CX + C'X is an H-map between connected
H-spaces, it suffices to prove that ¢ induces an isomorphism on
Aintegral homology. By Propbsition 2.6 and the five lemma, this

* . ° d b
will hold if the maps e[C(]),Zj,X] - e[C'(j),Zj,x] determined by
¥. induce isomorphisms on homology. These maps are homotopy

J :
equivalences if wj is a Xj—equivariant homotopy equivalence.
0305 eeqyx p x31 4s
3
clearly a covering map and so determines a spectral sequence

1f C(j) is Iy-free, then the map C(j)x X

. | . 31
converging from E2=H*(Zj;H*(C(3)x x-31Y) to H*(C(j)xzjx i)
o j - equi-
Thus if C(j) and C'(j) are Ej free and wj isza homotopy eq
valence, then wj induces an isomorphism on E”, hence on
H, (C(j)x ij[J]), hence on H*(e[C(j),Ej,X]).
We now define and discuss A_ and E_ operads and spaces.

Definition 3.5. (i) An A_ operad is a I-free operad over m

such that €:C + 7L is a local I-equivalence. An A space (X,8)
is a C-space over any A_ operad C.
(ii) An E_ operad is a I-free operad over ]l such that e:C + nis

s ———————

a local equivalénce. An E_ space, or hgggtopy everything spaE?,

(X,8) is a C-space over any E_ operad C.
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We have not defined and shall not need any notion of an Aoo or Eoo
morphism between Aoo or Eoo spaces over different operads.

An operad ¢ isan Eco operad if and only if each ((j) is Ej—free
anc% cox;tractible. Thus the orbit space C(j)/Zj is a classifying space
f‘or Zj; its homology will give rise to the Dyer-Lashof operations of; the
homology of an Eoo space. We have required an E00 operad to be Z-free

in order to have this interpretation of the spaces g:(j)/Zj and in order to

have that CX is weakly homotopy equivalent to a®s®x for any E
%W Y
operad &' and connected space X, Note in particular that we have chosen
N
not to regard n as an Eoo operad, although a connected n-space is evi-

dently an infinite loop space. The following amusing result shows that,

for non-triviality, we must not assume £ to be a local Z-equivalence in the

definition of an Eco operad,

Proposition 3.6, Let C be an operad over /1 such that £: C *77,

is a local Z-equivalence. Let (X,8) be a C-—space, where X is a con-
nected space. Then X is weakly homotopy equivalent to X K('rrn(X), n).
n>1

Proof. We have the folloWing commutative diagrams:

X . cx and X— X

0 i ¢
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By Proposition 3.4, ¢ is a weak homotopy equivalence. It is well-known and
easy to prove that m: T (X) > Tr*(NX) = 'IV-I*(X) may be taken as the definition
of the Hurewicz homomorphism h., Thus 1 = G*n* = (Q* E*—i)h, and h is a
monomorphism onto a direct summand of AHJ*(X) By the proof of

[18, Theorem 24. 5], this is precisely enough to imply the conclusion.

An operad ¢ is an Ac;o operad if and only if each T\'OC(j) is iso-
morphic to Ej and each component of { (j)° is contractible. In particular,
mis itself an Aoo operad. In contrast to the preceding result, we have

the following observation concerning operads over ¢71.

Lemma 3.7. Any operad C over 7)?_, is Z-free and any local equivalence

U C -+ (' between ~ope:rads over m is a local Z-equivalence.

Proof. Each ve EJ. must act on  {; {j) by permuting components,
carrying Ej_ 1—('z") homeomorphically onto EJTi(T ) for Te Ej. For the
second statement, we may as.sume that &' =€ (redefining g by this
equation if necessary), and then 415. must restrict to a homotopy equivalence
Ej-i(ej) - (531)-1(ej). The resulting homotopies can be transf‘.erred by equi~
variance to the remaining components of  (j) and §'(j), and the result
follows.

In the applications, it is essential that our recognition theorem apply,
for n=1 and n= co, to a_Lrbitrary Aoo and Eoo operads. However, there
need be-no morphism of operads between two AOO or two Eoo operads,
Fortunately, all tha:t is needed to circumvent this difficulty is the observation

that the category of operads has products.
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Definition 3.8, Let C and C' be operads. Define an operad

¢ xE' byletting (EXENG) = € (G X ') and giving ¢'X{ the follow-

- ing data:_

(a) - (yXyMeXehd Xdj,...,d Xd)=v(c;d,...,q )Xy (c"sd],....4})
for cXc'e ¢ (k) XE' (k) and d_X ae G X EG)
) t1=1xte CU)XL'(1); and

(¢) (eXco=coXc'o for cXc'e () XE'(§) and o EJ_ .

Then C‘ Xc' is the product of C and E' in the category of operads. The
monad associated to C X C' will be denoted C X C' (by abuse qf notation,
since we do not assert that C X C' is the product of C and C' in the cate-

gory of monads in j‘ ).

The product of an operad over /5 and an operad over /9' is evidently
-~ ! - . .
an operad over QX [9'. Since FN XM # #7) . the above product is inappro--
priate for the study of operads over Wi . Observe that the category of

operads has fibred products as well as products.

Definition 3.9. Let ((: ,£) and (G, &) be operads over ?7’2 . Define

an operad (CVC‘: eVe') over m by letting (V&' be the fibred product of &
and g!' inthe category of operads and letting £V g’ be defined by com-

mutativity of the following diagram:
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¢ £ >M

Explicitly, V(7 is the sub operad of { X €’ such that (CV C)§) is the
disjoint union of the spaces €j_1(a‘) X (E'j)_i(o‘) for o e Zj. Then
(CVC . eye’) is the product of ((;, € ) and (C/, g’) inthe category of

operads over 7M. . The monad associated to CVC/ will be denoted by C VC'.

In conjunction with Proposition 3. 4, the following result contains all

the information about changes of operads that is required for our theory.

7/
Proposition 3.10. (i) Let C be an A00 operad and let C be any

’
operad over M. . Then the projection ™, C'VCI-’- ¢ is a local T-equivalence.

4
(ii) Let (:‘ be an E00 operad and let C be any Z-free operad. Then the pro-

jection C T AR o is a local equivalence between I-free operads.
Proof. (i‘) follows from Lemma 3,7 since a;l(o) is contractible
for o € Zj and therefore wz:agl(c) x (e%)—l(c) + (ea)-l(o) is a
homotopy equivalence. Part (ii) is immediate from the definitions,
Since (il) depends only on the local contractibility (and not
on the L~freeness) of C, the proof of our recognition principle
for E_ spaces will actually apply to C-spaces over any locally

contractible operad C.
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' Corollary 3.11. Let & be an E_ operad. Then w,: Exm -m
is a local Z-equivalence and therefore ¢ X WL is an A, operad. If

(X,G)'is a C -space, then (X,Q'n'i) is a C X P -space, m C xm»C.

Thus every Eoo space is an Aoo space.

Since Aoo spaces are of interest solely inthe study of first loop spaces,
where commutativity plays no role, a simpler theory of Aco spaces can be
obtained by throwing out the permutations by means of the following definition
and proposition. We have chosen to describe AOo spaces in terms of operads
in order toi avoid further special arguments, and no use shall be made of the

theory sketched below.

Definition 3.12. A non-Z operad B isa sequence of spaces #3(j) e w
for j 20, with J3(0) = *, together with the data (a) and (b) in the definition
of an operad. An operad C determines an underlying non-Z operad 'U.c by
neglect of permutations. An action of a non-% operad f3 on a space X ¢ T
is a morphism of non-Z operads 6: ?3 —>QL€ <7 and, as [j] denotes the
category of ¢3-spaces (X,8). By omission of the equivariance relation (ii)
in construction 2.4, a non-Z operéd 72 determines an associated monad B
such that the categories 4¢3 [J] and B[ J ] are isomorphic. The notion of
a non-Z operad over a dis¢rete non-Z operad is defined by analogy with
Definition 3.3. The product ?3 X 7%’ of non-3 operads /3 and 737 is defined

by analogy with Definition 3. 8.
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Let ({ denote the sub non-3 operad of 071 such that Q(J) = {ej}. -
The categories Q, [T]1 and M [J ] are evidently isomorphic. A non-Z
operad over a clearly admits a unique augmentation. A non-Z operad

determines an operad 7 suchthat UZB = B by letting Ej act

“trivially on 33(j). In particular, 0. is isomorphic to L.

Proposition 3.13. Let ({,g ) be an operad over TN, and define

w( C’ Ly E )= &‘1( 0.); then w(( ,&) is a non-Z operad over Q and the
monads associated to C and to W(C ,&) are isomorphic. Let 73 bea
non-Z operad over a, and define w'173 = (ZR xX-m., Trz),; then w"i(ﬁ.)

is an operad over 7 and the ;nonads associated to Za and to W-i( )
are isomorphic. Moreover, w and w’1 are the object maps of an equivalence
between the categories of oper;ds over #M, and of non-= operads over Q, .

Proof. The first two statements follow immediately from the definitions.

- : . -1 .
For the last statement, it is obvious how to define w and w on morphisms,

i i

and we must show that ww™* and w™ "w are naturally isomorphic to the
respective identity functors. Now WW-i( ”)= BxR is eviden’cl} naturally
isomorphic to §3 , and a natural isomorphism

vi(C L e)=wilwl(l ,e) = (e (@) x M, ™)
can be defined by vj(c) = (CO'—i,U') fpr ce ej—i(cr) and ¢e Zj; v_1 is then

given by vgi(c, ¢) =co for ce Ej_i(ej) and o€ Zj.
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It follows that the notion of an A00 operad is equivalent to the notion
of a locally contractible nén-~Z operad over a/ , and the notion of an A

space is equivalent to the notion of a ﬁ—space over such a non-Z operad 1.

. Remark 3,14, The notion of A_, space originally defined by Stasheff [28]

is included in our notion., Stasheff constructs certain spaces K, for j> 2;
, . J

with Ko =% and K1 = 4, these Kj can be verified to admit structure maps

Y so as to form a locally contractible non- = operad K such that an A

space in Stasheff's sense is precisely a ?f-space.



4. The little cubes operads ?:n

We define the Z-free opérads and discuss the topology of the
n polog

spaces En(j) in this section. I am indebted to M. Boardman for explain-

ing to me the key result,thearem4.8 . The definition of the cn (in the con-

text of PROP's) is due to Boardman and Vogt [ 8 ].

Definition 4.1. Let 1" denote the unit n-cube and let 7% denote its
interior. An (open) little n-cube is a linear embedding f of 7 in .]'n, with
parallel axes; thus f= fi X... X fn where fi: J -+ J is a linear function,

= - i <% <y < 1. Defi i be th t of th
fi(t) (yi xi’)t +x with 0<x <y, < 1 efine (:‘n(_}) to be the set of those

j-tuples <c .,c_> of little n-cubes such that the images of the c, are

R

pairwise disjoint. Let J7® denote the disjoint union of j copies of .]'n,

regard <c, ,..., cJ.> as a map I > 3", and topologize C’n(j) as a subspace

17"
of the space of all continuous functions It - 10 Write &n(O) = <>, and
regard <> as the unique "embedding" of the empty set in 7. The requisite
data are defined by
ji n jk n n

(a) y(c;di,...,dk) = Co(di'*‘ +dk). J +...+ T =7

for c ¢ Cn(k) and d_ e fn(js), where + denotes disjoint union;
B 1t {:n(i) is the identity function; and

c <c ..,c.>0 = <c yeesC 44> for oe X, .
() < j o(1) o(3) j

i
By our functional interpretation of <>, (2) implies that

(a) cr.1< c

vee,C.>=<C,...,C,,C, ceeyC.> 0<i<j.
1’ j 170 Gy Gy €7 P
The associativity,, unitary, and equivariance formulas required of an operad

are trivial to verify, and the action of Z‘j on C‘n(j) is free in view of the

\

b
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requirement that the component little cubes of é point of C (i) have disjoint
n
images. Define a morphis £ . -
g phism of operads o Cn Cn+1 by

(e) o .<c

se..5C, > = <g
nj 1 j

1><1,....,o::,><1> , 123 -7,
J
Eadch o ;is aninclusion, and C’m(j) denotes the space 1im Cn(j)’ with the

B

tjopolog'y of the union. Clearly C,co inherits a structure of Z -free operad

from the C‘n.

z

The topology we have given the Cn(j) is convenient for continuity proofs
and will be needed in our study of the Dyer-Lashof operations on F in the
third paper of this series. The following more concrete description of this

topology is more convenient for analyzing the homotopy type of the spaces C ().
n

Lemma 4.2. Let c=<c,,... ’Cj> € Cn(J) Observe that c¢ determines

and is determined by the point c(a, B) ¢ Jan defined by

o) = (e (@), (B, e (o), e (B,
where « = (:1}-,,;1—1-) e 7% and B = (%,

Let ’U, denote the topology on (n(j) obtained by so regarding tn(j) as a sub-

...,%)e .

set of J_an and let GV denote the topology on C’n(j) defined in Definition 4.1.
Then u = ‘V .

Proof. Let W(C,U) denote the v-open set consisting of those ¢ such
that ¢(C) C U, where C is compact in jJn and U is open in 7. Let @
(resp. ﬁr) denote the point o (resp. B) in the r-th domain cube J'I; - j.]'n.

If Ur and Vr are open subsets of Jn, 1 <r<j, then

T

C'n(j) nU, XV, x...x Uj X vj) = Qi Wle ,U) NW(E_,V).
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It follows that any ‘LL -open set is 6~V«open. Conversely, consider
W(C,U). We may assume that U is the image of an open little cube g

and that C i; contained in a single domain cube JI; . Let C'C J: be the
image of the smallest closed little cube f containing C (f may be
degenerate; that is, some of its intervals may be point_s)., Then, by
linearity, W(C,U) = W(C',U). Clearly c = <Cyyihes 5 >e¢ W(C',U) if and
only if crf(O) > g(0) and crf(i) < g(1), with the inequalities interpreted
coordinate-wise and with 0 = (0,...,0) and 1= (4,...,1} in In‘. It is now

easy to verify that W(C',U) is M-open.

Using this lemma, we can relate the spaces Cn(j) to the configuration
spaces of R". We first review some of the results of Fadell and Neuwirth [12]

on configuration spaces.

Definition 4.3. Let M be an n-dimensional manifolil. Define the j-th
configuration space F(M;j) of M .by
F(M,_])= {<xi,...,xj>[xre M, xr+xsif r+s}CMj,
with the subspace topology. F(M;j) is a jn-dimensional manifold and
F(M;1) = M. Let Zj operate on F(M;j) by

< Lax > =< R e
T 0T ey ()

This operation is free, and B(M;j) denotes the orbit space F(M; j)/Zj .
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- Fadell and Neuwirth have proven the following theorem.

Theorem 4.4. Let M be an n-dimensional manifold, n > 2. Let

=g = ey <r<j isti
Yo ¢ and Yr {yi,. ,yr;’ , 1 £r < j, where the y;, are distinct

points of M. Define m iF(M-Y_;j-1) > M-Y_ by

. 'rrr.<x1,...,x. >=x1, 0 <r<j-i. Then L is a fibration with fibre

jer
FIM - i . . _ .
(M Yr+1’J r-1) over the point Vory? and ™ admits a cross-section

if 221,

Let 'S™ denote the wedge of r copies of Sn; since R"- Yr is

homotopy equivalent to rsn-i, the theorem gives the following corollary.

n r n-1
.. > 1) = . .
Corollary 4.5 If n>3, then TriF(R i) 2 rrl( s )

r=1
2 X
ﬂiF(R ;3)=0 for i#1 and '_lTiF(RZ;J) is constructed from the free groups

i
wi(rS )y 1 £r<j, by successive split extensions.

The case n= 2 is classical. B(Rz;j) is a K(Bj’ 1), where Bj is the
braid group on j strings, and there is a short exact sequence

i- Ij - Bj - Zj -~ { which is isomorphic to the homotopy exact sequence of

_the covering projection F(Rz;j) - B(Rz;j). Detailed descriptions of

2, . '
Ij = wiF(R ;§) and of Bj may be found in Artin's paper | 3 ]. Fox and.
Neuwirth [ 13] have used F(Rz;j) to rederive Artin's description of Bj in

terms of generators and relations.
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Let R® = lim R” with respect to the standard inclusions. Since
¥(M;j) is functorial on embeddings of manifolds, we can define
F(R®3j) = 1im F(R™;)).

Corollary 4. 6. F(Roo; j) is Zj—free and contractible.

We shall also need the degenerate case n= 1,

Lemma 4.7. TrOF (Ri; j)} is isomorphic to Zj, and each component of
F(Ri;j) is a contractible space.
. 1. :
Proof. Let Fo = {(xi, e ,xj)l %< <xj} CF(R;j). Fo is

clearly homeomorphic to the interior of a simplex and is therefore contractible.
F, is one component of F(Rl;j) , and it is evident that the operation by ZJ.

1.
defines a homeomorphism from Fo X Zj to F(R";j).

Theorem 4.8. For 1 <n<® and j2>1{, e;’n(j) is Zj-equivariantly
n . . -
homotopy equivalent to F(R;j). Therefore Ci is an Aoo operad, ?,"n is
a locally (n-2)-connected Z-free operad over n for { <n <oo, and C ©
is an E_ operad.
w
Proof. The second statement will follow immediately from the first
statement and the properties of the spaces F(Rn;j). We first consider the
case n <. For convenience, we may as well replace rR" by 7", Define

amap g { ()~ F(I%;j) by the formula

1 1 n
(1) g<ci,..,,cj> = <C1(Y)’°"’Cj(Y)>’ where y=(-z,...,-é-)eJ .

= . > j i = ™ :J =+ 7J
Tor ¢ <c1""?cj € Q’n(g), write ¢ _=c ;X Xec_ ., wherec
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is given by Crs(t) = (Yrs - xrs)t + LI We say that ¢ is equ1d1arpeter

of diameter 4 if Vg =~ Xpg = d for all r and s (thus each c. is actaally

s

a cube, and all c_. have the same size). Obviously, for each b e F(I™3),

‘there is some equidiameter c ¢ Cn(j) such that g{c) = b; we can radially

expand the little cubes of this ¢ until some boundaries intersect. Thus de-

fine f:F(Jn;j) - Cn(j) by the formula

(ii)  £(b) = ¢, where g(c)=b and ¢ is the equidiameter element of C‘n(j)
with maximal diameter subject to the co.ndition glc) = b.

The continuity of f and g is easily verified by use of Lemma 4. 2,and f and

g are clearly Ej—equivariant. Obviously gf = 1. Define h: C“n(j)x I~ C’n(j)

as follows, Let ce (\:n(j) be described as above, and let d be the diameter

of fg(c). Then define
n

n
hic,u)=< X ¢, (u),..., X ¢, (u)> 0<u<i, where
()= < X e fwheen, X e ()

e () = [(1-u)y__ - x_) +ud]t + 5 (uy__ + (2-u)x__ - ud)

In‘words, h expands or contracts each coordinate interval s linearly from
its mid-point to a coordinate interyal of length d. It is easy to verify that h
is well-defined, Zj—equivariant, ar;d continuous. Since h{c,0)=c,

h(e, 1) = fg(c), and h(f(b),u) = £(b), we see that F(I™%§) isinfact a strong

Ej—equivariant deformation retract of Chn(j). Now embed J" in Jn+1 by

n+i

i
x - (X’E) and let o i F(I™5) - F(J ;j) be the induced inclusion. Write

g, for the map g defined in {(i). Then the following diagram commutes:
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U'n J
(o ¢) > ¢ .0
n Bntt-
%n, i n+i .
FE%)) ) = (I 15)

. . __. 0, , 3 h
Thus we can define g_ = 1{1;n g, C'm(_j) F(T ;j). Clearly COO(J) as
trivial homotopy groups. It is tedious, but not difficult, to verify that C;)(_])
is paracompact and EL C X and therefore has the homotopy type of a CW-
complex, by Milnor [25, Lemma 4]. Therefore Coo(j) is contractible and

g is a ©,-equivariant homotopy equivalence.
® ]

We shall later need the following technical lemma, which is an easy

consequence of the theorem.
A N ; . 1
Lemma 4.9. Define G;'l’i,j: Cn_i(_]) Cn(g) by sending each little

t .
(n-1)-cube f to the little n-cube 1 X £, 1:J~J. Then Tne1,j is Zj—

equivariantly homotopic to Un-i, i

4 n-i_ 2y n, .
Proof. It suffices to prove that o, = o'n_i:F(.]' D~ F(T59),

1 4 , n-1 .
where un_i(x) = (x,—-z—) and (r;l-i(x) = (E ,x) on points x ¢ J . Define

maps T, T':F(J’n; i) -~ F(.Tn, j) by the following formulas on points

n-‘i= n

(s,x) e ITXT I
(s, x) if n is odd

1(s,%) = {x,s) and T's,x)=
(1-s,x) if n is even

o= 't = ¢! hence it suffices to prove that + is
then TUn—i =04 and T LA LA ence i
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Z)J.—e quivariantly homotopic to 7', Let
n n
g (1%, 017) > (5% e )

be the relative homeomorphism defined by Toda [31, p. 5], where S" C Rt

is the standard n-sphere and e, = (1,0,...,0). Toda has observed that, as

based maps s" - Sn,

-1
lpn'rlbn (si,...,sn+1)~(si,s3,s4,...,s ’52)’ and

n+i

‘ -1 n-1 )
' = -
LPn'r b (si,...,snﬂ) (Sli,( 1) 52'53""’sn+i)'

Obviously, these maps lie in the same component of O(n) since they both

have degree (_1)11-1. They are thus connected by a path k:I - O(n), where

O(n) acts as usual on (Sn, € ). Define h = Lp—ik(t)Lp ;7% > 7% then h =1+
o t n n [¢]
and h1 = 7!, Since each ht is a homeomorphism, the product homotopy
3, nyj . . ; N
(ht) H{I7)Y » () restricts to give the desired Zj—equlvanant homotopy

T =1 on F(I7j).

Remarks 4.10. Barratt, Mahowald, Milgram, and others (see [ 24 ] for a
survey) have made extensive calculations in homotopy by use of the quadratic

construction e[S”, ZZ,X] on a space X (see Ngtations 2.5 for the definition).

Since F(RPT!

;2) is ZZ-equivariantly homeatopy equivalent to Sn,

ef c“nH(Z), ZZ' X] is homotopy equivalent to e[5", ZZ’X]' For odd primes p,
Toda [37_] has studied the extended p-th power e[W", Zp’ X] on X, where W"
is the n-skeleton of S with its standard structure of a regular Zp—free

acyclic CW-complex. wh clearly maps Zp-equivariantly into F(RnH;p)
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and we thus have a map

e[w?, zp,x] - R (R, p),Ep,X] = e[ C,’nﬂ(p),Ep,X]-

i i j X f
It appears quite likely that the successive quotients e[ ?:n(J),Ej, ]l o

the filtered space C_X will also prove to be usefu} in homotopy
n

theory.

5. Iterated loop spaces and the Cn

We here show that {fn acts naturally on n-fold loop spaces and that
this action leads to a morphism of monads Cn - 2"". The first statement
will yield the homology operations on n-fold loop spaces and the second state-
ment is the key to our derivation of the recognition principle from the .
approximation theorem.

We must first specify our categories of loop spaces precisely. Let
rn, 1 €£n £ o, denote the following category of n-fold loop sequences. The
objects of ,}(pn are sequences {Yi! 0<i<n}, or {Yil i>20} ifn= o,
such that Yi = SZY‘H_1 in T The morphisms of Xn are sequences
{gi|0 <£i<n}or {gi] i >0} if n = e, such that gi = Qgi-}-l in . Let
U x - T denote the forgetful functor defined by U {¥.} =Y and

n n n i o

Un{g} =g, An n-fold loop space or map is a space or map in the image
of U_.

n

For n <o, an n-fold loop sequence has the form {S’ln—lY}, and

n-i n n
Un{SZ Y} =Y. \‘fn serves only to record the fact that the space Q'Y
does not determine the space Y and that we must remember Y in order to
have a well-defined category of n-fold loop spaces. We shall use the notation
o'y ambiguously to denote both n-fold loop spaces and sequences, on the

understanding that naturality statements refer to fn. Of course, Xn is

isomorphic to T. '%ﬂ iYD)‘f\, - ‘(1:‘ - {
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For n = oo, it is more usual to define an infinite loop space to be the
initial space Y of a bounded Q-spectrum {(Yi’fi)' ;> 0} and to define an
infinite loop map to be the initial map g of a map {gi} : {(Yi’fi)} - {(Yi"fi)}
of bounded Q-spectra (thus fi: Yi,—> QYi-*-l is a homotopy equivalence and
Qgi+1° f, is homotopic to f; gi)' The geometric and categorical imprecision
of this definition is unacceptable for our purposes. I have proven in [19]
that these two notions of infinite loop spaces and maps are entirely equivalent
for all purposes of homotopy theory; we can replace bounded Q-spectra and
maps by objects and maps of %pm) naturally up to homotopy, and via weak
homotopy equivalences on objects. Precise statements angl related results
may be found in [19].

We regard Q"X as the space of maps (s®, %) -~ (X, %), where s® is

identified withthe quotient space ™ /er.

Theorem 5.1. For X T, define an: C‘n(j)X(QnX)J - Q"X as

follows. Let ¢ = <cl,...,cj>e Cn(j) and let y=(y1,.--,yj) e (@°%).

Define 8 J.(r;, y) to be Yrc;l on cr(Jn) and to be trivial on the complement

of the image of c; thus, for ve s”
yr(u) if Cr(u) = v
0, ;) =
* if viIme
Then the © , define an action 8 of C’ on o'x. If X = X!, then

1

9n= Gn—l—lgn’ where o e—n-’ C’n-H and Gn+1 is the action of Cn-i—l on

ntl,,, . _ SR .
QX' If {Yi} ¢ foo’ then the actions 8 of f‘n on Y_ =Y define
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an action 8 of i .
. t-oo on YO. The actions Sn, 1 <n < o, are natural

on lllaps in : H pIeClSely W z -~ I ] ed
> if - C J 18 defln by
W Y = (U Y %] ) on ObleCtS Wh,eIe - s th.e C ~-al ebI
n ’ 3

s,tructurevmap determined by th a =
e 6 W U
y S i’ nd by (g) g on morphisms,

1

then W_ i
. then Wn is a functor from n-fold loop sequences to C -algebi-as
n .

Proof. The 8 .

are clearl i i i
, y continuous and Ej-eqmvanant, and

3] 1 5 = 3 : . .
n,l( y) =y is obvious. An easy inspection of the definitions shows that the

dla.granzls Of LeIIlIIla. l-,4(a mmut a. th
N thus fine an act n v
) co e nd e 6 de e Ct10 2]
of ,C on X. 1f X = QX! l:}lell' Q =8 }( via the corr eSpond&nce yHy
y D}(
e ( )( ) ( ) or t nce o f X1 on lltt en Cllbes
Wh'el yiu t y'ia, t f (u: ) € I X I! SI n (f) 1 f’

6_=19 o follows, If {¥ -
n_ n41%n { i} e ,2’00, then @ =6 o : _C‘n_, EY and
o

therefore 8 = 1i : - i i
o lim 9n. Cco €Y0 is defined. The naturality statement is

immediate from the definitions,
We next use the exist i "
istence of the natural ?fn-actlon Gn on n-fold loop
spaces to produce a morphi P
. phism of monads Cn -+~ 'S . We require some
categorical preliminaries. We have the adjunction
(1) ¢:Hom (X,QY)—+H
5 & ) om o (SX,Y), d(£) [%, s] = £(x)(s),
where SX =X XI/XI WX X3l defines the suspension.
By iteration of ff, we have the further adjunctions
n, n
(2) ¢ .HomT(X,Q Y)'*Homj_(SnX,Y), 1£n<ow.
It is conceptually useful to reinterpret (2) as follows. Define

. n-i .
3) oXx={2""s"%| 0<i<n} ¢ X_; then U_0 X - g7S"x.
nn
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Since a morphism {gi| 0<ign} in fn is determined by g_, we have

Homj, (s"X,Y) = Hom _ ( Q_X, @ iy},
n

Therefore (2) may be interpreted as defining an adjunction

(4) 4 HomT(X, Un{szn"iY}) - I—Iomf (9%, @y} .

The ¢n pass to the limit case n = . To see this, define

(5) o =a"9la )iePsPx - ot gtk
n Sn+1X

Geometrically, if QPS™X is identified with HomI(Sn, SnX), then

(6) o_(f) = Sf=fal:S"A sl = g™ L gy - gPxas!, 8% sx.

Thus each o'n is an inclusion, and we can define

(1) &X= 2®s®x = li-fn Q"s"X , with the topology of the union.

We shall use the alternative notations QX and QmSOOX interchangeably.
Since a map S1 ~+ OSX lands in some QnSn+1X, QQSX = QX. Define

(8) Q X-= {Qs'%|i>0} e XL then U_Q X= o®sx,

if {Yil i> o0} ex © and if £:X =Y = Uoo{Yi} is a mapin ] , then we

have the commutative diagrams:

. n_n+i
Q"™ Hx ag () &y .
n+i
I
o : Y.
n i
. n+l _nt+l i
Qn-i-l Sn+1+l x Q g (£) Qn-l-l

n+it+l

We therefore have the further adjunction

(9) fiHom (X, U 1Y) ~ Homxoo(QOOX,{Yi}), where

g (9. = lim @20 08’X ~ Y., i20, for £X>Y .
Qi1 prey 1 o
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N -1 7 . . 3 L3
Here ¢oo {gi} =8y My where nw:X -+ QX is the evident inclusion.
A pedantic proof that ¢a) is an adjunction, together with categorical

relationships between Qoox and the suspension spectrum of X, may be

'found in[19 1.

Clearly (4) and (9) state that QnX , 1<n< o, is the free n-fold loop
iy s s : el
sequence generated by the space X; it is in this sense that the @ s"X are
free n-fold loop spaces. By Lemma 2.10, our adjunctions an yield monads
n.n C e o Pl . -
Qs pn,nn) and functors V_: '{‘n 2 S [J1], with vy (UnY: gn) on
objects, Explicitly, in terms of iterates of the adjunction ¥, we have
-n n
= : — i < . = 14 .
(40) n, ¢ (1Snx )X »"S"X if n< oo; L lirn'qn
nmn n.n.n n
= : - s < .
(11) p_ (3 (innsnx) "s"a"s™x -~ 9US™X if n< o
B = limp (which makes sense since QQX = lim QnSnQnSnX).
- —

.1

(12) £ =0 _ )etseY - @Y  if n<oo;

S n P o ie o) -
goo 1§n9 p’n(lﬂnY QS Y Y, for {Yi} exoo.

n

By (5),(10), and (11), each Un:QnSn - Qn+lSn+1 is a morphism of monads,

and 2°5%® = 1im @"s" as a monad.
Let (Cn’ R 'qn) denote the monad associated to C:n’ and observe that
Coo = lim Cn as a monad. With these notations, we have the following

theorem, which is in fact a purely formal consequence of Theorem 5.1 and

the definitions,
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Theorem 5.2. For X ¢ ,’f and 1 <n< o, define @ : C X-—»Q SnX

C 7
to be the composite map CnX —2r 5 CnQnSnX

25> 0"s"X. Then
a :C - Q"s" isa morphism of monads, and the following diagram of

functors commutes, where a (Y £) = (Y, Eea ):

/\

QS[J >c[

Moreover, the following diagrams of morphisms of monads are commutative

for n< o, and @ is obtained from the a for n< o by passage to

limits:

[+3

c o > os™

n

a [13

n n
1 +1 _n+l

c > s®

n+1

Proof. The fact that each R &n, and O‘n for the monad QnSn is an
n-fold loop map and that Bn is natural on such maps, together with the very
definition of a natural transformation and of an algebra over a monad,

immediately yield the commutativity of the following diagrams for X e ‘T :

0'
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X
. . k A -
Q"s"x
ccC ce c
n nnn n n
c C X =2 —>C e s'x 22 s cnszns”x <—-_—_—-:1“—_-——-_2 cnﬂnsnnnsnx
! Cata
C n @ o m
cnx~—-———>cnsx >0 5"X € QPsP0"s™x
c o% >cnszssznx—-—~————>szssznx
N 8
c o s > o'x
n
C 1 6
nn
C_X /c o"s™x 2"s"x
C n+1 n+1
11
Cntt st Pl gntly Ot QrHligntl

X
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. . . _ . 2.
The first diagram gives an =N, the second gives N

(Cnpn is inserted solely to show commutativity), the third gives E,nan =6,

as required for e V. =W , and the last gives ¢ a_= « o . The first
n n n nn nti n

two diagrams are valid as they stand for n = o, and the third has an obvious
analog in this case; consistency with limits is clear from the last diagram.
We next show that the morphisms of monads a: Cn - "s" factor
through SZiCn_iSi for 1 <i<n., The following elementary categorical
observation about adjunctions and monads in any category '3‘ implies that
i

the natural transformations S'a .5:Q Cn iS1 -~ 2"8" are in fact morphisms

-1

of monads.

Lemma 5.3. Let #: Homg_ (X,AY) — HomT(ZX,Y) be an adjunction,
and let (C,p,mn) beamonadin J. Then {ACZ,{,H) is a monadin [,
where, for X ¢ J ,f and 7 are the composites

ACZACEX —2CIH) Apz

ACCZX > ACEX

and -1
x 8 ) A5y A0Z

> ACZX.
Moreover, if {:C - C' is a morphism of monads, then AYZ:ACZ —~ AC'T
is also a morphism of monads.

We must still construct morphisms of monads Cn—*- Qlcn iSl, and, by

the lemma, it suffices to do this in the case i= 1.
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Proposition 5.4. For =n>1, there is a morphism of monads

B Cn *SZCn_ls such that o = « an_IS) B,- Therefore a factors as

a composite of morphisms of monads

o : 1 n-1

C »9C .S—> ... 0" c.s"" -0"s".
n n-1 1

Proof. Define ﬁn:CnX*QCn_ISX as follows. Let

c=<c1,...,cj>e Cn(j), let x = (xl,...,xj)e x), andlet te I. Write

cr=c'r>< c;'_,_where c‘er*J and c‘r':J'n—lrJnnl. Let TioeeesTy in

order, denote those indices r (if any) such that te c'r(.I). Since the .

have disjoint images, the little (n-1)-cubes c'l'_ ,» 1 £ q< i, have disjoint

q
images. Thus we can define ﬁn by the formula

(1) plexle=* i tf ) (@), and
r=1

Bulerxlle) = [<el oever > ool by

i 1 = 3 1
if <l (sq) t, 1< g<i, and t;(cr(.]') for v ¢ {rqg .
q
It is easily verified that ﬁn is well-defined and continuous. For ve Sn_l,

formula {1) and Theorem 5.1 give

‘{/[xr, s,u} if cr(s,u) = {t,v)
(2) Q. Sep [c,x](t,v) =<
n-~1 n .
(* if (t,v) ¢ Im c.
Thus Q& .SeB_=ea :C X ~Q"S™X. The fact that B_ is a morphism of
n-1 n n" n n

monads can easily be verified from the definitions and also follows from the

facts that 5n and Qafn__ls are inclusions for all X and that a, and Qan 1S

are morphisms of monads.
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We conclude this section with some consistency lemmas relating
Theorem 5.1 to the lemmas at the end of section 1. These results will
be needed in the study of homology operations; their proofs are easy veri-
fications and will be omitted.

)(¥>4)

Lemma 5.5. Let w:(@'X - Qn(X(Y’ A)) be the homeomorphism

defined by w(f}(v)(y) = £{y){v) for ye Y and ve S". Then w isa Cn-

(Y,4)

morphism with respect to the actions Bn

(¥, 4),

on (SZDX)(Y’A) and 6, on

o™ (x
n . .

In particular, w: (Q(an),ﬂen) - (@ (QX),Qn) isa ( n—morphlsm,

n .
where @ =0 on £ (QX). Observe that w transfers the first coordi-

nt+1°n
+1
nate of @ X (y above) to the last coordinate. Under the identity map on

Qn+1X, szen corresponds to Qn-l-lo-xi , and Lemmas 1.5 and 4.9 therefore

yield the following result.

Lemma 5.6. For X e j , the following diagram is commutative, and
- Lot . _ . . . -
Qen’j 9n+1,j O_n,j is Ej equivariantly homotopic to en,j en+1,jo—n,j
o ntlog  1xid . i _lxp o D]
Cox@Pxy) 2 ¢ gx () 2XEs £ () x (@7%)
. Pe [
ansJ n,j n,J

oPHx i PP P > Q%
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Lemma 5.7. Let £1X =B and g:Y - B be maps in J . Identify

B . Q"B
Q"X X Y) with Q"X X QY as subspaces of Q"X XQ"Y. Then the

n

N 2°B ; < . '
ﬁ’n-actlons Qn and enx en are identical. In particular, Gn agrees with

o_ X o on 2MX X Y)=a"xxa’v.

Remarks 5. 8. Lemma 1, 9(ii) is obviously inappropriate for the study of
the product on n-fold loop spaces for n < oo. Observe that Q"x may be
given the product

210" x 97 = 0" Lax x 9x) - 9°x,

where @ is the standard product. Clearly Qn_lﬁ is then a Cn l-morphism.
Similarly, we can give Q"X the inverse map Qn‘lc (07X - QnX, where

c:QX =~ QX is the standard inverse, and then anlc is a Cn ~morphism,

1
The point is that the product and conjugation on H_L(QDX) will commute with

any homology operations which can be derived from the action Bn of

-1

Cn-l on Q°X.



6. The approximation theorem

This section and the next will be devoted to the proof of the approxima-
tion theorem (2.7) and related results. The following more detailed state-

ment of the theorem contains an outline of the proof,

Theorem 6.1. For XeJ and n>1, thereisa s%)ace EnX which
contains C X and there are maps. n tEX—>C SX and
n n n n-1

'&'n: EnX »PQndSnX such that the following diagram commutes:

m
c X = >E X 2 C .SX
n n n-1
Cln lan ldn_]:
be s ne-l P -1 nX
Q"™ X e > P s —— 5 Q"5

where, if n=1, COSX = 8X and a, is the identity map. EnX is contractible
for all X and L is a quasi-fibration with fibre CnX for 2ll connected X.
Therefore a is a weak homotopy equivalence for all connected X and all n,

1 £<n<oo.

We shall construct the required diagram and give various consequences
and addenda to the theorem in this section. The proof that EnX is contract-
ible and that ™ is a quasi-~fibration for connected X will be deferred until
the next section, where these results will be seen to be special cases of more

general theorems.
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Coupled with Propositions 3.4 and 3.10, the theorem yields the following
corollaries, which transfer our approximations for n=1 and n= o irom
C and ¢  to arbitrary A and E operads, The reader should recall
1 o] (o'e] @
that a map is said to be a weak homotopy equivalence if it induces isomorphisms

on hor’novtopy groups, and that two spaces X and Y are said to be weakly

"homotopy equivalent if there are weak homotopy equivalences from some third

space Z to both X and Y. Thus the following corollary contains the state-
ment that the James construction MX is naturally of the same weak homotopy
type as SX, for connected X; curiously, our proof of this fact uses neither

classifying spaces nor associative loop spaces.

Corollary 6,2 . Let Xe J be connected and let {¢ be any Aoo operad,

Then the following natural maps are all weak homotopy equivalences:

€ ™ T ay
MX < CX < (CVCl)X—-——-——-> C1X 3> Q8K

Corollary 6.3, ILet Xce 7 be connected and let { be any Eoo operad,
Then the following natural maps are all weak homotopy equivalences:

kid v a
CX et (Cx C )X ——-3-—-—->cwx —2 5 o%s®x

™ a.
and, if 1<n<o, (CXC )X z c X o 275X,

Of course, for arbitrary (non-connected) X, we can approximate 2°sx

by QCn_ SX, since SX is conmnected.

1
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Corollary 6.4. Let Xe¢J andlet ( be any Eoo operad. Then the

following natural maps are all weak homotopy equivalences:

SZ':TlS Q'n'ZS ﬂ'ozmS 00
QCSX ¢ Q(C X COO)SX > QCOOSX — 0 S X
fm,S QanS n+l _n+l
and, if 1 £n< o, QCX Cn)SX — SZCnSX —_— 0 S X.

In these corollaries, all maps are evidently given by morphisms of
monads. Clearly this implies that these maps are H-maps, but the H-space

structure is only one small portion of the total structure preserved.

+.
Remarks 6.5. In[4 ], Barratt has constructed an approximation |I' X| to
Q% s® [XI for connected simplicial sets X, Implicitly, Barratt constructs
a "simplicial operad" consisting of simplicial sets D*"Ej' If we define
}9(3) = [D *Zj I , then we obtain an Eoo operad [, and it is easily verified
+ R
that |T' 'X| is homeomorphic to D |X| (where D denotes the monad in )
associated to }9 ). Thus Corollary 6.3 displays an explicit natural weak
. +. 00 00
homotopy equivalence between II‘ XI and QS ’Xl, for connected X. For
all X, I‘+X is a simplicial monoid, and if I'X denotes the simplicial group
+ X . 0 0
generated by I X, then [FX! is homotopy equivalent to Q S }Xl We

shall describe B explicitly in section15.

We begin the proof of Theorem 6.1 with the definition of a functar En
from pairs (X,A) to spaces. EnX will be the space En(TX,X), where TX

denotes the cone on X,
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Construction 6, 6, Let (X,A) be a pair in J , by which we understand

a closed subspace A of X with *¥e¢ A, We construct a sé)a.ce En(X,A) as

follows.. For a little n-cube f, write f= f' X f", where f':J - J and

n-1 n-1
-

ELRN J7 73 if n=1, then f=f'. Define En(j;X_,A) to be the subspace

of C‘n(j) X X7 consisting of all points (< Csenes Cj> , X »X.) such that
- J

1reee
if x_ ¢ A, then the intersection in J~ of the sets (c'r(O), 1} X ot (Jn-l) and
T

n, . )
cs(.]’ ) is empty for all s ¥ r. The equivalence relation = defined on

Z C‘n(j) X X? in the construction, (2.4), of CnX restricts to an equivalence
iZo0

relation on z fn(j;X,A). Define En(X,A) to be the set
jzo

E(X,4) = > £ (:%,8)/(~),
j20

topologized as a subspace of CnX' Since A is closed in X, En(X,A) is closed
in C X and En(X,A) U . En(X,A) is a filtered space with filtration
defined by
FE (X,4) = E (X,A)NFCX,
and FoEn(X’A) = %, Clearly Cn(j) X Aj c €n(j;X,A) and thus
CnA C En(X, A). If £1(X,A) (X', A") is a map of pairs, then
Enf: En(X,A) - En(X',A') is defined to be the restriction of Cnf: CnX - CnX'

to En(X, A).

The following results, particularly Lemmas 6.7 and 6,10, show that the
definition of En(X, A) is quite naturally dictated by the geometry. Observe that

En(X, X) = CnX; at the other extreme, En(X, %) is closely related to C IX.
N~
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Lemma 6.7. Let XeJ andlet [c,x]e En(X, *), where c = <Cyieen ,cj>
and xe (X ~ *)j for some j>1. Then j=1 if n=1 and

ch = <c1" seens c§'> € Cn_l(j) if n>1, There is thus a natural surjectivé based
map Vv, : En(X, *) -~ Cn-IX defined by the following formulas on points other

than % :

(1) vl[c,x] =xeX=CX; and

X if n>1.

(2) vn[c,x] = [e",x] e Cn-l

Proof. Let x= (xl,...,xj), x_ e X-#% Fix r#s, 1<£r<j and
1< s<j. For definiteness, assume that c‘r(O) < c's(O). Lette c:s(J'). ¥n=1,
then te (cr(O), 1) n cS(J), which contradicts the definition of gl(j;X, *)3
thus r# s is impossible if n=1 and therefore j= 1. I n>1 andif
v e c;(Jn_l) N c;(JM), then (t,v) e cs(.]'n) and te (c'r(o),l), which contradicts
the definition of 5n(j;X, %#). Thus the little (n-1)-cubes c: and c; have

disjoint images and c" ¢ Cn_l(j).

Notations 6.8. ILet w:(X,A) -~ (Y,%) be a map of pairs in J . Then the com-~
E « v
posite map En(X’ A) -2 5 En (Y, %) ——i—>Cn lY will be denoted .

Since En is a functor and va is a natural transformation, ™ is natural on

commutative diagrams

i

U s&;i
‘
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(X: A) _______'“'_______> (Y: *)

fl lg

1
(x', A1) —T— (v, %)
in the sense that C_ .gew_ = w'eE { for any such diagram.
. n-1 n n n

Lemma 6.9, For XeJ and n>1, there is a natural commutative

diagram
C T
CX —= 5 E (TX,X) c_ .SX
n n n-1
€M LEn“n Cn-1Mn-1
chnsnX —-——g—-——-—>En(PS2n—ISnX,SZnSPX) —_ c, 19“‘1 s™x

Proof. Define the cone functor T by TX = X X I[/#XIuX X0, and
embed X in TX by x—+[x,1]; SX = TX/X and m:TX -~ SX denotes the
natural map. Define ?{n: X +P Qn-ISnX by the formula

. -1
'ﬁ‘n[x,s](t)(v) =[x, st,v] for [x,8]e TX, tel, and ve s*h .

Then the following diagram commutes and the result follows:

c .
TX T sX

"

N
32

-1

>patlefx — P 5 oPlePx
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Since a, factors as the composite 6n° Cnnn, the lemma gives half of

the diagram required for Theorem 6.1. The following sharpening of Lemma

5.6 will lead to the other half of the required diagram and will also be needed

in the study of homology operations on n-fold loop spaces,

Lemma 6.10, For Xe J , define gn j: fn(j;Pﬂn-IX,QnX) ~pa*Ix
td
. n-1
as follows, Let (c,y)e é'n(J;PQ X,ﬂnX), where c = <€{se..,c> and

y = (y’l,...,yj). For tel and ve Sn-l, define

‘yr(s)(u) if cr(s,u) = (t,v)
B j(eNOE) = <y (@) i t2e1(1), etw) = v, y_f 97

xR

otherwise’

Then the following diagram is commutative:

. 6 .
¢ 0 x @x) =5 e%

c
v o~ c
: n-1 j -
€ _Gsea N X,0°%) —2— 5 po™lx
1 j
n-l,j><1
. n-1_.j P
€ x @™ xy) T Fa, p
1xp’
4 1 s e 1 4
. n- - _
€ i) x @ x) =) s o™y

saes . n-~1
T.Proof. The definition of 6n(J;PQ X,QnX) gives that if q# r and

n n
Vo ¢ © X, then no element of cq(J ) has the form (t,v) with t> c! (1) and
r
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) - ° ~
Ve c'l'.(Jn 1). Thus the first and second parts of the definition of 6 . have dis-

3

st

-1
joint domains, Of course, yr(s)(u) =% for uedl  , and it follows that

~a

~
6 . i ti . B is ith Theorem 5.1, 6_ .,=60_. on
50, 5 is continuous y comparison wi orem 1, j n, j

C’n(j) X (san)J Pen 1,j is defined in Lemma 1.5, and the commutativity of the
. It}

"bottom square follows from that lemma. The commutativity of the triangle is

immediate from the definitions, since cr;1 is given by £ 1 X on little

1,j
{n-1)-cubes f.

- -1 -1
Lemma 6.11. * For X ¢J , the maps 8_ K £_(ipe® X,0"X) -~ P 'X

n

~ -1
induce 2 map 0_: En(PQ o

-lX,QnX) - PQ" "X such that the following diagram is

commutative (where, if n=1, 6, = 1: X = X):

C - 2 -
C o — = sE (o™ Ix,0%%) —2—>c_ 2¥x
n n n-1
: . .
enl gn n-1
: v
o"x < o™ tx P @ 1x
i~ N ~d ~e .
Proof. Gn’j(ca, y) = Gn’j(c, oy) and en,j-l(vic’ y) = en’j( s siy), in the

~
notation of Construction 2.4, and therefore Sn is well~defined. The previous

lemma implies that gn = Gn on CnQnX. Clearly

Yr(l)(u) if c‘l'_(u) =v and y_ ;/QDX
p8_[c, y1(¥) =

* otherwise .

By the definition P = V,° Enp and by the definition of v in Lemma 6.7

~
and of 6 in Theorem 5.1, p6_ =8 p_ follows.
n n n-1"n

-1
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Define & =8 o E ?{n:E X = E (TX,X) ~ P2 s, Then the com-
n n n n n
mutativity of the diagram in the statement of Theorem 6.1 results from

Lemmas 6.9 and 6,11,

We complete this section by showing that our approximations re;ate
nicely to the Hurewicz homomorphism h and to the homo’topy and homology
suspensions 5,. Recall that we have morphisms of monads &1 Cn - N,
where NX is the infinite symmetric product on X; by abuse, if n=1,¢

here denotes the evident composite G1 -+ M —~ N. For connected spaces X,

we may identify Tl’i(NX) with ﬁi(X), and then h= "].lj'ffi(X) - Tri(NX) and
-1

of the guasi-fibration Nm: NTX - NSX with fibre NX; proofs of these results

may be found in [10].

Lemma 6.12. Let w:(X,A) > (Y,%) be a map of pairs in . , and let

% denote the composite En(X’ A) ———C-—b CnX £ NX. Then the following

diagram is commutative where, if n = l, &= Y -+~ NY.

iy
CA—S sE(x,A)—2 _sc v
n n nel
El: 4 le.
NA < NX —2T NY

Proof. The commutativity of the left-hand square is obvious and the
commutativity of the right-hand square follows easily from the definition
of ™ For n =1, the crucial fact is that at most one coordinate x,, of an

element [<c1, ..‘,,cj> ,xl,...,xj] 3 EI(X,A) is not in A.

S,= 8 ":w (NX)~»> wi_H(NSX), whiere 8 denotes the connecting homomorphis’m“
i
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| Corollary 6.13. Let X e T be connected, Then there is a natural

commutative diagram, with isomorphisms as indicated:

) n
n@%8"%X) —g—> 7., (5 X)
- A ,q:n i = iTn
nn* § " D -
Tri(X) —_— Tri(CnX) —_— vi+n(s )
€ l Ne=h
=h *l 5 =g

N = Ox oy
. (NX) = Tian(NS %)

where 8 o n, :wi(X) -+ wi+n(SnX) is the homotopy suspension.

Proof, The triangles Jcommute since @ and € are morphisms of

monads., The upper square commutes by the diagrams of Theorem 6.1 and

the lower square commutes by the lemma applied to X ¢ TX and w: TX - SX,

Remark 6,14, Let M(X,A) denote the image of the space EI(X’A) under
the augmentation g: CIX -~ MX; Gray [14] has made an intensive study of
M(X,A), which he calls (X,A)m. The natural map m:X — X/A induces
vlel(X,A) -~ X/A, and ™ clearly factors (via g) through a map

p:M(X,A) =~ X/A. If A is connected (and if the pair (X,A) is suitably nice),
then, by Theorem 7.3 and [14], L and p are quasi-fibrations with respective
fibres C.A and MA, and 5:C1A -+~ MA is a weak homotopy equivalence by

1
Proposition 3.4; therefore §£: El(X’ A) -~ M(X, A) is also a weak homotopy

equivalence.



7. Cofibrations and quasi~fibrations
We pro§e here that En(X,A) is aspherical if (X,A) is an NDR-pair

such that X is contractible and that, for appropriate NDR-pairs (X,A),

the maps nn:En(X,A) -+ Cn_l(X/A) and C_7w:C_X + C_(X/A) are quasi=-

fibrations with respective fibres CnA and C_ A, Applied to the pairs

(TX,X), these results will complete the proof of the approximation

theorem. They will also imply that T4 (C_X) is a homology theory on

connected spaces X (which, a fortiori, is isomorphic to stable homo=-
topy theory).
Theorem 7.1, Let (X,A) be an NDR-~pair in 7. Then

(1) (FjEn(X,A),Fj_lEn(X,A)) is an NDR-pair for j > 1. '

(ii) If X is contractible, then En(X,A) is aspherical,and En(X,A) is
contractible if X is compact; or if X is the cone on A, or if n=1,
Proof. By Lemma A.5 applied to (X,A,*), there is a representation

(h,u) of (X,*) as an NDR-pair such that h(IXA) < A, By Lemma A.4, (h,u)

determines a representation (hj,uj) of (X,*)J as an Zj—equivariant

NDR-pair. Since any coordinate in A remains in A throughout the homotopy

hj' the representation (E&,ﬁj) of (FanX,Fj_lch) as an NDR-pair which
was derived from (hj'uj) in the proof of Proposition 2.6 restricts to a
representation of(FjEn(X,A),Fj_lEn(X,A)) as an NDR~pair, The contrac~
tibility statement is more delicate. Indeed, my first proof was
incorrect and the argument to follow is due to Vic Snaith. Let

g:I x X + X be a contracting-homotopy, g(o,x) = %x,9(t,*) = *, and

g(l,x) = *, Clearly g cannot in general be so chosen that g(IxA) < A,

For ¢ = < cl...,cj > € Cn(j), write ¢y = ci X cg, ci: J + J, and define

v, (c) = 2 max (¢! (1l)=c!(1l)/A(c), where A(c) = min (c! (1)~-c! (0)).
i oie Ck i ' 15key K k

Define a homotopy G:I X(FjEn(X,A)—Fj_lEn(X,A» +FjEn(X,A) by

G(t,[c,x.l...,xj:l) = [C,g(tlpxl),...,g(tj,xj)], where
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t if vi(c) <O

ti:z t(l—vi(c)) if 0 < vi(c) <1
0 if vi(c) > 1

-6 is well-defined since, as is easily verified, yi(c)il implies that

(e} (0),1)x c;(Jn—l)n ck(Jn) is empty for all k % i (and thus that the
ith coordinate in X is unrestricted). G starts at the identity and ends
in Fj_lEn(X,A) since v, (c) < O for at least one i and each c. Note,
however, that G cannot be extended over all of FjEn(X,A). Now assume
that there exists € > 0 such that g(I x u-l[O,e]) c u-l[O,l). If X is
compact, then there exists such an € by an easy exercize in point-set
topology; if X = TA,(j,v) represents (A,*) as an NDR-pair, and

ula,sl= v(a).s, h(t,la,s])= [j(t,a),s], and g(t,[a,s])= [a,s-st],

then any € < 1 suffices, Define a homotopy

H:T % FjEn(X,A) o FjEn(X,A) by H(t,z)= z for z € Fj_lEn(X,A) and by
G(t,Lec,vy]D) if uj(y) > e/2
H(t,[c,y]) = | 2t.uj (y)/

kG( e,lc,y1) if uj (y) < e/2

for [c,yle FjEn(X,A)-Fj_lEn
351[0,1) and, by the first part, 551[0,1) can be deformed into

(X,A). Then H deforms FjEn(X,A) into

Fj-lEn(X'A) in FjEn(X,A). It follows that each FjEn(X,A) is contrac-
tible, and the argument given by Steenrod in [30,9.4] shows that
En(x,A) is contractible., For arbitrary contractible X, a map

£:89 » E (X,A) has image in FjEn(Y,A n ¥) for some j and some compact
Y ¢ X; if € is such that g(I x u-l[OgﬂnY) cu_l[o,l) then the homotopy
H above deforms FiE (Y,AnY) into i 'ro,1) in FjEn(X,A), and it follows
that £ is null-homotopic. Thus En(X,A) is aspherical., Finally, if n =1,
then we can write points of El(X,A) in the form [c,y] where the inter-
vals c; of ¢ eicl(j) are arranged in order (on the line); then the
retracting homotopy for (X,*)j obtained from hj—l on Xj"l and g on X

by Lemma A.3 can.be used to deform FjEl(X,A) into Fj_lEl(X,A).
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Recall that a map p:E — B is said to be a quasi-fibration if p is
onto and if p 'n'i(E, p-l(x), y) —~ vi(B,x.) is an isomorphism (of pointed sets
or groups) for all x ¢ B, y¢ p‘l(x), and 12 0. A subset U of B is said
to be distinguished if p: p—l(U) -+ U is a quasi-fibration. The fOllov;ing lemma,
which results from the statements [10,2.2,2,10, and 2.15] of Dold and Thom,

describes the basic general pattern for proving that a map is a quasi-fibration.

Lemma 7.2, Let p:E = B be a map onto a filtered space B. Then
each Fj.‘B is distinguished and p is a quasi-fibration provided that
(i) F B and every open subset of FjB - Fj-lB for j> 0 is distinguished.
(ii) For each j> 0, there is an open subset U of FjB which contains

Fj-lB and there are homotopies h:U~U and Ht:pnl(U) - p_l(U)

such that
(2) b, =1, n(F, |B)CF, B, and b (U)C F,_,Bi
(b) H =1 and H covers h, pH, = hp; and

-1 -1 .
(c) H :p x)~p (hl(x)) is a weak homotopy equivalence for all x ¢ U,

The notion of a strong NDR-pair used in the following theorem is defined

in the appendix, and it is verified there that (Mf,X) is a strong NDR-pair for any

map f: X =Y,

Theorem 7.3, Let (X,A) be a strong NDR-pair in ) , and assume that
A is connected. Let wmX —~X/A be the natural map. Then
(1) e En(X,A) - Cn_l(X/A) is a quasi-fibration with fibre C_A 3

(ii) Coo'rr: COOX —-,:COO(X/A) is a quasi-fibration with fibre CooA'
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_1';_’_1-_92_{. (i). The maps ™ are defined in Notations 6.8. For the case
n =1, recall that CO(X/A) = X/A and define FO(X/A) = % and Fl(X/A) = X/A,
The probf for n= 1 will be exceptional solely in that we need only consider
tl';e; first fil‘tration, j = 1 below, and therefore no special argument will be
givez;. .FoCn_l(X/A) = % is obviously distinguished, and we must first show
that any open subset V of Fan_l(X/A) - Fj—lcn-l(X/A) is distinguished .
By use of permutations and the equivalence relation used to define En(X,A),
and by the definition of T s any point y e TTI;I(V) may be written in the follow-
ing form:
(2) vy=l[<c,d>x,2], where c = <cprens ’Cj> € Cn(j), d= <dl" .o dk> € C n(k),
X € (X—A)j, and a e Ak; here if c.= c;_ X c'lf , o::‘r :J - J, then the inter-
section of (c'r(O), 1) X C;(Jn—l). and ds(Jn) is empty, and

().

Trn(y) = [c",ﬂj(x)] e V, where c" = <c‘i, . ,c3‘> € C el
Define q: vrzl(V) - CnA by q(y) = [d,2] for y as in (2). It is easy to verify
that q is well-defined and continuous. We claim that w Xaq: Trn-l(V) - VX CnA
is a fibre homotopy equivalence, and this will clearly imply that V is dis-
tinguished. Define morphisms of operads cr+: Cn—l - Cn and T7: Cn - Cn
by the formulas

(3) 0“+(f) = g+X f on little (n-1)-cubes f, where g+(s) = -12-(1+s), g+(.T) = (-1— ,1).

- - - 1 - 1
(4) 778 = (g7 X 1711 on little n-cubes £, where g (s) = 55, g (7) = (0,3).

Then define w:VXC_A 'rrn“l(V) by the formula
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(5)  wile", We0L[4,2]) = [<o¥(cm),v(d)>, x,2], where et T__ (i),

xe (X -A)Y, de cn(k)’ and ae AN (for any k> 0).

The definition of ¢ and T~ ensurés that the little cubes on the right satisfy
the requirements specified in (2) for points of 'rrnbl(V). Clearly w is con-
tinuous and fibrewise over V. Now (wn X q) w is the ;nap 1 X+, where
T CnA - CnA is the associated morphism of monads to T : Cn - Cn .
Since 1 &4 via the homotopy induced from £ —~ (gt_X ln—l)f on little n-cubes f,
where gt-(s) = (s - —;-st), (-n'n X g)w is fibre homotopic to the identity map., On
points vy e 'rrn_ (V) written as in (2), we have

wlm X q(y) = [<o ' (c"),77(d)>, %, 2]
Construct a fibre-wise homotopy 1 ﬂw(wn X @) by deforming d into T (d) as
above (without changing c¢,x, or a) during the first half of the homotopy and
then deforming c into cr+(c") by deforming each c!. linearly to g+ {(without
changing 7 (d),x, or a) during the second half of the homotopy. It is easily
verified that the disjoint images and empty intersections requirements on the
little cubes of points of 'rrI:l(V) are preserved throughout the homotopy. Thus
™ X q is a fibre homotopy equivalence and V is distinguished. It remains to

construct a neighborhood U of F,

j lcn-l(X/A) in chn—l(X/A) and deforma-~

tions of U and of 'rrn_l(U) which satisfy the conditions of Lemma 7. 2(ii). Let
(£,v) represent (X,A)as a strong NDR-pair, and let B = v~1[0, 1); by

definition, £ (I X B) CB. Define U to be the union of F.

; 1Cn_1(X/A) with

{[em, (% )5 ,’n‘(xj)] | x ¢ B for at least one index r}.
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Let (h,u) be the representation of (X/A,*) as an NDR-pair induced from
(¢,v) by m, and let (hj’uj) and (Zj,vj). be the representations of (X/A, *)j
and (X,A)j as NDR-pairs given by Lemma A, 4, Let (Ej’:;j) be the repre-
sentation of (Fan_IX/A,Fj_ICn_lX/A) as an NDR-pair given by Proposition
2.63 then"ﬁ’j(x) <1 if and only if xe U, and ﬁj restricts to a strong deforma-

tion retraction %j: IXU-—~U of U onto Fj-lcn-lx/A' Define

) ) o » -
’EJ:IxTrnl(U)»nnl(U) by Tt,y) =y for ye ¥’ E_(X,A), where

FJ"IEn(X,A) = YE

. 1C lX/A), and by the following formula on points
n j-1 "n~ .

yerm -1(U) - FJnlEn(X, A) written in the form (2)
n ,
(6) D, =l <c, a1 (¢ %), a]
. . . ~j ¥ d
77 is well-defined since £{t,a) = a for ae. A, and clearly £° covers ; an
j-1
is a strong deformation retraction of Trn"l (U) onto ¥ En(X, A), By Lemma

~ ~j -1 -1
7. 2, it suffices to prove that if x¢ U and x'= hjl(x) , then !‘]1: L (x) ~ T {x")

o 21 o
is a homotopy equivalence. Since 77 is constant on ¥’ En(X;A), this is

trivial for x ¢ F, lCn 1(X/A). Thus consider a typical element
J— e

xeU- Fj.——lcn-l(X/A)’ say

x = [c",-n'(xl),. .. ,'rr(xj)], where c" =<cf,..., cJ!'> and x_e X-A.

= (x! ! : ' lie in A. By use of per-
Let Zjl(xl,...,xj) (x1 ,...,xj). Some of the x! lie in yu P
mutations and the equivalence relation, we may assume that x'r ¢ A for r<i

and xl" ¢ A for i<r<j (i may be zero), and then

i ] 1 ]
o s 1t
x! = hjl(x) = [<c1,... ,}ci>, -n'(xl),. .. ,'\T(Xi) .
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Comnsider the following diagram:
~J
£
-1 1 -1,
() w7 )
1rnX q W an gliw
o -
h.1 X1 1
xXC_A L x'X C_A
n n

Here the q and w are defined precisely as in the first part of the proof, and

w X q and w are inverse homotopy equivalences, We shall construct a
n

j

homotopy H:IX (x X CnA) - -n'r:l(x') from £;

ow to Wa(ﬁjl X 1). This will

j

1 is homotoéic to the composite of homotopy equivalences

imply that 1
~e
W°(hj1 X 1)e (wnX q). Since A is connected, we can choose paths ] I-~A
connecting x;: to % for i< r<j. Define H by the formula
+ -
(7 H(t, x,[d,a]) = [<o'(c"), T (d)>, Xi: s 'X:!L ’ Pi+1(t)s sees Pj(t)s al.

. ~ ~ .
Clearly H is well-defined, and Ho = IlJW and H1 = w (hjl X 1) are easily
verified from (5) and (6). This completes the proofof (i).

¢
(ii). Define a subspace En(j; X,A) of En(j; X,A) by
‘. \ + .
fn(Ji}(,A): {(<c1,...,cj>.x1,...,xj)[ cl =g if xr;/ A},

[
where g+ is defined in (3). Let EI'I(X,A) denote the image of >, f’n(j;X,A)
jz0
in En(X’ 4), and let 'rrl;‘: Ezl'l(X’A) - Cn__1 {X/A) be the restriction of T to

E'(X,A). With a few minor simplifications, the proof of (i) applies to show
n

that “;1 is 2 quasi-fibration. We have been using En(X, A) rather than
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E;(X,A) since the contractibility proof of Theorem 7.1 does not apply to

.

E;I(X,A) ; a fortiori, these spaces are weakly homotopic equivalent and can

be used interchangeably., We now have commutative diagrams

o
n
' —_— s W
En(X’ A) n+l (X, 4) »
Tt 1
n Trn-f-l
Tn-1
TLe
e
C, . (X/4) C_(X/A)
and +
dn i
> 1
C_X B, (XA) ————>cC X
L
Cyr Tt . Cont™
C(X/A) ——5 ¢ (x/A) i C_,.(X/A)
[
n n n+l

+ +
where ¢ is defined by cr:(f) = g X { on little n-cubes f, and i is the
inclusion, E;l'*‘l (X,A) was introduced in order to ensure that

. +
C weli= g o'

. . o ot .
ntl n® et * Lemma 4.- 9 implies that o oyt CnX - C X

ntl?

naturally in X, and, since U‘;a(C) =1 X ¢ on little n-cubes c, we evidently

have that o! = cr+: CX >C X, naturally in X, Now pass these diagrams
n n" n n+l

+_

to limits with respect to the o¢_, observing that o .o _ = For
n nt+l n

=%+ %n"

X € COO(X/A) and ye (Coo*rr)-l(x), we have a commutative diagram
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-1

(.ot ) 2> (6_x,6 0" x), o y)

C = T C =
o0 [0 [¢'s)

1 oF

0

(G (X/A), %) ——————>(C__ (X/A), ) —=—— (C_(X/A), o} )
Clearly wc;O is still a quasi-fibration; since Gnu 0';, naturally, both the top
composite io'; and the bottom map cr:o , as well as 'rr('jO , induce isomorphisms

R ' + . s .
on homotopy groups (or sets). Since w .0 . is a monomorphism, so is
0% co%

b3

Ed

(C ), on the left, Since o T is an epimorphism, so is (C_7), on the
o ¥ 0% % o %
right, It follows that

-1
(Cpymui T (C X, (C ) "(x),y) > m(C_(X/A),%)

is an isomorphism for all x and y, which verifies the defining property of a
quasi-fibration.

The second part of the theorem has the following consequence.

Corollary 7. 4. ‘For any Eoo operad C’ , TI‘*(CX) defines a homology
theory on connected X e J and ‘n*(ﬂ CSX) defines a homology theory on all
X e J . These theories are isomorphic to stable homotopy theory, and the
morphism of homology theories £ ,:w (CX) w,(NX) is precisely the stable

Hurewicz homomorphism,
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Proof. By Proposition 2. € and the homotopy exact sequence of the
quasi—ﬁbrétions me ~C M~ C T, where T = Mf/X is the mapping
cone of f1 X =Y, w*(CmX) satisfies the axioms for a homology theory on
connected .X, Since suspension preserves cofibrations and looping preserves
fibrations, ‘IT*(Q COOSX) satisfies the axioms for all X, The natural weak
ihomotopy equivalences of Corollaries 6.3 and 6. 4 clearly allow us to trans-
fer the result to arbitrary Eoo operads C , and the maps (aoo)* and

© aoos)" define explicit isomorphisms with 'n:(X) = 7,(QX). The statement

about g, follows immediately from Corollary 6.13,



8. The smash and composition products

The purpose of this section is to record a number of observations
relating the maps Bn: CnQnX - Q"X and a: CnX - "s"X to the smash
and composition products, and to make a few remarks about non-connected
spaces., The results of this section do not depend on the approximation
theorem and are not required elsewhere in this paper; they are important
in the applications and illustrate the geometric convenience of the use of
the little cubes operads.

We identify Q"X with the space Hom 7 (s”,X) of based maps s* - X,
s” = In/ axn, and we write 5 for the inclusion Q"X -~ Qn+'1SX given by sus~
pensipn of maps.

For X,Y e T , the smash product defines a natural pairing

m+n

Qmx xQ'y -9 (X A Y); explicitly,

(£ A g)(s,t) = £(s) A glt)
for fe 2 X, ge QnY,'s € Im, and te In. Observe that if m>1 and if
g Q7% x@TK -~ Q™'X denotes the standard (first coordinate) loop product,

then, for fl,f e 97X and ge QnY, we have the evident distributivity formula

2
BlE, £)0n g = Bl ag, fA8)

Diagrammatically, this observation gives the following lemma.
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L L
emma 8.1. For X,Ye¢ J, the following diagram is commutative:

27X x @7% x oy —BX1

Q7% x 2"y
1X1X A
4’ R A
- X
QX x X x 2"y x Py Q™% AY)
A
1Xtx1 g

27X x oY x 9% x gty _NXA

m+n +
QT HAY) x @R A Y),

where A is the diagonal and t is the swiich map

Now the loop products in this diagram are given by 6
: m

m-1 + m-1

Z(C), where
- ]
c=<g X1 8 X1

S " +
€ Em(z) with g and g’ as defined in formulas

7.
{ 3) and (7.4), and the lemma generalizes to the following computationally

important result,

Proposition 8, 2,

F T ;
or X,Y ¢ J and all positive integers m,n, and js

the following diagram is commutative:

£ ) x @7x) x 2y i X > 27X x oy
1X1XA
A2 A
€00x @7x) x @vy ' 2™ (x A v)
IXu
r )

A . j
¢ 0 x @ xxatyy —L1XA

> € 02" (x A v)]

where A is the iterated diagonal and u is the shuffle map
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Proof. We must verify the formula

= C, I A
o (e igay = O ey v A Y]

7 . 3 By Theorem 5.1, if
for xieﬂm}{, yeQ Y, and C"<c1""’cj>ecm(‘])' v ’

5 € Im and te In, then
x (')A y(e) i c (=5

AY,eaes XN (s:t) =
em,j(c,xl vy 3 y) . if s,{lmc .

Visibly, this agrees with Bm, j(C, ESERRE ,xj)(s)l\ y(t).

An equally trivial verification shows that we can pull back the srnashA

i i oposition.
product along the maps « in the sense of the following prop

: . XAY) D
Proposition 8.3. Defineamap A:C_XXC ¥~ Cm-l-n( ) By

- +th
the following formula on points [c,x] e CmX and [d,y]e C Y, wi

1

. j =< ceny > e C (k)’
c= <c ,...,Cj>€ Cm(l): x=(x1""’xj)ax’ d dl, dk n

k
and Y::(Yl""’yk_)e Y

tcrx]’\ [d’Y] = [e,z],

>
where e <C1Xd1""’clxdk""’chdl"”’chdk

1]

oo ®, AV )
and z=(x]_Ayl""'x].'\ykhu'xj'\yl 3 M

Then the following diagram is commutative:

A — XAY
C_XXC.Y C_inEAY)
am X a:n am—?-n

+
QPsx % PSPy — s @SR A Y)
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(where we have identified 57X AS™Y = XA S A YAS® with

+
XAYAasTA s =™ x AY) via the map 1AtAl).

We can stabilize the smash products of the previous proposition, up to

homotopy, by use of Lemma 4.9 and the following analogous result on change

‘of coordinates,

Lemma 8.4, Let X ¢ T . Define 5:2° 8% 1% »~a®™%, n3x1,

by letting S', fe Qn_lSn_IX, be the following composite:

Sn‘—‘Sll\ Sn—l 1Af Sl/\X/\Sn—l tal X/\Slf\Sn-l=SnX.

Then S' is homotopic to S, where Sf=fAal:S" - S°X.
Proof. Let ,7':S" —=5" and hit = ' be the maps and homotopy
constructed in the proof of LLemma 4.9. For fe Qn_lSndX and s e I, let

H_(£): s" = 5™X be the composite
-1

h 1ah
g® s ° 1nf SleAsnd _’c_/_\,.__l_> K ASE S s x At = SDX.
Then Ho(f) =fal and Hl(f) = {t Al)e(1A£), as required, .

Of course, it is now clear that the n suspension maps

o 1s? 1% 4 o™X and c_

1X - CnX obtained by the n choices of privileged
coordinate are all homotopic, It follows easily that the smash products of
Proposition 8.3 are consistent under suspension, up to homotopy, as m and n

vary.
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We next discuss the composition product, Let f‘)(n) denote the space
of based maps s* - s" regarded as a topological monoid under composition
~
of maps. Let %‘Ji(n) denote the component of F(n) consisting of the maps
of degree i. As usual, we write
n ~ ~e
F(n) = Fl(n) o F_l(n) and SF(n)= Fl(n).

'g‘(n) may be identified with QnSn, and then, by (5. 6), S:F(n) > F(nt+1)

i
agrees with o’n:ﬂnSn - Qn+lsn+1. We write ¥ for the monoid lim 'f‘(n)
-

. . -2 O T .
and identify F with QS  as a space. For X e J , define
c: Q"% x f(n) - oK

to be composition of maps. Then e is a right action of the monoid ’f‘(n)

on the space Q"X. The diagram

Q"X X F(n-1)

&1
N

1XS Q"X

X x %(n)/

is evidently commutative for all n> 1, Therefore, if {Yi} € ;(oo’ then
the maps
~J n 4 11,
c:¥Y XFn) = QY XF@n) - QY =Y
n" "o n n o

induce a right action ¢ 1Y XE->Y of ¥ on Y . Of course,
w® o o o

.t Qs® x ¥ - 08° coincides with the composition product on ? The

composition product enjoys another stability property, which is quite analogous

to the result of Lemma 5. 6.
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Lemma 8.5. For X¢ J and n31, define Pc_: PQ"X X ¥(n) - PO™X

by Pcn(x, £){t) = cn(x(t),f) for x e PQnX, fe F(n), and t e I. Then the

. + ~
restriction Qc = of Pcn to " 1X)(F(n) is the composite
+ ' c
@y x Bo) 22550 0Py ¢ Flor) —2H 5 o™ 1k

and the following diagram is comrmutative:

] X1
™% x Fn) ———» oK x F(n) —2 "X X F(n)
Qc Pc c
n n n
Pl 5 pePx P > Q"X .

The precise relationship between the smash and composition products

is given by the following evident interchange formula.

Lemma 8.6, For xe Q7X, Ve Q"Y, fe ¥ (m), and g e Fn),
clxf)Ac (y,g) = c . (xay,fng)
Lemma 8.7, The composition and smash products on T are weakly
homotopic, and both products are weakly homotopy commutative.
Proof. For fe ¥(m) and ge f(n), we have the formulas
(5)Pges™ = fag = STfe(s) Mg

since ($')7g= lml\g and S"t=tA1". S and S' are homotopic by

Lemma 8.4, and the result follows.
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We shall obtain an enormous generalization of this lemma in the
scmd paper of this series., There is an Eoo operad I such that I acts
[a’d B
on F (so as to induce the smash product) in such a manner that the com-
R o~ [a¥4 nJ .
position product F X F = ¥ is a morphism of .[ -spaces.

Of course, there is a distributive law relating the loop producf g to

the composition product, namely
¢(f1! f2)° Slg = ¢(f1° S'g! f2° S’g)

~ .
for £.1, ¢ Q"X and g ¢ F(n-1). Diagrammatically, this gives

* Lemma 8.8. For Xe 7T , the following diagram is commutative
Q"X x "X x F(a-1) gxs > Q"X X F(n)
1X1X AS! c
n
4 4
Q"X x "X x F(n) X F(n) o"x
/
IXtX1 [/
fod 1. o cn X Cn
Q"X X Fn) x "X x Fln) ——2 o™ x o™k

The following generalized distributive law is proven, as was

Proposition 8. 2, simply by writing down the definitions.

Proposition 8.9. For X« j and all positive integers m,n, and j,

the following diagram is commutative:

77
. 8 .x(sH™ o N
&) x @"x) x ¥(n) m, ] > 0 ¢ B (i)
1xX1xA(S)™ C o
T 6) X @%) x F(mn) gt Ry
m A
1Xu 2] A -
- m,J
' . 1X c‘] + N .
£_()x @ % X F(mtn) 2R T ()x @ x)

We can pull back the composition product along the approximation
maps « , but this fact is slightly less obvious. The following reinterpre-

tation of the definition of the maps Gn 3 will aid in the proof,
]

Lemma 8,10, For X e J , let JX denote the wedge of j copies of
X and let p:JX = X denote the folding map, the identity on each copy of X,

Let c= (cl,..,cj>e C‘n(j),and y = (yl,...,yj), yreQnX. Then

8, j(c, v): S" -~ X is the composite
t]

YV e VYL

n_c J:‘]X » X,

S > Js

where T is the pinch map defined by ¢{v) = * unless v = cr(u) for some r

and u, when c¢(v)=u in the i copy of s”,

We next describe CnS0 and a: CmS0 - QnSn; these maps play a cen~

tral role in the homological applications of our theory.



78

Lemma 8.11, For any operad C , cs® is homeomorphic to the dis-
joint union of the orbit spaces C(J)/ Z)j for j>o0,

Proof, If s° has peints * and 1, then any point of cs® other than
* can be written in the form [c, lj], ce c G3).

Lemma 8.12, Consider @ CnSO ~a"s"., Force Cn(j), write

3
1

o~
cxn(c) = an[c, le Fj(n). Then an(c) is the composite

Sn C > an P rsn

Proposition 8.13, Definea map c¢_:C X XC s°>c x by
n” o n n

c_(lex],a) = [v(a, ), ="],

for ce C o) x= (Xl’ ves ’Xj) e X), and de Gn(k). Then the following
diagram is commutative for all n, 14 n ¢ w:

c

cxxcs®—2 L CcX

n n n

o Xao [+4

n n n
[

Q"™ X F(n) —2—9 o"s"x
Proof. Let = g L
I roof, e 'r]n(x) ﬂn(xl)V \% 'qn(xj). S SnX, where

n . _ . . .
nn(xr)(s) = [xr, s] for se S . Since @ =6 ° Cnnn, it suffices to verify

the commutativity of the following diagram:
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RGN fegn S ()

N,
N

ol
o

kgn P__55" < > s

The result follows easily from the definition of v, in 4.1.

Note that, in contrast to the smash product, the following diagrams

are commutative for all n:

(o] (o4
C_X x cns° — C X and Q"s"X X F(n) = »Q"s"x
o Xo o XS T
n n [ n n
(o] (o4 n C
Cop¥XCpps 2t C_, X QT gty « p(ar) —2HL, gPtlgntly

Of course, a: CnX - 2"S™X fails to be a weak homotopy equivalence for
non-connected spaces X, essentially because ‘rro(QnSnX) is a group and we
have not built inverses into operads. Conceivably this could be done, but the
advantages would be far outweighed by the resulting added complexity., It may
be illuminating to compute -n'o(arn):’rrO(CoX) - ‘rro(ﬂnSnX). Recall that if S is a
based set (regarded as a discrete space), then MS (resp. NS) denotes the
free monoid (resp., free commutative monoid) generated by S, subject to the
relation %=1, Let i\u/[S (resp., ,\N)S) denote the free group (resp., free com-~
mutative group) generated by S, subject to the relation * = 1, and let

~
isMS - Ms (resp., j:NS = NS) denote the evident natural inclusions of monoids.
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Proposition 8, 14, For X e J , the horizontal arrows are all

and Ug=U*u{[x,s]|xeXg} for g# *.

isomorphisms of monoids in the commutative diagrams
For g#h, Ugﬁ U, =U,, and Trl(U*) = * since U, is homotopy equivalent

MwO(X)—————"T\'O(ClX) and, if n>1, NWO(X) — 7_(C_X) to SX.. For gF % ™ (Ug) is free on one generator, since Ug is homo-~
i n-o(al) j w (e,) _ topy equivalent to S(X_ U Xg)’ and therefore m, (8X) = IQJ/I-n'o(X) by the

~ ~ van Kampen theorem,

Mr_(X) —> 7 _(25X) Nrr_(X) ———> 7 (@ns"x)

Here the horizontal arrows are induced from the set maps
n
w (n )i (X) > 7 (C X) and w_(n )i (X)-w (@ s"x)
o
by the universal properties of the functors M, N, M, and 1’\\1’
Proof. TFix be C‘n(z) (with b= {b;,b,> where b, (1) £ b,(0) if

n = 1); then the product in CnX may be taken to be
[C: X] ) {d: V] = [Y(B; C, d): Xy Y]

for ce &an(j), x e Xj, de Cn(k)’ and y ¢ Xk. It follows easily that the image
of 'rro(X) generates TrO(CnX) as a monoid. Thus the top horizontal arrows
are epimorphisms and by the diagrams, it suffices to prove that the bottom
horizontal arrows are isomorphisms. For n »1, we have the evident chain
of isomorphisms

~

Nrr_(X) = ﬁo(x) = Hn(SnX) = Trn(snx) = Tro(QnSnX).
For n=1, let Xg denote the component of g, where g runs through a set
of points, one from each component of X. Define open subsets Ug of SX

by

Uy = {[x,s] | xe X, or 54-2- or s>%—}




9. A categorical construction

We shall here introduce a very general categorical "two-sided bar
construction®. When we pass back to topology via geometric realization
of simplicial spaces, this single construction will specialize to yield

(1) A topological monoid weakly homotopy equivalent to any given
Aoo space;

(2) The n-fold de-looping of a Cn-space that is required for our
recognition principle;

(3) Stasheff's generalization [28] of the Milgram classifying space
of a topological monoid.

The construction also admits a variety of applications outside of topology;
in particular, as we shall show in §10, it includes the usual two-sided bar
constructions of homological algebra.

Throughout this section, we shall work in the category Jj of
simplicial objects in an arbitrary category T Since verifications of
simplicial identities are important, we recall the definition of simplicial
objects and homotopies and then leave such verifications to the diligent
reader,

Definition 9.1. An object X ¢ ,X_T is a sequence of objects Xq € j s

g > 0, together with maps B_':Xq-—’-X and si:Xq-—*X in ,T ,
i

gtl

0<L i< q, such that
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8.8, =9, 8. if i<j

ij j-1i
sj—lai if i<j
" . Bisj= 1 if i=j or i=jtl
s.0

ji-1 if i>j+1 "

5% % Sy HIs]

Amap f: XY in A(T is a sequence fq:Xq—> Yq of maps in T such

hat 9.f = = cf oy
that ifq f _1ai and sifq f .s.. Ahomotopy h: f &g in A,’f between

q gtl i

maps f,g: X =+ Y consists of maps hi:Xq -Y 0 £ig q, such that

q+l’

0 h = fq and aq—f-lh =g

oo q q
o+
iF i<
hj_lai if i<
aihj = ajhj_l if i=j>0
hjai_l if 1> j+1
[ - - -
hj+1 s: if i<j
sihj =
hjsi-l if 1>

Thus a purely formal homotopy theory exists in- ,JT , regardless of
the choice of j » and we can meaningfully speak of homotopy equivalences,
deformation retracts, etc. When J is our category of spaces, these
notions will translate back to ordinary homotopy theory via geometric

realization.
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We shall need a few very elementary observations about the relation- is a commutative diagram in T , where ge ,37 and both xao = )\al and
ship between ‘] and /{ T . For Xe J , define X, e ZT by letting . A1 = A9, then
- : ) Eu:()\)
Xq = X and letting each ai and s; be the identity map. For a map Y —> X*
. T R s " ' ’
£X >X' in T , define £:X, > X, in AT by f,= % The following g £,

lemma characterizes maps in and out of X_ in /J{:,T .

Lemma 9.2, Let Xe¢ ] andlet Ye 4 . Th T
emma .o, and le € : en is a commutative diagram in ,1 J .

. . . . T . - - ’ :
(3) A map piX Yo m J determines and is determined by the map If F: '_T - 0“ is a functor, let L /f? —>/~?.T denote the functor de-

~
()X, > Y in AT aefinea by v (o) = 9 5 if

®o fined on objects Y e j 7 by FqY = F(Yq)’ with face and degeneracy
% p - operators F(Bi) and F(si). If wi:F - G is a natural transformation between
o . ,
fl 1g functors T - 7 , let }.L*:F* - G* denote the natural transformation defined
o
' b =
X!t v Y BT R
p— ! . L -
is a commutative diagram in J , Where ge X J/, then Lemma 9.3. Let (C,p,n) beamonadin J. Then (C#’ B n*), 18
T.(p) a monad in 4T , and the category /{C[j] of simplicial C-algebras is
X, Y
- isomorphic to the category C*[x T ] of C_-algebras.
f* g Proof. The first part is evident from Definition 2.4, For the second
T(p") : - -
X1 yd part, an object of either 4 C[T ] or C*[,JJ ] consists of an object
I lre Ly -
is a commutative diagram in X_ J . X e 4T together with maps E,q: CXq—* Xq in 7} such that (Xq’ gq) e C[J1]
(ii) A map \ :YO - X in T such that M)o = )\‘al:Yl -+ X determines and i and the following diagrams commute;
: 3
is determined by the map €,(\):Y X, in 4 defined by £ M) = o aoq ; X _ 1 X and cx 1 X
i A « o, % Cs, s,
Y —————>X , £ i i
o q-1 £ g1
c X —3 sx
go‘l lf ; g-1 q-1 q# gt
)‘I
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~
The point is that the diagrams which state that £:C X~ X is a map in X_ J
are the same as the diagrams which state that each ai and s, on X isa

morphismin C[ J 1.

We need a new concept in order to make our basic construction.

Definition 9,4. Let (C,u,7m) be a monadin J . A C-functor (F,))
s ‘V‘ . -~ .
in a category is a functor F: J - together with a natural transforma-

tion of functors A:FC — F such that the following diagrams are commutative!:

FoeEN S FC and FCC——EF s wc
A \ N
F FC— 0w s ¢

A morphism w:(F,\) =~ (F',\') of C~functors in qf is a natural transforma-

tion w:F — F' such that the following diagram is commutative:

FC > FIC

)xl l)\'
F——> F!
This definition should be compared with the defintion of a C-algebrail
a monad in '_T can act from the left on an object of T and from the right

on a functor with domain 7 . The following elementary examples will play

a central role in all of our remaining work.
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Examples 9.5. (i} Let (C,p,n) be a monadin 7 . Then (C,p) is itself

a C-functor in 7J . Since (CX,p)e C[ T 1 and p:CZX -+ CX is a morphism

in C[J ] forany X e7T , (C,1) can also be regarded as a C-functor in

C[ T 1, by abuse of language.

(i) Let a:(C,p, n) ~ (D, »,L) be a morphism of monads in 7 . Recall

that if (X,£) is a D-algebra, then (X, £)= (X, £-a) is a C-algebra.
Analogously, if (F,\) is a D-functor in ] , then o®(F,\)= (F,\*Fa) isa

C-~functor in j , in view of the following commutative diagrams:

F
F—>3 s¥C and FCC Fe FC
L Fa Fal Fo
]
FD FDC —2% 5 gpp 1V FD
Y
F FC - Fa FD — F

In particular, by (i), {D,v.Da) is a C-functor in D[ T J; composing
D:T~>D[J] with «:D[ T 1> C[T], we can also regard (D,v-.Da) as a
C-functor in C[ T ]. Clearly a: (C,p) - (D,v-Da) is then a morphism of
C-functors in C»[ T ‘

(iii) Let #:Hom 7 (X, AY) -*Hom,v_ (£X,¥Y) be an adjunction between
functors A : U =T and =: T >V . Let (AZ,v,?%) be the monadin T
which results by Lemma 2,10; thus {= ﬁ_i( 12) and v = Af( 1AZ‘)'

Clearly (= ’¢(1AZ)) is a AZ-functor in V.
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(iv) Let a:{(C,p,n) —~ (AZ,v,l) bea morphism of monads in T , with
AZ  asin (iii). Obviously @(e) = g(1)*Ze: ZC -~ . Thus, by (ii) and (iii),

(2,9()) is a C-functor in Y and
@:(C,p) > (AZ, Af(e))

is a morphism of C-functors in C[ 7 ].

Construction 9. 6. Construct a category B (J,V) and a functor

B, BT A9 as follows. The objects of @B (T ,1) are triples
(F,7), (C, 1, ), (X, E)),
abbreviated (F,C,X), where C is a monad in 7 ,F 1is a C-functor in Vv
and X is a C-algebra. Define B*(F, C,X) by
Bq(F,C,X) =rc,
with face and degeneracy operators given by
=1 , vFci& ~rc¥lx
o, =rcily ey L%k g<i<q,
3,= re¥l | ticx-x

5, = FC'q , micTix oty o gcicg

A morphism (w, §,f): (F,C,X)~(F,C,X" in HB(7F ,V) is atriple
consisting of a morphism Y:C -~ C!' of monads in 7 , a morphism
w:F > y¥F' of C-functors in ()7 , and a morphism f:X -~ ¢*X' of C-algebras,

where (°F' and q;*x' are as defined in Example 9.5 (iii). Define
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B, ¥, 1) by
B (T4, 1) = % FCi - Fr e

here 'mpq:FCq - F'(C‘)Cl is a né.tural transformation of functors o - U~ ,

and 'm{;q‘f is defined by commutativity of the diagram

q .
rei FCH FC X!
_ mp s mpd
i —ENCN% > picn &

The following observation will be useful in our applications.

’
Lemma 9.7. Let (F,\) be a C-functor in U and let G:VU >V

be any functor, Then (GF,G\) is a C-functor in V"' and
B,(GF,C,X) = G,B_(F,CX)

in A(I)J for any C-algebra X.

We next show that, as one would expect, B*(C, C,X) can be regarded
as a "simplicial resolution of X", This special case of our construction was
known to Beck [ 5 ] and others, The proofs of the following two propositions
consist solely of applications of Llemma 9. 2 and formal verifications of

simplicial identities.
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Proposition 9.8. Let (C,u,7n) be a monad in J and let

(X,8)e C[ J]. Then g.{E): B,(C,C,X) ~ X, 1is a morphism in Jcl g 1
and 'r*(n):X* - B*(C, C,X) is a morphism in 47T such that
£, o T, = 9 XJ‘ . Defi : - ' i

«(E) ,,,("'1) on X, efine h, Bq(C, C,X) Bq+1(c’ C,X), 0gig g,

by P .
b, = solnaol:cq“x >y | g TM-iy | gat2-iy

Then h is a homotopy in {J from the identity map of B_(C,C,X) to
T*(n)&‘*(é), and hio Tq(n): —rq+1(r|) for all i. Thus X, is a strong deforma-

tion retract of B_(C,C,X) in 4T .

Analogously, if for fixed ¥ and C we regard B*(F,C,C'Y) as a
functor of Y, then this functor can be regarded as a "simplicial resolution
of Fu,

Proposition 9.9. Let (C,u,m) be 2 monadin J, let (F,\) bea

G-functor in VY , andlet Ye J . Note that (FY), = F.Y.. Then

€,(\): B*(F, C,CY)~F,Y, and T*(FT]):F*Y* - B*(F, C,CY) are morphisms
in UV such that E*()\.)GT*(FT}) =41 on F_Y_ . Define

BB (F,C,CY) =B _,,(F,C,CY), 0<i<q, by

ho=s ...s.  ~FC g,

. qti qt2
5 q it 1+1"'Bq'FC Y - FC Y, Y ~>~CY.

Then h is a homotopy in 4V from T (Fn) *€,(\) to the identity map of

B, (F,C,CY), and hi° 'rq(Fn) = (Fn) forall i, Thus F_Y_ is a strong

g+l
deformation retract of B_(F,C,CY) in 0.

i
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The following two theorems result by specialization of our previous
results to Examples 9.5. In these theorems, we shall be given 2 morphism
of monads «:C - D, and the functors oz* which assign C-algebras and
C—functo'rs to D-algebras and D-functors will be omitted from the notations.

| The reader should think of @ as the augmentation €:C—~ M of the
monad as‘sociated to an AOO operad, or as one of the morphisms of monads
a: Cn - QnSn, or as the composite of @ and L CX Cn - Gn, where C

is the monad associated to an Eoo operad.

Theorem 9.10, Let a:(C,p,n) = (D,v, %) be a morphism of monads
inJ .
(i) For (X,8)e C[T], B,(D,C,X) is a simplicial D-algebra and there are
natural morphisms of simplicial C-algebras:

E..,(g) B%(a’i’ i)

e

X, <———— B,(C, C,X) ——————> B,(D, C,X);
s*(g) is a strong deformation retraction in 47 with right inverse -r*('q) such
that B*(a, 1,4)er (n) = T*( L)X, ~ B.(D,C, xX).
(ii) For (X,£") e D[T], there isa natural morphism
£ (V1B (D,C,X) >~ X,
of simplicial D-algebras such that £,(£')° T, (t)=1 on X, and such that

£, (609 B (e, 1,1) = £,(£'0):B,(C,C,X) > X,.
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(i) For Ye J , there is a natural strong deformation retraction
Ed:(v +De): B (D,C,CY) - by,

of simplicial D-~algebras with right inverse -r*(Dn).

When D= AZ, as in example 9.5, we can "de-lambda" all parts of
the theorem above; applied to o:n: Cn - QnSn, this fact will'lead to the n-fold

"de-looping" of Cn- spaces.

Theorem 9.11, Let a:C - AS be a morphism of monads in 7J ,
where AX results from an adjunction ﬁ:Homg_ (X, AY) ™~ Homqr (=X,Y).
(i) For (X,£)eC[T L B (AZ,C,X)= AB(,C,X).

(i) For YeV , (AY, AB(1)) ¢ AZ[ T ] and there is a natural morphism
€f(1):B.(Z,C,AY) > Y,

in fV 5 6(AB(1)) = A, e B(1):AB.(T,CAY) AT, .

(iii) For Y e T , there is a natural strong deformation retraction
gf@):B(Z,C,CY) ~2 ¥

in {0 with right inverse = (Sm), mY - CY.

Remark 9.12. We have described our basic construction in the form most
sujtable for the applications, However, as pointed out to me by MacLane,

the construction admits a more aesthetically satisfactory symmetric generali-
zation. If C is a monadin J , then a left C-functor (E,£) from a category
M is a functor E: U~ T together with a natural transformation

£:CE ~ E suchthat £op= £2CE and £n = 4; thus it is required that EX

|
.
1
i
|
|

;inV’,bY
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admit a natural structure of C-algebra for X e W. Now we _can define
\
B, (F,C,E), a functor from W to V' where (F,\) is a (right) C-functor

B.(F,C,E)X) = B.(F,C,EX)

. on ‘Objects Xe 'U. . Since an object of ] is equivalent to a functor from

the unit category (one object, one morphism) to T , our original construction
is a special case, In the general context, B‘,:(F, C,C) is a simplicial resolu-
tion of the functor ¥ and B*(C, C,E) is a simplicial resolution of the

functor E,



10. Monoidal categories

The construction of the previous section takes on a more familiar form
when specialized to monoids in monoidal categories. We discuss this speciali-
zation here in preparation for the study of topological monoids and groups in

[21] a2nd for use in section 15.

A (symmetric) monoidal category (1L ,®,%) is a category {L together
with a bifunctor ® : U XU =W and an object %*e¢ U such that ® is
associative (and commutative) and * is a two-sided identity object for @ ,
both up to coherent natural isomorphism; a detailed definition may be found
in MacLane's paper [ 17]. For example, a category U with finite products
(and therefore a terminal object %, the product of zero objects) is a symmetric
monoidal category with its product as @ ; we shall call such a category
Cartesian monoidal. Observe that if WL is a (symmetric or Cartesian) monoidal
category, then so is 4l , with ® defined on objects X,Y ¢ U by
(X®Y)q= Xq®Yq’ Bi= ai®ai and s, = si® s, and with %= (*)*

A monoid (G, g, ) in a monoidal category L is an object G e W
together with morphisms p!: G®G - G and n: %> G such that the following

diagrams are commutative:

cRcRc 8% 5@c  wma +0c2®1 e t®1lgex
p®1 B lp
GG —E—» G G

%4
I
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These diagrams show that (G, i, n) determines a monad in ‘W , which we shall

still denote (G, 1, n), by
GX = GQ®X

- . pX)=p®1: GRGRX ~ GOX

X)=n®1: X 2x®X -~ GO®X

A left G-object (X,£) is anobject X ¢ Il together with a map £:GR®X —» X
in W such fhat En=14 and £(p®1)=£(1® £). Thus a left G-object is pre-
cisely a G-algebra. On the other hand, a right G-object (Y,\) determines a
G-functor in UL , which we shall still denote (Y,\), by
¥YX = YRX and AM(X)=AQ1:TRGAOX +~YRX.

Thus a triple (Y,G,X) consisting of a monoid G in W and right and left G
objects Y and X naturally determines an object (¥,G,X) of P(U,W),
and B*(Y, G,X) is a well-defined simplicial object in UL . Of course,

Bq(Y,G,X) = 76X =YRGCQR...® GRX, qfactors G,
with the familiar face and degeneracy operators

1'"@p®1T™ if o0<i<q,
qH-i

» =a®1%, 3,
[o] 1

11+1®"1 Q1

1}

aq=1q®g , s, i 0<igq .

i

Let us write (L {(WL) for the evident category with objects (¥, G,X), as above.
If WU is symmetric and if (¥,G,X) and (Y',G',X') are objects of (L{W),
then, with the obvious structural maps, (Y@ Y'.GRG!,XQ®X') is also an object

of a (1L ); and we have the following lemma.
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Lemma 10.41. Let ru_ be a symmetric monoidal category and let
(Y,G,X) and (Y',G',X') be objects of a('u_) Then there is 2 com-

mutative and associative natural isomorphism

B*(Y,G,X)® B*(Y',G',X‘) 2B (Y®Y', GRG!, XOXY)

of simplicial objects in UL.

Proof. Since U is symmetric, we have shuffle isomorphisms
x®cI®Y)® (@G IR®Y) 2x@X'®(GRG)I®YR Y,
and these are trivially seen to commute with the ai and s, -

Now suppose that u is a monoidal category which is also Abelian,
Then objects of ,Ju, determine underlying chain complexes in U with
differential d= > (-1)iai; moreover, if h:f = g is a homotopy in 4L
in the categorical 'sense of Definition 9.4, then s= > (-'l)ihi is a chain
homotopy from f to g in the usual sense, ds +sd= f-g, by direct
calculation. Therefore, regarding B*(Y, G,X) as a chain complex in U ,
we recover the usual unnormalized two-sided bar constructions, together
with their contracting homotopies when X = G or Y = G. To normalize,
we quotient out the sub-complex generated by the images of the degeneracies.
Of course, if W is the category of (graded) modules over a commutative
ring R, with & the usual tensor product over R and #%= R, then a monoid
G in J is an R-algebra and left and right G-objects are just left and right

G-modules
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“When AL is our Cartesian monoidal category of (unbased) topological
spaces, geometric realization applied to the simplicial spaces B*(YQG, X)
will yield a complete theory of associated fibrations to principal G-fibrations
for topological monoids G. The following auxiliary categorical observations,
which mimic the comparison in [ 9 ,p.189] between "homogeneous" and
"inhomogeneous" resolutions, will be useful in the specialization of this
theory to tépological groups and will be needed in section 15.

For the remainder of this section, we assume given a fixed Cartesian
monoidal category UL . For X e s , let £ denote the unique map X — %
and let A:X - X XX denote the diagonal map. A group (G,p, n,j() in W

is a monoid (G,p,n) in W together with a map Y:G ~ G in L such

that the following diagram commutes:

1 XK

GXG Ll GXG
TAN B

G—E2 w1 =g

Construction 10.2. Define a functor D_: W~ AW by letting

DX = X('rhi s
q
with face and degeneracy operators given by

o, = Pxex1ThxT L xlyaxx?t 2 x4

and s, = ttx ax 19l xH L at2
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Foramap f:X—+Y in W, define qu = fq+1. Observe that D, preserves

products in the sense that the shuffle isomorphisms between 'Xq'*'i X Yq+i
and (X X Y)qu define an associative and commutative natural isomorphism
between D X XD,Y and D*(X X Y) in 4U. Therefore, if (G,p,7m,x%) is a
group in AL, then (D*G,D*p,D*n,D*X) is a group in AU and if (X,£€) isa
left G-object, then (D*X,D*g) is a left D G-object. By Lemma 9.2, if
—rq:X e Xq-M is the iterated diagonal, then T*:X* - D*X isa map in SU .
If G is a group in U, then Tat G* - D*G is a morphism of groups in SU.
In particular, left and right D*G—objects determine left and right G*-—obj ects

(that is, simplicial G-objects) via 7, .

Proposition 10.3, Let (G,p,m,¥%) be a group in AL . Define

@,:B,(%,G,G) = DG

‘GTH . Gq—l-i

i-1
by letting o:q. be the map whose i-th coordinate is g ~Xu

gt2-i’
1< i< g+, where p.j:GJ -~ G 1is the iterated product (pi =4, 0, =
= p{d X, 1) if §>2). Then @, is an isomorphism of simplicial right
J J= -

. -1 . . . : i-1 q-i
G-objects ; ozq is the map whose i-th coordinate is g Xp(d X)X g
if 1<i<q andis E1X1 if i=qH.

Proof. Of course, the proof consists of easy diagram chases, but
some readers may prefer to see formulas. Thus suppose that objects of U

have underlying sets and write elements of Bq(*, G,G) and of DqG in the

respective forms

[gi,...,f,zq]gqH and (gi,...,gqﬂ), g ¢ G.
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Write plg,g') = gg' and y(g) =g ~. Then we have

ollegseogglegyy) = (880 8y 8 Bapproe o BBarsr Bgra)

and

o ) = [g,e) v e,8; )

q gi,.--,gq+1 g'lgz 1 E583 ""’gng+i gq+i

"Visibly these are inverse functions, For ge G, we have

(lgyee-erglegy)e = lgpeeig e, g and (g, .ong yy)e= (g8 o8y, 8)
-1 .

and ¢ and « are thus visibly G-equivariant; they commute with the face

and degeneracy operators by similar inspections,

In line with Proposition 9.9 and the previous result we have the follow-

ing observation..

Proposition 10, 4. Let Xe¢ U and let n:% =X be any map in u .

Define hi: Dq(X) - Dq+1(X), 0<i<q, bythe formula
h, = sinx1%hpt: x4 o x|
i o o
Then h is a strong deformation retraction of D (X) onto (%) .

Proof. Since % is a terminal objectin U, gn=141 on * and
F_*o'r*(n) =41 on (a")* . It is trivial to verify that h is a homotopy from 1

to 'r*(*q)" €, such that hio'rq(n) = —rq+1(-n) for all i.



11. Geometric realization of simplicial spaces

We shall use the technique of geometric realization of sirplicial spaces
to transfer the categorical constructions of the previous sections into construc-
tions of topological spaces. This technique is an exceedingly natural one and
has long been implicitly used in classifying space constructions, Segal [24]
appears to have been the first to make the use of this procedure explicit,

In this section and the next, we shall prove a variety of statements to the
effect that geometric realization preserves structure; thus we prove here that
realization preserves cell structure, products {hence homotopies, groups, etc. ),
connectivity, and weak homotopy equivalences. Base-points are irrelevant in
this section, hence we shall work in the category 7L of compactly generated
Hausdorff spaces.

Let Aq denote the standard topological g-simplex,
A = {(t,....t )] o<t <1 Et:i}ch“.
q o’ ‘g == i

Define ﬁi:Aq—i - Aq and cri:AqH - Aq for 0<i< g by

6i(to,...,tq_1) = (to,...,ti_i,O,ti,...,tq_i)

and

R s T L NVPLPRTTRL VY
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Definition 11.1. Let X ¢ AU . Define the geometric realization of X,

denoted |X|, as follows. Let X = z X X A , where X X A has the
q>0 q q q

product topology (in W ) and z denotes disjoint union. Define an equivalence

'

relation & on X by

(Bix,u) = (x,&iu) for xe Xq s WE Aq—i ,
(six,u) ~ (x, criu) for x e Xq , UE zlq}_1

Mo

As a set, |X]|=X/(=). Let Fqu] denote the image of X, X4, in [X|

i=0

and give Fq]X[ the quotient topology. Then FqIX] is a closed subset of
Fq+:llx!’ and IX] is given the topology of the union of the Fq}X[ The
class of (x,u) e X in ]X[ will be denoted by Ix,ul. If £2:X - X! is-a map
in .A(U. , define [f]:|X]|— |X'| by |f||x,u] = |#(x),u]. Observe that if
each fq is an inclusion (resp., surjection), then ]f} is an inclusion {resp.,
surjection).

Of course, if X is a simplicial set, then the classical geometric
realization of X, due to Milnor, coincides with the geometric realization of X
regarded as a discrete simplicial space. Further, if X denotes the under-
lying simplicial set of a simplicial space X, then [X[ = ]gl as sets and
therefore any argument cobcerning the set theoretical nature of ISCJ[ applies

automatically to IX] . The following definition will aid in the analysis of the

topological properties of [X]
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q
Definition 14.2. Let X AU.. Define sXq= LJO ijq CXq-i-i . We
—_—— j=

say that X is proper if each (Xq+i’ sX ) is a strong NDR-pair and that X

q_)
is strictly proper if, in addition, each (Xq+1’ stq), 0<k<gq, is an NDR~

pair via a homotopy hil X Xq+1» Xq+'1 such that .

k-4 k-1
X s X .
h(IXk\% s 4 C }:Jo #q
J:

A point {x,u) e XqX Aq is said to be non-degenerate if x is non-

degenerate and u is interior (or if g=0).

Lemma 11.3. Let X ¢ 4U. Then each point of X is equivalent to a
unique non-degenerate point. If X is proper, then each (F qu! s Fq_ile)
is an NDR-pair, IXI € (\_L , and Fq]X!/F g-1 IX! is homeomorphic to

q
SHX /sX .
Proof. Define A:X ~+X and p:X ~X by the formulas
(1) AMx,u) = (y,o, ..o, 0v) i x=s, ... sj ¥ where y is non-degenerate
iy, i 1
<j, <...<j 3 and
and 0< iy _]p H

. = . . a
(2) p (x,u) = (ai "'ai x,v) if u= 8, ...Giv where v is interior an
1 q q 1
OSii<"°<1q'

By [ 18, 14. 2], the composite \ep carries each point of X into the unique

equivalent non-degenerate point. Now

y Fqlxl -F x| = (Xq— sXq_i)X(Aq- BAq).

g-1
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i X A i -pai
If X is proper, then (Xq ¢ XqX aAqu SXq—i X Aq) is an NDR-pair by
Lemma A.3 and |X| ¢ U by [30,9.2 and 9.4]. There is an evident one-

to-one continuous map

: _ L <9
?q‘X{/Fq-i‘x‘ = (qu Aq)/(qu BAqu sX X Aq) S (xq/sxCl

g-1 -i)

determined by Xq - Xq/sX g1 and any homeomorphism of pairs
(Aq, BAq) »A(Iq, aI%Y; the continuity of the inverse map follows easily from

[30,4.4].

As an immediate consequence of the lemma, we have the following

proposition.

Proposition 11, 4. Let X be a cellular object of X'u , in the sense

that each Xq is a CW-complex and each Bi and 8, is a cellular map.
Then |X| is a CW-complex with one (ntq)-cell for each n-cell of Xq- qu-i'
Moreover, if f:X = X' is a cellular map between cellular objects of 4 'U,

(each fq is cellular), then [f| is cellular.

As in the case of simplicial sets, geometric realization is a product-

preserving functor since we are working in J_ .

Theorem 14.5. For X,Y ¢ U , the map ]vilx f'n'zfz |xxv| - [x]%x]|Y]|
is a natural homeomoxrphism. Its inverse { is commutative and associative,

and is cellular if X and Y are cellular.
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Proof. We recall the definition of ¢ , which is based on the standard

triangulation of APX Aq. Consider points

= = ! .
u (to,...,tp)eAp and v (to,...,tq)eA

q
m = n &
Define u = E ti,05m<p,and v = t3 ,0<n<q. Let
i=0 j=0 °~

+qg-
wo L...% wp -1 be the sequence obtained by ordering the elements of

(v™ U {v"} and define we A_, by

ptq

k k-1 -1 pta_ ,

w=(tg,...,t‘£)+q),where o= wo~w, s, w =0andw

Let 11 < ... < iq and ji <.00 < jp be disjoint sequences (not uniquely

i .
determined) such that WJS € {um} and w = € {vn}. Then

U=¢, ... 0, W and v=0, ...0. W.
i i 3

1 q 1 P

If xe X andye Y , define
p q

g(lx,ul,]y,v[) = I(si teuS, X, S, +asS, y),w].
a 1 Jp M

It is easy to verify that § is well-defined and inpverse to Ipil X |p2] by use
of Lemma 11.3 (compare [18,14.3]), and the commutativity and associativity
of ¢ follow formally from the commutativity and associativity of 2’,_1. The
continuity of ¢, and the cellularity statement, follow fromthe commutative

diagrams:
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1XEX4 X XA X7
X LT s
pXALXY XA, Fp[x]xFq{Y]

X XY XA XA
P 49 p

C

f

: e ds ot s
X XY xK(,j) XX, j) -
pd | R T Fp+quXYI

Here XK(i,j) denotes the set of poi i
R of points of ApXAq which can determine given

sequences i= {ir} and j= {js} as above, s = s

FEREE and
, e 1

S, sus i, = .

Jp sji’ e(i,j{{u,v) = w, and the 7 .are quotient maps.

Corollary 11,6,

i

s =

Let £:X —» B and p:Y ~ B be maps in AU . Then
B :
[x x Y| is naturally homeomorphic to || XIBI |Y], where
B
(XX7Y) ={(x f = i
)q {x, y}] q(x) pq(y)} C qu Yq gives the fibre product in AU .
Proof.

An easy verification shows that the restriction of ¢ to

|B| B
[x| x'Z1|¥] takes values in [X X Y| and is inverse to

EARSEAE Ix xBy| - IXIXIB!IYI .

Corollary 41.7. The geometric realization of a simplicial topological

monoid {or group) G is a topological monoid (or group) and is Abelian

if G is Abelian.

There are two obvious notions of homotopy in the category A, namely
that of a simplicial map 1 2 XX =Y and that given categorically in

Definiti
ition 9.4. We now show that geometric realization preserves hoth types

of homatopy.
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Lemma 14.8. Let X e WL . Then |X | may be identified with X.
Proof., X=F |X,|=|X,| since all simplices of Xq= X are
rzrool ol x %

degenerate for q > 0.,

Corollary 11.9. If hiI, XX > Y is a mapin 4U and if hi:X Y is
defined by h, (%)= h(i,x) for xe Xq and i= 0 or i= 1, then the com-
1,9
posite IX |X]| ——é’—? |I*XX| ‘—L}Ll——-> |¥| is a2 homotdpy between ]hol
and !hil'
Proof. For te I, |h|tt, [x,u]) = |h(t,x),u| by the definition of L.

Corollary 11.40. Let h: f =~ g be a homotopy between maps

f,g: X > Y in A'u , as defined in Definition 9.4. Then h d'eterrnines a
homotopy h:IX |X] — |Y]| between [£f| and |g].

Proof, Let A[1] denote the standard simplicial 4-simplex [18,p.14],
regarded as a discrete simplicial space, By [18,Proposition 6.2,p.16], if :'Li
is the fundamental 1~simplex in A[1] and we define H:A[1] XX =Y by

...soii,.x) = D (%) , xe ?(q,

Hlsg g 8344551 1415
then H is a map of simplicial sets, and therefore also of simplicial spaces
{since the hi and Bi are continuous). Now |A[1]| is homeomorphic to I
and the composite

1% x| = |a]] x x| 2= |ap]x x| —Ele |y

~
gives the desired homotopy h between [f] and lg]
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‘We next relate the connectivity of the spaces Xq to the connectivity
of |X].

Lemma 11.44. For X e U, -n'OIXf = wO(XQ)/('\'), where ~ is the
e'quivalence relation generated by [an] ~ [81::] for x e X,; here [y] de-
‘notes the path component of a point y € Xo' )

Proof. X determines a simplicial set 'ITO(X) with g-simplices the
cornponenté of Xq and, by [418 ,p. 29 and p.b5], our assertion is that
110|X[ = -rrOInO(X)I. If (x,u)e XqX Aq’ q>0, and if f:1~> Aq is a path con-
necting u to the point SOqAO, then the path ?."(t) = |x,£(t)] in |X| connects
[x,ul to a point of Xo = FOI.X]. If xe X

4 then g(t) = |x, (t,1-t)] isa

path in |X| connecting aox to aix. The result follows easily,

Theorem 14.12, Fix n> 0, If X is a strictly proper simplicial
space such that Xq is (n-q)-connected for all q< 1 ,then |X| is n-connected.
Proof. For n= 0, this follows fromthe lemma. For n= 1, we may
assume that Xq is connected for q > 2, since otherwise we can throw away
those components of Xq whose intersection with the simplicial subspace
of X generated by Xo and X1 is empty without changing the fundamental
group of ]X] Then ]Q*XI is weakly homotopy equivalent to QIXl by
Theorem 12. 3 below and therefore [X] is simply connected since ]Q*X] is
connected. (For technical reasons, this argument does not iterate.) Now
assume that n > 2. By the Hurewicz theorem, it suffices to prove that

ﬁlle =0 for i< n. We claim that ﬁinIX] =0 for i£n andall g>0.
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Fo [X] = Xo is n-connected, and we assume inductively that

'ﬁ’i(Fq_llxl) =0 for i<n. Since (Fq]X],Fq_llX]) is an NDR-pair, we

will have that ﬁi(Fq]X |)=0 for i<n provided that

'I\-I’i(Fq]X[/Fq_l ]X‘|)= 0 for i< m. Since Fq[XI/Fq_lle] is homeomoxrphic
q i i H(X /sX )=0 for i<n-g;

to S (Xq/sxq-l)’ it suffices to prove that Hi( q/s q—l) or i< n-g;

since Xq is (n~-g)-connected and (Xq’ sXq_l) is an NDR-pair, this in turn

will follow if we can prove that ﬁi(sXq_l) =0 for i< n-q. We shall in fact

show that

k
”»o
= i < - < < q.
Hi(JkJ0 sX )=0 for i<mtl-g, 0<k<q

- We may assume, as part of our induction hypothesis on g, that

k
"~
Hi( U stq-Z) =0 for i<nt2-q and 0<£Lk< g-1.
j=0
Observe that s.: X -+ s.X and 9.:8.X, . - X are inverse homeo~
iTa-l i gl iyl q-1
morphisms, 0< j< q. Thus ﬁi(ijq 1) =0 for i<ntl-q. Assume

k-1
inductively that ‘I:lI( U s X )=0 for i<ntl-q, Since X is strictly
i =0 j g-1

proper, the excision map
k-1 k-1 k
- X X
( jL)O SjXq—l’stq-l N 3\2)0 SjXq-l) (JL{(,) sj q-l’sk Cl"l)

is a map between NDR-pairs, and we therefore have the M yer-Vietoris

exact sequence
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k

kel
—»Hi(_Lj sX @ HE(eX, )~ H(| JsX )
j=0 j=0
k-1

- Hi-l(skxq-ln jE% stq-l) - ..

= i< = = . i =
4If 5.y sjz for j <k, then y 8k+lsjz sjakz, since sksj Sjsk-l“‘
it follows that
k-1 k-1
5Fe1 M L o%an = L) 5%
J=0 =0
k-1 k-1
Now sk: U ijq-—z - \ Skstq—Z is a homeomorphism, with inverse
j=0 j=0
Bk. By the induction hypothesis and the above exact sequence,
k
Uad
H( s, X .})=0 for igntl-qg, as required.
i =0 j g-1

Theorem 11,13, ILet £:X - Y be a simplicial map between strictly

proper simplicial spaces. Assume that each fq is a weak homotopy
equivalence and that either [X[ and lY] are simply connected or that [f[
is an H-map betweén connected H-spaces, Then ff[ is a weak homotopy
equivalence,

Proof. By the Whitehead theorem, it suffices to prove that [£]
induces an isomorphism on integral homology. In outline, the proof is the
same as that of the previous theorem, One shows that Fqlf] is a homology
isomorphism by induction on q and the same sequence of reductions as was
used in the previous proof, together with the naturality of Mayer~Vietoris

sequences and the .five lemma.
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We complete this section by recalling a result due to Segal [24] on
the spectral sequence obtained from the homology exact couple with respect
to an arbitrary homology theory k. of the filtered space ]XI s where X is
a proper simplicial space. Observe that kq(X) is a simplicial Abelian
group for each fixed ¢; thus, regarding kq(X) as a.chain complex with
d= Z (-l)i(Bi)* , there is a well-defined homology functor H*k*(X) such
that Hpkq(X) is the homology of 'kq(x) in degree p. By [18,22.3],
H*kq(X) is equal to the homology of the normalized chain complex of kq(X),
and the p-chains of the latter chain complex are easily seen to be isomorphic

to k (X ,sX .
q( p’ p-l)

Theorem 11.14. Iet X be a proper simplicial space and let k, be

2
a homology theory., Then quX = Hpkq(X) in the spectral sequence {EIX}
derived from the k, exact couple of the filtered space ]Xl.
1 1
Proof, E_ X=k F [ X|,F X and d° is the boundar
=z rool. Pq p+q( pl I’ p-ll I)s 2 y
operator of the triple (FPIXI ’Fp—l x| ,Fp_ZIX[). The result follows from

Lemma 11,3 and the following commutative diagram:

111
sP m,
k (X)) —> k_, (X XA ,X XA )————>k . (F_|X|,F_ . |X
q p p+q( P PP p) p+q( pl l p-lI D
9 9
.' - " ‘n‘."
k X XA ,X XA )—>k P X
. p+q-1( p™p ¥p1X ) p+q-1( p-ll I’FP;ZIXD
o .
2. (-1) S(-1)(1Xe,) |=
1'1‘
& (x_x A, x _xal)
j=0 ptg-1""p"  "p’ P
e}a(-1)1(1><si)_:1 o T
p-1
p . (Xv)@ S P Y .
— @k X XA X XA
520 9 P i=0 p+q-1( p-1"""p p-l)
v v
p-1
' Sk k (X XA X XA
kq(Xp_l)-——-—% ptg-1""p-1 p-1'""p-1 Ap—l)

Here Ap = BAP is the (p~1)-skeleton of Ap and Kp is the (p~2)~skeleton,

i . e (h S Cod i
Ap g SjAp-l’ @, is the inclusion (AP,AP)—* (Ap, Ap), and $ (-1)7(1 Xari)*
is an isomorphism by the Mayer-Vietoris sequence of the p+l pairs

(X_X A
p

i - . -
o XPXAP). The maps Bi: (Ap—l’ Ap-l) - (A, A;) are clearly relative

P
homeomorphisms. On the left, the maps are

- i X} = {x, -X - px X €
(2(-10) = (=, -x,.. ., (-1)P%) kq(Xp),

and

P
VIX 3000, =
(xo xp) 2 Bi*(xi) , E € kq(XP) .

i=0
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(The other map V¥ is defined similarly, from (Bix 1),, and the maps =
are the evident quotient maps.) Now the upper left rectangle commutes
by a check of signs, the upper right and lower left rectangles commute by
the naturality of & and of 5,, and the triangle commutes by the face
jdentifications used in the definition of the realization-functor.

Of course, {E'X} is a right half-plane spectral sequence
(E;qX =0 if p < 0). The convergence of such spectral sequences is dis-
cussed in [ 6 ]. The following observation is useful inthe study of products

and coproducts in {ErX}.

Lemma 11.15. For X,Ye JU, t:|X|X |Y| = |XX Y| is filtration
preserving, and the diagonal map A: ]X| - ]Xl X [X[ is naturally homo-
topic to a filtration preserving map.

Proof. ¢ (Fp]X] X Fqlx}) c Fp+q|X X Y| by the definition of { in
Theorem 11,5, For the second statement, define g An - An for i=0 andl
and all n 20 as follows, Let u= '(to, cae ,t'n) e A . Let p be the least

integer such that to+ e +tp > 1/2 and define

p—
g (W)= 6_... 5p+1 (2t ,eees th_l, 1 - % 2t.)
and

n
~ s Ppy
g (w)=5_"(1 2 Zti,th+1,...,2tn)
i=ptl

Then g; induces Gi: ]X] - [X] such that Gi is homotopic to the identity map;

thus A is homotopic to the filtration preserving map (GOX Gl) s A,

12, Geometric realization and S_,<, C and

ta? o
b b

In this section, we investigate the behavior of geometric realization
with respect to the functors S*,C*, and 2, defined on JT , where 7T is
our category of based spaces, For Xe ,Jj , we give IXI the base-point

#*e XO = FOIX[; if X 1is proper, then it follows from Liemma 11.3 that *

is non-degenerate and that |X| e J .

Proposition 12,1, Realization commutes with suspension in the sense

that there is a natural homeomorphism 7: ]S*X] - 5|X| for Xe A7 .
Proof. Define 7|[x,s],u]| =[]x,u],s] for xe Xq’ sel, and ued .
It is trivial to verify that T is well-defined and continuous, with continuous
inverse.
The following pleasant result is more surprising. Its validity is what
makes the use of simplicial spaces a sensible technique for the study of
C -spaces,

Theorem 12.2. Let ¢ be any operad and let C be its associated

—~

monad in J . Then there is a natural homeomorphism v: [C_,,X] - C]X]

for X e JT such that the following diagrams are commutative:

|%| v and ’ lp.*l "

T

2
|c,X| ICZXI v =Cvev

A
g

c?lx|

clx] |c x| ————— c|x]|
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I (X,€) e KfC[T], then (|X[, ]Elv-i) ¢ C[J ] and geometric realization
therefore defines a functor 4CLT 1~ CLT]I.
Proof. Consider a point ][c,xi, .o ,xj],u[ € IC*X] , where ce (C(j),

x;¢ X , and ue A . Define v By the formula
q q

(2) VI[C!X1J°°')Xj]!uI = [c"xiﬁulr---:lxjxulj'

Clearly v is compatible with the equivariance and base~-point identifications

used to define CXq and with the face and degeneracy identifications used in

the definition of the realization functor. For the latter, observe that
Cai[c,xi, v ,xj] = [e, Bixi, cees aixj]

and similarly for the Csi. In view of this relationship between the iterated

products %! and CX, we can define v-i by

(3) v'1[c, lxi,uil,..., !xj,uj[] = ][c,yi,...,yj],vl, where the iteration

z,j: IXLj - |ij of ¢ is given by
éj(lxi’uil,.."lxj’ujl) = l(yi""’yj)’vl'

By the associativity of §, f_.,j is unambiguous. By the commutativity of §, v_‘i

is compatible with the equivariance identifications, and its compatibility with
the remaining identifications is evident. The continuity of v—'1 follows from
that of 1;3., and it is clear from Theorem 44.5 that v and v"i are ideed
inverse functions. The commutativity of the stated diagrams is verified by

an easy direct calculation from (2) and the formulas in Construction 2.4, and
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these diagrams, together with trivial formal diagram chases, imply that
(x|, [elv-h e clTT i (x,8) e 4CLTI.
The relationship between [2,X| and @|X| is more delicate. Indeed,

if 'X is a discrete simplicial space, then each QXq = % and therefore

IQ‘,,X'[ = %, whereas ©|X| is obviously non-trivial in general. -

Theorem 12.3. For X e 4T , IP*XI is contractible and there are

natural maps ¥ and vy such that the following diagram commutes:

c P«
C p
2|X| ————P[X]| %]

Moreover, if X is proper and each Xq is connected, then [p*l is a quasi-
fibration with fibre {Q*Xl and therefore vy: [Q*XI - Q|X| is a weak homo-~
topy equivalence.

Proof. The standard contracting homotopy on PY, Y ¢ T , is natural
in Y; therefore, when applied to each PXq, this homotopy defines a simplicial
contracting homotopy I*X PX P*X. Thus ]P*X[ is contractible by
Corollary 11,9, For fe PXq’ ue Aq, and te I, define '\7 by the formula
(4) Vg ult) = |£t),u] .
It is trivial to verify that '«?‘ is a well-defined continuous map which restricts
to an inclusion v ]Q%X[ - Q]X] and satisfies p§'= !p*[ . The last statement

will follow from Lemma 12.6 and Theorem 12.7 below.
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Before completing the proof of the theorem above, we obtain an im-~

portant consistency statement which interrelates our previous three results.

Theorem 12.4, For Xe 43 , the iteration yn: IQ:XI »inX[ of y

is a morphism of Cn—algebras, and the following diagram is commutative!

v
S A—
lc Xl c_ %]

la_ | .
I %

i

n Ql'l nb n
| 55| L { > 87| X|

Proof. We must prove that the following diagram commutes:

A Cn'\{n . N
c_|e.x| ~ G a |X]|
n - n
vl )
n
Ien# n Yn kel
lCnﬂ:XI 2, X | ———>2"[X]|

‘

and it clearly suffices to prove the commutativity of the diagram obtained by
replacing v—l by v. Thus consider

y=![c,f1,...,fj],u| € lCn*Q:X[, where

=<c ,... j "X . 2, (3™,
c ci, . ,cj>eC,n(J), fie ¢ and u e Aq Let veI . If v;{. Ucl( )

then \(nlen_,:l(y)(v) =%=0 ° Cn\{no viy)v), and if v = ci(vl)’ then, by

Theorem 5.1 and the definitions of v and v,

ena Cnyna viy) ) en[c, yn|£1,u[ yeees Ynlfj,ul](v)

1)

Vleale) = (6,

1

Ien[c,fl,...,fj](v),ul = ynlen*[(y)(v).
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n, .
Thus vy is indeed a morphism of Cn-algebras. Since «_ is defined to
n

be the composite 6 - Cnnn’ the commutativity of the following diagram gives

: nn n
that an°v=ﬂ T oy n]an*['

.

14
|Cp ¥l ——— c,|x|

1§ nX v n nY ng. n
|G, 2.8, %] ——C_|aisix|—"—cC ¢ |syX|—"——c @"s"|x|
le_ |
D Gn en

Q"s™x

Here 2% Yno ]nn*l = nn: X| - QnSr.llX[ by an easy explicit calculation,
In order to complete the proof of Theorem 12.3, we shall prove a
general result relating geometric realization to fibrations, We require some

notations and a definition.
For Bell , let IIB denote j:he space of all paths I+ B, For a map
p:E =B in L, define
I'{p) = {(e,f) | ple) = £{0)} C E x 1B.
Define +w:IIE - TI'(p) by w(g) = (g(0), pg). Recall that p is a Hurewicz
fibration if and only if there exists a lifting function X\ :I'(p) = IIE such that

w\ = 1. Inthe applications, N is usually "homotopy associative in the

sense that if f,ge IIB satisfy £(1) = g(0), then the two maps pnlf(O) - pnlg(l)



118

defined respectively by sending e to A(\(e,f)(1),g}(1) orto A(e, gf)(1)
are homotopic.

Definition 12.5. Let p:E -~ B be a map'in J. Observe that if

n'q= w: HL\‘qu> l"(pq), then w I E -~ I‘*(p) is a.map in {U. We say that
p is a simplicial Hurewicz fibration if there exists a map A I‘*(p) - 0B

stich that w*)\* = 1 and such that the following associativity condition is
satisfied,

(1) If f,ge l'IBq satisfy £(1) = g(0) and if x4 and y, denote the discrete
simplicial subspaces of B generated by the g-simplices x = £(0) and y=.g(1),
then there exists a simplicial homotopy H:I X p"l(x*) - p-.l (y*) such that

for any i-simplex e of pnl(x*), with pi(e) = yx for a composite y of face

and degeneracy operators (y exists by the definition of x ),

H(0,e) = N\ (e, vE) (1), vg)(1)

and

H(l,e) = \(e, v(g))(1) .

We observe that the following statements, which shall be used in conjunction
with (i), are valid in any simplicial Hurewicz fibration; in (ii) and (iii),

e denotes an i-simplex of p—l(x,,) with p(e) = yx, as in (i).

(ii) If h:I~— IIBq satisfies h(t){(0) = x and h{t)(1) =y for all te I, then the
formula Hi(t’ e) = )\i(e, vh(t))(1) defines a simplicial homotopy

-1 -1
H:IXp {x)~p (yy)-

A
o
i
£ %
;
i
]
i
¢
1;
.
i’
‘
£
o

i
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(1ii) If efx):l-> Bcl is the constant path at x € Bq, then the formula
-1 -1
Hi(t’ e) = )\i(e, ve(x))(t) defines a simplicial homotopy H:I Xp (x*) - p (x*)

which starts at the identity map of p—l(x aE

The standard natural constructions of Hurewicz fibrations apply

simplicially; the only example that we shall need is the path space fibration,

Lemma 12.6. For X ¢ {J » Py P*X -+ X is a simplicial Hurewicz
fibration.
Proof, Choose a retraction r:IXI-=IX1UO0XI such that
(0, 2t) , 0stgl/2

r(s,0) = (0,0) and z(l,t) =
(2t-1,1) , 1/2¢tsl

For YeJ and p:PY - Y, define \: I'(p) = IIPY by the formula

e(u) if r(s,t) = (0,u)
Me, D)(s)(t) =
flv) if r(s,t) = (v, 1)

where e e PY, fe IIY, and e(l) = £(0). Clearly N is a lifting function and
e, £)(1) = fe is the standard product of paths, Thus if f,ge IIY and
(1) = g(0), then
A(Me, £)(1), g)(1) = glfe) and e, gf)(1) = (gf)e
Now define )\q= X:I’(pq) - HPXq. By the naturality of \, A\, is simplicial,

and clearly w A, =1. Condition (i) of Definition 12.5 is satisfied since the
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evident homotopies defined for each fixed Y are easily verified to fit together

to define a simplicial homotopy.

Theorem 12.7, Let p:E -~ B be a simplicial Hurewicz fibration, in {7,

-1 .
and let F = p "(¥). Assume that B is proper and each Bq is connected,

Then |p|:|E| ~ |B| is a quasi-fibration with fibre [F]:
Proof. We first define explicit lifting functions for the restrictions of

T. eee0. 3A + A_ to the inverse image of A_ - 3A . We shall define
317073, Carr T Oq g g g

: s Do, wavo )~ T(A
YJr---Jl (GJ O-J) ( q+r)

1 r

by the inductive formula (u e Aq+r’ fe H(Aq..aAq) 0 .‘1. . 'G‘jru = £(0)):

(w,8) = vy, (u,v. . (o 4, 1),
1 Ie Jpopesedy Jp

Y. .
Jaeeed

and it remains to define yj:l“(crj) - H(Aq-i-l)' Thus let (u,f) ¢ I"(crj). Let
£(s) = (t_(s),... ,tq(S)) ¢ A, Since vj(u) = £(0),
u=({t (0),...,t, 0), at.(0), (1 ~a)t.(0), t. 0),...,t (0
(65(0)s 155100, 28;(0), (1-2)t,(0), £, (0), . (0)

for some a, 04¢a¢l (a is well~defined since tj (0)>0). Define Yj by

Au,f)(s) = (t (s),...,t. s),at.(s),(1-a)t.(s),t. S),...,t (8)).

Vil () = G (6)ennty (9), 2t o), (1-a)e(s), b, (o)t (5)
Visibly, yj(u, £)(0) = u and crjyj(u, f) = £, hence -n-yj =1, Corresponding to

the relati L= . s ot -
e relation D’iﬂ' crj_ltrl for i< j, we have Yj,i Yi,j-l’

verification, This implies that

by an easy

(1) T.Y. .
ANIERED

:f = N . . £ i WS, see S, = ees S, .
1(u ) Y; .ll(o-Ju, ) if stl s, sj s

reic®

1

-, J’Jr.'.‘]l I“*’l...l
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If a=0 or a=1 above, then yj(u,f)(s) e Im 6j or Im 5j+1’ and it is an

easy matter to verify the formula

| = i sseS, T 5, cee8, .
(2) 6.'Y. < (u’f) - Yi. (Gju’f) if ajsi s J

1 T+l 1 0

We can now show that ]p]: ipl -1 (V) =V is a Hurewicz fibration for any open
subset V of FqIB] -Fq_llBl, where, if q= 0, F_llBl = ., We must
define a Hfti.ng function ﬁ):q: r(|p|) = ulp| -l(V). Of course, by Lemma 11.3,
we have that

- XT(A - 3A ).
HVCH(Bq qud) 1i( q q)

i - te
Let (|e,w|,(f',f") e I'| p|, where (e,w) e Eq+rx Aq+r is non~-degenerate,

fiuI—-B -sB and f":I—+ A - 8A ., Necessarily, we have
) q q-1’ q q

e) =s, ...s, £'{0), where ¢, ...0, w= £"(0)
pq+1-( ) Ir 3 ’ 1 Ir

. ~
(as in the proof of Lemma 11.3). Define )\q by the formula

(3) xq(le,wl,(f',f-“))(t)= Ix

I CE R sjlf')(t), % . 3, £)(8)] .

T

Since \, is simplicial, formu1a§ (1) and (2) show that )\q respects the
o -
equivalence relation used to defingz IE[ , and it follows easily that )\q is con
tinuous. Clearly = 1,as required. We have now verified (i) of
q
Lemma 7.2, and it remains to verify (ii) of that lemma. Fix g > 0. Let

(k,v) be the representation of

(qu Aq, qu_lx Aq U Bq x aAq)
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as a strong NDR-pair obtained by use of Lemma A.3 from any given

representations of (Bq’ qu_l) and (Aq, ‘aAq) as strong NDR-pairs. Define
Uc FqlBl to be the union of Fq-l |B| and the image of v‘l[O, 1) under the
evident map Bq = Aq — Fq[BI. Define ht:U —U by ht(x) =x for

X € Fq_I]BI and by -
(6) htlb,u] = ]kt(b,u)! for (b,u) e Bq > Aq with v(b,u) < 1.
Then h isa strong deformation retraction of U onto F

q_llB[. To lift h,

let (e,w) e Em+r *® Am+r be a typical non-degenerate point such that
-1
le.,w| € |p| "(U) where, as in Lemma 11.3,
P (e)=s, ...s, b and u= @, ...G w
mtr r 0 ooy

determines the non-degenerate representative (b,u) of ]pl(le,w]). Here

m £ q and we define H by the formulas

(7 H(t, [e,w]) = | X

m+r(e’sj ...sj c(b))(t),w] if m < q, where

T 1

c(b):1 ~———>Bm is the constant path at b; and

8 , e, = y8, +..8, I Y.
(8) H(t, Je,w]) = |n_, (e s s )(t) YJ

(w,£9(t)] if m=gq,
afr r 1 o

where f':I ———73q and f'':1 ~—%Aq are the paths defined by

£1(t) = —n‘lkt(b,u) and f''(t) = “n'zkt(b,u) (here Tl and ’II’Z

are the projections of B x & onto its factors).

Here the Yj can be applied to the paths £" in Aq (even though

rn-.jl
f" does not have image in Aq-aAq) because if £"(0)e aAq, then

£" is the constant path at £"(0) and the definition above of

Y.

. {w,£f") -is therefore unambiguous.
Jro.njl )
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It is straightforward to verify that H is well-defined and continuous (nqte

that v. ; (w,c(u)) = c(w)), and that H covers h and deforms
]

e .

ol 7H(W) mto [p|'F__ |B|. It remains to verify that

q-ll

‘Hlt |pl _1(x) - |p| _1h1(x) is a weak homotopy equivalence for each xz e U,

Ifﬂx.e Fq-l |B|, then h (x) = x and H is itself a homotopy
1 H: ]p|—1(x) - |p| _1(x). Thus assume that x ¢ Fq—l |B|. In the notation
of (8), let x= |b,u| = |£(0),£%(0)], so that h,(x)= [£1(1),£(1)]. Let

gl - Bq be any path connecting g(0) = £'(0) to g(1) = %, and let

g'= gaf'—l:I - Bq, where f'—l(t) = f1(1 - t); g' is then a path connecting
f1(1) to *. We shall first construct a homotopy equivalence

F(u): |p|‘1|b,u[ - |F| for any path fiI- B, such that £(0)=b and £(1)= *
and for any ue Aq. We shall then complete the proof by showing that the

following diagram is homotopy commutative.

H -
(9) o] ) = ol " 1£1(0), £1(0)] ——= [p] T £(), £ | = [p] B, ()
#en(0)) frien))
|7

Thus fix 11 - Bq with £f{0)=b and £(1) = %, Let A[q] denote the standard
simplicial q-simplex [18,p.14] regarded as a discrete simplicial space,

and let b:A[q] ~ B be the unique simplicial map such that -E-(iq) = b, where
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iq (Aq in [48]) is the fundamental q-simplex in A[q]. Let E(b) denote the

Definition 12.5 and g'= gf'—l imply that g'(£"(1)) -Hl is homotopic to the
. - : B - s

simplicial fibre product E X A[gq] of p and b. Define map L3 Ipl—l(x) . iFl defined by
f*:E(b) -~ F X Alq] by

flervi) = (% (e vDL) i), - ~ (2) tlewl= Py e om0y (o]

where € ¢ Ei satisfies pi(e) = yb = Y'B-(iq) for some composite y of face B ' Finally, define LIIX |p|_1(x) - |F| by the formula

and degeneracy operators. Define f;l:F X Alq] -~ E(b) by

(13 L lewh =, (ers; -ns; @)1, LA ClE

’ ]
sy -1 . : r 1
fi (e, qu) = ()\i(e,yf (1), qu)’ ece Fi and que Ai[q].

-1 Then L is a homotopy from g(£"(0)) to the map £ .
By (i), (ii), and (iii) of Definition 11.5, £, and f_ are inverse fibre homo-

topy equivalences over A[q]. Therefore, by Corollary 11.6, the following

composite is a fibre homotopy equivalence over |Alq]] = A :

.

Ipy [ [p,]

; [£,
IBlAq——L—>|E(b)| —_— |F x Alq]| ———> |F| XAq.

|E| %

1B -1

Fix ue A, u= jiq,ul. In |E| % Ay Py (1) may be identified with

|p| -1 [b,u|, and the above composite restricts to give the desired homotopy
equivalence 'f(u): Ip| -1 |b,ul = |F|. Finally, consider the diagram (9). Let

|e,w| ¢ |p] -l(x) be as described above formula (7). We then have

(10) hg'(fu(o))le,WI = I)‘q+r(e’ sjr'--sjlg)(l):wl » and

1) W), e, w

[x e M (s 85 ees; £)(1), s "'sjlg')m’er---jl(w’f")ml'

T I r
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413. The recognition principle and Aoo spaces map TFX =Y in ‘J such that the following diagram is commutative:

9 = \
FCX ——l o o FX

We now have at our disposal all of the information required for the

proof of the recognition principle. We prove our basic recognition theorem al = F§ o

-fold 1 < i A s E
for n-fo oop spaces, n < o, and discuss o SPaces here; o SPaces X - M
will be studied in the next section. We first fix notations for our geometric

Here 1,(%) and ¢ ,(w) are defined in Lemma 9.2, and Y. |=Y by
constructions, * : * ”

— Lemma 11,8; T and & are natural, in the evident sense.
Let (C,p,n) be a monad in , let (X, be a C-algebra, and let
g

—~ We must dispose of one minor technical point before proceeding to the
(F,X ) be a C-functor in J ; these notions are defined in Definitions 2.1,

theorems. Since we wish to apply the results of the previous two sections,
2.2, and 9.4. Then Construction 9.6 yields a simplicial topological space

we shall always tacitly assume that B_{F,C,X) is a strictly proper
B*(F, C,X), and we agree to write B(F,C,X) for its geometric realization -

simplicial space, in the sense of Definition 11.2, This is in fact a harmless
|B*(F, C,X)!, as constructed in Definition 14.4; B defines a functor

o o assumption, at least when C is the monad associated to an operad C , in
B(T.T)~ J » and we write B(w,{,f) = [B*(—n-,Lp, f)| for a morphism

— o view of the results of the appendix., In Proposition A.10, we show that C
{(w,0,£) in B{TJ,7T ) Many of our C-functors F in J will be obtained

can, if necessary, be replaced functorially by a very slightly altered operad (: !
by neglect of structure from C-functors (also denoted F') in the category

— — which maps onto ¢ and is such that B_{F,C',X) is strictly proper for
D[°J ] of D-algebras, for some monad D in 'J . Then B_(F,C,X) isa N

reasonable functors (such as 2,8, C, C' and their composites) and for
simplicial D-algebra, but this need not imply that B(F,C,X) is itself a

o o ] an £ -spaces (X,8) such that (X,%) is a strong NDR-pair. If (X, *) is not
D-algebra. For example, this implication is not valid for D= 2 S . How-

— ) well-behaved, for example if %* is degenerate, then L.emma A.11 shows
ever, by Theorem 12.2, if D is the monadin J associated to an operad ZD P

that (X,6) can be replaced by (X',8") ¢ { [T] where (X', %) is a strong
as obtained in Construction 2.4, then realization does define a functor

NDR-pair.
4 o[ :)’] ~D[7J] and B therefore defines a functor & (J,D[ ’:)/]) - D[ '\T]. pa
We shall write (¢ )= I'r*( ¢t )|:Y - B(F,C,X) for any map

:¥ >FX in J andwe shall write g{w) = | g (m)|:B(F,C,X) ~Y for any

1
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In our basic theorem, we shall assume given a morphism of operads
w0~ C o’ where C n is the n-th little cubes operad of Definition 4.1
and 0 is some other operad; as in Construction 2.4, we shall also write
1 for the associated morphism of monads D - Cn' Observe that if Y e J
then (QnY, en-rr) e D[ 7], where Qn is as defined in Theorem 5.1, and, by
Theorem 5.2, en coincides with the composite

n;n
n “n n.n.n €n=ﬂ¢(1) n
CnQY—-——-——QQSQY QY.

Here §: Horn,\T(X,SZY) - Hom __(SX,Y) is the standard adjunction homeo-
J
morphism of (5.1) and an: Cn - 0"s™ is the morphism of monads constructed
in Theorem 5.2. Of course, we are identifying the notions of e o~ Space
and of Cn-algebra. via Proposition 2.8, and similarly for L . Since
n.n . . st n n M

o:n-n':D —+Q"S" is a morphism of monads in °J , (5,0 (a'n-rr)) is a D-functor
in °J by Examples 9.5. Thus, if (X,£) e D[J ], then B(S",D,X) is de-
fined. With these notations, we have the following theorem, which implies

the recognition principle stated in Theorem 1.3.

Theorem 13.1. Let w:D — Cn denote the morphism of monads
associated to a local equivalence w:D-C of I-free operads. Let (X,£)

be a D-algebra and consider the following morphisms of D-algebras:

E(E) B(an'“-’ L1) n_n B n_,.n
X8l  B(D,D,X) —2 5 Bl@"S",D,X) Y— o"B(s", D, X).
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(i) ~ &(£) is a strong deformation retraction with right inverse (¢ ),
where L : X — DX is given by the unit { of D,

(ii) B(a:n'rr, 1,1) is a weak homotopy equivalence if X is connected.

(111) Yn is a weak homotopy equivalence for all X,

(iv) ‘The composite yno B(czn-n', 1,1) o'r(‘t, )X - SZnB(Sn, D,X) coincides
with the adjoint of T(1):5"X - B(s", D, X).

n
{v) B(S,D,X) is (mtn)-connected if X is m-connected.
Moreover, the following conclusions hold for Y ¢ T .

) n n n
(vi) £d (1):B(S,D,2°Y) > Y is a weak homotopy equivalence if ¥ is
n-connected; for all Y, the following diagram is commutative and

n_,n -
Q € (1) is a retraction with right inverse b n—r(l):

B(czn'n', 1,1) n
B(D, D,a™Y) B{"s™, D,2"Y)
g6 ) e(¢) A
1 n
n e
oy fQ) o B(s", D,2"Y)

as n n n
(vii) E¢ (a'n-n-):B(S ;D,DY) = S7Y is a strong deformation retraction with

right inverse (5S¢ ).
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Proof. €(€) and B(an'rr, 1,1) are morphisms of D-algebras since
E*(E) and B*(ozn-n-, 1,1) are morphisms of simplicial D-algebras by

Theorem 9,10, By Theorem 9.11, we have

B, (@"",D,X) = 9,B(s",D,X).

Thus yn is a well-defined morphism of D-algebras ’t;y Theorem 12.4.
Now (i) and (vii) hold on the level of simplicial spaces by Theorems 9,10 and
9.11 and therefore hold after realization by Corollary 11,10, By the approxi-
mation theorem (Theorem 6.1) and Proposition 3.4, each composite
an'rr:Dq+1X - @"s"DUX is a weak homotopy equivalence if X is connected,
and (ii) follows from Theorem 11.13, Part (iii) follows fro—rn Theorem 12.3;
here X need not be connected since each QiSanX for i<n is certainly
connected, Part (iv) is trivial (from a glance at the explicit definitions) and
(v) follows from Theorem 11,12, Finally, the upper triangle in the diagram
of (vi) commutes by the naturality of &, since gna/n = 6n, and the lower
triangle commutes by the naturality of \{n, since gn = an)n(l) and
E*ﬂn¢n(l) = Q:e*(pn(i) by Theorem 9.441 and since \{n reduces to the identity
on QY = ]Q:Y*l; the fact that a¢n(1) is a weak homotopy equivalence for
n-connected spaces Y follows from the diagram.

B(Sn, D,X) should be thought of as an n-fold de-looping of X. As such
for Ye J , B(S",D,2"Y) should give back Y but with its bottom homotopy
groups killed. This is the content of part {vi). Similarly, DY approximates

n_n n
'S X, hence B(S,D,DY) should give back S"Y. This is the content
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of part (vii), but with a curious twist: the proof of (vii) in no way depends on

the approximation theorem and the result is valid even when Y is not con-

nected, in which case DY fails to approximate QnSnY.

For {X,£)e D[J ], the diagram

n
Y Ble_m,1,1)
x «£8)_ g5 p,x) n Q"B(s”, D, X)

is to be thought of as displaying an explicit natural weak homotopy equivalence

between X and QnB(Sn, D,X) in the category of D-algebras. The use of

weak homotopy equivalence in this sense is essential: it is not possible,

in general, to find a morphism fiX - Q™Y of D-algebras which is a (weak)
homotopy equivalence. For example, if D= Cn and if X is a connected
N—alﬁgebra (that is, a connected commutative monoid) regarded as a Cn-
algebra by pull-back along the augmentation &: C11 -~ N, then, for any space
Y, the only morphism of Cn-algebras from X to Y is the trivial map!

Indeed, for any such £, commutativity of the diagram

L) xX AxE Cn(l) x QY
£X 1 len’ .
N xX=x— 5 ol

implies 8 l(c,f(x)) = f(x) for xe X andall ce C (1), and a glance at the
] n
definition of 8 in Theorem 5.1 shows that this implies f(x)(s) = * for all

se S.
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Thus we cannot do better than to obtain a weak homotopy equivalence
of D-algebras between a given D-algebra X and an n-fold loop space,
and it is clearly reasonable to demand that an n-fold de-looping of X be
(n-1)-connected (hence n-connected if X is comnected). Subject to these
two desiderata, the n~fold de-looping of X is unique up to weak homotopy

equivalence.

Corollary 13.3. Under the hypotheses of Theorem 13,1, if

(%, ) «—(x,£) —E— @Y, 0_w)

is a weak homotopy equivalence of connected D-algebras, where Y is

n-connected, then the diagram

B(Sn, D,X) <___B(_l_,_}_,__f2__ B(Sn, D,X‘) _QEL Y

displays a weak homotopy equivalence between Y and B(Sn,D, X).
n n

Proof. &¢"(g)= &¢"(1)eB(1,1,g) by the naturality of & ; e{"(1) is
a weak homotopy equivalence by the theorem and B(1,1,f) and B(1,1,g)
are weak homotopy equivalences by Theorem 11.13 since s"p% ana Sang
are weak homotopy equivalences for all g (as follows readily from the

: . o naong , .
approximation theorem: § {2 S')" is certainly a functor which preserves

weak homotopy equivalences).
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Remarks 13.3. The idea of proving a recognition principle by geometrically

realizing simplicial constructions based on monads is due t6 Beck [ 5 ].
In that paper, Beck sketched a proof of the fact that (in our terminology)

if (X,€) isa QnSn—algebra, then the diagram
o n
. n
x «—28) 5" 0", x)—Y s o”B(s”, 27", X)
1 I n_I
displays a weak homotopy equivalence between X and B(S ,2 5 ,X).
Of course, our results prove this and add that &(£€) and yn are morphisms

of C -algebras (not of QnSn—algebras) and that

B(1,a_,1): B(s", C_.X) ~ B(s", 2", X)

is a weak homotopy equivalence if X is connected. Unfortunately, the
only QnSn—algebras that seem to occur "in nature" are n-fold loop spaces,
and Beck's recognition theorem is thus of little practical value.

The little cubes operads are of interest because their geometry so
closely approximates the geometry of iterated loop spaces; for precisely this
reason, a recognition principle based solely on these operads would also be
of little practical value. We have therefore allowed more general operads
in Theorem 13.1. We next exploit this generality to obtain our recognition
principle for AOO spaces, as defined in Definition 3. 5. Rc?:_ll that the
category of operads over M of Definition 3.3 has the product V described
in Definition 3.9. In view of Proposition 3.10, the following theorem is an

immediate consequence of Theorem 13,1 and Corollary 13.2.
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Theorem 13.4. Let  be any Aoo operad, let D=Cv C‘l and
let U: D ~ C and w: ) - Cl be the projections. Then w is a local
Z-equivalence of operad, Therefore, if (X,6) is a connected C -space,
then there exists one and, up to weak homotopy equivalence, ﬂonly one con-

nected space Y such that (X, 8y) is weakly homotopy equivalent as a

D -space to (@Y, 6,7), namely Y = B(S,D, X).

Of course, Theorem 13.4 implies that a connected Aoo space X is
weakly homotopy equivalent to a topological monoid, namely the Moore loop
space AB(S,D,X). As was first proven by Adams (unpublished), a more

direct comstruction is possible. Recall that, by Proposition 3.2, the notions

of topological monoid and of M-algebra are equivalent.

Theorem 13.5. Let { be any Aoo operad and let §:C — M be the
morphism of monads associated to the augmentation f: M. Let (X,9)

be a C-algebra and consider the following morphisms of C-algebras:

B(5,1,1)

x <20 5 ¢, x)-BELY) B(M, C, X).

(1) €(8) is a strong deformation retraction with right inverse (1),
where m:X = CX is given by the unit n of C.

(ii) B(5,1,1) is a weak homotopy equivalence if X is connected.

(iii) B(M,C,X) has 2 natural structure of topological monoid.

(iv) If (G,9) is an M-algebra (that is, a topological monoid) then
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(q)) B(M,C,G) ~G isa morphism of monoids and the following
& : )

d'.\.a.g'ra.r!l 18 COI’!lIIlutathe (h.ellce E(¢) is a Weak hoInOtopy equ.lvalence

if G is connected):

B(C,C,Q) B(5,1,1) B(M,C,G)

e(9) e(9) B(1,8,1)

e(9) B(M, M, G)

2 . :
: - M, is a strong
(v) For Ye f—.(vuMﬁ):B(M,C,CY)—*MY, v:M
v ’

defo mation rectra tion © OPO].O L al mono ds that is the quull.'Ed
atly [ ft g c 1 ( N
T

i i h ) with right inverse
deformation is given by morphisms of monoids t)

r(Mmn).

» . y P 3.
f In 9 10 an th act that, b Pro osition 4,
E pjele] V1eWwW Of Theorem d € f

8 CY > I\A,.Y s a Weak ]CloI'IlotOpy equlv 1 p ’
. 1 alence li Y s a COIlIleCted space th.e

th.eOIeI'II fOllOWS from the faCtS that eometric Iea-llzatlon pr eserves homo-
g

a'}: homo to . 3)!
toples (:010118"1& 11 10)’ we PY eqﬁlialences (Ih'eorer!l 11 1
) .

12.2).
monoids (Corollary 11.7), and C—alggbras (Theorem )

3. K} ult abOVe 1111?1133 its own uIlquEIleSS
lee Ih.eOIeITl 1 1 the res

statement.
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‘Corollary 13.6, Under the hypotheses of Theorem 13, 5, if

(x,8)<

(x', 69 —E&—s (G, ¢5)
is a weak homotopy equivalence of connected D-algebras, where (G, ¢) is

an M-algebra, then the diagram

B(1,1,£)

B(M, G, X) B(M, C,x1) 218 5 5y, , ) S0, ¢

displays a weak homotopy equivalence of topological monoids between G

and B(M, C,X).

Remarks 13.7, By Corollary 3.11, any Emspace is an Acn space ; by
the previous theorem any connected Aoo space is weakly l'iomotopy.equivalent
to a topological monoid. These ’two facts are the starting point of Boardman
and Vogt's proof [ 7 , 8 ] of the recognition principle for Eoo spaces.
Given an EOO space, they construct a homotopy equivalent monoid and show
that the monoid can be given a structure of Eoo space such that the (monoid)
product commutes with the (operad) action. Then, as we shall see in

[21], the classifying space of the monoid inherits a structure of EOO space
and the argument can be iterated. While conceptually very natural, this

line of argument leads to formidable technical complications; a glance at
Lemma 1.9 will reveal one major source of difficulty, and another source

of difficulty will be discussed in section 15.

14, E ‘spaces and infinite loop sequences
14. = |
Our recognition principle for E - spaces, as defined in Definition 3. 5,

will f01low from Theorem 13.1 by use of the product {Definition 3. 8) in the
category of operads and passage to limits. Throughout this section, C will
denote a fixed E operad, (D will denote the product operad C X Z:

for n>1 or n=co, and 1rn: Dn» C n and \pn: Dn» f: will denote
the projections. By Proposition 3.10, the ™, are local equivalences,
and Theorem 13,1 thus applies to the study of @ o~ Spaces. The inclusions
o : !: n ;:n-i'l of Definition 4.1 (e) give rise to inclusions

ﬁn—%l’ and 0 ©

r =1Xe: D - is the limit of the @n for finite n.
n n” “n ,
i ds in
As in Construction 2.4, we write C, Cn’ and Dn for the monads J—
: - ter for morphisms
associated to C R (;n, and /\911, and we usé the same letter P
of operads and for their associated morphisms of monads in :T . We let
:D 2., D and { :1 - D denote the product and unit of Dn .
Vn'n n n n
A connected C-algebra (X,8) determines a Dn—algebra (X,QLpn) for
: i N .1
all n 21 andthus has an n-fold de-looping B(S ’Dn’ X) by Theorem 13
By the definition of the functor B, in-Construction 9.6, the following

lemma will imply that the B(Sn,Dn, X) fit together to form a (weak)

Q-spectrum.
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Lemma 14,1, Let m= ¢-1(1):1 - QS. Then, forall n>1,

871 (8%, e w )~ @™ o™ )

an+1'rrn+1'rn
is a morphism of Dn—functors in T . Therefore, for all i 2 0, the

: C e
functor QS’ = lim 2877 inherits a structure of ch,-f.unctor in Doo[a/]

by passage to limits from the actions QJ¢1+J(ai+j1ri+j) of Di+j on @87,

Proof. The first statement holds since the following diagram is

commutative:
n+l
SnD QS T
s"D 1 Dp as™p — as™lp
n n . n+l
n . nt+l nt+l
S (an'rrn) Q8" (e w ) Qs (an+17rn+l)
ann , an-i-lu_
. SQS v
Snﬂn g 7 Q Sn+ 1 o n Q Sn—f-l Q‘n-H Sn—l—l
n n n+l
$7(1) as¢(1) o0 (1)
b g™ M 1
s™ i as™! as»tl
Here o_= 22071 (1):075™ » 2T 6™ a5 in formula (5.5), and

T = %1%y ™ = an+l1rn+lTn by Theorem 5.2 and the definitions of

the L and T Since QS' is defined by passage to limits from the
inclusions

itj

o'jSI‘-:ﬂJnS ‘:QJSI‘*'J - S'ZJ+181+J+1

s

the second statement does follow from the first,
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‘We precede our recognition theorem for Eoo spaces with two further
lemmas. These will lead to a structural description of the homotopy type
of the n-fold de-looping of a Dw-algebra which is based on Doo itself,

rather than on Dn. Recall that, by Proposition 5. 4, there are morphisms

_of thonads Bn: Cn - an—ls such that a = (Qan_IS)ﬁn . We require the

analogous result for the Dn'

Lemma 14,2. There exist morphisms of monads 6n: Dn - QDn lS

for n>1 such that the following diagrams are commutative:

6 8
D —Z% 50D .s and D —>2 50D .S
n n-1 n n-1
T Qr S T QT S
n n-1 n n-1
¥ B 6
cC —2 saoc s p —2 o ops
n n-1 ntl n

Proof. Recall that SZDn 1S is a monad in T by Lemma 5,3. Let

X e J . By Definition 3.8 and Construction 2.4, a typical point of DnX
has the form [(d,c),y], where de L (j), c= <Cpseens cj> € C’n(j), and

V€ X3, For te I, write
"
Blevle) = [<c! ,oon, ol >al,
1 1
where c = c'rX c; with «::'r tJ =+ 7J, the T, are those indices r such that

te c; (1), and z e (SX)1 is as determined in the proof of Proposition 5. 4.

By Notations 2.3 and Definition 4.1(d), we can choose degeneracy operators
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U'k ,...,(rk such that
1 j-i
crk ...G'k € = <C_ ,esa3C_ >
1 j-1 1 i

We define Sn by the formula
Bn[(d, c), vlt) = [(o-k ee T .d, < c; senes c’;.>), z)
1 j-i 1 i
It is then easy to verify that Sn is 2 well-defined morphism of monads

such that the stated diagrams commute.

Let vSij:Di+j - S‘llesl denote the composite morphism of monads

8.4 26,4515 2 2 i i
D . — sgp s —2 50D, §“—>...—>QDS ,
itj itj-1 itj-2 J

and define B..:C... —9'C,S' similarly., Define §, :D —@'D_S' by
ij itj ] i T 0

passage to limits over j.

Lemma 14.3. Let \..:D.SD, . - D.S' be the composite
[ — ij 3 it J

: D¢(5) i vt

DS D, —-——-———-—-—-—>DDS ———-—J-——-—->DS
i it hj j

i . . —
Then (DjS ’)\ij) is a Di+j—f1mctor in Dj[ J 1, and

i i
'rS (DS A ) — (D_]+1 )\i,j-i-l Dj+IS Ti+j)
and

1+J \] 1+J
D _—
ast :( s oy st oy (57 345)

are morphisms of Di+j-functors in Dj[ T 1. By passage to limits over j,
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5 ‘
DmS inherits a structure of Dw—functo'i' in:D [ 3—], with action
1o}

i Dooq)l(sioo) i voosl i
A, :D 8D DDS—2 _sp s,
100 o0 [e0] . [+ o e o] (e 0]

and ,aooﬂ:oosi:Doo;Si - QSi is a morphism of Doo-functors in Dm[:f].
Proof. qu)i(aij) = D, tp (1) D s 5. 17 and it is trivial to verify that
vjsia Dj¢i(‘1) givgs DjS"-L a structure of & DjSi—fu_nctor in DJ.[’JJ] by use
of Lemma 5,3, Thus (DjSi, )\ij) is a Di+j-£unctor in Dj[T] by Example
9.5(ii). The following two commutative diagrams show that -eri and

ozj «rjsl are morphisms of DH_j—functors in Dj[ 7], and thus complete

the proof:

r.8D D, .8
i j it+j i j+1 it
psp —& ) N TE-L B
JS itj b IS D1+j J-HSLD +j+1
i i i
D D
¢ (55_3-) JH‘P ( 1J) J+1¢ ( i J+1)
i i
T+.D.S T.5 v
4 i j i +1 i
pps —4Jd __sp pet—"0Jd . sp
i] 1 1§+l
i i
vyS vit15
i
pst Tjs D '
j j+1
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o st i itj
D SlD_ _______J_____]_____> stl-l-JD it itj Szjsl+JQ1+Js1+J
j itj i+]j
D,0'(s..) slf ’spt)
, i @S . QJSjaz-rrS Yo, i
D.D.S 1) ?s’p s olsils™™
JJ J -
. jgd
v.st 2'¢7(1)
J
i
4 a, .S 3
Djs1 lJ st

The upper left and bottom rectangles commute since Tj and ozj'rrj are
natural and are morphisms of monads., The upper right rectangles commute

by Lemma 14. 2 and Proposition 5.4, which imply that

- ob o,
Gi,j+1°Ti+j = QTJ.S 6ij
and
IR S ool i
qi+j"ri+j = QajS ﬁij“’n.i*-j Qaj'n'jS aij .

Recall that by Theorems 5.1 and 5,2, if Y = {Yi} € ;:w, so that
Y,=QY, ., then (Y ,0 7 ) is.aD ~algebra and 8 :C Y =Y factors
i i+l o’ " oo o ® "o o
as the composite

a = 1}_}_'1'1 @, o gm = lim an)n(l)
C Y 2 >27sPy Y .
w o o o

We shall write W: Ioo - Doo[ j] for the functor given on objects by

WY =(Y ,0 w7 ). Recall also thatif Ze J , then Q Z denotes the free
[e] 0 o0 [o 0]
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jnfinite loop sequence {Qs'z} generated by Z, as described in formulas
(5.7), (5.8), and (5.9).

‘'We retain the notations of the previous section for our geometric

constructions, and we have the following recognition theorem for Ew—spaces.

Theorem 14,4, Let (X,£) bea Doo-algebra, and regard X as a
Dn-algeb:r;a via the restriction of £ to DnX c Doox' Then the following

is a commutative diagram of morphisms of Dj-algebras forall i>20 and

i>1:
/’QJB(S1+J Dyyyo %)
B(@st D,y X DBt Y
B(O’S LY B(szsi+j+1,Di+j+l,X)
sl Dy / oy
\QJ+1B(51+J+1 1+J+1’ )

Define an infinite loop sequence B_X = {BX} by
i
. "
X = 1 Jn rattl
Bi 11_1;::1 Q'B(S ’D:H-j’X)
and, for iz 0, define a morphism ym of Doo-algebras by

v© = lim Y’:B(Qsl,Dm,X) ~ BX.
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Consider the further morphisms of Doo~a.1gebras
i i i
B(aoo'rroos ,1,1): B(Doos s Doo’ X) - B( QS s Doo’ X)

and

e(¢) :B(D_,D_,X) > X

(1) g(£) is a strong deformation retraction with right inverse 'r((_,oo), where

Z,CO-:X - DmX is given by the unit goo of Dco .

(ii) Bla_w s',1,1) is a weak homotopy equivalence if i>0 or if i=0
o o

and X is connected.
(iii) ym is a weak homotopy equivalence for all i and X.'

. @ . . .
(iv) The composite vy B(ozoo-rrco, 1, l)T(Z_,m).X - BOX coincides with

v = lim ¢"1T(1),T(1)=83x - B(SJ,Dj,X).
(v B.X is (mti)~connected if X is m-connected.
i

i = d defi +B WY-+Y b
(vi) Let Y {Yi} € Dt o 2nddefine wiB v
©, = lim PeayB WY - ¥,
1 - 1 1
§ o 2itiran. o i+j Sit] 3
(where e " J(1):'B(s /Dy Yi+j) ~ 27, ).
Then w, is a weak homotopy equivalence if Yi is i-connected and, for all
i
Y, the following diagram is commutative and @ is a retraction with right

inverse v &
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Bla T oo 1,1)

(e o]
B(D_,D_,WY) B(Q,D_, WY)
&
O
' ©
Y < 2 B WY
o o]

(vii) Let Ze ':)/ . Then the composite

Boo(aoo'“.oo) [
B D Z B QZ —> Q Z
o o0 (o8] [e 0]

is a strong deformation retraction in S . with right inverse the

adjoint ¢)m(ugm) of WL 1Z-~ B D_Z.

Proof. In view of the definitions of Construction 9.6, the specified
spaces and maps are well-defined by L.emmas 14.1 and 14.3. Tile diagram
commutes by the naturality of \(J (since o-j = an) and by the definition of
'yj i Of course,  g(&), B(afoo-rrooSi, 1,1), and Yoo are morphisms of
Doo-algebras by Theorems 12,2 and 12.4. Now (i) follows from Proposition
9.8 and Corollary 11.10, (ii) follows from the approximation theorem
(Theorem 6.,1), Propositions 3.4 and 3.10, and Theorem 11.13, and (iii)
follows from Theorem 12.3. Parts (iv) and (v) follow from the correspond-
ing parts of Theorem 13.1 by passage to limits. For (vi), @ is well-defined
since the following diagram commutes by the naturality of £ and of vy

and by the fact that y= 1 on QZ = [.Q*ZJ‘I, zeJ :
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n
B(ﬂs s Tn, 1)

n n : n-+l -+l
B(S
(s5,D,a2°Y ) B(@s™",D_,,,9 Y )
end™(1)
n
e (1) - Y
n+l
. Qed " (1) n+l n+l
Yn - s-ZYn-i-l aB(s Do Yn+1)

i

The commutativity of the diagram in (vi) follows by passage to limits from
Theorem 13.1{vi). If Yo is connected, then w, = Sliwi is a weak homo~
topy equivaleﬁce by parts (i), (ii), and (iii) and the diagram; it follows that
wi is a weak homotopy equivalence if Yi is i-connected. For (vii), the
explicit deformations of B(Sn; Dn’DnZ) given by Proposition 9.9 and
Corollary 11,10, and the loops of these homotopies, are easily verified to

yield deformations h, . of B.D Z in the limit such that Qh,
i,t i o it

1,6~ Pyt
The fact that (I)m(t.éo'o) is the right inverse to wB__ ((zoo’troo) follows by

passage to limits from Theorem 13.1(vii) and the definition (5.9) of q)oo'

1

Up to weak homotopy equivalence in i o’ there is only one con-
nective Y e : o such that WY is weakly homotopy equivalent as a

Doo—algebra to a given connected Doo -algebra "X,

[
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' Corollary 14.5. If (X, g)é—f———(X‘,g’)—g——>(Yo,9mwm) is a

weak homotopy equivalence of connected Dm—a.lgebras, where
Y= {Yi} € Xoo and each Yi is connected, then the .diagram of infinite

loop sequences

B f Bg
B XX B xt —2 5B Wy —2—> Y
[o0] o0 (o]

displays a weak homotopy equivalence in Ioo between Y and BmX.

Proof. By Theorem 11.13 and passage to limits, each functor Bi
preserves weak homotopy equivalences between connected Doo—algebra.s;

since Yi = QY,

i+1° each Yi is i-connected, and therefore each @, is a

weak homotopy equivalence by the theorem.

Since our de-loopings B, are not constructed iteratively, we should

i
verify that Bi+jX is indeed weakly homotopy equivalent to BiBjX' To see
this, define functors o' Ioo - \Im for all integers j by letting the i-th
space Q';Y of Q]Y, i>0, be

{ Y, . if i>]j
-]
@Y=
it .
o'y, if i<j .

Observe that if j > 0, then the zero-th space of 27y is Yj‘ Clearly
957 =™ forall j and k, and ©° = 1. We have the following

addendum to part (vi) of the theorem.
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J i i, then
Corollary 14.6. ¥ Ye r\oo and QiY is connected for all i,

w: B WSZjY - QjY is a weak homotopy equivalence in 1 o In particular,
@

if j if j= i nected
if (X,t) isa Doo—algebra and if § 20 orif j=0 and X iscon s
then, for 120,

: = K g x =B, X
wBBX = BWa B X -~ Q"B | "

is a weak homotopy equivalence.

We require one further, and considerably less obvious, consistency

result. Recall that if an operad acts on a space X, then, by iterative use

of Lemma 1.5, the same operad acts on each 521X, i> 0. We thus obtain

L T 4 we wish to compare the infinite loop
functors 'Doo[,:n - Doo[ J1, an

i QIX t least for D -algebras which arise
sequences S)B(DX and Boo , & o

i = - here
from C-algebras. To this end, let -r;l— 1X o * Dn Dn-*-l , wher

2~ C is the inclusion of Lemma 4.9 (which gives the first
“a* Fn n+l

ivi e te the composite
coordinate the privileged role). Let Tij' @j - Di'*‘j denote P

morphism of operads
1 1

T T, A
] i+l e >
Dj“_l—_%mja-l *—_}ﬁjﬂ"—} Dl'*‘]’

an 3 . Dm DOO y FEL EZLgB to ].1‘."!11';5 over J; th'ls IILEL]:'.ES sense

!
= ] .. It follows easily from Lemma 4.9 that Tio

1
i e T.. = T, .,42T
since Ti+j 'rlj 1,54

is a local T -equivalence of operads,
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~ Proposition 14.7. For i> 0, let Dc'JoSl denote the functor D Si
o
regarded as a D -functor in Doo[ TJ'1 via the action

: DooslT} _ .
B - D SD —2.. 10 ioco i
fele) w® DCDSLDOD am— D(X)S

.

o i o i )
Thenn E(E- Dooq) (1) B(Dcos , Dm,le) = X is a well-defined morphism of
Doo-algeszas for any DOO-algebra (X, £), and £(§°DOO¢1(1)) is a weak
homotopy equivalence if X is i-connected,

Proof, Let §i= Dmﬂ_l}( -+ Q"X denote the Dm-algebra structure map
determined from £ by Lemma 1.5 (the previous notation Qiﬁ would be con-

fusing here). We claim that §i factors as the following composite:

' . .
.o . 6. 'D_$'() i
ioo ico i Jid co i Ql i
DleX —0 Dmn’x ——>aD_so'x —2— S21DmX E ok,

» 1 . Py i
Since Tio results by replacing each little co-cube ¢ by the co-cube 1°X c,

the proofs of Lemma 14. 2 and of Proposition 5,4 imply that

1

Si0Tico (D€ s e y;1(s) = [(d,c),[yl,s],...,[yj,s]]

for de C(j), ce Cm(j),' yr'e le, and s e I:'l .

: i ; ; i
Since (1) is the evaluation map, (])1[y, s] = y(s), gi is indeed equal to the

stated composite by Lemma 1,5, Therefore the following diagram is com-

mutative, and this implies that €(§°Dm¢l(1 )) is well-defined by Lemma

9.2, Construction 9.6, and the definition 6f \. in Lemma 14, kH
ico
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i

i i m(pl(aiooT!oo) i i va id
D _s'D_@x X D D so'x ——————> D_s'a'x
(e 0] (o0 o 00 o0
i i
b_D, #M1) D_¢)
y v 4
D X 2 D X
[s o BN e ) - [ve]
D_t :
X & X
(e 0]

Moreover, by the naturality of ¢ and of yl, the following diagram is also

commutative:
. (6, i 01s1) L :
B(DOO,DOO,Q]’X) B(QlDO'OS ,Dm,szl}q
e(e,) w@'t-a'n_¢'1) v
\ 2'e(£-D_¢*(1)) : : .
Q ® sle(Dc;Osl, D_, o'x)

' .D i i, . _ .
Here BiooT' © - Doos is a morphism of Dcn functors in Dco[T]

ioco
by a simple diagram chase from Lemma 5.3. By Theorem 14.4(i) and

Theorem 12, 3, E(éi) and yl are weak homotopy equivalences. For con-

nected spaces Z, 'r: D Z-~D Z and &§. :D Z—»s‘le SIZ are weak
i oo o8] im® e fo')

.
|
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homotopy equivalences by Proposition 3.4 and by the approximation theorem

. A1 i ' .
(since a T = Q aoovoos ° 5ioo)' By Theorem 11,13, B(SicoTioo’ 1,1) is

. thus a weak homotopy equivalence if X is i-connected and, by the diagram,

g(Ee Dle(l)) is then also a weak homotopy equivalence.

Lemma 14.8. Let (X, 64:00) be the Doo—algebra determined by a

C-algebra (X,6). Then
1 . . ok i
B(1,7] ,1:B(D! s,,D_,X) ~ B(D_S",D_,X)

is a well-defined morphism of Dm-—algebras and is a weak homotopy
equivalence if X is connected.
Proof. Since "poo:Doo - C is the projection, we obviously have
¢ _=4¢ 7. . Inview of the definition of D' s, (1,7! ,1) isthus a
@ w ico ') ico
morphism in the category B (J,D[J 1) of Construction 9.6 and

H
B(1, Tio’ 1) is well-defined. The last part follows from Proposition 3.4

and Theorem 11.13,

By combining the previous lemma (applied to 92X instead of to X) and
proposition with Theorem 14. 4 and Corollaries 14.5 and 14, 6, we obtain the

desired comparison between QlBOOX ‘and BmﬂlX for C-algebras (X, 8).

Theorem 14.9. Let (X,8) be a C-algebra and let £ = oy

Assume that X is i-connected. Then the diagram

e(e-D_ (1))

(e 0] i ]
X B0’ stp ax) 2T T )
Mo T ! £

® Biszlx
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displays a weak homotopy equivalence of Doo—algebras between (X, §)
-i i
and WQ "B Q'X. Therefore the infinite loop sequences B X and
oo (o)

-i i
Q BCDSZIX are weakly homotopy equivalent.

Remark 14.10, Observe that if Y ¢ Ioo’ then QiWY and WQiY have
the same underlying space, namely QIYO, and respective actions
Qie

o Too and Gmo To By passage to lirnits , Lemma 5.6 implies

. i i
that the action Gm of Cm on SZIYO derived in Lemma 1.5 satisfies
i

- 1 ! . . v
Q2 900 = ema o (where v I8 defined from the u-; as T;-m was defined

£ ¢ o ' i _ '
rom the T 1X o ). Therefore Q 600» T = eooo Teo® Tios ? and ,

by Proposition 3.4, the action maps DooﬂlY +@'Y of @'WY and
O [s]

WQ'Y are weakly homotopic (at least if QlYo is connected).

15. Remarks concerning the recognition principle

The purpose of this section is to indicate the intent of our recognition
theorem fbr Eoo spaces in pragmatic terms, to describe some spectral
sequ,ences wlr;ich are implicit in our goemetric constructions, to discuss
the cor;nectivity hypotheses in the theorems of the previous section, and to
indicate a fewl directions for possible generalizations of our theory. We
shall also construct a rather curious functor from Z -free operads to
Eoo operads.

Of course, Theorem 14.4 implies that a connected Ecn space X
determines a connective cohomology theory. Pragmatically, this is not
the importance of our results. A cohomology theory cannot be expected to
be of very much use without an explicit hold on the representing spaces.
Ideally, one would like to know their homotopy groups, and one surely wants
at least to know their ordinary homology and cohomology groups. Our re-
sults are geared toward such computations via homology operations derived
directly from the Eoo structure, and it is crucial for these applications that
the homology operations derived from a given C-algebra structure map
0:CX —>» X, where C is any Eoo operad, necessarily agree with the
homology operations derived on the equivalent infinite loop space BoX from
the canonical Coo—algebra structure map QOO:COOBOX ——-)BOX. In the
notations of Theorem 14.4, our theory yields.the following commutative

diagram, in which the indicated maps are all (weak) homotopy equivalences:
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D e(6ey ) D v*Bla_w_,1,1)

D X2 _© p po» ,D ,X) -2 22 5D B X
[0 0] R [0 0] (o0 (e8] = o0 o
o_|= o fw

B(OD D ,D ,X)
cx @ o’ T C BX
[o o N e ]
o B(voo,l,l) . 900
L eley) YOBa T . 1.1) /
X & B(D ,D ,X) > > B X
= [e9) o - [¢]

Thus the given geometry 0:CX —+ X is automatically transformed into the
little cubes geometry Gm: CooBoX - BOX. The force of this statement
will become apparent in our subsequent applications of the theory to such
spaces as F and BTop, where there will be no direct geometric connection
between the relevant Eoo operad c and the operad Z:oo'

We indicate one particularly interesting way in which this statement
can be applied, With (X,8) as above, let f: Z ~ X be any map of spaces.
By use of the adjunction Qfoo of (5.9), we obtain a map of infinite loop

sequences g = ﬁm(tf): QOOZ - BmX such that the following diagram is

commutatival

N

f >
————

X
. I
oz :——-E‘L———-—-» B X

o
Obviously g, is 2 map of Coo-algebras, by Theorem 5.1, On mod p

homology then, identifying H(X) with H_,:(BOX) via ., and using Theorem

14, 4{iv), we are guaranteed that (go)"’ transforms the homology operations
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on QZ coming from 600: Coo QZ - Q7 into the homology operations on X
coming from 6:CX - X. Since H_(QZ) is freely generated by H*(Z)
under homology operations (see [ 20 , Theorem 2.5] for a precise statement),

it follows that (go)‘,: is completely determined by £, and the homology opera-

-

tions on H*(X)

Theorem 14.9 will have several important concrete applications.
For example, the spaces occuring in Bott periodicity are all t -spaces
for an appropriate Em-operad Z and the various Bott maps X - QX!
(e.g., X = BU and X'= SU) are all { -morphisms, where QX' has the
ot ~-space structure determined by Lemma 1.5 from that on X'. Via
Theorem14.9, it follows that our spectra BmX are weakly homotopy
equivalent to the connective spectra obtained fromthe peﬁodic Bott spectra
by killing the bottom homotopy groups. Less obvious examples will arise
in the study of submonoids of F.

- We should observe that our constructions produce a variety of new
spectral sequences, in view of Theorem 11.14, Probably the most interesting
of these are the spectral sequences {iErX} derived by use of ordinary
mod p homology in Theorem 11.14 from the simplicial spaces B*(DmSi,Dm,X)
of Theorem 14.4, where X is a connected Dco—algebra and i> 0. Of
course, B(DOOSi, Doo’ X) is weakly homotopy equivalent to the i-th de-looping
BiX of X. For each j and q, the homology Hq(DOOSiDO‘i X) is a known

functor of H (X), determined by [ 20, Theorem 2.5], since D_  may be
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replaced by Q. The differentials
d= }1: (-1)'m (8.):1 (0_s'D) x) -~ u (D_s'pilx)
=0 q i"""qg o oo q o
are in principle computable from knowledge of the homology operations on
H,(X); these operations determine Hq(aj), and the Hq(ai) for 1< j depend
only on the additive structure of H*(X) as they are derived from natural
transformations of functors on J (with known behavior on homology).
Therefore iE2 is a well-defined computable functor of the R-algebra
H,(X), where R is the Dyer-Lashof algebra (see [20]), and {iErX} con-
verges to H*(Bix). It appears unlikely that these spectral sequences will
be of direct computational value, but they are curious and deserve further
study., In particular, one would like'to have a more precise description of
iEZX, perhaps as some homological functor of Hq_,_(X), and, in the case i=1,
one would like to know the relationship between {lErX} and the Ejlenberg-
Moore spectral sequence (derived by use of the Moore loop space on BIX)

H, (X)

converging from Tor (z ;Zp) to H*(le)'

P
Although all of our constructions of spaces and maps are perfectly

general, the validity of our recognition principle is restricted to connected

EOD spaces since its proof is based onthe approximation theorem. A necessary

condition for an H-space X to be homotopy equivalent to a loop space is that

X be group-like, in the sense that 'rro(X) is a group @der the induced pro-

duct. It is trivial to verify that a homotopy associative group-~like H-space

.
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X is hémotopy equivalent to Xo X -rro(X), where XO is the component of
the identity element. It follows that a group-like Eoo space X is weakly
hq::notopy equivalent to an infinite loop space since both XO and the Abelian
group jro(X) are. Such a statement is of no pragmatic value since: the
equivalence does not preserve the Eoo space structures: there are many_
examples (such as -QZBU and QSO) of EOD spaces with non-trivial homology
operations on zero-dimensional classes but, as a product, Xo X -er(X) has
only trivial homology operations on such classes (see [20, Theorem 1.1]).
A more satisfactory result can be obtained by reworking everything
in the previous section with C, Cj,:and Dj replaced by the monads 0CS,
QCjS, and SZDjS. Of course, any QDOOS-algebra is a Doo-algebra by pull-
back along BIOO:DOO-'- QDCOS, and therefore any QDOOS—algebra is a group~

like Eoo space Given aﬂDmS—algebra (X, £), define BOOX = { BiX} by

~ ) . P45

X = o'B(s* s
Bi 1i:n B( ’QDi-l-j-l »X)
and consider the following spaces and maps:
g(£) B(& ozoo'n'ws, L1 ©
X < B(@D S,0D S§,X) ' BlRQS, 9D §,X) ——> B X
w (o] fee) o
Y Y
QB(czoo'rrCDS, 1,1)
QB(DOOS,QDCOS,X) QB(QS,QDCOS,X)

By Theorems 12.2 and 12.4, &(£), B(S'lam'rrcos, 1,1), and ym are morphisms

of Doo-algebras {not of QDOOS-algebras). £(£) is a homotopy equivalence
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by Proposition 9.8 and Corollary 11.10, and (granting the appendix to have
been generalized so as to show that the various simplicial spaces are

strictly proper) the maps Yoo’ v, and B(aoo'rrms, 1,1) are weak homotopy
equivalences by Theor em 12,3, the approximation theorem,; and Theorem
11.13. It follows from the commutative square that.’the map B(ﬂafoo'n'oo_s, 1, 1)_
is also a weak homotopy equivalence, Thus (X, £) is weakly homotopy
equivalent as a Doo-algebra to WEOOX. The remaining results of the
previous section can be similarly reproven for QDmswalgebra.s, with all
connectivity hypotheses lowered by one (e. g, , Y, need only be (i-1)~connected
in the analog of Theorem 14, 4(vi)). We omit the details since no applications
are presently in view,

Finally, we mention several possible generalizations of our theory.
There are various places where it should be possible to replace strictly
commuting diagrams by diagrams which only commute up to appropriate
homotopies. The technical cost of weakening the notion of operad surely
cannot be justified by results, but the notion of (& -space might profitably
be weakened. It would be useful for applications to BO and BU withthe
tensor product H-space structure if all reference to base-points could be
omitted, but this appears to be awkward within our context. A change in a
different direction, suggested by Stasheff, is to define the notion of a homotopy
C -space by retaining the commutativity with permutations, degeneracies,

a nd unit that we have required of an action 6 of ﬁ' on X, but only requiring
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the resulting map 6:CX — X to be such that the various ways of composing
0 and CZ -+ C to obtain maps c¥kx -x agree up to appropriately co-

herent homotopies.

This possible refinement to our theory is related to an objection that
might be raised. We have not proven, nor have we needed, that a space X
which is homotopy equivalent to an Eoo space Y is itself an Eoo space.

This was proven by Boardman and Vogt [ 7 , 8 ] (and was essential to their

proof of the recognition theorem)by means of a change of operads.
With a recognition theorem based on the notion of a homotopy

o4 -space,such an argument might be unnecessary. Alternatively,
their argument may generalize to replace a homotopy L —-space by

a fl-space, for a related operad &. Of course, one would expect
the notion of a homotopy F=-space to be homotopy invariant. Indeed,
let f :X + ¥ be a homotopy equivalence with homotopy inverse g,
where (¥,8) ¢ L[ J1. Define 8':t CX + X +to be the composite

Cf 6 g

CX > CY Y > X

By Corollary A.413, we may replace f by its mapping cylinder (at the price
of growing a whisker on C ) and thus assume that f is an inclusion, and

we may then assume that X is a strong deformation retraction of Y with
retraction g.. Now gf= 1 trivially implies that 8'n=1 on X, but 6!

fails to define a C-algebra structure map since the third square in the follow-

ing diagram only homotopy commutes:
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c

cox 5% s coy €8s cy CEsox —Es oy
o p:l 19 19' j/e
cx —& cy —>» v —E->x<E Y .

Intuitively, this is a minor deficiency which should evaporate with the study
of the notion of homotopy E -spaces,

Similarly, the notion of a morphism of C -spaces can certainly be
wéakened to an appropriate notion of homotopy f: -morphism (most simply
between actual Z: -spaces but also between homotopy g: -spaces). The
maps f and g above ought then to be homotopy’ C -morphisms, As
further examples, one wo uld expect the product on an Eoo‘ space to be a
homotopy morphism (see Lemma 1.9) and one would expect the homotopy
inverse of a f -morphism which is a hornotopy equivalence to be a homotopy
E -morphism. Our theory avoids such a notion at the negligible cost of re-
versing the direction of certain arrows. We have not pursued these ideas
~ since they are not reqﬁired for any of the immediately visible applications.
Finally, we point out the following procedure for constructing new_

operads from old ones.

Construction 15.1. Let )): be an operad. Define R L(]) = fD_“Z;(j)l where

D : LL»}ZL is the functor defined in Construction 10.2. Then RE is an

operad with respect to the data specified by
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(a) x - D . . ’ . . . .
W = [DY[REMWX REG) R XRBGY—REG, =2 j_, where
we have used the fact that D* and realization preserve products to
identify the left-hand side wi j '
3., e nd side with |D_(B(k) Xg(i)X. .. XEG ]
(b) The identity of L is 1 € E(1) = FOID*;‘:’(I)[. B
(¢) The right action of Zj on RP(j) is the composite
. IX]|T%] . Dax
REOxZ; ——> [D, TG X|D,L,]| = ID(EGXZ -L—l—'+u¢~(j),
where T is defined in Construction 10.2 and ¢ is the action of 3.
j

on E(j).

By Proposition 10.4 and Corollary 11.10, each Q £(j) is contractible hence
by (c), RZ is an E_, operad if C isa 2 -free operad.

The };oo operad  =@7)] has been implicitly exploited by Barratt [4]
(see Remark 6.5). This operad is technically convenient because DX is a
topological monoid for any X € J’; indeed, the product is induced from the
evident pairings
@00 X Wl = DAL x $ ) =D, 5 | = QG+

by the formula [d,y] [d',‘/'].: [a@d,y.y'].



APPENDIX

We prove the technical lemmason NDR-pairs that we have used and

discuss whiskered spaces, monoids, and operads here.

Definition A.1l, A pair (X,A) of spaces in U is an NDR-pair if

there exists a map u:X — 1 such that A= u-l(O) and a homotopy

h:IX X = X suchthat h{(0,x) = x forall xe X, hit,a)=a for all

(t,a) e IX A, and h(l,x) e A forall xe u—l[O,l); thé pair (h,u) is said to
be a representation of (X,A) as an NDR-pair. If, further, ux <1 for all x,
so that h(l,x)e A forall xe X, then (X,A) is a DR-pair. 'An NDR-pair
(X,A) is a strong NDR-pair if uh(t,x) <1 whenever ux ¢ 1; thus, if

B = u'l[O, 1), it is required that (h,u) restrict to a representation of (B, A)

as a DR~pair.

By [30,7.1], (X,A) is an NDR-pair if and only if the inclusion A C X
is a cofibration. There is little practical difference between the notions of
NDR-pair and strong NDR-pair in view of the following example and the dis-

cussion below of whiskered spaces.

Example A, 2. Define the (reduced) mapping cylinder Mf of a map f:X =Y
in J to be the quotient space of X XI + Y obtained by identifying (x,0) with
f(x) and (#,t) with % ¢ Y. Embed X in Mf by x = (x,1). Itis trivial that
(I\—Tif,X) is an NDR-pair, where I\_Zf is the unreduced mapping cyclinder, but

f must be well‘:-beh'aved near the base-points to ensure that (Mf, X) is an
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NDR-pair. Thus let (h,u) and (j,v) represent (X,*) and (Y,%*) as
NDR-pairs and assume that vf(x) = u(x) and j(t, £(x)) = fh(t,x) for xe X

and te I. Then (k,w) represents (Mf,X) as an NDR-pair, where

u(x) 0¢s ¢1/2

W(Y) = V(Y) and w(x,s)= -
min(u(x), 2-2s) 1/2 ¢ s ¢1

(h(t,x) ,s+st) 0<s<1/2
k(t,y) = jlt,y) and Kk(t,(x,s)) =

L (h(2t-2st,x) ,s+t-st) 1/2<s<1

If (b,u) and (j,v) represent (X,*) and (Y,*) as strong NDR-pairs, then
(k,w) represents _(Mf,X) as a strong NDR-pair, Of course, (Mf,Y) is

represented as a DR-pair by (u',h'), where u'(y) = 0, u'(x,8) = %S.u(x), and
hi(t,y) =y and h'(t, (x,8)) = (x,s(1-t)).
We have frequently used the following result of Steenrod [30,6.3].

Lemma A.3. Let (h,u) and (j,v) represent (X,A) and (Y,B) as

NDR-pairs, Then (k,w) represents the product pair
(X,A)X (¥,B) = (XXY,XXBUAXY)
as an NDR-pair, where w{x,y)= min{ux,vy) and

(n{t, x),j(%t, ¥)  if vy pux
k(t,x,y) = .
(B ZLt,%), it y)) i wx yvy
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Further, if (Y,B) is a DR-pair, then so is (X, A) X (Y, B), since vy<¢1

for all y implies w(x,y)<1 for all (x,y).

The proof of the following addendum to this lemma is virtually the

same as Steenrod's proof of [30,6.3].

Lemma A.4. Let (h,u) represent (X,A) as an NDR-pair. Then

. A . .
(hj’uj) represents (X,A)J = (XJ, U x* 1X Axx™ asa Zj-equivariant
i=1
NDR-pair, where uj (xl, cen ,xj) = 1'xz(in(u.:'{1 senes uxj) and

Byt s y) = (B 3), s BE )

1 j

with

t mi ux . /ux, if some ux, { ux, , j7 i
mjn (/) YL

t S ifall uxj>,uxi,j;£i

The following sharpening of [30,7.2] is slightly less obvious.

Lemma A.5. Let (B,A) and (X,B) be NDR-pairs, Then thereis a
representation (h,u) of (X,A) as an NDR-pair such that h{I X B) C B.

Proof. Let (j,v) and (k,w) represent (B,A) and (X,B) as NDR-
pairs. Define f:I1X B =1 by f(t,b) = (1-t)w(b) + tv(b). Since B-+X isa
cofibration, there exist maps 3" IXX->X and %' IXX -1 wﬁich make the

following diagrams comrmutative:
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0 X B—————> IX B 0XB———>IXB

X‘/ 1/

OXX »IXX 0 XX ————IXX

 Define u by u(x) = max(f\’(l,k(l,x)),w(x)) and define h by

)k(Zt,x) ogtg1/2

hit,x) =
13’(2t-1,k(1,x)) 1/2 $tgl

It is easy to verify that the pair (h.u) has the desired properties.

We shall shortly need the following lemma on unions, in which the

requisite verifications and the continuity proof are again simple and omitted.

Lemma A.6. Let Ai’ 1< i¢n, be subspaces of X, and let (hi’ ui)
represent (X, Ai) as an NDR-pair. Assume that

{a) hj(I X Ai) C Ai for i<j and
(b) ujx<1 implies ﬁjhi(t,x)il for i¢j, tel and xe X.

Then (j,v) represent (X,A1 (U uAn) as an NDR-pair, where

VX = min(ulx, ce s unx) and

-
‘4 T t'x =h (¢ . . . .
with Heox) = by (kb (6 g ee By (b 30)-00)),

t min u,x/u,x if some ux < u,x
j i 1 1 1

kt ifall ux > u.x
i i
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The functors we have been studying preserve NDR-pairs and strong
NDR-pairs in a functorial way; the following ad hoc definition will con-

veniently express this for us.

Definition A. 7. A fu:nctor F:J - J is admissible if any representa-
tion (h,u) of (X,A) as an NDR-pair determines a representation (Fh,Fu)
of (FX,FA) as an NDR-pair such that (Fh)t = F(ht) on X and such that,
for any map g:X > X with ug(x) < 1 whenever u(x) < 1, the map
Fu:FX - 1 satisfies (Fu)(Fg)(y) ¢ 1 whenever Fuly) < 1, ye FX. As
examples, S,C, and @ are admissible (where C is the monad associated
to any operad ), with

(Su)[x,s] = u(x) , xe X and s¢e1;

(Cu)[c,xl,...,xj] = max u(xi), ce (C(j) and x, e X3
i

(Qu)(f) = max uf(s) ,fe QX.
sel

Clearly any composite of admissible functors is admissible.

We now discuss whiskered spaces, monoids, and operads. Growing a
whisker is a standard procedure for replacing a given base-point by a non-~
degenerate base-point. For our purposes, what is more important is that

the new base-point is strongly and functorially non-degenerate.
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Definition A.8 (i) Let (X,#*) be a pair in U, *e¢ X. Define

Xt = X vI, where 1 is given the base-point 0 in forming the wedge, and

give X! the base-point 1 e I, (X',1) is represented as an NDR-pair by

(h,u), where u{x)=1 and h{t,x)=x for xe X and, for sel,

1 if s¢l/2 s+ st if s¢1/2
u(s) = and  h(t,s) =

‘ 2-2s if s >1/2 s+t-st if s »1/2
Let :X>X' and p= hl:X' - X denote the evident inclusi'on and
retraction. If fi1(X,*) - (Y,*) is a map of pairs, let f'=fv1:X!' ¥,
then, by Example A.2, (Mf,,X') is a strong NDR-~ pair (since uf'=u and
htf' = f'ht), and (Mf', Y') is a DR-pair.
(ii) Let G be a topological monoid with identity e. Then G' is a topological
mongid with identity .1 under the product specified by the formula

gis=g= sg for ge G and sel

and the requirement that the product on G' restrict to the given product on G
and the usual multiplication on 1. The retraction p:G'-> G is clearly a
morphism of monoids.
(iii) Let ¢ bean operad; to avoid confusion, let e denote the identity
element in & (1), Define a new operad C’ and a morphism p: C'I-*- & of
operads by C,(J) = & (j) as a Z‘j-space, with pj =1, for j>1 andby
C”(l) = {1} as a monoid under ', with p, the retraction; the maps v’

are defined by commutativity of the diagrams
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Clo) x €)% ... x £15,) ——= &)

ij X Xp.,

p
kg, e

-

CHIX GG )X .en X ¢ 1) —L—> E()

for j=j1+...+jk#l or k# 1. Of course, C'(O)‘:*: c (0).

Lemma A.9. Let G and C!' denote the monads in J associated to
. - ‘ T *
an pperad C and its whiskered operad C . Let Xe7J . Then there is a
natural homeomorphism yx from the mapping cylinder M"’l of X —~ CX
to GC'X such that the following diagram commutes:

X / n\CX
N A

C'X
(where i and r are the standard inclusion and retraction)
Proof. On CX C M”I’ let x:CX =» C'X be the evident inclusion, and
define y(x,s) = [5,x] for (x,s8) e XX I, where se I ¢ ((1)' onthe right,

Since )
{x,0) = n{x) = [e,x] ¢ M'r] and [0,x]=[e,x]e C'X,

X is well-defined, and the remaining verifications are easy.
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Proposition A,10. Let  be an operad and let C' be the monad

in J associatedto ¢’ . Let X be a C'-algebra and F a C'-functor
in J (e.g., X a {-space and F a C-functor). Assume that F is an

v

admissible functor and that (X,%) is a strong NDR-pair. Then B_(F,C',X)

is a ;stl;ictly proper simplicial space. i
Proof. Let (h,u) represemt (X,%*) as a strong NDR-pair. As shown

in Definition A.7, (h,u) determines a representation (Ch,Cu) of

(CX,C*) = (CX, *) as a strong NDR-pair, Clearly Chto n= mnoh, and

Cu on} = u, hence, by Example A.IZ, (Mﬂ’ X) is a strong NDR-pair. By the

lemma above, (Mn.,X) is homeomorphic to (C'X,n'X) and (h,u) thus ex-

plicitly determines a representation of (C'X, n'X) as a strong NDR-pair.

Write D= C' to simplify notation, and let

vy=8 (F,0,%X) = ¥FD¥X and A =Ims, CY¥,

gty 1 i i
i g-i. q+l —i.x

where si=FD 7, n:D” XD .
Now (h,u) determines a representation (Dq‘lh,Dq-lu) of (Dq—1X, *¥) as a
strong NDR-pair and, with X replaced by Dq-lx, we have just shown that
this representation explicitly determines a representation, (ki’ Wi) say, of
@ i 2D¥X) as a strong NDR-pair. Since FD' is admissible,
(h.,u,) = (Flei’ FDlwi) is then a representation of (Y’Ai) as a strong NDR-

i’

pair, Since FDln' is a natural transformation, the following diagram

commutes for i<j and te I
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FDIk,

Fp%x — Jt  ppdy

FD'7 FD'q'
FDJ'lk_t
FD%& It - rp%

Therefore hj(I X A)CA, for i<j. By Definition 11.2, B (F,D,X) will
be strictly proper if it is proper and, by Lemma A, 6, B*(F,D, X) will be
proper provided that qu <1 implies ujhi(t’ y) <1 for i¢j, te I and
y ¢ Y. By our definition of an admissible functor, this will hold provided
that
(Dj—iwj)ki(t, x) < 1 whenever (Dj‘iwj)(x) P 1,

for i¢j, tel and x ¢ Dq+1—iX. Here ki and Dj_i,wj are explicitly de-
termined by the original representation (h,u) of (X, *) as a strong NDR-
pair, and the result is easily verified by inspection of the definitions.

The requirement that (X, *) be a stong NDR-pair is no real restriction

in the proposition above in view of the following lemma.

Lemma A.11. Let 8 be an action of an operad £ on a based space

X e W . Then there is an action 8' of {7 on X' such that p:X'=>=X is a

o

morphism of " ~-spaces.
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Préof: Let” + :X C X' and define 8': £ (j) X (X')'-J - X' by
. J

i . I-0
bej(C, pxl,...,pxj) if some xll( )

1
ej(c,xl,...,xj)=
XieeeX, ifall x, ¢ I
3 i

Here xl. . .xj ¢ I C X'; both parts of the domain are closed, and both
definitions yield 0 = * on the intersection. The requisite verifications are

all straightforward.
The following lemma is relevant to the remarks. at the end of §15.

Lemma A,12. Let (¥,8) e C [T 1. 1et YT Z, andlet RtIX Z ~ 2
be a homotopy such that

h(l,z) = z, hit,y) = v, h{0,z) e Y, and h{tt!, z) = h(t, h(t', 2))

~ /
for ze¢ Z, ye Y, and t,t' e I. Then there is an action 6 of ¢ on Z
e
such that the retraction == hO: Z =~ Y is a morphism of [ -spaces.

Proof. Define gj on & (5) X VA by commutativity of the diagram

. j .
1% .
clHxz —2E » CHxY
~t
9,
eJ‘ b
Z € =2 Y

~ /
and define 8. =h on IX Z C (1) X Z. The requisite verifications are

1

again completely straightforward.
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1 X - i ma m'j
Corollary A.13. If (Y,8)e C[J ] and £:X Y isany map

‘ ! i . - Y
then there is an action '6 of { on Mf such that the retraction Jf.Mf

ld
is a morphism of ( -spaces.

= h' is as defined
Proof. Define h:iIX Mf - Mf by ht = h1 £ where

in Example A.2, and apply the lemma.-

10.
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