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Preface

This it the first of a series of papers devoted to the study of iterated loop spaces. Our goal
is to develop a simple coherent theory which encompasses most of the known results about
such spaces. We begin with some history and a description of the desiderata of such a theory.

First of all, we require a recognition principle for n-fold loop spaces. That is, we wish to
specify appropriate internal structure such that a space X possesses such structure if and
only if X is of the (weak) homotopy type of an n-fold loop space. For the case n = 1,
Stasheff’s notion [28] of an A, space is such a recognition principle. Beck [5] has given an
elegant proof of a recognition principle, but, in practice, his recognition principle appears
to be unverifiable for a space that is not given a prior: as an n-fold loop space. In the case
n = 00, a very convenient recognition principle is given by Boardman and Vogt’s notion
[8] of a homotopy everything space, and, in [7], Boardman has stated a similar recognition
principle for n < oco.

We shall prove a recognition principle for n < oo in section 13 (it will first be stated in
section 1) and for n = oo in section 14; the latter result agrees (up to language) with that
of Boardman and Vogt, but our proof is completely different. By generalizing the methods
of Beck, we are able to obtain immediate non-iterative constructions of classifying spaces
of all orders. Our proof also yields very precise consistency and naturality statements. In
particular, a connected space X which satisfies our recognition principle (say for n = o)
is not only weakly homotopy equivalent to an infinite loop space By X, where spaces B; X
with B; X = QB,;,1 X are explicitly constructed, but also the given internal structure on X
agrees under this equivalence with the internal structure on ByX derived from the existence
of the spaces B; X. We shall have various other consistency statements and our subsequent
papers will show that these statements help to make the recognition principle not merely a
statement as to the existence of certain cohomology theories, but, far more important, an
extremely effective tool for the calculation of the homology of the representing spaces.

An alternative recognition principle in the case n = oo is due to Segal [26] and Anderson
[2, I]. Their approach starts with an appropriate topological category, rather than with
internal structure on a space, and appears neither to generalize to the recognition of n-fold
loop spaces, 1 < n < oo, nor to yield the construction of homology operations, which are
essential to the most important presently known applications.

The second desideratum for a theory of iterated loop spaces is a useable geometric ap-
proximation to 2"5" X and Q5™ X = lim Q"5" X. In the case n = 1, this was first obtained
by James [15]. For n < oo, Milgram [22] obtained an ingenious, but quite intricate, approx-
imation for connected CW-complexes. In the case n = oo, such an approximation was first
obtained by Dyer and Lashof [unpublished] and later by Barratt [4], Quillen [unpublished],
and Segal [20].

We shall obtain simple functorial approximations to Q2"S™X for all n and all connected
X in section 6 (a first statement is in section 2). Our results show that the homotopy
type of Q"S"X is built up from the iterated smash products XU of X with itself and the
classical configuration spaces F'(R™;7) of j-tuples of distinct points in R™. Moreover, in
our theory the approximation theorem, together with quite easy categorical constructions
and some technical results concerning geometric realization of simplicial topological spaces,
will directly imply the recognition principle. This is in fact not suprising since Q2"S™ X and
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Q>S5 X are the free n-fold and infinite loop spaces generated by X and should play a central
role in any complete theory of iterated loop spaces.

The third, and pragmatically most important, requirement of a satisfactory theory of
iterated loop spaces is that it lead to a simple development of homology operations. The
third paper in this series will study such operations on n-fold loop spaces, n < oo, and will
contain descriptions of H,(Q"S"X) for all n as functors of H,(X). The second paper in the
series will study homology operations on E, spaces and infinite loop spaces and will apply
the present theory to the study of such spaces as F, F//O, BF, BT op, etc. It will be seen
there that the precise geometry that allows the recognition principle to be applied to these
spaces is not only well adapted to the construction of homology operations but can actually
be used for their explicit evaluation. Statements of some of the results of these papers may
be found in [21].

Our basic definitional framework is developed in sections 1, 2, and 3. The notion of “op-
erad” defined in §1 arose simultaneously in Max Kelly’s categorical work on coherence, and
conversations with him led to the present definition. Sections 4 through 8 are concerned with
the geometry of iterated loop spaces and with the approximation theorem. The definition
of the little cubes operad in §4 and of their actions on iterated loop spaces in §5 are due to
Boardman and Vogt [8]. The results of §4 and §5 include all of the geometry required for
the construction of homology operations and for the proofs of their properties (Cartan for-
mula, stability, Adem relations, etc.). The observations of §8, which simplify and generalize
results originally proved by Milgram [23], Tsuchiya [32], and myself within the geometric
framework developed by Dyer and Lashof [I1], include all of the geometry required for the
computation of the Pontryagin ring of the monoid F' of based homotopy equivalences of
spheres. Our key categorical construction is presented in §9, and familiar special cases of
this construction are discussed in §10. This construction leads to simplicial spaces, and a
variety of technical results on the geometric realization of simplicial spaces are proven in §11
and §12. The recognition theorems are proven in §13 and §14 and are discuessed in §15. A
conceptual understanding of these results can be obtained by reading §1-3 and §9 and then
§13, referring back to the remaining sections for the geometry as needed.

The results of §10 and §11 will be used in [I8] to simplify and generalize the theories of
classifying spaces of monoids and of classification theorems for various types of fibrations.

It is a pleasure to acknowledge my debt to Saunders Mac Lane and Jim Stasheff, who read
preliminary versions of this paper and made very many helpful suggestions. Conversations
with Mike Boardman and Jim Milgram have also been invaluable.
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1 Operads and C-spaces

Our recognition principle will be based on the notion of an operad acting on a space. We
develop the requisite definitions and give a preliminary statement of the recognition theorem
in this section.

To fix notations, let U denote the category of compactly generated Hausdorff spaces and
continuous maps, and let 7 denote the category of based compactly generated Hausdorff
spaces and based maps. Base-points will always be denoted by * and will by required to
be non-degenerate, in the sense that (X, *) is an NDR-pair for X € 7. Products, function
spaces, etc., will always be given the compactly generated topology. Steenrod’s paper [29]
contains most of the point-set topology required for our work. In an appendix, we recall
the definition of NDR-pairs and prove those needed results about such pairs which are not
contained in [29].

An operad is a collection of suitably interrelated spaces C(j), the points of which are to
be thought of as j-adic operations X7 — X. Precisely, we have the following definitions.

Definition 1.1. An operad C consists of spaces C(j) € U for j > 0, with C(0) a single
point x, together with the following data:

1. Continuous functions 7 : C(k) x C(j1) x -+- x C(jx) — C(j), 7 = D_ Js, such that the
following associativity formula is satisfied for all ¢ € C(k), ds € C(js), and e; € C(i;):

V(V(C;dla"'7dk);61a"'7€j> :’y(c;fla"'vfk)a

where fs = Y(ds; €54 tju 1415 -+ Ejrtotis)s a0 fg = if jo = 0.
2. An identity element 1 € C(1) such that v(1;d) = d for d € C(j) and v(c; 1¥) = ¢ for
ceC(k), 1*=(1,...,1) € C(1)*.

3. A right operation of the symmetric group X; on C(j) such that the following equivari-
ance formulas are satisfied for all ¢ € C(k), ds € C(js), 0 € X, and 7, € X;:

y(eoydy, ... dy) = v(cde101), - do1))0(J1s - - -, Jk)

and y(c;dymy, ... dyme) = (s dy, .o, dy) (T @ - - - B Ty), where o (j1, .. ., ji) denotes the
permutation of j letters which permutes the k£ blocks of letters determined by the given
partition of j as o permutes k letters, and 71 @ - - - @ 7 denotes the image of (74, ..., %)
under the evident inclusion of ¥; x --- x ¥, in X;.

An operad C is said to be X-free if X, acts freely on C(j) for all j. A morphism
¢ : C — C' of operads is a sequence of ¥;-equivariant maps v¢; : C(j) — C'(j) such that
11(1) = 1 and the following diagram commutes:

C(k) x C(j1) x -+ x C(jx) ——=C(j)
Y Xj, X"'ijki b
C'(k) % C'(j1) x -+ % C'(j) —=C'(5).
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Definition 1.2. Let X € 7 and define the endomorphism operad £x of X as follows.
Let Ex(j) be the space of based maps X7 — X; X = %, and £x(0) is the inclusion * — X.
The data are defined by

L y(fi91,---,98) = f(g1 x -+ X gg) for f € Ex(k) and g, € Ex(Js)-
2. The identity element 1 € Ex(1) is the identity map of X.

3. (fo)ly) = f(oy) for f € Ex(j), o € ¥;, and y € X7, where ¥, acts on X’ by
0'(5(31, NP ,Ij) = (ajg—l(l), ‘e ,Jig—l(j)).

An operation of an operad C on a space X is a morphism of operads 6 : C — Ex, and
the pair (X, 0) is then said to be a C-space. A morphism f : (X, 0) — (X', ¢') of C-spaces
is a based map f : X — X’ such that fo6;(c) = 8)(c) o f7 for all ¢ € C(j). The category of
C-spaces is denoted by C[T].

It should be clear that the associativity and equivariance formulas in the definition of
an operad merely codify the relations that do in fact hold in £x. The notion of an operad
extracts the essential information contained in the notion of a PROP, as defined by Adams
and MacLane [I7] and topologized by Boardman and Vogt [§].

Our recognition theorem, roughly stated, has the following form.

Theorem 1.3. There exist Y-free operads C,, 1 < n < oo, such that every n-fold loop space
is a C,-space and every connected C,-space has the weak homotopy type of an n-fold loop
space.

In the cases n = 1 and n = oo, the second statement will be valid with C; and Cs
replaced by any A, operad and FE., operad, as defined in section 3.

Perhaps some plausibility arguments should be given. Let C be any operad, and let
(X,0) € C[T]. For c € C(2), 6(c) : X* — X defines a product on X. If C(1) is con-
nected, then * is a two-sided homotopy identity for 6(c); indeed, the requisite homotopies
are obtained by applying 6; to any paths in C(1) connecting 1 to y(c;*,1) and 1 to v(¢; 1, *).
Similarly, if C(3) is connected, then 6(c) is homotopy associative since y(c; 1, ¢) can be con-
nected to y(c; ¢, 1). If C(2) is connected, then 0(c) is homotopic to 6(cT), where 7 € 3 is the
transposition, and therefore 6(c) is homotopy commutative. It should be clear that higher
connectivity on the spaces C(j) determine higher coherence homotopies. Stasheff’s theory
of A-spaces [28] states essentially that an H-space X is of the homotopy type of a loop
space (i.e., has a classifying space) if and only if it has all possible higher coherence homo-
topies for associativity. It is obvious that if X can be de-looped twice, then its product must
be homotopy commutative. Thus higher coherence homotopies for commutativity ought to
play a role in determining precisely how many times X can be de-looped. Fortunately, the
homotopies implicitly asserted to exist in the statement that a suitably higher connected
operad acts on a space will play no explicit role in any of our work.

The spaces C,(j) in the operads of Theorem 1.3 will be (n — 2)-connected. Thus, if
n = 00, it is plausible that there should be no obstructions to the construction of classifying
spaces of all orders. In the cases 1 < n < oo, the higher homotopies guaranteed by the
connectivity of the C,(j) are only part of the story. It is not true that any C-space, where
C(7) is (n—2)-connected, is of the homotopy type of an n-fold loop space. Thus Theorem 1.3
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is considerably deeper in these cases than in the degenerate case n = 1 (where commutativity
plays no role) or in the limit case n = oo.

Since the notion of an action ¢ of an operad C on a space X is basic to all of our work, it
may be helpful to explicitly reformulate this notion in terms of the adjoints C(j) x X7 — X
of the maps 60; : C(j) — Ex(j); these adjoints will also be denoted by 6;.

Lemma 1.4. An action 0 : C — Ex determines and is determined by maps 6; : C(j) x X7 —
X, j >0 (0 :*x— X), such that

1. The following diagrams are commutative, where »_ j; = j and u denotes the evident
shuffle homeomorphism:

X1

C(k) x C(jr) x - - x C(jr) x X7 Cj) x X7,
lxut \X
) o 1xB;, X X0, /Gk'
C(k) x C(j1) x X9 x -+ x C(jj) x X* C(k) x X*

2. 61(1;x) =z for z € X, and
3. 0j(co;y) = 0;(c;oy) for c € C(j), 0 € X;, and y € X7,

A morphism in C[7] is amap f: X — X' in 7 such that the following diagrams commute:

Cl) x X —2 - x

1><fji lf
o'

C(j) x (X7 — X"

We complete this section by showing that, for any operad C, the category of C-spaces
is closed under several standard topological constructions and by discussing the product
on C-spaces. These results will yield properties of the Dyer-Lashof homology operations in
the second paper of this series and will be used in the third paper of this series to study
such spaces as F'/O and F/Top. The proofs of the following four lemmas are completely
elementary and will be omitted.

Lemma 1.5. Let (X,6) € C[T] and let (Y, A) be an NDR-pair in ¢. Let X4 € T denote
the space of maps (Y, A) — (X, %) with (non-degenerate) base-point the trivial map. Then
(XA gAY ¢ C[T] where QJ(-Y’A) C(5) x (X)) — X4 g defined pointwise:

QJ(-Y’A)(C; oo ) y) =05(c f1(y), .., fi(w)).

In particular, (Q2X,Q0) and (PX, P) are in C[7], where Q(#) = 679D and P§ = 679 and
the inclusions i : QX — PX and end-point projections p : PX — X are C-morphisms.

Lemma 1.6. (x,0) € C[T], where each 6; is the trivial map; if (X,0) € C[T], then the
unique maps * — X and X — % in 7 are C-morphisms.
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Lemma 1.7. Let f : (X,0) — (B,0”) and g : (Y,0') — (B,0") be C-morphisms. Let
X xBY C X x Y denote the fibred product {(x,y)|f(z) = g(y)} of f and g in 7. Then
(X xBY,0 xB0") is the fibred product of f and g in the category C[T], where (6 xZ ¢); :
C(j) x (X xBY) — X xBY is defined coordinatewise:

(6 xP 0);(c; (x1,01), -+, (25,95)) = (0;(c; 21, - ... ,xj),G}(c; Yy -5 Y5))-

In particular, with B = %, (X x Y, 60 x ') is the product of (X, ) and (Y, ¢) in the category
C[T], and the diagonal map A : X — X x X is thus a C-morphism for any (X, 0) € C[T].

The previous lemmas imply that any morphism in C[7 ] can be replaced by a fibration in

C[T].

Lemma 1.8. Let f : (X,0) — (Y,#) be a morphism in C[T]. Define (X,0) € C[T] by
letting X = X x¥ (Y7) be the fibred product of f and g, where g(w) = w(0) for w € Y7,
and by letting 6 = 6 x¥ (#"). Then the inclusion i : X — X, the retraction r : X — X, and
the fibration f : X — Y are all C-morphisms, where i(z) = (@, W) With wye)(t) = f(x),

r(z,w) =z, and f(z,w) = w(1).

Finally, we consider the product on a C-space. The following lemma is the only place in
our theory where a less stringent (and more complicated) notion of C-morphism would be
of any service. Such a notion is crucial to Boardman and Vogt’s work precisely because the
H-space structure on a C-space plays a central role in their theory. In contrast, our entire
geometric theory could perfectly well be developed without ever explicitly mentioning the
product on C-spaces. The product is only one small part of the structure carried by an n-fold
loop space, and there is no logical reason for it to play a privileged role.

Lemma 1.9. Let (X,0) € C[7] and let ¢ = 0(c) : X* — X for some fixed ¢ € C(2). Let
¢o=¢ and ¢; = H(1 X ¢p;_1) : XV — X for j > 2.

1. If C(j) is connected and d € C(j), then 6(d) : X/ — X is homotopic to the iterated
product ¢;.

2. If C(j) is X;-free and C(2j) is contractible, then the following diagram is X;-equi-
variantly homotopy commutative:

C) x (X x Xy 2% x « x

ol

Cj) x X —2

Proof. 1. ¢; = 0(cj) where ¢ = ¢ and ¢; = v(¢;1,¢j—1) for 7 > 2. Any path in C(j)
connecting d to ¢; provides the desired homotopy.

2. Define maps f and g from C(j) to C(27) by f(d) = ~(d; ) and g(d) = v(c; d, d)v, where
v € 3y, gives the evident shuffle map (X x X)? — X7 x X7 on X¥. An examination
of the definition shows that if d € C(j) and z € X% then

0;(1x ¢)(d,2) = 02j(f(d),2)  and &0 x 0);(d, 2) = O2(9(d), 2).
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If ¥, is embedded in ¥5; by 0 — (2, .. .,2), in the notation of Definition 1.1(c), then f
and g are ¥;-equivariant. Our hypotheses guarantee that f and g are ¥;-equivariantly

homotopic, and the result follows.
]
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2 Operads and Monads

In this section, we show that an operad C determines a simpler mathematical structure,
namely a monad, and that C-spaces can be replaced by algebras over the derived monad.
We shall also give a preliminary statement of the approximation theorem. The present refor-
mulation of the notion of C-space will lead to a simple categorical construction of classifying
spaces for C,-spaces in section 9. We first recall the requisite categorical definitions.

Definition 2.1. A monad (C,pu,n) in a category 7 consists of a (covariant) functor C' :
7 — T together with natural transformations of functors p : C?> — C and n : 1 — C such
that the following diagrams are commutative for all X € 7

Cn(X) n(CX) w(CX)

CcX C?X CcX and 054 C?X
\ lu@/ cwoi iu(X)
18D, X M) X

A morphism ¢ : (C,u,n) — (C', 1/, n') of monads in 7 is a natural transformation of
functors 1 : C' — C” such that the following diagrams are commutative for all X € 7:

X and  CCOX —2=C'0rX
N | e
" "
P P
CX C'X ox — "V~ corx

Here squares (and higher iterates) of natural transformations ¢ : C — C’ are defined by
means of the commutative diagrams

o2x —Y- corx

2
!
C/
C'OX - (C)2X

Thus a monad (C, i, n) is, roughly, a “monoid in the functor category” with multiplication
4 and unit 7, and a morphism of monads is a morphism of “monoids.” Following MacLane,
we prefer the term “monad” to the more usual term “triple.” Operationally, in our theory,
the term monad is particularly apt; the use of monads allows us to replace actions by operads,

which are sequences of maps, by monadic algebra structure maps, which are single maps.

Definition 2.2. An algebra (X, &) over a monad (C, i, n) is an object X € 7 together
with a map £ : CX — X in 7 such that the following diagrams are commutative:

X 10X and ccx Ls=cox

AN o )

X CX—X



2. OPERADS AND MONADS 8

A morphism [ : (X,¢{) — (X', ) of C-algebras is a map f : X — X’ in 7 such that
the following diagram is commutative:

ox L ox

6,k

X—X

The category of C-algebras and their morphisms will be denoted by C[T].

We now construct a functor from the category of operads to the category of monads in
T, where 7 is our category of based spaces. In order to handle base-points, we require some
preliminary notation.

Notations 2.3. Let C be an operad. Define maps o; : C(j) — C(j — 1), 0 < i < j, by the
formula g;c = y(c; s;) for ¢ € C(j), where

s;=1"x%x 17717 € C(1)" x C(0) x C(1)/~*.

Thus, in the endomorphism operad of X € T, (0;f)(y) = f(siy) for f : X7 — X and
y € X771 where s; : X77! — X7 is defined by

Si(.l'l, c 7'%]'71) = (1’1, ey Ly R Tig 1, ,.flfj,l).

Construction 2.4. Let C be an operad. Construct the monad (C, u,n) associated to C as
follows. For X € T, let ~ denoted the equivalence relation on the disjoint union [,.,C(j) x
X7 generated by

1. (oic,y) =~ (¢, sy) for c € C(j), 0 <i < j, and y € X?71; and
2. (co,y) = (¢,oy) for c € C(j), 0 € ¥, and y € X7.

Define C'X to be the set [ [, C(j) x X7 /(=). Let F,C'X denoted the image of Hf:o C(j)x X7
in CX and give F,,CX the quotient topology. Observe that Fj,_;CX is then a closed subspace
of F.,C'X and give C'X the topology of the union of the F,C'X. FyCX is a single point and
is to be taken as the base-point of CX. If ¢ € C(j) and y € X7, let [¢, y] denote the image of
(¢,y) in CX. For amap f: X — X' in 7, define Cf : CX — CX' by Cfle;y] = [¢; f7(y)].
Define natural maps p : C*X — CX and n: X — CX by the formulas

L. /L[C, [dh'yl]””a[dkayk]] = [7(07 dl?"wdk)aylv”'?yk] for ¢ S C(k>? ds € C(]S>7 and
ys € X7 and

2. n(z) =[1,z] for x € X.

The associativity and equivariance formulas of Definition 1.1 imply both that p is well-
defined and that u satisfies the monad identity - = p- Cp; the unit formulas of Definition
1.1 imply that - Cn =1 = un. If ¢» : C — C’ is a morphism of operads, construct the
associated morphism of monads, also denoted ¥, by letting b : CX — C’X be the map
defined by ¢[c,y] = [¢;(c),y] for ¢ € C(j) and y € X7.
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The association of monads and morphisms of monads to operads and morphisms of
operads thus constructed is clearly a functor. Of course, to validate the construction, we
should verify that the spaces C X are indeed in 7 for X € 7. We shall do this and shall
examine the topology of the C'X in the following proposition. We first fix notation for certain
spaces, which are usually referred to in the literature as “equivariant half-smash products.”

Notations 2.5. Let W € U and let 7 act from the right on W, where 7 is any subgroup of
3;. Let X € T and observe that the left action of 3; on X7 induces a left action of 7 on the
j-fold smash product XV!. Let e[W, 7, ] denote the quotient space W x XV!/(x), where the
equivalence relation ~ is defined by (w, %) ~ (v, %) for w,w’ € W and (wo,y) ~ (w, oy) for
weW,oer and y € XU,

The spaces CX are built up by successive cofibrations from the spaces e[C(j), X;, X].
Precisely, we have the following result.

Proposition 2.6. Let C be an operad and let X € 7. Then
1. (F;CX,F;_1CX) is an NDR-pair for j > 1, and CX € 7;
2. F;,CX/F;_1CX is homeomorphic to e[C(j), %;, X];
3. C': T — T is a homotopy and limit preserving functor.

Proof. 1t is immediate from the definitions that

.F]CX — P}_loX = C(]) ij (X — *)J.

It follows easily that each F;CX is Hausdorff, hence, by [29, 2.6], compactly generated.
Since (X, x) is an NDR-pair by assumption, there is a representation (h;,u;) of (X, *)7 as a
¥ ;-equivariant NDR-pair by Lemma A.4. Define Bj IXF;CX — F,CX and u; : F;CX — 1
by the formulas

h;(t,z) = z and ;(z) = 0 for z € F;_,CX, and
ilj(t, z) = [e, hi(t,y)] and @;(2) = u;(y) for z = [c,y],c € C(j) and y € (X — *)7.

Then (h;, ;) represent (F;CX, F;_;CX) as an NDR-pair. By [29, 9.2 and 9.4], CX € U
and each (CX, F;CX) is an NDR-pair. Therefore CX € 7. Part (ii) is now obvious. For
(iii), if Ay : X — X' is a homotopy, then Ch; : CX — CX' is a homotopy, and it is evident
that C preserves limits on directed systems of inclusions in 7. ]

We shall see in a moment that the C'X spaces are C-spaces, and our approximation
theorem can be stated as follows.

Theorem 2.7. For the operads C,, of the recognition principle, there is a natural map of C,
spaces «,, : C,b, X — Q"S"X, 1 < n < oo, and «,, is a weak homotopy equivalence if X is
connected.
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In fact, 2"S™ defines a monad in 7, and the natural transformations «, : C,, — Q"S"
will be morphisms of monads. This fact will provide the essential link connecting the ap-
proximation theorem to the recognition principle.

We now investigate the relationship between C-spaces and C-algebras, where C' is the
monad associated to the operad C.

Proposition 2.8. Let C be an operad and let C' be its associated monad. The there is
a one-to-one correspondence between C-actions 6 : C — £x and C-algebra structure maps
¢ : CX — X defined by letting 6 correspond to ¢ if and only if the following diagrams are
commutative for all j:

C(j) x X
X

(where 7; is the evident composite C(j) x X7 — F;CX — CX). Moreover, this corre-
spondence defines an isomorphism between the category of C-spaces and the category of
C-algebras.

Proof. By the definition of the spaces C' X, a map £ : CX — X determines and is determined
(via the stated diagrams) by a sequence of maps 6; : C(j) x X? — X such that 0;_;(c;c,y) =
8;(c, s;y) and 0;(co,y) = 0;(c,oy). Since o;c = y(c; s;), the maps 6; given by a C-action 6 do
satisfy these formulas. For a given map £ : CX — X, the relation {opu = o C€ is equivalent
to the commutativity of the diagrams given in Lemma 1.4(a) for the corresponding maps 6;,
and the relation £&n = 1 is equivalent to 0;(1,2) = z for all x € X. Thus amap £ : CX — X
is a C-algebra structure map if and only if the corresponding maps 6; define an action of C on
X. The last statement follows from the observation that if (X, ) and (X', ¢{’) are C-algebras
and if f: X — X"is a map in 7, then fo& =¢ oCf if and only if f0; = 0/(1 x f7) for all
J. O

Henceforward, we shall use the letter 6 both for C-actions and for the corresponding C-
algebra structure maps. Thus the maps 6; : C(j) x X? — X which define a C-action should
now be thought of as components of the single map 6 : CX — X.

We should observe that the previous proposition implies that C'X is the free C-space
generated by the space X, in view of the following standard lemma in category theory.

Lemma 2.9. Let (C, u,n) be a monad in a category 7. Then (CX,u) € C[T] for X € T,
and there is a natural isomorphism

¢ : Homz (X, Y) — Homer ((CX, p), (Y, €))

defined by ¥(f) =& o Cf; ¢t is given by ¥~ 1(g) = gon.

The preceding lemma states that the forgetful functor U : C[T] — T defined by U(Y, &) =
Y and the free functor @ : 7T — C|[7] defined by QX = (CX,u) are adjoint. We shall
later need the following converse result, which is also a standard and elementary categorical
observation.
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Lemma 2.10. Let ¢ : Hom7(X,UY) — Hom,(QX,Y) be an adjunction between functors
U:L—-Tand Q:7 — L. For X € T, define n = ¢ (1gx) : X — UQX and define

Then (UQ, p,m) is a monad in 7. For Y € L, define

Then (UY,&) € UQ|[T], and £ : UQU — U is a natural transformation of functors £ — 7.
Thus there is a well-defined functor V' : £ — UQ[T] given by VY = (Y,§) on objects and
Vg = Ug on morphisms.

Of course, V' is not an isomorphism of categories in general. However, if the adjunction
¥ is derived as in Lemma 2.9 from a monad C, with £ = C[7], then it is evident that the
monads U@ and C' are the same and that V is the identity functor.
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3 A, and E, operads

We describe certain special types of operads here and show that the constructions of the
previous section include the James construction and the infinite symmetric product. Most
important, we obtain some easy technical results that will allow us to transfer the recognition
principle and approximation theorem from the particular operads C; and C., to arbitrary
A and E., operads, respectively.

We first define discrete operads M and N such that an M-space is precisely a topological
monoid and an N -space is precisely a commutative topological monoid.

Definition 3.1. 1. Define M(j) = X; for j > 1, and let e; denote the identity element
of ¥;, e = 1. Let M(0) contain the single element ey. Define y(ex;e;,, ..., €;) = €5,
Jj =>_Js, and extend the domain of definition of v to the entire set ¥; x 3;, X -+ - x X
be the equivariance formulas of Definition 1.1(c). With these data, the M(j) constitute
a discrete operad M.

2. Define N (j) = {f;}, a single point. Let 1 = fi, let ¥; act trivially on N(j), and define
Y(fi; fivs -y fin) = fis J = D js. With these data, the N(j) constitute a discrete
operad N.

Observe that if C is any operad with each C(j) non-empty, then the unique functions
C(j) — N(j) define a morphism of operads C — N, hence any N-space is a C-space.

A topological monoid G in 7 (with identity element %) determines and is determined
by the action 6 : M — &g defined by letting 0;(e;) : G — G be the iterated product
and extending 6; to all of ¥; by equivariance. The permutations in M serve only to record
the possibility of changing the order of factors in forming products in a topological monoid.
Clearly a topological monoid G is commutative if and only if the corresponding action
0 : M — Eg factors through N.

For X € 7, the monoid MX and NX are called the James construction and the in-
finite symmetric product on X; it should be observed that the successive quotient spaces
e[M(j),%;, X] and e[N(5),%;, X] are homeomorphic to the j-fold smash product XV and
to the orbit space X! /%, respectively. The arguments above and the results of the previous
section yield the following proposition.

Proposition 3.2. The categories M[7| = M[T] and N[T] = N[T] are isomorphic to the
categories of topological monoids and of commutative topological monoids, respectively. For
X €7, MX and NX are the free topological monoid and the free commutative topological
monoid generated by the space X, subject to the relation * = 1.

We shall only be interested in operads which are augmented over either M or N, in a
sense which we now make precise. Let C be any operad, and let myC(j) denote the set of path
components of C(j). Define §; : C(j) — mC(j) by 0,(c) = [c], where [c] denotes the path
component containing the point ¢. The data for C uniquely determine data for moC such
that moC is a discrete operad and ¢ is a morphism of operads. Clearly m, defines a functor
from the category of operads to the category of discrete operads. If D is a discrete operad
and if € : C — D is a morphism of operads, then e factors as the composite mye o 9, where
moe : moC — myD = D. With these notations, we make the following definition.
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Definition 3.3. An operad over a discrete operad D is an operad C together with a mor-
phism of operads € : C — D such that mge : moC — D is an isomorphism of operads. e is
called the augmentation of C. A morphism ¢ : (C,e) — (C',€¢') of operads over D is a
morphism of operads 1 : C — C’ such that €y =¢:C — D.

We shall say that an operad C is locally n-connected if each C(j) is n-connected.
Clearly an operad C can be augmented over N if and only if it is locally connected, and C
then admits a unique augmentation. An operad C can be augmented over M if and only if
moC(j) is isomorphic to X;, and an augmentation of C is then a suitably coherent choice of
isomorphisms.

We shall say that a morphism of operads 1 : C — C’ is a local equivalence, or a local
Y-equivalence, if each 1; : C(j) — C’(j) is a homotopy equivalence, or a X;-equivariant
homotopy equivalence (that is, the requisite homotopies are required to be X -equivariant).
Of course, these are not equivalence relations since there need be no inverse morphism of
operads C" — C. The following proposition will be essential in passing from one operad over
M or N to another.

Proposition 3.4. Let 1) : C — C’ be a morphism of operads over M or N'. Assume either
that 1 is a local X-equivalence or that 1) is a local equivalence and C and C" are X-free. Then
the associated maps 1 : CX — C’'X are weak homotopy equivalences for all connected spaces
X.

Proof. Since ¢ : CX — C'X is an H-map between connected H-spaces, it suffices to prove
that 1) induces an isomorphism on integral homology. By Proposition 2.6 and the five lemma,
this will hold if the maps e[C(j), 2;, X] — €[C'(j), XZ;, X] determined by ¢; induce isomor-
phisms on homology. These maps are homotopy equivalences if 9, is a 3 ;-equivariant homo-
topy equivalence. If C(j) is ¥;-free, then the map C(j) x XV — C(j)x s, XU is clearly a cover-
ing map and so determines a spectral sequence converging from E? = H,(3;; H,(C(d) x X))
to H,(C(j) xx, XV). Thus if C(j) and C'(j) are ¥;-free and 1; is a homotopy equiv-
alence, then 1; induces an isomorphism on E?, hence on H,(C(j) xx, X ), hence on
H.(€[C(), 55, X]). .

We now define and discuss A, and E,, operads and spaces.

Definition 3.5. 1. An A, operad is a YX-free operad over M such that ¢ : C — M is a
local Y-equivalence. An A, space (X, 0) is a C-space over any A, operad C.

2. An E, operad is a X-free operad over N such that € : C — N is a local equivalence.
An FE., space, or homotopy everything space, (X, #) is a C-space over any F., operad

C.

We have not defined and shall not need any notion of an A, or E, morphism between
Ao or E, spaces over different operads.

An operad C is an E., operad if and only if each C(j) is ¥;-free and contractible. Thus
the orbit space C(j)/%; is a classifying space for ¥;; its homology will give rise to the Dyer-
Lashof operations on the homology of an F., space. We have required an E,, operad to be
Y-free in order to have this interpretation of the spaces C(j)/%; and in order to have that



3. Asx AND E, OPERADS 14

CX is weakly homotopy equivalent to Q25X for any E., operad C and connected space
X. Note in particular that we have chosen not to regard N as an E,, operad, although a
connected N-space is evidently an infinite loop space. The following amusing result shows
that, for non-triviality, we must not assume € to be a local -equivalence in the definition of
an F., operad.

Proposition 3.6. Let C be an operad over N such that ¢ : C — N is a local Y-equivalence.
Let (X, 6) be a C-space, where X is a connected space. Then X is weakly homotopy equiv-
alent to [~ K(m.(X),n).

Proof. We have the following commutative diagrams:

X1 cox and X 10X

AN RN

X NX

By proposition 3.4, € is a weak homotopy equivalence. It is well-known and easy to prove
that 7, : m(X) — 7 (NX) = H,(X) may be taken as the definition of the Hurewicz
homomorphism h. Thus 1 = 6,9, = (f.e;')h, and h is a monomorphism onto a direct
summand of H,(X). By the proof of [I9, Theorem 24.5], this is precisely enough to imply
the conclusion. O

An operad C is an A, operad if and only if each m,C(j) is isomorphic to X; and each
component of C(j) is contractible. In particular, M is itself an A, operad. In contrast to
the preceding result, we have the following observation concerning operads over M.

Lemma 3.7. Any operad C over M is Y-free and any local equivalence 1) : C — C' between
operads over M is a local Y-equivalence.

Proof. Each o € 3, must act on C(j) by permuting components, carrying e;l(T) homeomor-
phically onto 6;1(7'(7) for 7 € ;. For the second statement, we may assume that €'y = €
(redefining e by this equation if necessary), and then 1; must restrict to a homotopy equiv-
alence ¢;'(e;) — (€;) 7 (e;). The resulting homotopies can be transferred by equivariance to

j
the remaining components of C(j) and C'(j), and the result follows. O

In the applications, it is essential that our recognition theorem apply, for n = 1 and
n = oo, to arbitrary A, and E,, operads. However, there need be no morphism of operads
between two A, or two E., operads. Fortunately, all that is needed to circumvent this
difficulty is the observation that the category of operads has products.

Definition 3.8. Let C and C’ be operads. Define an operad C x C’ by letting (C x C')(j) =
C(j) x C'(j) and giving C x C’ the following data:

Lo (yxy)exdydy xdy,...,dp x d},) = v(c;d, ..., dg) x (;dy, ..., dy) for e x ¢ €
C(k) x C'(k) and ds x d. € C(js) x C'(jy):

2. 1=1x1€C(1) xC'(1); and
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3. (cxd)o=coxdoforexcd eC(j)xC(j)and o € X;.

Then C x C’ is the product of C and C’ in the category of operads. The monad associated to
C x C' will be denoted C' x C" (by abuse of notation, since we do not assert that C' x C" is
the product of C' and C” in the category of monads in 7).

The product of an operad over D and an operad over D’ is evidently an operad over
D x D'. Since M x M # M, the above product is inappropriate for the study of operads
over M. Observe that the category of operads has fibred products as well as products.

Definition 3.9. Let (C,¢) and (C',€') be operads over M. Define an operad (CVC', eVe')
over M by letting CVC’ be the fibered product of € and € in the category of operads and
letting eVe' be defined by commutativity of the following diagram:

CvC —2=

\L eVe l
T e

C—E>M

Explicitly, CV(C’ is the sub operad of C x C’ such that (CVC’)(j) is the disjoint union of the
spaces ej_l(a) x (€;)7 (o) for o € Xj. Then (CVC’,eV¢') is the product of (C, €) and (C',¢') in
the category of operads over M. The monad associated to CVC’ will be denoted by C'V(".

In conjunction with Proposition 3.4, the following result contains all the information
about changes of operads that is required for our theory.

Proposition 3.10. 1. Let C be an A, operad and let C’ be any operad over M. Then
the projection 7y : CVC' — (' is a local Y-equivalence.

2. Let C be an E,, operad and let C’ be any Y-free operad. Then the projection my :
C x C" — (' is a local equivalence between Y-free operads.

Proof. (i) follows from Lemma 3.7 since €; (o) is contractible for o € ¥; and therefore
Ty ej_l(a) x (€;)7 (o) — (€5)7" (o) is a homotopy equivalence. Part (ii) is immediate from
the definition. N

Since (ii) depends only on the local contractibility (and not on the -freeness) of C, the
proof of our recognition principle for E., spaces will actually apply to C-spaces over any
locally contractible operad C.

Corollary 3.11. Let C be an E, operad. Then 75 : C x M — M is a local Y-equivalence
and therefore C x M is an A, operad. If (X, 0) is a C-space, then (X, 0m) is a C x M-space,
m : C x M — C. Thus every E, space is an A, space.

Since A, spaces are of interest solely in the study of first loop spaces, where commu-
tativity plays no role, a simple theory of A, spaces can be obtained by throwing out the
permutations by means of the following definition and proposition. We have chosen to de-
scribe A, spaces in terms of operads in order to avoid further special arguments, and no
use shall be made of the theory sketched below.
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Definition 3.12. A non-X operad B is a sequence of spaces B(j) € U for j > 0, with
B(0) = %, together with the data (a) and (b) in the definition of an operad. An operad C
determines an underlying non-X operad UC by neglect of permutations. An action of a non-%
operad B on a space X € 7 is a morphism of non-Y operads 6 : B — UEx, and B[T] denotes
the category of B-spaces (X, #). By omission of the equivalence relation (ii) in construction
2.4, any non-Y operad B determines an associated monad B such that the categories B[7|
and B[T] are isomorphic. The notion of a non-¥ operad over a discrete non-¥ operad is
defined by analogy with Definition 3.3. The product B x B’ of non-¥ operads B and B’ is
defined by analogy with Definition 3.8.

Let A denote the sub non-YX operad of M such that A(j) = {e;}. The categories
A[T] and M[T] are evidently isomorphic. A non-Y operad over A clearly admits a unique
augmentation. A non-¥ operad determines an operad XB such that UXB = B by letting >;
act trivially on B(j). In particular, XA is isomorphic to N

Proposition 3.13. Let (C, €) be an operad over M and define w(C, €) = ¢ *(A); then w(C, ¢)
is a non-Y operad over 4 and the monads associated to C and to w(C, €) are isomorphic. Let
B be a non-X operad over A and define w™'B = (¥B x M, 73); then w=!(B) is an operad
over M and the monads associated to B and to w™!(B) are isomorphic. Moreover, w and
w~! are the object maps of an equivalence between the categories of operads over M and of
non-Y operads over A.

Proof. The first two statements follow immediately from the definition. For the last state-
ment, it is obvious how to define w and w~! on morphisms, and we must show that ww=! and
w~lw are naturally isomorphic to the respective identity functors. Now ww™(B) = B x A
is evidently naturally isomorphic to B, and a natural isomorphism

v:(Coe) = wlw(C,e) = (BeH(A) x M, m)

can be defined by v;(c) = (co™!,0) for ¢ € ej_l(a) and 0 € %;; v~ ! is then given by
v (c,0) = co for c € €;'(¢;) and 0 € X;. O

It follows that the notion of an A, operad is equivalent to the notion of a locally con-
tractible non-¥ operad over A, and the notion of an A, space is equivalent to the notion of
a B-space over such a non-3 operad B.

Remark 3.14. The notion of A, spaces originally defined by Stasheff [28§] is included in
our notion. Stasheff constructs certain spaces K; for j > 2; with Ky = * and K; = 1, these
can be verified to admit structure maps v so as to form a locally contractible non-¥ operad
KC such that an A, space in Stasheff’s sense is precisely a IC-space.
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4 The little cubes operads C,

We define the X-free operads C,, and discuss the topology of the spaces C,(j) in this section. I
am indebted to M. Boardman for explaining to me the key result, theorem 4.8. The definition
of the C,, (in the context of PROP’s) is due to Boardman and Vogt [§].

Definition 4.1. Let I™ denote the unit n-cube and let J™ denote its interior. An (open)
little n-cube is a linear embedding f of J" in J", with parallel axes; thus f = f; x--- X f,
where f; : J — J is a linear function, f;(t) = (y; — z;)t + x;, with 0 < z; < y; < 1. Define
Cn(j) to be the set of those j-tuples (cy, ..., ¢;) of little n-cubes such that the images of the ¢,
are pairwise disjoint. Let /J™ denote the disjoint union of j copies of J", regard {(cy, ..., ¢;) as
amap ’/J" — J" and topologize C,(j) as a subspace of the space of all continuous functions
IJ" — Jm. Write C,(0) = (), and regard () as the unique “embedding” of the empty set in
J™. The requisite data are defined by

L y(edy, ... dy) = co(dy+---+dg) : L J"+-- -+ J" — J" for ¢ € C,(k) and ds € Cp(Js),
where + denotes disjoint union;

2. 1 €C,(1) is the identity function; and
3. {c1,...,¢)0 = (Coq1), - - -, Cory)) for 0 € 35

By our functional interpretation of (), (a) implies that
L. oi{ct,...,¢5) ={c1, ..., G Cigay oo 5), 0 < i < .

The associativity, unitary, and equivariance formulas required of an operad are trivial to
verify, and the action of ¥; on C,(j) is free in view of the requirement that the component
little cubes of a point in C,(j) have disjoint images. Define a morphism of operads o,, : C,, —
Cn+1 by

L. opjlcr,...,c5) =(caa x1,...,¢5x1),1:J—J.

Each 0, ; is an inclusion, and C(j) denotes the space limC,(j), with the topology of the
union. Clearly Cy, inherits a structure of ¥-free operad from the C,.

The topology we have given the C,(j) is convenient for continuity proofs and will be
needed in our study of the Dyer-Lashof operations on F' in the third paper of this series.
The following more concrete description of this topology is more convenient for analyzing
the homotopy type of the space C,(j).

Lemma 4.2. Let ¢ = (c1,...,¢j) € C,(j). Observe that ¢ determines and is determined by
the point c(a, 8) € J*™ defined by

cla, B) = (c1(a), c1(B), ..., ¢i(a), ¢ ()

where a = (1,...,3) € J"and = (3,...,3) e J".
Let U denote the topology on C,(j) obtained by so regarding C,(j) as a subset of J*"
and let V denote the topology on C,(j) defined in Definition 4.1. Then U = V.
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Proof. Let W(C,U) denote the V-open set consisting of those ¢ such that ¢(C) C U, where
C is compact in 7J" and U is open in J". Let a, (resp. §,) denote the point « (resp. 3) in
the 7-th domain cube J* C 7J". If U, and V, are open subsets of J", 1 <r < j, then

C.(3) N (Us x Vax--x Uy x V) = (Y Wiar, U)W (5, V5
j=1

It follows that any U-open set is V-open. Conversely, consider W (C,U). We may assume
that U is the image of an open little cube ¢ and that C is contained in a single domain
cube J'. Let C' C J' be the image of the smallest closed little cube f containing C
(f may be degenerate; that is, some of its intervals may be points). Then, by linearity,
W(C,U) = W(C",U). Clearly ¢ = (c1,...,¢;) € W(C',U) if an only if ¢, f(0) > ¢g(0) and
¢, f(1) < g(1), with the inequalities interpreted coordinate-wise and with 0 = (0,...,0) and
1=(1,...,1)in I™ It is now easy to verify that W (C’,U) is U-open. ]

Using this lemma, we can relate the spaces C,(j) to the configuration spaces of R™. We
first review some of the results of Fadell and Neuwirth [12] on configuration spaces.

Definition 4.3. Let M be an n-dimensional manifold. Define the j-th configuration space
F(M;j) of M by

F(M;j) = {{zy,...,x;)|z, € M, 2, # 2, if r # s} C M7,

with the subspace topology. F(M;j) is a jn-dimensional manifold and F'(M;1) = M. Let
¥; operate on F'(M;j) by

<$1, Ce ,1’j>0 = <xg(1), Ce ,.Qjo(j)).
This operation is free, and B(M; j) denotes the orbit space F'(M;j)/%;.
Fadell and Neuwirth have proven the following theorem.

Theorem 4.4. Let M be an n-dimensional manifold, n > 2. Let Yy = ( and Y, =
{y1,.. .,y }, 1 <r < j, where the y; are distinct points of M. Define 7, : F(M —Y,;j—7r) —
M —-Y, by m(zy,...,xj—,) = 1, 0 < r < j—1. Then m, is a fibration with fibre
F(M —Y,,1;j —r — 1) over the point y,,1, and 7, admits a cross-section if r > 1.

Let "S™ denote the wedge of r copies of S™; since R™ — Y, is homotopy equivalent to
rSn=1 the theorem gives the following corollary.

Corollary 4.5. If n > 3, then 7, F(R"j) = S/ m("S"Y); mF(R%j) = 0 fori # 1
and 7 F(R?;7) is constructed from the free groups m("S?), 1 < r < j, by successive split
extensions.

The case n = 2 is classical. B(R?j) is a K(B;,1), where B, is the braid group on j
strings, and there is a short exact sequence 1 — I; — B; — X; — 1 which is isomorphic
to the homotopy exact sequence of the covering projection F(R?;j) — B(R?;j). Detailed
descriptions of [; = m F(R?; j) and B; may be found in Artin’s paper [3]. Fox and Neuwirth
[13] have used F(R?j) to rederive Artin’s description of B; in terms of generators and
relations.

Let R* = lim R™ with respect to the standard inclusions. Since F (M; j) is functorial on
embeddings of manifolds, we can define F'(R*; j) = lim F'(R"; j).
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Corollary 4.6. F(R>;j) is 3,-free and contractible.
We shall also need the degenerate case n = 1.

Lemma 4.7. moF(R';j) is isomorphic to X;, and each component of F(R';j) is a con-
tractible space.

Proof. Let Fy = {(a1,...,xj)|v1 <--- <z;} C F(R';j). Fp is clearly homeomorphic to the
interior of a simplex and is therefore contractible. Fy is one component of F(R';j), and it
is evident that the operation by 3; defines a homeomorphism from F x ¥; to F(R'; 7). O

Theorem 4.8. For 1 <n < oo and j > 1, C,(j) is ¥j-equivariantly homotopy equivalent
to F'(R"; j). Therefore C; is an A operad, C, is a locally (n — 2)-connected -free operad
over N for 1 < n < oo, and Cy is an E,, operad.

Proof. The second statement will follow immediately from the first statement and the prop-
erties of the spaces F(R"; j). We first consider the case n < oco. For convenience, we may as
well replace R™ by J". Define a map ¢ : C,,(j) — F(J";j) by the formula

Log{ci,...,¢5) = {e1(v), ..., ¢;(7)), where v = (3,...,3) € J™

For ¢ = (c1,...,¢j) € Cu(j), write ¢, = ¢4 X -+ X ¢, Where ¢,5 1 J — J is given by
Crs(t) = (Yrs — Trs)t + 2,5. We say that ¢ is equidiameter of diameter d if y,; — x,, = d for
all r and s (thus each ¢, is actually a cube, and all ¢, have the same size). Obviously, for each
b€ F(J"j), there is some equidiameter ¢ € C,(j) such that g(c) = b; we can radially expand
the little cubes of this ¢ until some boundaries intersect. Thus define f : F/(J";j) — C,(j)
by the formula

1. f(b) = ¢, where g(c¢) = b and ¢ is the equidiameter element of C,(j) with maximal
diameter subject to the condition g(c) = b.

The continuity of f and g is easily verified by use of Lemma 4.2, and f and g are clearly
¥ ;-equivariant. Obviously gf = 1. Define h : C,(j) x I — C,(j) as follows. Let ¢ € C,(j) be
described as above, and let d be the diameter of fg(c). Then define

h(c,u) = <H c1s(u), . . .,chs(u)> ,0<wu <1, where

Crs(u)(t) = [(1 — w)(yprs — xrs) + ud]t + %(uyrs + (2 — u)xps — ud).

In words, h expands or contracts each coordinate interval ¢, linearly from its mid-point to a
coordinate interval of length d. It is easy to verify that h is well-defined, ¥;-equivariant, and
continuous. Since h(c,0) = ¢, h(c,1) = fg(c), and h(f(b),u) = f(b), we see that F(J";j)
is in fact a strong Y;-equivariant deformation retract of C,(j). Now embed J" in J"*! by
z — (z,1) and let 0, : F(J"j) — F(J"™;4) be the inclusion. Write g,, for the map g
defined in (1). Then the following diagram commutes:

Cn(]) T C?H—l(])
gni lgnﬁ»l

F(J" j) —=F(J" )



4. THE LITTLE CUBES OPERADS Cy 20

Thus we can define g, = limg, : Coo(j) — F(J*®;j). Clearly C(j) has trivial homotopy
groups. It is tedious, but not difficult, to verify that C(j) is paracompact and E-L-C-X and
therefore has the homotopy type of a CW-complax, by Milnor [25, Lemma 4]|. Therefore
Coo(j) is contractible and g is a X;-equivariant homotopy equivalence. O]

We shall later need the following technical lemma, which is an easy consequence of the
theorem.

Lemma 4.9. Define o;,_, ; : C,_1(j) — Cn(j) by sending each little (n — 1)-cube f to the

little n-cube 1 x f, 1:J — J. Then oy,_, ; is ¥j-equivariantly homotopic to ;1 ;.
Proof. Tt suffices to prove that o, 1 ~ o/ _,: F(J";j) — F(J"j), where 0,,_(z) = (z, %)
and o),_,(z) = (3,) on points x € J" . Define maps 7,7’ : F(J";j) — F(J";j) by the
following formulas on points (s,z) € J x J*™1 = J™

(s, ) if n is odd

7(s,x) = (x,s) and 7'(s,x) = {

(1 —s,2) ifniseven

/ o ’ 1 o
then 7o), | = 0,,—1 and 7'0),_; = 0],_1,

homotopic to 7. Let

hence it suffices to prove that 7 is ¥j-equivariantly

U s (I",01M) — (S™, eo)

be the relative homeomorphism defined by Toda [30, p. 5], where S™ C R™*! is the standard
n-sphere and eq = (1,0,...,0). Toda has observed that, as based maps S™ — S™,

1%7'1#;1(51, e >5n+1) = (51,83784; e 7Sn+1752>7 and

wnT'wgl(sl, oy Snr1) = (51, (—1)"’152, S35 ey Snt)-

Obviously, these maps lie in the same component of O(n) since they both have degree
(—1)""!. They are thus connected by a path k : I — O(n), where O(n) acts as usual on
(S e9). Define hy = ¥, 'k(t)h, : J* — J" then hy = 7 and hy = 7'. Since each h; is a
homeomorphism, the product homotopy (h¢)’ : (J")? — (J™)7 restricts to give the desired
¥ ;-equivariant homotopy 7 ~ 7" on F'(J";j). O

Remarks 4.10. Barratt, Mahowald, Milgram, and others (see [24] for a survey) have made
extensive calculations in homotopy by use of the quadratic construction e[S™, Zy, X] on a
space X (see Notations 2.5 for the definition). Since F'(R™"!;2) is Zs-equivariantly homotopy
equivalent to S™, e[C,11(2),Zs, X] is homotopy equivalent to e[S™,Zs, X]. For odd primes
p, Toda [3I] has studied the extended p-th power e[W" Z,, X] on X, where W" is the
n-skeleton of S°° with its standard structure of a regular Z,-free acyclic CW-complex. W™
clearly maps Z,-equivariantly into F(R™*!; p) and thus we have a map

e[W", Zy, X] — e[F(R"!p), %, X] ~ €[Cri1(p), By, X].

It appears quite likely that the successive quotients e[C,(j), X;, X] of the filtered space C,, X
will also prove to be quite useful in homotopy theory.
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5 Iterated loop spaces and the C,

We here show that C, acts naturally on n-fold loop spaces and that this action leads to a
morphism of operads C,, — €2"S™. The first statement will yield the homology operations on
n-fold loop spaces and the second statement is the key to our derivation of the recognition
principle from the approximation theorem.

We must first specify our categories for loop spaces precisely. Let £,, 1 < n < oo,
denote the following category of n-fold loop sequences. The objects of L, are sequences
{Y;|0 < i < n}, or {Y|i > 0} if n = oo, such that ¥; = QY;;; in 7. The morphisms of
L, are sequences {g;|0 < i < n} or {g;|i > 0} if n = oo, such that ¢g; = Qg;11 in 7. Let
Un : L, — T denote the forgetful functor defined by U, {Y;} = Yy and U, {g} = go. An
n-fold loop space or map is a space or map in the image of U,,.

For n < oo, an n-fold loop sequence has the form {Q" "Y'}, and U, {Q" 'Y} = Q"Y. L,
serves only to record the fact that the space Q2"Y does not determine the space Y and that
we must remember Y in order to have a well-defined category of n-fold loop spaces. We shall
use the notation Q"Y ambiguously to denote both n-fold loop spaces and sequences, on the
understanding that naturality statements refer to £,,. Of course, £, is isomorphic to 7.

For n = oo, it is more usual to define an infinite loop space to be the initial space Y} of
a bounded Q-spectrum {(Y;, fi)|i > 0} and to define an infinite loop map to be the initial
map go of amap {g;} : {(Yi, i)} — {(Y/, f/)} of bounded Q-spectra (thus f; : ¥; — QY44 is
a homotopy equivalence and €Qg;1 o f; is homotopic to f!g;). The geometric and categorical
imprecision of this definition is unacceptable for our purposes. I have proven in [19] that
these two notions of infinite loop spaces and maps are entirely equivalent for all purposes
of homotopy theory; we can replace bounded €2-specta and maps by objects and maps of
L, naturally up to homotopy, and via weak homotopy equivalences on objects. Precise
statements and related results may be found in [20].

We regard "X as the space of maps (S™, %) — (X, ), where S™ is identified with the
quotient space I"/0I"™.

Theorem 5.1. For X € 7, define 6,; : C,(j) x (2"X)! — Q"X as follows. Let ¢ =
(c1,...,¢;) €Cu(j) and let y = (y1,...,y;) € ("X ). Define 6, ;(c,y) to be y.c; ' on ¢,(J")
and to be trivial on the complement of the image of ¢; thus, for v € S™

0,(c,y)(v) = {yr(u) if ¢, (u) = v

* ifvegIme

Then the 6, ; define an action 6, of C, on Q"X. If X = QX' then 0, = 0,410,, where
0, 1 Cp — Cpy1 and 6,4 is the action of C, 1 on Q"M X' If {V;} € L, then the actions
0, of C, on Yy = Q"Y,, define an action w,, of C on Yy. The actions 6,,, 1 < n < oo, are
natural on maps in L,; precisely, if W,, : £, — C,[7T] is defined by W,,Y = (U,Y,6,) on
objects, where 6, : C,,U,Y — U,Y is the C,-algebra structure map determined by the 0, ;,
and by W,(g) = U,g on morphisms, then W, is a functor from n-fold loop sequences to
C),-algebras.

Proof. The 0, ; are clearly continuous and X ;-equivariant, and 6,,1(1,y) = y is obvious. An
easy inspection of the definitions shows that the diagrams of Lemma 1.4(a) commute, and



5. ITERATED LOOP SPACES AND THE Cx 22

then 6, ; thus define an action 6,, of C, on Q"X. If X = QX' then Q"X = Q"™ X’ via
the correspondence y < 3" where y(u)(t) = y'(u,t) for (u,t) € I"™ x I; since o, (f) = f x 1
on little n-cubes f, 0, = 0,10, follows. If {Y;} € L, then 0, = 0,10, : C,, — &, and
therefore 0, = li_r)n@n : Coo — &yq 1s defined. The naturality statement is immediate from
the definitions. O

We next use the existence of the natural C,-action #,, on n-fold loop spaces to produce a
morphism of monads C,, — Q"S™. We require some categorical preliminaries. We have the
adjunction

1. ¢ : Hom7(X,QY) — Hom7(SX,Y), o(f)[z,s] = f(z)(s), where SX = X x [/ % xI U
X x 01 defines suspension.

By iteration of ¢, we have the further adjunctions
2. ¢" : Hom7(X,Q"Y) — Hom7(S"X,Y), 1 <n < 0.
It is conceptually useful to reinterpret (2) as follows. Define
3. QX ={Q"S"X|0 <i<n} € L,; then U,,Q,X = Q"S"X.
Since a morphism {¢;|0 < i < n} in £, is determined by g, we have
Hom7(S"X,Y) = Homg, (Q, X, {Q""Y}).
Therefore (2) may be interpreted as defining an adjunction
4. ¢, : Homz (X, U, {Q""Y'}) — Hom, (Q, X, {Q"'Y}).
The 1, pass to the limit case n = co. To see this, define
5. 0p = Q"¢ 1gniix) : QS"X — QrilgntlX
Geometrically, if Q"S™X is identified with Homz(S™, S"X), then
6. o,(f)=Sf=fA1:5"AS =85l — GnFlX =SnX NS f:5" — SnX.
Thus each o, is an inclusion, and we can define
7. QX =0*5%X = limQ"S"X, with the topology of the union.
We shall use the alternative notions QX and 2*°S5° interchangeably. Since a map
St — QSX lands in some Q"S" X, QQSX = QX. Define
8. QuoX ={QS'X|i >0} € Lo; then UyyQou X = Q®S>®X.
If{Yili >0} € Lo and if f: X — Yy = U{Yi} is a map in 7, then we have the

commutative diagrams:

n gn-+i
QnSTL+iX ik an®) QnYn+i

: x-

n+1 n+i+1
Qntlgnti+l x e ) Qn+1Yn+i+1

We therefore have the further adjunction
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9. s Homy (X, Un{Yi}) — Home (QuX,{Y:}), where g(f); = lim Quymti(f) :
QS'X —-Y;,i>0,for f: X — Y. Here v M{g;} = goNeo, where 1, : X — QX is the
evident inclusion. A pedantic proof that 1, is an adjunction, together with categorical
relationships between Q. X and the suspension spectrum of X, may be found in [19].

Clearly (4) and (9) state that @, X, 1 < n < oo, is the free n-fold loop sequence
generated by the space X; it is in this sense that the 2"S"X are free n-fold loop
spaces. By Lemma 2.10, our adjunctions 1, yield monads (2"S™, p,,, n,) and functors
Voo L, — Q"S"[T], with V,,Y = (U,Y,&,) on objects. Explicitly, in terms of iterates
of the adjunction v, we have

10. 7, = ¢ (1gnx) : X — Q"S"X if n < 00; 1o = lim 7y,

11 py, = Q" (lgngny) : Q*S™Q"S"X — Q"S"X if n < 00; fio = lim 44y, (which makes
sense since QQX = li_I)nQ”S”Q"S”X).

12. &, = Q"¢ "(1gny) : Q*S"Q"Y — Q™Y if n < 00; o = @Q”w”(lgnyn) : QP S*°Y, —
Y, for {Vi} € L.

By (5), (10), and (11), each g, : Q*S™ — Q157+ is a morphism of monads, and Q>S5> =
lim Q™5™ is a monad.

Let (Ch, tin,nn) denote the monad associated to C,, and observe that C,, = lim €, as
a monad. With these notations, we have the following theorem, which is in fact a purely
formal consequence of Theorem 5.1 and the definitions.

Theorem 5.2. For X € 7 and 1 < n < oo, define o, : C, X — Q"S" X to be the composite

map C, X Catln, C,Q"5"X LN Q"S"X. Then «,, : C,, — Q"S™ is a morphism of monads,
and the following diagram of functors commutes, where o (Y, £) = (Y, o a,):

L,
S [T] C O[T

Moreover, the following diagrams of morphisms of monads are commutative for n < oo, and
(s 18 Obtained from the «,, for n < co by passage to limits:

c, — > Qrgn

Cn—H % Qn+15n+1

Proof. The fact that each u,, &,, and o, for the monad 2"S™ is an n-fold loop map and that
0,, is natural on such maps, together with the very definition of a natural transformation and
of an algebra over a monad, immediately yield the commutativity of the following diagrams
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for X € T:
/ _N
\ Cansn X I Ongn x
s X /
C,C X 22 ¢ O rsn X —S s o angnx — L o QrsnQr St X
- - O
CuX — e C "X s g X~ QugnQngn X
C anx o gngnnx s gngnan x
T Jee lén
conx — " Lony
X Cniin C QS X QnSn X
n+lQ S X C Qn+1sn+1X on
n+1X Crnt1nn+1 +1Qn+lsn+1X Qnt+lgntlx

The first diagram gives a1, = 1, the second gives a2 = apit, (Cpp, is inserted solely
to show commutativity), the third gives §,a,, = 6, as required for oV, = W,,, and the
last gives o,a, = ay110,. The first two diagrams are valid as they stand for n = oo, and
the third has an obvious analog in this case; consistency with limits is clear from the last
diagram. O

We next show that the morphisms of monads a,, : C,, — Q"S™ factor through Q'C,,_;S* for
1 <4 < n. The following elementary categorical observation about adjunctions and monads
in any category 7 implies that the natural transformations Q'a,,_;S* : Q'C,,_;S* — QnS"
are in fact morphisms of monads.

Lemma 5.3. Let ¢ : Homz(X,AY) — Hom7(XX,Y) be an adjunction and let (C, p,n)
be a monad in 7. Then (ACX, fi,7) is a monad in 7, where, for X € 7, i and 7 are the

composites

#(1

ACSACEX 220 noonx AE Acvx

and o
x W avx A A0TX.

Moreover, if ¢ : C' — C” is a morphism of monads, then AyY : ACY — AC'Y is also a
morphism of monads.
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We must still construct morphisms of monads C,, — Q‘C,_;S?, and, by the lemma, it
suffices to do this in the case i = 1.

Proposition 5.4. For n > 1, there is a morphism of monads 3, : C,, — QC,_15 such that
a, = (Qay,—15)5,. Therefore «,, factors as a composite of morphisms of monads

Cp— QC,_1S — - — Q108" — Qrem,

Proof. Define 3, : C, X — QC,_1SX as follows. Let ¢ = (c1,...,¢;) € Co(j), let v =
(z1,...,2;) € X7, and let t € I. Write ¢, = ¢, x ¢/, where ¢}, : J — J and ! : J"71 — J*L,
Let r1,...,7; in order, denote those indices r (if any) such that ¢ € ¢/.(.J). Since the ¢, have
disjoint images, the little (n — 1)-cubes ¢ , 1 < ¢ <4, have disjoint images. Thus we can
define 3, by the formula

Bale,z)(t) =« if t ¢ | J.(J), and

ﬁn[ca :L‘](t) = [(Clr/17 s 7C/r/i>7 [wrnsl]v SR [zrwsi“ (1)
if ¢, (s) =t,1<q <4, and t & c.(J) for r & {ry}.

It is easily verified that 3, is well-defined and continuous. For v € S"7!, formula (1) and
Theorem 5.1 give

if ¢.(s,u) = (t,v)

if (t,v) ¢ Imec M)

Qc,,_15 0 ﬁn[C, x] (t’ fu) = {[mra S, U]

*
Thus Qa,_1S0 3 =a, : C,,X — Q"S"X. The fact that 3, is a morphism of monads can
easily be verified from the definitions and also follows from the facts that §, and Qa,,_1S
are inclusions for all X and that «,, and Qa,_1S are morphisms of monads. O

We conclude this section with some consistency lemmas relating Theorem 5.1 to the
lemmas at the end of section 1. These results will be needed in the study of homology
operations; their proofs are easy verifications and will be omitted.

Lemma 5.5. Let w : (2" X)¥4) — Q7(X®4)) be the homeomorphism defined by

for y € Y and v € S*. Then w is a C,-morphism with respect to the actions o on
(Q7S)¥4) and 6,, on Q7 (X X)),

In particular, w : (2(2"X), Q0,) — (2"(QX),0,) is a C,-morphism, where 0,, = 6,110,
on Q"(QX). Observe that w transfers the first coordinate of Q"X (y above) to the last
coordinate. Under the identity map on Q"' X O, corresponds to 6,0/, and Lemmas 1.5
and 4.9 therefore yield the following result.
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Lemma 5.6. For X € 7, the following diagram is commutative, and Q0,, ; = 0,100, ; is
¥;-equivariantly homotopic to 0, ; = 041,00

1x37 S 1xpd

Co(j) X (Q"X) == Cu(j) x (PQ"X) ——Cp(j) x ("X

lﬂ@n,j lPGnJ \LGW

Qi x PO"X Qrx

Lemma 5.7. Let f : X — B and g : Y — B be maps in 7. Identify Q"(X x?Y) with
"X x¥"BO"Y as subspaces of Q"X x Q"Y. Then the C,-actions 6,, and 6,, x*"B 0, are
identical. In particular, ,, agrees with 6,, x 6, on Q"(X xY) = Q"X x Q"Y.

Remarks 5.8. Lemma 1.9(ii) is obviously inappropriate for the study of the product on
n-fold loop spaces for n < oo. Observe that "X may be given the product

Q1 QP X x Q"X = Q"HOX x QX) — Q"X

where v is the standard product. Clearly Q" !4 is then a C,_;-morphism. Similarly, we
can give Q"X the inverse map Q" lc: Q"X — Q"X where ¢ : QX — QX is the standard
inverse, and then 1" "!c is a C,_;-morphism. The point is that the product and conjugation
on H,(Q"X) will commute with any homology operations which we can derive from the
action 6,,_1 of C,,_1 on Q"X.
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6 The Approximation Theorem

This section and the next will be devoted to the proof of the approximation theorem (2.7)
and related results. The following more detailed statement of the theorem contains an outline
of the proof.

Theorem 6.1. For X € 7 and n > 1, there is a space E,X which contains C,X and
there are maps 7, : B,X — C,_1SX and &, : E,X — PQ" 1S"X such that the following
diagram commutes:

X ———=E,X —">C, 15X
anl J{&n \Lanl
QnSnX *C> an—lsnX *p> Qn—lsnX
where, if n = 1, CySX = SX and ag is the identity map. E, X is contractible for all X and

T, is a quasi-fibration with fibre C,, X for all connected X. Therefore «,, is a weak homotopy
equivalence for all connected X and all n, 1 <n < oo.

We shall construct the required diagram and give various consequences and addenda to
the theorem in this section. The proof that FE,, X is contractible and that m, is a quasi-
fibration for connected X will be deferred until the next section, where these results will be
seen to be special cases of more general theorems.

Coupled with Propositions 3.4 and 3.10, the theorem yields the following corollaries,
which transfer our approximations for n = 1 and n = oo from C; and C,, to arbitrary A,
and E,, operads. The reader should recall that a map is said to be a weak homotopy
equivalence if it induces isomorphisms on homotopy groups, and that two spaces X and
Y are said to be weakly homotopy equivalent if there are weak homotopy equivalences from
some third space Z to both X and Y. Thus the following corollary contains the statement
that the James construction M X is naturally of the same weak homotopy type as Q5 X, for
connected X; curiously, our proof of this fact uses neither classifying spaces nor associative
loop spaces.

Corollary 6.2. Let X € 7 be connected and let C be any A., operad. Then the following
natural maps are all weak homotopy equivalences:

MX & 0X & (OVO)X 25 01X 25 Q5X.

Corollary 6.3. Let X € 7 be connected and let C be any F, operad. Then the following
natural maps are all weak homotopy equivalences:

CX & (Cx C)X B O X 22 Q®°8™X
and, if 1 <n < oo, (C x C,)X = C, X % QnSnX.

Of course, for arbitrary (non-connected) X, we can approximate 2"S™X by QC, 15X,
since SX is connected.
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Corollary 6.4. Let X € 7 and let C be any E,, operad. Then the following natural maps
are all weak homotopy equivalences:

QCSX <15 0(C x C)SX 225, 0, sx 222, geogex

and, if 1 < n < oo, Q(C x C,)SX 222, 0C,5x L%, gntlgntlx,

In these corollaries, all maps are evidently given by morphisms of monads. Clearly this
implies that these maps are H-maps, but the H-space structure is only one small portion of
the total structure preserved.

Remarks 6.5. In [4], Barratt has constructed an approximation |[I't X| to Q*°S5*°|X| for
connected simplicial sets X. Implicitly, Barratt constructs a “simplicial operad” consisting
of simplicial sets D,X;. If we define D(j) = |D,%;|, then we obtain an E,, operad D, and
it is easily varified that |I't X| is homeomorphic to D|X| (where D denotes the monad in 7
associated to D). Thus Corollay 6.3 displays an explicit natural weak homotopy equivalence
between |I'" X | and Q*°S>°X, for connected X. For all X, 't X is a simplicial monad, and
if '’ X denotes the simplicial group generated by I't X, then |[T'X| is homotopy equivalent to
Q5> X. We shall describe D explicitly in section 15.

We begin the proof of Theorem 6.1 with the definition of a functor E,, from pairs (X, A)
to spaces. E,X will be the space E,(TX, X), where TX denotes the cone on X.

Construction 6.6. Let (X, A) be a pair in 7, by which we understand a closed subspace
A of X with * € A. We construct a space F, (X, A) as follows. For a little n-cube f, write
f=f xf" where f' : J — Jand f” : J*1 — Jvl if n = 1, then f = f’. Define
E.(j; X, A) to be the subspace of C,(j) x X7 consisting of all points ({cy,...,¢;),z1,...,2;)
such that if =, € A, then the intersection in J" of the sets (c.(0),1) x ¢/(J"1) and c,(J™)
is empty for all s # r. The equivalence relation ~ defined on >, ;Cn(j) x X7 in the
construction, (2.4), of C;, X restricts to an equivalence relation on 3, &,(j; X, A). Define

E,(X,A) to be the set
E (X, A) =Y &.(; X, A)/ (=),
Jj=>0
topologized as a subspace of C, X . Since A is closed in X, E,(X, A) is closed in C, X and
E.(X,A) elU. E,(X,A) is a filtered space with filtration defined by

FE,(X,A) = E,(X, A) N F,C, X,

and FyE,(X,A) = . Clearly C,(j) x A’ C &,(j; X, A) and thus C,A C E,(X,A). If
f:(X,A) — (X', A') is a map of pairs, then E, f : £,(X,A) — E,(X’, A’) is defined to be
the restriction of C), f : C;, X — C,, X' to E, (X, A).

The following results, particularly Lemmas 6.7 and 6.10, show that the definition of
E.(X,A) is quite naturally dictated by the geometry. Observe that F,(X,X) = C,X; at
the other extreme, F, (X, x*) is closely related to C,,_1 X.
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Lemma 6.7. Let X € 7 and let [¢,z] € E, (X, *), where ¢ = (c1,...,¢;) and z € (X — )/

for some j > 1. Then j=1ifn=1and " =(d],...,cj) € C,—1(j) if n > 1. There is thus

a natural surjective based map v, : E,(X,*) — C,,_1 X defined by the following formulas on
points other that x:

vile,z] =2 € X = CyX; and (2)
vple,x] = [ 2] € Cp X if > 1. (3)

Proof. Let v = (x1,...,25), v € X — % Fixr # s 1 <r <jand1l <s < j. For
definiteness, assume that ¢.(0) < ¢.(0). Let t € ¢,(J). If n =1, then t € (¢.(0),1) Nes(J),
which contradicts the definition of & (j; X, *); thus r # s is impossible if n = 1 and therefore
j=1.1Ifn>1andifve d(J)N(J" ), then (t,v) € cs(J") and t € (c.(0), 1), which
contradicts the definition of &,(j; X, x). Thus the little (n — 1)-cubes ¢! and ¢! have disjoint
images and ¢’ € C,,_1(j). O

Notations 6.8. Let 7 : (X, A) — (Y, %) be a map of pairs in 7. Then the composite map

E.(X,A) EnT, E,(Y, %) 2 C,_1Y will be denoted 7,. Since E, is a functor and v, is a

natural transformation, 7, is natural on commutative diagrams

(X, 4) —— (V%) ,

1| ls

(X7, A1) = (Y7, %)
in the sense that C,_,g o m, = 7, o E, F for any such diagram.

Lemma 6.9. For X € 7 and n > 1, there is a natural commutative diagram

C.X < - E,(TX,X) o Cn1SX

Cnﬁnl \LEnﬁn J/Cnlnnl

C.Q"S"X —S= E,(PQ" 15" X QnSnX) 2,1 Qn1sn X

Proof. Define the cone functor T by TX = X x [/ * xI U X x 0, and embed X in TX by
x—[z,1]; SX =TX/X and 7 : TX — SX denotes the natural map. Define 7, : TX —
PQ"18" X by the formula

finlz, 8](t)(v) = [z, st,v] for [x,8] € TX,t € I, and v € S"".
Then the following diagram commutes and the result follows:

C ™

TX SX

T

QnsnX *C> PanlsnX *p> anlsnX
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Since «,, factors as the composite 6,, o0 C,,n,,, the lemma gives half of the diagram required
for Theorem 6.1. The following sharpening of Lemma 5.6 will lead to the other half of the
required diagram and will also be needed in the study of homology operations on n-fold loop
spaces.

Lemma 6.10. For X € 7T, define 0, : &,(j; PQ"' X, Q"X) — PQ" X as follows. Let
(c,y) € &E,(j; P 1 X, Q"X), where ¢ = {(c1,...,¢;) and y = (y1,...,y;). Fort € I and
v € S" L define

i yr(s)(u)  if cr(s,u) = (¢, v)
Onj(cy)()(v) = § oe(D(u) if t > e (1), ¢l(u) = v,y, € 0" X

* otherwise

Then the following diagram is commutative:

. Gn 7
Co(j) x (X)) — 0~ nx
C C

£.(j; PO LX, Qn X) e pane1

! x17
n—1,j %17]7

Cor(f) X (PO 1X)I .

g

1xp?

Coo1(J) x (IX) —= -1 x

Proof. The definition of &,(j; PQ"1X,Q"X) gives that if ¢ # r and y, &€ Q"X, then no
element of ¢,(J™) has the form (t,v) with ¢ > ¢.(1) and v € /(J"'). Thus the first
and second parts of the definition of 6, ; have disjoint domain. Of course, y,(s)(u) = *
for u € 1", and it follows that 6, ,j 1s continuous. By comparison with Theorem 5.1,
On; = 0n; on Co(j) x (Q"X)I. PO, ,; is defined in Lemma 1.5, and the commutativity of
the bottom square follows from that lemma. The commutativity of the triangle is immediate
from the definitions, since oy, ; is given by f — 1 x f on little (n — 1)-cubes f. O]

Lemma 6.11. For X € 7, the maps O - En(d; POIX, Q" X) — PQ" X induce a map
0, : E,(PQ"1X,Q"X) — PQ" 1 X such that the following diagram is commutative (where,
ifn=1600=1: X — X):

C.VX —= E,(PQ" ' X, Q"X) 2> C,_Qr X

. - s

X PO X X

Proof. 0, (co,y) = QW(C oy) and 0, ;_1(0i¢,y) = On;(c, s;y), in the notation of Construc-
tion 2.4, and therefore 6, is well-defined. The previous lemma implies that 6, = 6, on
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C,Q"X. Clearly

yr()(u) if ¢/(u) =v and y, € Q"X
phfe.3](v) = {”” )

* otherwise.
By the definition p, = v, o E,p and by the definition of v, in Lemma 6.7 and of 6, in
Theorem 5.1, pb,, = 0,,_1p, follows. O

Define &, = 6,, o E. i : E,X = E,(TX,X) — PQ"15"X. Then the commutativity of
the diagram in the statement of Theorem 6.1 results from Lemmas 6.9 and 6.11.

We complete this section by showing that our approximations relate nicely to the Hure-
wicz homomorphism A and to the homotopy and homology suspensions S.. Recall that we
have morphisms of monads ¢ : C;, — N, where NX is the infinite symmetric product on
X by abuse, if n = 1, € here denotes the evident composite C; — M — N. For connected
spaces X, we may identify m;(NX) with H;(X), and then h = 5, : m;(X) — m(NX) and
S, =0 m(NX) — 7,1 (NSX), where O denotes the connecting homomorphism of the
quasi-fibration N7 : NTX — NSX with fibre N.X; proofs of these results may be found in
[10].

Lemma 6.12. Let 7 : (X, A) — (Y, %) be amap of pairs in 7, and let € denote the composite
E,(X,A) S C,X S NX. Then the following diagram is commutative where, if n = 1,
e=n:Y — NY.

CoA—>FE, (X, A) —>C,Y

NA NX — -~ NY

C

Proof. The commutativity of the left-hand square is obvious and the commutativity of the
right-hand square follows easily from the definition of 7,. For n = 1, the crucial fact is that
at most one coordinate x, of an element [(cy,...,¢;j), z1,...,2;] € E1(X,A) isnot in A. [

Corollary 6.13. Let X € 7 be connected. Then there is a natural commutative diagram,
with isomorphisms as indicated:

ﬂl(Q"S"X)—>7TZ+1 (S"X)

T
Oy |
o~

(X)) —> 1,(CL X)) Tipn(S"X)

€x «=h
o~ n=Sp

Ti(NX) —— My (NS"X)

where 07" oy, : m(X) — 1, (S™X) is the homotopy suspension.

Proof. The triangles commute since a,, and € are morphisms of monads. The upper square
commutes by the diagrams of Theorem 6.1 and the lower square commutes by the lemma
appliedto X CTX and 7: TX — SX. O
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Remark 6.14. Let M(X, A) denote the image of the spaces E;(X, A) under the augmen-
tation € : C1X — MX; Gray [14] has made an intensive study of M (X, A), which he calles
(X, A)s. The natural map 7 : X — X/A induces m : E1(X,A) — X/A, and m; clearly
factors (via €) through a map p: M (X, A) — X/A. If A is connected (and if the pair (X, A)
is suitably nice), then, by Theorem 7.3 and [14], ; and p are quasi-fibrations with respective
fibres C1A and M A, and € : C1A — MA is a weak homotopy equivalence by Proposition
3.4; therefore € : Fy (X, A) — M(X, A) is also a weak homotopy equivalence.
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7 Cofibrations and quasi-fibrations

We prove here that E,, (X, A) is aspherical if (X, A) is an NDR-pair such that X is contractible
and that, for appropriate NDR-pairs (X, A), the maps 7, : E,(X,A) — C,,—1(X/A) and
Coom : Cio X — Coo(X/A) are quasi-fibrations with respective fibres C,, A and C, A. Applied
to the pairs (T'X, X)), these results will complete the proof of the approximation theorem.
They will also imply that 7, (CxX) is a homology theory on connected spaces X (which, a
fortiori, is isomorphic to stable homotopy theory).

Theorem 7.1. Let (X, A) be an NDR-pair in 7. Then
1. (FE.(X,A),F;_1E,(X,A)) is an NDR-pair for j > 1.

2. If X is contractible, then E, (X, A) is aspherical, and E,(X/A) is contractible if X is
compact, or if X is the cone on A, or if n = 1.

Proof. By Lemma A.5 applied to the (X, A, %), there is a representation (h,u) of (X, %) as an
NDR-pair such that h(I x A) C A. By Lemma A .4, (h,u) determines a representation (h;, u;)
of (X, *)7 as an ¥;-equivariant NDR-pair. Since any coordinate in A remains in A throughout
the homotopy h;, the representation (h;, ;) of (F;C,X, Fj_1C,X) as an NDR-pair which
was derived from (hj,u;) in the proof of Proposition 2.6 restricts to a representation of
(FE.(X,A), F;_1E,(X, A)) as an NDR-pair. The contractibility statement is more delicate.
Indeed, my first proof was incorrect and the argument to follow is due to Vic Snaith. Let
g: I x X — X be a contracting homotopy, ¢(0,z) = x, g(t,*) = *, and g(1,x) = *. Clearly
g cannot in general be so chosen that g(I x A) C A. For ¢ = (c1,...,¢;) € Cu(j), write
¢ =cxd, d:J— J, and define

17

vi(c) = 2%2?(02(1) — i(1))/X(e), where A(¢) = min (c,(1) — ¢,(0)).

1<k<j
Define a homotopy G : I x (F;E,(X,A) — F;_1E,(X,A)) — F,E, (X, A) by

G(t,[c,x1, ... z5]) = [e,g(t1, z1), ..., g(t;, )], where

t if v;(c) <0
ti=t(l—vi(c) if0<w(c)<1
0 if v;(c) > 1

G is well-defined since, as is easily verified, v;(c) < 1 implies that (c;(0), 1) x c/(J* ) Nep(J™)
is empty for all k& # i (and thus that the i*" coordinate in X is unrestricted). G starts at
the identity and ends in F;_1E,(X, A) since v;(c) < 0 for at least one ¢ in each c. Note,
however, that G cannot be extended over all of F;E, (X, A). Now assume that there exists
€ > 0 such that g(I x u™[0,¢]) C u™*[0,1). If x is compact, then there exists such an € by an
easy exercize in point-set topology; if X = T'A, (j,v) represents (A, *) as an NDR-pair, and
ula,s| = v(a) - s, h(t,|a,s]) = [j(t,a),s]|, and g(t, [a, s]) = [a, s — st], then any € < 1 suffices.
Define a homotopy H : I x F;E,(X,A) — F;E,(X,A) by H(t,z) = z for z € F;_1E,(X, A)
and by

G(t7 [Cv y]) if uj (y) >
H(t’ [07 y]) = {G 2t-uj(u) .
(B fep))  ifusy) < /2

€ )
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for [c,y] € F,E,(X,A) — F;_1E, (X, A). Then H deforms F;E,(X, A) into ﬂj_l[O, 1) and, by
the first part, @;'[0,1) can be deformed into Fj_1E,(X,A) in F;E,(X,A). It follows that
each F;E, (X, A) is contractible, and the argument given by Steenrod in [29, 9.4] shows
that E,(X, A) is contractible. For arbitrary contractible X, a map f : S¢ — E, (X, A)
has image in F;E,(Y,ANY) for some j and some compact ¥ C X; if € is such that
g(I x u=t0,efNY) C u'[0,1) then the homotopy H above deforms F;E,(Y,ANY) into
@'[0,1) in F;E,(X, A), and it follows that f is null-homotopic. Thus E, (X, A) is aspherical.
Finally, if n = 1, then we can write points of E;(X, A) in the form [c, y] where the intervals
¢; of ¢ € Cy(j) are arranged in order (on the line); then the retracting homotopy for (X, )/
obtained from h;_; on X/~ and g on X by Lemma A.3 can be used to deform F;F;(X, A)
into Fj_1E1(X, A). O

Recall that a map p : £ — B is said to be a quasi-fibration if p is onto and if
p. i (E,p7Y(x),y) — m;(B,x) is an isomorphism (of pointed sets or groups) for all z € B,
y € p~i(x), and 7+ > 0. A subset U of B is said to be distinguished if p : p~}(U) — U
is a quasi-fibration. The following lemma, which results from the statements [10] 2.2, 2.10
and 2.15] of Dold and Thom, describes the basic general pattern for proving that a map is
a quasi-fibration.

Lemma 7.2. Let p : E — B be a map onto a filtered space B. Then each F}B is distin-
guished and p is a quasi-fibration provided that

1. FyB and every open subset of F;B — F;_1 B for j > 0 is distinguished.

2. For each j > 0, there is an open subset U of F; B which contains F;_; B and there are
homotopies hy : U — U and Hy : p~(U) — p~}(U) such that
(a) h() = ]_, ht(Fj_lB) C Fj_lB, and hl(U) C .Fj_lB;
(b) Hy =1 and H covers h, pH; = hyp; and
(c) Hy:p~Y(z) — p~!(hi(2)) is a weak homotopy equivalence for all x € U.

The notion of a strong NDR-pair used in the following theorem is defined in the appendix,
and it is verified there that (My, X) is a strong NDR-pair for any map f: X — Y.

Theorem 7.3. Let (X, A) be a strong NDR-pair in 7, and assume that A is connected. Let
m: X — X/A be a natural map. Then

1. 7, Ep(X, A) — C,—1(X/A) is a quasi-fibration with fibre C), A;
2. Coomm : Cio X — Cyo(X/A) is a quasi-fibration with fibre C,, A.

Proof. 1. The maps 7, are defined in Notations 6.8. For the case n = 1, recall that
Co(X/A) = X/A and define Fy(X/A) = % and Fy(X/A) = X/A. The proof for n =1
will be exceptional solely in that we need only consider the first filtration, 7 = 1
below, and therefore no special argument will be given. FyC,_1(X/A) = * is obviously
distinguished, and we must first show that any open subset V' of F;C,_1(X/A) —
F;_1C,-1(X/A) is distinguished. By use of permutations and the equivalence relation
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used to define E,(X/A), and by the definition of 7,, any point y € 7, (V) may be
written in the following form:

y=[(c.d),z,al, (4)
where ¢ = {(c1,...,¢;) € Co(j), d = (d1,...,dy) € Co(k), z € (X — A), and a € AF;

here if ¢, = . x !,c. : J — J, then the intersection of (¢.(0),1) x /(J"" 1) and
ds(J") is empty, and m,(y) = [¢’, 7/ (x)] € V, where ¢’ = (c{,...,¢]) € C,u1(j). Define
q:m, (V) — C,A by q(y) = [d,a] for y as in (2). It is easy to verify that ¢ is well-
defined and continuous. We claim that 7, x ¢ : 7, (V) — V x C, A is a fibre homotopy
equivalence, and this will clearly imply that V' is distinguished. Define morphisms of

operads 0" : C,,_1 — C, and 7~ : C,, — C,, by the formulas

ot (f) =g" x f onlittle (n — 1)-cubes f, where g*(s) = %(1 +38),9g7(J) = (%, 1).

1
77(f) = (9~ x 1"1)f on little n-cubes f, where g~ (s) = 55,9‘@]) =(0,=). (6)
Then define w: V x C,A — 7 1(V) by the formula

w({c”, 7 (2)], [d, a]) = [(o7 ("), 77 (d)), x, al, (7)

where ' € C,_1(j), x € (X — A)/, d € C,(k), and a € A* ( for any k > 0). The
definition of o and 7~ ensures that the little cubes on the right satisfy the requirement
speicified in (2) for points of 7, !(V). Clearly w is continuous and fibrewise over
V. Now (m, X ¢)w is the map 1 x 7=, where 7= : C,,A — C,A is the associated
morphism of monads to 7~ : C,, — C,,. Since 1 = 7~ via the homotopy induced from
f = (g7 x 1" 1) f on little n-cubes f, where g; (s) = (s — 3st), (m, x q)w is fibre
homotopic to the identity map. On points y € 7, (V) written as in (2), we have

w(m x q)(y) = (o ("), 77(d)), z, a

Construct a fibre-wise homotopy 1 = w(m, x ¢) by deforming d into 77 (d) as above
(without changing ¢, z, or a) during the first half of the homotopy and then deforming
¢ into o7 (c") by deforming each ¢, linearly to g% (without changing 7= (d), x, or a)
during the second half of the homotopy. It is easily verified that the disjoint images and
empty intersections requirements on the little cubes of points of 7, (V) are preserved
throughout the homotopy. Thus 7, X ¢ is a fibre homotopy equivalence and V' is distin-
guished. It remains to construct a neighborhood U of F;_1C,,_1(X/A) in F;C,_1(X/A)
and deformations of U and of 7, '(U) which satisfy the conditions of Lemma 7.2(ii).
Let (¢,v) represent (X, A) as a strong NDR-pair, and let B = v~1[0,1); by definition,
((I x B) C B. Define U to be the union of F;_;C,_;(X/A) with

{l¢",m(x1),...,m(x;)]|x, € B for at least one index r}.

Let (h,u) be the representation of (X/A, %) as an NDR-pair induced from (¢,v) by ,
and let (h;,u;) and (¢;,v;) be the representations of (X/A, )7 and (X, A)’ as NDR-
pairs given by Lemma A.4. Let (h;, ;) be the representation of

(FiCo 1 X/A, Fj_1C 1 X/A)
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as an NDR-pair given by Proposition 2.6; then u;(x) < 1 if and only if z € U,
and h restricts to a strong deformation retraction h; : I x U — U of U onto

F;_ 1C’n 1\ X/A. Define (7 : I x w; (U) — 7;1(U) by #(t, y) =yfory e FV1E, (X, A),
where FI7'E, (X, A) = m}( ]_10 _1X/A), and by the following formula on points
yem, (U)— ijlEn(X, A) written in the form (2)

gj(tay) = [<C7 d>’£j(t’x)7a] (8)

7 is well-defined since £(t,a) = a for a € A, and clearly £/ covers ﬁj and is a strong
deformation retraction of m,'(U) onto F'7'E, (X, A). By Lemma 7.2, it suffices to
prove that if z € U and 2’ = hj;(z), then # : 7' (z) — 7, () is a homotopy equiv-
alence. Since #/ is constant on F/~1E, (X, A), this is trivial for x € F;_;C,_;(X/A).
Thus consider a typical element z € U — F;_1C,,_1(X/A), say

x =" m(x1),...,m(x;)], where ¢’ = (c},...,¢j) and z, € X — A.

Let lji(21,...,25) = (21,...,2}). Some of the x; lie in A. By use of permutations
and the equivalence relation, we may assume that x/ ¢ A for r < i and 2/, € A for

i <r < j (i may be zero), and then

o = hj(z) = [(],.... &), m(x)),... w(x))].

Consider the following diagram:

1 Z 1 )

ﬂ—nxqiT ﬂ—nquT
J1><].

X C,LA—12' x C,A

Here the ¢ and w are defined precisely as in the first part of the proof, and 7, x ¢ and w
are inverse homotopy equivalences. We shall construct a homotopy H : I'x (xxCLA) —

71 (2') from £ ow to wo(hj; x 1). This will imply that {7 is homotopic to the composite
of homotopy equivalences w o (hﬂ x 1) o (m, X ¢). Since A is connected, we can choose

paths p, : I — A connecting x/ to * for 1 < r < j. Define H by the formula

H(tPT? [d7 CL]) = [<U+<C//)7T_(d)>7x/17 s 7x;7pi+1(t)= s 7pj(t>7a’]‘ (9>

Clearly H is well-defined, and Hy = #Jw and H, = w(h;; x 1) are easily verified from
(5) and (6). This completes the proof of (i).

2. Define a subspace &/ (j; X, A) of £,(j; X, A) by
ELG X, A) ={{cr,...,¢), 21, ., x))|d. = gT if z,. & A},

where g* is defined in (3). Let Ej(X,A) denote the image of [[;5,&,(j; X, A4) in
E.(X,A), and let 7/, : E!/ (X, A) — C,_1(X/A) be the restriction of m, to E/ (X, A).
With a few minor simplifications, the proof of (i) applies to show that «/, is a quasi-
fibration. We have been using E, (X, A) rather than E! (X, A) since the contractibility



7. COFIBRATIONS AND QUASI-FIBRATIONS 37

proof of Theorem 7.1 does not apply to E! (X, A); a fortiori, these spaces are weakly
homotopic equivalent and can be used interchangeably. We now have commutative

diagrams
B, (X, A) —"> B, (X, A)
| ke
Ch1(X/4) 22 € (X A)
and

0’:; [
Cn X E;L-i—l (Xv A) - n+1X

Cnﬂ'i lﬂ';m+l iCnJrlﬂ'
+

Ca(X/A) —> Cu(X/A) =" Coria (X/A)

where o is defined by o (f) = gt x f on little n-cubes f, and ¢ is the inclusion.
E; (X, A) was introduced in order to ensure that C,, 1704 = o,f o7, ,,. Lemma 4.9
implies that 0, = o/, : C;, X — C,11X, naturally in X, and, since o,(c) = 1 x ¢ on little
n-cubes ¢, we evidently have that o/, = o : C,,X — C, 11X, naturally in X. Now

pass these diagrams to limits with respect to the o, observing that 0,110, = ot 0.
For z € Co(X/A) and y € (Com) ! (z), we have a commutative diagram

EL (X, A), 7, (2),04y)

0';—0 \

(Coc X, (Coom) (), 9) T (Coc X, (Coomr) 0L ), 0L Y)

COOF\L lcoon
1 +

(Coo(X/A), ) (Coo(X/A), ) = (Coo(X/A), 05)

~

Clearly 7/ is still a quasi-fibration; since o,, = o;, naturally, both the top composite
iot and the bottom map o, as well as 7/, induce isomorphisms on homotopy groups
(or sets). Since 7,0k, is a monomorphism, so is (Com), on the left. Since of 7/,

is an epimorphism, so is (Com), on the right. It follows that
(Coom)s : T(Coo X, (Coomr) ~H(2),y) — mu(Coo(X/A), @)

is an isomorphism for all x and y, which verifies the defining property of a quasi-
fibration.
O

The second part of the theorem has the following consequence.

Corollary 7.4. For any E, operad C, m.(CX) defines a homology theory on connected X €
7 and 7, (QCSX) defines a homology theory on all X € 7. These theories are isomorphic
to stable homotopy theory, and the morphism of homology theories €, : m.(CX) — . (NX)
is precisely the stable Hurewicz homomorphism.
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Proof. By Proposition 2.6 and the homotopy exact sequence of the quasi-fibration C,u X —
CoMy; — C Ty, where Ty = My/X is the mapping cone of f: X — Y, m,(CX) satisfies
the axioms for a homology theory on connected X. Since suspension preserves cofibrations
and looping preserves fibrations, m,(Q2C,,SX) satisfies the axioms for all X. The natural
weak homotopy equivalences of Corollaries 6.3 and 6.4 clearly allows us to transfer the result
to arbitrary E,, operads C, and the maps (a0 )« and (Qa..S). define explicit isomorphisms
with 78(X) = m.(QX). The statement about e, follows immediately from Corollary 6.13. [
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8 The smash and composition products

The purpose of this section is to record a number of observations relating the maps 6, :
C,r"X — Q"X and «, : C, X — Q"S"X to the smash and composition products, and
to make a few remarks about non-connected spaces. The results of this section do not
depend on the approximation theorem and are not required elsewhere in this paper; they
are important in the applications and illustrate the geometric convenience of the use of the
little cubes operad.

We identify Q"X with the space Homz(S™, X) of based maps S™ — X, S" = I"/0I",
and we write S for the inclusion Q"X — Q18X given by suspension of maps.

For X,Y € 7T, the smash product defines a natural pairing Q"X x Q"Y — Q™ (X AY);
explicitly,

(f A g)st) = f(s) Aglt)

for fe Q"X ge Q'Y seI™ andt € I". Observe thatifm > 1 andif ¢p: Q"X xQ"X —
Q"X denotes the standard (first coordinate) loop product, then for fi, fo € Q™X and
g € 'Y, we have the evident distributivity formula

o(f1, fo) Ng=o(fi Ng, f2 A g).
Diagrammatically, this observation gives the following lemma.

Lemma 8.1. For XY € 7, the following diagram is commutative:

dx1

QX x QmX x QY Q"X x Q'Y

1><1><Al l/\

Q"X x Q"X x QY x Q'Y QmM(X AY)

lxtxli Tqﬁ

AXNA

Q"X x QY x Q"X x QY —= Q"X AY) x Q"X AY)

where A is the diagonal and ¢ is the switch map.

Now the loop products in this diagram are given by 6,,2(c), where ¢ = (g~ x 1™7! g+ x
11 € Cn(2) with g= and ¢g" as defined in formulas (7.3) and (7.4), and the lemma
generalizes to the following computationally important result.

Proposition 8.2. For X,Y € 7 and all positive integers m, n, and j, the following diagram
is commutative:

m,j X

. O, X1
Cn(j) X (A"X) x QY ——— Q"X x Q"Y
1><1><Al l/\

Con(§) X (A" XY x (QUY') QT (X AY)

lxul T%w‘

Conf) % (U7X x QY ) 2L 0 (5) x QP (X A Y

where A is the iterated diagonal and u is the shuffie map.
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Proof. We must verify the formula
Omj(c,xr,...,x)) Ny ="0pi(c,x1 Ny, ..., z; Ny)

for z; € "X,y € Q"Y, and ¢ = (cq,...,¢;) € Cpn(j). By Theorem 5.1, if s € I™ and t € I,
then
z () ANy(t) ife(s)=s

Om.i(c,x1 Ay, ..., Ay)(s,t) =
sl oy i Ay)(s,1) {* if s Imec

Visibly, this agrees with 0, ;(c, z1,...,2;)(s) Ay(t). O

An equally trivial verification shows that we can pull back the smash product along the
maps «, in the sense of the following proposition.

Proposition 8.3. Define amap A : C,, X XC,Y — Chirs (X AY) by the following formula on
points [¢,z] € C, X and [d,y] € C,Y, with ¢ = (c1,...,¢;) € Cn(j), x = (21,...,2;) € X7,
d={dy,...,dy) €Cp(k),and y = (y1,...,yx) € Y*:

[e,z] A[d,y] = [e, 2],
where e = (¢1 X dy,...,c1 Xdy,...,¢;xXdy,...,c;xd) and 2 = (1 Ay1, ..., 1 A Yk, ..., T A

yla"'amj /\yk‘)
Then the following diagram is commutative:

CnX x C,Y L s Cryn(X AY)

Qm, X Qip l lam-&-n

QmSmX x QrS"Y —Ls QU SmAR (X AY)

(where we have identified S X AS™"Y = X AS™AY AS™ with X AY AS™AS™ = S™T(XAY)
via the map 1 At A 1).

We can stabilize the smash products of the previous proposition, up to homotopy, by use
of Lemma 4.9 and the following analogous result on change of coordinates.

Lemma 8.4. Let X € 7. Define S’ : Q"7 15" 1X — QnS"X, n > 1, by letting S'f,
f e Qvis"1 X be the following composite:

S = SUA S N Gl A X A st AL XA S A ST = ST X
Then S’ is homotopic to S, where Sf = fA1: 5" — S"X.

Proof. Let 7,7/ : S™ — S™ and h : 7 = 7’ be the maps and homotopy constructed in the
proof of Lemma 4.9. For f € Q" 15" 1X and s € I, let H,(f) : S™ — S™X be the composite

-1
gn e gn ol g xp gret AL e q gn MR A gn g

Then Ho(f) = fA1and Hi(f) = (tA1)o (1A f), as required. O
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Of course, it is now clear that the n suspension maps Q" 1S" !X — Q"S"X and
Cn1X — C,X obtained by the n choices of privileged coordinate are all homotopic. It
follows easily that the smash products of Proposition 8.3 are consistent under suspension,
up to homotopy, as m and n vary.

We next discuss the composition product. Let F (n) denote the space of based maps
S™ — S" regarded as a topological monoid under composition of maps. Let Fz(n) denote
the component of F (n) consisting of the maps of degree i. As usual, we write

F(n) = Fy(n) U F_y(n) and SF(n) = Fi(n).

F’( ) may be identified with ("S", and then, by (5.6), S : F(n) — F(n + 1) agrees with
QS — QgL We write F for the monoid lim F(n) and identify F with QS° as a
space For X € 7, define
e V"X x F, — Q"X
to be the composition of maps. Then ¢, is a right action of the monoid F (n) on the space
Q"X . The diagram

Q"X x F(n—1)
*
1xS orx
_—a
Q"X x F(n)

is evidently commutative for all n > 1. Therefore, if {Y;} € L, then the maps
cn Yy x F(n) = Q"Y, x F(n) — Q"Y, =Y,

induce a right action ¢y : Yy x F — Yy of F on Y. Of course, coo : QS° x F — QS°
coincides with the composition product on F. The composition product enjoys another
stability property, which is quite analogous to the result of Lemma 5.6.

Lemma 8.5. For X € 7 and n > 1, define Pc, : PQ"X x F(n) — PQ"X by Pc,(z, f)(t) =
cn(z(t), f) for v € PQ"X, f € F(n), and t € I. Then the restriction Qc, of Pc, to
Q"X x F(n) is the composite

1xS’

Q"X x F(n) =25 Q"X x F(n+ 1) =245 Qritx

and the following diagram is commutative

O X x F(n) —= PO"X x F(n) 25X x F(n)

QrHlx PO"X QrXx.

The precise relationship between the smash and composition products is given by the
following evident interchange formula.

Lemma 8.6. For z € Q" X, y € Q"Y, f € F(m), and g € F(n),

cm(T, ) N ey, 9) = cmgn(® Ay, f A g)
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Lemma 8.7. The composition and smash products on F are weakly homotopic, and both
products are weakly homotopy commutative.

Proof. For f € F(m) and g € F(n), we have the formulas
(S)"goS"f=fNng=S"fo(5)"g

since (S")"g = 1" Agand S*f = f A1". S and S” are homotopic by Lemma 8.4, and the
result follows. O

We shall obtain an enormous generalization of this lemma in the second paper of this
series. There is an E,, operad £ such that £ acts on F' (so as to induce the smash product)
in such a manner that the composition product F' x F' — F'is a morphism of £-spaces.

Of course, there is a distributive law relating the loop product ¢ to the composition
product, namely

¢(f1,f2) 0 S'g = d(fi0S'g, f205g)
for fi, f» € Q"X and g € F(n — 1). Diagrammatically, this gives

Lemma 8.8. For X € 7, the following diagram is commutative

xS’

Q"X x Q"X x F(n—1) 0"X x F(n)

1><1><AS’J( lcn

Q"X x Q"X x F(n) x F(n) Q"X

1><t><1l Td)

Q"X x F(n) x Q"X x F(n) ——"= Q"X x Q"X

The following generalized distributive law is proven, as was Proposition 8.2, simply by
writing down the definitions.

Proposition 8.9. For X € 7 and all positive integers m, n, and j, the following diagram
1s commutative:

. O X (S')™ -
Con(f) X (XY 5 F(n) — ) men X s B(m + n)
1><1><A(S’)mi J/0m+n
Cn(§) X (™" X)) x F(m +n) Qminx
1Xul T9m,j
1xc

Co(j) X ("X x F(m +n)) —————=Cpn(j) x (@™ X)J

We can pull back the composition product along the approximation maps «,,, but this
fact is slightly less obvious. The following reinterpretation of the definition of the maps 0, ;
will aid in the proof.
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Lemma 8.10. For X € 7, let /X denote the wedge of j copies of X and let p : /o — X
denote the folding map, the identity on each copy of X. Let ¢ = (¢1,...,¢;) € Cu(j) and
y=(y1,-..,Y;),yr € Q"X. Then 0, ;(c,y) : S* — X is the composite

gn g ML Gx B X
where ¢ is the pinch map defined by ¢(v) = * unless v = ¢.(u) for some r and u, when
¢(v) = u in the r*® copy of S™.

We next describe C,S8° and «, : C,S° — Q"S™; these maps play a central role in the
homological applications of our theory.

Lemma 8.11. For any operad C, C'S° is homeomorphic to the disjoint union of the orbit
spaces C(j)/%; for j > 0.

Proof. If S° has points * and 1, then any point of C'S® other than * can be written in the
form [c, 17], c € C(3). O

Lemma 8.12. Consider o, : C,S° — Q"S™. For ¢ € C, (), write a,,(c) = an[c, 19] € Fj(n).
Then «,(c) is the composite
Proposition 8.13. Define a map ¢, : C,X x C,S° — C,X by

cu[e, 2], d) = [y(d, ¢), "],

for ¢ € C,(j), * = (21,...,7;) € X7, and d € C,(k). Then the following diagram is
commutative for all n, 1 < n < oo:

C.X x(C,80—"~C,X
anxanl Qn

O"S"X x F(n) ——=Qrsnx

Proof. Let n,(z) = nu(x1) V- V() 1 7S™ — 15" X, where n,(2,.)(s) = [z, s] for s € S™.
Since «,, = 6, o C,n,, it suffices to verify the commutativity of the following diagram:

n

d,ck) | knn(z)
gn ( )Jksn n()JkS”XLS”X

d I
¢ nn(z)

kxS isn isnX

The result follows easily from the definitions of 7, in 4.1. O

Note that, in contrast to the smash product, the following digrams are commutative for
all n:

C.X x C, 89 C,X and Q"S"X x F(n) n D'

O'nXUni ian UnXS\L io'n

Cri1 X X Cp1 8 Cpyn X QULSnHLX % F(n 4 1) =5 qnrilgntly

Cn
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Of course, «,, : C, X — Q"S™X fails to be a weak homotopy equivalence for non-
connected spaces X, essentially because my(2"S™X) is a group and we have not built inverses
into operads. Conceivably this could be done, but the advantages would be far outweighed
by the resulting added complexity. It may be illuminating to compute mo(ay,) : mo(CoX) —
mo(2"S™X). Recall that if S is a based set (regarded as a discrete space), then M S (resp.
NS) denotes the free monoid (resp., free commutative monoid) generated by S, subject to
the relation * = 1. Let MS (resp. NS) denote the free group (resp., free commutative group)
generated by S, subject to the relation * = 1, and let i : M.S — MS (resp., j : NS — NS)
denote the evident natural inclusion of monoids.

Proposition 8.14. For X € 7, the horizontal arrows are all isomorphisms of monoids in
the commutative diagrams

Mmy(X) —— mo(C1X) and, if n > 1, N7o(X) —— m(CrX)
zJ{ lﬂo(m) jJ{ Jlﬂo(an)
Mro(X) — m(Q25X) N7o(X) — mo(Q2"S" X))

Here the horizontal arrows are induced from the set maps
7o(Nn) : mo(X) — mo(CrX) and  mo(n,) : mo(X) — m(Q"S™X)
by the universal properties of the functors M, N, M, and N.

Proof. Fix b € C,(2) (with b = (b1, b2) where by(1) < by(0) if n = 1); then the product in
C, X may be taken to be

[C’ l’] ’ [da y] = [’7([)7 ) d)v L, y]
for ¢ € C,(j), * € X7, d € C,(k), and y € X*. Tt follows easily that the image of mo(X)
generates my(C,X) as a monoid. Thus the top horizontal arrows are epimorphisms and by
the diagrams, it suffices to prove that the bottom horizontal arrows are isomorphisms. For
n > 1, we have the evident chain of isomorphisms

Nmo(X) ~ Ho(X) =~ Hp(S"X) &~ m,(S"X) =~ m(Q"S"X).

For n =1, let X, denote the component of g, where g runs through a set of points, one from
each component of X. Define open subsets U, of SX by

c={lz,s]lre X, ors<iors>3}
and
U, =U,U{[z,s]|lz € X} for g # *.

For g # h, U, N U, = U,, and 7 (U,) = * since U, is homotopy equivalent to SX,. For
g # *, m(Uy) is free on one generator, since U, is homotopy equivalent to S(X, U X,), and
therefore m (SX) = Mmy(X) by the van Kampen theorem. O
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9 A categorical construction

We shall here introduce a very general categorical “two-sided bar construction.” When we
pass back to topology via geometric realization of simplicial spaces, this single construction
will specialize to yield

1. A topological monoid weakly homotopy equivalent to any given A, space;
2. The n-fold de-looping of a C,,-space that is required for our recognition principle;

3. Stasheff’s generalization [28] of the Milgram classifying space of a topological monoid.

The construction also admits a variety of applications outside of topology; in particular, as
we shall show in §10, it includes the usual two-sided bar construction of homological algebra.

Throughout this section, we shall work in the category S7 of simplicial objects in an
arbitrary category 7. Since verification of simplicial identities are imporant, we recall the
definition of simplicial objects and homotopies and then leave such verificiation to the diligent
reader.

Definition 9.1. An object X € 87 is a sequence of objects X, € 7, ¢ > 0, together with
maps 0; : X, — X, and s; : X;, — X471 in 7, 0 < i < g, such that

ai@j - 8]',1(91' le < j

ijlﬁi ifi< j

@-sj: 1 le:jOTZ:]+1

Sjai_l ifi> ] +1

S$iSj = Sj4+18i if 4 S]
A map f: X — Y in ST is a sequence f, : X, — Y, of maps in 7 such that 0,f, = f,—10;

and s;f; = fy+15;. A homotopy h : f = ¢ in ST between maps f,g : X — Y consists of
maps h; : X; — Y41, 0 <7 < g, such that

oho = fq and 9g11hq = g4
hj—10; iti<y
Oihj = § 0jhj—1 ifi=j>0
h;jOi—1 ifi>j+1

sih; = o e ]
hjsi—1 ifi>3

Thus a purely formal homotopy theory exists in S7, regardless of the choice of 7, and
we can meaningfully speak of homotopy equivalences, deformation retracts, etc. When 7 is
our category of spaces, these notions will translate back to ordinary homotopy theory via
geometric realization.

We shall need a few very elementary observations about the relationship between 7" and
ST. For X € T, define X, € ST by letting X, = X and letting each 0; and s; be the
identity map. For a map f : X — X' in 7, define f, : X, — X in ST by f, = f. The
following lemma characterizes maps in and out of X, in S7.
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Lemma 9.2. Let X € 7 and Y € S7. Then

1. Amap p: X — Yy in 7 determines and is determined by the map 7.(p) : X, — Y in
ST defined by 7,(p) = so?p; if
X =Y,
'
X -y

is a commutative diagram in 7, where g € ST, then

T (p)

Xy —
f*l lg
) Y

is a commutative diagram in S7 .

7 : Hom7(X,UY) — Homgsr (X, Y)

2. Amap A: Yy — X in 7 such that \dy = \0; : Y1 — X determines and is determined
by the map €.(A\) : Y — X, in ST defined by €,(\) = Ao 9f; if

Yy 2> X

S

Yy > X
is a commutative diagram in 7", where ¢ € S7 and both AJy = \J; and N9y = N0y,

then

v €x(N) X,

S
v ex(\) X;
is a commutative diagram in S7 .
If F:7 — T is a functor, let F, : ST — ST’ denote the functor defined on objects
Y € 8T by F,Y = F(Y,), with face and degeneracy operators F'(0;) and F(s;). lf p: F — G

is a natural transformation between functors 7 — 77, let u, : Fy, — G, denote the natural
transformation defined by p, = p.

Lemma 9.3. Let (C,u,n) be a monad in 7. Then (C., ., 1.) is a monad in S7, and the
category SC[T] of simplicial C-algebras is isomorphic to the category C,[ST] of C,-algebras.
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Proof. The first part is evident from Definition 2.1. For the second part, an object of either
SC[T] of C,[ST] consists of an object X € ST together with maps &, : CX, — X, in T
such that (X,,¢,) € C[7] and the following diagrams commute:

C’XqL P and CXqL P

Cal l@ @¢ &i

CX, 70 X, CX i1 27 X

The point is that the diagrams which state that £ : C, X — X is a map in S7 are the same
as the diagrams which state that each d; and s; on X is a morphism in C[7]. ]

We need a new concept in order to make our basic construction.

Definition 9.4. Let (C, pu,n) be a monad in 7. A C-functor (F,\) in a category V is a
functor F' : T — V together with a natural transformation of functors A : FFC' — F such
that the following diagrams are commutative:

F-"pe and  FOC s po

\\\$£ Aﬁb - gk

A morphism 7 : (F,\) — (F', X) of C-functors in V is a natural transformation 7 : F' — F
such that the following diagram is commutative:

FC-"-FC
% lx
F—"—F
The definition should be compared with the definition of a C-algebra: a monad in 7 can

act from the left on an object of 7 and from the right on a functor with domain 7. The
following elementary examples will play a central role in all of our remaining work.

Examples 9.5. 1. Let (C,u,n) be a monad in 7. Then (C,p) is itself a C-functor in
7. Since (CX,pu) € C[T] and p : C*X — CX is a morphism in C[7] for any X € 7,
(C, ) can also be regarded as a C-functor in C[7], by abuse of language.

2. Let a : (C,u,m) — (D,v,€) be a morphism of monads in 7. Recall that if (X, ¢) is
a D-algebra, then o*(X,¢) = (X,{ o «) is a C-algebra. Analogously, if (F,\) is a D-
functor in 7, then o*(F,\) = (F, Ao Fa) is a C-functor in 7, in view of the following
commutative diagrams:

Fu

F4>FC an FCC FC

iFoz
FDa

FDCE22 Ppp 2~ FD

Vo kb

FC FD F

Fa Fal




9. A CATEGORICAL CONSTRUCTION 48

In particular, by (i), (D,v o Da) is a C-functor in D[7|; composing D : T — D|T]|
with o* : D[T| — C[T], we can also regard (D, vo Da) as a C-functor in C[7]. Clearly
a: (C,u) — (D,vo Da) is then a morphism of C-functors in C[7].

3. Let ¢ : Hom7 (X, AY) — Homy(XX,Y) be an adjunction between functors A : V — T
and X : 7 — V. Let (AX, v, () be the monad in 7 which results by Lemma 2.10; thus
¢ =¢'(1x) and v = A¢(1xx). Clearly (3, ¢(15x)) is a AX-functor in V.

4. Let o : (C,u,m) — (AX,r, () be a morphism of monads in 7, with AX as in (iii).
Obviously ¢(a) = ¢(1)oXa : XC — X. Thus, by (ii) and (iii), (¥, ¢(«)) is a C-functor
in ¥V and

o+ (C,p) = (A%, Ag(a))

is a morphism of C-functors in C[7].

Construction 9.6. Construct a category B(7,V) and a functor B, : B(7,V) — ST as
follows. The objects of B(7,V) are triples

((F,2), (€, m), (X, 6)),

abbreviated (F,C, X), where C is a monad in 7, F'is a C-functor in V and X is a C-algebra.
Define B, (F,C, X) by
B,(F,C,X) = FCUX,

with face and degeneracy operators given by

dh=X, \:FC'X - FCT'X
O, =FC 'y | p:CTMX 501X, 0< i< g,
0,=FC"¢ | £:0X - X
s;=FC'n | n:017'X - 011X 0<i<q
A morphism (7, v, f) : (F,C, X) — (F',C’", X") in B(7,V) is a triple consisting of a mor-
phism ¢ : C' — " of monads in 7, a morphism 7 : F' — ¢*F’ of C-functors in V, and a

morphism f : X — ¢*X’ of C-algebras, where *F’ and * X' are as defined in Example
9.5(ii). Define B, (7, v, f) by

B,(m, ¢, f) =myif : FC'X — F'(C")X;

here 9 : FC? — F'(C")? is a natural transformation of functors 7 — V, and w¢?f is
defined by commutativity of the diagram

Foix — s poay

mpql m \meq

Py x DY oy

The following observation will be useful in our applications.
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Lemma 9.7. Let (F,)\) be a C-functor in V and let G : ¥V — V' be any functor. Then
(GF,G\) is a C-functor in V" and

B.(GF,C, X)) =G.B.(F,C, X)
in SV’ for any C-algebra X.

We next show that, as one would expect, B,(C,C, X) can be regarded as a “simplicial
resolution of X.” This special case of our construction was known to Beck [5] and others.
The proofs of the following two propositions consist solely of applications of Lemma 9.2 and
formal verifications of simplicial identities.

Proposition 9.8. Let (C,u,n) be a monad in 7 and let (X,&) € C[7T]. Then €. () :
B.(C,C, X) — X, is a morphism in SC[7] and 7.(n) : X, — B.(C,C, X) is a morphism in
ST such that €.(§) o 7.(n) =1 on X,. Define h; : B,(C,C,X) — B,1(C,C,X), 0<i<g,
by

hi = syndy : CTx — CIP2X n: CITTIX — CPTIX

Then h is a homotopy in S7 from the identity map of B.(C,C, X) to 7.(n)e.(§), and h; o
7,(n) = T411(n) for all i. Thus X, is a strong deformation retract of B,(C,C, X) in ST.

Analogously, if for fixed F' and C we regard B.(F,C,CY) as a functor of Y, then this
functor can be regarded as a “simplicial resolution of F.”

Proposition 9.9. Let (C, pu,n) be a monad in 7, let (F,\) be a C-functor in V, and let
Y € 7. Note that (FY), = F.Y.. Then €,()\) : B.(F,C,CY) — F.Y, and 7.(F7n) :
E.Y. — B.(F,C,CY) are morphisms in SV such that €,(\) o 7,(Fn) = 1 on F.Y,. Define
hi : By(F,C,CY) — B,.i(F,C,CY),0< i< q, by

hi=8,0+08i410 FC"™nodi 10200, : FCI''Y — FCI?Y n:Y — COY.

Then h is a homotopy in SV from 7.(Fn) o €,(A) to the identity map of B,(F,C,CY), and
h; o T,(Fn) = T441(F'm) for all . Thus F.Y, is a strong deformation retract of B,(F,C,CY)
in SV.

The following two theorems result by specializiation of our previous results to Example
9.5. In these theorems, we shall be given a morphism of monads a : C' — D, and the functors
o which assign C-algebras and C-functors to D-algebras and D-functors will be omitted
from the notations.

The reader should think of a as the augmentation € : C' — M of the monad associated to
an A, operad, or as one of the morphisms of monads «,, : C,, — Q"S", or as the composite
of a,,, and m, : C' x C,, — C,,, where C' is the monad associated to an E., operad.

Theorem 9.10. Let o : (C, u,n) — (D, v, () be a morphism of monads in 7.

1. For (X,¢) € C[T], B.(D,C, X) is a simplicial D-algebra and there are natural mor-
phisms of simplicial C-algebras:

By (a,1,1)
—_

X, <9 B (o 0, x) B.(D,C, X);

€«(€) is a strong deformation retraction in S7 with right inverse 7.(n) such that
B.(a,1,1) o7(n) = 1(¢) : Xi — Bi(D,C, X).
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2. For (X,¢') € D[T], there is a natural morphism
e.(&) : B«(D,C, X) — X,

of simplicial D-algebras such that €.(¢') o 7.({) = 1 on X, and such that €.({) o
B.(a,1,1) = €e.(fa) : B.(C,C, X) — X,.

3. For Y € T, there is a strong natural deformation retraction
e«(voDa): B,(D,C,CY)— D.Y,
of simplicial D-algebras with right inverse 7.(Dn).

When D = AY, as in example 9.5, we can “de-lambda” all parts of the theorem above;
applied to «a : C,, — Q™"S", this fact will lead to the n-fold “de-looping” of the C),-spaces.

Theorem 9.11. Let o : C — AY be a morphism of monads in 7, where AY results from
an adjunction ¢ : Homz (X, AY) — Homy (XX, Y).

1. For (X,¢) € C[T], B.(AX,C,C) = A.B.(X,C, X).
2. For Y e V, (AY,A¢(1)) € AX[T] and there is a natural morphism
exp(1) : B.(3,C,AY) = Y,
in SV; .(Ad(1)) = A1) : A,BL(S,C,AY) — ALY..
3. For Y € T, there is a natural strong deformation retraction
exp(a) : Bo(X,C,CY) — 3.Y,
in SV with right inverse 7.(Xn),n: Y — CY.

Remark 9.12. We have described our basic construction in the form most suitable for
the applications. However, as pointed out to me by MacLane, the construction admits a
more aesthetically satisfactory symmetric generalization. If C' is a monad in 7, then a
left C-functor (F,&) from a category U is a functor F : U — T together with a natural
transformation ¢ : CE — F such that £ o up = £ o C¢ and &n = 1; thus it is required that
EX admit a natural structure of C-algebra for X € Y. Now we can define B,(F,C, E), a
functor from U to V where (F, \) is a (right) C-functor in V, by

B.(F,C,E)(X) = B,(F,C, EX)

on objects X € U. Since an object of 7 is equivalent to a functor from the unit category
(one object, one morphism) to 7', our original construction is a special case. In the general
context, B, (F,C, () is a simplicial resolution of the functor F' and B,(C,C, F) is a simplicial
resolution of the functor E.
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10 Monoidal categories

The construction of the previous section takes on a more familiar form when specialized to
monoids in monoidal categories. We discuss this specialization here in preparation for the
study of topological monoids and groups in [I§] and for use in section 15.

A (symmetric) monoidal category (U, ®, %) is a category U together with a bifunctor
® :U xU — U and an object * € U such that ® is associative (and commutative) and *
is a two-sided identity object for @, both up to coherent natural isomorphism; a detailed
definition may be found in MacLane’s paper [16]. For example, a category U with finite
products (and therefore a terminal object *, the product of zero objects) is a symmetric
monoidal category with its product as ®; we shall call such a category Cartesian monoidal.
Observe that if U is a (symmetric or Cartesian) monoidal category, then so is SU, with ®
defined on objects X, Y e SU by (X ®Y), =X, ®Y,, 0, =0, ®0; and s; = 5, ® s;, and
with * = (),.

A monoid (G, i, 1) in a monoidal category U is an object G € U together with morphisms
1:G®G — G and 1 : x — G such that the following diagrams are commutative:

el Nl Ye e Ye! and 005 000 <E 0o«
u®1l J{u \lu/
GoG—=- G G

These diagrams show that (G, u,n) determines a monad in U, which we shall still denote
(G, p,m), by

GX=G®X
pX)=pel:GaEeX -G X
NX)=mel: X~2xX -G X
A left G-object (X&) is an object X € U together wih a map £ : G ® X — X in U such
that {&n = 1 and {(p® 1) = £(1 ® £). Thus a left G-object is precisely a G-algebra. On

the other hand, a right G-object (Y, \) determines a G-functor in U, which we shall still
denote (Y, \), by

YX=Y®X and MX)=A®1:Y®G®X —>Y®X.

Thus a triple (Y, G, X) consisting of a monoid G in Y and right and left G objects Y and
X naturally determines an object (Y, G, X) of B(U,U), and B.(Y,G, X) is a well-defined

simplicial object in U. Of course,
B,(Y.G,.X)=YGX=YRGE®- - ®G®X,q factors G,
with the familiar face and degeneracy operators
D=A®11,0,=1"u17"if0<i<q,
0, =1'®¢s;=1""@ne 1M "if0<i<q

Let us write A(U) for the evident category with objects (Y, G, X)) as above. If U is symmetric
and if (Y, G, X) and (Y',G’, X") are objects of A(U), then, with the obvious structure maps,
YeY GG, X ®X')is also an object of A(U), and we have the following lemma.
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Lemma 10.1. Let U be a symmetric monoidal category and let (Y, G, X) and (Y',G', X”)
be objects of A(U). Then there is a commutative and associative natural isomorphism

B.(Y,G, X)) B,(Y G, X'~ B.(Y V' GG, X ® X'
of simplicial objects in U.

Proof. Since U is symmetric, we have shuffle isomorphisms
(XGF@Y)(X'G@"Y )~ XX 9 (GRG)IeY Y,
and these are trivially seen to commute with the 9; and s;. O

Now suppose that U is a monoidal category which is also Abelian. Then objects of SU
determine underlying chain complexes in ¢ with differential

d=> (-1)'0;

moreover, if A : f = g is a homotopy in SU in the categorical sense of Definition 9.1, then
s =>_(—1)'h; is a chain homotopy from f to g in the usual sense, ds + sd = f — g, by direct
calculation. Therefore, regarding B, (Y, G, X) as a chain complex in U, we recover the usual
unnormalized two-sided bar constructions, together with their contracting homotopies when
X =G or Y =(G. To normalize, we quotient out the sub-complex generated by the images
of the degeneracies. Of course, if U is the category of (graded) modules over a commutative
ring R, with ® the usual tensor product over R and x = R, then a monoid G in 7 is an
R-algebra and left and right G-objects are just left and right G-modules.

When U is our Cartesian monoidal category of (unbased) topological spaces, geometric
realization applied to the simplicial spaces B,(Y, G, X) will yield a complete theory of asso-
ciated fibrations to principal G-fibrations for topological monoids G. The following auxiliary
categorical observations, which mimic the comparison in [9, p. 189] between “homoge-
neous” and “inhomogeneous” resolutions, will be useful in the specialization of this theory
to topological groups and will be needed in section 15.

For the remainder of this section, we assume given a fixed Cartesian monoidal category
U. For X € U, let € denote the unique map X — % and let A : X — X x X denote the
diagonal map. A group (G, u,n,x) in U is a monoid (G, p,n) in U together with a map
X : G — G in U such that the following diagram commutes:

GxG—2X  _axG
AT lu
€ n
G G G

Construction 10.2. Define a functor D, : U — SU by letting
D, X = X9
with face and degeneracy operators given by

O =1"xex 1770 X0 5 X x % x X070~ X1
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and
s; =18 x A x 1970 X9t  xat+2,

For amap f : X — Y in U, define D,f = f7"'. Observe that D, preserves products in
the sense that the shuffle isomorphisms between X941 x Y41 and (X x Y)4*! define an
associative and commutative natural isomorphism between D, X x D.Y and D.(X xY) in
SU. Therefore, if (G, u,n, x) is a group in U, then (D,G, D.u, D,n, D,x) is a group in SU
and if (X&) is a left G-object, then (D, X, D,£) is a left D,G-object. By Lemma 9.2, if
Ty X — X @+l ig the iterated diagonal, then 7, : G, — D,G is a morphism of groups in
SU. In particular, left and right D,G-objects determine left and right G,-objects (that is,
simplicial G-objects) via 7.

Proposition 10.3. Let (G, i, n, x) be a group in U. Define
a, : B.(x,G,G) — D,G

by letting o, : G — G be the map whose i-th coordinate is €1 X pg40-4, 1 <@ < g+1,
where ;1 G — G is the iterated product (u; =1, s = p, j = (1 x pj—q) if j > 2). Then

o, is an isomorphism of simplicial right G-objects; aq_l is the map whose i-th coordinate is

el xu(lxy)xeif1<i<qgandise! x 1ifi=q+ 1.

Proof. Of course, the proof consists of easy diagram chases, but some readers may prefer to
see formulas. Thus suppose that objects of U have underlying sets and write elements of
B,(*,G,G) and of D,G in the respective forms

[91,---,9q]9q+1 and (91,-~79q+1)79i€G-

Write (g, 9') = g¢’ and x(g) = g~'. Then we have

aQ([gla ce 7gq]gq+1> = (9192 r9q+1,92 7 Gq+15 - - -5 9q9q+1, gq—H)

and
a7 (g1, 9gr1) = [9195 1 9205 - -+ 9a9 )91

Visibly these are inverse functions. For g € GG, we have

([glv"'agq]gq-‘rl)g = [gla"'agq]gq—‘rlg and (91;~-agq+1)g - (9197-"79q+1g)a

and o and o~ ! are thus visibly G-equivariant; they commute with the face and degeneracy

operators by similar inspections. O

In line with Proposition 9.9 and the previous result we have the following observation.

Proposition 10.4. Let X € U and let ) : * — X be any map in . Define h; : Dy(X) —
D, +1(X), 0 <i < g, by the formula

hi = sh(n x 1719, + X4 — X,
Then h is a strong deformation retraction of D,(X) onto (x),.

Proof. Since * is a terminal object in U, en =1 on * and €, o 7,.(n) = 1 on (%),. It is trivial
to verify that h is a homotopy from 1 to 7.(n) o€, such that h; o7, (1) = 7,41(n) for alli. O
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11 Geometric realization of simplicial spaces

We shall use the technique of geometric realization of simplicial spaces to transfer the cat-
egorical constructions of the previous section into constructions of topological spaces. This
technique is an exceedingly natural one and has long been implicitly used in classifying space
constructions. Segal [27] appear to have been the first to make the use of this procedure
explicit.

In this section and the next, we shall prove a variety of statements to the effect that ge-
ometric realization preserves structure; thus we prove here that realization preserves cell
structure, products (hence homotopies, groups, etc.), connectivity, and weak homotopy
equivalences. Base-points are irrelevant in this section, hence we work in the category U
of compactly generated Hausdorff spaces.

Let A, denote the standard topological g-simplex

Ay ={(to,. .. t)0<t; <1 t; =1} CRT,
Define 9, : Aj_1 — Ay and 0; : Ay — Ay for 0 <i < ¢ by
5i(t07 - ,tq_l) = (to, ey tii1, 00, .. 7tq_1>
and
oi(to; s tgy1) = (to, .- s tict, ti +tign, tiga, - o tgq1)
Definition 11.1. Let X € SU. Define the geometric realization of X, denoted |X|, as

follows. Let X = [,50 Xq X Ay, where X, x Ay has the product topology (in ¢). Define an
equivalence relation ~ on X by

(O, u) = (x,0;u) for v € Xy, u € Ay,

(siz,u) = (z,0;u) for x € Xy, u € Ayiq.

As a set, |X| = X/(=). Let F,|X| denote the image of [[Z,X; x 4, in |X| and give
F,|X| the quotient topology. Then F,|X]| is a closed subset of F,;1]|X]|, and |X| is given the
topology of the union of the F,|X|. The class of (z,u) € X in |X| will be denoted by |z, u|.
If f: X — X'isamap in SU, define |f] : | X| — | X'| by |f]|z,u| = |f(x),u|. Observe that

if each f, is an inclusion (resp., surjection), then |f| is an inclusion (resp., surjection).

Of course, if X is a simplicial set, then the classical geometric realization of X, due to
Milnor, coincides with the geometric realization of X regarded as a discrete simplicial space.
Further, if X denotes the underlying simplicial set of a simplicial space X, then |X| = |X]|
as sets and therefore any argument concerning the set theoretical nature of ]X' | applies
automatically to |X|. The following definition will aid in the analysis of the topological
properties of | X|.

Definition 11.2. Let X € SU. Define sX, = [Jj_, 5;X; C X441 We say that X is proper
if each (X,41,5X,) is a strong NDR-pair and that X is strictly proper if, in addition, each
(Xg41,56X,), 0 < k < g, is an NDR-pair via a homotopy h : I x X,41 — X1 such that

k—1 k—1
h (I >< U stq) - U 5, X,
=0 =0
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A point (z,u) € X, x A, is said to be non-degenerate if z is non-degenerate and u is
interior (or if ¢ = 0).

Lemma 11.3. Let X € SU. Then each point of X is equivalent to a unique non-degenerate
point. If X is proper, then each (F,|X|, F,—1|X]|) is an NDR-pair, the realization |X| is in
U, and F,|X|/F,_1|X| is homeomorphic to S9(X,/sX,_1).

Proof. Define A : X — X and p: X — X by the formulas

Mz, u) = (y, 05, - 0j,u) (10)
if v = s, -+ 55y where y is non-degenerate and 0 < j; < --- < j,; and
p(x,u) = (0 - -~ 0;,x,v) (11)

if w = 0;, - - - 0;;v where v is interior and 0 <4y < --- < i,. By [19, 14.2], the composite Ao p
carries each point of X into the unique equivalent non-degenerate point. Now

Fy | X| = Fya | X| = (Xy = sXg-1) X (A — 0A).

If X is proper, then (X, x A,, X, x 0A, U sX,_1 x A;) is an NDR-pair by Lemma A.3 and
| X| €U by [29, 9.2 and 9.4]. There is an evident one-to-one continuous map

Fq|X|/Fq—1|X| = (Xq X Aq)/(Xq X 0AgUS5Xg 1 X Aq) - Sq(Xq/SXq—l)

determined by X, — X,/sX, 1 and any homeomorphism of pairs (A, 0A,) — (19,019);
the continuity of the inverse map follows easily from [29] 4.4]. ]

As an immediate consequence of the lemma, we have the following proposition.

Proposition 11.4. Let X be a cellular object of SU, in the sense that each X, is a
CW-complex and each 0; and s; is a cellular map. Then |X| is a CW-complex with one
(n+ q)-cell for each n-cell of X, —sX,_1. Moreover, if f : X — X' is a cellular map between
cellular objects of SU (each f, is cellular), then |f| is cellular.

As in the case of simplicial sets, geometric realization is a product-preserving functor
since we are working in U.

Theorem 11.5. For X, Y € U, the map |m| X |m| : |[X X Y| — |X| x |Y] is a natural
homeomorphism. Its inverse ( is commutative and associative and is cellular if X and Y are
cellular.

Proof. We recall the definition of ¢, which is based on the standard triangulation of A, x A,.
Consider points

u = (to,...,tp) € Apand v = (t;,...,1,) € A,.
Define u™ = 377" (t;, 0 <m < p, and v" = 377 (7, 0 <n < g Let w® <--- <wPt! be
the sequence obtained by ordering the elements of {u™} U {v"} and define w € A,,, by

w=(tg,...,th,.,), where tj = w" —w* " w™ =0 and W’ =1.
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Let ¢y < --- < i, and j; < --- < j, be disjoint sequences (not uniquely determined) such
that w’s € {u,,} and w" € {v,}. Then

u=0; o,wand v =0 0;W.

If x € X, and y € Y, define

C(|$vu|7 |y7'U|) = |(Siq TSy Sy Sj1y)aw|-

It is easy to verify that ¢ is well-defined and inverse to |pi| X |ps| by use of Lemma 11.3
(compare [19, 14.3]), and the commutativity and associativity of ¢ follow formally from the
commutativity and associativity of (7!. The continuity of ¢, and the cellularity statement,
follow from the commutative diagrams:

Xy X Yy x Ay x Ay — 2P X, x Ay x YIx Ay — ="~ F|X| x F|Y]|

] l¢

X, x X, x K(1,7) Foigl X x Y|

stx 87 xafi,g)

Xptq X Ypig X Bpiq

Here K (i,j) denotes the set of points of A, x A, which can determine given sequences
i ={i,} and j = {j,} as above, s' = s5;, ---s;, and & =5, --- 55, a(i, j)(u,v) = w, and the
7 are quotient maps. O

Corollary 11.6. Let f : X — Band p:Y — B be maps in SU. Then |X xBY| is naturally
homeomorphic to | X| x!B Y|, where (X xBY), = {(z,y)|f,(x) = p,(y)} C X, x Y, gives
the fibre product in SU.

Proof. An easy verification shows that the restriction of ¢ to |X| x!Bl |Y| takes values in
| X xB Y| and is inverse to

1] % [p2l « |X xP Y| — [X] <Py,
O

Corollary 11.7. The geometric realization of a simplicial topological monoid (or group) G
is a topological monoid (or group) and is Abelian if G is Abelian.

There are two obvious notions of homotopy in the category SU, namely that of a simplicial
map [, x X — Y and that given categorically in Definition 9.1. We now show that geometric
realization preserves both types of homotopy.

Lemma 11.8. Let X € Y. Then |X,| may be identified with X.
Proof. X = Fy|X.| = | X.] since all simplices of X, = X are degenerate for ¢ > 0. O

Corollary 11.9. If h : [, x X — Y is a map in SU and if h; : X — Y is defined by

ig() = h(i, ) for & € X, and i = 0 or i = 1, then the composite I x |X| = |1, x X| £ |V
is a homotopy between |hg| and |hy].
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Proof. For t € I, |h|C(t,|z,u|) = |h(t,z),u| by the definition of . ]

Corollary 11.10. Let h : f = g be a homotopy between maps f,g : X — Y in SU, as
defined in Definition 9.1. Then A determines a homotopy h : I x | X| — |Y| between |f| and

lg].

Proof. Let A[1] denote the standard simplicial 1-simplex [19, p. 14], regarded as a discrete
simplicial space. By [19, Proposition 6.2, p.16], if ¢; is the fundamental 1-simplex in A[l]
and we define H : A[l] x X — Y by

Hy(Sg—1 " 8iy18i—1 -~ Soi1, @) = Oip1hi(2), x € X,

then H is a map of simplicial sets, and therefore also of simplicial spaces (since the h; and
0; are continuous). Now |A[1]] is homeomorphic to I and the composite

|H|

Ix X — |AL]] x | X| 5 AL x X| 25y

gives the desired homotopy & between |f| and |g|. O

We next relate the connectivity of the space X, to the connectivity of | X|.

Lemma 11.11. For X € SU, 7p|X| = m(Xo)/(~), where ~ is the equivalence relation
generated by [0pz] ~ [01z] for x € X;; here [y| denotes the path component of a point
Y € Xo.

Proof. X determines a simplicial set my(X) with ¢g-simplices the components of X, and, by
[19, p. 29 and p. 65|, our assertion is that mo| X| = mo|mo(X)|. If (z,u) € Xq x Ay, ¢ > 0,
and if f: I — A, is a path connecting u to the point Jy?4A, then the path f(t) = |z, f(t)|
in | X| connects |z, u| to a point of Xy = Fy|X|. If z € Xy, then g(t) = |z, (t,1 —t)| is a path
in | X| connecting dpx to dyz. The result follows easily. O

Theorem 11.12. Fix n > 0. If X is a strictly proper simplicial space such that X, is
(n — q)-connected for all ¢ < n, then |X| is n-connected.

Proof. For n = 0, this follows from the lemma. For n = 1, we may assume that X, is
connected for ¢ > 2, since otherwise we can throw away those components of X, whose
intersection with the simplicial subspace of X generated by Xy and X; is empty without
changing the fundamental group of | X|. Then |2, X| is weakly homotopy equivalent to Q| X|
by Theorem 12.3 below and therefore | X| is simply connected since |2, X]| is connected. (For
technical reasons, this argument does not iterate.) Now assume that n > 2. By the Hurewicz
theorem, it suffices to prove that H;(X) = 0 for i < n. We claim that H;F,|X| =0 fori <n
and all ¢ > 0. Fy|X| = X is n-connected, and we assume inductively that H;(F, 1| X]|) =0
for i < n. Since (F,|X|, F,_1|X|) is an NDR-pair, we will have that H;(F,|X|) = 0 for i < n
provided that H;(F,|X|/F,_1|X|) = 0 for i < n. Since F,|X|/F,-1|X| is homeomorphic
to S9(X,/sX, 1), it suffices to prove that H;(X,/sX, 1) = 0 for 1 < n — ¢; since X, is
(n — q)-connected and (X, sX,—1) is an NDR-pair, this in turn will follow if we can prove
that H;(sX, 1) = 0 for i <n —¢. We shall in fact show that

k
H, <USjX‘11> =0fori<n+1-¢0<k<gq

J=0
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We may assume, as part of our inductive hypothesis on ¢, that

k
I:Ii (Ustq_g) =0fori<n+2—-—qgand 0<k<q—1.
5=0

Observe that s; : X;—1 — 5;X,-1 and 9; : 5;X;_1 — X1 are inverse homeomorphisms, 0 <
j < q. Thus ﬁi(stq_l) — 0 for i < n+1—¢. Assume inductively that H; (Uf;é stq_1> =0
for s <n+1—¢q. Since X is strictly proper, the excision map

k—1 k—1 k
(U Sjqula Squ,I N U SjXq1> — (U Sjquh Squ1>
j=0 j=0

Jj=0

is a map between NDR-pairs, and we therefore have the Mayer-Vietoris exact sequence

k—1 k
C— HZ (U Sjqu) ) HZ'<S]€Xq,1) — Hl (U SjXq1>

§=0 §=0
k—1
— i—1 <Sk-Xq1 N U S]'Xq1> —> ..
§=0
If spy = sjz for j < k, then y = Opy15;2 = 5,;0k2; since s;s; = S;5,_1, it follows that
k—1 k—1
Squ_l N U SjXq—l = U SijXq_Q
§=0 §=0

LRl k—1 . . Sy
Now si : UFO 5;Xq—2 — Uj:() 5;5;X4—2 is a homeomorphism, with inverse d;. By the

inductive hypothesis and the above exact sequence, H, <U?:0 stq,1> =0forl1<n+1-—g,

as required. N

Theorem 11.13. Let f : X — Y be a simplicial map between strictly proper simplicial
spaces. Assume that each f, is a weak homotopy equivalence and that either |X| and |Y|
are simply connected or that |f| is an H-map between connected H-spaces. Then |f] is a
weak homotopy equivalence.

Proof. By the Whitehead theorem, it suffices to prove that |f| induces an isomorphism on
integral homology. In outline, the proof is the same as that of the previous theorem. One
shows that F,|f| is a homology isomorphism by induction on ¢ and the same sequence of
reductions as was used in the previous proof, together with the naturality of Mayer-Vietoris
sequences and the five lemma. O

We complete this section by recalling a result due to Segal [27] on the spectral sequence
obtained from the homology exact couple with respect to an arbitrary homology theory k,
of the filtered space |X|, where X is a proper simplicial space. Observe that k,(X) is a
simplicial Abelian group for each fixed ¢; thus, regarding k,(X) as a chain complex with
d = >2(=1)"(0;)«, there is a well-defined homology functor H.k.(X) such that H,k,(X) is
the homology of k,(X) in degree p. By [19, 22.3], H.k,(X) is equal to the homology of the
normalized chain complex of k,(X), and the p-chains of the latter chain complex are easily
seen to be isomorphic to ky(X,, sX, 1).
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Theorem 11.14. Let X be a proper simplicial space and let k, be a homology theory. Then
E2 X = Hpky(X) in the spectral sequence {E"X} derived from the k, exact couple of the
filtered space |X|.

Proof. E) X = kpyq(F,|X|, F,—1|X]), and d" is the boundary operator of the triple
(Ep| X, Fpa| X, By XT).
The result follows from Lemma 11.3 and the following commutative diagram:

S¥
kq(X5p)

Fprg(Xp X A, X, X Ay) - kp+q(Fp| X1, Fy1] XT)

0 l@

kprg1 (X, X Ay, X g X A)) ———kpy g1 (Fpor | X[, Fpoa| X))
S(=1) S (=1)F(Ixas)s |~

P o Fpra1(Xp X Ay, X, X A})

B(—1) (1x6:)7 |~

P @Sf_l V4 A T
i=0 kq(Xp) - EBZ‘:O kp+q—1(Xp X Ap—h Xp X Ap—l) ’
v \Y%

5Pt :
ky(Xp-1) —— pra—1(Xp—1 X Ap1, Xp1 X Apy)

Here A, = 0A, is the (p—1)-skeleton of A, and A, is the (p—2)-skeleton. AL = U i 05851,
a; is the inclusion (Ap, Ap) — (A, AY), and Y 5(—1)"(1 X a;), is an isomorphism by the
Mayer-Vietoris sequence of the p+1 pairs (X, x A,, X, x Al). The maps 0; : (Ap—1,A,1) —
(A,, A;)) are clearly relative homeomorphisms. On the left, the maps are

(Z(—ni) (2) = (x,—x, ..., (=1)Pz), 2 € ky(X,),
and

p
V(@o, .y ap) = Y 0(w), 2 € ky(X,).
=0

(The other map V is defined similarly, from (9; x 1),, and the maps 7 are the evident quotient
maps.) Now the upper left rectangle commute by a check of signs, the upper right and lower
left rectangles commutes by the naturality of d and of S, and the triangle commutes by the
face identifications used in the definition of the realization functor. n

Of course, {E"X} is a right half-plane spectral sequence (E; X = 0 if p < 0). The
convergence of such spectral sequences is discussed in [6]. The following observation is
useful in the study of products and coproducts in {E" X }.

Lemma 11.15. For X,Y € SU, ¢ : | X| x |Y| — |X x Y| is filtration preserving, and the
diagonal map A : | X| — |X| x |X| is naturally homotopic to a filtration preserving map.
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Proof. ((F,|X| x Fy|X|) C Fpy|X x Y| by the definition of ¢ in Theorem 11.5. For the
second statement, define g; : A, — A, for i = 0 and 1 and all n > 0 as follows. Let
u = (to,...,tn) € A,. Let p be the least integer such that o+ --- +1¢, > % and define

p—1
go(U) = (Sn cee 5p+1 <2t0, . ,2tp,1, 1-— Z2tl>
=0

and
gi(u) = oF (1 - > 2ti,2tp+1,...,2tn>
1=p+1

Then g; induces G; : | X| — |X]| such that G; is homotopic to the identity map; thus A is
homotopic to the filtration preserving map (G x Gy) - A. H
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12 Geometric Realization and S,, (., and (),

In this section, we investigate the behavior of geometric realization with respect to the
functors S,, C,, and €2, defined on 87, where 7 is our category of based spaces. For
X € 87, we give |X| the base-point *x € Xy = Fy|X|; if X is proper, then it follows from
Lemma 11.3 that * is non-degenerate and that | X| € 7.

Proposition 12.1. Realization commutes with suspension in the sense that there is a natural
homeomorphism 7 : |S, X | — S|X| for X € ST.

Proof. Define 7|[z, s|,u| = [|z,u|,s] for € X, s € I, and u € A,. It is trivial to verify that
7 is well-defined and continuous, with continuous inverse. O]

The following pleasant result is more suprising. Its validity is what makes the use of
simplicial spaces a sensible technique for the study of C-spaces.

Theorem 12.2. Let C be any operad and let C' be its associated monad in 7. Then there is
a natural homeomorphism v : |C, X| — C|X]| for X € ST such that the following diagrams
are commutative:

s 1CX]and o2y = o x|

x1” l | J»

i X | ——C|x|
Clx|

If (X,€) € SC[T], then (|X]|,|¢|v™!) € C[T] and geometric realization therefore defines a
functor SC[T] — C[T].

Proof. Consider a point |[c,z1,...,%;],u| € |C.X|, where ¢ € C(j), z; € X,, and u € A,.
Define v by the formula

v|[e,x, ..., xil,ul = e, |z, ul, ..o |z, ul]. (12)

Clearly v is compatible with the equivalence and base-point identifications used to define
CX, and with the face and degeneracy identifications used in the definition of the realization
functor. For the latter, observe that

C@Z’[C, L1y ,,Tj] = [C, 81-:1:1, e ,ai.flfj]

and similarly for the Cs;. In view of this relationship between the iterated products X7 and
CX, we can define v~! by

Vﬁl[q |.Z'1,U1‘, ey ‘:CjaujH = HC, Yiy- - 7yj]7U’7 (13>
where the iteration (; : | X|? — |X7| of ¢ is given by

Gllwrswls sz wl) = [y y5), 0]
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By the associativity of ¢, ¢; is unambiguous. By the commutativity of ¢, v~ is compatible
with the equivariance identifications, and its compatibility with the remaining identifications
is evident. The continuity of v~* follows from that of (;, and it is clear from Theorem 11.5
that v and v~! are indeed inverse functions. The commutativity of the stated diagrams is
verified by an easy direct calculation from (2) and the formulas in Construction 2.4, and
these diagrams, together with trivial formal diagram chases, imply that (| X|, [¢|v™1) € C[T]
if (X,¢) € SC[T]. O

The relationship between |Q2,X| and |X]| is more delicate. Indeed, if X is a discrete
simplicial space, then each QX, = % and therefore [, X| = *, whereas Q|X| is obviously
non-trivial in general.

Theorem 12.3. For X € 87, |P.X| is contractible and there are natural maps 4 and ~
such that the following diagram commutes:

Q. X] = |P.X] 2L x|

(R

QIX| — P|X| = |X]|

Moreover, if X is proper and each X, is connected, then |p,| is a quasi-fibration with fibre
|2, X| and therefore v : |2, X| — Q| X]| is a weak homotopy equivalence.

Proof. The standard contracting homotopy on PY,Y € 7T, is natural in Y'; therefore, when
applied to each PX,, this homotopy defines a simplicial contracting homotopy 1. x P,.X —
P.X. Thus |P,X]| is contractible by Corollary 11.9. For f € PX,, u € A,, and t € I, define

7 by the formula
I ul(t) = [£(E), ul. (14)
It is trivial to verify that 7 is a well-defined continuous maps which restricts to an inclusion
v |LX| — Q|X| and satisfies p7 = |p.|. The last statement will follow from Lemma 12.6
and Theorem 12.7 below.
Before completing the proof of the theorem above, we obtain an important consistency
statement which interrelates our previous three results. O

Theorem 12.4. For X € 87, the iteration 4" : |Q7X| — Q"|X| of v is a morphism of
C,-algebras, and the following diagram is commutative:

|Ca X | —— Cn| X

S

jQrsnx| L grgn x|

Proof. We must prove that the following diagram commutes:

Cpy™

Cnl€2 X Crf"| X |

00|

|Con 2 X | 1 | X | = Q[ X
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and it clearly suffices to prove the commutativity of the diagram obtained by replacing v~*
by v. Thus consider
y=|lc, f1,..., fjl,u| € |Cr 82 X]|, where

c = (c1,....¢cj;) € Colg), fi € Q" Xy, and u € A,. Let v € I". If v & Uc;(J"), then
Y Ons| (y) (V) = % = 0, 0 C,y" o v(y)(v), and if v = ¢;(v'), then, by Theorem 5.1 and the
definitions of v and ~,

QnoCn’ynOI/(y>(U) = en[c,’yn|f17u‘,...,’y"|fj,uH(’U)
= "[fi,ul(v') = [fi(v), ul
= |Oulc, fi. .-, fil(v), u] = 7" [0ns| () (v).

Thus " is indeed a morphism of C),-algebras. Since «,, is defined to be the composite
0, o Cynp, the commutativity of the following diagram gives that o, o v = Q"1™ 0 4™ o |l

Cn*nn*l \LCTLH"*'
Cp Q™1™

|G 2SI X | — L= O, | S X | C,Qn|Srx | ST oL0nse X

|6 J{ l9n l%
,YTL

C’n y n

Q1S X]| Qn|SrX | — T Qngn X
Here Q"7 0 4™ o |nps| = m + | X | — Q™S™| X| by an easy explicit calculation. O

In order to complete the proof of Theorem 12.3, we shall prove a general result relating
geometric realization to fibrations. We require some notations and a definition.

For B € U, let 11B denote the space of all paths [ — B. Foramapp: F — B in U,
define

I'(p) = {(e, f)lp(e) = f(0)} C £ x IIB.

Define 7 : IIE — T'(p) by m(g) = (9(0),pg). Recall that p is a Hurewicz fibration if and
only if there exists a lifting function A : I'(p) — IIE such that 7A = 1. In the applications,
A is usually “homotopy associative” in the sense that if f, g € IIB satisfy f(1) = ¢(0), then
the two maps p~' f(0) — p~'g(1) defined respectively by sending e to A(A(e, f)(1),g)(1) or
to A(e, gf)(1) are homotopic.

Definition 12.5. Let p : £ — B be a map in SU. Observe that if 7, = 7 : IIE, — I'(p,),
then 7, : II,E — I'.(p) is a map in SU. We say that p is a simplicial Hurewicz fibration
if there exists a map A, : I'y(p) — IL.E such that m.A\, = 1 and such that the following
associativity condition is satisfied.

1. If f,g € IIB, satisty f(1) = ¢(0) and if =, and y, denote the discrete simplial subspaces
of B generated by the g-simplices © = f(0) and y = g(1), then there exists a simplicial
homotopy H : I, x p~'(z.) — p~(y.) such that for any i-simplex e of p~!(z,), with
pi(e) = ~va for a composite 7 of face and degeneracy operators (v exists by the definition
of z,),

H;(0,e) = Mi(Aie, vf£)(1),v9)(1)



12. GEOMETRIC REALIZATION AND S,, C,, AND Q, 64

and

Hi(1,e) = Ai(e,v(gf))(1).
We observe that the following statements, which shall be used in conjunction with (i),
are valid in any simplicial Hurewicz fibration; in (ii) and (iii), e denotes an i-simplex
of p~(z,) with p(e) = v, as in (i).

2. It h: I — 1IB, satisfies h(t)(0) = = and h(t)(1) = y for all ¢t € I, then the formula
H;(t,e) = \i(e,vh(t))(1) defines a simplicial homotopy H : I, x p~(z.) — p~(y.)-

3. If ¢(x) : I — B, is the constant path at = € B,, then the formula H,(t,e) =
Ai(e,ve())(t) defines a simplicial homotopy H : I, x p~*(z,) — p~'(z,) which starts
at the identity map of p~*(z,).

The standard natural constructions of Hurewicz fibrations apply simplicially; the only
example that we shall need is the path space fibration.

Lemma 12.6. For X € 87, p, : P.X — X is a simplicial Hurewicz fibration.

Proof. Choose a retraction r: I x I — I x 1U0 x I such that

r(s,0) = (0,0) and 7(1,t) = {(07%) ,(l)

2t-1,1) ,
For Y € T and p: PY — Y, define A : I'(p) — IIPY by the formula
e(u) ifr(s,t) = (0,u)
fv) ifr(s,t) = (v,1)

where e € PY, f € IIY, and e(1) = f(0). Clearly A is a lifting function and A(e, f)(1) = fe
is the standard product of paths. Thus if f,g € IIY and f(1) = ¢(0), then

AA(e, [)(1),9)(1) = g(fe) and A(e,gf)(1) = (gf)e

Now define A\, = A : I'(p,) — IIPX,. By the naturality of A, A, is simplicial, and clearly
mA« = 1. Condition(i) of Definition 12.5 is satisfied since the evident homotopies defined
for each fixed v are easily verified to fit together to define a simplicial homotopy. O

Theorem 12.7. Let p : E — B be a simplicial Hurewicz fibration, in §7, and let F' =
p~'(x). Assume that B is proper and each B, is connected. Then |p| : |E| — |B| is a
quasi-fibration with fibre | F|.

Proof. We first define explicit lifting functions for the restrictions of o, --- 0, : Agy, — A,
to the inverse image of A, — dA,. We shall define

Vjrwr * (05 -+ 05.) = T(ABgsr)
by the inductive formula (u € Ay, f € [I(A, — 0A,),0j, - - -0, u= f(0)):

Yire-ga (uv f) = Yjr (uv Yir—1-51 (Ujruv f))>
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and it remains to define 7; : I'(0;) — II(Ayy1). Thus let (u, f) € I'(o;). Let f(s) =
(to(s), ..., te(s)) € A, Since oj(u) = £(0),

U= (tO(O)v e 7tj*1(0>7 CLij(O), (1 - a)tj<0)>tj+1<0)7 e 7ttI(O))

for some a, 0 < a <1 (a is well-defined since t;(0) > 0). Define ~; by

75w F)(8) = (to(s), s tj-a(s), aty(s), (1 = a)t(s),tj1(5), - s 2q(s)).

Visibly, v;(u, f)(0) = w and o;7;(u, f) = f, hence 7y; = 1. Corresponding to the relation
0,05 = 0;_10; for i < j, we have 7;; = 7;-1, by an easy verification. This implies that

O 3Yjrj1 (u7 f) = Yip—1-i1 (Uju7 f) if 8jSip_1 "8y = Sj. """ Sy (15)

If a =0 or a=1 above, then v;(u, f)(s) € I9; or Imd; 1, and it is an easy matter to verify
the formula

OV jperin (U ) = Vi in (050, ) i Oj85, -+ 83, = 85, -+ 85, (16)

We can now show that |p| : [p|'(V) — V is a Hurewicz fibration for any open subset
V of Fy|B| — Fy_1|B|, where, if ¢ = 0, F_1|B| = (). We must define a lifting function
A : T(|p]) — |p|=" (V). Of course, by Lemma 11.3, we have that

IV C II(B, — sB,_1) x II(A, — OA,).

Let (le,wl, (f', f")) € T'|p|, where (e,w) € E 4, XAy, is non-degenerate, f': I — B,—sB,_1,
and f”: 1 — A, — 0A,. Necessarily, we have

qurr(e) = Sj, Sjlfl(0>7 where 04y * " 05,W = f//(O)

(as in the proof of Lemma 11.3). Define A, be the formula

Ag(leswl, (' F) @) = Dger(e i, - s, )0, Yoo (w, f1)(D)]. (17)

Since A, is simplicial, formulas (1) and (2) show that ), respects the equivalence relation
used to define | E|, and it follows easily that A, is continuous. Clearly ), = 1, as required.
We have now verified (i) of Lemma 7.2, and 1t remains to verify (ii) of that lemma. Fix
q > 0. Let (k,v) be the representation of

(By x Ag,8Bg_1 x Ay U By x 04A,)

as a strong NDR-pair obtained by use of Lemma A.3 from any given representations of
(By, sBy—1) and (A, 0A,) as strong NDR-pairs. Define U C F,|B| to be the union of F|,_;|B|
and the image of v™*[0,1) under the evident map B, x A, — F,|B|. Define h; : U — U by
hi(xz) = x for x € F,_1|B| and by

hi|b, u| = |k (b, w)| for (b,u) € By x A, with v(b,u) < 1. (18)
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Then h is a strong deformation retraction of U onto F,_;|B|. To lift h, let (e,w) € E,yy X
A+, be a typical non-degenerate point such that |e,w| € |p|~!(U) where, as in Lemma 11.3
Pmir(€) =sj, - s;band u =0y, ---0j,w

determines the non-degenerate representative (b, u) of |p|(|e,w|). Here m < ¢ and we define
H by the formulas

H(tv |€7 w’) = |>‘m+7“(€7 Sjp v Sj1c(b))(t)7 w’ (19)
if m < ¢, where ¢(b) : I — B,, is the constant path at b; and

H(t, e, wl) = [Agir(e; sj, - 550 ) (), Viea (w, f7) (1)) (20)

if m = ¢, where f': I — B, and f"”: 1 — A, are the paths defined by f'(t) = m1k:(b, u) and
f"(t) = maki(b,u) (here m; and my are the projections of B, x A, onto its factors).

Here the v;,..;, can be applied to the paths f” in A, (even though f” does not have
image in A, — 0A,) because if f”(0) € 0A,, then f” is the constant path at f”(0) and the
definition above of v;,...;, (w, f”) is therefore unambiguous. It is straightforward to verify that
H is well-defined and continuous (note that v;,...;, (w, c(u)) = c(w)), and that H covers h and
deforms [p|~!(U) into |p|~*F,—1|B|. It remains to verify that H; : [p|~!(z) — [p| 'hi(z) is a
weak homotopy equivalence for each x € U. If x € F,_;|B|, then hy(z) = z and H is itself a
homotopy 1 2 H; : |p|~!(x) — |p| ' (z). Thus assume that = ¢ F,_;|B|. In the notation of
(8), let x = |b,u| =|f'(0), f"(0)|, so that hy(x) = |f'(1), f"(1)]. Let g : I — B, be any path
connecting g(0) = £/(0) to g(1) = *, and let ¢ = go f'"" : I — B,, where f''(t) = f'(1—1);
¢’ is then a path connecting f’(1) to . We shall first construct a homotopy equivalence
f(u) : |p|~t|b,u| — |F| for any path f: I — B, such that f(0) = b and f(1) = * and for
any v € A,. We shall then complete the proof by showing that the following diagram is
homotopy commutative.

H;

lpI~ (@) = Ip|~1f(0), f7(0)] Pl @, SO = 1pl " () (21)

3" (0)) 7 )
|F|

Thus fix f: I — B, with f(0) = b and f(1) = *. Let Alg] denote the standard simplicial
g-simplex [I9] p. 14] regarded as a discrete simplicial space, and let b Alg] — B be
the unique simplicial map such that b(i,) = b, where i, (A, in [19]) is the fundamental
g-simplex in A[g]. Let E(b) denote the simplicial fibre product £ x? A[q] of p and b. Define
f« 1 E(b) — F x Alg] by

fi(e/yiq) = ()\Z(ev’}/f)(l)’ 'Yiq),

where e € Ej; satisfies p;(e) = vb = ~b(i,) for some composite v of face and degeneracy
operators. Define f71: F x Alg] — E(b) by

It (e,vig) = Nile,vfH(1),7i,), e € Fy and vi, € Ajq].
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By (i), (ii), and (iii) of Definition 11.5, f, and f' are inverse fibre homotopy equivalences
over Alg]. Therefore, by Corollary 11.6, the following composite is a fibre homotopy equiv-
alence over |Alg]| = Ay

1B <BL A, S 1 E®)] L P x Al 22 oA,

Fix u € Ay, u = |ig,ul. In |B| x!Bl A, p5'(u) may be identified with |p|~!|b,u|, and the
above composite restricts to give the desired homotopy equivalence f(u) : |p|~|b,u| — |F.
Finally, consider the diagram (9). Let |e,w| € |p|~*(z) be as described above formula (7).
We then have

a(f"(0)]e,w| = [Agsr(e, 85, -+ 55,9) (1), w], and (22)

g ) o Hile,w| = Agrr(Agir(e, s, -+ 55 f) (1), 850 -+ 55,9) (1), Yoo (w, f) (D] (23)

Definition 12.5 and ¢’ = ¢f'"" imply that ¢'(f”(1)) o Hy is homotopic to the map ¢ :
lp|~Y(x) — | F| defined by

le,w| = [Agsr(e, 55 -+ 55,9) (1), Voo (w, f7) (D). (24)
Finally, define L : I x |p|~'(x) — |F| by the formula
L(t, |e,w]) = [Ager(e, 55, -+ 55,.9) (1), Yoo (w, f7) (D)) (25)

Then L is a homotopy from g(f”(0)) to the map f. O
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13 The recognition principle and A, spaces

We now have at our disposal all of the information required for the proof of the recognition
principle. We prove our basic recognition theorem for n-fold loop spaces, n < oo, and discuss
A spaces here; E, spaces will be studied in the next section. We first fix notation for our
geometric constructions.

Let (C, p,m) be a monad in 7, let (X, &) be a C-algebra, and let (F,\) be a C-functor
in 7; these notions are defined in Definition 2.1, 2.2, and 9.4. The Construction 9.6 yields a
simplicial topological space B,(F,C, X), and we agree to write B(F,C, X) for its geometric
realization | B,(F, C, X)|, as constructed in Definition 11.1; B defines a functor B(7,7) — 7,
and we write B(m, ¢, f) = |B.(m, %, f)| for a morphism (7,4, f) in B(7,7). Many of our
C-functors F' in 7 will be obtained by neglect of structure from C-functors (also denoted
F) in the category D[T] of D-algebras, for some monad D in 7. Then B.(F,C,X) is a
simplicial D-algebra, but this need not imply that B(F,C,X) is itself a D-algebra. For
example, this implication is not valid for D = Q"S™. However, by Theorem 12.2, if D is
the monad in 7 associated to an operad D, as obtained in construction 2.4, then realization
does define a functor SD[T| — D[T] and B therefore defines a functor B(7, D[T|) — D[T].

We shall write 7(¢) = |7.(¢)| : Y — B(F,C, X) for any map ¢ : Y — FX in 7 and we
shall write e(m) = |e.(m)| : B(F,C,X) — Y for any map 7 : FX — Y in 7 such that the
following diagram is commutative:

rox A Fx
81:F§\L J{ﬂ'
FX——=Y

Here 7.(¢) and €,(m) are defined in Lemma 9.2, and |Y,| = Y by Lemma 11.8; 7 and € are
natural, in the evident sense.

We must dispose of one minor technical point before proceeding to the theorems. Since
we wish to apply the results of the previous two sections, we shall always tacitly assume
that B,(F,C, X) is a strictly proper simplicial space, in the sense of Definition 11.2. This is
in fact a harmless assumption, at least when C' is the monad associated to an operad C, in
view of the results of the appendix. In Proposition A.10, we show that C can, if necessary,
be replaced functorially by a very slightly altered operad C" which maps onto C and is such
that B,(F,C’, X) is strictly proper for reasonable functors (such as 2,5, C,C" and their
composites) and for C-spaces (X, 6) such that (X, x*) is a strong NDR-pair. If (X, x*) is not
well-behaved, for example if * is degenerate, then Lemma A.11 shows that (X,6) can be
replaced by (X', 6') € C[T] where (X', *) is a strong NDR-pair.

In our basic theorem, we shall assume given a morphism of operads 7 : D — C,,, where C,
is the n-th little cubes operad of Definition 4.1 and D is some other operad; as in Construction
2.4, we shall also write 7 for the associated morphism of monads D — C,,. Observe that if
Y € T then (Q"Y,60,7) € D[T], where 6, is as defined in Theorem 5.1, and, by Theorem
5.2, 0,, coincides with the composite
= ngn (1

C.OMY o Qrsrory & ), Qny.
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Here ¢ : Hom7(X,QY) — Homz(SX,Y) is the standard adjunction homeomorphism of
(5.1) and a,, : C, — Q"S™ is the morphism of monads constructed in Theorem 5.2. Of
course, we are identifying the notions of C,,-space and of C,-algebra via Proposition 2.8, and
similarly for D. Since a,,m : D — Q"S™ is a morphism of monads in 7, (S", ¢"(a,7)) is
a D-functor in 7 by Examples 9.5. Thus, if (X,&) € D[T], then B(S™, D, X) is defined.
With these notations, we have the following theorem, which implies the recognition principle
stated in Theorem 1.3.

Theorem 13.1. Let 7 : D — C,, denote the morphism of monads associated to a local
equivalence m : D — C, of X-free operads. Let (X&) by a D-algebra and consider the
following morphisms of D-algebras:

B(apm,1,1)
_

X <% B(D, D, X) B(Q'S". D, X) 15 Q"B(S", D, X).

1. €(§) is a strong deformation retraction with right inverse 7(¢), where ¢ : X — DX is
given by the unit ¢ of D.

2. B(a,m,1,1) is a weak homotopy equivalence if X is connected.
3. 7" is a weak homotopy equivalence for all X.

4. The composite v o B(a,m, 1,1)o7(¢) : X — Q"B(S™, D, X)) coincides with the adjoint
of 7(1) : S"X — B(S™, D, X).

5. B(S™, D, X) is (m + n)-connected if X is m-connected.
Moreover, the following conclusions hold for Y € 7.

6. ep"(1) : B(S™, D,Q"Y) — Y is a weak homotopy equivalence if Y is n-connected; for

all Y, the following diagram is commutative and Q"e¢™(1) is a retraction with right
inverse ¢~ "7(1):

B(D, D, ry) 2t pangn pony)
swml ) iw
oy "D gnp(sn, D, Y

7. €¢"(anm) : B(S™, D, DY) — S™Y is a strong deformation retraction with right inverse
T(S™().

Proof. €¢(&) and B(a,7,1,1) are morphisms of D-algebras since €,(§) and B,(«a,7,1,1) are
morphisms of simplicial D-algebras by Theorem 9.10. By Theorem 9.11, we have

B.(Q"S™, D, X) = Q"B.(S", D, X).

Thus 7" is a well-defined morphism of D-algebras by Theorem 12.4. Now (i) and (vii) hold on
the level of simplicial spaces by Theorems 9.10 and 9.11 and therefore hold after realization
by Corollary 11.10. By the approximation theorem (Theorem 6.1) and Proposition 3.4, each
composite a,m : DX — Q"S"DIX is a weak homotopy equivalence if X is connected,
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and (ii) follows from Theorem 11.13. Part (iii) follows from Theorem 12.3; here X need not
be connected since each Q'S" DX for i < n is certainly connected. Part (iv) is trivial (from
a glance at the explicit definitions) and (v) follows from 11.12. Finally, the upper triangle
in the diagram of (vi) commutes by the naturality of €, since {,c, = 6,,, and the lower
triangle commutes by the naturality of 4", since &, = Q"¢"(1) and €,Q2"¢"(1) = Qe ¢™(1)
by Theorem 9.11 and since 7" reduces to the identity of Q"Y = [Q7Y,]; the fact that e¢™(1)
is a weak homotopy equivalence for n-connected spaces Y follows from the diagram. O

B(S™, D, X) should be thought of as an n-fold de-looping of X. As such for Y € 7,
B(S™, D,Q"Y) should give back Y but with its bottom homotopy groups killed. This is the
content of part (vi). Similarly, DY approximates Q"S™" X, hence B(S™, D, DY") should give
back S™Y. This is the content of part (vii), but with a curious twist; the proof of (vii) in
no way depends on the approximation theorem and the result is valid even when Y is not
connected, in which case DY fails to approximate Q"S™Y".

For (X,&) € D[T], the diagram

x & pp, p, x) XL gnpse D, X)

is to be thought of as displaying an explicit natural weak homotopy equivalence between X
and Q"B(S", D, X) in the category of D-algebras. The use of weak homotopy equivalence
in this sense is essential; it is not possible, in general, to find a morphism f : X — Q™Y of
D-algebras which is a (weak) homotopy equivalence. For example, if D = C,, and if X is a
connected N-algebra (that is, a connected commutative monoid) regarded as a C,-algebra
by pull-back along the augmentation e : C},, — N, then, for any space Y, the only morphism
of Cy-algebras from X to Q"Y is the trivial map! Indeed, for any such f, commutativity of
the diagram

Co(1) x X —2 (1) x QY

GXl\L len,l

N xX=X—L oy

implies 0,,1(c, f(z)) = f(z) for x € X and all ¢ € C,(1), and a glance at the definition of 6,
of Theorem 5.1 shows that this implies f(x)(s) = * for all s € S™.

Thus we cannot do better than to obtain a weak homotopy equivalence of D-algebras
between a given D-algebra X and an n-fold loop space, and it is clearly reasonable to demand
that an n-fold de-looping of X be (n — 1)-connected (hence n-connected if X is connected).
Subject to these two desiderata, the n-fold de-looping of X is unique up to weak homotopy
equivalence.

Corollary 13.2. Under the hypotheses of Theorem 13.1, if

(X,6) L (X,€) L (Y, 0,m)

is a weak homotopy equivalence of connected D-algebras, where Y is n-connected, then the
diagram
B(s", D, x) 24 pgn p xty L9y

displays a weak homotopy equivalence between Y and B(S", D, X).
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Proof. €¢"(g) = e¢™(1) o B(1,1, g) by the naturality of €; e¢"(1) is a weak homotopy equiv-
alence by the theorem and B(1,1, f) and B(1,1,g) are weak homotopy equivalences by
Theorem 11.13 since S"D?f and S™D%g are weak homotopy equivalences for all ¢ (as follows
readily from the approximation theorem: S™(Q2"S™)? is certainly a functor which preserves
weak homotopy equivalences). O

Remarks 13.3. The idea of proving a recognition principle by geometrically realizing sim-
plicial constructions based on monads is due to Beck [5]. In that paper, Beck sketched a
proof of the fact that (in our terminology) if (X, &) is a 2"S"-algebra, then the diagram

x <& parst ansm x) 2L QrB(ST, QS X)
displays a weak homotopy equivalence between X and Q"B(S™, Q"S™ X). Of course, our
results prove this and add that €(§) and 4™ are morphisms of C),-algebras (not of Q"S"-

algebras) and that
B(1,a,,1): B(S",C,, X) — B(S",Q"S", z)

is a weak homotopy equivalence if X is connected. Unfortunately, the only 2"S"-algebras
that seem to occur “in nature” are n-fold loop spaces, and Beck’s recognition theorem is
thus of little practical value.

The little cubes operads are of interest because their geometry so closely approximates
the geometry of iterated loop spaces; for precisely this reason, a recognition principle based
solely on these operads would also be of little practical value. We have therefore allowed more
general operads in Theorem 13.1. We next exploit this generality to obtain our recognition
principle for A, spaces, as defined in Definition 3.5. Recall that the category of operads over
M of Definition 3.3 has the product V described in Definition 3.9. In view of Proposition
3.10, the following theorem is an immediate consequence of Theorem 13.1 and Corollary
13.2.

Theorem 13.4. Let C be any A, operad, let D =CVC; andlet ¢ : D —Cand 7w : D — C;
be the projections. Then 7 is a local Y-equivalence of operads. Therefore, if (X,6) is
a connected C-space, then there exists one and, up to weak homotopy equivalence, only

one connected space Y such that (X, 6v) is weakly homotopy equivalent as a D-space to
(QY,0,7), namely Y = B(S, D, X).

Of course, Theorem 13.4 implies that a connected A, space X is weakly homotopy
equivalent to a topological monoid, namely the Moore loop space AB(S, D, X). As was first
proven by Adams (unpublished), a more direct construction is possible. Recall that, by
Proposition 3.2, the notions of topological monoid and of M-algebra are equivalent.

Theorem 13.5. Let C be any A, operad and let 6 : C' — M be the morphism of monads
associated to the augmentation C — M. Let (X, ) be a C-algebra and consider the following
morphisms of C-algebras:

B(5,1,1)
——

x 2 B o x) B(M,C, X).
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1. €(f) is a strong deformation retraction with right inverse 7(n), where n : X — CX is
given by the unit n of C.

2. B(6,1,1) is a weak homotopy equivalence if X is connected.
3. B(M,C, X) has a natural structure of topological monoid.

4. If (G, ¢) is an M-algebra (that is, a topological monoid) then €(¢) : B(M,C,G) — G
is a morphism of monoids and the following diagram is commutative (hence €(¢) is a
weak homotopy equivalence if G is connected):

B(67171)

B(C,c,a)" v, 0, 6)
e(¢>)J/ <(¢) l3(1,5,1)
e(¢)
e B(M, M,G)

5. For Y € T, e(vo Md) : BIM,C,CY) — MY, v : M?> — M, is a strong deforma-
tion retraction of topological monoids (that is, the required deformation is given by
morphisms of monoids h;) with right inverse 7(Mn).

Proof. In view of Theorem 9.10 and the fact that, by Proposition 3.4, § : CY — MY is a
weak homotopy equivalence if Y is a connected space, the theorem follows from the facts that
geometric realization preserves homotopies (Corollary 11.10), weak homotopy equivalences
(Theorem 11.13), monoids (Corollary 11.7), and C-algebras (Theorem 12.2). ]

Like Theorem 13.1, the result above implies its own uniqueness statement.

Corollary 13.6. Under the hypotheses of Theorem 13.5, if
(X,6) < (X', 8) 2 (G, 0)

is a weak homotopy equivalence of connected D-algebras, where (G, ¢) is an M-algebra, then
the diagram

(1,1,9)

BM,c, x) 28 oy o xty 229 g, o, ) 42 q

displays a weak homotopy equivalence of topological monoids between G and B(M, C, X).

Remarks 13.7. By Corollary 3.11, any FE., space is an A, space; by the previous theorem
any connected A, space is weakly homotopy equivalent to a topological monoid. These two
facts are the starting point of Boardman and Vogt’s proof [7, 8] of the recognition principle
for F, spaces. Given an E, space, they construct a homotopy equivalent monoid and show
that the monoid can be given the structure of E., space such that the (monoid) product
commutes with the (operad) action. Then, as we shall see in [I§], the classifying space
of the monoid inherits a structure of E., space and the argument can be iterated. While
conceptually very natural, this line of argument leads to formidable technical complications;
a glance at Lemma 1.9 will reveal one major source of difficulty, and another source of
difficulty will be discussed in section 15.



14. E. SPACES AND INFINITE LOOP SEQUENCES 73

14 FE, spaces and infinite loop sequences

Our recognition principle for F.-spaces, as defined in Definition 3.5, will follow from The-
orem 13.1 by use of the products (Definition 3.8) in the category of operads and passage
to limits. Throughout this section, C will denote a fixed F.-operad, D, will denote the
product operad C x C,, for n > 1 or n = oo, and «, : D,, — C, and v, : D,, — C will denote
the projections. By Proposition 3.10, the 7, are local equivalences, and Theorem 13.1 thus
applies to the study of D,-spaces. The inclusions o, : C,, — C, 41 of Definition 4.1 (e) give
rise to inclusions 7,, = 1 X 0, : D,, — D,,;1, and D, is the limit of the D, for finite n. As in
Construction 2.4, we write C, C,,, and D,, for the monads in 7 associated to C, C,, and D,,
and we use the same letter for morphisms of operads and for their associated morphisms of
monads in 7. We let v, : Dfl — D, and (, : 1 — D,, denote the product and unit of D,,.

A connected C-algebra (X, 6) determines a D,-algebra (X, 61,) for all n > 1 and thus
has an n-fold de-looping B(S™, D,,, X) by Theorem 13.1. By the definition of the functor
B, in Construction 9.6, the following lemma will imply that the B(S™, D,, X) fit together
to form a (weak) Q-spectrum.

Lemma 14.1. Let n = ¢~1(1) : 1 — QS. Then, for all n > 1,
nS™ (8", " () — (an+17 Qo t! (1T 417n))

is a morphism of D,-functors in 7. Therefore, for all i > 0, the functor QS* = lim Q7 S**/
inherits a structure of Dy-functor in Dy [7] by passage to limits from the actions of D, ;
on (VS given by Q7¢" (v Tt ).

Proof. The first statement hold since the following diagram is commutative:

nS" Dy, Qsntis,

S"D,, QS D, QS"™1D,
lS”(anﬂ'n) \LQS”"’I(anwn) iQS"+1(an+1ﬂn+1)
SnQnSn ns"an ST QSnJrl QnSn Qsmtlon an+1 Qn+1 Sn+1
lqﬁ”(l) J{Q&zﬁ”(l) iﬂaﬁn“(l)
s gt ! QgmH!

Here 0, = Q"¢71(1) : Q8" — Q157"+ as in formula (5.5), and 0,0,7, = Qpi10,T, =
Qi 1Tns1Tn by Theorem 5.2 and the definitions of the m, and 7,,. Since QS® is defined by
passage to limits from the inclusions

J]-Si - ansiﬂ O A AN Qj+1si+j+17
the second statement does follow from the first. O

We precede our recognition theorem for F., spaces with two further lemmas. These will
lead to a structural description of the homotopy type of the n-fold de-looping of a D..-
algebra which is based on D, itself, rather than on D,,. Recall that, by Proposition 5.4,
there are morphisms of monads £, : C,, — QC,,_1.S such that «,, = (Qa,,—15)3,. We require
analogous results for the D,,.
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Lemma 14.2. There exist morphisms of monads 6,, : D, — QD,_1S for n > 1 such that
the following diagrams are commutative:

D, -~ QD, S and D, —~QD, S
ﬂ'nl lQTK‘nls Tnl iQTnIS
c, - qc, .S Dy 20D, S

Proof. Recall that Q2D,, 1.5 is a monad in 7 by Lemma 5.3. Let X € 7. By Definition
3.8 and Construction 2.4, a typical point of D,X has the form [(d,c),y|, where d € C(j),
c={c1,...,¢;) €Cn(j), and y € X7. For t € I, write

Pule,yl(t) = (e 6 2,

where ¢, = ¢, x ¢/ with ¢, : J — J, the rp are those indices r such that ¢t € ¢.(J), and
z € (SX)" is as determined in the proof of Proposition 5.4. By Notations 2.3 and Definition
4.1(d), we can choose degeneracy operators oy, ..., 0k, , such that

Ohy - * 'O-kj,ic = <CT,17 C ,Cri>.

We define 6,, by the formula

6n[<da C)v y](t) = [(Uh T O_kjfld7 <C;~/1a S >C¥i>’ Z]

It is then easy to verify that ¢,, is a well-defined morphism of monads such that the stated
diagrams commute. O

Let 6;; : Diy; — Q'D;S" denote the composite morphisms of monads

064519
_—

Di+j (Szi) QD,L'+J',18 Q2Di+]‘,232 — QZDJS’L,

and define §;; : Ciy; — Q'C;S? similarly. Define ;00 : Doy — QD S* by passage to the
limits over j.

Lemma 14.3. Let \;; : DjSiDHj — DjSi be the composite

(84 .y St .
DioCw), p.p,si U5 pgi.

D;S'D;y;
Then (DjSi7 /\U) is a DH_]'—quCtOI' in Dj [T], and
738" (DS, Ai) = (D115, Aij1 © D1 S'7i)

and

a;miS 1 (DS, Nij) — (VS V™ (ay jmiy ;)
are morphisms of D, -functors in D;[T]. By passage to limits over j, D,S* inherits a
structure of Dy-functor in D..[7], with action

_—

Moo : DouS' Do DD S 25 DSt

and Qpo oSt 1 DooS? — QS? is a morphism of Dy -functors in Dy [7].
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Proof. D;¢'(6;j) = D;¢'(1) o D;S%;;, and it is trivial to verify that v;S" o D;¢'(1) gives
D;S" a structure of Q'D;S*functor in D;[T] by use of Lemma 5.3. Thus (D;S%, \;;) is a
D,y j-functor in D;[7| by Example 9.5(ii). The following two commutative diagrams show
that 7;5* and a;7;S* are morphisms of D, ;-functors in D;[7T], and thus complete the proof:

755" Di; Dj+15' i+

D;S'D;; D;15°D;q D15 Diyj
DjQSi(éij)l iDj-‘rl‘bi(‘sij) iDj+1¢i(5i,j+1)
D,D,5 — "% _p . psi T DS
Vjsil imlsz’
D,S' ek D;1 S
D,SiD,y; —" S igiti Diy VS ot T giti it giti
Dj¢i(5ij)i leSjW(éij) leSjW(l)
D,D,5 "% 5D, T ) g g
Vjsil lﬂjdﬂ(l)
DS 25755 Qi gits

The upper left and bottom rectangles commute since 7; and o;7; are natural and are mor-
phisms of monads. The upper right rectangles commute by Lemma 14.2 and Proposition
5.4, which imply that
0ig1 0 Tipg = Q7,8 0 8y
and
Qiyj O Tipj = QiajSi oBijomiy; = QiajﬂjSi 0 0jj.

]

Recall that by Theorems 5.1 and 5.2, if Y = {V;} € L., so that Y; = QY;,4, then
(Y0, 0ooToo) is @ Dyo-algebra and 6, : CYy — Y, factors as the composite

QCSYy ——— Y,.

CxYo

We shall write W : L, — Dy [7] for the functor given on objects by WY = (Y, 0o ). Re-
call also that if Z € 7, then Q. Z denotes the free infinite loop sequence {QS?Z} generated
by Z, as described in formulas (5.7), (5.8), and (5.9).

We retain the notations of the previous section for our geometric constructions, and we
have the following recognition theorem for E..-spaces.

Theorem 14.4. Let (X, &) be a D.-algebra, and regard X as a D,-algebra via the restriction
of £ to D, X C D, X. Then the following is a commutative diagram of morphisms of D;-
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algebras for all > 0 and 7 > 1:

QI B(S™, Dy, X)

J

. . . ’y/
B(QJ SZ+‘77 Di+j7 X) QjB(nSi-'—jvTiJrjvl)
B(0jS%7i4j,1) j QjB<QSi+j+1,Di+j+1,X)
. . . /
B(Qj+1SZ+J+1a Di+j+17X) AR Qy
T

QI B(SHIH Dy X)
Define an infinite loop sequence B, X = {B;X} by
BiX =1lim Y B(S™, Dy, X)
and, for ¢ > 0, define a morphism > of D-algebras by
1> =lim~’ : B(QS", Do, X) — BiX.
Consider the further morphisms of D..-algebras
B(ooTosS", 1,1) : B(DyoS', Dog, X) — B(QS", Do, X)

and

€(&): B(Dyy Doy X) — X

1. €(§) is a strong deformation retraction with right inverse 7((.,), where (o, : X — Do X
is given by the unit (, of D.

2. B(asTsoS, 1, 1) is a weak homotopy equivalence if i > 0 or if i = 0 and X is connected.
3. 7> is a weak homotopy equivalence for all 7 and X.
4. The composite 7 B(QooToos 1,1)7((x0) : X — By X coincides with
v=lim¢ 'r(1),7(1) : S7X — B(S7, Dj, X).
5. B;X is (m + i)-connected if X is m-connected.
6. Let Y ={Y;} € L, and define w: BL,WY — Y by
w; = liL)aneqb”j(l) : BWY —Y;
(where Ve (1) : WB(S™, Dy, QY4 ) — YY),

Then w; is a weak homotopy equivalence if Y; is i-connected and, for all Y, the following
diagram is commutative and wy is a retraction with right inverse ¢:

B(Deo, Do, WY) 202" B D WY
6(500)
€(Gooﬂoo)l i’yw

Y, 0 BWY
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7. Let Z € T. Then the composite

Boo (QooToo

BoDoZ ) BL.QZ % Q7

is a strong deformation retraction in L., with right inverse the adjoint ¢..(¢t(s) of
s : 4 — ByDy 7.

Proof. In view of the definitions of Construction 9.6, the specified spaces and maps are well-
defined by Lemmas 14.1 and 14.3. The diagram commutes by the naturality of 77 (since
o; = n) and by the definition of 47, Of course, (), B(xoTooS", 1,1), and v are mor-
phisms of D.-algebras by Theorems 12.2 and 12.4. Now (i) follows from Proposiion 9.8 and
Corollary 11.10, (ii) follows from the approximation theorem (Theorem 6.1), Propositions
3.4 and 3.10, and Theorem 11.13, and (iii) follows from Theorem 12.3. Parts (iv) and (v)
follow from the corresponding parts of Theorem 13.1 by passage to limits. For (vi), w is
well-defined since the following diagram commutes by the naturality of ¢ and of v and by
the fact that y=1o0on QZ = |Q.Z,|, Z € T:

B(Wsnﬁml)

B(S™, D,,,2"Y,,)
6¢"(1)l
Y, = QYn—i—l

B(QS™, Dy, QY 1)
Qe (1) lw

Qegnt1(1)

QB(S”+17 Dn+17 QnJrlYn—l—l)

The commutativity of the diagram in (vi) follows by passage to limits from Theorem 13.1 (vi).
If Y} is connected, then wy = Q'w; is a weak homotopy equivalence by parts (i), (ii), and (iii)
and the diagram; it follows that w; is a weak homotopy equivalence if Y; is i-connected. For
(vii), the explicit deformations of B(S™, D,, D, Z) given by Proposition 9.9 and Corollary
11.10, and the loops of these homotopies, are easily verified to yield deformations h;; of
B,D..Z in the limit such that Qh; 1, = h;;. The fact that ¢ (:(x) is the right inverse to
WBoo(Too) follows by passage to limits from Theorem 13.1 (vii) and the definition (5.9)
of ¢oo. O]

Up to weak homotopy equivalence in L., there is only one connective Y € L, such that
WY is weakly homotopy equivalent as a D, .-algebra to a given connected D,.-algebra X.

Corollary 14.5. If (X,¢) L (X',€) L (Y, 007s) is a weak homotopy equivalence of
connected D.-algebras, where Y = {Y;} € L., and each Y; is connected, then the diagram
of infinite loop sequences

B X =L B x' B9 B wy &y

displays a weak homotopy equivalence in L., between Y and B, X.

Proof. By Theorem 11.13 and passage to limits, each functor B; preserves weak homotopy
equivalences between connected D -algebras; since Y; = Q2Y;,;, each Y; is ¢-connected, and
therefore each w; is a weak homotopy equivalence by the theorem. O
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Since our de-loopings B; are not constructed iteratively, we should verify that B; ;X is
indeed weakly homotopy equivalent to B;B;X. To see this, defined functors Q7 : Lo, — Lo
for all integers j by letting the i-th space Q!X of X, i > 0, be

gy _ Y iz
Z VY, ifi<j

Observe that if j > 0, then the zero-th space of Q7Y is Y;. Clearly Q'QFY = QIT*Y for all
j and k, and Q° = 1. We have the following addendum to part (vi) of the theorem.

Corollary 14.6. If Y € £, and QY is connected for all 4, then w : B,WQY — QY is a
weak homotopy equivalence in L. In particular, if (X,¢) is a Dy.-algebra and if j > 0 or
if j =0 and X is connected, then, for ¢ > 0,

w; : BiB;X = BWQ7B,X — O, 'B,X = B, ;X
is a weak homotopy equivalence.

We require one further, and considerably less obvious, consistency result. Recall that if
an operad acts on a space X, then, by iterative use of Lemma 1.5, the same operad acts on
each QX i > 0. We thus obtain functors Q' : D.[7] — Du.[7], and we wish to compare the
infinite loop sequences B, X and B,.Q'X, at least for D.-algebras which arise from Cl-
algebras. To this end, let 7/, =1 x o/, : D,, — D,, 11, where o/, : C,, — C,,41 is the inclusion of
Lemma 4.9 (which gives the first coordinate the privileged role). Let 7/; : D; — Dy ; denote
the composite morphism of operads

!

! T/
J Jj+1
Dj — Dj+1 — Dj+2 — o Di+j7

and define 7/, : Do, — Do by passage to limits over j; this makes sense since 7,4 0 7/; =

7} j41 0 7j. 1t follows easily from Lemma 4.9 that 7, is a local ¥-equivalence of operads.

Proposition 14.7. For i > 0, let D’_S* denote the functor D.,S* regarded as a D-functor
in D [7] via the action

T/
DooS*T;

DS Da DooS'Dysy 22 DS

Then €(§ 0 Doo¢'(1)) : B(D. S, Do, ' X) — X is a well-defined morphism of D,-algebras
for any D..-algebra (X&), and €(€ o Dyo¢’(1)) is a weak homotopy equivalence if X is
t-connected.

Proof. Let & : DooQ'X — Q!X denote the D-algebra structure map determined from ¢ by
Lemma 1.5 (the previous notation Q¢ would be confusing here). We claim that & factors
as the composite:

T/

DX 2= p i =, gip, sigix 220

Y, 0ip.x 2 aix,
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Since 7/ results by replacing each little co-cube ¢ by the co-cube 17 x ¢, the proofs of Lemma
14.2 and of Proposition 5.4 imply that

5i007—fi/oo[(d’ C)vyla <o 7yj](3) = [(d7 C)v [?/1, 3]7 cey [yj7SH

for d € C(j), ¢ € Cxo(j), yr € Q'X, and s € I'. Since ¢*(1) is the evaluation map, ¢'[y, s] =
y(s), & is indeed equal to the stated composite by Lemma 1.5. Therefore the following
diagram is commutative, and this implies that €(¢ o D¢'(1)) is well-defined by Lemma 9.2,
Construction 9.6, and the definition of \;,, in Lemma 14.3:

L Do DSy —f

DS D QX =5 p_SIOiX
J{DWDOOW(U lDooW‘(l)
DeooSit; _ DD X Poe DX
\LDoog lﬁ
D..Siix — 2= DX : X

Moreover, by the naturality of € and of 4, the following diagram is also commutative:

B((siooTi,oovlvl)
_—

B(Das, Do, 21 X) B(Q DS, Dy, 2 X)

qix < L= qipp gi p 0iX)

Here 0;0o7/y, : Doo — Q'D’_S" is a morphism of D, -functors in D, [7] by a simply diagram
chase from Lemma 5.3. By Theorem 14.4(i) and Theorem 12.3, €(&;) and 7' are weak
homotopy equivalences. For connected spaces Z, 7/, : DoZ — DooZ and ;0 @ Do Z —
VD, S'Z are weak homotopy equivalences by Proposition 3.4 and by the approximation
theorem (Since Qoo Moo = Q' Too S 08i00). By Theorem 11.13, B(8i007lo, 1, 1) is thus a weak

homotopy equivalence if X is i-connected and, by the diagram, (£ o Dy¢%(1)) is then also
a weak homotopy equivalence. O

Lemma 14.8. Let (X, 014) be the D..-algebra determined by a C-algebra (X,#). Then
B(1,7,,1): B(D'.S", Dso, X) — B(DsS", Doo, X)

) 14000

is a well-defined morphism of D.-algebras and is a weak homotopy equivalence if X is
connected.

Proof. Since ¥, : Dy — C'is the projection, we obviously have ¢, = ¥ 7,,. In view of the
definition of D’ S, (1,7/ 1) is thus a morphism in the category B(7, D[T]) of Construction
9.6 and B(1,7/,,1) is well-defined. The last part follows from Proposition 3.4 and Theorem

tE 1o oB/

11.13. O

By combining the previous lemma (applied to Q°X instead of to X) and proposition
with Theorem 14.4 and Corollaries 14.5 and 14.6, we obtain the desired comparison between
Q"B X and B,,Q'X for C-algebras (X, 0).
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Theorem 14.9. Let (X, 0) be a C-algebra and let £ = 01),,. Assume that X is i-connected.
Then the diagram

W”OB(aoowooSi,Tiloo,l)

X €(€0Doo (1)) B(D(/)osl, Do, QZX) BZQZX
displays a weak homotopy equivalence of D-algebras between (X, &) and WQ B, Q' X.
Therefore the infinite loop sequences Boo X and Q7 ?B, QX are weakly homotopy equivalent.

Remark 14.10. Observe that if Y € L, then QWY and WQ'Y have the same underlying
space, namely 'Y, and respective actions 20, o 7o and 0, o T. By passage to limits,
Lemma 5.6 implies that the action Q0. of Cx on Q%Y derived in Lemma 1.5 satisfies
N0y = 000l (where ol is defined from the o/, as 7/__ was defined from the 7/, = 1 x 0/,).
Therefore Q0. = Moo = 0o 0 Too 00, and, by Proposition 3.4, the action maps Do Q'Y —

1007

Q'Y of QWY and WQ'Y are weakly homotopic (at least if Q2'Yj is connected).
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15 Remarks concerning the recognition principle

The purpose of this section is to indicate the intent of our recognition theorem for F., spaces
in pragmatic terms, to describe some spectral sequences which are implicit in our geometric
constructions, to discuss the connectivity hypotheses in the theorems of the previous section,
and to indicate a few directions for possible generalizations of our theory. We shall also
construct a rather curious functor from Y-free operads to E,, operads.

Of course, Theorem 14.4 implies that a connected E., space X determines a connective
cohomology theory. Pragmatically, this is not the importance of our results. A cohomology
theory cannot be expected to be of very much use without an explicit hold on the representing
spaces. Ideally, one would like to know their homotopy groups, and one surely wants at least
to know their ordinary homology and cohomology groups. Our results are geared toward
such computations via homology operations derived directly from the E. structure, and it
is crucial for these applications that the homology operations derive from a given C-algebra
structure map 6 : CX — X, where C is any E,, operad, necessarily agree with the homology
operations derived on the equivalent infinite loop space By X from the canonical C-algebra
structure map 0, : Cou By X — BpX. In the notations of Theorem 14.4, our theory yields
the following commutative diagram, in which the indicated maps are all (weak) homotopy
equivalences:

Doy B(aooﬂ'oo,lvl)
—_—

DX <220 D B(Dyo, Do, X) - DBy X

N -
CX B(Dw, Dov, X) C.oByX
Hl lB(Voo,l,l) iew
X (O0e) B(Day, Do, X) — - Ploeml) gy

Thus the given geometry 6 : CX — X automatically transformed into the little cubes
geometry O, : Coo BoX — BpX. The force of this statement will become apparent in our
subsequence applications of the theory to such spaces as F' and BT op, where there will be
no direct geometric connection between the relevant E., operad C and the operad C.

We indicate one particularly interesting way in which this statement can be applied.
With (X, 0) as above, let f : Z — X be any map of spaces. By use of the adjunction ¢, of
(5.9), we obtain a map of infinite loop sequences g = ¢oo(Lf) : QuoZ — Boo X such that the
following diagram is commutative:

Z X
Too L
QZ 2> B,X

Obviously go is a map of C-algebras, by Theorem 5.1. On mod p homology then, iden-
tifying H,(X) with H.(ByX) via ¢, and using Theorem 14.4(iv), we are guaranteed that
(go)« transforms the homology operations on Q7 coming from 6., : Co.oQZ — QZ into the
homology operations on X coming from 6 : CX — X. Since H.(QZ) is freely generated by
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H,.(Z) under homology operations (see [21, Theorem 2.5] for a precise statement), it follows
that (go). is completely determined by f,. and the homology operations on H,(X).

Theorem 14.9 will have several important concrete applications. For example, the spaces
occuring in Bott periodicity are all C-spaces for an appropriate E.-operad C and the various
Bott maps X — QX' (e.g., X = BU and X’ = SU) are all C-morphisms, where QX'
has the C-space structure determined by Lemma 1.5 from that on X’. Via Theorem 14.9,
it follows that our spectra B, X are weakly homotopy equivalent to the connective spectra
obtained from the periodic Bott spectra by killing the bottom homotopy groups. Less obvious
examples will arise in the study of submonoids of F'.

We should observe that our constructions produce a variety of new spectral sequences,
in view of Theorem 11.14. Probably the most interesting of these are the spectral sequences
{*E" X} derived by use of ordinary mod p homology in Theorem 11.14 from the simplicial
spaces B, (DS, Doy, X) of Theorem 14.4, where X is a connected D,.-algebra and i > 0.
Of course, B(D4S", Doy, X ) is weakly homotopy equivalent to the i-th de-looping B; X of X.
For each j and ¢, the homology H,(DS"D’ X) is a known functor of H,(X), determined
by [21, Theorem 2.5], since Do, may be replaced by Q). The differentials

J
d=> (=1)'Hy(9) : Hy(DoS' DI, X) — Hy(DsoS'DI]' X)
i=0

(2

are in principle computable from knowledge of the homology operations on H,(X); these
operations determine H,(0;), and the H,(0;) for i < j depend only on the additive structure
of H,(X) as they are derived from natural transformations of functors on 7 (with known
behavior on homology). Therefore ‘E? is a well-defined computable functor of the R-algebra
H.(X), where R is the Dyer-Lashof algebra (see [21]), and {*E" X} converges to H.(B;X). It
appears unlikely that these spectral sequences will be of direct computational value, but they
are curious and deserve further study. In particular, one would like to have a more precise
description of “E2X | perhaps as some homological functor of H,(X), and, in the case i = 1,
one would like to know the relationship between {!E” X} and the Eilenberg-Moore spectral
sequence (derived by use of the Moore loop space on By X) converging from Tor™*)(Z,, 7))
to H.(B1X).

Although all of our constructions of spaces and maps are perfectly general, the validity of
our recognition principle is restricted to connected E, spaces since its proof is based on the
approximation theorem. A necessary condition for an H-space X to be homotopy equivalent
to a loop space is that X be group-like, in the sense that my(X) is a group under the induced
product. It is trivial to verify that a homotopy associative group-like H-space X is homotopy
equivalent to Xy x mo(X), where Xy is the component of the identity element. It follows
that a group-like F, space X is weakly homotopy equivalent to an infinite loop space since
both Xy and the Abelian group m(X) are. Such a statement is of no pragmatic value since
the equivalence does not preserve the F., space structures: there are many examples (such
as Q?BU and QS°) of E,, spaces with non-trivial homology operations on zero-dimensional
classes but, as a product, Xy x my(X) has only trivial homology operations on such classes
(see [2I], Theorem 1.1]).

A more satisfactory result can be obtained by reworking everything in the previous section
with C, C}, and D; replaced by the monads QC'S, QC;S, and QD;S. Of course, any 2D, 5-
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algebra is a Dy.-algebra by pull-back along 010 : Do — DS, and therefore any DS~
algebra is a group-like E., space. Given a QD S-algebra (X, &), define B, X = {B;X}
by

B;X =lim Y B(S™ QD;.; 15, X)

and consider the following spaces and maps:

oo

XY  BOD.S QD.S, X)

§

OB(DwS, 2D.S, X)

B(Qaoo o0 S,1,1

'B(QQS, 0D..S, X) —

|’

OB(0S,0D..S, X)

ByX

QB(oomo0S,1,1

By Theorems 12.2 and 12.4, €(§), B(Qx0mooS, 1, 1), and 4°° are morphisms of D..-algebras
(not of QD S-algebras). €(£) is a homotopy equivalence by Proposition 9.8 and Corollary
11.10, and (granting the appendix to have been generalized so as to show that the various
simplicial spaces are strictly proper) the maps 7>, v, and B(QsTs0S, 1,1) are weak homo-
topy equivalences by Theorem 12.3, the approximation theorem, and Theorem 11.13. It
follows from the commutative square that the map B(Qaxm0S, 1,1) is also a weak homo-
topy equivalence. Thus (X, &) is weakly homotopy equivalent as a D.-algebra to WB.X.
The remaining results of the previous section can be similarly reproven for (2D, S-algebras,
with all connectivity hypotheses lowered by one (e.g., ¥; need only by (i — 1)-connected in
the analog of Theorem 14.4(vi)). We omit the details since no applications are presently in
view.

Finally, we mention several possible generalizations of our theory. There are various
places where it should be possible to replace strictly commuting diagrams by diagrams
which commute up to appropriate homotopies. The technical cost of weakening the notion
of operad surely cannot be justified by results, but the notion of C-space might profitably
be weakened. It would be useful for applications to BO and BU with the tensor product
H-space structure if all references to base-points could be omitted, but this appears to be
awkward within our context. A change in a different direction, suggested by Stasheft, is to
define the notion of a homotopy C-space by retaining the commutativity with permutations,
degeneracies, and unit that we have required of an action # of C on X, but only requiring the
resulting map 6 : CX — X to be such that the various ways of composing 6 and p : C% — C
to obtain maps C'7X — X agree up to appropriate coherent homotopies.

This possible refinement to our theory is related to an objection that might be raised.
We have not proven, nor have we needed, that a space which is homotopy equivalent to an
E space Y is itself an F., space. This was proven by Boardman and Vogt [7, 8] (and was
essential to their proof of the recognition theorem) by means of a change of operads. With
a recognition theorem based on the notion of a homotopy C-space, such an argument might
be unnecessary. Alternatively, their argument may generalize to replace a homotopy C-space
by a D-space, for a related operad D. Of course, one would expect the notion of a homotopy
D-space to be homotopy invariant. Indeed, let f : X — Y be a homotopy equivalence with
homotopy inverse g, where (Y, 6) € C[T]. Define ¢ : CX — X to be the composite

ocx Loy vt x
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By Corollary A.13, we may replace f by its mapping cylinder (at the price of growing a
whisker on C) and thus assume that f is an inclusion, and we may then assume that X is
a strong deformation retraction of Y with retraction g. Now gf = 1 trivially implies that
0'n =1 on X, but ¢ fails to define a C-algebra structure map since the third square in the
following diagram only homotopy commutes:

co Cyg crf

cox L ooy oy Y ox oy
ui ul le la’ io
ox ooy oy 4 oxt vy

Intuitively, this is a minor deficiency which should evaporate with the study of the notion of
homotopy C-spaces.

Similarly, the notion of a morphism of C-spaces can certainly be weakened to an appropri-
ate notion of homotopy C-morphism (most simply between actual C-spaces but also between
homotopy C-spaces). The maps f and g above ought then to be homotopy C-morphisms. As
further examples, one would expect the product on an E, space to be a homotopy morphism
(see Lemma 1.9) and one would expect the homotopy inverse of a C-morphism which is a
homotopy equivalence to be a homotopy C-morphism. Our theory avoids such a notion at
the negligible cost of reversing the direction of certain arrows. We have not persued these
ideas since they are not required for any of the immediately visible applications.

Finally, we point out the following procedure for constructing new operads from old ones.

Construction 15.1. Let C be an operad. Define DC(j) = |D.C(j)| where D, : U — SU
is the functor defined in Construction 10.2. Then DC is an operad with respect to the data
specified by

1. D(y) = |Dsy| : DC(k) x DC(j1) x -+ x DC(jx) — DC(j), j = > js, where we have
used the fact that D, and realization preserve products to identify the left-hand side
with |D,(C(k) x C(j1) x -+ x C(jx))|-

2. The identity on DC is 1 € C(1) = Fy|D.C(1)].
3. The right action of ¥; on DC(j) is the composite

1%|T. |D.al

. | . . .
DC(j) x ¥; — [D.C(G)| x |[D.E;| = |D.(C(7) x X;)] — DPC(j),
where 7, is defined in Construction 10.2 and « is the action of ¥; on C(j).

By Proposition 10.4 and Corollary 11.10, each DC(j) is contractible hence, by (c), DC is an
E, operad if C is a Y-free operad.

The E,, operad D = DM has been implicitly exploited by Barratt [4] (see Remark 6.5).
This operad is technically convenient because DX is a topological monoid for any X € 7T ;
indeed, the product is induced from the evident pairings

@ : D(j) x D(k) = |Du(X; x 8)| = [Djpx| = D + k)

by the formula [d,y] ® [d,y] = [dd d,y,y].
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A Appendix

We prove the technical lemmas on NDR-pairs that we have used and discuss whiskered
spaces, monoids, and operads here.

Definition A.1. A pair (X, A) of spaces in U is an NDR-pair if there exists a map u :
X — I such that A = v~%(0) and a homotopy h : I x X — X such that h(0,z) = z for all
r € X, h(t,a) =a for all (t,a) € I x A, and h(1,z) € A for all z € u™'[0,1); the pair (h,u)
is said to be a representation of (X, A) as an NDR-pair. If, further, ux < 1 for all =, so
that h(1,z) € A for all z € X, then (X, A) is a DR-pair. An NDR-pair (X, A) is a strong
NDR-pair if uh(t,z) < 1 whenever ux < 1; thus if B = u~![0, 1), it is required that (h,u)
restrict to a representation of (B, A) as a DR-pair.

By [29, 7.1], (X, A) is an NDR-pair if and only if the inclusion A C X is a cofibration.
There is little practical difference between the notions of NDR-pair and strong NDR-pair in
view of the following example and the discussion below of whiskered spaces.

Example A.2. Define the (reduced) mapping cylinder M, of amap f: X — Y in 7 to
be the quotient space of X x I'J[Y obtained by identifying (x,0) with f(z) and (x,t) with
* € Y. Embed X in My by x — (x,1). It is trivial that (M, X) is an NDR-pair, where
M  is the unreduced mapping cylinder, but f must be well-behaved near the base-points to
ensure that (M, X) is an NDR-pair. Thus let (h,u) and (j,v) represent (X,*) and (Y, %)
as NDR-pairs and assume that vf(x) = u(x) and j(t, f(x)) = fh(t,z) for x € X and t € I.
Then (k,w) represents (M, X) as an NDR-pair, where

B () 0<s<3

w(y) = v(y) and w(z, s) = {min(u(x),2 —2s) 5<s<1
» (Wt ), s+ st) 0<s<3
£(t9) = glt,y) and k(t, (7, 5)) = {(h(Zt —2st,x),s+t—st) $<s<1

If (h,u) and (j,v) represent (X,*) and (Y, ) as strong NDR-pairs, then (k,w) represents
(M, X) as a strong NDR-pair. Of course, (My,Y) is represented as a DR-pair by (u', 1),
where u/(y) = 0, v/(z, s) = £s - u(z), and
W(ty) = y and H(t, (2, 5)) = (&, 5(1 ).
We have frequently used the following result of Steenrod [29] 6.3].

Lemma A.3. Let (h,u) and (j,v) represent (X, A) and (Y, B) as NDR-pairs. Then (k,w)
represents the product pair

(X, A)x(V,B)=(XxY, X XBUAXY)

as an NDR-pair, where w(z,y) = min(uz, vy) and
ttoa gy = {EDEL) o>
(h(2t,x),j(ty)  ifux > oy

Further, if (Y, B) is a DR-pair, then so is (X, A) x (Y, B), since vy < 1 for all y implies
w(z,y) < 1 for all (z,y).
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The proof of the following addendum to this lemma is virtually the same as Steenrod’s
proof of 29, 6.3].

Lemma A.4. Let (h, u) represent (X, A) as an NDR-pair. Then (h;, u;) represents (X, A)? =
<Xj, L X X A X Xj_1> as a j-equivariant NDR-pair, where

uj(xq, ..., x;) = min(uzy, ..., ur;)

and
hi(t,z1,...,x;) = (h(t1,21), ..., h(t;, x;))
and
b — {tmin#i(%) if some ux; < ux;,j # i
t if all ux; > uw;, j #1

The following sharpening of [29, 7.2] is slightly less obvious.

Lemma A.5. Let (B, A) and (X, B) be NDR-pairs. Then there is a representation (h, u)
of (X, A) as an NDR-pair such that h(I x B) C B.

Proof. Let (j,v) and (k,w) represent (B, A) and (X, B) as NDR-pairs. Define f : I x B —
by f(t,b) = (1—-t)w(b)+tv(b). Since B — X is a cofibration, there exist maps j : I XX — X
and f: I x X — I which make the following diagrams commutative:

0x B I xB and 0x B I

; x B
< /l
N V\fIX

0x X I xX 0x X

Define u by u(x) = max(f(1,k(1,z)), w(z)) and define h by

k(2t 0<t<?
h(t,l‘): ~‘( 737) 1— — 2
j(2t—1,l€(1,l’)) §§t§1
It is easy to verify that the pair (h,u) has the desired properties. H

We shall shortly need the following lemma on unions, in which the requisite verifications
and the continuity proof are again simple and omitted.

Lemma A.6. Let A;, 1 <i < n, be subspaces of X, and let (h;, u;) represent (X, A4;) as an
NDR-pair. Assume that

1. h,J<I X Al) C Al for ¢ <] and

2. ujzr < 1 implies u;h;(t,z) <lfori<j, t €, and z € X.
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Then (j,v) represents (X, A;U---UA,) as an NDR-pair, where vz = min(uz, . . ., u,x) and

j(t,l’) = hn(t’ru hn—1<tn—17 s 7h1(t17x) e ))7
with

b tmin; % if some u;r < w;x
! t it all wjz > ux .

The functors we have been studying preserve NDR-pairs and strong NDR-pairs in a
functorial way; the following ad hoc definition will conveniently express this for us.

Definition A.7. A functor F' : 7 — 7 is admissable if any representation (h,u) of (X, A)
as an NDR-pair determines a representation (Fh, Fu) of (FX,FA) as an NDR-pair such
that (Fh); = F(h:) on X and such that, for any map ¢ : X — X with ug(z) < 1 whenever
u(z) < 1, the map Fu : FX — I satisfies (Fu)(Fg)(y) < 1 whenever Fu(y) < 1,y € FX.
As examples, S, C, and 2 are admissable (where C' is the monad associated to any operad
C), with

(Su)[x,s] = wu(zr),rz € X and s € I;
(Cu)le,1,...,z;] = maxu(z;),c € C(j) and z; € X;
(Qu)(f) = maxuf(s), f € QX.

Clearly any composite of admissable functors is admissable.

We now discuss whiskered spaces, monoids, and operads. Growing a whisker is a stan-
dard procedure for replacing a given base-point by a non-degenerate base-point. For our
purposes, what is more important is that the new base-point is strongly and functorially
non-degenerate.

Definition A.8. 1. Let (X,*) be a pair in U, * € X. Define X' = X V I, where [ is
given the base-point 0 in forming the wedge, and give X’ the base-point 1 € I. (X', 1)
is represented as an NDR-pair by (h,u), where u(z) = 1 and h(t,z) = x for € X
and, for s € I,

u(s):{1 if s <

s+ st if s <
s+t—st ifs>

N N
N = N =

2—-2s ifs>

and h(t,s) = {

Let . : X — X’ and p = hy : X’ — X denote the evident inclusion and retraction.
If f:(X,*) — (Y,%)is a map of pairs, let f' = fVv1: X" — Y’; then, by Example
A2 (Mp,X') is a strong NDR-pair (since uf’ = v and h,f' = f'h), and (Myp,Y") is
a DR-pair.

2. Let G be a topological monoid with identity e. Then G’ is a topological monoid with
identity 1 under the product specified by the formula

gs=g=sgforge Gand sel

and the requirement that the product on G’ restricts to the given product on G and
the usual multiplication on I. The retraction p : G’ — G is clearly a morphism of
monoids.
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3. Let C be any operad; to avoid confusion, let e denote the identity element in C(1).
Define a new operad C’ and a morphism p : C" — C of operads by C'(j) = C(j) as a
¥;-space, with p; = 1, for 7 > 1 and by C'(1) = C(1)" as a monoid under v/, with p;
the retraction; the maps 7/ are defined by commutativity of the diagrams

C'(k) x C'(jr) x -+~ C'(jx) ——=C"(j)
kaplen-ijk\L TC

C(k) x C(j1) x -+ x C(jx) ——=C(4)
for j=j14+--+jx#1ork#1. Of course, C'(0) = * = C(0).

Lemma A.9. Let C and ¢ denote the monad in 7 associated to an operad C and its

whiskered operad C'. Let X € 7. Then there is a natural homeomorphism x from the

mapping cylinder M, of n: X — CX to C'X such that the following diagram commutes:
M,

, n
N
X X CcX

g

Tox
(where ¢ and r are the standard inclusion and retraction)

Proof. On CX C M, let x : CX — C'X be the evident inclusion, and define x(z, s) = [s, z]
for (z,s) € X x I, where s € I C C(1)" on the right. Since

(2,0) =n(z) = [e,x] € M, and [0,z] = [e, 2] € C'X,
x is well-defined, and the remaining verifications are easy. O

Proposition A.10. Let C be an operad and let C’ be the monad in 7 associated to C’. Let
X be a C'-algebra and F' a C'-functor in 7 (e.g., X a C-space and F' a C-functor). Assume
that F' is an admissable functor and that (X, *) is a strong NDR-pair. Then B,.(F,C’, X) is
a strictly proper simplicial space.

Proof. Let (h,u) represent (X,*) as a strong NDR-pair. As shown in Definition A.7, (h,u)
determines a representation (Ch, Cu) of (CX,Cx) = (CX, *) as a strong NDR-pair. Clearly
Chyon = nohy and Cuon = u, hence, by Example A.2, (M, X) is a strong NDR-pair. By the
lemma above, (M,, X') is homeomorphic to (C'X,n'X) and (h,u) thus explicitly determines
a representation of (C'X,n'X) as a strong NDR-pair. Write D = C” to simplify notation,
and let

Y = B (F,D,X) = FD/"'X and A; =3s; C Y

where s; = FD/, n : DX — DI~ X. Now (h,u) determines a representation
(D7"h, D9y) of (D97°X, %) as a strong NDR-pair and, with X replaced by DX we
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have just shown that this representation explictly determines a representation, (k;,w;) say,
of (DI~ X /D7 X) as a strong NDR-pair. Since F'D" is admissable,

is then a representation of (Y, A;) as a strong NDR-pair. Since F D) is a natural transfor-
mation, the following diagram commutes for ¢ < j and ¢ € I:

FDikj,
FDI1X — FDItLX

DFZT]’T TFD'LHI
FDJflkjt

FDIX ——FDiX

Therefore h;(I x A;) C A; for i < j. By Definition 11.2, B,(F, D, X) will be strictly proper
if it is proper and, by Lemma A.6, B,(F, D, X) will be proper provided that u;y < 1 implies
wjhi(t,y) < 1fori < j,t €l and y € Y. By our definition of an admissable functor, this
will hold provided that

(D7 ~"w;)k;i(t, x) < 1 whenever (D' ~"w;)(z) < 1,

fori < j,t € I and x € DI"7'X. Here k; and D’~“w; are explicitly determined by the
original representation (h,u) of (X, *) as a strong NDR-pair, and the result is easily verified
by inspection of the definitions. m

The requirement that (X, *) be a strong NDR-pair is no real restriction in the proposition
above in view of the following lemma.

Lemma A.11. Let 6 be an action of an operad C on a based space X € U. Then there is
an action 6’ of C on X’ such that p: X’ — X is a morphism of C-spaces.

Proof. Let ¢ : X C X" and define ¢; : C(j) x (X')) — X' by

9}(@, T, .., 1) = {LHj(C,pxh ..,pz;) if some x; & (I —0)

Ty Tj 1falla:z€I

Here x;---x; € I C X'; both parts of the domain are closed, and both definitions yield
0 = x on the intersection. The requisite verifications are all straightforward. O

The following lemma is relevant to the remarks at the end of §15.

Lemma A.12. Let (Y,0) € C[T],let Y C Z, and let h : I x Z — Z be a homotopy such
that
h(L,2) = 2 h{t,y) = 4, h(0, =) € Y, and At ) = h(t, h(t' 2)

for z€ Z,y €Y, and t,t' € I. Then there is an action 6 of C' on Z such that the retraction
r=hy:Z — Y is a morphism of C’-spaces.
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Proof. Define éj on C(j) x Z7 by commutativity of the diagram

1xrd

C(j) x 27 —=C(j) x Y’

| b

Z Y

and define 6 = hon I x Z C C’ (1) x Z. The requisite verifications are again completely
straightforward. ]

Corollary A.13. If (Y,0) € C[T] and f : X — Y is any map in 7 then there is an action
6 of C' on M such that the retraction r : My — Y is a morphism of C’-spaces.

Proof. Define h : I x My — My by hy = h}_,, where h' is as defined in Example A.2, and
apply the lemma. 0
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