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PREFACE I 

This volume concerns spectra with enriched multiplicative structure. It is a 

truism that interesting cohomalogg theories are represented by ring spectra, the 

product on the spectrum giving r ise  t o  the cup products in the theory. Ordinary 

cohomology with mod p coefficients has Steenrod operations as well as cup products. 

Tbese correspond t o  an enriched multiplicative structure on the Eilenberg-MacLane 

spectrum HZp. Atiyah has shown that the Adam operations in KU-theory are related 

t o  similar structure on its representing spectrum and tom Dieck and Quillen have 

considered Steenrod operations in cobordism coming from similar structure on Thom 

spectra. Kahn, Toda, Milgram, and others have exploited the same kind of structure 

on the sphere spectrum to  construct and study homotom. operations, and Nishida's 

proof of the nilpotency of the stable stems is also based on t h i s  structure on the 

sphere spectrum. 

In a l l  of t h i s  work, the spectrum level structure is either implicit or treated 

in an ad hoc way, although Tsuchiya gave an early formulation of the appropriate 

notions. O u r  purpose is to  give a thorough study of such structure and its applica- 

tions. While there is much that is new here, we are also very interested in  

explaining how the material mentioned above, and other known results,  can be 

rederived and, in many cases, sharpened and generalized in our context. 

The start ing point of our work is the existence of extended powers of spectra 

generalieing the extended powers 

D.X = EL. @ x(') = EL 
J J I:j 

of based spaces X. Here L j is  the synrmetric group on j l e t t e r s ,  EL 3 is  a contract- 

ible space on which I: j acts freely, the symbol x denotes the "half smash product", 

and ~ ( j '  denotes the j-fold smash power of X. This construction and i ts variants 

play a fundamental role in homotom. theory. They appear ubiquitously in the study 

of torsion phenomena. 

It will  come as no surprise t o  anyone that extended powers of spectra can be 

constructed and shown t o  have a l l  of the good properties present on the space level. 

However, those familiar with the deta i ls  of the analysis of smash products of spec- 

t r a  will  also not be surprised that there are onerous technical details involved. 

In working with spectra, the precise construction of smash products is seldom rele- 

vant, and I think most workers in the f i e ld  are perfectly willing t o  use them with- 

out bothering t o  learn such details.  The same att i tude should be taken towards 

extended powers. 



volume is the first. We here assume given extended powers and structured spectra 

and show how to exploit them. This part is meant to be accessible to anyone with a 

standard background in algebraic topology and some vague idea of what the stable 

category is. (However, we should perhaps insist right at the outset that, in stable 

homotopy theory, it really is essential to work in a good stable category and not 

merely to think in terms of cohomology theories on spaces; only in the former do we 

have such basic tools as cofibration sequences.) All of the technical work, or 

rather all of it which involves non-standard techniques, is deferred until the 

second volume. 

We begin by smarizing the properties of extended powers of spectra and intro- 

ducing the kinds of structured ring spectra we shall be studying. An H_ ring spec- 

trum is a spectrum E together with suitably related maps D E + E for j > 0. The 
j 

notion is analogous to that of an Em space which I took as the starting point of my 

earlier work in infinite loop space theory. Indeed, Hm ring spectra may be viewed 

as analogs of infinite loop spaces, and we shall also give a notion of % ring spec- 
trm such that H, ring spectra are analogs of n-fold loop spaces. Nowever, it is to 

be emphasized that this is only an analogy: the present theory is essentially inde- 

pendent of infinite loop space theory. The structure maps of H, ring spectra give 

rise to homology, homotopy, and cohomology operations. However, for a complete 
d 

theory of cohomology operations, we shall need the notion of an H_ ring spectrum. 

These have structural maps D. z d i ~  + lqii~ for j 2 0 and all integers i. 
J 

While chapter I is prerequisite to everything else, the blocks 11, 111, N-VI, 

and VII-IX are essentially independent of one another and can be read in any order. 

In chapter 11, which is primarily expository and makes no claim to originality, 

I give a number of rather direct applications of the elementary properties of 

extended powers of spectra. In particular, I reprove Nishida's nilpotency theorems, 

explain Jones' recent proof of the Kahn-Priddy theorem, and describe the relation- 

ship of extended powers to the Singer construction and to theorems of Lin and 

Gunawardena. 

In chapter 111, Mark Steinberger introduces homology operations for H, (and for 

%) ring spectra. These are analogs of the by now familiar (Araki-Kudo, Dyer- 

Laahofl homology operations for iterated loop spaces. He also carries out extensive 

calculations of these operations in the standard examples. In particular, it turns 

out that the homology of HZ is monogenic with respect to homology operations, a 
P 

fact which neatly explains many of the familiar splittings of spectra into wedges of 

Eilenberg-MacLane and Brown-Peterson spectra. 

In chapters IV-VI, Bob Bruner introduces homotopy operations for H,ring spec- 

tra and gives a thorough analysis of the behavior of the H, ring structure with 

respect to the Adams spectra sequence and its differentials. As very special 

cases, he uses this theory to rederive the Hopf invariant one differentials and 

certain key odd primary differentials due to Toda. The essential point is the rela- 

tionship between the structure maps DpE + E and Steenrod operations in the E2 term 

of the Adams spectral sequence. Only a few of the Steenrod operations swvive to 

homotopy operations, and the attaching msps of the spectra D 84 naturally give rise 
P 

to higher differentials on the remaining Steenrod operations. An attractive feature 
of Bruner's work is his systematic exploitation of a "delayed" Adams spectral 

sequence originally due to Milgram to keep track of these complex phenomena. 

d in chapters VII-IX, Jim McClure relates the notion of an H, ring spectrum to 

structure on the familiar kinds of spectra used to represent cohomologg theories on 

spaces. For example, he shows that the representing spectrum KU for complex 

periodic K-theory is an $ ring spectrum, that the Atiyah-Bott-Shapiro orientations 
give rise to an $ ring map WpinC + W ,  and that similar conclusions hold with 

d = 8 in the real case. He then describes a general theory of cohomology operations 

and discusses its specialization to ordinary theory, K-theory, and cobordism. 

Finally, he gives a general theory of homology operations and uses the resulting new 

operations in complex K-theory to compute the K-theory of QX = colim nnz% as a 

functor of X. This is a striking generalization of work of Hodgkin and of Miller 

and Snaith, who treated the cases X = SO and X = RP" by different methods. 

Our applications - and I have only mentioned some of the highlights - are by no 
means exhaustive. Indeed, our examples show that this is necessarily the case. Far 

from being esoteric objects, the kindsof spectra we study here abound in nature and 

include most of the familiar examples of ring spectra. Their internal structure is 

an essential part of the foundations of stable homotopg theory and should be part of 

the tool kit of anybody working in this area of topology. 

There is a single table of contents, bibliography, and index for the volume as 

a whole, but each chapter has its own introduction; a reading of these will give a 

much better idea of what the volume really contains. References are generally by 

name (Lemma 3.1) within chapters and by number (11.3.1) when to results in other 

chapters. References to "the sequel" or to [Equivl refer to "Equivariant stable 

homotopy theory", which will appear shortly in this series; it contains the con- 

struction and analysis of extended powers of spectra. 

3.  Peter ffiy 

Feb. 29, 1984 
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CHAPTER I 

FXTENDED POWEAS AND H - R I N G  SPECTRA 

by J. P. May 

In t h i s  introductory chapter, we establish notations t o  be adhered t o  through- 

out and introduce the basic notions we shal l  be studying. In the f i r s t  section, we 

introduce the equivariant half-smash product of a n-space and a n-spectrum, where n 

is a f i n i t e  group. In the second, we specialize t o  obtain the extended powers of 

spectra. We also catalog various homological and homotopical properties of these 

constructions for l a t e r  use. While the arguments needed t o  make these two sections 

rigorous are deferred t o  the sequel ( a l i a s  IEquivl or 1511 ), the claims the reader 

is asked to accept are a l l  of the form that  something ut ter ly  t r i v i a l  on the level  

of spaces is also t rue  on the level  of spectra. The reader willing t o  accept these 

claims will  have all of the background he needs t o  follow the arguments in the res t  

of th i s  volume. 

d .  In sections 3 and 4, we define H_ r ing spectra and H_ ring spectra i n  terms of 

maps defined on extended powers. We a lso  discuss various examples and catalog our 

techniques for producing such structured ring spectra. 

h $1. Equivariant half-smash products 
I 

We must f i r s t  specify the categories i n  which we shal l  work. All spaces are t o  

be compactly generated and weak Hausdorff. Most spaces w i l l  be based; 7 w i l l  denote 
! 

the category of based spaces. 

Throughout t h i s  volume, by a spectrum E we shal l  understand a sequence of based 

spaces Ei and based homeomorphisms Oi:xi + the notation oi being used for  

the adjoints EXi + A map f:E + E' of spectra is a sequence of based maps 

fi:Ei + El s t r i c t l y  compatible with the given homeomorphisms; f is said t o  he a weak 

equivalence i f  each fi  is a weak equivalence. There resul ts  a category of spect ra&.  

There is a cylinder functor E A I+ and a result ing homotopy category ha . The 

stable category hl is  obtained from hS by adjoining formal inverses t o  the weak 
- 

equivalences, and we shal l  henceforward delete the adjective "weak". h d  is equiv- 

alent  t o  the other stable categories in the l i t e ra tu re ,  and we shal l  use standard 

properties and constructions without further comment. Definitions of v i r tua l ly  a l l  

such constructions w i l l  appear i n  the sequel. 

*I. Define h'J and 53 analogously t o  h d  and ii8 . For X s $  , define 

&X = colim nn&, the colimit being taken with respect t o  suspension of maps 

S" + Px. Define adjoint functors 



2": 2 + ,$ and om: g + 9 The f i r s t  nd perhaps most basic property of th i s  construction is that  it 

generalizes the s tabi l iza t ion of the space level  construction. I f  X is a based n- 

by C"X = IQZ'X) and o " ~  = Eo. (This conflicts  with the notation used in most of space, then z(4( is a n-spectrum in a natural  way. 
previous work, where E" and n" had different meanings and the present z' was cal le  

Q; the point of the change is that  the present z" is by now generally recognized t o  

be the most appropriate in f in i t e  suspension functor, and the notation om for the 

underlying in f in i t e  loop space functor has an evident mnemonic appeal.) We then 

have &X = o"zax, and the inclusion and evaluation maps r,:X .+ onr% and 

s:znony t Y pass to colimits t o  give n:X + o"z"x for a space X and ~:c"n"E + E 

for  a spectrum E. For a q  homology theory h*, c induces the s tabi l iza t ion 

homomorphism 5 E + hxE obtained by passage t o  colimits froin the suspensions * 0 
associated t o  the path space fibrations Ei + PEi+l t Ei+l for  i 2 0. 

Let n be a f i n i t e  group, generally supposed embedded as a subgroup of some 

synnnetric group E j .  8y a based n-space, we understand a l e f t  n-space with a 

basepoint on which n acts  t r iv i a l ly .  We l e t  " 3  denote the resulting category. 

Actually, most resul ts  in t h i s  section apply t o  arbitrary compact Lie groups n. 

Let W be a free unbased right n-space and form W+ by adjoining a d is jo in t  

basepoint on which n acts t r iv i a l ly .  For X s n$, define the "equivariant half- 

smash productn W x n  X to be W' A ,  X, the orbi t  space of W x X/W x {*) obtained by 

identifying (wo,x) and (w,ox) for w E W ,  x E. X, and o E n. 

Props i t ion  1.1. For based a-spaces X, there is a natural  isomorphism of spectra 

W P, z-x s C'(S W,X) .  

The construotion enjoys various preservation properties, a l l  of which hold 

t r i v i a l l y  on the space level .  

Proposition 1.2 Li) The functor Wwr(?) from " A t 0  dpreserves wedges, pushouts, 

and a l l  other categorical colimits. 

(ii) If X is  a based n-space and EA X is  given the diagonal n action, then 

W r (EAX) 2 (Wv E)nX before passage t o  orbi ts  over n; i f  n acts t r i v i a l l y  on X 

w w,, ( E A X )  z ( W  a,, E)AX 

(iii) The functor W r , , (?)  preserves cofibrations, cofibres, telescopes, and a l l  

other homotopy colimits. 

Taking X = 1' i n  (ii), we see that  the functor W n,, L?) preserves n-homotopies 
In the sequel, we shal l  generalize th i s  t r i v i a l  construction t o  spectra. That between maps of n-spectra. 

is, we shal l  explain what we mean by a "n-spectrum E" and we shal l  make sense of 
Let F(X,y) denote the function space of based maps X + Y and give FLW+,Y) the n 

"W pl,, E"; t h i s  w i l l  give a functor from the category n.3 of n-spectra t o  4 .  For 
action fo f ) (w)  = fLwo) for  f:W + Y ,  o E n, and w s W. For "-spaces X and spaces Y, 

intuit ion,  with n C z j ,  one may think of E as consisting of based n-spaces Eji for  
we have an obvious adjunction 

i 5 0 together with n-equivariant maps E i i h  S j  + Ei ( i+ , )  whose adjoints are homeo- 
" ~~ " , -  -. 

morphisms, where n ac t s  on Sj = S'A ... A S1 by permutations and acts diagonally on a(W &,X,Y) s z ~ ( x , F ( w * , Y ) ) .  
E,, A Sj. 

0 -  

We shal l  have an analogous spectrum level  adjunction 
The reader is cordially invited t o  t r y  his hand a t  making sense of W p,E using 

nothing but the definit ions already on hand. He w i l l  quickly find that  work is  & ( W  rxnE,D) e n A(E,FIW,D)I 
required. The obvious idea of gett ing a spectrum from the evident sequence of 

spaces W P,, E.. and maps for  spectra D and n-spectra E. Since l e f t  adjoints preserve colimits, t h i s  w i l l  
31 

imply the f i r s t  part of the previous result .  

Z ( W  6* E . . )  + W W" (E..A S J )  + W 
Ej(i+l) J l  J 1 Thus the spectrum level  equivariant half-smash products can be manipulated just 

l ike  the i r  simple space level  counterparts. This remains t rue  on the calculational 

is u t t e r ly  worthless, as a moment's reflection on homology makes clear (compare level .  In part icular,  we shal l  make sense of and prove the following result .  
11.5.6 below). The quickest form of the definition, which is not the form best  

suited for  proving things, is se t  out br ief ly  i n  VIII 58 below. The skeptic is Theorem 1.3. If W is a f ree  n-CW complex and E is a CN spectrum with ce l lu lar  n 
invited t o  refer  to the detailed constructions and proofs of the sequel. The action, then W W, E is a CN spectrum with ce l lu lar  chains 
pragmatist is invited t o  accept our word that  everything one might naively hope t o  

be true about W r,E is in fact  true. 



When p = e is the t r i v i a l  group, n M F is the free-"-spectrum generated by a 

spectr& F. Intuit ively,  n M F is the wedge of copies of F indexed by the elements 
Moreover, the following assertions hold. 

of n and given the action of n by permutations. Here the lemma specializes t o  give 

( i)  If D is a n-suhcomplex of E, then W w,D is a subcomplex of W K, E and 
W *,, (n K F) = W K F, 

( W  enE)/(W K- Dl = W pii (ED) .  
and the nonequivariant spectrum W M F is (essential ly) just  C A F .  Note tha t ,  with 

(ii) If wn i s  the n-skeleton of W, then wn-l a,, E is a subcomplex of wn p, E and p = e and V a point in the discussion above, we obtain a natural map 

, :E tWrn  E 

(iii) With the notations of (i) and (ii), depending on a choice of basepoint for W. 

For f i n i t e  groups n and p ,  there are also natural  isomorphisms 

a:(W M n  E) A (V xP F) * ( W  x V )  w 
n x p  

( E A F )  

The calculation of ce l lu lar  chains follows from (il-(iii), the simpler calcula- 

t ion  of chains for  ordinary smash products, and an analysis of the behavior of the n 
B :  V k ( W  M" E)") + ( V  x w') x E(') 

actions with respect t o  the equivalences of (ii). P pin 

So fa r  we have considered a fixed group, hut the Construction is also natural  fo r  n-spaces W, n-spectra E, p-spaces V, and p-spectra F. Here E ( J )  denotes the j- 

i n  n. Thus l e t  f : p  + n be a homomorphism and l e t  g:V + W be f-equivariant i n  the 

sense that  g(vo) = g ( v ) f ( o )  for v s V and o E p, where V is a p-space and W i s  a n- multiplication 

space. For n-spectra E, there is then a natural map 
(o,ul ,..., U . ) ( T , Y ~  ,..., v . )  = (or 

J J 2 " ( l ) v l , . . . l u T ( j ) v j ) .  * 
g cr 1: V ix ( f  E) + W W "  E, 

P The various actions are defined in the evident way. These maps will  generally be 

applied i n  composition with naturali ty maps of the sort  discussed above. 

For X E lij and Y E pJ , we have an obvious adjunction We need one more general map. If E and F are n-spectra and n acts  diagonally 

t on E A F, there is a natural map 
" 3  (nt A Y,X)  E p g  (Y,f X). 

P 
S:W Cn (EhF)  + ( W  Nii E ) A  ( W  Mil F).  

We shal l  have an analogous extension of action functor which assigns a n-spectrum 

n a F t o  a p-spectrum F and an analogous adjunction A l l  of these maps i,o,B, and 6 are generalisations of the i r  evident space 
level  analogs. That is, when specialized t o  suspension spectra, they agree under 

t 
n d ( n  P F,E) E pb(F, f  E). 

P 
the isomorphisms of Proposition 1.1 with the suspensions of the space level maps. 

Moreover, a l l  of the natural commutative diagrams relat ing the space level  maps 
Moreover, the following resul t  w i l l  hold. 

generalive t o  the spectrum 'level, a t  leas t  a f t e r  passage t o  the stable category. 

Lemma 1.4. With the notations above, 
52. Extended powers of spectra 

Wa ( " a  Fl = W l x  F. 

The modt important examples of equivariant half-smash products are of the form 

W %" ~ ( j )  for a spectrum E, where n c Cj acts  on ~ ( j )  by permutations. It requires 

a l i t t l e  work t o  make sense of th i s ,  and the reader is asked t o  accept from the 



1 6 

'1 
sequel that one can construct the j-fold smash power as a functor from 1 to n& with ~n general, we only have a spectral sequence. Sinoe the.skeleta1 filtrations 

all the good properties one might naively hope for. The general properties of these of ~q and Bn satisfy (En)"/% = (Bn)", part (ii) of Theorem 1.3 gives a filtration of 

extended powers (or j-adic constructions) are thus direct consequences of the D,E with successive quotients I (BZ)~/(BZ)~-~I a ~ ( j  ) . 
1' assertions of the orevians section. The followine conseouence of Theorem 1.3 is 

Corollary 2.4. For any homology theory k,, there is a spectral sequence with 

E~ = ~x(";~~(j)) whioh converges to ]*(D,E). 

Corollary 2.1. If W is a free n-CW complex and E is a CW spectrum, then W wn E (j) 

is a CW-snectrum with This implies the following important preservation properties. 

e ~(j)) 2 C,W @,,(c,E)~. 
proposition 2.5. Let T be a set of prime numbers. -~ 
(i) If h:E .r ET is a looalization of E at T, then D,(ET) is T-local and 

Thus, with field coefficients, Cx(W a, ELj I) is chain homotopy equivalent to 
D,h:D,E + D,(ET) is a looalization at T. 

c*w,@,,(&E)~. 
(ii) If y:E + iT is a completion of E at T, then the completion at T of 

Indeed, c*(E(~)) s (c*E)~ as a n-complex, where (c*E)~ denotes the j-fold Dny :DnE + D,(ET) is an equivalence. 

I 
l,l 
I tensor power. This implies the first statement, and the second statement is a proof. We refer the reader to Bousfield I211 for a nice treatment of localizations 

#I 1 standard, and purely algebraic, consequence (e.g. I68,1.11). 
- 
and completions of spectra. By application of the previous corollary with k* = n*, 

:,, 
I , $  We shall be especially interested in the case when W is contractible. While we see that Dx(ET) has T-local homotopy groups and is therefore T-local. (Note that 

all such W yield equivalent constructions, for definiteness we restrict attention to there is no purely homological criterion for recognizing when general spectra, as 

W = En, the standard functorial and product-preserving contractible n-free CW- opposed to bounded below spectra, are T-local.) Taking k, to be ordinary homology 1; complex (e.g. 170,p.311). For this W, we define with T-local or mod p coefficients, we see that Dnh is a ZT-homology isomorphism and 

D,y is a Z -homology isomorphism for all p c T. The conclusions follow. 
D,E = W *, E(j ) . P 

f 
I, 

When n = z., we write D,,E = D.E. Sinoe Ex1 is a point, 4 E  = E. We adopt the 
J J Before proceeding, we should make clear that, except where explicitly stated 

convention that DOE = E(O) = S for all spectra E, where S denotes the sphere 
otherwise, we shall be working in the appropriate homotopy categories K 3  or Ed 

! spectrum z-so. 
throughout this volume. Maps and commutative diagrams are always to be understood in 

We adopt analogous natations for spaces X. Thus D.X = Ez. x x'", DIX = X, 
3 

this sense. 
.I =j 

and DOX = SO. Since there is a natural isomorphism Zm(x(j)) s (Zmx)(j' of n- The natural maps discussed at the end of the previous section lead to natural 

maps 
spectra, Proposition 1.1 implies the following important consistency statement. 

,j:~(j' + D j E 

Corollary 2.2. For based spaces X, there is a natural isomorphism of spectra 
a. .D.EADkE+D. E 
~,k. J J +k 
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We conclude this section with eight lemmas which summarize the calculus of 

extended pow6rs of spectra. Even for spaces, such a systematic listing is long 

overdue, and every one of the diagrams specified will play some role in our 

theory. The proofs will be given in the sequel, hut in all cases the analogous 

space level assertion is quite easy to check. 

Let r :E n F -r F4 E denote the commutativity isomorphiw in 64 . 
; {u~,~) is a commutative and associative system, in the sense that the 

These maps will play an essential role in our theory. H, ring spectra will be 

the notion of a ring spectrum presupposes the coherent associativity and commuta- 

tivity of the smash product of spectra in the stable category, so the notion of an 
for the composite in the second diagram, and so on inductively. 

Before getting to these, we describe the specializations of our transformations 

when one of j or k is zero or one. diagrams commute. 

Remarks 2.6. When j or k is zero, the specified transformations specialize to 

identity maps (this making sense since DOE = S and S is the unit for the smash 

product) with one very important exception, namely @j,O:DjS + S. these maps play a 

.. 0 E-d a, 0 D.S = D E S 2. E,D.s' -I: S = S. 
J j J diagrams commute. 

Remarks 2.7. The transformations tl, Sj,l, Bl,j, and b1 are all given by identity 

The last equation is generalized in L e m  2.11 below. 

Our next two lemmas relate the remaining transformations to the I j. 
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itself an H, r'ing map for all j. 

Proof. These are elementary diagram chases based respectively on: 

(i) Remarks 2.6 and the case k = 0 and E = S of Lemmas 2.9 and 2.13. 

(ii) Lemas2.12and2.14. 

( iii) Remarks 2.7 and Lemmas 2.9 and 2.11. 

In view of Proposition 2.5, we have the following further closure property of 

the -category of H, ring spectra. 
This is a valid sharpening of the notion of a ring spectrum in view of the 

following consequence of Remarks 2.6 and Lrmna 2.8. 

Lemma 3.2. With e = cO:S + E and + = 5 2 o L 2' .EAE + E, an H, ring spectrum is a 

ring spectrum and an H, ring map is a ring map. 

A A 

There are various variants and alternative forms of the basic definition that completion, 5. :D.E + ET can and must be defined as the composite 
will enter into our work. For a first example, we note the following facts. 

= 1, and + = If the first diagram of Definition 7.1 commutes, then cj 
factors as the composite 

An easy calculation in ordinary cohomology shows that Eilenherg-MacLane spectra 
are ring spectra. 

Proposition 3.6. The Eilenberg-MacLane spectrum HR of a comutative ring R admits a 
unique H, ring structure, and this structure is functorial in R. If E is a 

connective ring spectrum and i:E t H(nOE) is the unique map which induces the 

identity homomorphism on no, then i is an H, ring map. 

Lemmas 2.8 and 2.11 via a rather lengtw diagram chase. Proof. Corollary 2.1 implies that i 3 .:F(jl + D.F 3 induces an isomorphism in 

R-cohomology in degree 0 for any connective spectrum F. Moreover, by the Hurewicz; 
The definition of an % ring spectrum, together with the formal properties 

theorem and universal coefficients, HO(F;H) may he identified with Hom(noF,R). Thus 
of extended powers, implies the following important closure and consistency 

we can, and by Proposition 3.4(iii) must, define cj:DjRR + HR to he that cohomology 
properties of the category of H, ring spectra. 

class which restricts under I .  3 to the j-fold external power of the fundamental class 

or, equivalently under the identification above, to the j-fold product on R. 
Proposition 7.4. The following statements hold, where E and F are H, ring spectra. 

Similarly, the comutativity of the diagrams in Definition 3.1 is checked by 

restricting to smash powers and considering cohomology in degree 0. The same argu- 

ment gives the functoriality. For the last statement, the maps 5.D.i and iSj from 
(Ti) The smash product EnF is an H, ring spectrum with structural maps the 3 3 

the resulting product is the standard one, (+~+)(l *r  "1). 
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We shall oontinue to write i for its composite with any map H(nOE) + Hf7 induced Proposition 3.9. If E is an & ring spectrum, then Eg is an H a  space with 
by a ring homomorphism noE + R. We think of such a map i:E + HR as a counit of E. structural maps 

the composite ie:S * HR is clearly the unit of Hf7. (F , . )  0 sj: DjEo + Eo . 
J 0 

/ / I  In the rest of this section, we consider the behavior of H, ring spectra with , , 
I I !  ,,, 

1 respect to the functors z' and $2". Note first that if E is a ring spectrum, then 

: Ii 0 0 Proof. We must check that the commutativity of the diagrams of Definition 3.1 for E 
11 

its unit e:S -r E is determined by the restriction of eo:QS + Eo to S . If the two 
i , , 

implies their commutativity for Eo. For the first diagram, it is useful to 
resulting basepoints 0 and 1 of Eo lie in the same component, then e is the trivial 

/ I I! ., map and therefore E is the trivial spectrum. 
introduce the natural map 

Definition 3.7. An H, space with zero, or SO space,'is a space X with basepoint 0 

together with based maps c:D.X + X for j 2 0 such that the diagrams of Definition 
J '  J for spectra E and F. The relevant diagrams then look as follows 

3.1 commute with E replaced by X. Note that SO:~O + X gives X a second basepoint 1. 

r D. E J+k 0 

Y+ = Y~-{o} is then an HmO space. 

We remind the reader that we are working up to homotopy (i.e., in Ef ). There 
is a concomitant notion of a (homotopy associative and commutative) H-space with 

zero, or %-space, given by maps e:sO + X and +:XnX + X such that the diagrams 

defining a ring spectrum commute with E replaced by X. It is immediately obvious 

that, mutatis mutandis, Lemma 3.2 and Propositions 3.3-3.5 remain valid for spaces. 
EohE0 (E A E ) ~  

Proposition 3.8. If X is an HmO space, then z"Y, is an H, ring spectrum with 

structural maps D.D E 
*L k 

, , 2 k 0  
zrn~.:D.z X s L D.X + zmx. 

J J J 

The relationship of 12- to H, ring structures is a bit more subtle since it is 
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In the upper diagram, c2t2 = (12)0c by the naturality of i, and t2 and the compati- hJ E EO(y(j)) is the external jth power of h, and similarly for the internal opera- 

bility of the space and spectrum level maps 12. The commutativity of the lop tions. McClure will give a systematic study in chapter VIII. While we think of 

rectangles of both diagrams follows similarly, via fairly elaborate chases, from the ? j as cohomology operations, they can be manipulated to obtain various other 
natural.ity and compatibility diagrams together with the fact that the composite kinds of operations. For example, we can define homotopy operations on nxE param- 

m 's ,,, 
SOL Q:I + I n z + ? is the identity transformation. etriaed by elements of &D Sq. j 

The preceding results combine in the following categorical description of the 
Definition 4.2. Let E be an H, ring epectrum. For a cE D.Sq, define 

relationship between HS0 spaces and H, ring spectra. - - .. r J  
1 ,  a:* E + iirE by a(h) = a/ T1(h) for h E nqE Explicitly, a(h) is the composite 9 

Proposition 7.10. If X is an HW0 space, then i,:X + n"z"x is a map of Hd spaces. 

If E is an H, ring spectrum, then s:zmnmE + E is a hap of H, ring spectra. There- 

fore I" and nm restrict to an adjoint pair of functors relating the categories of 
HmO Spaces and of Hm ring spectra. 

The proof consists of easy diagram chases. It follows that if E is an H, ring 

spectrum, then sO:QEO + Eo is a map of HmO spaces. As we shall explain in the 

sequel, the significance of this fact is that it implies that the Oth space of an % 
ring spectrum is an "H, ring space". 

d .  
$4. Power operations and H rlng sprectra 

Just as the product of a ring spectrum gives rise to an external product in its 

represented cohomology theory on spectra and thus to an internal cup product in its 

represented cohomology theory on spaces, so the structure maps 5. of an % ring J 
spectrum give rise to external and internal extended power operations. 

These operations will make a fleeting appearance in our study of nilpotency 

relations in the next chapter, and Bruner will study them in detail in the case 

E = S in chapter V. McClure will introduce a related approach to homology opera- 

tions in chapter VIII. 

Returning to Definition 4.1 and replacing Y by zjY for any i, we obtain opera- 

tions %:E-~Y + EODjziY. A momentfs reflection on the Steenrod operations 
in ordinary cohomology makes clear that we would prefer to have operations 

E-~Y + E-jiDjY for all i. However, the twisting of suspension coordinates which 

obstructs the equivalence of D ziY with zjiD.Y makes clear that the notion of an H, 
j J 

ring spectrum is inadequate for this purpose. For Y = I%, one can set up a 

formalism of twisted coefficients to define one's way around the obstruction, hut 

this seems to me to be of little if any use calculationally. Proceeding adjointly, 

we think of EiY as lY,ziEl and demand struotural maps S j : ~ j ~ i ~  t diE for all 

integers i rather than just for i = 0. We can then define extended power operations 

Definitions 4.1. Let E be an Y, ring spectrum. For a spectrum Y, define n 
Sj:~i~ = IY,E~EI + I D ~ Y , I ~ ~ E ~  diDjY 

0 $:E% = IY,EI + IDjY,EI = E DjY 

P. :@x = E~I-X + ~j~ I ~ ( B ~ + A  X) = 8ji(~zth X) 
the reduced cohomology of X and define 

J j J 

for spaces are given by Pj(h) = (Isd)*?.(h), as in Definition 4.1. 
J 

In practice, this demands too much. One can usually only obtain maps 
by Pj(h) = (~-d)*?~(h) for ~:I"x + E, where 

of 2. In favorable cases, one can use twisted coefficients or restriction to cyclic 
groups to fill in the missing operations, in a manner to be explained by McClure in 
chapter VIII. The experts will recall that some such argument was already necessary 

Of course, the main interest is in the case j = p for a prime p. A number of to define the classical mod p Steenvod operations on odd dimensional classes when 

basic properties of these operations can he read off directly from the definition of 



. . 

18 19 

d 
Definition 4.3. Let d he a positive integer. An H, ring spectrum is a spectrum E ( v )  T h e l a s t  diagram i n  the definit ion involves a permutation-of suspension 

together with maps coordinates, hence one would expect a sign t o  appear. However, as  McClure w i l l  

D.zdiE + zdjiE 9,i: J 
explain in VII.6.1, noE necessarily has characterist ic two when d is odd. 

for a l l  j ? 0 and a l l  integers i such that  each 'l,i is an identi ty map and the Given th i s  l a s t  fact ,  preoisely the sane proof as that  of Proposition 3.6 

following diagrams comute for a l l  j , 0, k 2 0, and a l l  integers h and i. yields the following resul t .  

and 
6 

D ( z d h ~ * z d i ~ )  dh d i  * D.E EAD.E E 
j I 1 

J 

boposi t ion  4.5. Let R he a comutative ring. If  R has characterist ic two, then HR 
1 admits a unique and functorial  H ring structure. In general, HR admits a unique 

d .  and functorial if?, r ing s t r u ~ t u r e .  If  E is a connective H, ring spectrum &d 

i:E t B(noE) is the unique map which induces the identi ty homomorphism on no, then i 
d .  is an H, ring map. 

I 

I 
A t  t h i s  point, most of the main definit ions are an hand, hut only rather simple 

I examples. We survey the examples t o  he obtained l a t e r  in the res t  of th i s  section. 

~ j 4 1  b j , h ~ ' j , i  
We have three main techniques for the generation of examples. The f i r s t ,  and 

i 
most down t o  earth where it applies, is due t o  McClure and w i l l  be explained i n  

D.Z d(h+i)E ',i ,h+i , z d j ( h + i ) E L  ,djjE ,WE 
J I chapter V I I .  The idea is th is .  In nature, one does not encounter spectra E with Ei 

! 
homeomorphic t o  QEi+l hut only prespectra T consisting of spaces Ti and maps 

~~ . - 

oi:XTi + Ti+l. There is a standard way of associating a spectrum t o  a prespectrum, 
Here the maps are obtained by suspension from the product E 2 , ~ t 2  On E. A map 

d .  d i  
and McClure w i l l  specify concrete homotopical conditions on the spaces Tdi and 

d .  f:E + F between H, rmg  spectra is an Ha rmg map i f  . 0 D f = Zdjif 0 5. . d d .  
J j l  J J , l  composites E Tdi + Td(i+l)  which ensure tha t  the associated spectrum is an H- ring 

- . - -  

lil : - 
for a l l  j and i. i spectrum. Curiously, the presence of d is essential .  We how of no suoh concrete 

d .  way of recognizing i-6, ring spectra which are not H, ring spectra far  some d > 0. 
Remarks 4.4. (i) Taking i = 0, we see that  E is an H, ring spectrum. The l a s t  

diagram is a consequence of the f i r s t  two when i = 0 but is independent otherwise. 
McClure w i l l  use th i s  technique t o  show that  the most familiar Thom spectra and 

K-theory spectra are HZ ring spectra for the appropriate d. While th i s  technique is 
(ii) Since DOE = S for a l l  spectra E, there is only one map e i , ~ ,  namely the unit d 

very satisfactory where it applies, it is limited t o  the recognition of H, ring 

spectra and demands that  one have reasonably good calculational control over the 
(iii) A s  in Proposition 3 . 4 ( i i i ) ,  the following diagram comutes. 

spaces Tdi. The f i r s t  l imitat ion is significant since, as McClure will  explain, the 
d .  sphere spectrum, for  example, is not an H rmg  spectrum for any d. The second 

limitation makes the method unusable for generic classes of examples. 

Our second method is a t  the opposite extreme, and depends on the black box of 

in f in i t e  loop space machinery. In 1711, Nigel Ray, Frank QuiM, and I defined the 

notion of an E, ring spectra. Intuit ively,  t h i s  is a very precise point-set level  
( i v )  As in Proposition 3 .4 ( i i ) ,  the smash product of an H: ring spectrum E and an notion, of which the notion of an H, ring spectrum is a cruder and l e s s  structured 

d .  H, ring spectrum F is an Ha rmg spectrum with structural  maps the composites up t o  homotopy analog. Of course, E, ring spectra determine H, ring spectra by 

neglect of structure.  There are also notions of E, space and H, ring space which 

hear the same relationship of one t o  the other. Just  as the zeroth space of an H, 

ring spectrum is an H, ring space, so the z;eroth space of an E, ring spectrum i s  an 

E, ring space. In general, given an H, ring space, there is not the s l ightes t  
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reason t o  believe that  it is equivalent, or nicely related, t o  the zeroth space of CHAPTER I1 

an H, ring spectrum. However, the machinery of 171,731 shows that  E, ring spaces 
MISCELLANWUS APPLICATIONS I N  STABLE HOMOMPY lliWRY 

functorial ly determine E, ring spectra the zeroth spaces of which are,  in a suitable 

sense, ring completions of the original  semiring spaces. Precise definit ions and 

proofs of the relationship between E, ring theory and H, ring theory w i l l  be given by J. P. May 

i n  the sequel. with contributions by R. R. Bruner, J. E. McClure, and M. Steinberger 

As explained i n  deta i l  in 1731, which corrects 1711, the classifying spaces of 

categories with suitable internal  structure,  namely bipermutative categories, are E, 

ring spaces. Among other examples, there resul t  E, ring structures and therefore H, A number of important resul ts  i n  stable homotopy theory are very easy con- 

ring structures on the connective spectra of the algebraic K-theory of commutative sequences of quite superficial  properties of extended powers of spectra. vie give 

rings. several such applications here. 

The E, and H, ring theories summarized above are limiting eases of E,, and R,, 
theories for n , 1, t o  which the ent i re  discussion applies verbatim. The f u l l  

theory of extended powers and structured ring spaces and spectra' enta i l s  the use of 

operads, namely sequences &of suitably related 1 spaces Cj. An action of d on a 3 - 
spectrum E consists of maps c . :  $. w E ( j i  + E such that  appropriate diagrams com- 

J J C. 
mute. For an actson up t o  homotopy, $he same diagram are,only required t cdmotopy  

comute. If  each has the 1 equivariant homotopy type of the configuration 
j j- 

space of j-tuples of d is t inc t  points i n  R", then is said t o  be an E,, operad. F1, 
or R,, ring spectra are spectra with actions or actions up t o  homotopy by an % 
operad. The notions of E,, and R,, ring space require use of a second operad, assumed 

t o  be an E, operad, t o  encode the additive structure which is subsumed i n  the 

i terated loop structure on the spectrum level .  E,, ring spaces naturally give r i se  

t o  E,, and thus R,, ring spectra, and interesting examples of E,, ring spaces have been 

discovered by Cohen, Taylor, and myself 1291 in connection with our study of 

generalized James maps. 

Our l a s t  technique for recogniaing F1, and I$ ring spectra l i e s  halfway between 

the f i r s t  two, and may be described as the brute force method. It consists of 

direct  appeal t o  the precise definit ion of extended powers of spectra t o  be given i n  

the sequel. One class of examples w i l l  be given by Steinberger's construction of 

free C-spectra. Another class of examples will  be given i n  Lewis' study of 

m e  preservation properties of equivariant half-smash products (e.g. i n  1.1.2) 

do not directly imply such properties for extended powers since the jth power 

functor from spectra t o  1.-spectra tends not t o  enjoy such properties. We J 
i l l u s t r a t e  the point in section 1 by analyzing the structure of extended powers of 

wedges and deriving useful Consequences about extended powers of sums of maps. 

mese resul ts  are largely spectrum level  analogs of resul ts  of Nishida 1901 about 

extended powers of spaces, but the connection with transfer was suggested by ideas 

of Segal 1961. 

Reinterpreting Nishida's proof 1901, we show i n  section 2 that  the nilpotency 

of the r ing nxS of stable homotopy groups of spheres (or "stable stems") is an 

immediate consequence of the &dm-Priddy theorem and our analysis of extended powers 

of wedges. The implication depends only on the fac t  tha t  the sphere spectrum is an 

H, ring spectrum. This proof gives a very poor estimate of the order of 

nilpotency. Nishida also gave a different proof 1901 which applies only t o  elements 

of order p but gives a much bet ter  estimate of the order of nilpotency. In section 

6, we show that  t h i s  too resul ts  by specialization t o  S of a resul t  valid fo r  

general H, r ing spectra. Here the key step is an application of a sp l i t t i ng  theorem 

that  Steinberger w i l l  prove by use of homology operations i n  the next chapter. H i s  

theorem w i l l  make clear t o  what extent th i s  method of proof applies t o  elements of 

order pi with i > 1. 

The material discussed so f a r  dates t o  1976-77 (and was described in 17211. 

The material of sections 3-5 is much more recent, dating from 1982-83. The ideas 

here are ent i re ly  due t o  Miller, Jones, and Wegmann, who saw applications of 

extended powers that  we had not envisaged. (However, a l l  of the information about 

extended powers needed t o  carry out the i r  ideas was already expl ic i t  or implicit i n  

I721 and the 1977 theses 123, 1011 of Bruner and Steinberger.) Jones and Wegmann 

(441 constructed new homology and cohomology theories from old ones by use of 

systems of extended powers and showed that  theorems of Lin 1531 and Gunawardena I381 

imply that  these theories specialize t o  give exotic descriptions of stable homotopy 



and stable cohomotopy. Jones 1431 l a t e r  gave a remarkably ingenious proof of the 

Kahn-Priddy theorem in terms of these theories. Tne papers 143, 441 only treated 

the case p = 2, and we give the deta i l s  for a l l  primes i n  sections 3 and 4. ( I n  

f ac t ,  much of the work goes through for non-prime integers.) The idea for the 

Jones-Wegmann theories grew out of Haynes Miller 's  unpublished observation that  

systems of extended powers can be used t o  realize cohamologically a basic algebraic 

construction introduced by Singer 152, 981. We explain th i s  fac t  and its 

relationship t o  the cited theorems of Lin and Gunawardena i n  section 5. 

where I y s  over a l l  sequences (il ,..., i. 1 such that  1 2 ir 5 .k. Say that  I s J i f  J 
there are exactly js entries ir equal t o  s for each s from 1 t o  k. Tor each 
par t i t ion  J of j, l e t  z J  = Z j l  x ... x I .  and define 

J k 

(Here the isomorphism would he obvious on the space level and holds on the spectrum 

level  by direct  inspection of the definitions in IEquiv. I1 883-41.1 Then YJ is a 
zj-subspectrum of ~ ( j )  and ~ ( j )  = v yJ. Now 

3 

/ ( j , )  ( j k )  
8 1 .  mtended powers of wedges and transfer maps D . 1  = V E I  u Y and EI. x Y = EI. M ( Y  A ... A Y  ) J J j Z j J  J z .  J 

J J =J 

~ i x  positive integers j and k and spectra Yi f o r  1 2 i 2 k. Let by 1.1.2(11 and 1.1.4. Clearly f J  has image i n  EIj M ~ . Y ~  and factors as the 
J 

denote the composite 

 or l a t e r  use, note that  permutations a s Ik ac t  On parti t ions and that  1.2.8 

implies the equivariance formula f J  = foJ 0 0. Note too that ,  for maps hi:Yi + E 

Here a i s  an isomorphism. (Technically, the smash product in its domain is 

"internal" while that  in its range is "external"; see IEquiv, 11531.1 The map 

equivalence (by IEquiv, V1.1.15 1 ) . The conclusion follows. 

Our in teres t  is mainly i n  f i n i t e  wedges, hut precisely the same argument 

applies t o  give an analog for in f in i t e  wedges. 

Theorem 1.1. Let Y = YIV .a. VYk. Then the wedge sum 

Theorem 1.2. Let {Yi) he a s e t  of spectra indexed on a to t a l ly  ordered se t  of 
indices and l e t  Y = V Yi. For a s t r i c t l y  increasing sequence I = {il, ..., i k )  of 

1 
indices and a par t i t ion  3 = (jl, ...,j of j with each ji > 0 (hence k 2 j l ,  l e t  

of the maps f J  is an equivalence of spectra. 
fJ,I:DjlYil A " - A D .  + D.Y 

Proof. By the d is t r ihut iv i ty  of smash products over wedges, jkyik J - 
he the composite of fJ  and the evident inclusion. men the wedge sum 
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Explicitly, l e t  aJ:! ! k ) y ) ( j )  , 
Parenthetically, t h i s  leads t o  an a t t rac t ive  al ternative version of the V Y(" be the projection and l e t  rJ also denote 

I s J  

Proposition 1.3. An H: ring structure on E determines and is determined by an H- 

ring structure on the wedge V s d i ~ .  O u r ,  original  map r~ is the composite of th i s  map and the equivalence I l i  a 1)crl-l. 
1 

We think of r J  as  a kind of spectrum level  transfer map. When Y = I:?' fo r  a 

space X and n C I: j, we have 

.., 
d 

give E an H: ring structure. If E is an K ring spectrum with s t ructura l  maps E. a y i J '  z I : ~ ( E I : .  c I X + ) ( ~ ' I  = I:-(EI:~ xr x J ) +  
J n J * 

s ~ , ~ ,  then the maps 

by 1.1.1. We shal l  prove the following resul t  in the sequel. 

Theorem 1.5. When Y = I:"x+, the map 

determined by the composites 
? .EZ. N ~ ( j )  + EI: a Y ( J )  
J '  J z J J 

is the transfer associated t o  the natural  cover 

EI: x xJ + EI: x XJ . 
j z~ J Z j  

inverse t o  one another. 

We do not wish t o  overemphasiae t h i s  result .  As we shal l  see, the spectrum 

Returning t o  the context of Theorem 1.1, l e t  level maps rj ,  for general Y, are quite easily studied directly.  

The importance of these maps i s t h a t  they measure the deviation from addit ivity 

of the functor D.Y. 
J 

For maps hi:Y * E, hl +...+ hk is defined t o  be V(hlv ... vhk)n.  Thinking now 

i n  cohomological terms, consider the hi as elements of the Abelian group E% = IY,EI 

of m a p s Y + E i n h d .  

notations and consider a spectrum Y and i t s  k-fold wedge sm, which we denote by * 
COrOllarY 1.6. D.(h + ..- + %) = T ~ ~ c L ~ ( D ~ ~ ~ ~ A  ..- Moreover, the 

( k ' ~ .  Recall that f in i t e  wedges are f i n i t e  products in the stable category and l e t  J 1 
following equivariance formula holds fo r  a c zk. 

~ : Y - ( " ' Y  and v : ' ~ ] Y - Y  

denote the diagonal and folding maps. 
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Proof. 8y Theorem 1.1 and the naturality diagram preceding it, the following 

/ill diagram commutes. 

The equivariance follows from 1.2.8, the formula f; = foJ o 0, and the fact that 

oA = A. 

Taking each hi to be the identity map, we obtain the following special case. 

* * 
Corollary 1.7. D. (k) = 1 rJIaJ), and r l a  ) depends only on the conjugacy class 

J J J J  

of J under the action of Ts. 

When j is a prime number p and k = piq with i 2 1 and q prime to p, a simple 
combinatorial argument demonstrates that every conjugacy class of partitions has pis 
elements for some s > 1 except for the conjugacy class of the partition J(k) = 

(1 ,..., 1,O ,..., O), p values 1, which has lp,k-p) elements. Of course, pi-1 but not 

pi divides this binomial coefficient. A trivial diagram chase based on use of the 
projection ( k ) ~  + (P)Y shows that rJlk) coincides with TJ(~) = T ~ : D ~ Y  + Y'P). Also, 

by 1.2.7 and 1.2.11, aJlp) = t :E(P) + D E. Putting these observations together, we 
P P 

obtain the following result. 

Corollary 1.8. If k = piq with p prime, i ? 1, and q prime to p, then 
D k:D Y + D Y can be expressed in the form pih + (p,k-p) t r for some map A. P P  P P P 

In favorable cases, the following three lemmas will lead to a more precise 

calculation of D on general sums. 
P 

Lemma 1.9. The following diagram commutes for all Y, j, and k and all partitions 

3 of j. 
?J D.Y AD. Y A * . .  AD. Y 

J 
I 

J 1 
I 

Jk 

I 
Proof. This follows from a straightforward diagram chase which boils down to the 

I factorization of n:Y + ( j ) ~  as the composite 

! 
&(k)y -A*...VA> 

ljl) (jk) 
I yv... v y 

(where A:Y t 'O)Y = S is interpreted as the zero map if any j, = 0). 

Lemma 1.10. The composite T. i .  :Y(j) + Y'j) is the sum over o s zj of the 
J J 

(j) permutation maps o:~(j) + Y . 
' t Proof. This is an easy direct inspection of definitions and may be viewed as a 

particularly trivial case of the double coset formula. 

Lemma 1.11 For any ordinary homology theory &, the composite 

r 
i T ~ *  a ~ *  

HDY-HID Yh...t-D. Y)-HDY 
I * j * jl J k * j 

is multiplication by the multinomial coefficient (jl, ..., jk). In particular, 

I T  is multiplication by j! . 
Proof. We may assume that Y is a CW-spectrum and exploit 1.2.1. Since 

n.n = l:Y + Y, where oi:(k)~ + Y is the ith projection, A*:C*Y + c,((~)Y) = 
1 

C,Y @ ... O C,Y is chain homotopy equivalent to the algebraic diagonal. With 

Y1 = = Yk = Y, the composite (i tx 1)a in the proof of Theorem 1.1 induces a3 

upon passage to orbits over 2. (rather than over T. x .. - n z .  1. Therefore 
J 

aJ o rJ is just the composite 
J 1 J k 

1 
i Since there are (jl, .. .,jk) sequences I E J and thus ljl,. ... j k) wedge summands 

here, the conclusion clearly holds on the level of cellular chains. 1 
I 

I 

I 
52. Power operations and Nishida's nilpotency theorem 

Let E be an H, ring spectrum and Y be any spectrum. Recall from 1.4.1 that we 

have power operations 'P..EOY + E'D.Y specified by T(h) = ~ ~ D ~ l h ) .  We use the 3 ' J 
results of section 1 to derive additivity formulas for these operations and apply 

these formulas to derive the nilpotency of nus.  
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X 
Lemma2.1. Forhit~Oy,?.(h J 1 + ... (hl1h... A? (hkll, where induces multiplication by j! in ordinary homology. It is thus .an equivalence since 

k * * 
the product &is the external product in E-cohomology and the sum extends over all Y and henoe also D.Y is p-local. Therefore I .  :E (D.Y) + E*[Y(~') is a J J J  

partitions J = (jl, ...,j k1 of j. monomorphism and we need only check that 

X * *  j 
Proof. This is immediate from Corollary 1.6 and the commutative diagram j!~. 5).(hl = ~.r.(h ) .  - J J J J 

a~ The left side is jlhj. By Lemma 1.10, the right side is the sum over o s zp of D. E n  ... A D. E -----r D.E 
J .I 1 J k ox(hJ1. The commutativity of E implies that o*(hjl = hj for all o,j, and h, and the 

cbnclusion~follows. 

Jk 

E A . a .  &E & E Now recall from 1.4.2 that elements a e E (D 89) determine homotopy operations 
r P 

a:" E t nrE via the formula alh) = a/? (hl. 
P 

COrOllary 2.3. Let a s E (D Sq1 and h s nqE, where q is even and E is p-local if p 
7 P 

When j is a prime number p, the remaining error term simplifies. The full is odd. Then - 
generality of the following result is due to McClure. 1 

a(kh) = kZ(h1 + - (g - kl(z-Pq~ (al)hP, 
P! P* 

Proposition 2.2. Let hi s E%. If p = 2, then where the product is the multiplication in s*E. 

Proof. The following diagram is easily seen to commute. 

r A 1  h p ~  1 
If p is an odd prime and Y and E are p-local, then s ~ & D s ~ & E ~ s ~ ~ A E - - - - - - - - ~ . E A E  P 

the previous proposition. 

Assuming that E is p-local (when p = 2 as well as when p is odd), we obtain the 
following immediate corollaries. 

for a partition J = (j l,..., jk) of p with no j. = p. By Lemma 1.9, 1 

Corollary 2.4. If pih = 0, then $-l(z-pq~~*(~) lhP+l = 0 for all a. 

Here we have multiplied by h to kill pi~(h). Of course, this may not he 

for any j 2 0 and h E E'(YI. If j = 0, h(O) and Do(hl are to be interpreted necessary. 

as the identity map of S and the conclusion is trivial. If j = 1, the conclusion is '-' -pqr (a))hp 0. 
also trivial. There are no more cases if p = 2, so assume that p > 2 and Corollary 2.5. If both pih = 0 and pia = 0, then p (C 

P* 
1 < j < p. By Lemma 1.11, the composite 

One can also arrive at the last two corollaries by direct diagram chases from 

Corollary 1.8 and the definition of an H, ring spectrum, without bothering with 

additivity formulae. (That approach was taken in 1721, following Nishida 190, 081 ) . 



These relations specialize to give nilpotency assertions, the sharpest estimate 

being as follows. 

Corollary 2.6. Let x E n E satisfy plx = 0, where i > 0 and q is even if p > 2. 
9 

Suppose that x = z-P~T .(#I for some a c Epq+ql~p~ql. Then pi-'xPt2 = 0. Moreover, 
P 

if pia = 0, then pi-lxPtl = 0. 

The problem, of course, is to study E*(D Sql and T~*. Everything above applies 
P 

to an arbitrary H_ ring spectrum E, but to compute r * we must specialize. If E = 
P 

MO, for example, then every element of n*E has order 2 and no element is nilpotent, 

hence r2*:M0,(D2~ql + ~0,lS~~l must he the zero hokmorphism for all q. This does 

not contradict the following assertion. 

Coniecture 2.7. Any element of finite order in the kernel of the (integral) 

Hurewicz homomorphism w*E .+ &E is nilpotent. 

We shall prove the conjecture for elements of order exactly p in section 6, but 

the methods there fail for general elements of order pi with i > 1. 

When we specialiae to E = S, we find that the Kahn-Priddy theorem gives 

appropriate input far application of the results above. 

Theorem 2.8. If p = 2, let +(kl be the number of integers j such that 0 < j 5 k and 
j E 0,1,2, or 4 mod 8. If p > 2, let +(kl = Lk/2Ip-lll. Let q be an integer such 

that q z 0 mod p+(", where q is even if p > 2. Then T ~ ~ : ~ ~ D ~ s ~  + nr~Pq is a 

(split1 epimorphism for pq < r < pq+klp-1). 

We shall prove this in section L. Actually, the purely stable methods we use 

will give surjectivity without giving a splitting. For this reason, we are really 

only entitled to use Corollary 2.4, rather than Corollary 2.5. This doesn't change 
the heuristic picture, hut to give the correct estimate of the order of nilpotency, 

we assume the splitting (from 146, 95, or 2711 in the discussion to follow. 

Theorem 2.9. Let x E znS satisfy plx = 0, where i > 0 and n is even if p > 2. Let 

m he minimal such that m E 0 mod p+l ln/p-ll+ll. Then pi-lxmp+l = 0. Inductively, 
some power of x is sero. 

Proof. Let q = nm. Since n < (In/p-ll+l)(p-11, there exists a E zpq+n~p~q such 

that z-PqTp*(a) = x. With h = xm, Corollary 2.4 gives pi-1xmpt2 = 0. Using 

pia = 0, Corollary 2.5 gives pi-lxmptl = 0. 

Unfortunately, m increases rapidly with II (although our estimate for p > 2 is 

sharper than Nishida's since he only !mew Theorem 2.8 for r < pq+k). For example, 

31 

the first stem in which an interesting element x of order 2 occurs is the 14-stem 

("interesting" meaning that x is neither in n*J nor a product of Hopf maps). Here 

m = 64 and we can only conclude that xlZ9 = 0, a truly stratospheric estimate. So 

far, and granting that our stemwise calculations still extend through only a very 

small range, we have no reason to disbelieve that x 4  = 0 if 2x = 0. Corollary 2.6 

seems to suggest that this answer might be correct. However, as pointed out to me 

by Bruner, r2x:nx~2~q + ,*s2q is not always an epimorphism and thus 

Corollary 2.6 cannot be used to prove this answer. 

$ 3 .  The Jones-Wegmann homology and cohomalogy theories 

The next three sections will all make heavy use of certain twisted diagonal 

maps implicit in the general properties of extended powers. 

Definition 3.1. Let n be a subgroup of z. and let W be a free n-CW complex. For a 
J 

based CW complex X and a CN spectruni Y, define a map of spectra 

by passage to orbits over n from the n-map 

Here the isomorphism is given by.I.1.2lii) and the shuffle n-isomorphism 

~ ( j  XU 1 2 IY  XI(^). Note that n is the identity map when x = SO and 

that the following transitivity and commutativity diagram commutes, where X' is 

another based CW complex. 

with = zj and W = Ex., we obtain 
J 

n:IDjY)hX + DjlYhXl. 

Although not strictly relevant to the business at hand, we record the relationship 



We shall be interested in the resulting inverse system 

construct new examples of H, ring spectra. 

Lemma 3.2. The following diagrams commute for spectra Y and Z and spaces X. The -- (where n lo). By the diagram in Definition 3.1, the maps 
unlabeled arrows are obvious composites of shuffle maps and the diagonal on X. 

I?A:~~:~D.s-~I AX w n ( n  S"AX) -+ ~:"D.(s-~Ax) E 
J j J 3 

specify a morphism of systems, again denoted A, 

We shall study the homological and homotopical properties of these systems. In this 
section, we consider any j 2 2. We shall obtain c~lculational results when j is a 

prime in the following two sections. 

Let E, and E* denote the homology and cohomology theories represented by a 
spectrum E. For spectra Y, define 

E ~ J I Y  = lim E,( zn~.z-?) and E* Y = colim E*(z~D.~-?RI) 
3 (j) 3 

5 
F ~ ~ ) Y = ~ ~ ~ E , ( z ~ D s - ~ A Y I  and F(~,Y= coiim~*(z~n.s-~~~). 

j 3 

Upon restriction to spaces (that is, to Y = E'X), we obtain induced natural 

transfornations 
X * * 

A,:F!~)x --+-E!~'x and A :E(j)X - F(j)X, 
I learned the following lemma from Miller and McClure. 

and these reduce to identity homomorphisms when X = So. It is clear that FJj' is 
X 

Lemma 3.3. Let Xbe an unbased space and E be an H_ ring spectrum. Then the a homology theory and F (j) is a cohomology theory on finite CN spectra. Passage 

function spectrum F(x+,E) is an H, ring spectrum with structural maps the adjoints to colimits from the homomorphisms 

of the composites 

~ F ( x + , E ) ~ ~ - ~ D ~ ( P ( x + , E )  AX') % D j E k E ,  (?-'A)* :Eiil(znD j zmni:Y) 2 3 - E~(~:~D~L-?I 
where E is the evaluation map. In particular, the dual F(x+,s) of i:-X' is an yields suspension isomorphisms 
ring spectrum. 

.. 0 Proof. If j = 0 ,  P:SAX+ = zmx+ kt--+ i: S = S is to be interpreted as X'S, where 

6:xt + so is the discretination map sending X to the non-basepoint. The diagrams of 

1.3.1 are easily checked to commute by use of the diagrams of the previous lema. 
follows (although they only consider primes j and only provide proofs when j = 2). 

Returning to the business at hand, observe that, with X = S1, we obtain a 

natural map &:zDjY + DjzY. Thus, for any integer n (positive or negative), we have 



Theorem 3.5. Let E be connective and j-adically complete, with n*E of finite type 

over the j-adic integers 2. = x Then Elj ) is a homology theory on finite CW 
~ 1 5  P' 

spectra, hence A,:F!~'x + E;~'X is an isomorphism for all finite CW complexes X. 

We defer the proofs for a moment. As Jones and Wegmm point out, these results 

are no longer valid for infinite CW complexes. 

Recall that D.sO = Z-BZ' and the discretisation map BE: + So induces 
0 J j J 

5. :D.SO -r S . Upon smashing with Y, the composites 
J J 

0 L s o  ~ ' D ~ s - ~  A D . S  J 

give a morphism from the system [~D.s-~A Y) to the constant system at Y. We call 
J 

this map of systems 5. and obtain a map of cohomology theories J 

oommutation with the suspension isomorphisms being easily checked. We shall shortly 

prove a complement to this observation. 

Proposition 3.6. Let E be an H* ring spectrum. Then the composites of the 

functions 

Tj:& = IZ-?,EI -ID j Z-?,EI = E"(Z~D~Z-?) 

and the natural homomorphisms E"(PD~z-~Y) + Tj ,Y specify a map of cohomologY 

theories * * 
3 . : ~  Y -E(j,Y. J 

We thus have the triangle of cohomology theories 

on finite CW complexes X. Since $(x) = tj o Dj(x), we see immediately that 

A* ?. (1) = 5:(1), where 1 s EO(SO) is the identity element. It does not follow that * J * 
A 3. = 5. in general. As we shall see in the next section, this fails, for exam- 

J J 
ple when E = NQ. However, as observed by Jones and Wegmm 1441, this implication 

does hold for E = S. 

J J * * Proof. Sinee A ?. and 5. are morphisms of cohomology theories, they ere equal J J * for all X,if they are equal for X = So. Any morphism +:E X t F'X of cohomology 
* * 

theories is given by morphisms of n*SO-modules. When E = n and X = So, + ( x )  = 
m(1.x) = +(l),x, so that + is determined by its behavior on the unit 1 c eO(SO). 

5 * 
For general E and X = So, it is obvious that 5. (x) = 5. (1)x It is not at all 

x x J J 
obvious that (A 9 ) (x) = A ?j ( 1) x We now have this relation for E = S, and we 
shall use it to prove the Kahn-Priddy theorem in the next section. As we shall 

explain in section 5, theorems of Lin when p = 2 and of Ounawardena when p > 2 imply 

that 5* and thus $) in Proposition 3.7 are actually isomorphisms. We complete 
P P 

this section by giving the deferred proofs, starting with that of Proposition 3.6. 
We need two lemmas. 

Lemma 3.8. The following diagram commutes for any partition J = (jl, ..., jk) 
of j. 

~ ~ * 1  
D.YhX---+D. Y&...AD. Y h X  (shuffle)(lAA'r D. YhXh... hD Y A X  

I .I 1 ‘l k J1 , jk 

Proof. The "transfer" r~ is specified in Definition 1.4, and the proof is an easy 

naturality argument. 

Lemma 3.9. Por an H- ring spectrum E, the composite 

3'. * 
IY,EI A ID~Y,EI A IZD.Z-'Y,EI 

J 

is a homomorphism. 

Proof. By Lemma 2.1, we have the formula 



With X = s', Lemma 3.8 and the fact that A:S' + s1h81 is null homotopic imply that ecify a map of inverse systems, again denoted $, and we shall prove the following 

Proposition 3.11. For any pair (Y,Bl of finite CW spectra, 

* * * :E( )Z - Colim E*CnD (z"Y,C-~BI 
j 

and, under the hypotheses of Theorem 3.5, 

(jl, 
explain the idea and will be used later. ~*:lim E*z~D.( z-%,z-~BI - E, 

J 

are isomorphisms. 
Lemma 3.10. Let f:B + Y be a map of CW spectra with cofibre Cf. There is a map 

+:CDjf + DjCf, natural in f, such that the diagram 

Note that the assumptions on E in Theorem 3.5 imply that all groups in sight 

are finitely generated 2.-modules and thus that all inverse limits in sight preserve 
J * 

exact sequences. Given the proposition, the required E( jl and EL') exact 

sequences of the pair (Y,B) are obtained by passage to colimits and limits from the 

commutes, where i:Y + Cf and a:Cf + CB are the canonical maps. If f is the Following ideas of Bruner (which he uses in a much deeper way in chapters V and 

inclusion of a subcomplex in a CW spectrum, then the diagram VII, we prove Proposition 3.11 by filtering ~ ( j  ) .  For 0 I: s 5 j, define 

r, = T~(Y,BI = UY~A-..~Y~, 

where Yr = Y or Yr = B and s of the Y, are equal to B. We have 

~ ( j )  = Tj r .  C. ... c - ~(3). 
3-1 0 - 

also commutes, where the maps n are the canonical (quotient) equivalences and the Each inclusion is a z.-equivariant cofibration, and we define 
J 

bottom map $ is induced by the quotient map Y + Y/B. " = ns(Y,B1 = Ts(Y,Bl/TS+l(Y,BII 

Then lcO = z(J) and, for 0 < s < j, $is breaks up as the wedge of its (s,j-sl distinct 
subspectra of the form ZIA . a .  A Z. where Zr = Z or Zr = B and s of the 2, are equal 

J '  

DjCB + DjCf. The diagrams are easily checked. to B. It follows that ns is the free C.-spectrum generated by the (c, x Cj-,I- 
J 

spectrum B(')A 2(j-'). That is, 

Of course, the bottom row in the first diagram is not a cofibre sequence and $ 

is not an equivalence. Now let (Y,B) be a finite CW pair. For notational 

simplicity, set 

quotients, hence we have cofibre sequences 

As n varies, the maps 

for 0 5 r < s < t 5 j. For a based space X, the map A:D.YAX + D (Y AX) induces 
J j 



compatible maps 

n:IEZ. w r (Y,B)I& X -EXj mE, rS(YhX,B4X) 
J rj s J 

and similarly for ns on passage to quotients. The following simple observation is 

the crux of the matter. 

Lemma 3.12. For 0 < s < j, there is a natural equivalence 

a:D,B"D Z + J-s 

such that the following diagram commutes for any X. 

In particular, the bottom map A is null homotopic when X =' al. 

Proof. By 1.1.4 and the description of ns(Y,B) above, we have 

As in the proof of Theorem 1.1, we may replace EE. by Ezs n EEj_s on the right side, 
J 

and it then becomes isomorphic to DsBADj-,Z. The diagram is easily checked. 

Now apply fl to the cofibre sequence ( * )  for the pair (z-n~,E-nB) with quotient 

E-~z. We obtain an inverse system of cofibre sequences for 0 < r < s < t 5 j. On 

passage to E* and then to colimits (or to Ex and then to limits), there results a 
long exact sequence. For 0 < s < j, the maps between terms of the system 

are null homotopic, hence its colimit of cohomologies is zero. Inductively, we 

conclude from the long exact sequences that the colimits of cohomologies associated 

to the quotients rs/pt with s > 0 are all zero and that the maps of colimits of 

cohomologies associated to the quotient maps rO/rt + ro/r, are all isomorphisms. 

With s = 1 and t = p, this proves Proposition 3.11. 
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54. Jones' proof of the Kahn-Priddy theorem 

We prove meorem 2.8 here. The proof for p = 2 is due to Jones 1431 and we 

have adapted his idea to the case p > 2. We begin more generally than necessary by 

relating the cofibre sequences ( * I  above Lemma 3.12 to the maps r.:D.Y + ~ ( j )  of 
J J 

Definiton 1.4. The idea here is again due to Bruner. Thus let (Y,B) be a pair of 

finite CW spectra with quotient Z = Y/B. The map r i  is obtained by applying the 

,functor EE K ( 1 )  to the composite 
j Ej 

(j) 
Y(j) ~ ( ( j ) ~ ) ( j )  A E .  (j) 

J 

J = ( 1,. ..,I), and using the equivalence EE. ~ ( j  ) - ~ ( j  ) of nonequivariant spec- 
J 

tra (where, technically, the smash product is external on the left and internal on 

the right; see IEquiv. 11 531 ) .  The spectrum E. a ~ ( j )  is a wedge of isomorphic J 
copies of Y'J' indexed on the elements of zj, and nJ&(j) is just the sum of the j! 
permutation maps. It follows that nJa(j) restricts to a I:.-equivariant map J 
rs t. Ej x r, for 0 5 s 5 j. Upon passage to subquotients and application of the 

functor EE. x ( ? ) ,  we obtain maps of cofibre sequences J 'j 

for 0 < r < s < t < j. With t = ail, the left map r is nicely related to the 
.i 

equivalence a of Lemma 3.12, as can easily be checked by inspection of definitions. 

Lemma 4.1. The following diagram commutes for 0 < s < j, where p is the projection 

onto the unpemuted wedge summand. 

When j = 2, there is only one map of cofibre sequences above, and we obtain the 

following conclusion. 

Proposition 4.2. For CW pair (Y,B) with quotient Z = Y/B, 

I; B n Z - D2Y/D2B 



is a cofibre sequence, where yi is induced by the quotient map Y + Z, 1; is 
the composite 

i * 1 '2 BA Z = (BAY)/(BAB) - (YhY)/(B*B) -I$Y/D2B, 
and T; is the composite 

T2 an1 D2Z -----rZ&Z = (YuCB)E.Z -zBh 2. 

Proof. Combine the cofibre sequence 

with the equivalence a:BAZ -r Ez u n (Y,B) and check that the resulting maps are 
2 z2 1 

those specified. 

Our main interest is in the pair (CY,Y). 

Corollary 4.3. The following is a cofibre sequence. 

z'2 T2 Z(YAY) -14Y AD~EY -zYhzY. 

Proof. Use the evident equivalence D2CY/D2Y = ID2Y and check the maps, using 

Lemma 3.10 for the middle one. 

For j > 2, we have too many cofibre sequences in sight. Henceforward, let p 

be a prime and localize all spaces and spectra at p without change of notation. We 

shall show that, for odd primes p and pairs (cs~,s~), our system of cofibre 

sequences collapses to a single one like that in the previous corollary. Recall 

from Lemma 1.10 that T~I,:Y(') .+ Y") is the sum of permutations map and 

tr~,:DrY r DJ induces multiplication by r! on ordinary homology. In particular, 
for 1 < r < p, DrY is a wedge summand of Y('). 

Lemma 4.4. For 1 < r < p, Drs2qf1 is equivalent to the trivial spectrum and 
1 ,,:s2qr + Drs2q is an equivalence with inverse 

T ~ .  

Proof. When Y = s2q, T ~ I ~  induces multiplication by ri on homology; when Y = s2q'l, 

it induces sero. The conclusions follow. 

Thus, when Y is a sphere spectrum, most of the spectra 

E Z ~  *zpns(~~,~) = D ~ Y  A D  P-a ZY 
are trivial. 
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Corollary 4.5. Let p > 2 and let q be an even integer. Then there are cofibre 

sequences 
T 

sp9-l _+ ED sq-l A D  sq __& sPq 
P P 

 roof. Let I‘, = T,(CY,Y) and ns = ~ ~ / l ‘ ~ + ~ .  If Y = then Ez w n is trivial P zp S 
for 2 2 s < p, hence Exp uzprr/rs is trivial for 2 5 r < s 5 p. Thus rl/rp + nl 

and r /r + rO/r2 induce equivalences upon application of Ez u ( 1 )  and there 
0 P p C~ 

results a cofibre sequence 

Ez M n -Ex r r E M n --zEz kzpnl. 
P zp 1 P zpO P P zp 0 P 

This gives the first sequence upon interpreting the terms and maps (by use of Lemmas 

3.10, 3.12, 4.1, and 4.4). Similarly, if Y = Sq, then Ez w ns is trivial for 
z~ 

1 5 s < p-1, hence Ez u r /r is trivial for 1 5 r < s 2 p-1. Thus rO/rp_l + no P zpr s 

and np-l + rl/rp induces equivalences upon application of EXp xi: ( ? )  and there 
P 

results a cofibre sequence 

EX P a zp n P-1 -E$ EX P u zp n 0 -- z ~ z ~  xzp np-l . 
This gives the second sequence. 

One can also check these cofibre sequences by direct homological calculation; 

compare Lemma 5.6 below. We need some further information about the spectra ~ " D ~ S - ~  

in order to use these sequences to prove Theorem 2.8. Proofs of the claims to 

follow will be given by Bruner in V52. 

If p = 2, let L = r"RP" with its standard cell structure. (We write L rather 

than the usual P for uniformity with the case p > 2.) If p > 2, let L be a CW 

spectrum of the p-local homotopy type of z"Bz such that L has one cell in each 
P 

positive dimension q r O or -1 mod 2(p-1). The existence and essential uniqueness 

of such an L was pointed out by Adams [7,2.21. Let Lk be the k-skeleton of L and 

let 41 = L/Ln-' and LUfk = Ln+li/Ln-l for k 0. Let +(k) be as in Theorem 2.8 
n 

(and recall that it depends on p). If p = 2, then 

i Ln+k = p-m m+lr 

1 n L~ for m t n mod 2+(k). 

I 
If p > 2, E = 0 or 1, and k 2 E ,  then 

L2n+k = z2(n-m) La+s 2m+k for m E n mod p +(k) 2n+e 



We use this periodicity to define spectra Lrk for non-positive n, so that these The bottom oofibre sequence is obtained by restriction from sequences in Corollaries 
equivalences hold for all integers m and n. We then have that 4.7 and 4.5. Periodicity gives an equivalence v such that the left square commutes. 

Standard cofibration sequence arguments then give an equivalence o such that the 

remaining squares commute. The bottom map r, factors through T,:D~S~ + s P ~  and is 
. . 

Our interest in these spectra comes from the following result (proven by Bruner in an epimorphism in the range stated in Theorem 2.8. 
zn 

V52) .  

.L/ 
It remains to prove Proposition 4.7. For amusement, we proceed a bit more 

Theorem 4.6. For my integer n, zQDpS" is p-locally equivalent to &(p-ll. ,+/"',7i"r'~\ generally. Recall the not neoessarily commutative diagram 

1 

k n n(p-ll+k. ~f p = 2, we mey view D S as sk xz 8%. If We define DkSn = z%n(p-ll 
P P 

p > 2 ,  no model for Ez has few enough cells to give as convenient a fildation of 
P 

D sn. We shall shortly prove the following result. P 

0 Proposition 4.7. If p:L-& + SO is the projection onto the top cell, then 

is zero for 0 < q < k(p-1). 

Since p is (-11-dual to the inclusion t: S 1  + L?j1 of the bottom cell, 

I .n (S-ll + nq(~Till is sero for 0 5 q < k(p-1)-1. The cofibre sequences of * '  9 
Corollaries 4.7 and 4.5 restrict to give cofibre sequences 

-1 L k-1 A k-1 L s O  . S +L-l -+Lo 

0 Thus, r .+:n (Lk-') + T (S I is an epimorphism for 0 < q < k(p-11. Now let k go to 
P 4 0  P 

infinity. Of course, Lo = zTmR2+ splits as the wedge IBZ~VS~. Since 
P 

T 1 :So + So has degree pl, the finiteness of ",So allows us to deduce the 
P P 
following version of the Kahn-Priddy Theorem. 

below Proposition 3.6, where E is an H, ring spectrum. With E = S and X = So, the 

following result is Proposition 4.7. 

Proposition 4.9. Let X be a finite CW complex of dimension less than k(p-1)-q, 

where 0 < q < klp-1). Then 

* * 
is zero if E is a connective Hm ring spectrum such that A 9 = 5 

P P' 

Praof. For n k, the cofibre of A:zn+lD Snn-l + has dimension at most 
P 

-k(p-l), and it follows that the colimit Fmq X is attained as E - ~ ( ~ ~ D ~ S - ~ A X I .  
0 (PI Let I:L-~ + L_k = z%J s - ~  be the inclusion and consider the following diagram, 

P 
where x is any map X + z-qE. 

Theorem 4.8. The restriction r :zSRz + SO induces an epimorphism 
P P 

nq(~-~~pl * nq(~O1 @ z for q > 0. 
(P) 

To prove Theorem 2.8, consider the following diagram, where q E 0 mod p4(k) and 

q is even if p > 2. 

zpqr 
P_  sPq 

I I 
s~q-l - q (P-llq+k-1 Lt_ q (P-llq+k-1 s ~ q  x 

L(p-l)q-l "(P-11q 

I I 
X 

P 



Ln~k(P-ll-l~-n is (-11-dual to j3 n+%k(p-11-1 -n-k 
P P S ,  

since the composite is obviously null homotopic on ~1: and of degree one on the top 

cell. We have the theorems are esentially dual to one another. Indeed, using the liml exact 

sequence and waving one's hands at certain compatibility questions, one finds the 

following chain of isomorphisms, where m(p-1) > q. 

colim ;iq(~nE+3-n) = iiq(s?+~4) 
Replacing S by E in the deductions from hoposition 4.7 and using the results n 

= lim ;q(Lmgk(~-ll-l -m 
k P 

S I 

; (Cm+k k(p-11-1 -m-k 
k -9-1 D~ 

S I 

= q m ;  (f$~-~l -q-1 

$5. The Singer construction and theorems of Lin and Gunawardena 

There is a map of A-modules s:R+Zp + Zp, and the main point of the work of Lin 

Singer introduced a remarkable algebraic functor R+. from A-modules to A- and Gunawardena can be reformulated as follows; see Adams, Gunawardena, and Miller 

modules, where A is the mod p Steenrod algebra, and Miller began the study of the 
cohomology theories in section 3 by making the following basic observation. All 

homology and cohomology is to be taken with mod p coefficients. Theorem 5.4. E*:EX~~(Z~,Z~I + Ext (R Z Z I is an isomorphism. 
A + p r p  

Theorem 5.1. Let Y be a spectrum such that l&Y is bounded below and of finite An inverse system {Y,) of hounded below spectra Y, of finite type gives rise to 
X 

type. Then colim $(Ln~pL-nYl is isomorphic to C-~R+H Y. 
an inverse limit 

IE,) = lim {ErYnI 

We shall prove this and some related observations after explaining its 

relationship to the following theorems of Lin 153, 541 and Gunawardena 138, 391. 
of Adams spectral sequences, where {ErY) denotes the classical Adam spectral 

sequence for the computation of ;,Y. Clearly 

homotopy. E2 s ExtA(colim H x Y Z I . n' P 

As pointed out in L741, {E,) converges strongly to lim ;*Y We apply this with n' 
finite CW spectra Y. Yn = E"D~S-~. Here Theorems 5.1 and 5.4 give 

As we shall explain shortly, lim ;-l(P~ s-~) = zp. Realizing the unit by a 
P E~ r atA( L-~Z~,Z~I. 

compatible system of maps <P:S1 + znD s-" and smashing with Y, we obtain a P 
compatible system of maps From this and convergence, it is easy to check that lim $ l ( ~ n ~  S-~I = 2 The - P P ' 

compatible system of maps gP:S1 + LnD then induces a map of spectral sequences P 

tErcP1 :{E,s-~I + I%). 

Theorem 5.1. The map g::;i*z-'~ + lim ir,(znD S - ~ A  Y) is an isomorphism for all By Theorem 5.4 again, E2gP is an isomorphism, and Theorem 5.3 follows by 
P 

finite CW spectra Y. 



convergence. Theorem 5.2 can be obtained by a similar Adams spectral sequence 

argument (as in Lin 1531 and Gunawardena 13811 or by dnalization. 

The crux of the proof of Theorem 5.1 is the following result of Steinberger, 

which is proven in VIII.3.2 of the sequel. For spaces, it is due to Nisbida 1891; 

see also 168, 9.41. Let n be the cyclic group of order p. We assume familiarity 

with the mod p homology &D,Y, its determination being a standard exercise in the 

homology of groups in view of 1.2.3 (see e.g. 168, 5111. Suffice it to say that 

KRt,4Y has a basis consisting of elements of the form eo Q xl 8 . .- Q xp and ei Q xP, 
i 2 0. Here the xi and x run through basis elements of &Y, the xi are not all 

equal, and the xl Q ... Q $ and xP together run through a set of n-generators for 
(&YIP. Restricting to those i of the form (2s-ql(p-11-E, where q = deg (XI and 

E = 0 or 1, and to a set of C. -generators for (H*Y)P, we obtain a basis for &D Y. 
P P 

At least if &Y is bounded below and of finite type, we have analogous dual bases 

for H*D,Y and H*D~Y with typical elements denoted wo Q yl Q ..a Q yp and wi Q yP. 

Theorem 5.5. Assume that &Y is bounded below and of finite type. The subspace of 
X H 4 Y  spanned by {w,, Qyl Q ... Q y  1. is closed under Steenrad operations and, 

P 
modulo this subspace, the following relations hold for y c H~Y. 

1 (Ti1 For p > 2, let 6(2n+eI = E, m = 3 lp-11, and a(q1 = -(-l)m%I; then 

PS(wj = Ij/2l+qm-(~-lli w, i P 
i s-pi j+~(s-pi)(p-l) Q (' 7' 

(iiil For p > 2, ~ ( w ~ ~ _ ~  @ yP) = wZj @ yp. 

We also need to know A*:N*D,Y r H*LZD,Z-~YI. Let zn:Hq(Y1 + H~+~(c.~YI denote 

the iterated suspension isomorphism for any integer n. 

Lemma 5.6. For y E H ~ Y ,  

* 
A (w. myP) = (-l)jila(q~C.~w. Q (1-lylP1. 

3 3+p-1 

Proof. We first compute P,:&(C.D"Y) + &(D$YI. Take f to be the identity map of Y 
and replace 4 by D, in Lemma 3.10. We find that the composite of A* and the 

homology suspension C.* is the suspension associated to the zero sequence 
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C*(D,,YI -+ C*(D,CYl --r C*lD,EXl. . 

By 1.2.3 and 168,611, we may instead use the zero sequence 

W @"c*(YI~ ---r W Q,C*(CYI~ -W Q"C*(LYI~, 

where W is the standard n-free resolution of Zp. A direct chain level computation, 

details of which are in 168,p. 166-1671, gives the formula 

n*z*ej+p-l Q 2 = (-l~J+lu(q~e o (C.*XI~ 
j 

for x E Hq-l(Yl. Clearly n,C.,(eo Q x1 @ .. Q x I = 0 for all xi. The conclusion 
P 

follows upon dualination (and a careful check of signs). 

The results above determine colim H*(L~D,c.-~YI as an A-module, and similarly 

with D,, replaced by D To compare the answer to the Singer construction, we must 
P' 

first recall the definition of the latter 198,521. When p = 2, C.-'X+M is additively 

isomorphic to A 0 M, where A is the Isurent series ring ~~lv,v-'l, 

deg v = 1. Its Steenrod operations are specified by 

When p > 2, Z-lX+M is additively isomorphic to A Q M, where A = E{u) x ~~lv,v-'l, 

deg u = 2p-3 and deg v = 2p-2. Its Steenrod operations are specified by 

O X )  = 1 (-11 i p - r - I -  n~vr+~-i-~ i [ s-pi ) O P  x 
i 

+ (1-s) 1 (-11 s+i ( 1p-111r-i1-1 s-pi-1 Q @pix 
and i 

r 
S(u"vr-' Q XI = ~ ( v  @XI. 

t We can now prove meorem 5.1. We define an isomorphism 

* 
w:colim H t PD Z"Y) + Z-'R+H*Y 

P 

1 as follows. For p = 2 and y E H~(Y), let 

n 
w(Z (wr-q+n @ (C.812 = vr QY. 

For p > 2 and y E Hq(Y1, let 

n Q (C.-~~]P) . (-llr+q+( ~ + l ) n ~ ( ~ - ~ ~ - l ~ ~ ~ r - ~  
w ( '  (w(~r+n-q~(p-l)-e @Y, 



where v(2j + E) =(-l)J(ml)E. Note that . Modulo shuffling in C,(y)P, which introduces the signs depending on q when 

a(q)v(q-l)-l = v(q)-l and (-l)qv(q)‘l = (-l)mqv(q). from the n-map 

m Q) ~:c,(w) QP Ex(x) @ cX(ylP -c,(w) Q) FX(xlP Q) cX(y) P 
By Iemma 5.6, these o induce a well-defined isomorphism on passage to colimits. by 

Theorem 5.5, we see that our constants have been so chosen that o is an isomorphism 
induced by a n-equivariant approximation @ of 1 @Ah, where A' is a cellular 

of A-modules. 
approximation of the diagonal X + xP; see e.g. 1100, VS3l or 168,7.11. The 

essential point is that Y acts like a ddummy variable, so that the standard 
Remark 5.7. When p > 2, there are two variants of the Singer construction. We are calculation for Y = SO of 168, 9.11 implies the general result. 
using the smaller one appropriate to D This is a suwnand of the larger variant, 

P' 
for which Theorem 5.1 is true with D replaced by 4. See Gunawardena 139,91 for 

P Dualizing, and paying careful attention to signs, we obtain the following 
details (but note that his signs don't quite agree with ours). version in cohomology. 

With Y = SO, Theorem 5.1 specializes to an isomorphism Proposition 5.9. Assume that H+X and H+Y are of finite type and that H+Y is hounded 

A = 1-lR Z * colim H*(E"D~S-~). below. Let x a $(I() and y c H~(Y). If p = 2, 
+ P -  

X 2 2 

Since A is an A-module, A O M  ahits the diagonal A action, which is evidently quite 
A (W @ (y Q) X) ) = 1 Wj+k-i Q) Y 6 aiX. J i 

different from that originally specified on c-'R+M. For finite CW complexes X, we If p >  2, 

have the isomorphism mk(q+l) i 
X 

v'k) 1 wj+(k-2i)(p-1) 
i 

Q) y9 Q) pix 

nX:colim H*(xnO E-~x) +colim H (1% s"AX) 
P P 

-(-I) q+mk(q+1)6(j-l)v(k) 1 (-l)i~j+lk-2i)(p-l)-l Q) 9 @ 6pix- 
of Theorem 3.2. We next obtain an explicit description of the resulting iismorphism i 

A*:z-~R+F~*x + A 0 FiXx. A cheek of constants gives the following consequence. 

Thus consider A:D~Y I\X + Dn(Y~X). When X = sl, we computed A, in the proof 

of &ma 5.6. when Y = S, D,Y = C"BT+ and the effect of Ax is implicit in the  corolla^ 5.10. For M = E*X, the formula 
definition of the Steenrod operations; see Steenrod and Eptein 11001 (or, for 

correct signs, 168, 9.11). The following result is a common generalization of these a*lvr QP x) = 1 @ aix 
calculations. i 

Propsition 5.8. Let x E \(x) and y c Hq(Y). If p = 2, E r-i-E i A*IU~V'-' @ X) " 1 U Y Q) P X - (1-E) 1 UVr-i-l Q) 6piX 
i i 

* -1 if p > 2 specifies a morphia of A-modules A :1 R+M + A Q) M. 

if p > 2, let v(2jilI = (-l~j(m!)~ and z(2jte) = E; then 

The sane formulae give a morphism of A-modules for all A-modules M which are 

either unstable or hounded above, either assumption ensuring that the relevant sums 

are finite. In the hounded above case, hut not in general in the unstable case, 

this morphism is &isomorphism. See 198, 52, 821. 
-(-l)q+m(k-l)qs(r)v(k-l) 1 ~-i~i~r+,,,,2pi-k~~p_,, 

i 



Define E:R+M t M by the formulas 

if p = 2 (where Sqr(xl = 0 if r < 01 and 

~x(uv~-l Q XI = prx and zz(vr Q XI = -6~'x 

if p > 2. By 198,3.41 and 152,3.51, E is a well-defined morphism of A-modules. 

When A* is defined, E is the composite 

Generalising Theorem 5.4, Adams, Gunawardena, and Miller 191 proved that s is an 

Ext-isomorphism for any M. This leads to a generalization of Theorem 5.3 to a 

version appropriate to (Z lk for any k 2 1, and this generalization is the heart of 
P 

the proof of the Segal conjecture for elementary Abelian p-groups. See 19,741. 

56. Nishida's second nilpotency theorem. 

If x E iinE has order p, then x extends over the Wore spectrum hl" = S" upcS". 
The idea of Nishida's second nilpotency theorem is to exploit this extension by 

showing that D.@ splits as a wedge of Eilenberg-MacLane specta in a range of J 
dimensions. The relevant splitting is a special case of the following result which, 

as we shall explain shortly, is in turn a special case of the general splitting 

theorem to be proven by Steinberger in the next chapter. 

Theorem 6.1. Let Y be a spectrum obtained from Sn by attaching cells of dimension 

greater than n. Assume that qnY is Z or Z . and let v E Hn(~;Zp) be a generator. 
p1 

Assume one of the following further hypotheses. 

(a1 p = 2 and either n is odd or BLv) # 0. 
(bl p > 2, n is even, and B(v1 # 0. 
(cI p = 2 and Sq3(v1 # 0. 
(dl p > 2, n is even, and 6p1(v1 z 0. 
Then D.Y splits p-locally as a wedge of suspensions of Eilenberg-MacLane spectra J 1 through dimensions r < nj + - (2p-31 (j+l)-1. In cases (a1 and (b), only 

P 
suspensions of HZp are needed. 

Before discussing the proof, we explain how to use these splittings to obtain 

relations in the homotopy groups of Hm ring spectra. Let Y and v be as in the 

theorem above and localize all spectra at p. 

Theorem 6.2. Let E be an H_ ring spectrum, let F be a connectipe spectrum, and let 

4:EAF + E be any map (for example, the product when F = E or the identity when 

F = S). Let x E h E  and assume one of the following hypotheses. 

La1 p = 2 and n is odd; here let Y = 9. 
(bl p , 2, n is even, and x has order 2; here let Y = @. 

(c) p = 2, n is even, and x extends over some Y with ~ q ~ ( v 1  # 0. 
(dl p > 2, n is even, and x extends over some Y with gp1(v1 # 0. 
Let R = Z in cases (a1 and (bl and R = .irnY in cases (cl and (dl and let y E 7inF be P' 
in the kernel of the Hurewicz homomorphism n F + H (F;Rl. Then xJy = 0 if 

I 9 P 
q ' p (2p-31(j+11-1. 
Prepf. Our hypotheses ensure that &(D~Y;RI E R. We can choose a generator p such 

that the composite 

LDj9 XDjY --liEnjm 

is xnJe, where f:9 + Y is the inclusion of the bottom cell and e:S + HR is the 

unit. Choose 2:Y + E such that gf = x. Then the solid arrow part of the 

following diagram comutes and the top composite is xjy. 

Here r = nj+q, w:DjY + (D.Y) is the rth stage of a Postnikov decomposition of DjY, J r 
and p:(DjY)r + xnjHR is the unique cohomology class such that pw = p .  The previous 

theorem gives x:xnjHR + (D.Yl such that p r  = 1. The complementary wedge summand 
J r 

of znjHR in (DjYlr is (nj)-connected, and it follows that r.?je = w.D f.1 Since 

F is connective, w ~ l  induces an isomorphism on n 
j J' 

nJ+q. 
Sinee y is in the kernel of 



the Hurewicz homomorphism and the latter is induced by eA1:F = S h F  + HRAF, 
znjen y = 0. Chasing the diagram, we conclude that xjy = 0. 

In particular, with F = E, q = n, and y = x, we obtain xjtl = 0. With E = S 

and n > 0, case (b) applies to any even degree element of order p. As observed by 

Steinberger, when p = 2 case (a) applies to any odd degree element and gives a 

better estimate of the order of nilpotency than that obtained by applying case (b) 

to x2. While this result gives a much better estimate of the order of nilpotency of 

elements of order p in ii*S than does Theorem 2.9, the estimate is presumably still 

far from best possible. For example, if p = 2 and n = 14, the estimate is now 

x30 = 0. Cases (cl and (d) apply to some elements of order pi with i > 1. The idea 

is to add further cells to S", or to S" CS~, so as to obtain a spectrum Y for 

which the relevant Steenrod operation is non-zero. However, a given element x need 

not extend over any such Y. (Conceivably some power of x must so extend.) This 

explains why Nishida's second method fails to give the full nilpotency theorem and 

why we cannot yet prove Conjecture 2.7. 

We must still explain how to prove Theorem 6.1. The idea is to approximate D. J 
through the specified range by a spectrum with additional structure and then use 

homology operations to split the latter. The approximation is based on the 

following observation about mod p homology. 

Proposition 6.3. Let Y be an (n-1)-connected spectrum with Y;1 = Zp, where n is 

even if p > 2. Let f :sn + Y induce an isomorphism on I$,. Then the homomorphism 

H~H"D~Y + HiDq+lY induced by the composite 

1 
is a monomorphism for all i and is an isomorphism if i < n(q+l) + - (2p-?)(q+l). 

P 

For spaces X, a self-contained calculation of H+D X for all q is given in 4 
128,154-51. The generalization to spectra is given by McClure in Chapter IX, and 
the conclusion is easily read off from these calculations. 

With the proposition as a hint, we construct the approximating spectra as 

follows. 

Definition 6.4. Let (Y,f) be a spectrum together with a map f:sn + Y for some 

integer n and define D(Y,f) = tel z - ~ ~ D ~ Y ,  where the nth map of the system is 

obtained by applying H-n(qll) to the composite 

Now the previous proposition has the following consequence. 

Corollary 6.5. With Y and f as in the proposition, assume further that Y is 

p-local of finite type. Then the natural map D.Y + znJ~(y,f) is an equivalence 
1 J 

through dimensions less than nj + - (2p-3) (j+l) - 1. 
P 

Proof. By the proposition, the maps H-n(q'l) (a o lnf) used to construct - q,1 
D(Y,fl induce isomorphisms in mod p homology and thus in p-local homology in 

1 degrees less than - (2p-3)(q+l). This fact for q 2 j implies the conclusion (with 
P 

the usual loss of a dimension as one passes from homology to homotopy). 

Thus, to prove Theorem 6.1, we need only split D(Y,f). 

The following ad hoc definition, which generalines Nishida's notion of a 

T-spectrum 190,1.51, allows us to describe the structure present on the spectra 

D(Y,f). In the rest of this section we shall refer to weak maps and weakly 

commutative diagrams when the domain is a telescope and phantom maps are to he 

ignored. 

Definition 6.6. A spectrum E is a pseudo H, ring spectrum if 

(i) E is the telescope of a sequence of connective spectra Eq, q 2 0; 
(ii) E is a weak ring spectrum with unit induced from a map S + Eo and 

product induced from a unital, associative, and commutative system of compatible 

maps E 9 nEr + Eq+r; and 

(iii) For each j , 0 and q 10, there exists an integer d = d(j,q) and a map 

5.:D.zdqE + HdjqE. whose composite with i.:zdjqE(j) 3 (zdqEq)(" + D.HdqEq is 
J J  q 54 J 9 J 
the (djq)th suspension of the interated product E") -t E. 

4 JP' 

Examples 6.7. (i) With each Eq = E and each d(j,q) = 0, a connective ring 
spectrum may he viewed as a pseudo Hm ring spectrum. 

(ii) With each E = E and each d( j ,q) = d, a connective H: ring spectrum may be 
9 

viewed as a pseudo H, ring spectrum; since E has structural maps E .  for all q, 
J 

negative as well as positive, we could obtain a different pseudo structure with each 

d(j,q) = -d. 

(iii) For an (n-1)-connected spectrum Y and map f:S" + Y such that either 

2 = O:Y + Y or n is even, D(Y,fl is a pseudo H_ ring spectrum with qth term 

Z - ~ ~ D ~ Y .  Its product is induced by the maps 

z-n(q+rl 

z-nqD A H-nr D ~ Y  3 l- n(qfr'(~ YAD,Y) aq,rp -n(q+r)D 
9 4 

z q+r ' 

these forming a unital, associative, commutative, and compatible system by 1.2.6 and 

1.2.8 and our added hypothesis, which serves to eliminate signs coming from permuta- 
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tions of spheres. With all d(j,q) = n, its structural maps are 

5. = 0. .D.znq(z-nq~ Y) = D.D Y + D. Y = znjq(zdjq~. Y) . 
J ~ ~ 4 . 3  9 J q 39 J 9 

The following analog of 1.3.6 and 1.4.5 admits precisely the same simple 

cohomological proof. 

Proposition 6.8. Let E he a pseudo H_ ring spectrum with char noE = 2 or all 

d(j,q) even. Assume that noE = n E for all q % and, for such q, let 
0 q 

i:Eq + H(noE) be the unique map which induces the identity homomorphism on no. Then 

the. following diagrams commute, where d = d(j,q): 

D.zdqi 
D.zdqE 3 9 A D . z d q ~ ( n 0 E )  3 

'j 1 
Conversely, by the same result, if *:DE + E makes these diagrams weakly commute, 

zdj si 
edJqE. then its restrictions 5,:D.E + E give E a structure of H, ring spectrum. These 

39 J J 
assertions are analogous to, hut weaker than, the assertions that D is a monad and 

that an H, ring spectrum is an algebra over this monad (compare 169, 021). The 
In the next chapter, Steinherger will use a computation of the homology point is that the uk fail to satisfy the requisite compatibility to determine a weak 

operations of the H, ring spectrum zdq~Zp to prove the following generalization map II:DDE + DE. By 1.2.11 and 1.2.15, the compatibility they do have is described 
of Nishida's result 190,3.21. by the weakly commutative diagram 

Theorem 6.9. Let E he a p-local pseudo H, ring spectrum. If noE = Zp, then E 

splits as a wedge of suspensions of HZp. If noE = Z r > 1, or noE = Z(p) and if 
or' 

p = 2 and sq3i # 0 or p > 2 and Opii # 0, where i gekerates @(E;Zp), then E splits 

as a wedge of suspensions of HZ s ? 1, and HZ(pv 
pS' 

Considering the natural map C - ~ Y  '"Y D(Y,f), and using the formula B(wo Q v2) = 

nwl Q v2 of Theorem 5.5 for case (a), we easily check that the theorem applies to where vk is induced by the composites 

split D(Y,f) for Y as in Theorem 6.1. 8. kn D.e 
D.%EkD.S J '  

"k j 
We complete this section with some remarks about the role played by Definition J J .D~~E~D~E--G,D~~+~E 

6.4 in the general theory of H, ring spectra. 
and 6:DF + DFA DS is induced by the maps 6..D (FAS) -r DjFnDjS. 

3 '  J 
Remarks 6.10. Let (E,e) be a spectrum with unit e:S + E. Let DE = D(E,e) and let 

r,:E = DIE + DE be the natural inclusion. By 1.2.7, 1.2.9, and 1.2.13, the maps 

Bj,k:Dj%E + DjkE induce a natural weak map uk:D%E '"Y DE such that the following 

diagrams (weakly) commute: 
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HilVOLOGY OPERATIONS FOR H, AND Y, RING SPECTRA Proposition 5.1. 

by Mark Steinberger 

8 1 .  

Just as  the space level  operations of Araki and Kudo, Bi-owder, and Dyer and 
Since H, ring spectra are analogs of H, spaces and Y, ring spectra are analogs Lashof are based on maps 

up t o  homotopy of n-fold loop spaces, it is t o  be expected that  the i r  homologies 

admit operations analogous t o  those introduced by Araki and Kudo 1121, Browder 1221, 

Dyer and Lashof and Cohen 1281. We define such operations i n  section 1 for H, 
so our new spectrum level  operations are based on the structural  maps 

ring spectra and in section 3 for yl ring spectra. 

A s  an amusing example, we end section 1 with the observation, due independently 
S.'D.E + E 

J '  J 

t o  Haynes Miller and Jim McClure, that  our homology operations i n  H*F(x+,s) = H*X of H, ring spectra (see 1.3.1). We consider homology with mod p coefficients for a 
coincide with the Steenrod operations when X is a f i n i t e  complex. prime P. The following orimihus theorem describes our operations. Properties of the 

For connective H, ring spectra, we show that  the resulting ring of operations operations a t  the prime 2 which are d i s t inc t  from the properties a t  odd primes are 

is precisely the Dyer-Lashof algebra. Moreover, i f  X is an H, space with 5ero ( a s  indicated i n  square brackets. As usual, a denotes the homology Bockstein operation, 
in I1.1.7), then the new operations for the H, ring spectrum z"X coincide with the and P: denotes the dual of the Steenrod operations P', with P' = qr i f  p = 2. 

space level  operations of &x. 
A s  wil l  be shown by Mwis in the sequel, the Thom spectrum M f  of an n-fold or  Theorem 1.1. For integers s there exis t  operations QS in the homology of H, ring 

in f in i t e  loop map f:X + BF is an Y, or H, ring spectrum and the Thom isomorphism 
spectra E. They enjoy the following properties. 

car r ies  the space level  operations t o  the new operations in & M f .  This applies i n  (1) The QS are natural homomorphisms. 

part icular t o  the Thom spectra of the classical  groups (although a simpler argument (2 )  QS raises degree by 2s(p-1) [by sl . 
could be used here). ( 3 )  QSx = O f f  2s <degree (x )  [ i f  s <degree (x ) l .  

( 4 )  Qsx = xP i f  2s = degreefx) [ i f  s = degree(x) I .  
In section 2 we present calculations of the new operations in l e s s  obvious (5 )  QSl = 0 for s f 0, where 1 E HOX is the algebraic unit element of G.X. 

cases (with the proofs deferred un t i l  sections 5 and 6) .  Our central calculations 
( 6 )  The external and internal  Cartan formulas hold: 

concern Eilenberg-MacLane spectra, where , in contrast t o  the additive homology 

operations for Eilenberg-MacLane spaces, these operations are highly nontrivial .  In 
Q'(X x y )  = 1 x ~ j y  for  x x y H*(E F);  

fac t ,  they provide a conceptual framework for the sp l i t t i ngs  of various cobordism i + j = s  
spectra in to  wedges of Eilenberg-MacLane spectra or Brown-Peterson spectra. The 

Q ~ ( X Y )  = C ( Q ~ x ) ( Q ~ Y )  for x,y e H ~ E .  
proofs of these spl i t t ings  in the l i t e ra tu re  are based on computations of the i + j = s  

Steenrod operations on the Thom class.  We show in section 4 tha t  the presence of an 

Y, ring structure, n 2 2 (n 1 7 for the BP sp l i t t i ngs ) ,  reduces these computations 17) The Adem relations hold: i f  p > 2 and r > ps, then 

t o  a check of a t  most one low dimensional operation, depending on the type of 

sp l i t t i ng .  In addition, we have placed these sp l i t t i ng  theorems in a more general Q ~ Q '  = 1 i ~ - l ) ' + ~ ( p i  - r, r - (p  - 1)s - i - l)Qr+S-iQi; 

context which, as explained in the previous chapter, leads t o  a reproof of Nishida's 

bound on the order of nilpotency of an element of order p i n  the stable stems. A l l  i f  p > 2 and r 2 ps, then 

of our spl i t t ings  are deduced directly from our computation of the new operations i n  

the homology of Eilenberg-MacLane spectra. 
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r+s-i i 
Qr8Qs = (-l~~+~(pi - r,r - (p - 11s - ilBQ Q 

a1 algebraic approach to Steenrod type operations developed in [681 and 

1 summarized by Hruner in IV52. 

- (-l)r+i(pi - r - l),r - (p - 118 - Let n be the cyclic group of order p embedded as usual in zp and let W be the 
i ~tandard n-free resolution of Zp (see IV.2.2). Let C,(EI: 1 be the cellular chains 

P 

181 The Nishida relations hold: For p t 2 and n sufficiently large, j:W + C*(Ezp) of n-complexes over Zp. Vie may assume that our H, ring spectrum E is 

a CW-spectrum with cellular structure maps cj:DjE + E. By 1.2.1, DjE is a CW- 
P'Q' = 1 (-11 r +i s-r+i i 

x (r - pi,pn + s(p - 1) - pr + pi)& P, . 
i spectrum with cellular chains isomorphic to Cx(Ezjl @+j (c~E)~. Thus we have a 

composite chain map 
In particular, for p = 2, OQS = ( s  - l)QS-l. For. p > 2 and n sufficiently large, 

5% 
W q  (c*E)~ -C,(E~~) €3 (c*E)' i C,(DpEl -C,E. 

r +i s-r+i i 
p$3QS = 2 (-1) (r - pi,pn + s(p - 11 - pr + pi - 1lBQ P, The homology of the domain has typical elements ei €3 xP (and eO Q xl ... Q $1, 

1 

s-r+i i where x E &E, and we let Qi(x1 E &E be the image of ei Q xP. Let x have degree q. 
- l: (-11'+~(r - pi-1, pn + s(p - 11 - pr +pilQ P,B. If p = 2 define 
i 

QS(x) = O if s < q and QS(x1 = Qs_q(x) if s 2 q. 
(91 The homology suspension ~:fi,E~ + H,E carries the operations given by 

the multiplicative H, space structure of E0 to the operations in the homology of E. for p > 2, define 

(101 If E = E"X for an &@-space X, then the operations in H+E agree with - 
the space level operations in i & X .  QS(x1 = O if 2s < q and QS(x1 = ~ - 1 1 S v ( q l ~ ~ 2 s ~ q l ~ p - 1 ~ ~ ~ )  if 2s q 

1 
The statement here is identical to that for the space level operations except where v(q1 = (-l)~(q-~)~/~(m!)q, with m = - (p-1). By 1681 the QS and 0QS account 2 

for all non-trivial Qi when p > 2. Since 5 restricts on E'P' to the p-fold product 
that operations of negative degree can act on homology classes of negative degree P 

of E and since the unit e:S + E is an H_-map, parts (11-(51 of the theorem are and that a high power of p is added to the right entry in the binomial coefficients 

appearing in the Nishida relations. For spaces, the same answer is obtained with or immediate from 1681. 

without the power of p because of the restrictions on the degrees of dual Steenrod It is proven in the sequel IEquiv, VIII.2.91 that the maps tj, a ~ , ~ ,  $j,k, and 

operations acting nontrivially on a given homology class. Our conventions are that 6j discussed in I52 have the expected effect on cellular chains. For example, Sjx 

la,b) is zero if either a < O or b < O and is the binomial coefficient (a + bl!/a!b! can be identified with the homomorphism 

otherwise. The Nishida relations become cleaner when written in terms of classical ( l Q t O l l ( ~ ~ Q ~ 1  
binomial coefficients since C,(EZ.) Q (C,E 8 C,EI' *C,(EL.) I3 (c,E)' Q C*(EZ.l €3 (C*E)' 

3 3 3 

The Q~ and $QS generate an algebra of operations. If we restrict attention to 

the operations on connective H, ring spectra, then the resulting algebra is 

precisely the Dyer-Lashof algebra in view of relations (3) and ( 8 )  and application 

of (10) to the KO space obtained by adjoining a disjoint basepoint to the additive 
H, space structure on QS'. 

We sketch the proof of the theorem in the rest of this section. With the 

exception of the proof of the Nishida relations, the argument is precisely parallel 

to the treatment of the space level homology operations in I281 and is based on the 

where A' is a cellular approximation to the diagonal of Ex and u and t are shuffle 
j 

and twist isomorphisms (with the usual signs). The Cartan formula and Adem 

relations follow. For the former, the smash product of H, ring spectra E and F is 
an %, ring spectrum with structural maps the composites 

and the product E AE + E of an & ring spectrum is an H, map; see 1.3.4. For the 

latter, we use the case j = k = p of the second diagram in the definition, 1.3.1, of 

an H, ring spectrum. The requisite algebra is done once and for all in 1681. 



The Steenrod operations in &(D,,E) are computed in IEquiv. VIII $31, and the 

Nishida relations follow by naturality. (See also 11.5.5 and VIII 87 here.) 
Moreover, ~~c~ is nonzero for each s > 0 and, for i > 1, 

Since a,:g,(~~) + H,E is the composite of the identification 

if s 5 0 or -1 mod 2 i 
H, map when E is an H, ring spectrum, by 1.3.10, part (9) of the theorem is a 

consequence of part (10). in turn, part (101 is an immediate comparison of 
otherwise. 

definitions in view of 1.2.2 and 1.3.6. The essential point is that the isomorphism 

D,Z'X S E"D,x induces the obvious identification on passage to cellular chains, by 

IEquiv. VI11.2.91. 

As promised, we have the following observation of Miller and McClure. Theorem 2.3. For p > 2, is generated by TO as an algebra over the Dyer-Lashof 

algebra. In fact, for i > 0 
Remark 1.2. ~ e t  x be a finite cw complex. BY 11.3.2, the dual F(x+,s) of zmx+ is 
an Hm ring spectrum with pth structural map the adjoint of the composite QP(~)T~ = I -  i x i  and 

i 
B Q ~ ( ~ ) ~ ~  = (-1) xsi ' 

i where ~ ( i l  = lp -l)/(p-I). Moreover, @ Q ~ T ~  is non~ero for each s > 0 and, 

for all s , 0. A more conceptual proof by direct comparison of McClure's abstract i if s s -1 mod p 
definitions of homology and cohomology operations is also possible; see VIII $3. 

if s 2 0 mod p i 

otherwise, 
82. Some calculations of the homology operations 

For R a commutative ring, let +ni be the spectrum representing ordinary if s 0 mod p i 
cohomology with coefficients in R. We wish to compute the operations on the 

otherwise. 

Notations 2.1. We shall adopt the notations of Milnor in our analysis of 1861. Thus, for p ? 2, the operations on the higher degree generators are determined 
Thus, at the prime 2, has algebra generators ei of degree zi-1 for i 2 1. At odd 

by the operations on the generator of degree one. A complete determination of the 
Primes, Ax has generators Si of degree 2p1-2 for i 2 1 and generators T~ of degree 

operations on this degree one generator does not seem feasible. However, we do have 
2pi-1 for i 2 0.  We shall denote the conjugation in by X. a conceptual determination of these classes. For p > 2, let 5 be the total 5 class 

We have the following theorems. 5 = 1 + el + t2 + ... 
Theorem 2.2. For p = 2, 4 is generated by g1 as an algebra over the Dyer-lashof For p > 2, let .r be the total r class 

algebra. In fact, for i > 1, 
r = l + r o +  T1 i "' 



Since the component of these classes in degree zero is one, we may take arbitrary We have analogous results for the p-local Brown-Peterson spectrum BP. Let 

powers of these classes. 
by Theorem 2.4, if p > 2, i, embeds GBP as a subalgebra of A, which is closed under 
the action of the Dyer-Lashof algebra. 

Theorem 2.4. For p = 2 and s > 0, 

QSel = ( S - ~ I ~ + ~ ;  Corollary 2.7. For p > 2, %BP is generated by xel as an algebra over the Dyer- 
2 

Lashof algebra. For p = 2, H,BP is generated by el as an algebra over the Dyer- 
that is, QSel is the (sill-st coordinate of the inverse of the total 5 class. For Lashof algebra. 
p > 2 a n d s > O ,  

1 QSr0 ' (-llS(~- ~)~~(~..l)+l, ,and It is not known whether or not BP is an H_ ring spectrum. However, suppose 

that E is a connective B- ring spectrum and that f:E + BP has the property that 
%QSrO ' ( - ~ I ~ ( c ~ ~ I ~ ~ ( ~ - ~ ~ ,  if:E+ HZp induces a ring homomorphism on no. Then if is an Ha ring map, so 

that (if), comutes with the operations. Since i, is a monomarphism, so does f*. 
that is, QSrO is (-11' times the (2s(p-lltll-st coordinate of the product of the' 

We shall also examine the operations on the homology of HZ for n > 1. Let 8, 
total r class and the inverse of the total 5 class, and B Q ~ T ~  is (-llS times the pn 

he the homology of HZ and let x E HIHZ be the element dual to the n-th Bockstein 
(2s(p-111th coordinate of the inverse of the total i. class. pn 

operation on the fundamentsl cohomalogy class (so that Bnx = -11. Then %HZ is 

the truncated polynomial algebra 
pn 

following corollaries, we consider connective ring spectra E together with morphisms 

an H- ring spectrum, i is an H- ring map by 1.3.6. as an algebra over the dual Steenrod operations. Here the inclusion of B, in %HZ 

is induced by the natural map HZ + HZ x maps to zero in the homology of HZ a n t  
For p > 2, the homology of HZ or HZ(pl embeds as the subalgebra of A, generated pn' P' 

x is annihilated by the dual Steenrod operations. 
by xei and xri for i ? 1. For p =2, the homology of HZ or HZ(2l embeds as the 

2 subalgebra of A, generated by el and xei for i > 1. 
Corollary 2.8. For p > 2, H,HZ is generated by x and the elements xF,~ 

p" 
Corollary 2.5. For p > 2, the homology of HZ or HZ(pl is generated by xel and Xrl and xrl of B, as an algebra over the Dyer-Lashof algebra. For p = 2, %HZ is 

as an algebra over the Dyer-Lashof algebra. For p = 2, the homology of HZ or HZ(2) 2 
pn 

generated by x and the elements el and xt2 of B, as an algebara aver the Dyer-Lashof 

algebra. For p > 2, the element x is annihilated by all of the operations QS. 

Proof. For the last assertion, note that QSx is an element of B,x for all s since 

QSx maps to aero in A,. Since x is annihilated by the dual Steenrod operations, the 

Nishida relations reduce to 

r s  r S-r 
P,Q x = (-11 (r,pm + s(p - 11 - prlQ x, 

as an algebra over the Dyer-Lashof algebra, while the homology of kU is generated by 
s-r 

and XE,~ as an algebra over the Dyer-Lashof algebra. P ~ B Q ~ X  = (-llr(r, pm + s(p - 11 - pr - 1 1 % ~  x 

for p > 2. Since B'*X is isomorphic to B, as a module over the dual Steenrod 
4 2 -  2 2. 2 
Q el - (Q ell - XS2 . operations, and since no nontrivial element of B, is annihilated by P$ for r > 0, 

and B if p > 2, QSx = 0 by induction. 



33. Homology operations for %ring spectra, n < - or x E nqE, y E q E ,  z zi USE; An-l(x,An-l(x,x)~ = 0 for all x.if p = 3. 

Cohen, 1281, by computing the equivariant homology of the space cnl j) of j (71 P~A~-~(X,Y) = I An-,(p$x@ P~Y), 
i+j=s 

little n-cubes, completed the theory of homology operations for n-fold loop spaces 

6An-l(x,yl = hn-ll~x,yl + (-1) 'X'm-l An-1(~~6~l 

(8) ~ - l l ~ , ~ S y l  = 0.  

Theorem 3.1. For integers s there are operations QS in the homology of Y, ring There is also a "top" operation, 

spectra. QSx is defined when 2s - degreelx) < n:l Is - degree(x1 < n-11 and the 

operations satisfy properties (I)-($) of Theorem 1.1 and the analogues of I91 and Theorem 3.3. There is a function Sn-l:HqE + Hq+(n-l+q) lp-l)E iHqE + l$q+n-ll 

(10) for n < -. Moreover, these operations are compatible as n increases. defined when q+n-1 is even lfor all ql, which is natural with respect to maps of Y, 
ring spectra and satisfies the following properties. Here ad(x) (yl = b-lly,x), 

The Browder operation, An-l, is also defined for Y, ring spectra. adi(xl(yl = ad(~)(ad~-~Ix)(yl), and <n-lx is defined, for p > 2, by the formula 

<n-lx ' 6Fn-lx - adP-11xl(6xl. 

satisfies the following properties. 

(1) If E is an ring spectrum, is the zero homomorphism, 

(21 h0(x,y) = xy - (-llqrYx, 2 If we let ~("-l+q)/*x lg"-'+qxl denote ~,_~x, then en-lx satisfies 

(x,y) = ~-l~q~+~+(~-~'(q+~+~)~~-~(y,x); h-l(x,x~ = o if p = 2, 
formulas 131-(51 of Theorem 1.1, the external Cartan formula, the Adem relations, 

and the following analogue of the internal Cartan formula: 
( 4 )  An-lll,x) = 0 = ,-l(x,l), where 1 s &E is the algebraic unit, 

(5) The analog of the external and internal Cartan formulas bold: ~,-~(xy) = 1 Q ~ X Q ~ Y  + 1 xiyjrij for n > 1, 
i+j=s OGi+j<p 

Oci, j 
An-l(x @ y,xl Q y') = I-l)lX' I(lyl+n-l' XX' Q &_,(Y,Y'I 

where s = in-ltql, q = degree(xy), and T.. is a function of x and y 
+ l~l(l~'l+l~'l+~-~) 

1.l 
specified in 128, III.1.3(211. In particular, if p = 2, 

where /zl denotes the degree of 5 ,  S,_~(XY) = Q ~ ~ Q ~ Y  + XA~-~(X,YIY. 
i+j=s 

An-l(xy,x'y'l = xh ly,x')y' n-1 Moreover, the Nishida relations for are the usual ones plus an unstable error 

/ Y / ( ~ - ~ + I ~ '  I )An-l(X,XI)mt tern given by sums of Pontrjagin products which contain nontrivial iterated Browder 
+ (-1) 

+ (-11 Ix' / ( ~ - ~ + ~ x ~ + ~ ~ / ~ x ~ x ~ n ~ l ~ Y , Y Y l  13) hn_l(~,~n-l~) = adPIy)(x) and An-l(x,<n-l~) = 0. 

( 4 )  En-l(~ + y) = En-l~ + Sn-ly + a sum of iterated Browder operations 
+ (-1) I~l(n-l+l~'I)+lx' I IY' IAn_l(X,yg)yx~ specified in 128, 111.1.315) 1. 

161 The Jacobi identity holds: In the remainder of this section we sketch the proofs of these theorems. 

(q+n-11 (s+n-11 Irtn-1 1 (q+n-11 After replacing E by a ON spectrum and replacing tn(j) by the geometric 
hn-l(~,An-ll~,51) + (-1) An-l(~rAn-l15>x)) 

realization of its total singular complex, we have that Cnlj ) txn E1j), is a CN 

+ (-11 
(s+n-l)(r+n-1) 

An~l(5,hn-ll~,~)) = 0 spectrum, for any n C zj, with cellular chains naturally isomorphic to 



C, Cn(j 1 Q K(~,~lj (cf. IEquiv., VIII. 2.91). With field coefficients, ( C ~ E I ~  representing e(n-ll(p-lI-l in &(cn(p)/np1, so that 6 Q a P  reduces mod p to a 

is equivariantly chain homotopy equivalent to (&ElJ, so we can apply Cohen's representative of e(n-lI(p-lI Q xP. 

calculations. We define Qix to be the image under the structure map of ei Q xP, 

where ei E Hi &n(p)/wp is Cohenls class, np C EP the cyclic group of order p. 

Define QSx and [n-lX by the formula in 51. Since &,(2I is homotopy equivalent to 84. The Splitting Theorems 

sn-l, we can define h,_l(x,yI to be the image under the structure map of 

(-l)(n-llq+ll O x  BY, where t c &,(2) is the fundamental class and x E HqE. We present simple necessary and sufficient conditions for a more general class 

As noted by Cohen, Theorem 3.1 is a consequence of Theorem 3.3, with 
of Spectra than Previously mentioned to split as wedges of p-local Eilenberg-Maclane 

immediate from the definition. With the exception of those statements involving spectra or as wedges of suspensions of BP. The spectra we consider are pseudo l$, 

Steenrod operations, all of the statements in Theorems 3.2 and 3.3 follow from 
equalities between the images under the structure map y of the operad Cn of the 
classes in the equivariant homology of the tn(jI which induce the stipulated Fix a pseudo % ring spectrum E = Tel E and assume that n,E is of finite type 

9' 
operations. These equalities follow from Cohen3 s work. This leaves Theorem 3.2 (71, over noE and that noE = nOEq for q sufficiently large. Let i:E ., HZ be such that 

P 
the Nishida relations, and the verification that cn-lx is the image under the ie:sO + WZp is the unit of HZ and regard i as an element of H'(E.Z I; under our 

P ' P 
structure map of the appropriate multiple of e(n_l)(p-ll Q xP, this last giving the hypotheses i will be unique. Let Z(pl he the integers localized at p. 

definition of cn-lx which Cohen uses in deriving his formulas. 
Theorem 4.1. If noE = Z then E splits as a wedge of suspensions of HZ 

P' P' 

the computation of the Steenrod operations in &D,, E [Equiv, VIII 531, together 

with the fact that the kernel of &( 6 ,(pI %,, E) &D, E consists of classes which 

are carried to sums of Pontrjagin products of [he type seated 128, 111 55 and 12.31. 
Theorem 4.3. Let n 2 3. If iiOE = Z(p) and H,(E;Z(pI I is torsion free and if p = 2 

For the last statement, we calculate ~(e(,_~) (p-ll Q XPI. Let 6 be a chain in 1 and sq2i # 0 or p > 2 and P i # 0, then E splits as a wedge of suspensions of the p- 
C, <n(pl which projects to a cycle in C,&n(pl/np representing e(n-ll(p-ll and let a local Brown-Peterson spectrum BP. 
be a chain in the integral cellular chains of E, representing x mod p. Let 

da = pb . Let N = 1 + a + . . . + ,pel in Z [ ,, 1 ,  where is a generator of n p  Then 
P Remarks 4.4. The various known splittings of Thom spectra are direct consequences 

of these theorems. Obviously the splitting of MO and the other Thom spectra of 
d(aP) = phlbaP-l, unoriented cobordism theories follow from Theorem 4.1. When n@ = Z(pI, the mod p 

Thom isomorphism commutes with the Bockstein. At 2, the splittings of MSO and of 

d ( ~  Q aPI = peN Q baP-' + (de) Q aP. the Thom spectra into which MSO maps follow from Theorem 4.2 and -the facts that sq2i 
X 

is the image of w2 under the Thom isomorphism and that sq1w2 = w3 in H BSO. The BP 

Since E projects to a cycle mad p in C,C ,(p1/np, the transfer homomorphism shows 
splittings of MU at all primes and of MSO and MSU at odd primes follow from Theorem 

that EN is a cycle mod p in C, tn(pI. Thus, EN Q baP-I gives rise to a sum of 4.3 and similar trivial calculations. Most strikingly perhaps, the splitting of MSF 

Pontrjagin products of Browder operations in ex and x I28, 111. 12.31, which, by the at odd primes follows trivially from Theorem 4.2. Indeed, pli is nonzero by 

space level calculation, must be the appropriate multiple of adp-'(XI (6x1. Since consideration of the first Wu class in MSO. Since the p-component of nt = n 9 SF = 

ds projects to zero in the mod p chains of Cn(p1/npr and since aP is fixed under 

the action of np, we can find a chain 6 such that Z for q = 2p-2 

(dsl Q aP = 6N Q aP = 6 Q N ~ P  = p6 Q aP 
0 for 0 < q < 2p-2. 

for all a. By naturality and the space level result, 6 must project to a cycle 

' P Thus, H2p-2(BSF.Z I = Zp, and the Bockstein 



( X E ~  . xPq)P, the second statement now follows by the Cartan Gormula. The proof of 

the third statement is almost identical to the proof of the first. 
is an epimorphism. Thus, the dual cohomology Bockstein is a monomorphism. 

It should be noted that the full strength of Theorems 2.2 and 2.3 is quite 

unnecessary for the computations ahove. They could he derived quite simply and 
We turn to the proof of the splitting theorems. Define 

directly. We shall apply these computations to the proofs of the splitting theorems 

by means of the following commutative diagram, analogous to that of 11.6.8. 

where d = 1 if p = 2 and d = 2 if p > 2. AS pointed out in 1.4.5 and 11.1.3, 

HZ~[X,X-~] is an H, ring spectrum. We think of it,as the Laurent series spectrum on 

Here, is is the restriction of i:E + HZ to Es, the right-hand map 5. is the induced 
P J 

easily calculate the operations on the powers, xn, of x by use of the techniques of F$, ring structure of H Z ~ ~ X , X - ~ I  restricted to the (dq)-th wedge summand. The 

the next section. However, remarkably, we shall only need the p-th power operation commutativity of the diagram is an easy cohamology calculation provided tht E q f Es 

on x. We should remark that multiplication by x, induces an isomorphism of iiO for s > q. 

H+xd%izp + H+zd(q+')H~ 
The key step in the proofs of Theorems 4.1, 4.2 and 4.3 is the following 

P' 

is the homology suspension. 

Lemma 4.7. In A,lx,x-'1, for p ?  2, i > 0 and q an integer 

the third case, let j :E + BP be a lift of j ahove to BP. Then j induces a 

monomorphism of p-primary cohomology. 

For p > 2, i : 0 and q an integer, 

image of i,. Similarly, for the third case, it suffices to show that HxBP C A, is 
in the image of i,. The hypotheses of the theorems give us the following eonclu- 

sions. In Theorem 4.1, the nontriviality of the Bockstein operation on iq, for q 
Proof. The internal Cartan formula, together with the degree of xSi and of xPq 

or c1 and xe2 for p = 2, are in the image of i ,. In Theorem 4.3, the nontriviality 4 

of pli, for p > 2, or of sq2i, for p = 2, shows that for q sufficiently large, XE.~, 
The first statement follows from Theorem 2.2 or Theorem 2.3 and the fact 



if 1xt = xi @ ai, then ften = an: for a E A, 

sequences of Lemma 4.7 and the diagram preceding the statement will suffice. 
X 

<a f e > = <f a,e > 
(1) If p = 2 or if p > 2 and n 3 and if xgi is in the image of i ' t n  t n 

t 
= <ax ,e > n 

12) If p > 2 and pi is in the image of idpqX, then xri+l is in the image of n = <(a,an>x ,e > n 

= <*,a >, 
n 

since <xn,en> = 1. However, A is an algebra mp, and Milnor has shown that 

preimages of the operations needed to carry out the argument. 

The passage from the proposition above to the splitting theorems is well known 
t i t 

and has been exploited in the literature to prove the splittings of the cohordism kx = e x Q I E  ),-,. 
i > t  

theories. Theorems 4.1 and 4.3 follolv from the algebraic splitting theorem of 

We also have an odd primary analogue. 

is spanned by the A-module generators of the summands isomorphic to UAB. 6Y Proposition 5.2. For p > 2, let C be the A-algebra obtained by inverting the poly- 
pairing up these generators with respect to their higher order Bocksteins, we may nomial generator in the cohomology of the lens space L ~ .  Thus, C is the tensor 
construct a map of E into a wedge of p-local cyclic Eilenberg-MacLane spectra which product of an exterior algebra on a generator x of degree one and an inverted poly- 

induces an isomorphism on mod p cohomology. In all cases, the hypothesis on noE nomi81 algebra on y = Bx. Let Cx be the dual of C and let e2, E CX be dual to yn 

ensures that E is p-local, and the cohomology isomorphisms yield equivalences. and let e2n+l E CX be dual to xy". Let ft:CX + 4 be the 4 comodule map such that 

(1) If t = 2s, then ften is (-1)" times the In-tl-th component of the s-th 
85. Proof of Theorem 2.4; Some low-dimensional calculations power of the total 5 class: 

We shall exploit the following observation of Liulevicius. n s 
ften = 1-11 I5 

Proposition 5.1. Let C = ~ ~ [ x , ~ - l l  be the algebra over the Steenrod algebra A which 
12) If t = 2s+l, then feen is the In-t)-th component of the produot of the 

is obtained by inverting the polynomial generator of 3RPm. Let Cx be the dual of total r class with the s-th power of the total 5 class: 
C, with a generator et in degree t. Let ft:Cx + he the unique nontrivial 

morphism of comodules of degree -t li.e., ftet = 11. Then ften is the component 
ften = (E'TI~-~. 

of the t-th power of the total 5 class in degree n-t: 

Proof. Let zi E C be the dual of ei. Suppose that Ast = 1 ni @ mi. The sign 

convention here is Chat for a s A, 

aperations. Recall that for c z C and a E A, if Ac = 1 ci @ ai, then ast = 1 1-11 ili-tl<a,ai>zi . 
ac = 1 <a,ui>ci. Here < , > : A @  + Z2 is the Kronecker product. In particular, 



A similar argument to that when p = 2 shows that ften = ( 1 1 " ( ~ - ~ ) ~ .  Here, Milnor's is a mappf A, coalgehras. Thus, in either case, the map f coincides with the map 

calculations are that f-l described 'above. 

i 
h x = x Q l +  j: y O ( T ~ ~ ~ - ~  and 

i 1 map of A-modules. But this latter condition is equivalent tokthe statement that f, 

commutes with the action of the dual Steenrod operations Pj: for k ? 0 and also 

commutes with the Bockstein 6 when p > 2 

i s For p-> 2, 8e2, = e2s-l and 6ro = -1. (We have adopted the covention that for 
hyS = j: Y O (5 12i-2s and 

i , s  y e Hqx and x E Hq+lX, <x,gx> = (-l)q+l<By,x>.) Moreover, the suhspace of C* 

s spanned by e2slp-l) and e2s(p-l)-l for s an integer is a direct summand of C, as a 
h(xyS) = 5iO(5~)i-2s-;. 

i + 2s+l module over the dual Steenrod operations. We have specified that f = 0 on the 

complementary summand. Thus, for p 2 2, it will suffice to show that the dual 
In the remainder of this section and in the next, we shall need to evaluate Steenrod operations in C, agree under f with the Nishida relations on the pertinent 

binomial coefficients mod p. The standard technique is the following. homology operations on or TO. 

For symmetry, we shall write y for the polynomial generator of C when p = 2. 
Lemma 5.3. Let a - 1 aipi and h = j: bipi he the p-adic expansions of 
a and b. Then (a,h) s 0 mod p unless ai + b < p for all i, when 

degree sero, and third, those which have image in degree -1. 

k In the first case, we show that for p = 2 and 2 < s, Moreover, for a 5 pn - 1, 
n la,p - 1 - a) 5 (-I)~ mod p. 2k P, e s = (2k,s-2k+1)e , 

s-2 

We shall not bother to quote the first statment, but shall use it implicitly. 
and that for p > 2 and pk < s, 

The following proposition is the key step in proving Theorem 2.4. 

Let d = 1 when p = 2 and let d = 2 when p > 2. Then the statements above reduce to 

for n > 0 

for n = 0 

for n = -1 for p 2 2. However, since C was obtained from the cohomology of PIP" or L", 

otherwise y for r = 0 

is a map of A, coalgehras. Far p > 2, the map f:C* .t A, given by 

0 otherwise 
(-l)S~SrO if n = 2s(p-11 

( - l ) S ~ ~ S ~ O  if n = 2slp-11-1 

for n = 0 

for n = -1 

otherwise 



"~ " 
For p > 2 and s > pk, we have similarly tha t  

by the Cartan formula. ~ h u s ,  Prym1 = -yP-l~r-ly-l, so tha t  

r r(p-11-1 , =(-11 y 
Here, prx = 0 for  r > 0, so t h a t  

k k by induction. For p > 2, since Prx = 0 for  r > 0, 

<XY 
S - 1 -  p - l -  p k 

,P, e2s(p-ll-l> = ( P  ,s(p-lI  - P k+l - 1 1 .  

k On the other hand, the Nishida re la t ions  give us, for  s > p , 

I 
for  p = 2, and, for  p > 2, 

and 

and for  p > 2 

k k k 
<xy-l,$ e > = (-lp <xp (p-ll-l 

y e  k 
> = -1. 

2p (p-11-1 2p (p-11-1 

The following lemma w i l l  complete the proof. 
Here, the i n i t i a l  -1 is cancelled by the conventions in the definit ion of f ,  and the 

additional high power of p in the right-hand side does not a l t e r  the binomial 

coefficients unless the right-hand side would otherwise be negative. Thus, we must Lemma 5.5. For p = 2, 

check tha t  for  s > pk, i f  s(p-11 < pkil, then (pk,pm + s(p-1) - pki11 and P, s+l Q t l Z 1 .  s 
(pk,pm + s(p-11 - pktl - 11  are zero. Since s(p-1) 5 pkil - 1, we have s 5 p(k+l)  For p > 2, 
= 1 + p +  . . - + p k .  B u t s i n c e p k <  s ,  w e h a v e s = p k + t w i t h O < t 5 p ( k l .  Thus, P,BQ s s r 0 =  (-1) s-1 . 

k s(p-1) = p (p-11 + tl, with 0 < tl < pk. Thus, the specified coefficients are zero. 
,. 
li 

It remains t o  check those operations P! whose images have degree 0 or -1 i n  - Proof. For p = 2, the Nishida relat ions reduce t o  
K 

C,. However, eo may not he in the image of any PI: , as prl  = 0 for r > 0. 

P:QrS1 and P ~ Q ~ T ~  are  zero by the Nishida relat ions.  (Qg k i l l s  gl o r  

For the remaining case, we shall  show tha t  for  p = 2, 
by Lemma 4 . 7  For p > 2,  tne Nlsnlaa relations reauce ro 

s s n 0 0  P,BQ T, = -(s-l,p -s)Q P,Bm 



proof of Theorem 2.4 For p = 2 and s > 0, the fact that ~~~5~ for  0 < t 5 15,  where p = 1: 

= (c-l~~+l 

follows immediately from Propositions 5.1 and 5.4. For p > 2 and s > 0 ,  the fact 

S s -1 BQ ro = (-1) (5 ~ ) ~ ~ ( ~ - l )  

follows immediately from Proposition 5.2 and 5.4. However, all of the even degree 

coordinates of t-lr come from F,-l. Thus, 

S s -1 BQ T~ = (-1) (5 )2s(p-ll . 
One can identify certain algorithms such as the following curiosity when 

Thus, the actual computations can get quite ugly. We have the following low- 

dimensional of ~~c~ for p = 2. In the next section we shall show that 

g2t-lS1 . (gt-151)2. Thus, we shall only list gtc1. We shall write 



$6. Proofs of Theorems 2.2 and 2.3 
Lemma 6.3. (The p-th power lemma). For p = 2 and s > 1, 

We shall compute the operations on &HZp = &. The elements ofk& are com- Q ~ ~ - ~ ~ ~  = (gs-1~~12. 

pletely determined by the effect of the dual Steenrod operations $ for k > 0, For p > 2 and s > 0, 

'along with the Bockstein operation if p > 2. Thus, our computations will he based 
B Q ~ ~ T ~  = ( B Q ~ ~ ~ ) ~ .  

on induction arguments using the Nishida relations. 

Theorems 2.2 is the composite of Lemma 5.5 and Propsitions 6.4 q d  6.7. 

Theorem 2.3 is the composite of Lewoa 5.5, Propositions 6.4, 6.7 and 6.9, and 

Corollary 6.5. 

We begin by recalling some basic facts about the dual Steenrod operations side, this follows from the Cartan formula. For the left-hand side, the Nishida 

relations give 
s-l 

P:Q' = (S - I)Q , and for p >  2 

Lemma 6.1. The following equalities hold in &. For p 2 2 and i > 0, 

k 
Thus, we may restrict attention to $ for k > 0. If s = pk-l, Lemma 5.5 p d  the 

otherwise 
Cartan formula show that both sides of the equations are carried to 1 by P! . 
Thus, the lemma is true for p = 2 and s = 2, and for p > 2 and s = 1. In the 

remaining cases, k > 0 and s > pk-l. Here for p = 2, 

piXri = o for r > 0, k ir 
2 2s-15 = (2k,2s-l)Q2S-2 -1 
P* Q 1 51 ' 

Bxri = xSi . k 2k-l 
P: ( Q ~ - ~ s ~ ~ ~  = (P* Q ~ - ~ s ~ ) ~  

Here, So is identified with the unit, 1, of Ax. 
= (2k-1,s-11 (QSw2 

k-l-l 

k 
Remarks 6.2. Notice that the added high power of p in the right-hand side of the = (2k-1,s-1)Q2S-2 

51 ' 
binomial coefficients in the Nishida relations allows us to make the following 

simplification. For p 2 2, by the Cartan formula, the Nishida relations and induction. For p > 2, 

k k-1 
$ ( B Q ~ T ~ ) ~  = ($ 6 ~ ~ r ~ ) ~  

k-1 k 
= -(p ,s(p-11 - l ) ~ $ ~ - ~  To , 

i+l(pk - pi - l,s(p-11 + pi)& 
by the Cartan formula, the Nishida relations and induction. The conclusion follows 

easily from Lemma 5.3. 

One of the key observations in our calculations is the following. 



We can now evaluate certain of the operations. Corollary 6.5. F' 

i 
Proposition 6.4. For p = 2 and i > 1, Q ~ ' ~ ~ ~ ~  = (-11 X T ~  . 

2 However, we may simplify this expression considerably. 
= ( X S ~ - ~ )  , 

by the p-th power lemma and induction. Lemma 6.1 is again sufficient. For p > 2, Lema6.6. F o r p > 2 a n d i > O ,  

let i = 1. Then 

1 1  
P:BQP("?~ = P,BQ ro = 1 

For p > 2 and i 2 0, 

Moreover, the following additional simplifications hold for particular values 
k i p(i1-p 

= -(p ,p -2lBQ of s. For p > 2, s f 0 mod p and k > 0, 

k k k 
by the p-th power lemma and induction. The result follows from L e m  6.1. 6QS~r. I = -(p ,s(p-11 - 1)8~'-~ x.ri . 



For p > 2, s f  -1 mod p2 and k > 1, 

the p-th powerklemma. Of course, we sha l l  show tha t  both sides of the equations 

agree under $ for  k 2 0 and under B when p > 2. Clearly both sides agree 

under Pi ,  and when p > 2, Lemma 6.1 implies t ha t  BQSXSi = 0 for  a l l  i and s by 

the binomial coefficients.  We sha l l  assume k > 1. If  s f -1 mod p and j > 0, then k 
induction and the Nishida re la t ions .  Thus, it suffices t o  check P i  for  k > 0. 

By the preceding l ema ,  
mod p, while s(p-1) + pp( j i( 0 mod p. Thus, 

k k k 
$ Qsxsi= -(P , S ( P - ~ ) ) Q ~ - ~  xsi . 

k 
By induction QS-' xs. = 0 unless s - pk 5 0 mod pi. Since s f 0 mod pi, t h i s  means 

I .  k k k k < i and s : pk mod pl. Here ( p  ,s(p-1))  = ( p  ,p (p-1))  = 0. mus  QSXci = 0. 

s(p-1) + p p ( j )  e (p- t )p+l  mod p , 
Case. s :Omodp i .  

k 
i f k < i o r p  5 s  

It suffices t o  assume s E -1 mod p2. Here, for  j > 1 (and k > l ) ,  

k S - P + P ( ~ ) ~ ~  i f  s > p > pi, p > 2 
s - p k +  p l j )  + p m o d p 2  . - 

k i 
i f s > 2  2 2 , p = 2  

By the Cartan formula (or  Theorem 1.2( 5 )  i f  i = j ), 

by induction. On the other hand, 

k k 
~ P ~ ~ Q ~ + ~ ( ~ ) ~ ~  = - (p  ,s(p-1) + pi - 2)BQ s + P ( ~ ) - P  if , 2,  * 

Proposition 6.7. For p = 2, i > 0 and s > 0 ,  
k i k i 

i k 
P: Q'+' -2Sl = (2 ,s+2 - 2)Q s+2 -2-2 

51 i f  p = 2. 
el  i f  s I 0 or -1 mod 2 

otherwise . Since s s 0 mod pi, 
f o r l k c i  

For p > 2, i > 0 and s > 0, 

T~ 
i f  s E -1 mod p 

( - l ) i i l g ~ S t p ( i ) T O  i f  j z 0 mod p 

otherwise . 



Case 3. s $ 0 o r  -1 mod p. 
k k (pk,s(p-111 + ( p  - p,s(p-11 + PI = ( p  ,s(p-11 + ~i - 21, 

which the reader may verify (or  c.f. 1101, p.541 I .  

For p > 2, i = 1 and s > pk, 

by induction. k k s+l-p 
k 

$ QSx6 1 - (p  , ~ ( p - l ) l ( - B Q  

Case4. S E -1 mod pi by 'induction, while 

$ B Q ~ ~ ~ T ~  = - (pk , (s+l l (p-1)  )5Q 

and the binomial coefficients  here are equal. 

k 
by lemma 6.6 and the Cartan formula. F o r s < p k ~ s + p ( i 1 ,  whenp ,  2,  o r f o r s < 2  f s + z i - 2 ,  whenp=2 ,  a simple 

calculat ion shows tha t  s = pk-1. Here 

xSiWl = 0 f o r  1 < k < i. For k = 1 < i, 
gk5gk-1+~(i) To = -(pk,pk(p-l) + p(pi-l-l))BQ~(i)-l,O for p > 2 

for  p = 2 

Since k 2 i > 1, the binomial coefficient  is zero. 

by induction and the p-th power lemma. On the other hand, for  9 < s + p ( i l  and 

=. s E - 1 m o d p , b u t s f - 1 m o d p ~ ,  i > l a n d i r > l .  

and for  p = 2 and 2" < s +2i-2, 

k 
by l e m a  6.6. But s-pk f -1 mod p2, so t ha t  Q ~ - ~  xSi = 0. 

pi - p - 1 mod pi. Thus, i f  1 < k < i, the coefficient  is zero and i f  k = 1, the 
Case. s E -1 mod $, but s f -1 mod pi; or  s n -1 mod p hut s f -1 mod p2, 

coef f ic ient  is -1. 

k = l a n d i > l .  
For s > pk > p i  and i > 1, 

by induction and the p-th power lemma. Thus, for  these values of k, it suffices t o  X F , ~ - ~ ) ~  are both zero or  

check tha t  



they are both equal t o  the appropriate operation on ro i f  p > 2 or Sl i f  p = 2. In 

the l a t t e r  case, the coefficients cancel as  k < i and s E pk-1 mod pi. 

k 
otherwise . Here, Q ~ - ~  xri = 0 by induction. 

Proof. We argue by induction on s and i. The lemma is t r i v i a l  for i = 1 or fo r  

Case s : 0 mod p but s f  0 mod pi. 
agree under ~j: for k > 0. 

k 
By induction, QS-P .ii = 0 unless k < i and s E pk mod pi. Here 

k ( p  ,s(p-Il l  = (pk,pklp-111 = 0. 

Case: s I 0 mod pl. 

k 
k 

k 
i+l s-p + p l i l  Pi: QSxri = -(p ,s(p-ill(-11 Q To 

f o r i : k <  s .  Wehave 

Therefore, 8&'xri = QSxci. k 
i 

k 
PP x ~ ~ + p ( ~ ~ ~ ~  = -1p~ , s (p -11  + p - I I Q  s-p + P I ~ I  + 

Since s I 0 mod pi, 

Here, by Lemma 6.6, f o r O < k < i  

For s 5 pk < s + p ( i l ,  s = pk and 

Proposition 6.9. For p > 2,  s > 0 and i , 0 ,  

( - l l i + l ~ s + p ( i l ~ o  i f  s 5 0 mod p 

- 0 .  

otherwise. 

Bockstein. By Lemma 6.1, 



CHAPTER IV 

everything we do'applies to all H, ring spectra, not only the 
THE HOMOTOPY THEORY OF H_ RING SPECTRA Second, we have done the homological algebra necessary to produce steenrod opera- 

tions in the generalized Adams spectral sequence and have shown that. they come from 
by Robert R. Bruner the Hm ring structure just as in the ordinary mod p Adams spectral sequence. ~ h i ~ d ,  

we have included a reasonably thorough account of the homotopy operations and the 

relations between them. Undoubtedly, same of these results, especially in the mod 2 

case,, are h a m ,  although difficult to find in the literature. passing references 
kound 1960, ~ i ~ l ~ ~ i ~ i ~ ~  1551 and Novikov 1911 introduced Steenrod operations to Barratt and Mahowald are found in 1451 and some related results exist in 11061, 

into the cohomalogy of cocomutative Hopf algebras,, in particular the Q term Of the 11041, '1801 and 1791. Fourth, we have generalized the results of &kinen to the odd 
~d~~ spectral converging to the p-component of "*SO. Wring the 1960's, primary Case, producing new formulas for differentials in the Adams spectral 
Barrat% and khowald studied the quadratic construction, using it to sequence. This involves a detailed study of the homotopy of powers of 

homotom and to derive relations in homotopy. Toda 11061 Cells- Finally, it is our hope that the present account has benefitted sufficiently 
studied the mod analog, the extended pth power construction, and used it to derive from the Process of refinement that occurs with each extension or generalisation of 
relations in the odd primary components of "*SO. Early in the study of the 

Previous work, that it is simpler and clearer than previous accounts and that this 
quadratic construction, it was conjectured that the quadratic construction could be will make the results more accessible. ~n this spirit, we have to include 
used to provide maps representing Steenrod operations. This was proved by D. 8. all nontrivial details. 

K&, 1451. H~ also showed that this determined some differentials in the Adams 
We have tried to maximize the extent to which all of this carries over to 

spectral sequence and related the homotopy operations to Steenrod operations. 
tram homotopy functors IX,-I* besides the traditional nx = [so,-]*. of particular mlgram 1811 reformulated Kahnts work in a form which generali5es to the mod P case, 
interest is the case in which X is a Moore space. M U C ~  of the in 1921 can be this formulation being exactly analogous to the reformulation necessary to define 
interpreted as calculations of the homotopy operations which apply when x is a M~~~~ 

mod steenrod operations. xe also showed how to derive many more differentials 
space. The generalization to arbitrary X is only partially carried out. The from the geometric of the Steenrod operations in the Adme spectra1 
difficulty in extending it lies in our ignorance about the extended powers of spaces 

sequence. particular, he showed that the ~ o p f  invariant one differentials follow 
other than spheres. Note, however, that VI 02 contains results which facilitate the 

in this way. mlgram!s work was confined to a range in which it is possible act 
anl~sis of extended powers of other spaces. Finally, we should point out the as if one were operating on a permanent cycle. At about the same time, Mikinen 
remarkable fact that the key differentials needed for the computation of the stable 

1621, working at the prime 2, showed how to account for the fact that one msy not be 
homotom groups of spheres from the cohomology of the Steenrod algebra are direct 

operating on a permanent cycle. 
Consequences of the H, ring structure of the sphere spectrum. It is appealing to 

order to construct the Steenrod operations geometrically, a map from an think of the H_ ring structure as a machine which encodes the destruction of 
power of a sphere to the pth power of that sphere is needed. Kahn, Milgram Steenrod operations, which exist uniformly in %, converting them into more 

and &kinen obtained such maps by using coreductions of the extended Powers of complicated relations in homotopy. In this vein, we point out in section VI 51 that 
spheres. usual when studying stable phenomena on the space level, such coreduc- our analysis of the differentials can be used to compute extensions which are hidden 
tions exist only a range of dimensions, but, by suspending everything an appro- in E,. In summary, we feel that the results contained here should be a part of 
priate number of times, that range can be made arbitrarily large. This makes it everyone's Adams spectral sequence toolkit, and we hope that the present exposition 
appear that we be working with spectra. To do this, however, extended Powers will make this possible. 
of spectra are required. with this motivation and others, May 1721 showed how to 

We have organized this paper so that the general theory is in Chapter Iv, 
construct them. of a coreduction, this allows us to use the structure map 

explicit Computations and relations in homotopy are in Chapter V, and formulas for 
Dpy ., y of an H, Y. This permits us to construct hornotopy operations 

differentials are in Chapter VI. 
which are related to Steenrod operations in the Adams spectral sequence for Y. In 

addition, we get differentials in the ~aams spectral sequence and relations in the Chapter N is organized as follows. ~n 51 we introduce ExtA(N,Ml for comodules 

homotopy groups of any such Spectrum. N and M over a comutative Hopf algebroid A. In 02 we define and study products and 



Steenrod operations i n  ExtA(N,M) when N is a coalgehra and M is an algebra in the 

category of A-comadules. In 53 we s e t  up the Adams spect ra l  sequence. In 54 we s e t  

up an external  mash product pair ing in the Adams spect ra l  sequence and use it t o  

define an in terna l  product in the  Adams spect ra l  sequence converging t o  LX,Ylx when 

X is a suspension spectrum and Y is a r ing spectrum. In 55 we derive the  main 

conceptual r e su l t  of the chapter: the Em ring structure map D Y + Y na tura l ly  
P 

induces the  (algebraical ly defined) Steenrod operations in ExtExE(E,X,ExY), the  E2 
E term of the Adams spect ra l  sequence converging t o  [X,YI,. Thus, for  K r ing spectra 

Y, the Steenrod operations in E2 r e f l ec t  s tructure which ex i s t s  in [X,YI,. In 57 we 

define the homatopy operations in n*Y derived from D Y . Y and use a spec t ra l  
P 

sequence or ig ina l ly  due t o  Milgran t o  ident i fy  operations in Ext(n*E,E*Yl which 

correspond t o  homotopy operations and re la t ions  between them. In 46 the  spec t ra l  

sequence is defined and its relevant  propert ies are derived. 

I have benefi t ted from conversations with many people in the preparation of 

t h i s  material. Of special  importance are Peter May, Arunas Liulevicius, Daniel 

K a h n ,  Mark Mahowald, Jim Milgram, Jim McClure, Jim Stasheff, Mark Steinherger, and 

Bob Wellington. 

5 1 .  Cohomology of Ropf Algehroids 

Let k he a commutative r ing with unit .  A Ropf algebroid ( R , A )  i s  a cogroupoid 

in the category of graded commutative k-algebras. Thus R and A are graded cammuta- 

t i v e  k-algebras and there are k-algebra homomorphisms nL,nR:R i A, e:A -? R, 

$:A + A Q R  A, and x:A c A. The simplest way t o  r eca l l  the diagrams these sa t i s fy  is  

t o  dualize the  diagrams sa t i s f i ed  by a groupoid with "objects" R and "morphisms" A. 

The left and units n~ and n~ are dual t o  the source and ta rge t ,  the  

augmentation s is  dual t o  the  morphism which assigns each "object" i ts ident i ty  

"morphism", the conjugation x is dual t o  the  inverse, the coproduct $ is dual t o  

composition, and the product $:A% A + A is  dual t o  the  diagonal. 

The two uni t s ,  qL and n~ give A two R-module structures:  a l e f t  R-action 

r - a  = qL( r ) a  and a r ight  R-action a . r  = an (rl .  Therefore we sha l l  f ind the R 
category of R-R-himodules more appropriate than the category of R-modules. The 

commutativity of R enables us t o  embed the category of ( e i t he r  l e f t  o r  r ight1 R- 

modules a s  the f u l l  subcategory whose objects  are those R-R-himodules which s a t i s f y  
r.x = (-1) I x l  Ir1x.r for  a l l  elements x. There are two forge t fu l  functors from R-R- 

himodules t o  l e f t  or  r ight  R-modules which simply forget the R-action on one side o r  

the other. We l e t  MR be the r ight  R-module whose R-action equals the r ight  R-action 

on M. Of course, the above embedding gives MR a l e f t  R-action which agrees up t o  

sign with the r ight  R-action. For example, here is the l e f t  R-action on AR: 

Similarly, ML w i l l  denote M with i t s  r i gh t  action forgotten. 

We l e t  % denote any of the tensor products 

R-R-bimodules x R-R-bimodules - R-R-bimodules 

Right R-modules x R-R-himodules - Right R-modules 

R-R-himodules x Left R-modules - Left R-modules. 

Thus, M % N ge ts  a l e f t  act ion from M i f  it has one, ge t s  a r i gh t  action from N i f  

it has one, and amalgamates the r ight  act ion on M with the l e f t  action on N. It is  

necessary t o  dist inguish these three tensor products and t o  avoid automatically 

embedding one sided R-modules in R-R-bimodules because the embeddings do not commute 

with tensor products. The next paragraph contains a t e l l i ng  example of t h i s .  We 

l e t  @ = eR in the r e s t  of t h i s  sect ion.  

A r ight  A-comodule is a r i gh t  R-module M with an R-linear map IYM:M f M x A 

making 

M ' r M Q A  M 
*M 

*MOA 

commute. The algebra R is a r i gh t  A-comodule with OR = nli and a l e f t  A-comodule 

with $R = nL. The coproduct $:A + AQA makes AR a r ight  A-comodule and AL a l e f t  

A-comodule. The module MQA exemplifies the lack of commutativity between @and 

the embeddings of R-modules i n to  R-R-bimodules. I f  we tensor with A, then embed we 

ge t  a himodule whose l e f t  and r igh t  act ions agree, whereas, i f  we convert M t o  a 

himodule then tensor with A we ge t  a himodule with d i f ferent  l e f t  and r ight  act ions.  

This prevents us from viewing h a s  a bimodule homomorphism unless we replace the 

codomain by ( M  @AIR. It is simpler t o  think of %:M + A OM a s  exist ing i n  t he  

category of r ight  R-modules. There is one s i tua t ion  i n  which we w i l l  automatically 

view a one sided module as a himodule. I f  N is a r ight  R-module and we write M O N ,  

we mean t o  imply tha t  N is f i r s t  converted t o  a himodule so t ha t  the  tensor product 

is one of the three discussed above. 

We assume henceforth t ha t  A is R-flat (on e i t he r  s ide;  the  two conditions are 

equivalent) .  Then the category A-Comod of r i gh t  A-comodules has kernels (which may 

he computed in R-Mod) and is  therefore abelian. 



If P and Q are right R-modules then HomR(P,Q) is the graded R-module whose 8-1(m @ a )  = 1 mt @ x(all)a if $(m) = 1 m1 63 at'. The isomorphism Q makes the 

degree t component consists of homomorphisms which raise degrees by t. If M and N 
are right A-comodules then HomA(M,N) is the k-submodule of HomR(M,N) consisting of 

comodule homomorphisms. It is an R submodule for all M and N if and only if " = "R. 

has a right adjoint commute. Both 1 @ qR and $M are R-split by 1 @ E .  Thus we may take either as our 

( 7 )  @ A : R-Mod + A-Comod eanonica1.R-split monomorphisms into an injective comodule. We choose 1 @ ~IR 

because it will relate well to the Kunneth homomorphism later. It also allows the 

which sends a right R-module to the right A-comodule P@ A with coproduct 1 @ $. We following convenient description of the canonical injective resolution. Let 

call such comodules extended. The adjunction p:% + be CoklnR), and write i; for p(a). Define t:x + qi by tp = 1 - qRc. 
Then for any right A-comodule M, there is a short exact sequence 

HomR(M,P) z HomA(M,P C3 A) 
1 @ qR 

0 +M_-M@ An -,~@7i----O 
/ 

.--A =- -/ 
Retracts of the extended comodules form an injective class relative to the R- 1 8 %  1@t 

of right A-comodules (solid arrows), which is R-split (dotted arrows). 
split exact sequences, and we have the usual 

Comparison Theorem: If 0 + M + X + X + . . a  is an R-split exact sequence of 
0 1 

right A-comodules and 0 + N + Yo -t Y1 -t ..- is a complex of injective right A- 
comodules then for each A-homomorphism f:M + N there is a unique chain homatopy 
class of A-homomorphisms F:X + Y extending f. 

We note for future reference that we may choose the splitting homomorphisms 

so that coo = 0 and oiai+l = 0. 
i 

We define ExtA to be the ith right derived functor of HornA relative to 

injective comodules and R-split exact sequences. 

The tensor product M@ N of right A-comodules can he made a right A-comodule by 

the diagonal coproduct 

[The alert reader will notice that the separate maps here are well defined only if 

09 = % rather than %. The composite, however, is well defined with @ = %.I When 

N = AR we have the right A-comodule M@ AR with diagonal coproduct, in contrast to 

the extended coproduct on M @  A. Nevertheless, M@ An is isomorphic to M a  A as a 

right A-comodule. The isomorphism 8 : M@ % + M@ A is the adjoint of the R- 

homomorphism 1 @ e : M @ % + M. Explicitly, Q(m @ a) = m' €3 a"a and 

Definition 1.1: Let M he a right A-comodule. The normalised canonical resolution 

C(A,M) of M is the R-split differential graded right A-comodule 

where C s = M @ p @ % , d s =  (l@nR)(l@p) anda,=(lQt)(l@s). Wewrite 

mlal/ ... lasia for m @ Zil @ ... @ as @ a r Cs, and assign it homological degree 

s, internal degree t = /ml + I [ail + la\, bidegree (s,t) and total degree t-s. 

If N is also a right A-comodule, the canonical complex C(N,A,M) has 

Proposition 1.2. ExtA(N,M) = H(C(N,A,M)). 

Proof. If we let q: M + C(A,M) and 6: C(A,M) ., M he 

1 @ nR: M + M @ A = CO(A,M) and 

then it is easy to check that d2 = dq = 0, a2 = co = 0 and do + ad = 1 - qe. Thus 

o - - - , M ~  do dl 
d2 

c0-C1 -c2 - ... 
is an injective resolution R-split by a and E, which implies the proposition. // 
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Note that we use t-s as our total degree rather than t+s. This (t-s) is the 3)  g:N' - N (note reverse direction) is a coalgebra homomorphism preserving 

topologically significant degree in the Adams spectral sequence counits and a A-equivariant oomodule homomorphism (g(n3A(r)) = g(n')r and 

(1 Q A)qNg = ( g  Q 1)~~'). 
~ x t ~ l ~ ( ~  X,E*Y) - IX,YI~.,. E*E * If (N,A,M) is in & , we write +: fl + M and A: N + Nr for the iterated product and 

coproduct. 
If we regrade C(A,M) by nonpositive superscripts, it really is the total degree in 

the sense of being the sum of the internal and homological degrees. 
Note that (R,A,R) is in C and that the unit nM and counit sN induce a 

$2. Products and Steenrod Operations in Ext 

We begin this section with a quick description bf the product in the Ext module 

we have just defined. The rest of the section is devoted to the development of the 

Steenrod operations in this context. The main point is to show how the development 

of Steenrod operations in 1681 is carried over to the cobar complex C(N,A,MI in the 

setting appropriate to generalized homology theories. 

The indexing we have chosen for Steenrod operations disagrees with that of 

1551,1681 and I81 1.  Our reason is this: as noted in section 1, the appropriate 

total degree for ~ x t ~ ~ ~  is t-s rather than t+s. This change converts the grading of 

1551 and 1681 to the grading we have chosen. With our grading, the operation pi 

raises the geometrically significant total degree t-s by 2i(p-1) if p > 2 and by i 

if p = 2. This conforms to the pattern established by the Steenrod operations in 

cohomology and the Dyer-Iashof operations in homology. This is not merely an 

analogy. We shall see that the Adams spectral sequence connects the Steenrod 

operations in Ext with homotopy operations. Under the Hurewicz homomorphism these 

homotopy operations correspond to Dyer-Lashof operations and our choice of indexing 

leads to precise compatibility with these Dyer-Lashof operations. 

In this section we let 63 = G&. 

In order to introduce products and Steenrod operations into ExtA(N,M) we 

require more structure on N and M. The necessary definition follows. 

homomorphism 

(E~,~,~~):(R,A,RI + (N,A,M) 

in d .  In turn, this induces a unit 

If (R,A) and (R1,A') are Hopf algebroids over k then the obvious structure maps 

make (RQ R', A@ A') a Hopf algebroid which we will usually call A@ A'. The 

functor @ defines a functor 

Thus, if M is an A-comodule and M' is an A'-comodule, then C(A,M) @ C(A1,M') is a 
differential graded A@ A'-comodule with differential d 63 1 + 163 d, unit n Q n, 
augmentation s Q E, and contracting homotopy a @ 1 + nc Q o. By the comparison 

theorem, there is a unique chain homotopy class of A@ A'-homomorphisms 

extending the identity of M @ Ms. If C is an A-comodule, let C" = C @ - a .  @ C with 

n factors C. Regard C" as an A-camodule by means of the iterated product +: A~ + A 

in the usual way. For each integer u there is a unique chain homotopy class of A- 

homomorphisms 

+:c(A,M)" r C(A,M) 

Definition 2.1. Let be the category whose objects are triples (N,A,M) such that extending the product +:I$' t M. This implies that C(A,M) is a homotopy associative 

1) (R,A) is a Hopf algebroid over k, and commutative differential graded A-comodule algebra (DSA in A-Comod). Finally, 

2) M is a commutative unital A-algebra (that is, an algebra with unit if (N,A,M) s & , the homomorphism 
nM: R + M in the category of A-comodules), and 

3 N is a cocomutative unital A-coalgebra (that is, a coalgebra with counit H~~~(N,c(A,MI)" = c(N,A,M)~ 

cN:N + R in the category of A-comodules) 

and whose morphisms (N,A,M) + (N1,A',M') are triples (f,~,g) such that 1. n 
H~~(N~,c(A,M) I 

1) A: ( R , A )  + (R' ,A') is a morphism of Hopf algebroids, 

2) f:M + M' is an algebra homomorphism preserving units and a A-equivariant [Hom(B,+I 

oomodule homomorphism (f(mr) = f(m)A(rI and qM,f = (f Q h ) ~ ~ ) ,  and 
I 

HomA(N,C(A,M)) = C(N,A,M) 



makes C(N,A,M) into a homotopy associative and commutative differential graded The following lemma will imply that e,+, and 6 exist and make the appropriate 

k-algebra. (There is an Alexander-Whitney map which makes C(A,M) and C(N,A,M) diagrams homotopy commute when K = C(N,A,M), giving us Steenrod operations in 

Strictly associative.) This product on C(N,A,M) makes EXtA(N,M) into a higraded ExtA(N,M). 

comutative associative algebra over ExtA(R,R) with unit (5) induced by 

H0m(s,ii):HomA(R,R) + HomA(N,M). Lemma 2.3: Let p be a subgroup of zr. Let 'LI be any kp free resolution of k such 
that yo = ko with generator eo. Let M and N be A-comodules. Let 

We can now swnmarize the development of Steenrod operations given in 1681. Let 

k = Z and let n C I: be the cyclic p-Sylow subgroup generated by the permutation P P 
d d 0-M* KO- K I T  - - *  

a = (1 2 .*. p). Recall the usual kn free resolution of k. 

be an R-split exact sequence of A-comodules and let 

Definition 2.2. Let xi be free over ks on one generator ei, let d d O-NAL~--).L~ -+... 
d(eZi) = (1 + a + a2 + .ao +aP-1)e2i_l and d(eZiil) = (a - l)eZi, 

and let t k send aieO to 1. 

Let Y be any kL free resolution of k and let j :Yl + ?r be a kn chain map P 
covering the identity map of k. Let n and Lp act trivially on a chain complex K, by 

permuting factors on KP, and diagonally on X 63 KP and Y63 KP respectively. We 

let xi @ (KP), have degree n-i, n being the total degree if K is higraded. Then we 

can define Steenrod operations in H(K) if K is a homotopy associative differential 

k-algebra with a kn morphism 8: )r63 KP + K such that 

(i) e leg 63 KP is the iterated product KP + K associated in some fixed order, and 

(ii + is kz-homotopic to )Y @ KP a Y 63 KP A K for some 

kZ -homomorphism 4. P 

A morphism (K,B) + (K',e8) is a morphism f:K + K' of differential k-modules suoh 

that fe is kn-homotopic to e'(1 63 fP). The tensor product [K,B) 63 (Kt,@') is 
defined in an evident way and the Steenrod operations satisfy the (internal) Cartan 

formula if the product K @ K + K defines a morphism (K,B) @ (K,e + (K,e). Let be 

a kL free resolution of k and let r = Z IZ C L be the p-Sylow subgroup. Let 
p2 P P  P 

o: W @  #+ U be a kr-homomorphism extending the identity k + k where @ is 

given the evident r action. Then the Steenrod operations in H(K) satisfy the Adem 
2 

relations if there is a kL 2-homomorphism ~ : u  @ KP + K such that 
P 

2 2 
(#cawP) @ K ~  P U ~ K P  

shuffle I 
w e  ( w e p ~ ~ ) ~  l0 8P *MQKP 

is k~ homotopy commutative. 

be a complex of extended A-comodules. Let f :Mr + N be a p-equivariant A-comodule 
homomorphism, where p acts trivially on N and by permuting factors on Idr. Let p 
also act on Kr by pemuting factors, and onv@ Kr by the diagonal action. Give 

?I63 Kr the A-comodule structure induced by that of Kr and let Ti @ (Kr I j  ,t have 
bidegree (j-i,t). Then there is a unique p-equivariant chain homotopy class of 

p-equivariant A-camodule chain homomorphisms @ :  ?I63 Kr + L which extend f: 

Some such 4 satisfies 4( Vi @ (Kr) .) = 0 if ri > (r-1)j. 
J 

Proof. We will define p-equivariant A-comodule homomorphisms from Ti @ (Kr). to J 
extended comodules by specifying their adjoint R-maps on elements v @ k with v in a 

chosen p basis of vi. It is easy to check that we get the same homomorphism by 
extending by equivariance and then tqing adjoints as we get by first taking. 

adjoints and then extending by equivariance. 

Write mi, for 4 1 vi @ ( Kr) j. We define m. . by induction on i and subsidiary 
induction on j. The existence of 4 l<eO> 63 K + L follows from the comparison 

075 
theorem, so we may assume mi,j constructed for all i' < i. If j < i then mi . = 0 

,J 
since L is a nomegative complex, so we may assume mi,j, constructed for j' < j. If ,. 
4 is the adjoint of m, we let 

on elements v @ k with v in a chosen p-basis of %, where 



is  the contracting homotopy of Kr ( so  tha t  dS + Sd = 1 - 111~) ' ) .  To show tha t  t h i s  

makes m a chain homomorphism we must show tha t  i f  j c i+l or  i < o 

( d @ l ) ) ( l @ S )  otherwise 

It suffices t o  show tha t  the adjoint  of (b )  is true on our chosen p-basis, and we 

may assume (b )  holds for  smaller i and j. Thus, l e t t i n g  the adjunctions be under- on elements v 6 c with v in a chosen p-basis of vi. We must show 

stood and using ( a ) ,  we have 
?iJj-1 + 'i-1,j-1 ( d @ l ) + ~ .  L A  ( l a d ) = $ i .  ,J-1 - @ . .  1,J-1 . 

m .  
1-1, j-1 (d @ 1) + m i J j ( 1  @ d) The definit ion of H i J j  implies t ha t ,  on the p b a s i s ,  the adjoint of H i , j ( l  63 d) is  

the desired expression minus 

(d @ 1) + dmi . (1 @ Sd) - mi-l (d  63 Sd) 
= 'i-1,j-1 ,J-I ,j-1 

( @ .  I,J-1 . - @i,j-1 - mi,j-l - 'i-1,j-1 ( d @ l ) ) ( l @ d S  + 1 @  ( r , ~ ) ~ ) .  

= dm. i,j-1 + "i-1,j-1 ( d m  1) - dmi . ) ( l a  d~ + 163 ( r , ~ ) ' ) .  
,J-1 Now, 163 dS = 0 unless j > 2 and 18 ( n ~ ) ~  = 0 unless j = 1. If  j = 1 then 

Applying (b )  inductively twice shows t h a t  

"i-1, j-1 (d @ 1) - dmi . ) (1  €3 d) = -ddm = 0. 
,J-1 i d - 2  

I f  we l e t  T: vo @ $ + N be p-equivariant and sa t i s fy  f = ?/<eo> 63 MT then 

$ (1 63 n r )  = q?. Then (mi- l  (d  63 1) - dm. . )(1 63 (ne)') = 0 because 
-0,o ,j-1 1,J-1 
f ( d  63 1) = 0 by p-equivariance of f and because dr, = 0. This completes the 

inductive construction of m .  Now l e t  us show tha t  the m we have constructed 

s a t i s f i e s  m .  . = 0 i f  ri  > ( r -1) j .  This is t r i v i a l  i f  i = 0 or j < i so we use 
1,J 

induction on i and a subsidiary induction on j. When r i  > ( r - l ) j  the induction 

hypothesis implies t ha t  ( a )  reduces t o  mi . = - mi-l,j-l (d  8 S ) .  This implies the 
,J 

resul t ,  again by the induction hypothesis, except when j = mil and i = j-n. In t h i s  

ease we i t e r a t e  ( a )  t o  obtain 

- 
( c )  r- m .  . = (-1) @i-r,j-r ( d @ S ) p l ( d  @ S)p2 ..- ~ , - ~ ( d @  S ) ,  

1,J 

where eaoh pi is a sum of permutations of the factors of Kr coming from the 

equivariance of m .  The number of fac tors  ci of cl 63 ... @ c E which are 

annihilated by o:K i. K increases by a t  l ea s t  one eaoh time we apply S; t h i s  is where 

we require o2 = so = 0. Since permutations preserve t h i s  property and since d 63 S 

occurs r times in ( c ) ,  it follows t h a t  m .  = 0 in t h i s  case also, completing the 
1 , j  

induction. 

Finally, we show tha t  m is unique up t o  p-equivariant chain homotopy. Suppose 

m,a:V@ 8 + L bath extend f .  We define H i , j : t t i  @ ( K r I j  + Lj-i-l by l e t t i ng  i ts 

adjoint be 

r 
everything is zero unless i = 0, when we get ( m o , O  - f 1 ~ , ~ ) ( 1  @ n r ) ( l  @ c ) .  Since 

m ( 163nr )  = " ? = a  ( l @ n r )  the r e su l t  followswhen j 5 1 .  When j 2 2  we find 
0,o 0,o 

by induction tha t  

(*i,j-1 - Oi,j-l - m i .  ,j-1 - 'i-1,j-1 
( d @ 1 ) ) ( 1 € 3  d) = 0. 

Hence H is a p-equivariant A-comodule chain homotopy m = a. // 

Since $ is determined up t o  chain homotopy by f :  M' t. N it is easy t o  see 

t h a t  m is natural  i n  M and N up t o  chain homotopy. 

Suppose (N,A,M) is a t r i p l e  in defined over k = Z The product IdP + M is 
P' 

comutative,  hence Lemma 2.3 with p = n and r = p implies tha t  there is a unique n- 

equivariant chain map m :  M@ cP + C, where C = C(A,M).  Since m is an 

A-homomorphism we also have a homomorphism 

and since A : N  + N~ ,is cocomutative, t h i s  m is a lso  n-equivariant. 



Definition 2.4: With the notation of the preceding paragraph, let x ; E~~;'~(N,M). ) The Adem relations hold: if a > pb and D = 0 or 1 (e .= 0 if p = 2) then 

If p = 2 define 
($€papb = 1 ~-11~+~(pi-a,a-~~-llb - ; 

i 

if p > 2, a 2 ph and B = 0 or 1 then 
If p > 2, define 

BEpa8Ph = (1-c 1 1 (-l~~+~(pi-a,a-(p-llb - i18F'a+b-i~i 
i 

0 xP1 if 2i > t-s , 

(vil Suppose f:(N,A,Ml + lN",A",M"l and g:(Nt,A',M'1 + (N,A,Ml are morphisms 

in6 such that C(fg):C1N',At,M') + C(N",A",M1'1 is zero on the cokernels of 

the units. Then upi = pie and a8pi = -spin where o is the suspension 

Theorem 2.5 viil. By 1681, the pi and 8pi account for a11 the nonzero operations of 
s t  o:~xt~: (N' ,MI) + E X ~ ~ ; ~ ~ ~ I N ~ , M ~ )  

the form x +m*(ei 0 xP1. 

If (N,A,Ml is an object of & defined over k = Z such that N,A and M are all defined as ~lf)d-~~(gl on representative cycles. 

(vii) If (N,A,M) is the mod p reduction of a torsion free triple defined over Z 

then Bpi+' = iPi if p = 2 while 8Pi is the composite of 6 and pi if p > 2. 

s t - -  8:Ext-' (N,Ml + ~xtgf"~(~,&il 

which we will use in Theorem 2.5 (vii). 
m: %@I cP + C and, if ?!is a kl: free resolution of k, a: 2 f 6 3  cP + C. The 

P 
uniqueness of a implies that m factors through e up to chain homotopy. Hence the 

We are now ready to apply Lemma 2.3 and 1681 to produce the main result of this Steenrod operations are defined and satisfy (il, liiil, and (vii). Naturality 

follows from the uniqueness of m. Lemma 2.3 also shows a = 0 in the cases relevant 

to (XI. Comutativity of $:M c3 M + M and the uniqueness clause of Lemma 2.3 imply 
Theorem 2.5: The Pi and f3pi are natural homomorphisms with the following 

that C(N,A,Ml is a Cartan object and an Adem object. Hence (ivl and (v) hold. To 

prove (vi) we must construct m,ml and m" such that equality holds in fm = m"(l 63 fPl 
s+(t-2illp-l1+e,pt (e = if = 2l (il +  EX^^ and gm' = 6(l @I gPl rather than just chain homotopy. It is easy to check that this 

will he true if we construct m,m'and m" as in Lem 2.3, because C(N,A,Ml is 

(ii) When p = 2, Pi = 0 unless t-s 2 i 2 t. When p > 2, pi = 0 unless functorial. // 
t-s 5 ~i 5 t and S P ~  = o d e s s  t-s+l 2 2i 2 t. 

(iiil Pi(x) = xP if p = 2 and i = t-s or if p > 2 and 2i = t-s. 53. The Adams Spectral Sequence 

(iv) The internal and external Cartan formulas hold: This section begins with some technical lemmas about homotopy exact couples and 

the associated spectral sequences for use in VI. We end the section by setting up 

pn(x 0 yl = 1 pi(x) 0 ~ ~ - ~ ( y l  and the Adams spectral sequence. 
i 

We will work in the graded stable category &,i,6 . This is obtained from the 
stable category .Ti8 specified in I91 by introducing maps of nonzero degrees. The 

category &6 has the same objects as FA, and its morphisms from X to Y are the 
elements of the graded abelian group [X,Yl* with IX,YIn = IznX,~l. 



Definition 3.1: Consider inverse sequences emma 3.3: I f  f a IX,Ys,r+pln and g G iX,Ys+r+p+qln-l a r e  such that  

iaf = i g  e IX,Ys+rIn-l, then there ex i s t  

such that  each xs is a bw specGrum ar 

(This res t r ic t ion  is imposed purely f 

1 real re.;t.rirtion since a m  inverse sf 

U i < 

~. . .. . 
1 H [X.Ys+r,pln and f '  * IX,Ys,r+p+q 

id each is is the inclusion of a subcomplex. such that  
'or technical convenience. It represents no 

i f  = i f '  s IX,Ys,rln , 
. .-- .....-. ~-~~ kquence can he replaced by an equivalent one of 

t h i s  form by means of ON approximation and mapping telescopes.) Define - f = Tt $,"+S 
for k 2 rtp+q , 

i 3 i i ... is+r-l : 's+r + = Ysfls+r e Ois,r 
and l e t  

s,r s s+l S,t. rcr 
dr"H =a1 , and 

i s , r  - 
drtplqf = dp+p+qTt = g" . 

ys:\ s,=' 

Y- - Lemma 3.4: Assume p 5 q < r and suppose given f r IX,Ys+,.r,In, 
I *,I : 

11 I 
be a cofiber sequence with a,,, of degree -1. 

-, - 
g e LX,Ys+q,r-qln and h 6 lX,Ys,pln+l  such tha t  af = ag c I X , Y , + , I ~ - ~  
Pah = f - i g  e IX,Ys+p,,_pIn. Then 

and 

Given a spectrum X we obtain an exact couple i f p < q , d i i = T  P and d r-q z = a f = a g ,  

i* while i f  p = q , d i i = T - g "  and d T = a f = a g = d  2 .  
O IX,Yslt-s * 0 IX.Yslt-s P r-P r-q 
s,t \ &A '" Now we turn our at tention t o  the Adams spectral  sequence based on a commutative 

ring spectrum E with unit. We shal l  use @ t o  denote f0 We assume that  E x E g  
@ ~ x J s , l ~ t - s  n*E 

a,% f l a t  as a ( r ight  or l e f t )  module over nxE. This ensures that  (n*E,E,E) is a Hopf 

algebroid over noE and that  &X is an &E comodule for any spectrum X. Here E,X = 
and hence a spectral sequence. The term E:,~ has m a w  descriptions, of which We 

will  find nx(X~E1.  The Structural  homomorphisms are defined as  follows. Let n:S -r E and 

im(lX,Ys r l t - s  + lX ,Ys , l l t - s )  
t = u:EAE + E be the unit and product of E, and l e t  r:A*B + B - A  be the t w i s t  map. 

-r kerj  lXjYs,llt..s + IX,Ys..r+l,rlt..s 
Then nR = Ex(n1 = ( n ~ l l x ,  TI=,= ( l h n ) , ,  e = u x  and x = T, while 

part icularly convenient. 

1f [x,yS,,],, we l e t  "xenote  i ts image i n  E:'"". The following lemma 
+:n,EB,, n,E 4 7(,E is  given hY + ( a  @ 8) = v ( a ~ B 1 ,  and +:E,E en E,E + E,E 

0 0 
gives minimal hypotheses needed t o  recognize d i f ferent ia ls  in the spectral  sequence. is given by + ( a @ B )  = ( v , . , u ) ( l h ? ~ l ) ( a r E ) .  The coproducts jiX and $E are defined 

as 0;'~,(l h q )  in the following diagram. In it, the homomorphisms and o 2  a re  

 emm ma 3.2: kt f e I X , Y ~ , ~ ] , + ~  and g r IX,Ys+,,lln sa t i s fy  defined by 
paf = i ' g  r IX,Ys+l,rln, where i' is induced by is+l,r-l. Then 

O1(a@ 8) = ( 1 ~ 1 ~ u ) ( l n ? c l ) ( a h 8 )  

d z = O  i f k < r  e2(a @ 81 = ( 1 6  u n l ) ( a h 8 )  

drT = 2 
while 0 is the algebraic isomorphism defined in 51. (Recall tha t  (ExE)Rmeans &E 

and %z = 0 for a l l  k. with only i ts right nxE action.) Adams 16, Lemma 12.51 shows e2 is an isomorphism 

since &E is f l a t  over nxE. 



IX,YA El* 2 HamE EIE,X,E,lY~ E))r HomnxE1E*X,E,Y) * 
for any Y when E*X n*E projective. By 16, Prop. 13.4 and Thm. 13.61 this 

holds for E = S, HZ MO, MU, USp, K, KO and BP. Note that Condition 3.6 will be 
P' 

satisfied if we have a universal coefficient spectral sequence. 

for .the module spectra F = Y A E  over E. Also note that Condition 3.6 will .be 

satisfied for all Y if it is satisfied for Y = S, using the argument of 16, Lema We have seen in $2 that e is an isomorphism. It follows that el is also an 
12.51. Thus we have the following equivalent form of Condition 3.6: 

isomorphism. Note that el is the Kunneth homomorphism for X and E. 
* if E,X is n,E projective then E X r Hom,r*E(E,X,n,E). 

Definition 3.5. An Adams resolution of a spectrum Y is an inverse sequence 

Finally, if Condition 3.6 holds then the isomorphism in 3.6 will also hold with Y A E  

replaced by any retract (wedge summandl of Y A E. 

as in Definition 3.1 such that, for each s 
' /  v', li) YSj1 is a retract of Xsn E for some spectrum Xs, and 

lii) E,Ys + E*Y is a nXE-split monomorphism. 
S,l 

A map of Mams resolutions is a map of inverse systems. The canonical Adams 

resolution is defined inductively by letting YO = Y, Ys+l Ys AE and 

Given Condition 3.6, Definition 3.5(iI implies that if E*X is n,E projective 

then IX,YSj11 r HO~~*~IE~X,E,Y~,~L Hence E2 of the Adams spectral sequence is 

ExtExE(E,X,E,Y) in this case. By 16, Thm. 15.11, under appropriate hypotheses the 
E E 

spectral sequence converges to lX,YI*, where I , I *  denotes homotopy classes of maps 
in the category obtained from the stable category %d by inverting E equivalences. 

For future references we note the following lemma. 
i = 1hi:Y h E + Y h S = Y  
S S S S 

where the unit S + E is the eofiber of i:E + S. The Adams spectral sequence for Lema 3.7. The resolution (*)  obtained from the canonical Adams resolution is 

IX,YI* is the spectral sequence of the homotopy exact couple obtained by applying isomorphic to the cobar resolution ClE*E,E*Yl of Definition 1.1. If E,X is n,E 

IX,-I, to an Mams resolution of Y. It is denoted by E:'*IX,Y). projective then the % term of the resulting spectral sequence is isomorphic to 
ClE*X, ErE, ExY). 

Condition lil ensures that ErYs,l is a direct smand of an extended comodule Proof. The isomorphism el converts the cobar resolution into (*I. If E*X is n*E 
and condition liil ensures that the sequences E*Ys + E*Y .r E,ZYs+l are n*E split 

s,l projective we use the natural isomorphism 3.6. // 
short exact sequences. Splicing them, we obtain an injective resolution ( * )  of E*Y: 

In the next section we will need the following resvlt on asps of Adams 

resolutions. 

Proposition 3.8: Suppose &X is n*E projective, {X.} and {Y.} are Adams resolu- 
1 1 

tions of X and Y, and each E,Xs is n*E projective. Let f:X + Y and let ? he a 

chain homomorphism extending f*: 

To proceed, we need another assumption on E. 



Then there is a map of Adams resolutions extending f and inducing T. 

h o o f .  Since a l l  E*% are  nxE projective, so are a l l  ExXi,l (I Ex% @ 

Hence 

Iq,l,Yi,ll* Hom(E*Xi,l,ExYi,l) 

- 
and the Ti correspond t o  unique maps fi:Xi + Y. such that  (Ti), = Ti. We ',! 
construct fi:Xi + Yi commuting with fi-l and ' T ~  by Induction. When i = 0 we l e t  

fo  = f .  This commutes with since it commutes a f t e r  applying Ex and 

Assume fo,fl,...,fi-l have been constructed. Let f i b e  a map which makes the 

following diagram commute. 

To see that  f i  comutes with Ti we need only check that  it commutes a f t e r  applying 

E,, and t h i s  holds because it holds a f t e r  composing with the epimorphism ExXi-l,l + 

ExXi. This completes the induction. // 

$4. Smash Products in the Adams Spectral Sequence 

Ext(E,X,E,Y) @ Ext (E,X1 ,E,Yt ) + Ext(E,X @ E,X' ,E,Y @ E,Yt ) 

composed with the homomorphisms induced by 

and E*Y @ E*Y' -$(YAY' ) .  

(Note that  the preceding isomorphism is the inverse of the external product 

E,X €3 E,X' r E,(X A X ' ) ,  and is an isomorphism because E,X and E,X1 are n,E 

projective.) 

1 

As a corollary we have 

COrOllarY 4.5: (i) {Er(S,S)l is a spectral  sequence of bigraded commutative 

algebras. 

( T i )  Er(X,Y) is a d i f ferent ia l  Ef(S,S) module. 

(iii) If X = E"Z for some space Z, and i f  Y is a comutative ring spectrum 

then {ErLX,Y)} is a spectral  sequence of higraded commutative {E,(S,S)j algebras 

whose product converges t o  the smash product internaliaed by means of the diagonal 

A:X + X A X  and the product u : Y A Y  t. Y. I f  Z has a disjoint  basepoint, then the 

Er(X,Y) are unital .  

In the ordinary Adams spectral  sequence (E = HZp, p prime) these resul ts  are 

quite easy. I f  {Yi} and (Yij are Adams resolutions of Y and Y ' ,  then thei r  smash 

product {Yi}t,{Y;I ( t o  be defined shortly) is  an Adams resolution of Y A Y ' .  The 

pairing i n  Theorem 4.4 i s  then obtained by simply taking the smash product of 

representative maps. To get the internal  product of Corollary 4.5 we need only note 

tha t  the product Y A Y  + Y is covered by a map of Adams resolutions 

A Y + Y .  In the general case, t h i s  plan of proof encounters two 
I 

obstacles. F i rs t ,  the smash product of Adams resolutions may or  may not be an Adams 

We are now ready t o  introduce smash products into the Adams spectral  
resolution. Second, a map X + Y may or may not be covered by a map from a given 

Adams resolution of X t o  a given Adams resolution of Y. There are two fac ts  which 
sequence. Our main resul t  is  

enable us t o  avoid these d i f f i cu l t i e s .  F i r s t ,  for spectra which have n,E projective 

E-homology, everything works as in the ordinary ease. Second, a l l  the Adams 
Theorem 4.4: There is a pairing of Adams spectral  sequences 

resolutions we need have the following form: spectrum t o  be resolved smashed with an 
*X *X * X  

Er (X,Y) €3 Er ( X ' , Y 1 )  4 Er I X A X ' , Y ~ Y ' )  Adams resolution of a sphere. This enables us t o  reduce t o  the case of the sphere 

SpeCtYum, for  which everything works as  in the ordinary case, since E,S is ii,S 
converging t o  the smash product projective. The deta i l s  follow. 

IX,YI* @ LXt,Y'l* + IXnX',YAY'l, . 
I f  &X and &XI are n,E projective then the pairing on E2 is  the external product 



Lema 4.1. Let (X,A,U) and (Y,B,V) be CW t r ip les .  The geometric boundary a makes - .  proof: Use the notation of Definition 4.2. The equivalence 

the following diagram commute. 

" A=n A 

A B 
implies that  Definition 3.5.(i) is sa t i s f ied  i n  e i ther  case. 

( a  1) (1 a )  Suppose E&, is nxE projective for  each n. Then E,]hTl is  also nxE projective 

for  each n. Hence E X ( X ~ , ~ A  Yq,l) s E S X ~ , ~  @ E*Xq,l. This and   em 4.1 imply that  
A A Y  u X A B  A A Y V  X F3 

UnY " A h B u  XnV ( ~ j  B)  ( ~ ' 7 )  
0 ---r E,(XrY) - E Z x 0 , I  - E*zl,l - ..- 

is  the tensor product of the resolutions associated t o  1%) and {yi}, and is 

therefore n*E s p l i t  since each of the factors is. This implies tha t  {Xi)~{Yi] 

sa t i s f i e s  Definition 3 .5( i i )  and is therefore an Adams resolution of X A Y .  This 

completes case (a) .  

be inverse systems in which each map is the inclusion of a subcomplex. The product 
Let iEil be the canonical Adams resolution of S, and l e t  {Fi} = (Eil* (Ei}. By 

( a ) ,  t h i s  is also an Adams resolution of S and its associated resolution of E*S is 

C(E,E,n*E) 43 C(E*E,nyE) (by Lemma 3.7). The canonical Adams resolutions of X and Y 

are X A  (Eil = (XA Eil and Y A  (Eil, and the i r  smash product is X h  Y h  (Fi]. Since 

each E*Fi is  nxE projective, (b )  follows immediately. // 

Proof of Theorem 4.4. Let (%I be the canonical Adams resolution of S and l e t  
Proposition 4.3: Let (Xi} and P i }  be Adams resolutions of X and Y. Then 

{Fn} = (%I A (%I. Let y = (yil:(Fn} + {En]. be a map of Adams resolutions which 
(Xi},+ {Yi} is an Adams resolution of X A Y  i f  e i ther  

extends the equivalence Sn S + S. Define a pairing of spectral  sequences 
( a )  QX and E*Xi fo r  each i are nxE projective 

or  (b)  (Xi) and {Yi) are  the canonical Adams resolutions. Er(X,Y) 43 Er(X',Yt) -t E r I X ~ X r ,  Y A Y ' )  
The resolution of G(XAY) associated t o  (Xi} h Pi] is,  respectively, 

( a )  the tensor product of the resolutions associated t o  {Xi} and {Ti], by composing the smash product 

or  (b )  E,(XAY) 8 C(E,E,n,E) 8 C(E*E,n,E) 5 C(E,E,E,(XhY)) O c(E,E,n,E) 
[X,YAE~,,I, @ I X ' , Y 1 h  ES, , r ln , - r  [ X C X ' ,  YAE A Y ' A  Es,,rln+n, 

5 C(E,E@ E,E,E,(XnY)). s?r  
with the homomorphism induced by 

(Recall that  C(A,M) = M@C(A,R). Also, in case ( a )  note tha t  the s p l i t  exact 

show that  i f  two of %,%,1 and Xnrl have n*E projective E-homology, so does the 

third.  Hence, i f  E,X is "*E projective, then X has Adams resolutions (Xi} i n  which Y A Y '  AEStS, 
,r 

each ExXi is  n*E projective. The canonical Adams resolution is one such.) 

where 7 is a map of cofibers induoed by y.  According t o  1641, th i s  induces a 

pairing of spectral sequences i f  



(1) the  pairing on E, induces t ha t  on 

and, (2 )  dr ac t s  as a derivation with respect t o  it. for each s. Thus we may define 

Condition (1) is  obviously s a t i s f i ed ,  and condition (2 )  is an iwoediate consequence Z = D Y  YF);  
n 0 

of tern 4.1 and the f ac t  t ha t  ( ~ n a ~ ( f ~ g )  = ( - 1 ) l f l f n a g .  
" "" Fo 

It is c lear  t h a t  t h i s  pair ing converges t o  the smash product. 

That the pairing on E2 is as stated when ErX and E*X' a r e  n*E project ive 
k m a  5.1: kt Bi = Wi/n. 

follows from the comuta t iv i ty  and na tu ra l i t y  of the following diagram 

are subcomplexes of Z i,s 

( i v )  The following diagram commutes. 

(Here K:E*X @ ExY + Ex(X"Y) is the Kunneth homomorphism.) // 

$5. Extended Powers in the Adams Spectral Sequence 

We are now prepared t o  show tha t  i f  Y is a camutative r ing spectrum whose rth 

power map Y(') + Y extends t o  a map 
Proof. Parts  ( i) ,  (ii) and (iiil are in Theorem 1.1.3. Part  ( i v l  is much more 

t:DrY + Y,  de l ica te  and is proved i n  IEquiv, V I .  4.9 and VIII. 2.71. // 

then 5 can he used t o  construct a homomorphism of the type used in $2 t o  define 
Theorem 5.2: If ExYs is  n*E project ive for  each s then there ex i s t  maps 

Steenrod operations in EitExE(M,E*Y). Assume given such a spectrum Y and map 5 
ti,s: Zi,s + which make the following diagrams commute. 

throughout t h i s  sect ion.  As a consequence, we obtain in Corollary 5.4 an e x p l i c i t  

representative map for  B E P ~ X  given a representative map for  x. In chapter V I  t h i s  

w i l l  enable us t o  compute some d i f f e r en t i a l s  on BEpJx. 

Let n C Lr and l e t  Wn he the n-skeleton of a contract ible n f r ee  CW complex W. 

Assume tha t  Wo = n. The ske le ta l  f i l t r a t i m  of W induces a f i l t r a t i o n  

of W p, X, where X is any n spectrum. 

Let E be a ring spectrum which s a t i s f i e s  Condition 3.6 and for which Q E  is n*E 

f l a t .  Let we may suppose ti > a  constructed sa t i s fy ing  the  theorem for  i < k. The maps tk ,s for  

Y = Y + Y t +I. s < k are defined t o  be 
0 1 



The &E comodule structure, the n action, and the differential on W @ cr 

Hence we may also assume that ck,s, has been constructed satisfying the theorem for 

st < s. To construct s~,, compatible with s ~ , ~ - ~  and s ~ - ~ , ~ .  we need SgJs to make and k are comodule maps, while hE @ 1 is a comodule map because the image of 
the following diagram commute. - 

Now assume X is a spectrum with a coproduct A:X + XAX. For example, X could 

be a suspension spectrum with its natural diagonal. Assume also that E,X is n,E 

so that r:(&~)~ .r E++(x(~)) is an isomorphism. 

The obstruction to the existence of such a ~k,, lies in LZk,s/Zk-l,s, Ys-k-l,ll and corollary 5.4: ~f e e W~ and fj s [X,Y,,,~I~ .-,. then m,(e 8 fl, ~9 ... @ fr,) is 

by naturality lies in the image of LZk,s-l/Zk-l,,s-l, Ys-k-l,lN). By Lemma 5.l.(ii), represented by the composite 
J J J  

E,(Zi,s/Zi-l,s) is n,E projective for each i, and hence 

IZk,s/Zk-l,s, Y,-k-l,ll ' H~m~,~(E*(Zli,s/Zk-l,s) *ExYs-k-l,l). 
The equivalence 5 .l. (ii) converts the inclusion Zk,s/Zk-l,s + Zk,s-l/Zk-l,s-l into 

lAjs-l where js-l is the inclusion Fs + Fs-l. Since &j$-l = 0, the obstruction to 

the existence of Sk,s is 0. // 

If we define Nk to be nk(Wk/Wk-l) and d: )r;, + flk-1 to be a,, we obtain a 

ZLnl-free resolution of Z with Y(0 = Zlnl. Let Cs,t = Et-sYs,l. Then 

O +  Cot C1 4 C2 + . - a  is the resolution of E++Y associated to {Y,}. If each &Ys 

is ",E projective then the Kunneth homomorphism is an isomorphism from or to the 
resolution associated to {Fs}. Let hE:zX + Ex be the Hurewics homomorphism, r the 

Kunneth homomorphism, and assume noE = Zp. I IX"),(W~/W~-~) A A ys t-s+k 
j j 

Corollary 5.) .  If m is defined to make the diagram 

N - - iX~Ys-k,llt-s+k 

The left Column is the homomorphism @ used in $2 to define Steenrod operations in 

ExtGE( E,X,E,Y). The right column sends e @ fl @ . . . @ fr to the composite which 

the corollary asserts represents mx(e @ fl 8 ... @ f,,). Thus we need only show 

that this diagram commutes. This is an easy diagram chase from the following two 

facts. First, there is the relation between@ and A expressed by the diagram at the 

end of 54. Second,,the homomorphism 

a: Nk @ Hom(M,N) + HomlM, vk 8 NN) 

homotopy class described in Lemma 2.3. 



given by a(e @ fl(m) = e @ f(m1, when composed with Ham(l,hE@ 11, sends e Q f to Continue to assume that E is a ring spectrum such that EX& is nXE flat and 

Theorem 6.1: Let 

a =  {Z=Zo 1 f2 Remark 5.5: When Y = S we are in the situation studied by Kahn 1451, Milgram 1811 2 Z1 + Z2 - ... ) 
and &kinen 1621. They worked unstably, and in place of the H, structure map 

<:DpS + S, used coreductions 8. .D's" + S"P. (A coreduction is a map which, be a sequence in which E+Zi is n*E projective and &fi is a nXE split monamorphism 
i,n' P 

together with the inclusion i:snP + Dpsn, splits off the bottom cell.) Such core- fbr each i; Then 

ductions exist for n even and congruent to 0 modulo a power of p increasing with i xx 
(i)' there exists a spectral sequence E (X, ), natural with respect tomaps of 

(Theorems V.2.9 and V.2.14). They can he obtained by "destabilizing" 5 as follows. such sequences, such that 
r a 

In V 52 we will show that D~S" = znc and that c = znp; if n E 0 (Z+(~)I 

(and similarly for odd primes). ~hus, the following composite is a coreduction. E t ( x , l  = o Es-i't-i 2 (X,Cfl) r 
i 

xx E 
where Er (X,Cfil is the Adams spectral sequence converging to IX,Cfil*; 

(iil if EXY' is n,E projective and 

there is a pairing 

This implies that we are looking at the same structure they were considering. 

56. Milgram's Generalization of the Adams Spectral Sequence 

which is the direct sum of the smash product pairings on % 
XX Xt ** 
E2 (X,Cfil @ E2 (X',Y'l -E2 (Xhxt,Cfi"Y'); 

spectral sequence for T,*sO. The essential idea behind the spectral sequence is 

this. The Adams spectral sequence for maps into Z arises from a geometric con- 

struction of a resolution of &Z. Suppose that we have a filtration of &Z of the 

&Z > Iixz, 2 IixZ, ., ..- 
for some sequence (usually finite) of maps Z c Z1 t Z2 c . a .  . Milgram's idea was 
to construct a geometric resolution of Z in which we delay the resolution of &Zi so of spectral sequences 
that it begins in filtration i. The Adams spectral sequence is then the special 

case defined by Z + f t f t . a + .  When Zi is the N-i skeleton of an N dimensional XX E 
Er (X.3) lX,Zl, 

complex Z, the differentials are determined by and provide a clear picture of the 

attaching maps. 



which maps the pairing in  ( i i l  t o  the smash product pairing 

** 
( i v l  the spectral sequence Er ( X , a l  converges t o  I X , Z I ~  i f  

(1) E and Z sa t i s fy  Adams' condition for convergence of the Adams spectral  
an E,E comodule isomorphism 

(2 )  E,(Mic Zi) = 0, where Mic Zi is the microscope, or homotopy inverse 
s E*Zi Q &Zi_l,l Q - . a  O &Zo,i 

under which ei is  inclusion of the f i r s t  summand. This implies tha t  E*% is n*E 

projective. Thus we may define 

(a1 Z is bounded below, 

(b l  E is connective and px:noE @I noE + zoE is  an isomorphism, nk:Zk --+ Cf k ,oV "' " Cf O,k 

( 0 1  i f  R C Q is maximal such thag the natural ring homomorphism Z + noE 

extends t o  R + noE then l$E is f in i t e ly  generated as  an R-module for 

The proof of the convergence will  show that  E,Mic Zi = 0 is  equivalent t o  

lim ExZi = 0 = liml E,Zi. 

Proof. F i r s t  we w i l l  construct a new inverse system into which Z maps and from 

t o  construct the smash product pairing and prove (ii) and the l a s t  statement i n  Let C = C(ekfkl and D = Cek+l be the indicated cofibers, and consider the following 

( i i i l  . Finally we prove convergence. braid of cofibrations. 

To construct the inverse system from which the spectral sequence will be 

obtained, we begin by choosing Adams resolutions 

C 
( a s  n*E modules), E,Cfi is nxE projective. Thus we may assme that  ExZi,j is  nxE 

projective for all i and j .  We w i l l  inductively construct spectra xi and 



Since (ekfk)* is a monomorphism, qx is an epimorphism and hence 

Since jlrl = nk we must have jlx = Q xi,k-i *. This is a monomorphism and, hence, 
j3 , is an epimorphism. It follows that 

E*D s ExZk,l 0 ... @ E*Zo,k+l . where, for each k, Cik is a retract of $ 4  E for some $. We shall factor this map 

that the following diagram commutes. 

define Er (X,$) to be the spectral sequence obtained by applying LX,?): to the 

inverse system (Ti}. It is clear that 
s-i,t-i 

E;'+'(X$) = @E~ (X,Cfi). 
i 

is a retract of Ckr? E for some Ck 

We proceed by induction. Let cb = co and assume inductively that c;, ..., ci have 
completely determined by its induced homomorphism E*cT~ + E,cT~+~. which splits as 

been constructed. We seek ci+l such that 
desired by Construction. In other words, the sequence 

0 + E C? + E * C ~ ~  i . +. * 0 
is the direct sum of the sequences 

with the ith sequence delayed until homological degree i before it begins: 
- 

0 v E*CfO,O -- E*CfO,l - E*Cf0,2 - -.. zk 
commutes. With the notations used in the braid of cofibrations, the obstruction to * 
the existence of CL+~ lies in the image of j2: iC,Cikl + LD,Cikl. This image is 

0 + zero because 0 = jZx:E,C + E,D while E,D is n,E projective and Cik is a retract of 

This completes the inductive construction of the c;. Now (iii) follows by 

assuming Yo t Y1 + ... is an Adams resolution. For naturality, suppose given 
- 5 + 8' = {Zb c Zi t . . - I .  h t  Yi = zl and let c. :Zi + Zl be the composite 

To prove naturality and the first part nf (iii), we suppose given a map of I 

Zi -t Zi + 71; then apply the preced-ing paragraph. 
inverse systems 

Our next step 2s to construct the smash product pairing. First note that 





* 
(iii) The natural inclusion 1:s"' + D.$ J induces I (x) = xj . 

(ii) We can obtain similar operations 

Y' A DjY & Y 

is the j-fold product. (iv) is also obvious from the definitions. (v) follows from 

the commutativity of the following diagram 

where A is the composite of the diagonal X + x(~), a shuffle map, and the natural 
transformation X A  D~S" + Djznx. This is a direct generaliaation of the classical Commutativity of the rectangle at the right follows from the definition of H, ring 

derivation of Steenrad operations from the map X* D2S + D2X. spectrum and comutativity of the diagram 

The next proposition records fairly obvious properties of these operations. 

Recall from I.B1 the natural transformation 

s:D,(XAY) + D,X&D,Y. 
D.YADY --y--+D Y 
J J j ,j 2' 

The product p :  YnY + Y induces products 
by l e m m a  1.2.12. // 

As should be expected from their essentially multiplicative origin, the 

* 
operations a are far from being additive. In fact, their behaviour on suns is 

both of which we denote by juxtaposition. 

7 .DY + D Y*...*D . Y 
J' j 3, J k 



defined i n  11.1.4 for each par t i t ion  J = ( j l ,  ...,j &) of j. When J = (1,1, ..., 1) we 
** 

i j ps then the spectral sequence Er (s,@ ) ex i s t s  and %(S, 1.  ) is free over 
** 

(8 ,s )  on generators e .  8 E ~ ~ - ~ ' ~ ~ ~ ~ ~ ( s , B  ) .  Similarly, Er (S,B*Y) exis ts  and 
Theorem 7.4. If a 6 Y*DjSn then 1 2  

E ~ ( S , B  " Y I  is free over E2(S,Y) on the images of the ei under the map induced by 

the unit S t Y. 

where the sum is taken over a l l  length k par t i t ions  J of j. I f  j i s  a prime p and 

free n*E module. Thus, Theorem 6 . l ( i )  implies tha t  the spectral sequence ex i s t s  and 
p > 2 and n odd 

E ~ ' - j  ,t-np-sp " (S,S). 
j 

( a l l  unindexed sums are over i = 1,. . . ,kl . 0 0 We l e t  e i b e  the generator i n  E2' (S,S) fo r  the j = ps-i summand. // 

We think of ei as  the np+i ce l l  of D,,Sn, or al ternatively,  as  

In the res t  of th i s  section we shal l  use the spectral  sequence of 56 together 
ei D ln D D t n  ( t h i s  is its name in  the ce l lu lar  chains of D,,sn1. 

with the f i l t e red  maps obtained from 55 t o  describe the behaviour of homotopy Note tha t  d3 sa t i s f i e s  the hypotheses of the proposition when E = HZ Recall 
j 

P' 
operations in the Adams spectral  sequence. Let us adopt the following notations. the function v from 2.4 (v(2j + E) = (-2) ( m l ) € ) .  

Let x c nnY be detected by x 6 E ; ' ~ * ~ ( S , Y ) ,  the Adams spectral  sequence based on a 

ring theory E. Le tB  be the sequence Theorem 7.6. Assume in addition t o  the hypotheses of 7.5, tha t  E,Y is nxE 

projective. Then f? (x )  sends ei t o  m*(ei @ p). Thus, when p = 2, ? ( X I  sends ei 

t o  pi*(;) and when p > 2, 3 ( x )  sends ( - l ) j v ( n ) e i  t o  i f  i = (2j-n)(p-1)-E 

and t o  0 i f  i does not have t h i s  form. 
i n (P)  is the extended power of S" 

where n is cyclic of order p and D,,S = Wi P,, S 

based on the i-skeleton Wi of the standard f r ee  n CW complex (W2i-l = s ~ ~ - ~ ) .  BY Proof. The definit ion of '? (x )  implies that  p ( x )  (ei)  is the composite 

Theorem 5.2, tD,(xl induces compatible maps e p + i  e i W i n S n ( ~ )  lh;(P)_ yhy ( p ) &  
W. 1-1 'i-1 61  'p-i,~ ' 

We choose as generator ei the map 

( i f  E,Yj is  n,E projective for each j ) ,  and hence, by h . l ( i i i ) ,  a hamomorphism e .  A 1  W. 
$P+i ; si, S" (P )  -.L-, L " S" ( P )  

X X  ? ( x ) : ~ r ( ~ , ~  ) + Er (S,Y) 
Wi-l 

i n  which ei e ni(Wi/Wiml) = Ki is  the usual generator. Thus p ( x ) ( e i )  is exactly 
of spectral sequences provided the domain spectral  sequence exis ts .  Similarly, 

the map which Corollary 5.4 asser ts  represents **(ei @yp). // 
smashing with Y and multiplying, we have compatible maps 

Since 3 (x )  annihilates elements ei with i not of the form (2j -n) (p-1)-E, we 

w i l l  ignore them too. In V.62 we w i l l  see that t h i s  amounts t o  res t r ic t ing  

and, hence, a homomorphism attention t o  a wedge summand of D$' which is p-equivalent t o  Dpsn. 

** ** T ( x ) :  Er (S,BhY) ----OEy (S,Y). 



Convergence of the spectral sequence Er(S, BI to nXqS "  implies that ang 

r nX~PS.+ is detected by an element 1 yek c E2(S, i9 1, ak 6 %(S,S) 

Applyg  XI, we find that a*(xl is detected by 1 akeX(ek @ PI. Similarly, for D.Y t DjYs_l i ... + D Y + D.Y 
J j l  J 

a Y*F.+ detected by 1 %ek e E2(S, p A Yl, ak r E2(S,Yl, except that if Y is suffices since the natural isomorphism 

H*(DjX) l Hx(zj;Hxx(J)1 

a ~ d  the fact that &Yi+l + H*Yi is sero imply that HxDjYi+l + &DjYi is sero for 
is detected by 1 alpk" X if p = 2 or by 1 ( - l l j v ( n ~ - ~ a ~ ~ ~ ~ ~  x if p > 2 and 

k = l2j-nllp-1)-s. 
Note that the proposition will hold in the E Mans spectral seguenee whenever E 

X* is such that if ExX + ExY is zero then ExDjX + ExD.Y is also zero. The spectral 
The map ?(XI :{E;'(S, B AYII + {E,, IS,Y!} also enables us to translate J 

differentials in (Er(S,BAYl} into differentials on Steenrod operations. 

Corollary 7.8. If $(aekl = 1 atek in %(S, n Yl then 
i only gives us this on an associated graded to E*D.X J and EXD j Y. I have no reason to 

believe or disbelieve the result for general E. 
if p = 2 and 

j+ji si ji - Remark 7.10. There are two variants of .@ which are also useful. First, taking into 
dr(agE$ TI = 1 (-11 ai5 P x if P > 2 , account the fact. that all of D,S" will be mapped into Y = Yo by the composite 

where k = l2j-nllp-1)-E and ki = (2ji-nl(p-11-ei. In particular, if aek is a 
D x 

permanent cycle, then so is apk" 7 (if p = 21 or ag'~jx (if P > 21. 

we can replace gSsn P in 8 by all of up$', giving 1 : 

results will he obtained in chapter VI. 

The next result says that in the ordinary mod p Adams spectral sequence 
( E  = HZp), a homotopy operation cannot lower filtration. We still get Q(xI:E~(s 8 'I + Er(S,Yl for any x r nxY. To get E2(S,B11 from 

E2(S,@ 1 simply replace the summand $IS,S(~+')P) by %(s,zn L;(~-~~+~~!, which can 

Proposition 7.9. Let E = HZp. If xi e nnY has filtration si and be obtained (through a range of dimensions) from Mahowald's tables 1591 when p = 2. 

Mahowald's tables have the virtue that they are derived from the cellular filtration 

of the stunted projective space, so that elements are named by giving an element of 
S1 + ... + Sk. E2(S,Sl and the cell on which it occurs. Thus Theorem 7.6 and Corollaries 7.7 and 

7.8 can be used with Er(S,aT) as easily as with Er(S,B). 

The other variant ofD requires that E = HZp. It takes account of Proposition 
7.9 by putting everything into filtrations between s and ps, rather than 0 and ps 

x as 0' does. mat is, p" is the sequence 
lifts to Ys, for then o (xl, ..., xkl will factor through 

with 49 in filtrations 0 through s. Its % term is similar to q(S, 8'1. It has 
To obtain the lifting we need to factor DjYs + DjY as the composite of s maps which a copy of E21S,S) for each cell from np to np + (p-11 - 1 together with an oopy of 





B ~ P ~  = 

* 0 
where E = 0 OP 1 (E = 0 i f  p = 21, q = 2(p-1) ( q  = 1 i f  p = 2 ) )  jq-E > n(p-1) and v Hereafter, i f  O €E-(S,D) and x r  nnY, l e t  O ( x )  = {a ( x ) / E  (a) = 01. Clearly, 

is the function defined in IV.2.4 ( v  = 1 i f  p = 2) .  a, @(a) can be w r i t t e z  the indeteminacy i n  O(x), defined t o  be 

l inear  combination of the BEpj with coefficients in E2(S,Sl. Recall the operation x * 0 0 
Ind(e(x))  = la ( X I  - 6 ( X I  lE (a1 = e = E ( B ) } ,  

a : nnY + nNY associated t o  each element a e R ~ D ~ ~ .  

s the s e t  of values Of a l l  homotopy operations on x whose corresponding element in 

Relation of the a* t o  other operations (S ,w)  has higher f i l t r a t i o n  than does e. 

proposition 1.5 (Kahn, Milgram): The following ere equivalent: 

( i)  $ E P ~  acts  on nnY 

(ii) cis E_(S,B),  i = jq-s-n(p-11 

0 p > 2 and n odd 

i f  p > 2 then E = 0 a n d n  = 2 j ,  

Propoosition 1.2. Let h:n* + & be the rnrewicz homomorphism. If @(@.I = B'P~ then o r c = l a n d j e 0  (p*( i ) ) .  

h o a* = o h, where B E Q ~  is the Dyer-Lashof operation defined in 111.1. 

The functions $ and V are defined i n  2.5 and 2.11 below. 

Definition 1.6. If p = 2, l e t  PO = 2, B1 = 11, B~ = v and l e t  6. be a generator of 
b J 

Im J i n  dimension 8a+2 -1, where j = 4a+b and 0 5 b 5 3. 1f p > 2, l e t  a. = p, and 

Proposition 1.3. (Kahn, Milgram) If  x r nnY is detected by 7 E E2(S,Y), then aX(x)  

Theorem 1.7 (Toda, Barratt, Mahowald, Cooley): Let p = 2. If  x<nnY and 

j = 4a+b, 0 5 b 5 3, then 

n z 25 - 8a - zb - 2 ( z j+ l ) .  

Theorem 1.8. Let P > 2 and xrnnY. Let cp(a1 denote the exponent of p in the prime 

factorization of a. If n = 2k-1 then 

e: We wil l  frequently find further tha t  lI0(al = a893 where i = jq-c-n(p-1) and 
k 

( - i ~ j v ( n ) a  detects ii. Then a .  0 BPx = 0 
J 

i f j = O  

or  j > 0 and E ( k + j )  = j-1. 
E O ( ~ I ( I )  = E ~ ( ~ * ( ; ) I  = aBEpj(%), P 

If n = 2k then 

so  that  a* is detected by Toda brackets in essential ly the same fashion as  by 
o 6pki1x = a 2  fo r  some a n 

( j+l )q-2  S 
Steenrod operations in E2(S,Y). 

i f j = O  

or j > 0 and e (k+ j+ l l  = 5-1. 
P 



TABLE 1.2 

Relations among operations on nn for  p > 2 

n - re la t ions  

= 211-1 p6pk = *hopk = pglpk = 0 

(k+ l )u l~Pk  = 0 

.......................................... 
= 2k-1 pB$'l = -ho$ 

E -1 (p)  alt?P]ltl E 0 mod a26$ 

= 2k-1 phOBP]lt1 E 0 mod a26$ 

z -2 ( p )  

= 2k pB$" E -hoPk+l mod a2$ 

E -2 (P) 





and where c is an integer depending only on n and m. 
n ,m 

. Let p > 2, xar,,Y and Y e n m y .  Then 

(i) if n - 2j and rn = Zk, 

P P B P ~ + ~ + ~ I X ~ I  = OPjtl(x)$ + X ~ @ P ~ + ~ ( ~ )  + dnjmalx y 

where d, rn is an integer aepending only on n and m. 

(iil if n = 2j and m = 3-1, 

B P ~ + ~ I X Y )  = xP0$(y) 

(iiil if n = 2j-1 and m = 2k-1, 





(ii) The operations of degree nt.1 for n E 0 (4) and p = 2 are particularly 1 1491 saw that the Cartan formula for homotopy operations should provide a 
interesting. If n i 0 (8) then by 1591 "2n+1D2S" = Z8 @ Z8. It is generated by 

vpn and P+j with relations 
There is still another proof that a BP = 0 which uses virtually none of the 1 1  

If n E 4 (8) then 1591 gives n2n+3~2S" = Z4 @ Z16 and it is generated by hlP"+' (0 

order 4) and Ptl (of order 16) with relations om Table 1.2 implies that al0: = 0. 

2Pt3 = hlPi2 + "P e. Toda 11061 shows tNLt the extended powers propagate several 

4PC3 = q2Fn+l + 2vP" lations. For example, if <al,p,x> = 0 then B ~ X P  = 0 mod al for 1 < s < p. As 

8Pt3 = 4°F'. rollaries he shows that 626y = 0 and the 8, are nilpotent, foreshadowing Nishida's 

roof, a few years later, that all positive dimensional elements of nuS are 

(iii) Wtries in the rpx column such as "0 or indicate that we have not 

calculated rpx. Such entries simply list the elements of nxS in the relevant Gray 1361 obtained results similar to 1.15 using homotopy operations which are 

dimension. Even this limited information is useful in.Proposition 1.16. ssociativity or comutativity obstructions for ring spectra. 

Oka and Toda 1921 have extensive information on the cell structure of 
(1.10) and (1.11): Let *: Q ->a Q 0, be the diagonal of the Steenrod algebra (S"yp en+') which they use, in particular, to show that yl # 0. " 
(*(PI = 1 pi 8 ~f 

Milgram 1801 also uses extended powers D ~ ( S " ~ ~ ~  en+') to define homotopy 

erations which can be iterated to yield infinite families of elements in nxS, 

esumahly related to the elements detected by K-theory. 

Cooley, in his thesis 1101, uses extended powers to compute some Toda brackets 

X 
This defines &(a) and, hence, the formula for a (xy ) ,  modulo higher filtration in 

d to derive 1.7 as well as the relation sx2 = 0 if x snn, n E 2,3,7 (81, which is 

Milgram 179 and 811 computes the Coker 3 part of the operations on ngS and n9S 

using Steenrod operations in %(S,S). 
product in nxS as composition and studies D (S" en+') while we view it as the 

P 
smash product and study D $6 D 9. Toda shows that 

P P 
$2. Extended powers of spheres 

In this section we collect the results on extended powers of spheres which are 

needed to prove the results of $1. They will also be essential to our results on 

differentials in the next chapter. First, we recall the values of the K and 3 
Thus, if px = 0 or alx = 0 then alxP = 0 or BlxP = 0, respectively. The proof given groups of lens spaces. Then, we identify the spectra 0:8, n cyclic, as the 
in 1.15 uses the values of the operations on p and al, rather than the structure of suspension spectra of stunted lens spaces and determine when they are stably reduc- 
Dp of their cofibers. ible or coreducible. Also, we show that, after localizing at p, $sn is a wedge 

summand of D,,P, which gives a simple cell structure to D~S". 



Throughout this section, let p be a prime, let n c zp be the pSylow subgroup 
k generated by the p-cycle (1 2...p), and let W be the k-skeleton of a contractible 

or ,rCp free CW complex W. (Definitions 2.1 and 2.7 provide the n free CW complexes 

which we shall use most frequently.) 

The results for p = 2 are analogous to the results for odd primes, but are 

sufficiently simpler that we state them separately. We begin with odd primes. 

"+'I, and let o = < - 1, t. %(z~~+'). k t  ci<: ,F and o also 
" 2k ,ictions of these elements to . 

some results from 1471, 1481 and [581 in the following theorem. 

t f2' + z ~ ~ + ~  be the inclusion and let <x> denote the cyclic group 

.- -2k c -2k 
(iil r:KU(L I + KD(L ) is an epimorphism, 

iio~z~~+l, = %(z2k) @ K?~(S~]'+~), 

and iX is projection onto the first summand under this isomorphism. 

) = ~(~~~2'1, Q 

Each representation of n on $+' without trivial subrepresentations yields a 
and i* is projection onto the first summand under this isomorphism. 

free n action on gkil and a corresponding lens space s~~+'/T. Since they are all 
Also, J(ci1 = for i = 1.2, ...,p- 1. 

stably equivalent we have simply chosen our favorite. Note, however, that the 

others reappear briefly in the proof of Proposition 2.4. 

Adass conjecture: 
i 

J(ii1 = ~ r $ =  J q e =  Jrc = < .  // 
the union of Xn and a disjoint basepoint. 

Since I? = S"/n is a K(n,ll, $(I?;zp1 ' EIX) @ Pl!3xl, with 1x1 = 1, and The extended powers $8 are suspension spectra of Thom spaces of complex 
the Steenrod operations are specified by bundles over 2' = &/". Gus Theorem 2.3 ensures us that the following theorem 

The isomorphisms 

. If s 2 0, the Thom complex of r + s< over zk satisfies 
*-n+k 

for n 5 i 5 n+k then determine H Ln as an ap module. 
rn ry2s+k z"T(r + sq) = z z LZS . 

Definition 2.2. k t  p > 2 and let n act on C by multiplication by p .  k t  

5 e K U ( Z ~ ~ + ~ I  be the bundle 
be ignored. We will actually prove a much more precise result. If o is an n- 

dimensional representation of n ,  we let f'lol and *-'(a) denote rf' and with li 

action given by a.. If the action is free on 9-I we obtain a closed manifold 

LLa) = *-'(cr)/n. ~f a and 6 are two such representations of dimension n and ir 
respectively, let ~IL(B) be the bundle 



sk-'(6) xn Rn(a) -Sk-'(6) x n  {O) = L(8). If  E = O o r  1, k z  E a n d n  i r ( P * ( ~ ) )  then 

t2n+k E2(n-r) -2r+k 
We claim that  there is a homeomorphism 2 n + ~  L~r+s  . 

TLulL(6)) E L(6 Q a) /L(a l ,  -b --a-1 ( iv l  La and L-b-l are (-1) dual spectra. 

where L(a) is embedded in L ( 6 8  a )  as  the l a s t  n coordinates. This wi l l  imply ( v )  If  E = 0 or  1 and k > E then -2n+k L 
a+E 

is  reducible i f f  e i ther  k = E or  k 
Theorem 2.4 for odd k (since L(6) is odd dimensional, p being odd). The even cas odd and 2n+k+l i 0 (p*(li' ) . 
w i l l  follow by removing the top c e l l  on each side, since the homeomorphism will  b 

ce l lu lar  i f  we give the Thom complex T(alL(6))  the natural ce l l  s tructure compatib 

with tha t  of L($). 

To establish the claim, l e t  f :sk-l(6) x n  Rn(a) + ~ ~ ~ - ~ ( g  O a ) / n  be induced 

by the natural inclusion sk-l I 6)  x $(a) -r $"tk( 13 @ a )  - (0) followed by the w n-n(p-1)+k 
E T(nyk1 = z Ln(p-l) . 

radia l  retraction etk - {O) + S"tk-l. It is easy t o  check that  f is one-to-one 

maps onto everything except the copy of L(a) embedded as the l a s t  n coordinates. n < 0 then, by IEquiv, VI.5.3 and 5.41 

Just as easily,  one sees tha t  f sends the aero section of a /L(6 )  t o  the embedding of 

L( 6) as the f i r s t  k coordinates. It follows that  a lL( 6) is the normal bundle of 

t h i s  embedding L(6) + L(6 O a) and tha t  its Thorn complex i s  L(8 O a) /L(a) .  // r sufficiently large N ,  and since J(nyk) = n + nmg, we find that  

The fac t  tha t  5 c J (zk )  has f i n i t e  order enables us t o  define stunted lens ,$ . S n ( ~ )  , E-Nz*T(Nm + zn-n (~- l )+k  
T %(p-1) 

*in positive and negative dimensions. 

Definition 2.5. Let *(k) = lk/21p-l)l. If n is any integer,  s = 0 or 1, and k > s 

for  r n ( P * ( ~ ) )  such that  r 2 0. 
To prove (iii), note tha t  J (ng)  = J(t-5) i f  n n r (p*(&)) by Theorem 

The following resul t  shows that  the spectrum trk is well-defined up t o  

equivalence i n  E8. Recall tha t  an n-dimensional complex X is reducible i f  To prove ( i v )  , f i r s t  consider E? with k odd. By Theorem 2;4, 

x/X"-' = 8 and the projection X + Sn has a r ight inverse. htal ly,  an (n-1)- tk = z-T(nclzk). Since k is odd, -k L is a closed manifold. By considering the 
connected complex X is coreducible i f  xn = S" and the inclusion $' + X has a l e f t  

inverse. Let W = Sw, l e t  q:W + be the quotient map and l e t  wk = q- l ( tk ) .  Then S1 + tk + CP 1 k/2 1 , 
we may define D% = Vik an x ' ~ ) .  

-k 
see tha t  the tangent bundle of L is k 2 1  + 1 - 1. Atiyah's duali ty 

Theorem 2.6. Let $' be the p-local n-sphere spectrum. Then eorem 115, Theorem 3.31 implies that  the (-1) dual of Z? is 

k n -n(p-l)+k To prove ( i v )  for the other three possible 
(i) D,,S sx(p-l, . 

coreducible i f f  k = 1. 



Finally, ( v )  follows from (ii) and ( i v )  by the duality between reductions 

coreductions. // 

Now we present the analogs of 2.1 through 2.6 for  45" instead of D,$. Sinc 

i 
cut t o  the resul ts  we need. Let X ( p )  denote the p loca l i za t ion  of a spectrum or  1 

~ " 9  ;n znT(p-l) ~y , (~-~)  
space X. The following resul t  is proved i n  i71. 

Proposition 2.7. There is a CW spectrum L with one c e l l  i n  each nonnegative 

ere tl and t2 are transfers,  and il and i2 are  induced by the inclusion n C z are  
Definition 2.8. Let Lk he the k-skeleton of L and l e t  L r k  = L"+~/L~-'  i f  n > 0 

P 
erse equivalences because the i r  composites induce isomorphisms in mod p homology. 

sproves  (i). Now ( i i ) - ( v )  follows from2.6and (i). // 

The preceding theorem does not asser t  tha t  wk wz S"(P) = z%n(p-l)+k where 
P 

n(p-1) 
Note tha t  n and k are not uniquely determined by L r k  as  they are by zrk. FO is the k-skeleton of a contractible f ree  2 space, because th i s  is not true.  In 

example, L; = L; = ... = L:-~, where q = 2(p-I) ,  since L has no ce l l s  i n  dimensions P 

1,2,...,q-2 . 
and i n  B L ~ ; ~ ~ ~ ~ ~ ' ~ .  Since we are only interested in homology which is nonzero i n  Theorem 2.9. Let L? be the p-local n-sphere spectrum and l e t  q = 2(p-1). Then 

The maps 49 + Dp5" and 

summands. 
The preceding theorem also  shows that  we may ignore the dist inction between 

i f f  k = -1. 

( i i i l  If  c = 0 or  1 and i z j (pv(kf2E)  ) then Thorn complexes, and we need Atiyah's S-duality theorem t o  convert t h i s  t o  infor- 

t ion  about reducibility. The S-duality theorem of Atiyah only applies t o  Thom 

mplexes of bundles over manifolds so cannot he used on bmdles over the skeleta of 

i fo lds  ( i f  we use a lens space fo r  Biil. To obtain analogous information about 

Sn fo r  nonprime r, a similar technique works. F i r s t ,  we s p l i t  D,S" off of D,S" 
(v l  If  E = 0 or 1 then L ! ~ ~ ~  has a reducible jqik c e l l  i f f  e i ther  

J 9-€ using the transfer,  where r C z r  is a p-Sylow subgroup. Then the structure of r ( a  

k = E = 0 or k = iq-1 and i + j  5 0 (pitc-l). Cartesian product of i terated wreath products of n) suggests manifolds mapping t o  B.r 

which we can use just  as the odd skeleta of Fh are  used here. 

We now turn t o  the analogs of 2.1 through 2.6 for p = 2. 

natural  in t h i s  context than jq+c. This accounts for the exponent * ( k + 2 ~ )  in  (iii), 

where $(k)  might be expected. 



Definition 2.10. Let  n : 0, l e t  n = z2 act  antipodally on 8 and l e t  . For k : 0 and any n l e t  

P" = 8 / n  pn+k n = zn-rz-p:tk 

and ?n+k = ?n+k n-1 
n /P . sny r s n ( 2 + ( k ) ) ,  r : 0. 

We c a l l  f k  a stunted projective space. Let 5 in KO(P") be the canonical r ea l   he following resul t  shows that  P : ~ ~  is  well defined up t o  equivalence in 
l ine  bundle and l e t  A = 5-1 E KO(?]. k k (2 )  . L& sk have the antipodal action of n. We define D2 X = S wn X . 
Remarks. (11 I f  p = 2 we w i l l  agree t o  l e t  Ln and tn mean P" and l e t  L r k  and Let 8 be the 2-local n-sphere spectrum. Then zntk mean ck so that  uniform statements of resul ts  f a r  a l l  primes can be given. n 
The P" and PZtk notation w i l l  s t i l l  appear frequently because many of the resul ts  

are  not the same for even and odd primes. is coreducible i f  and only i f  n E 0 ( z + ( ~ ) )  

( 2 )  It is easy t o  see tha t  P" - P"-' is an open n-cell so tha t  Ck Has one ( i i i l  If  n E m (24(k ) )  then PZk zn-mPzk 

c e l l  in each dimension between n and n+k inclusive. Sinoe P" = T / Z 2  is a K l Z 2 , 1 ) ,  are (-11 dual spectra 
X 

H (P";Z21 = Pix) with 1x1 = l and 
is reducible i f  and only i f  n+k+l z 0 ( 2 4 ( k ) ) .  . (jlxi+j. 

0 from Theorem 2.12 once we observe that  the regular 
The isomorphisms 

i n+k + Hipn+k + Hip- representation yk is 1 + 5. For n < 0 we have 
'n 

for n 5 i i: n+k thus determine H * P ~ + ~  as an f f 2  module. 
D ~ S ~  2 = D'[Z"S) 2 = z - ~ ~ " T ( N  + nyk) 

k n n n+k 
by VI.5.3 and V1.5.4 of IEquivl, fo r  sufficiently large N. Hence D2S = z Pn 

Theorem 2.11. Let +(nl  be the number of integers j congruent t o  0,1,2, or 4 mod 8 for n < 0 also, again by 2.12. 
such that  0 < j 2 n. Then %P") = <A> and has order 24("). Furthermore, 

Parts ( i i l  through (v )  follow exactly as  in 2.6. In ( i v )  we use the fac t  that  

J:Ko(P") + J(P) P" is a closed manifold with tangent bundle (n+llk - 1. // 
is an isomorphism. 

The l a s t  resul ts  in t h i s  section identify the top dimensional component of any 
Proof. KO(P"1 is computed i n  I l l .  The computations there and the Adams conjecture attaching map of gS" by combining Theorems 2.6 and 2.14 with Milnor's resul t  on 
imply the l a s t  statement. // mom complexes of sphere bundles oversuspensions. Fi rs t  we must define the maps 

under consideration. A .  in $1, q = 2(p-1) and E = 0 or 1 ( q  = 1 and e = 0 i f  
Theorem 2.12. If  s : 0 the Thom complex of r+sg over P" s a t i s f i e s  p = 2) .  

z - ~ ( r  + SF,) = z m P P .  
Definition 2.15. k f i n e  a function v by 

P 
Proof. The proof of Proposition 2.4 can eas i ly  be adapted t o  prove th i s  as well. 

v (n )  = m a ~ { v i $ - ~ + ~  is reducible). 
P 

odd primes, we can now define stunted projective spectra s tar t ing  and 

enalng m any positive or negative dimensions. 
n-v sn-1 --. Ln-v , S 

in which the f i r s t  map is a l i f t  of the ataching map of the n ce l l  and the second is 

projection onto the top c e l l  of LnTv. 



The indeterminacy in the definition of $(nl is the kernel of the homomor the collapse onto the top cell and a is as before. The lemma is 

induced on g-l by the inclusion of the bottom cell of L~I: . when <=l so we may assume v > 1 and hence, that n is odd. Let y be the 

We will often omit the subscript p for typographical simplicity. The notat (ntllg if p = 2 and -j(p-lIc if p > 2 over L". Then L:;:;'= T(y). By the 

v and a are intended to be mnemonic: v stands for "vector field number" and a on of v, y is trivial over LV-' but not over Lv. This implies -I = n*v where 

stands for "attaching map". Actually, v is not quite the vector field number as /Lv-l = Sv is the collapsing map and 0 f v KO(S~I. By 1851, T(v1 has 

a map (*I of cofiber sequences with a = J(v1. Since v is greater than 1, it 

is reducible. Thus, it facto n when p > 2 by 3.2. Thus, 2.3.(iiiI and 2.9.(i) when p > 2, and 2.11 when 

inply that the kernel of %LV) + J(L"-') is Zp. Hence generates it, 
Y 

nonzero. Since n (a1 = ?(yl, ac nSv1 must generate 'f(Sv) @ Z 
(PI ' // 

Let rp(j I be the exponent of p in the prime factorization of j. 
In the notation of 1.6, Propositions 2.16 and 2.17 are summarized by the 

$(jq-l) = al+Bp(j) 

If p = 2 then v2(j 1 = 8a + 2b, where c2(j+l1 = 4a + b .and 0 I: b 5 3. 
re denotes equality up to multiplication by a unit of Z(pl. 

Proof of 2.16. Theorem 2.14.(vl shows that v2(jl is the maximum s such 
This section primarily consists of proofs of results of 01 with the additional 

essary results (3.1-3.4) interspersed. Note, however, that the spectral sequence 

that cp(jq) $(s-1). The formula for v (jq-cl fallows imediately. // rts in Figures 3.1 to 3.9 can be very useful in conjunction with Theorem 1.10 
P 

Proof of 2.17. Let n = jq-E, v = v (n) and a = $(n). We wish to construct a map sults of homotopy operations must lie. 
P 

of cofiber sequences 

cond statement is immediate from the definition: 

@ E P ~  = (-llj ~(~'~jq-=-n(p-lv 

Recall from I11 91 that the homology operations are defined by 

2 
~ j x  = g*(ej_, a x I if p = 2, 

B'QJX = gx((-l~ju(n)ejq-c-n(P-ll OXPI i f p > 2 .  



2 
= 5 D (xI,(e. @ tnl  * P J -n 

2 
= SX(ej-" Q h(x1 I 

= &jh(X). 

The proof is essential ly the same when p > 2. // show 6. o pn+lx is a multiple of x2, we must show that  is n o t  
J 

n+Vtl is reducible, fo r  then the top c e l l  wi l l  be attached t o  the Proof of 1.3. This is just  the natura l i ty  of the spectral  sequence Ep(S,o) .  // 
ucihle, but %+2 

11s carrying & and p f lx .  The r e s t  of the proof is the same as  in the f i r s t  

nerator of Im J i n  If  j = 4a + b then v = 8a + zb, so 2.14.(vI implies 

n must sa t i s fy  

n + 8a + 2b i -1 (23 I 

and n + 8a + zb !b -1 (2jt11. 

Proof of 1.4. Consider the following commutative diagram, in which the row is the 

cofiber sequence of ci and a '  is a l i f t  of a t o  nisn. 
P k . To show that  a. o BP x = 0, for  x E linY and n = 2k-1, is t r i v i a l  

J 

j = 0. Simply note tha t  i a  a mod p Wore spectrum. When j > 0 we must 
q-1 

ow elq-' is reducible, while T J I q - '  i s  not. By 2.9.(v) we need 
q-1 

C \ + j  i o ( p j - l ~  but k+j ,i o ( p j ) .  
p i -  Di-lsn i n _ $p+i 

P 
-D S When n = 2k, the re la t ion  a o 6pk+lx = a o xP for some a is also t r i v i a l  

j 

5D$,, en j = 0. We need only note that  9+9-l is a mod p Moore spectrum. For j > 0, 

e must show that  T j ' q t q - l  is reducible, but *J1q'q-l is not. By 2.9.(v) Y 9+4 9'9-1 

* i must havek+j+ l  2 0  fpj-l) but k + j + l , i o  ( p j ~ .  // 
Clearly a ( X I  = ED (x l a  = ED (x la '  and t h i s  l i e s  in the Toda bracket P .  P - ni-l 
<a,Ci,S (Y)>.  If a and 8 both l i f t  t o  nisn and project t o  "an ,9p+i, then When n = 2k, i f  we t r y  t o  show a o xP = 0 by th i s  technique we find we must 

P j 
1-1 n - B l i f t s  t o  so tha t  aX(x)  - 8*(x) is i n  E ~ i - l ( x l  o n@p S . ssume k+j z 0 (pj-l) and k+j $ 0 (pj- l l ,  so tha t  no information is available. P P 

Conversely, i f  y , n @ i - l ~  then a + y also l i f t s  t o  Disn and projects t o  a' on 

,9pti. // 
P P Before we compute the f i r s t  few homotopy groups of (and hence the f i r s t  

few homotopy operations), we describe the attaching maps of the f i r s t  few cel ls .  

Exact definit ions of the maps used in the following proposition can be found in the Proof of 1.5. By definit ion,  BEPJ i s  defined on nn i f  and only i f  ei is a permanent 
cycle in E - ( S , ~ ) .  Thus (i) and (ii) are equivalent. Let Bi he B truncated a t  the 
np+i ce l l .  m e  map of spectral sequences %(s, Bil + E,(s,S"P+~) induced by the 
projection DiSn + SnPli sends ei t o  the identi ty map of @Ii. If  $sn is  

Proposition 3.1. Let p = 2. 
P P 

reducible then there is a map back which ep l i t s  Er(s,+pti1 off Er(S, Bi1, forcing (i) If n~ I ( / + )  then p r 3 =  ~ ~ ~ e ~ + ~ v ~ ~ + ~  u- n+? 

ei t o  be a permanent cycle. Conversely, i f  ei is  a permanent cycle then any map 2 r )  +2 
n+2 n+7 

detecting it w i l l  he a reduction. Thus ( i i l  and ( i i i l  are equivalent. Finally, 
( i i l  If  n E 2 (4 )  then I$+3 = Snv ~ ~ + l u ~ + ~ e  

y,,e 
( i i i l  and ( iv l  are equivalent by Theorems 2.6.(vl, 2.9.(vl and 2.14.(v). // (iii) If n e 3  (41 then c3=~ny2en+1 enc2u2ent3 

u r )  

( i v )  I f  n 1 0 (41 then I$+3 = Snv Snilu en+' V S"t3. 
2 



m of xjq+2q-2. Thus the attaching map of the jq+2q-1-cell factors through 

and is'determined to be - (  j+2)al by computing P'. 

attached. When n z 1 (4), collapsing the bottom cell of the previous case yields 

P"t2 = S"w2en+1 vS"+'. Computing sql and sq2 shows en+? is attached to S"+' by 

map of degree 2, and is attached to the bore spectrum by a map which projects to 

on S"+'. This projection induces an epimorphism 

ectively. // 

n n+l Magrams of the cohomology with and a2 or 8 and P' indicated are Therefore, the attaching map is a generator ;i of xn+*(S v2e ) . 
nvenient mnemonic devices. For p = 2 we have 

When n E 2 (4), we start with c2 = ~ ~ v ~ ~ ~ ~ y ~ + ~  ent2. The long exact 

n n+l n+2 
homotopy sequence of S v S + Pn shows that the inclusion 8"'' + pf;" e 

attached by the map 

which we also call q. 

n r 1 2 3 4 (4) 

r p > 2, we have 

which sends (a,b) to (a ,2b) . Computing sql and sq2 shows that the attaching map of 
the n+3 cell is (0,l) F g+2c2, which projects to the map of degree 2 on S"+'. W 
simply call this map 2. // 

Proposition 3.2. Iet p > 2. 

can also think of these diagrams as indicating cells by dots and attaching maps 

lines, and this is how we have labelled the diagrams for p > 2. 

The spectral sequence $(S,B) will enable us to glean a maximal amount of 

formation from Propositions 3.1 and 3.2. We begin with p = 2. Recall, from 1661, 

so = 2, T ~ - ~  = Zp generated by al, and xzq-~ = Zp generated by a2. Thus 



0 1 2 1 4 5 6 7 8 9  

Vertical l ines  represent multiplication by hg, detecting the map of degree 2, and 

diagonals represent multiplication by hl, detecting n .  We shal l  only use the f i r s t  

8 stems (t-s 5 81. Let p be the sequence 

~ 8 d - f 7 . b . . . . + ~ 1 + f .  n a 0 ( 4 )  * )  h i t  by d5( l (n+7))  i f f  n E 4 (8) 

X*) 2 times l (n+3)  is hl(n+2) i f  n E 0 (8 )  

(Omitting the zn from D:$ = P C  means a class i n  E,,(S,&Yl w i l l  have stem Figure 3.1 and it is I1hl(n+2) + h,?(n)" i f  n a 4 (8) 

X**) i f  n a 4 ( 8 )  degree equal t o  the amount by which the corresponding homotopy operation ra ises  

Proposition V.7.5 says tha t  Q ( S , B I  is free over Q(S,S) on generators in eac 

degree f r m  n t o  nik. Write x ( i1  fo r  the element of E2(S,@l which is xe  E2(S,Sl i 

the i summand, i f  i 2 n. Let x l i l  mean 0 i f  i < n. 

Theorem 3.3. In Er (S ,B) ,  for  t-s 5 6, 

d2x( i )  = hgx(i-11 i f  i a 0 

d 3 x ( i ) = h l x ( i - 2 )  i f i a 0 , l  

d5x(i)  = h2x(i-4) i f  i E 0,1,2,3 (81. 

In the same range, Em(S,B)  is given by Figures 3.1 through 3.4. 

Note: Datted ver t ica l  l ines  indicate "hidden extensions". That is, they represent 

multiplications by 2 which cause an increase of more than 1 i n  f i l t r a t i o n .  

Similarly, dotted diagonals indicate the effect  of multiplication by n when t h i s  

causes an increase in f i l t r a t i o n  of more than 1. See the proof of 1.9 for the i r  n r 1 (4) * )  dif ferent ia l  i f f  n z 5 (8) 

derivation. **) i f  n a 5 ( 8 )  

Figure 3.2 



dif ferent ia l  d2x(il = hgx(i-11 i f  i i 0 (21 is immediate, since l ( i 1  t E2 

y dimensional considerations d21(il  = hg(i-11 is the only possible d2 on l ( i 1 .  
module structure over Q(S,Sl now gives d2x(il  = hgx(i-1). 

The d3 di f ferent ia l  is s l igh t ly  more complicated. There are two cases. If 

5 1 (4)  then the i c e l l  is not attached t o  the i-1 ce l l ,  but is attached t o  the 

quences induced by 6 + @It 

n i 2 (4) *I  d i f ferent ia l  i f f  n i 6 (8 )  

**I i f  n 2 6 ( 8 )  shows that  elements of E3(S,6 ) must sa t i s fy  d3x(il = hlx(i-21 + k where k is the 

Figure 3.3 ***I i f  n E 2 ( 8 )  kernel of E3(S, 6 ) + E3(S, dl), that  is, k must have the form y(i-11. By inspection 

k must be 0 i n  the dimensions considered. Now, by truncating B a t  the i ce l l ,  then 

collapsing the i-3 skeleton we can compare E3(S,8 1 t o  E3(S, 6 I .  Again we have 

below. The f i r s t  poss ib i l i ty  is when n i 0 (41. We must decide between d3hl(n+41 = 

hl2(n+21 and d3hl(n+4) = h12(n+2) + h2(n+ll .  Let P", pfl, hlpt2 ,  and P"'3 denote 

tions, f inishes a l l  the d3 di f ferent ia ls .  

Finally, the d5 di f ferent ia ls  follow by similar comparisons with E5(S, ~ " 1 .  In 

n 5 3 (41 *I  difPerentia1 i f  n 5 7 (8 )  a l l  but one case, there is nothing in f i l t r a t i o n s  l e s s  than or equal t o  the f i l t r a -  

**I i f  n z 3 (81 tion of %x(i-4) so the comparison with E5(S, @'"I is sufficient .  The one remaining 
3 2 

Figure 3.4 case is when n z 1 ( 4 ) .  Here hl(n+3) l i e s  het,ween h2(n+41 and h2(n). Since the 
2 n+4 c e l l  is not attached t o  the n+? ce l l ,  the dgh2(n+4) = h2(n) is right here also.  

There are no further possible d i f ferent ia ls  by inspection. The hidden exten- 
Proof of 3.3: The di f ferent ia ls  l i s t ed  csrrespond t o  attaching maps which can be sions here are a l l  evident from &howald's computation i n  1591 of the Adams spectral 
detected by sql, Sq2 and Sq4, and they hold in  the spectral sequences for @' ,  8" an sequence of P:. // 

m. The spectral  sequence q ( S , @  ) has f a r  more hidden extensions than Er(S,P;1 

since the ce l l s  are  spread apart in Er(S, @ I  whereas they a l l  occur in the same 



Proof of 1.9 when p = 2: A permanent cycle x(i) corresponds to an operation xp' 

which are multiples by elements of n*S of other elements of E,(S, 8 ) .  The inde- 
terminacy of an operation consists of those elements in the sme stem and higher 

the relevant dimension. Since naD2S" = Z2 when n is odd, r2*(P") = 0 in this c 

 hen n is even, 1:s'" + D~S" induces an isomorphism of nW Q 11.1.10, the 

composite I~~:D~S" + D2S" is multiplication by 2 on H2, 2 nm. Thus r2,(P") = 2. 
To calculate r2*(?+'), first suppose n a 2 (4) .- Q Theorem 3.3, nZn+2~2S" = 0. 

Therefore, nP+l = 0 and hence nr2*(P"+l) = 0. This forces r2*(~nC1) to be 0, n 

n. When n E 0 (4), Theorem 3.3 gives n2n+l~2S" = Z2 O Z2 with generators Ptl and n a 1 (4) 
nP". Q 11.2.8, r2*(P"+') is not zero and hence must be Q. 

Determining the relations in Table 1.4 mounts to determining the nx8 module 
structure of n*D2S". The indeterminacy of the operations in Table 1.3 induces a 

similar indeterminacy in the relations of Table 1.4. The relations are to be n a 5 (8) 

interpreted as asserting equality modulo the sum of the indeterminacies of the two n - 2 (4) 
sides. Thus, in order to prove that they hold, we neea only show that they hold fo 
some choice of representatives. The E terms in Theorem 7.3 force the following 

thirteen relations: 

Q~~P"'~ a 0 mod v2p n 2 6 ( 8 )  

n s 1 (8) 

n a 5 (8 )  

n - 2 (4) 

n E 6 (8) 

?+'.) Thus 2vP"+3 = vhlpf2 + v2P". Sut upt3 is either 0 or v2P" by the E, 
e m  in Figure 3.1. Thus 2 v P 3  = 0 and hence "hlP"+' = -v2P" = v2?. 

Four more relations come from the fact that nn+2(S"u2en41) 3 Z4, SO that the 

omposite of 2 and a map which projects to q on S"", lifts to q2 on S". These are 

n a 7  (8) 

Another eighteen relations follow by considering the attaching maps given in 

Proposition 3.1, the spectral sequences in Theorem 3.3 and the reducibility and 

coreducibility given in Theorem 2.14. Theee are 
Z ~ ~ P " + ~  = h:pm2 n s 3 ( 4 )  





I 
kq-1 (k+l  I q-1 (k+ l  I q-1 (k+2lq-1 ( 

Figure 3.7 n = Zk-1, k 5 -1 (PI  

f of 3.4. The di f ferent ia ls  follow from the attaching map,s in Proposition 3.2 

:.(k,O) llows from 3.1. Applying them gives the values of EZp(S,@1 l i s t ed  i n  

Figures 3.5 through 3.9. The indicated hidden extensions a l l  come from the 

,+,+aching maps of the even c e l l s  of L ; ( ~ - ~ ~ .  
I * // 

. * 
lo(k+l,Ol proof of 1.9 when p > 2: A permanent cycle x ( j , ~ l  corresponds t o  a homotopy 

operation x e d .  Thus Table 1.1 is a list of those elements i n  Figures 7.5 through 
k+2) q-1 3.9 which must be permanent cycles by Theorem 3.4. The indeterminacy is obtained 

from Figures 3.4 through 3.9 as  for p = 2. The values of rpx l i s t ed  are the only 

elements of nxS in the relevant dimensions, except fo r  r p x ( ~ k l  = P I ,  which follows 

from 11.1.10. 

The relat ions in Table 1.2 are a l l  determined by the attaching maps from 

Proposition 3.2. // 
:l(k,ol 

I 
Proof of 1.10. By IV. 7.3.(v), t o  determine P"+m+l(xy) we must calculate the image 

D Ptm under S * : ~ , D ~ S " + ~  + ~ * ( D ~ S "  ~ D ~ S ~ I .  We need only of ~ m + 1 e ~ 2 ( n + m ) + l  2 
consider 

\ ' 
~,(k+l,Ol for dimensional reasons. If  .On,, is the skeletal  f i l t r a t i o n  of PF, then Ps-3P+4 1 
" / 

E2(S,.@n,m) is generated over E2(S,S) by elements l ( j , k )  with n 5 j 5 n+2 and : -1 
m 5 k 5 m+2 corresponding t o  the c e l l s  of c2 and $+' in an obvious fashion. The 

ps-5p+6 1(k+2,11 attaching maps of P:" and p r 2  determine the d i f ferent ia ls  i n  low dimensions from 

kq-1 ( k + l )  q-1 (k+2 1 q-2 (k+2)q-1 which we get E_(S,Dn ,,,I. The extension questions in T ~ ( ~ + ~ ) + ~  a re  also determined 
n+2 

by Pn a n d p Y 2  w h i n n r m s O  (21. W h e n n a m  l ( 2 )  weneed the fac t  that  the 
Figure 3.8 n = 2k-1, k 5 -2 (p) .. - 

top c e l l  of the smash product of two mod 2 more spaces is attached t o  the bottom 

ce l l  by 11, t o  s e t t l e  the extension question. We conclude that  i f  n a m a 0 (21 then 

"2Ln+m)+l is  generated by PtlP, PPtl, and nPnP with relat ions 

n z 0 (41 
- . ?  - 



From the image of SnPm in E,(S, n,m) we can see that 

0 
) = $+1$ + $F1. ('n,m P"+~(~xI = pl(21x2 + 4P"+l(xl + 4cmnx2 

Finally 6X(P"imi1) is determined modulo the kernel of the Hurewicz homomorphism b 

comutativity of the following diagram, in which the isomorphisms are Thom 
ince 2?+'(xl is either 0. or nx2 by 1.10. Similarly, 

isomorphisms 
6, 

n,~2~nim ~*D,s"A D ~ S ~  g~j'~(~x1 = g ~ l ( ~ 1 x ~  + $gPStl(x) + dmal$2 

I. J" = BP'(~IXP + jpP-'alpj(x~ 

6, 
H,D~S"+~ H * D ~ S ~  ~~9' 

lit Ill 
AX since pg~j+l(x~ = jalpj(x). Finally g~j+P-l(~~x) = xPg~P-l(~~) = 2 ~ ~ .  The 

H*BZ2 H*(BZ2 x BZ21 indeterminacy is always zero because where it is not automatically zero it is 4qx 2 

Since qP"pm generates the kernel of the Hurrwicz homomorphism we are done. // 

proof of 1.15. If p = 2 then nx2 = 0 by Theorem 1.10 when n n 3 (41 (even if 
Proof of 1.11. The comutative diagram above shows that the Hurewics homomorphism 2.7 # 0) while 0 = P""(2xl = nx2 by Proposition 1.14 when n 5 0 (21. If 
must map the Cartan formula for a homotopy operation into the Cartan formula for its 

p > 2 then xP = 0 if n is odd, while if n = 2j, Proposition 1.14 implies that 
Hurewicz image. Case (il, n = 2j and m = 2k, follows by an argument formally iden- o = B P ~ + ~ ( ~ X )  f alxP and o = B P ~ + P - ~ ( ~ ~ X )  = glxP. When x = B~ the second of these 
tical to, but easier than, the proof of 1.10 when n E m z 0 (2). Case (iil is h e -  

diate from the homology Cartan formula because in this case we're in the Hurewicz 

dimension. Case (iii) follows just as in the proof of 1.10 when n I m z 3 (41. // 
Proof of 1.16. Several of the computations follow from P"(x1 = x2 if 

x 6g, others from n = n5 = n12 4 
= s13 = 0. Similarly, several indeterminacies are 

Proof of 1.12. In E2(S,Sl, sq1(hOl = hl by 131. Therefore, ~'(21 = n. // zero from Theorem 1.10 or because they lie in filtrations which are 0. We will 

Proof of 1.13. By definition Bp1(p) is a unit times the composite 

where gP1 is the inclusion of the 2p-3 cell. By 11.1.8, Dp(p) E 'P'P mod p, and by 
1 11.2.8, T o gP # 0. Since 5, = 1, the composite and hence g ~ l ( ~ 1  are nonzero. 

P P 
The fact that ~PP-'(~I = El follows from the fact that in the Adams spectral 

1 sequence, g ~ ~ - ~ ( h ~ l  = bl using the notation of (661. The latter can be computed 

directly from the definition of BPP-I using the definitions 

in the bar construction. Alternatively, we may refer to Liulevicius' computation 

155, pp. 26, 301 using 166, 11-6.61 to translate it into our notation. // 

prove the remainder of the results. 

Since p4(h2) = h3, hlp4(v1 is detected by hlh3 so is either no or ;. By 1.10, 

2 5 6 h P ( v )  = 2h P (v) = 0 since 2n10 = 0. Similarly, hlp4(2v1 = 0 by calculating 
1 1 

6 6 Steenrad operations in Ekt. Since T2x(hl~61 = 0, we get hlP (2") = 2hlP ( v )  = 0, 

and since .r2*(h2P5) = 0, we get h2p5(2v1 = 2h2P5(v) = 0. By 1.10, 

6 h:p5(2v) = 2hlP (2") = 0 also. The operations on 4u can all be calculated from the 
X * 2 * 

additivity rule a (4") = 2a (2") + r2*(al(2vl = 2a (2~). 

10 2 Since 2n17 = 0, the relations <p9(v21 = 2h1P ( v  I and h:p8(v21 = 2h:~~(v~l 

force these elements to be 0 mod 0. 
X * 

Since p8(h31 = h4, hlp8(o) is detected by hlh4 so must be n or n + rip. Since 

2h;p9 = q2h,,p8 and 112hl~8(o) is detected by h:h4 = h$2h4, it follows that 

2 9 hlP (01 is detected by hgh2h4. Since 2hlP10 = h:p9 it follows that hlplO(o) is 



I etected by h2h4. Thus hlpl0(c) = v or v* + 1111 modulo <2vX>, which is its CHAPTER VI 

2 9 indeterminacy, and similarly for hlP (0). THE ADAUS SPECTRAL SEQUENCE of H_ RING SPECTRA 

Since ~ ~ ( 2 5 )  = 40' = 0, we have 
by Robert R. Bruner 

In this chapter we show how to use an H- ring structure on a spectrum Y to pro- 
u ~ e  formulas for differentials in the Mams spectral sequence of nrY. We shall 

The remaining operations are additive except for 

The differentials have two parts. The first is the reflection in the Mams 

when x E znY and n E 1 ( 4 ) ,  there is no homotopy operation ptlx since the n+l cell 

there is a Steenrod operation sqntl ? and a differential d2Sqnt1 x = hO5qn x 
= hOx2. Therefore h x2 = 0 in E-. This in itself only implies that 2x2 has 0 2 
filtration greater than that of in the Mams speotral sequence, but by 

examining its origin as a homotopy operation we see that 2x2 = 0. Thus, the 

formulas we produce for differentials are most effective when combined with the 

results about homotopy operations in Chapter V. The differential d2Sqnt3 x = 

ho~qnt2 R, still assuming n E 1 (41, is a perfect illustration of this. The 

corresponding relation in homotopy is 2P"+'x = hlP"+lx where hlP"+' is an indecom- 

posable homotopy operation detected by hlSqn+' in the Mams speotral sequence. The 

differential on sqnt% represented geometrically is the sum of maps representing 
h0sqn++? and hl~qn+lx, but since hl~qnilx has filtration one greater 

than does hOSqnt%, it does not appear in the differential. This reflects a hidden 

extension in the Mams speotral sequence: zP"+~x appears to be 0 in the Mams 
spectral sequence (i.e. hoSqn++? = 0 in E-) only because of the filtration shift. 

In fact, 2p+'x = hlP"ilx. The moral of this is just the obvious fact mentioned 

above: the differentials should not be considered in isolation but should be 

combined with the homotopy operations of Chapter V. Further examples will be given 

in section 1. 

The second part of the differentials arises when we consider Steenrod opera- 

tions on elements that are not permanent cycles. If x in filtration s survives 



until Er we can make x into a permanent cycle by truncating the spectral sequen ng aspect of Cooley's thesis is that he works unstably,: examining the 

we get to Er. However, by analyzing the contribution of drx we can show that it er work on this subject he views the H_ ring structure in terms of coreductions 

will not affect the differentials on Bcdx until Epr-p+l where it contributes 
sequence had been discovered by William Singer 1971 using the algebraic JRF 

uence obtained from the lambda algebra. 

should note that drx can occasionally affect differentials on BSdx through a te 

containing xP-'drx in Er+l. I 

The first results of this type were established by D. S. Kahn 1451 who showed state in 51. These apply to the mod p Adams spectral sequence of any Hm ring 

s"' + S (0btaine.d through coreductions of stunte ectrum. The remainder of 51 consists of calculations using these formulas in the 

ams spectral sequence of a sphere, including the differential discussed above. 

ese are intended to illustrate especially the interaction between the homotopy 
Steenrod operations in ExtA(Z2,Z21 and that some differentials were implied by this. 

erations and the differentials, specifically to obtain better formulas in partic- 
Milgram 1811 extended Kahn's work to the odd primary case and introduced the 2 

ar cases than hold in general. One of these is d3r = hldo, which forces h2 to be 
spectral sequence of 18.6 which is by far the most effective tool for computing th 4 

permanent cycle. This is the shortest proof we know of this fact. 
first part of the differential. His work was confined to the range in which it is 

possible to act as if one is operating on a permanent cycle. Nonetheless he was In 882 and 3 we describe the natural zp equivariant cell decomposition of 
able to use the resulting formulas for differentials to substantially shorten 

Mahowald and Tangorats calculation 1611 of the first 45 stems at the prime 2 and to In 54 we start the proof of the formulas in 51, using the results of 882 and 7. 
catch a mistake in their calculation. The next step was taken by Makinen 1621, who also prove that the geometry splits naturally into three cases, which we deal 

th one at a time in the remaining 555-7. 
p = 2. Unfortunately, he apparently did not apply his formulas to tbe known calcu- 

lations of the stable stems, for one of his most interesting formulas (published in 

. Differentials in the Adams spectral sequence 
d3sqjx = hlsqj-'x + Eqjd2x if n r 1 (41, 

In this section we state our theorems concerning differentials, explain some of 
combined with Milgram's calculation of Steenrod operations 1811, implies that d p l  = 

hlt, contradicting Theorem 8.6.6 of Mahowald and Tangora 1611. This application was ome examples in order to illustrate their use and demonstrate their power. 
left for the author to discover in 1983. Note that the differential is out of 

Localize everything at p. Let Y be an K ring spectrum. Let E;'"+~(S,Y) 
Milgram's range since a nonsero d2x prevents us from calculating d ~ q j x  unless we 

incorporate terms involving d2x. The argument in 1611 that el is a permanent cycle 
e following shorthand natation for differentials. If A is in filtration s and B1 

is an intricate one, involving the existence of various Toda brackets, while the 
d B2 are in filtrations s+rl and s+r2 respectively, then 

proof that d ~ ~ j x  = hlsqj-'x + sqjd2x if n z 1 (4) is relatively straightforward. 

This appears to be convincing evidence that the Hm structure in the form of Steenrod d,A = B : B 1 2  
operations in Ext is a powerful computational tool. 

means that diA = 0 for i < min(rl,r2) and 
One other piece of related work is the thesis of Clifford Cooley 1101. He 

obtains formulas similar to Milgram's 1611 by using the spectral sequence connecting 

homomorphism for a cofiber sequence of stunted projective spaces to reduce them to 

dl's which he gets from a lambda algebra resolution of the cohomology of the drA = B1 + B2 if rl = r = r2, and 

appropriate stunted projective space. Calculating differentials this way or by the 

spectral sequence of IV.6 is probably a matter of indifferenoe. The most 



Uote. This does not mean that this differential is necessarily nonzero. Nor dividually, the terms sqjdrx and Gdrx do not always appear to survive long 

- 2 erential ~ + ~ + $ d x  = axdrx is preceded by the differential dr(axd,x) = a(drx) , 
s+rl+l or more and, hence, B1 could conceivably lead to a nonzero dpl+lA. The poi 

is that you can't tell what B1 is contributing to the differential if all you kno 

is that it is zero in filtration s+rl. However, when we explicitly state that 

the claim that the right-hand side will survive long enough for this differential 

occur, &d even shows the "coconspirator" which will make this possible when it 
The geometry behind the formula d,A = B1 B2 will make it clear exactly wha ems superficially false. 

The other point illustrated by this example occurs when d d r x  and xdrx are 
A is represented by a map whose boundary splits into a sum + z2 + %, where ea - 

merit cycles and r > f+k+l. Then the differential dr+k+f~qjx = axdrx reflects - 
hidden extension: a(xdrx) is zero in E, because of a filtration shift. It is 

It is irrelevant what To represents because 3 + F2 lies in a lower filtration. 
tually detected by Sqjdrx. Relations among homotopy operations typically cause 

This is fortunate, since in general F0 is very complicated. In particular cases 

however, we can often analy?;e F0 in order to get more complete information about 
uces the relation in homotopy. In a suitably relative sense this is the meaning 

Proposition 1.6. 
a relation corresponding to a differential will typically be relative homotopy 

Two remaining points about the formula are best made using examples. The 

formulas we will shortly prove say that, under appropriate circumstances, 
We can now state our main theorems. Assume given x €E~'"+~ 

r and consider the 

dX&x = aJdrx Zxdrx lement x (as usual, E = o and $ =sqj if p = 2). k t  

(2j-nl(p-1)-~ p > 2 , 
- 

dr(axdrx) = a(drx)'. 

d a,, of V.2.15, V.2.16 and V.2.17 we define v = vp(k+n(p-1)) and 
If the filtration of ~qjx is s, then the filtration of sqjdrx is s+2r-1, while that 

= $(km(p-1)) €nv-lS. Recall that a is the top component of an attaching map 
of Gdrx is s+r+f+k (f is the filtration of ;and k will be defined shortly). 

The three ways these differentials can combine are illustrated below 

r < f  + k t 1  r = f  + k + l  r > f + k + l  a tE, (S,S) - f,f+v-1 

XX . There exists an element T tE2 (S,Y) such that 
P 

if p = 2 then d,Sqjx = Sqjdf 1 T2, 
(ii) if p > 2 then 

drtldx = ~ + ~ x p  = agxP-ldrx if 2j = n , 

d2dx = aO&x if > n, and 

d,@d x = -$ddrx : Tp . 



Theorem 1.2. 
v > k+l or 2r-2 < v < k 

2 2 cobar construction Slxl 1.. . lxj I = Ixl 1.. . /x. 1 . Since h, is represented by 
J 

1 ,  it follows that SqZnh, = S(h,) = hn1. For dimensional reasons, the Cartan 
mula reduces to S(xy) = S(x)S(y). Thus, to show (ii) we need only show Vl = 0, 

v > k+l or pr-p < v < k 

x . v < k a n d  vlpq. 

where e is the exponent of p in the prime factoriaation of j. 

Note. When p > 2, k and v have opposite parity so that v = k never occurs. 

Theorems 1.1 and 1.2 give complete information on the first possible nonzer 

2" 2" 2n+1 differential except when 
Sq (ho hn) = ho hntl . 

pq < v < min(k,pr-p+l) if p > 2, 

1 < v < m i n k 2 - 1  if p = 2. As is well known, the preceding proposition implies the Hopf invariant one 

The sketch of the proof given in Section 4 should mke it clear what the obstructio 
is in these cases. We do have some partial information which we collect in the . d2h,+1 = ho$ far all n > 0. 
following theorem. 

. By Theorems 1.1 and 1.2 we find that 
Theorem 1.3. If p > 2 and v > q then di@pjx = 0 if i < vt2 5 pr-p+l, while zn 2" 2 
dpr-p+lBd~ = -Bpjdpx if v + 2 > pr-p+l. If p = 2 and v > 8 then disqjx = 0 dxh,+i = dxSq h, = % d2h, + hob, 

if i < v+2 5 2r-1, while d2r-l~qjx = Sqjd,x if v+2 > 2r-1. 2 

To apply these results we must know the values of the Steenrod operations in 

% = Extk(Zp,H,Y). For our examples we will concentrate primarily on p = 2 and 

Y = SO, since this is a case in which there are many nontrivial examples. We cannot 

resist also showing how useful the Steenrod operations are in the purely algebraic The next result shows how we m y  use the relation with homotopy operations to 
task of determining the products in Ext. 

get stronger results than the differentials themselves give. 

We begin with the elements hnr E2 
of the following propositon may also be found in 1881. Proposition 1.6. hlh4 and $h4 are permanent cycles. 

(ii) (Adam 121 I hJ!,,+l = 0, h2+l = h,$n+l and hnhL2 = 0. 

the boundary of the 10-cell maps to 0 and $h4 is a permanent cycle. 





From the calculations of Mukohda 1881 or Milgram 1811 we collect  the value relat ions a r  e grouped as  follows: ( i )  holds because the .relevant hidegree is  

the Steenrod operations on cO,dO,eO*and fo. The following abbreviation w i l l  be I. 'is not annihilated by ho, as  multiples of hl must be; ( T i )  follows from 11031 

convenient: i f  x # ~ x t ~ l ~ ~ ~  l e t  Sq ( x )  = (sqnx, Sqntl,. . .,sqntsx) = (x2,. . . ,Sx) oe,  again by 11031, there are no elements of lower weight i n  the given bidegrees; 

ii) now follows e i ther  by applying Steenrod operations t o  relat ions i? (i) and 

e argument as  (ii). (The point is  that  the relat ions in (iii) are 

in (i) and (ii) under the action of the Steenrod algebra.) 

i) hiti = 0, hi+2ci = 0, hi+3Ci = 0, hi-ici = 0, hi+ifi ' 0, 

= 0. 

! d., h. d = h.e., bi+lei = h f 
.+l 1 1+2 i 1 1 i i' hi+2ei = higi+l '  

m e d i a t e  from Proposition 1.11 since S i s  a ring homomorphism by 

.). 

of the preceding proposition and corollary w i l l  show that  i f  we 

Lty operator as  a Massey product 

r t1  



am 1811 found ( i l  and ( i i l  by using the Steenrod operations. Mukohda 1881 

(5")-(vi)  and ( i x l ,  pa r t l y  by using the Steenrod operations and the cobar 

ruetion, and par t ly  by means of a minimal resolut ion.  

If i = 0, the indeterminacy (of Sqo = Sl is generated by hr+2 and Sqox. 
Given ( i i l ,  ( i l  follows because h & g O  = h h O  f 0, from which it follows 

rO #. 0. The only pos s ib i l i t y  is %ro = so. To prove ( i i l ,  apply SqZ0 t o  the 

fo ld  Massey products says ion h2d0 = hoeo. To prove (iii), apply sq19 t o  the re la t ion  

= hOfO and use the f ac t  t h a t  hlmo = 0. To prove ( i v l ,  apply sq21 t o  the 

ation h2do = hoeO and nee the f ac t  t ha t  h$el = 0. To prove ( v ) ,  apply sq2' t o  

sqi",b,o c ( ( ~ ~ a ,  ..., ~ % a ) ,  re la t ion  hleO = hOfO and use ( i v l  t o  show t h a t  h:xo = hl(h$dll = 0. To prove 

), apply sqZ2 t o  the r e l a t i on  hleO = hOfO t o  show t h a t  h2xo = h:el + h$fl, and 

l y  Proposition l.ll.(iii) t o  show t h a t  t h i s  is 0. For ( v i i l ,  we apply SqZ2 t o  

= 0. Similarly, sqZ1 applied t o  hlfO = 0 y ie lds  ( v i i i )  . Finally,  ( i x )  follows 

applying sqZ4 t o  the re la t ion  h,?eo = hogl t o  get  h& = h3xo + h$el, and noting 

a t  h$el = h2(hlfl) = 0. The calcult ion of ~ ~ ~ ~ ( h , $ ~ l  is  possible because sqz4gl = 

by defini t ion,  while Sq23g1 = 0 fo r  dimensional reasons. 

Proof. By Proposition 1.11, plh; = hzdo. By Theorem 1.9 we have Now we examine the d i f f e r en t i a l s  implied by the squaring operations in the ci, 

, ei and f i  famil ies .  The r e su l t s  we obtain fo r  t-s , 45 a r e  a l l  new. In the 

ge t-s 2 45 they are  due t o  May 1661, Maunder 1651, Mahowald and Tangora [611, 

gram 1811 and Barrat t ,  Mahowald and Tangora [201 with the exception of d3el = 

h4. For dimensional reasons the indeterminacy i s  0. t, which is new and corrects  a mistake in 1201. As noted by Milgram 1811 the  

ofs  using Steenrod operations a re  usually f a r  simpler and more d i r ec t  than the 
Combining Proposition 1.11 with Theorem 1.9 we can produce a number of ginal  proofs. In addition, when they replace proofs which re l ied  on p r i o r  

re la t ions  i n  Ext which do not  hold in the associated graded calculated by Tangora. owledge of the relevant homotopy groups we obtain independent ver i f ica t ion  of the 

leulat ion of those homotopy groups. 
FToposition 1.15. ( i l  h O r  = So and hence hiri = si 

I f  x r E:>"+', l e t  us wri te  x c ( s , n )  or  x a (s,n), f o r  convenience. Theorems 
( i i l  h3r0 = hltO + h$xo and hence hi+3ri = hi+lti + hfx .l, 1.2 and 1.3 inply t h a t  

( i i i l  h2e$ = h$xo and hence hi+2e$ = 0 i f  i > 0 
v > k+ l  o r  2r-2 < v < k 

( i v )  h$dl = hlxO and hence = hixi-l 
v = k+ l  

(v l  hlYO = hZtO and hence h i+ l~ i  = hir2ti 
v = k or  (v < k and v 2 10) 

( v i l  h2x0 = 0 and hence hi+2xi = 0 

( v i i l  hlfl = hgc2 and hence hifi = h:-lci+l 
ere k = j-n, v = 8a + 2' i f  j + l  = ~ ~ ~ + ~ ( o d d l ,  and a detec ts  a generator of Im J 

( v i i i l  h2yo = 0 and hence hic2yi = 0 
We s t a r t  with a general observation about famil ies  {ai} with ai+l = S(ail.  If 

and hence h i+y i  = $gi+2 

ni + s = 2(ni-1 + S )  = zi(nO + S I .  



I f  N is the integer such tha t  2N-1 < s+2 2 2N then the d i f ferent ia ls  on the e l e  

sqjai depend on the congruence c lass  of ni modulo zN. Clearly, ni -s modulo 
i N. Thus, the d i f ferent ia ls  on a l l  but the f i r s t  N members of such a family corollary 1.17. Note tha t  we have omitted d2hiei from the statement of the 

follow a pattern which depends only on the f i l t r a t i o n  in which the family l ives .  

Consider the ci family. We have co e (3,8)-, so i n  general ci r ( 3 , ~ ~ . 1 1 - 3 ) .  

Proposition 1.16. (i) el €Em while d2ci = hofi-l for  i '_ 2 

(ii) d2fo = h$eo, f l  €Ej, and d q i  = hlyi-l fo r  i 2 2 (iii) ri aE3 fo r  i 2 1 

( i i i l  d3c: = &i+2ri-l for  i 2 2 ( i v )  dieE3 for  i l l  

. Mahowald and Tangora show L611 tha t  dl is actually in Em, not just  E3. ALSO, 

proof given here tha t  h$ c Em is much simpler than the proof i n  1611. 

Corollary 1.17. d2eo = c$ and ve4 f 0, where e4 is the Arf invariant one element 

FToposition 1.11 we f ind tha t  d2hleo = d2h,,fo = d e O  = hldo = hlc$, from which it 

follows tha t  d2eo = cg. 

d 3 W 4  = hOdb implies hodg = 0 in E4. The only poss ib i l i ty  is tha t  d2k = 

6. This implies tha t  2nZ9 = 0. Since the boundary of the 16 c e l l  car r ies  hldg 

s twice something, we get d3ro = hldg. Nothing is l e f t  for  h2 t o  h i t ,  so h2 €Em. 
4 

a l ly ,  d2(dl) = ho.O = 0 so dl c E3. Now assume for  induction tha t  i 2 1 and 
4 

so t h a t  e4 exis ts .  Since ov = 0, it follows t h a t  ve4 f 0. 
t E3. The terms 8qjd3di i n  the d i f ferent ia ls  on 8qjdi w i l l  not contribute u n t i l  

Now assume for induction tha t  d2ci = hof:-l and tha t  i 2 2. We can arrange the 

relevant information in the following table.  find tha t  d2ri = ho.O = 0 and d2(di+l) = ho.O = 0, proving (iii) and ( i v )  and 

le t ing  the induction. 

. (i) d p O  = k e g ,  to €Ell and d e - h t 3 1 1 0  

(ii) e$ eE5, djml = sq3c?llt0, d2tl = h p l ,  d3xl = hlml and d2e2 = h&. 

2 2 
(iii) If  i 2 2 and n = 2i.21 - 4 then d e = hOeixi-l + ~ q ~ h ~ x ~ - ~ ,  

3 i 

di f ferent ia ls  on the sqjeO is most conveniently presented in a table .  



t three of the 5 entries in the above table satisfy v = k+l. The - 
ding differentials therefore contain terms of the form axd,x, specifically 

one of the differentials on the Sqjfi is interesting. 

. For all i 2 0, d2yi = h&i+3ri. 

involving drx do not contribute to dZsqjx. 

i.22 - 4 so that fi r (4,nl then sqn+'fi = hit3ri and sqn+'fi = yi. Since 

even the proposition follows bediately. 

We omit d3e02 and d2x0 = 0 from the proposition because they also follow si 
is completes our sampler. We have calculated only about one fourth of the 

reasons. Thus (i) is proved. entials found by Mahowald and Tangora, hut they include some of the most 

ult. The remaining differentials follow more or less directly from those 

ated here just as in Mahowald and Tangora's original paper 1611. 
that long. Again, the information is most conveniently organised into a table. 

j &jel k v a conclusion 
- 

In order to study Steenrod operations on elements of the Adams spectral 
39 ml 1 8 h3 dgml = ~ q ~ ~ h ~ t ~  ence which are not permanent cycles, we need a relative version of the extended 

40 t, 1 2 1 ho d2tl = hdol r construction. The extended power functor En w,, x(~), for n C Ep, factors as 
composite of the functors 

41 X1 3 2 9 dyl = hlml 
x -x(P) 

42 e2 4 1 ho d2e2 = hoxl 

and Y k E n  K Y 
All of (iil follows immediately . Now assume for induction that d2ei = hoxi-l an 

i > 2. Again we organize the information in tabular form. Let n = 2i.21 - 4'so we replace X by a pair (X,Al then x(P) is replaced by a length pi1 filtration 

that eia (4,nI2. ) ... -) A(P) of n spectra and we may apply Ex x, (71 to this termwise. The 

ulting diagram is the relativizati& which we need. While the formalism applies 
- 

j sqJei k v a conclusion any pair (X,A), we will confine attention to pairs (CX,X), where CX is the cone 

X, both for notational simplicity and because the pth power of such a pair has 
n 2 

ei 0 1 b d3e: = $jeixi-1 + Sqnhei-l cia1 properties which we shall exploit. In particular, note that Lemma 2.4 is 

n+l mi 1 2 hl d3q = ~ q ~ + ~ h ~ x ~ - ~  
geometric analog of the fact that a trivial one-dimensional representation 

lits off the permutation representation of n C zp on lIP. Most of this section is 
n+2 ti 2 1 h~ d2ti = hdni voted to this fact and its consequences. 
n+3 xi 3 4 h2 d3xi = ~ q ~ + 7 h ~ x ~ - ~  

An element xc E;'~+~(X,YI can be represented by a m p  of pairs 
n+4 ei+l 4 1 ho d2eit1 = hoXi 

(CX,Xl - (Ys,Ystr1. 
This establishes (iiil and completes the induction. xtended powers of (CX,Xl can be used to construct a map representing S'P~X. The 



: We will complete what we have begun in (iv) and (v).~ above in Lemma 7.5, 

ia is the key result of this section. Let I and s1 have trivial Cp 
X is a z space or spectrum then CX = X A  I and CX = Xh s1 are 

P 

are natural equivariant equivalences rO(X) n Crl(X) and 

final bit of the section establishes the facts about extended powers which wil 

enable us to construct and analy~e such a map. 

We shall work first in the category of based n-spaces and based n-maps and 

homotopy category of based n-spaces and n-homotopy classes of based n-maps with 
The next lemn equivalences inverted. The results are then transferred to the category of n-spe 

by small smash products, desuspensions, and colimits. ns so that if 

Let I be the unit interval. We choose 0 as the basepoint, justifying our 

space or spectrum X, let CX - X &I. The isomorphism X E X h{O,l) and the 

cofibration {0,1) C I induce a cofibration X + & with cofiber ZX. 

Definition 2.1. For a space X, define a zp-space ri(X) by 

0 . By definition and by 2.2(i) we may assume X = S . We define a zp 
eomorphism rO(sO) + CT~(SO) by 

tl t 
tlA ... At -----.I (--*...,,$)~t 

P t 

ere t = max(ti). The inverse homeomorphism is given by 

(ii) ri("X) s zPri(X) if X is a space. (tl" ...~t )ht+tt htt2A .-. htt 
P 1 P ' 

(iii) ri+l(X) + ri(X) is a 7, -cofibration. 
P mmutativity of the triangle is immediate. The equivalence Crl(X) "CX)(P) 

(iv) Ti(X)/ri+l(X) is equivalent to the wedge of all (i,p-i) permutations llows since Crl(X) 3 Crl(X)/rl(X) s rO(X)/rl(X) 3 (cx)(P), the latter equivalence 

of x i  x ~ .  In particular, if (p) is the permutation 

representation of C on @ then rO(X)/rl(X) z izx)(P) E z(P)x(P) 
P 

inherited from the p-cell r0(s0) = I(~). 

such that the following triangle commutes. 

(ii) is a consequence of the commutation of C' and smash products. 

(iii) follows for spectra if it holds for spaces. By (il it holds for spaces 

if it holds for SO. For SO, it follows because ri(sO) is the (p-i) skeleton of a CW 

decomposition of rO(sO) = I(P). 
similarly. Commutativity of the triangle follows from naturality with respect to 

Similarly, (iv) holds in general if it holds for SO, for which it is immediate. 

(v) follows from the fact that rl(sO) is the boundary of the p-cell rO(sO). 



only question is whether we should get z, - z7 cr its negative. We In the remainder of this section we shall restrict attention to the spec - 
case of interest in section 4. The general case presents no additional diffie - - 

fal - fa2 for consistency with the Barratt-Puppe sequence signs. The point 

hut is notationally more cumbersome. at a? 
is a homotopy inverse to the map from Ci(a1 to ZA which collapses CX, 

Let n C Xp be cyclic of order P and let W = S" with the cell structure he orientations on the two cones are determined by this fact. 

makes C.Y s Y(, the usual Ztnl resolution of Z. Let Wk be the k-skeleton of W. - 1 As in L2,  Wk/n is the lens space Lk, and, by I.l.?.(ii), if r = r the Returning to the special case which prompted these generalities, let 

k k 
W1iNn ri/W1"-l F * ~  Ti = Z Ti. By Lemmas 2.2 and 2.5 we then have the following 

+'-' + 
sn r1 be the attaching map of the top cell of W p,, rl. Then 

corollary of Theorems V.2.6 and V.2.14. am (2.1) becomes diagram (2.2) below. 

n-1 Z(n-l) (p-l)+k Corollary 2.6: $ p  = I: (n-l)(p-1) 
n P 

and $ a x  r 1 = r  n-1 p(p-l)+k . n(p-11 
.2) 1 ' n ' l  

Now note that Lemma 2.5 also implies that wk M n  rl u wk-' rn Po is the e 

cofiber of the inclusion $-' w" r1 + $ c" TI. By Corollary 2.6 or by L e m  2.2 

and I.l.3.(ii) it follows that 

:t B .t Y and n:Y +. Y/B he as in Lemma 2.7. For any map 

'n '0' $-'p rl) + (Y,B) we have nfa = Zl - Z2 in 
n 3 



$3. Chain Level Calculations 

In this section we define and study certain elements in the cellular chain tp-l = mixp-ldx + (m-l)!(a-' - 1)~xP-ldx 
W k,, rO(S"-'). In sections 5-7 they will be used to investigate the homotopy 21 

where m = (p-1)/2 and Q = (ail) 1 ia . 
of various pairs of subspaces of B rxii Here we use them to determine i=l 

effect in homology of a compression (lift) of the natural map wk %,, rp(S"-l) . (i) and (ii) are easy calculations, by induction on i for d(tZi) and 
using (a-l-1)~ = 0 = ~(a-'-1) and ds t sd = 1. 

Let ri = . Give en = c(S"-') the cell structure with one n-cell x ~n 168,Theorem 3.11 it is shown that tp = (-l)m?n!xP and that 
one (n-1)-cell dx. Let C,(?) denote cellular chains and C,(?;R) = C,(?l Q R. ~h = (m-l)!~xP-'dx, where P = a + a3 + - a .  ap-2. Since P = m + (a-1 - 1)Q, 
C,ro = <~,dx>~, the p-fold tensor product of copies of c,(en) = <x,dx>, and 

n jl i (2) 
We shall find it convenient to omit the tensor product sign in writing elements 

C,rj, so that, for example, xP-'dx denotes x Q x Q -. Q x Q dx. Let W = L? 

the usual n-equivariant cell structure. Then C,W is the minimal resolution Kof 
over Zlnl. Let 

i+l 
d(ei+l Q xdx) = (a + (-1) )ei Q xdx + (-l)i+lei+l Q dx 2 

2 
= ei @ dx x + ei Q xdx + (-l)i+lei+lQ dx , 

om which we obtain 
so that Yf(k) = c,(Wk), where Wk is the k-skeleton of W. Then by 1.2.1, 

i ei+l Q dx2 - (-1) ei Q dx x - ei O xdx 
C,ri by permuting factors. Following 168, Theorem 3.11 we define elements 2 = (-l)iei Q d(x ) - (1 + (-l)i+n)ei~ xdx . 
ti s C,ro as follows. Define a contracting homotopy for C,rO by =(ax1 = 0 

and s(adx) = (-l)lalax. i+p-1 . Let p > 2. If i is odd then, in C,(W k,, Pi), 

Definition 3.1. If p = 2, let to = dx2, tl = xdx, and t2 = x2. If p > 2, let e @ dxP - (-lImm m!ei Q d(xP). 
i+p-1 

N = 1 + a + a 2 +  ... +,p-l. Let 

to = dxP , tl = dxp-'x, 

tZi = s((a-l - l)t2i-11, and 

tpitl = s(NtZi1. 

Lema 3.2. (i) If p = 2 then d(t2) = (a  + ( - ~ ) ~ ) t ~  and d(tl) = to. 
e. Q d ~ ~ - ( - l ) ~ + ~ m ! e ~ O d ( x ~ )  1+p-1 

(ii) If p > 2 then d(tl) = to, 

d(tZi) = (a-' - l)t2i-l 
and d(t2i+l) = NtZi if i > 0. 



Proof. By Lemma 3.1 and the  defini t ion of r/ we find tha t  i f  i is even then 

. I n h d o r h d , r i ( x ) =  V z ~ P - ~ x ( P ) .  
(p-i , i -1)  

Neirp-2 Q tl + ei+p-l a t 0  

and i f  i is odd then ri is exact except in dimension np-i and tha t  

Nei+p-j-l Q tj + Tei+p-j @ tj-l ker(Cnp..iro ' Cnp-i-l r 0 ) ~r = np-i 

us %p-iri i s  free abelian, being a subgroup of the f ree  abelian group Cnp-il'O. 

the Hurewicz and Whitehead theorems Ti is a wedge of np-i spheres. Sp l i t t i ng  
where N = 1  + $ + c 2  + ... 8 n d T . o . - 1 .  

Suppose i is odd. We define r = rank Cnpmiro = ( p - i , i ) .  rank Hnp-iri + rank Hnp-i-l i+l 

A routine calculat ion then shows t h a t  rank sp-$r i  = (p-i , i -1) .  

d ( c )  = -ei+p-l o to + Q ~ t ~ - ~  , We are now prepared t o  prove the key r e su l t .  

and hence, by Lemma 3 .2 . f i i )  and (iii) 

This establishes the resul t  for  odd i. 

Now suppose i is even. We define 
@ (dxlP) = ( - 1 1 ~ ~ + ~ m ! e ~  @ d(xP) i f  p > 2 and i is odd, 

2 2 
e,(ei+l Q (dx) = (- l) iei  Q dlx ) i f  p = 2 a n d n g  i (2 ) ,  

where M = ap-' + 2zP-j + 9 . .  + (p-2)a + (p-1). One eas i ly  checks t ha t  where we denote homology classes by representative cycles. In mod p homology, ( i)  

N = TM + p = MT + p. A routine calculat ion then shows t h a t  and (ii) hold for  a l l  i and n. In in tegra l  homology e:wP-l w r + WO x n  r2 = r2 
n P 

a t2j-1 - ei+p-2j-1 @ t2j ) (iii) e,(ep-2 @I (ax)') = ( - 1 ) " l ~ e ~  Q tp-2 i f  p > 2. 

m - (-1) ei Q Ntp-l , 

from which the resul t  follows for  even i by Lemma 3.2.( i i )  and (iii) jus t  as  for  



ompute d*~'dx. Since is homotopy equivalent to the stunted lens space 

++p-lrp is also a stunted lens space and the natural inclusion 
in which the unlabelled maps are the natural inclusions. In mod p homolorn the 
vertical map is an isomorphism, so it suffices to note that 

ei+p-l @ dxP - (-l)*+mm!ei @ d(xP) by 3.4. Now assume i is odd. The vertical 

map is the quotient map Z + Zp, and the mod p case implies ex is correct up to a 

consists of maps 
~ p + i - 1  *ti-1 2 Wi Pn 

in which c is projection onto the top Cell, b is arbitrary, and a is the attaching 

tion by p. Thus it is possible to choose the lift e such that e, is as stated in 

mation, but we only need it here so do not bother with .the general statement.) 

The argument for p = 2 is exactly analogous to that just given. 

54. Reduction to three cases 

There are two complications to the above picture. First, the m p  flP-'rp + 

In this section we start with an overview of the proof, then establish $sl is a lift of the natural inclusion DktP-'sP + @p-lsl and does not commute 
notations which we shall use in the remainder of this chapter, and finally start the with the maps into the Adams resolution until we pass to a lower filtration. This 

proof of Theorems 1.1, 1.2 and 1.3 by showing that it splits into three parts and by necessitates extra work at some points. Second, the attaching map ataches the top 

proving some results which will be used in all three. cell to the whole lens space, not just to the cell carrying d-'x or SP~-~-'X. As 

the filtration of H increases, the possibility arises that a piece of the attaching 

1.3 by doing appropriate calculations in a spectral sequence Er(S, @) where U is an map which attaches to a lower cell will show up in a lower filtration than the term 

d'x or ag$-e-lx. This possibility accounts for the cases in which we do not 

have complete information. 
difficulties which have prevented this. If a proof can be constructed along these 
lines, it should immediately imply that T (see Theorem 1.2) is a linear combinati Now let us establish notation to be used in this and the remaining sections. 

P 
of ~ ' d - ~ x  and for various 6, i and k, with coefficients in %(S,S). The As in section 1 we assume given a p-local H_ ring spectrum Y and an element 

coefficient of the lowest filtration term would be a, and the determination of the 
other coefficients would give complete information on the first possible nonzero n ,Y  We wish to describe the first nontrivial differential on B'P~X in terms of x 

differential on ~ ~ d x .  and drx. (Here c = 0 if p = 2.) Recall from $1 the definition 

The proof we gfve runs as follows. The spectrum W % is a wedge summand 



be an Adams resolution of Y and let 

following relative version of Corollary IV.5.4 gives us maps which represent 

ese elements. In it we let 1; be the cobar construction C(Z~,~,&Y) so that 
be its pth power as in IV.4. Represent x by a map (en,$'-ll + (Ys,Y,+rl and 1 ,n+s .z h(~,/Ys+l) s nn(Ys,Ys+ll and let W =  C,(Wl so that JVk = Gpl r 
ri = ri(S"-l1 be the ith filtration of r0 = enP as in Definition 2.1. Recall tha 

(wk/wk-l! i xk(~k,~k-ll. 

. If e 6 )Vk is represented by e a nk(wk,wk-l1 then mx(e 6 xP1 is 
this summand. Let us use 5 generically to denote.the composites represen ed by the composite 

m,(e o xP) 
(enP+k,SnP+k-l) - - - - - - - - - - - - - Y * (Yps-k' ps-kt1 ) 

the maps of pairs and unions constructed from them, and their composites with the 1. 

maps Yj+t + Yj. We will use the following consequence of Lemma 3.6 repeatedly. 

Recall that e is defined in Lemma 3 .6 .  

5 
Lemma 4.1. The following diagram commutes. 

where u is the passage to orbits map. 

composite in the diagram is an equivalence by the same argument which was used to 

construct diagrams (2.11 and (2.2). 
quadrilateral commutes by Lemma 3.6.  

isomorphism n*(X,A) i n*(X/A] for cofibrations A +  X enable one to pass freely 

between this version and the absolute version of IV.5.4. 

We shall refer to the boundary of the map in Lemma 4.2 so frequently that we 

give it a name. 

The lemma follows by composing the diagrams for j = 1,2, ...,p- 1. Definition 4 . 3 .  Let am t nnp+k-l Y ps-k+l be the restriction to snptk-' of the map 

ex(ek @ xP1 of Lemma 4.2. Let 1 c nnp+k-l(&rlv~k-lrO) be the map with Hurewicz 

In IV.2 we constructed a chain homomorphism m: W @ CP + c ,  where is the 

cobar construction, which we used to construct Steenrod operations, and in IV.5 we 

showed that 6 induces such a homomorphism. In particular, Definition N.2.4 says 



I 0 k=O or k odd, p > 2 + E ,  E = 0,1,3,4, then U(s) > 8a + E if e # 4, 8a + 7 i f  s = 4. This 

0 k+n odd, p = 2 lately implies the lemma. 

(-l)kek Q d(xPl + pek-l Q xP 0 f k even, p > 2 We apply this to prove the following three lemmas. As in 01 let v be 

k vp(k + n(p-l)), and let f be the Adams filtration of the generator of Im J in 
(-1) 2ek-1 Q x k m  even, p = 2 

Lemma 4.4. (i) a $  = 5*(1)  Assume p > 2. If v = k+l and f 2 r-1 then pr-p-kt1 < 2r-1. 
(ii) I is an equivalence 

(iii) Orienting the top cell of &rl correctly, the homotopy class , hoof. Equivalently, we must show k > (p-2) (r-1). By Lermna 4.5 

contains the map a3 of diagram (2.2). v f < - = E L .  
k - 4  9 

Proof (i) holds because we are in the Hurewicz dimension of D i. v $-'r - S"P+Ia-l 
1 0 - ~hus k+1 2 qf > q(r-1) and hence it is sufficient to show that so the Hurewicz image of 1 is sufficient to determine i ,  and its Hurewicz image is 

the boundary of the cell ek Q xP. Statement (ii) is immediate from the Hurewicz 
q(r-l) - 1 > (p-Z)(r-l). This is immediate since r > 1. 

isomorphism, and statement (iii) is immediate from the fact that a3 is an 
equivalence. Lemma 4.7. Either min{pr-p+l,v+f) < v+r-1 or r = p = 2 and v = 1 or 2. 

Proof. Suppose p > 2. Then f 5 v/q. If pr-p+l v+r-1 then - 
The differentials on B E ~ X  are given by the successive lifts of (-l)j v(n)am 

v (p-l)(r-1) + 1 and hence 
when p > 2, and of am when p = 2. Corollary 2.8 and the discussion following it 

r-1 1 
show that the attaching maps of lens spaces, and hence elements of Im J, enter into f < - + - < r-1. 

- 2  q 
the question of lifting this boundary. In the remainder of this section we 

establish various facts about the numerical relations between the filtrations and Now suppose p = 2. We must show that if r 2 v then f < r-1. It suffices to 

dimensions involved, the last of which will enable us to split our proof into three show f < v-1. This follows from Lema 4.5 except when v = l,2, or 4. In these 

very natural special cases. cases f = 1 so the l e m  holds when v = 4. If v =1 or 2 then f < r-1 unless 

r = 2. This completes the lemma. 

Lema 4.5. If p > 2, the generator of Im J in dimension jq-1 has filtration 5 j. 
If p = 2 the generator of Im J in dimension 8a+s (E = 0,1,3,7) has filtration 2 
4a+e if E f 7, and 2 4a+4 if D = 7. 

Proof. The vanishing theorem for Ext ( Z  ,Z ) says that ExtSt = 0 if 
P P P  0 <t-s < U(s), where U(s) = qs-2 ifp. 2 and 

Lema 4.8. Exactly one of the following holds: 

(a) v > k + p-1, 

(b) v = k+l and if p > 2 then n is even, 

(c) v ( k. 

Proof. There is nothing to prove if p = 2, so assume p > 2. We must show that if - 
k < v 5 k+p-1 then v = krl and n is even. Recall that k = (2j-n)(p-1)-s and 

v = v (km(p-I)) = v (2j(p-1)-p). If s = 0 then v = 1. Hence k = 0 and n = 2j so 
P P 

that (b) holds as required. If E = 1 then v = qll + EP(j)). Dividing the 

inequalities k < v 2 kip-1 by p-1 yields 

E'? 1 1 
2j-n- - <  2(1+~ (j)) < 2j-n - - +  1 

P-1 P - P-1 
if p = 2 by I41 and 1561. First suppose p > 2. The Im J generator in dimension 

which has only one solution: 2(1 + ~ ~ ( j  ) )  = 2j-n. Hence n is even and 
39-1 is detected by an element of ~ x t ~ ' ~  where t-s = jq-1. Hence jq-1 U(s) = v = q(l+s (j)) = (2j-n)(p-1) = k+l. 
sq-2, which implies j s. Now, suppose p = 2. A trivial calculation shows that if P 



h a  4.8 is  a consequence of the sp l i t t i ng  of the mod p lens space in to  we Lemma 4.1, the following diagram commutes. 

see the relat ion,  r eca l l  that  v t e l l s  us how f a r  we can compress the attaching ma 

of the top c e l l  of $ sn f l  = zn-l ~~l~~~~~~ . When v 5 k, it compresses t o  

Wk-v wn rl and no further. When v > k it is not attached t o  W]l wT rl. However 

recal l  tha t  there are equivalences 

ause v > k+p-1, the top c e l l  of DktP-lf is not attached (Corollary 2.6 and 
P 

in i t ion  V.2.15). Thus there exis ts  a reduction p e nnp+k-l(DktP-lrp) whose 

p" rp by Lema 3.6. When v > k t h i s  c e l l  compresses t o  WP-' xn r ewicz image is ek+p-l Q dxP (it is easy t o  check that  ek+p-l Q dxP generates 

The f i r s t  poss ib i l i ty  is that  it goes no further,  and in t h i s  case the wedge s-an + I .  Also, v > krp-1 2 1 i m p l i e s  tha t  k is odd i f  p > 2 and that  k+n is odd 

of the lens space we are interested in has c e l l s  in dimensions n(p-1) and n(p-1)-1 p = 2 by Proposition V.2.16. Combining Lemmas 3.6 and 4.4 we find that  &(PI  is 

so that  n must be even. By the sp l i t t i ng  of the lens space into wedge s m a n d s ,  t h  i f t  of am when p = 2, and of (-llW"-b! a *  when p > 2. Applying Lemma 4.2 or  

2 is i n  In J and thus is not in an even stem. So v > k+p-1 i s  the only poss ib i l i ty  i f  pix = c X ( p 1  = x dx) = P djxf 

v > k+l, and t h i s  says tha t  top ce l l s  of Pp-' kz rp,and $ wn rl are  unattached. 

This "geometry" explains why the d i f ferent ia ls  on @€@x are so different i n  these 

three cases. We shal l  s t a r t  with the simplest of the three cases, and proceed t o  

the most complicated. 
= (_l)w+m-l (v(n)/m!v(n-11 )8Jdrx .  

t is easy t o  check tha t  v(n)/m! v(n-1) 2 (-l lW* mod p so that  dpr-p+l@$x = 

55. Case ( a ) :  v > k+p-1 

Since v > k+p-1 L 1, it follows that  c = 1 i f  p > 2. Thus Theorems 1.1 and 1.2 

6. Case ( b ) :  v = k+1 

We will  begin by considering p = 2. Theorems 1.1 and 1.2 say that  
dpr-p+l~piX = - ~ F j d  r x i f  p > 2. 

i f  2r-1 < r + f + k, 

Theorem 1.3 follows automatically from these fac ts ,  so these are  what we shal l  
d2r-1$X=$drx + a d r x  i f 2 r  - 1 = r  + f + k ,  and 

i f  2r-1 > r + f + k. 

Since the f i l t r a t i o n  f of H is  positive and r 2 2, Theorem 1.3 follows from Theorems 

1.1 and 1.2. 

Let N = k+2n-1 and l e t  C2 a nN(t++1r2,r21 he the top ce l l  of t++'r2 with i t s  

boundary compressed as  f a r  as  it will  go. Then the Hurewicz image 



'-lv Sh-l by Lemma 2.2, the Hurewicz homomorphisms in 
( Y ~ ~ - ~ + ~ ~ Y ~ ~ + ~ ~ ) .  By Lemma 4.1 (or 3.6), cx(eC2) and cxC2 have the same image 

zx(Y2s-k+1~Y2,+2r). Since h(C2) = ek+l 8 ax2, S*C2 ' nx(Y2s-k+2r-1,Y2s+2r) 
epresents ddrx by Lemma 4.2. Similarly, h(H) = e o Q  x dx implies that 

*H I n*jY2s+,,Y2s+2r) represents xdrx, and hence ex(Ra) nx(Y2s+r+f,Y2s+2r) 

When p > 2 (and v = k+l) we will treat k = 0 and k > 0 separately. First 

are isomorphisms. ~ e t  R E ~ ~ - ~ ( r ~ , r ~ )  satisfy h(~) = x dx = e O Q x  dx in the uppose 2 = O. Then v = 1, n = 2j and = O. ~lso, f = 1, a = a s E:>'(s,s) and 0 

Let a also denote (Ca,a) E nN(em-1,~2n-2). Let i be the natural inclusion dr+lxP = adrP-ldrx. 
i:(rl,r2) + (~'-lr~,r~) if k > 0 and let i = l:(rl,r2) .t (r1,r2) if k = 0. Let eC2 

denote (e,lix(C2) E wN(&r1,r2). Heuristically this is exactly what one would expect from the fact that drxP = 

p(xP-ld,r). That this is too casual is shown by the fact that we have just proved 

Lemma 6.1: a+ = ex(eC2 v iRa) in T ~ Y ~ ~ - ~ + ~ .  (for p = 2) that 

d3x2 = h,yd2x + P"d2x. 

The extra term arises because when we lift the map representing 2xd2x to the next 

filtration, we find also the m p  representing P"d2x which we added in order to 
Hurewica image ~ - 1 ) ~ e ~  Q d(x2), since v2(k+n) = kt1 implies that either k m  is odd replace xd2x + (d2x)x by 2xd2x. Thus, our task for p > 2 is to show the analogous 

elements can always be lifted to a higher filtration than that in which ad;P-ldrx 

2.7 says that n(eC2 0 iRa) = x2 e t'N$rl/~k-lrl since iRa factors through lies. The following lemma will do this for us. 

Lemma 6.2. There exists elements 

and we are done. If k = 0 then n is even, since v2(n) = 1, and eC2 v Ra t. ~ ~ - ~ r ~ .  Y r nnp-1(~1r2,r2v D'T~) 

x cnnp-1(~l.r2) z 6 ~np-1(D2r3,~1r3~D2rh) 

such that 

is the monomorphism which sends eo Q d(x2) to eo Q xdx + eo Q dx x. By Lemma 2.7, 1 2 2 1  2 Cl = pX + pY + Z in nnp-,(D r1vD r2.r VD r VD r4), 3 
n(eC2uRa):~2n-1 + rl + rl/r2 equals - RZ so h(C1) = eo Q d(xP), and 

h(n(eC2uRa)) = h(x2) - h(=) h(~) = eo xP-ldx. 

2 = ex(el Q dx ) + 2e0 Q xdx 

- e o Q  (dxlx - e o Q  xdx + 2e0@ xdx involved, we m s y  define C1,X,Y and Z by their Hurewica images. Thus C1 and X are 

= e 6 O  (dx)x + e o Q  xdx. given, and we let 

Therefore h(eC2 v Ra) = eo Q d(x2) and we're done, proving Lemma 6.1. 



note that Ma-1) = N-p. Define 

l)m-l~eo Q tp-2 by Lemma 3.6. (iii), and since d(ep-2 Q to) = 0, it follows that 

d(C) = h(C1) -ph(X) - ph(Y) - h(Z) is obvious since the boundary homomorphism simply projects onto the second 

2 
which shows that C1 = pX + pY + Z. tor. Part (iii) is immediate from the fact that e p - ~  O to generates kp-2$- rp. 

Now we split R into a piece we want and another piece modulo r2. BY Lemmas 4.4 and 6.2, a m 6  xxYps+l is the image of SxCIE n,Yps+,. Lemma 6.2 

also implies that 
6.4. There exist X E rnp-1(r1,r2) m d  Y s nnp-l(~1r2,r2) such that 

S*C1 = PS*X + PS*Y + S*Z 
(i) h(X) = (-l)m-lm!eO Q xP-'dx, and 

in nx(Yps+r-1~Yps+2r). Since SxY E n*(Yps+2r-1~Yps+2r) and (ii) (i,e),(R) = i& + j*Y in n*(D1rl,r2) where 

i:rl + nlrl, j:01r2 + D1rl and e:$m2rp + '2. 

that am = p&X in nx(Yps+l,Yps+2r). Lemma 4.2 implies that 
proof. We are working in the Hurewice dimension of all the pairs involved so it 

6,X r n,(Yps+r,Yps+2r) represents xP-ldrx and hence pcxX lifts to a*(Ypstrtl,Ypst2 suffices to work in homology. We define X by (i) and define Y by 

where it represents a@-ldrx. Finally, IV.3.1 implies 
h ( ~ )  = (-l)m-l(m-l)!el 8 ~d(xP-')dx. 

c~,+~Pix = %+lxP = aeP-ldrx. 

Now suppose that k > 0. Then v = k+l is greater than 1 and hence congruent t 

0 mod 2(p-1) by V.2.16. Also by V.2.16, 6 = 1 and k = (2j-n)(p-1)-c is therefore 
i* 1 1 ckrl @ c ~ - ~ D P - ~ ~ ~  - ckrl - CkD rl - CkD r1/Ckr2 

odd. Lemma 4.4 then implies am = s,( I )  with h( i )  = -ek Q d(xP). The next three 

lemmas describe the pieces into which we will decompose am. In the first we define in which the unlabelled msps are the obvious quotient maps. Thus, denoting 

an element of ?rnp-l of the cofiher of e:$-'rp + rl, which we think of as an element equivalence classes by representative elements, 

of a relative group nnp_l(r1,@-2rp). In order to specify the image of such an 

element under the Hurewics homomorphism, we use the cellular chains of the cofiher h((i,e)*R) = (-l)m-leoQ tp-l 

in the guise of the mapping cone of e,:~,@-~r~ + C,rl. That is, we let m-1 
= 1 m!eO Q xP-ldx + (-l)m-l(m-l)!~eo @ QxP-ldx 

~~(r,,oP-~r,) = cirl 0 c ~ - ~ D P - ~ ~ ~  
by Lemma 3.2. Since 

with d(a,h) = (d(a) - ex(b), - d(b)). 
d(el Q QxP-ldx) = Teo @ C4xP-'dx - el Q Qd(xP-')dx, 

Lemma 6.3. There exists R E i[np-1(r1,$-2rp) such that it follows that h((i,e),R) = h(ixX + j*Y). 

(i) h(R) = ((-l)m-leO O tp-l, e p - ~  O to) E ~x(r~,@-~r~) 

(ii) h(aR) = epF2 @ to = ep-2 Q (dx)P, and In our last lema we split a4 into two pieces modulo J2P-'rp. Let N = kmp-1. 

(iii) aR E iinp-2$-2rp is an equivalence. 
Lemma 6.5. If v = k+l and k > 0, and if Cp c nN(I++P-1rp,@-2rp) is the top cell 



c*Xa represents (-llm-'mi gxp-'drx. 

Proof. Since v = k+l, the attaching m p  of the top c e l l  factors through $-'r then follows that  

Since aR is an equivalence by Lema 6.3.Liii1, the definit ion of a = $(k+n(p-1) 
k k ensures tha t  acp = (aRla = aRa. NOW D r lu  gk-lr0 = D rl/~'-lrl and, since ir > d,gPjx = ( - l ) Jv (n~am 

Ra factors through r l  C d'-lrl .  Hence, in &( Dkrlu Dk- l~O1 ,  1 
= ( - 1 1 J + ~ - l v ( n )  (e*cp - 

h(eC v iRa) = h(eC ) 
P P 

= ( - l lm-l  - $- ;i.gPidrx - (-11Jv(n) a P-ldrx 

Q dxP1 = e*(ek+p-l = - 8 ~ i d r x  : (-lie a 2 - l d r x  

= (-llmrn!ek o d(xP) 

ince v(nl/v(n-11 E ( - l l m  ml (mod pl  and since v = k+l  implies Z(e+ll(p-l l  = 

by Lemma 3.6 (since k is odd and n is even). By Lemma 4.4, it follows that  25-n)(p-11 so that  n = 2(j-e-11 and hence 
m-1 am = (-11 m, ex ( e C p u  iRa1. 

-(-llju(nl = ~ - l ) j + ~ ~ - l l j - e - l  = 
We are now ready t o  prove Theorems 1.1, 1.2, and 1.3 in t h i s  remaining case 

(p  > 2, v = k+l,  and k > 0 ) .  We must show that  This completes case (b l .  

d ,g~ jx  = -g~jd,x i ( - l l e  , xP-ld r x. 

57. Case ( c l :  v < k. 
By Lemma 6.5, d x d x  is obtained by l i f t i n g  

1 
(-lljv(n)am = (-1)5+m-1v(n) 3 e*(eC viRa) In th i s  case the boundary am s p l i t s  into a piece which represents the same 

P 
operation ($ or  ps$ 1 on d+ and another piece which is an operation of lower 

degree applied t o  x times an attaching m p  of a stunted lens space. We begin with 

the lemma needed t o  identify t h i s  l a t t e r  piece exactly. Recall the spectral 

sequence of IV.6, and recal l  the notations established i n  $1. 

exRa nu(Yps+r~Yps+pr-p+2 ) L e m  7.1. 
Let a 6 zk+np-l 

D ~ - ~ s " ( ~ )  be the attaching map of the top ce l l  of 

and by Lemma 4.1, c*(eC ) is the image of &$(PI and l e t  f be the f i l t r a t i o n  of p*(al = $(km(p-I) ) ,  where P:&-~S"(P' + 
P 

skmp-" is projection onto the top ce l l .  Let .@be the sequence 

Y S*Cp n* (Yps+pr-k-p+l' ps+pr-p+2) ' 
+-vsn(p) + $-v-Ip(p) + ... , $(P) .  

Lema 6.4 implies that  c,R = F,,X in nx(Yps+r-1,Yps+2r-l) since t x Y  is in f i l t r a t i o n  

2r-1 or higher. (Note that  since aR is mapped in to  r2 by e i n  6 .4 . ( i i ) ,  Lemma 4.1 In the spectral sequence Er(S,@) the following hold: 

1 forces us t o  work modulo f i l t r a t i o n  2r-1, the f i l t r a t i o n  in to  which 5 maps D r2.) 
( a )  1 j f i l t ( a )  j f ,  

Thus 

Y c*(eC U ib) = c C - c*Xa i n  nx(Yps-k+lj  ps+2r-ll, (b l  i f  f i l t ( a )  = f then a is detected by 
P * P 

- k-v-1 

and, since e has f i l t r a t i o n  f ,  cxXa comes from nx(Yps+r+f,Yps+2r). By Lemma 4.6, ae + ciei 
k-v i=0 

e i ther  r+f or pr-k-ptl is l e s s  than 2r-1, so tha t  a t  l eas t  one of 5 C and c*Xa is * P 
nontrivial  in  nx(Ypa-k+l,Yps+~r-ll  in general. Since h(C I = ek+p-l Q dxP and for  some ci E E2(S,S), 

P 
h(X1 = (-llm-I m!eo @ 2 - l d x ,  Lemma 4.2 implies tha t  



( c )  i f p = 2 a n d ~ l O o r p > 2 a n d v ~ p q t h e n f i l t ( ~ l  = f  

and a is detected by aek_v. . Certainly A exis ts  satisfying a A  = aC1. It follows tha t  

k-1 
a(h(A)) = a(h(Clll = >((-I)  pek-, @ xP),  

(applied t o  a l l  the attaching maps of D ~ - ~ S " ( P ' I  ensures tha t  the spectral sequence 

can be constructed. Since p induces a homomorphism from Er(S,!3) t o  Er(S,S!, and 
bowing that  h(A1 = ( - ~ ) ~ - l p e ~ - ~  O xP. 

p*(al has f i l t r a t i o n  f ,  a must have f i l t r a t i o n  5 f .  

(bl  8y IV.6.1(i), every element has the form 

fo r  some ci. If f i l t ( u )  = f then the element detecting a projects t o x i n  the Adams 

spectral sequence of the top ce l l .  Hence c ~ - ~  = r. (In fac t  t h i s  argument shows 
i s  injective,  so tha t  we need only show i x h ( t )  = ixh(C1d A ) .  8y Lemma 2.7, 

tha t  i f  ck-, j" 0 then f i l t ( a )  = f and c ~ - ~  = X.1 i,h(ClvAl = h(C1) - h(A) and the resul t  follows. 

We now have a,8 = c , ~  = & * ( C l v  A1 = cxC1 - &*A modulo Yps+r-k+l since 
( c l  Under the stated hypothesis, rek-" is the only element of f i l t r a t i o n  5 f 

i n  degree k+np-1. Applying Lemma 7.1 we find that  S& represents 

To prove Theorems 1.1, 1.2 and 1.3, l e t  us f i r s t  assume that  v = 1. Then k is 

even and c = 0 i f  p > 2, and k+n is even i f  p = 2. Theorems 1.1 and 1.2 say tha t  p > 2, and hgd-'x, i f  p = 2, t o  the d i f ferent ia l  on d x .  Thus, it remains only t o  

show that  c*C1 is  i n  a higher f i l t r a t i o n  than S&. 
i f  p = 2, and 

Lemma 7.3. If il and i2 are the maps 

Theorem 1.3 follows from Theorems 1.1 and 1.2 i n  th i s  case. The f i r s t  step is t o  

s p l i t  the element I of Definition 4.3 in to  two pieces. Recall tha t  

Lemma 7.2: I f  k 2 v = 1 and C1 c nk+np-l($rl,~k-lrll is the top c e l l ,  oriented so 

that  h(C1l = (- l lkek @ d(xP), there exis ts  Ar T ~ + ~ ~ - ~  (Dk-' r0,nk-l rl I such that  then there exis ts  X such that  ilxC1 = p(i2*X). 

~ ( A I  = ( - l ~ ~ - l p e ~ - ~  o xP 

suffices t o  work in homology. F i r s t  suppose p > 2. We l e t  h(X1 = e k O  XP-ldx, 

which is obviously a cycle modulo $-lrlv A2. Then, i n  the codomain of il and i2 

Proof. Let N = k+p-1. To see that  A exists ,  consider the boundary maps and 

Hurewicz homomorphisms 

= Tek g MxP-'dx + pek @ xP-ldx 

i p ek @ xp-ldx, 



that il,C1 = pi2*X. 

Now suppose p = 2. We again let h(X1 = ekQ xdx and again this is obviously 

cycle. By Lemma 3.3 we have 

E 2ek Q xdx, 

where the congruence holds modulo Dkt1r2 U D ~ - ~ ~ ~ .  This implies that ilxCl =2i2*X. 

We can now finish the proof of Theorems 1.1-1.3 far v = 1. By Lemma 7.3, the 
by Lemma 3.6. Comparing this with h(i I= (-llkek 63 d(xP1 finishes the proof. 

Now suppose 1 < v 5 k. Then, since v = v (k+n(p-111, Lemma V.2.16 implies that 
P 

ktn is odd if p = 2 and that k is odd and z = 1 if p > 2. Also, by Definition 4.3, 

so, up to a scalar multiple, our differential is Su(eCp u A1 E nNYps-k+l. By 

Corollary 2.8 and Lemma 4.1 we find that 

Y = 6 * C P - <*A in "N(yps-k+l' ~~-k+~+"-l). 

It follows from the definition of Cp that F,*C lifts to n*(Yps-k+pr-p+l,Yps-k+r+v). g By Lemma 4.2, &Cp represents @*(ek+6-l @ dx I, which equals 8'ddrx up to a 

scalar multiple. When p = 2 this shows that cxC2 contributes ddrx to d$x. When 

p > 2, the coefficient of 6 ~ j d ~  is 

commutes and whose lower square anticomutes. (-1)2j+k+m+mv(n)~= -1 (mod P). 
v(n-11 mi - 

The congruence follows from the definition of v ,  v(2ach) = (-lla(ml 1' if b = 0 or 1, 

and the congruence (mi)' z (-l)m-l (mod p). This almost proves Theorem 1.1, with 

1 plus a possible "error term" in 

this decomposition is only valid modulo filtration ps-k+r+v and we must still show 

that either gEddrx or Tp will be a filtration lower than this in order to finish 

the proof of Theorem 1.1. To do this, we must identify &A. Referring to the 



diagram in the proof of Lemma 7.4, the element Cp in the upper right corner goes t ) the next to top cell component is the product of a positive dimensional 

A in the lower left corner if we follow the top and left arrows, while it goes to elenient of E2(S,SI (since v > 0) and a cell in filtration 1, so has 

filtration at least 2, 

(iii) the top cell component is a permanent cycle (being the image of the 

permanent cycle hence has filtration at least 2 by the nonexistence 

of Hopf invariant one elements in dimension v-1. 

that 

i 5 min(v+l,pr-p,v+r-2) 

= miniv+l,pr-p} , 

Applying Lemma 7.l(a) we see that & A  has filtration less than or equal to ps-k+v+f he equality holding because v+r-2 < v+l implies r = 2, so that pr-p = p < v = vir-2 
Lemma 4.7 implies that, unless r = p = 2 and v =1 or 2, one of ExCp and S& will y our assumption on v. This proves Theorem 1.3. 
Occur in a filtration less than ps-krv+r-1. Thus Theorem 1.1 is proved unless 

r = p = v = 2 (since v = 1 has already been dealt with). Applying the rest of Lemma It remains only to prove Theorems 1.1 and 1.2 when r = p = v = 2. Together, 
7.1 we find that k k-2 

they say d3Pjx = $d2x + hlPj-'x. Let N = k+2n-1 and let C1 G nN(D rlrD rl) and 

C2 c nN(~k+1r2,~k-1r2) be the top cells, oriented so that h(C1l = (-l)kek@ d(x21 

and h(C21 = ek+l 63 dx2. 

Lemma 7.5. There exists A r nN(~k-2r0,~k-2rl~ such that aA = aC1 and 

t = C1 v A in nN($rl ,, &-'re). 
if v = k (since ~ ~ - ~ r ~ / r ~  = 8") has only one cell in this case1 or if p = 2 and 

proof. Since &-2r0 = * we may define A = a-lacl 

odd primary case comes from the fact that v = v (k+n(p-1)) = vp(2j(p-1) - 1) = k k-2 a Dk-2 
P nN(D r 1 4  1 . 1  - I. 1 4" - N ( D ~ - ~ ~ ~ , D ~ - ~ I . ~ ) .  

2(p-l)(l+e) by V.2.16, so k-v = (2(j-e-11 - n)(p-1) - 1. This completes the proof 

of Theorem 1.2 except when r = p = v = 2 (as noted above1 or when pr-p < v < k. In Clearly, h(A) = 0, so h(ClvAl = h(C1)= hl~). Thus I = C1dA. 
the latter case, Lemma 7.l.(aI still ensures us that 

filt(~*A) 1 ps-k + vtl It follows that 

> ps-k + pr - p+l 
am = <,I  = c,(C1dA) = 5 C - <*A = nN(Y2s-k+l,Y2s-k+4). 

= filt(<,CP). 
* 1 

As before, we wish to replace txC1 by 5*C2 plus an error term which we can ignore. 

Hence the term contributed to d * ~ ~ d x  by SxCP appears alone in this case. This The following lemma is what we need in order to do this. 

completes the proof of Theorem 1.2 except when r = p = v = 2. Deferring the latter 
case mtil the end, we shall now prove Theorem 1.3. If p = 2 we may assume v > 8, Lemma 7.6. Let il:~k-2rl + Dk-'r2 D ~ - ~ I - ~ ,  

while if p > 2 we may ass= v > q. The attaching map a of Lemma 7.1 must then have 
i2 :$-'r2 + ~ ~ - ~ r ~  $-2r1, 

filtration 2 or more. This is so because . 

and 
k 

(i) all but the top two cells are in filtration 2 or more, j :D~-'I.~ + D rl 



CHAPTER VII 

H, RING SPECTRA VIA SPACE-LEVEL HOMOTOPY THEORY 

J. E. McClure 

Our main goal in this chapter is to show that the spectrum KU representing 

riodic complex K-theory has an H, structure. The existence of such a structure is 

portant since it will allow us to develop a complete theory of Dyer-Lashof 

operations in K-theory, including the computation of K,(QX); this program is carried 

me filtration of X is necessarily positive because out in chapter IX. Of course, we already know that the connective spectrum kU has 

$-1rl/~k-11'2 y ~ ~ - ~ r ~  = VsN-l 
an H, structure since it has an E, structure by 171, VIII. 2.11. However, it is not 

known whether KU has an Em structure, and the distinction between kU and KU is 

crucial for our work in chapter IX. We therefore require a new method for 

to show h(p,(e,i2),C2) = h(p*(l,il)*Cl). This is mediate from I,zma jS6. constructing K ring spectra. 
with ~,z- 7.6 we can now finish the proof of ~heorems 1.1 and 1.2. The As usual, the case of ordinary ring spectra provides a useful analogy. The 

element s*X is in nN(Y2s-k+3'Y2s-k+4 ) but since X has filtration greater than 0 ,  easiest way to give KU a Ping structure is to use Whitehead's original theory of 

S*X = 0 in nN(~2s-k+3,Y2s-k+4). Thus exCl = F~(ljil)xC1 = ~ * ( ~ 1 ~ 2 ) * ~ 2  in spectra 11081. We use the term "prespectrum" for a spectrum in the sense of 

,y2s-k+4) where it represents dd2x by Le- 4.2. Finally, of 191. The Bott periodicity theorem for BU gives rise at once to a prespectrum 
also lifts to nN(Y2s-k+3,~2s-k+4) where it represents hld-2x by ~ e m a  7.1. (1108, p. 2411; more work is needed in order to get a spectrum), and the tensor 

d3dx = dd2x + hldv2x. 1108, p. 2701. Now the Whitehead category is not equivalent to the stable category 

obtain the desired ring structure. 

In order to carry this through for H, structures we must give the Bott 

prespectrum a "Whitehead" Hm structure (which is fairly easy) and show how to lift 

it to i;L (which is considerably more difficult). Our main concern in this chapter 
is with the lifting process, which is called the cylinder construction and denoted 

by 2. We begin in Sections 1 and 2 by giving a careful development of the oases 

already mentioned, namely the passage from prespectra to spectra and from ring 

prespectra to ring spectra. Our account is based on that in I671 and 171, I1 $31 
but is adapted to allow generalization to the H, case to which we turn next. In 

Section 3 we give a general result allowing construction of maps DwE + F in rz from 
Prespectrum-level data. Although the basic idea is similar to that of section 2 

encountered in sections 1, 2, and 3. In section 5 we define H, structures on 
d Prespeotra (for technical reasons, these are called H, structures) and show that 
1 they lift to H, structures in <k when the relevant lim terms vanish. In section 6 



we observe that  spectra obtained in t h i s  way actually have lf structures as define lly equivalent ways (see 186 of the sequel). For our putposes it is easiest  

in 1.4.3 and that  there is i n  fac t  an "approximate equivalence" between H: 

ZT = Tel z - ~ c - T ~ ,  
i 

structure on kU; a more elementary construction not depending on Em theory (but where the telescope is taken with respect t o  the maps 

still  using the resul ts  of t h i s  chapter) w i l l  be given in VIII 84. Section 8 gives 
-i - -i -1 m 4-1 m 

a technical resul t  which is used i n  section 3. Except for section 8 and one place z z T c c z T = C ~ C C T ~  - z c T ~ + ~  . 
in section 1 we use only the formal properties of and D,, given in I81 and 152. 

we write Bi f o r  the inclusion z m ~ i  + Z ~ Z T .  If  f :T * U is any map in ;IS) there 
This chapter and the next are a revised version of qy Ph. D. dissertation. 

exists a map F:ZT + ZU induced by f in the sense that  the diagram I would l ike  t o  take th i s  opportunity t o  than?& my advisor Peter May fo r  h i s  warm 

support and encouragement both in the course of th i s  work and in the years since. I 

would also l ike t o  thank npi colleagues Gaunce Lewis and Anne Norton, ngr friend 

Deborah Harrold, my parents, and a person who wishes t o  remain anonymous for  the i r  

no l e s s  valuable support. However, the views expressed in these chapters are my o 

and do not necessarily ref lec t  t he i r  opinions. 

8 1 .  The Whitehead category and the stable category 

In t h i s  section we describe the relat ion between the Whitehead category, 

denoted wp , and the stable category j;d . The resul ts  are  well-know, but we give 

them i n  some deta i l  in order t o  f i x  notation and because we need part icularly 

precise statements for our l a t e r  work. 

We begin by defining kp . An object T, oalled a prespectrum, is a sequence of 

spaces Ti ( for  i > 0) and maps o .zT + T. in h3 (see 181; the use of 'i;3 here 
i ' i  1+l 

is  technically convenient but could be avoided by systematic use of CW- 

approximations). If the adjoints oi:Ti + nTi+l are weak equivalences we c a l l  T an 

Q-prespectrum. A morphism f:T + U is a sequence of maps fi:Ti + Ui such that  

fi+looi = oi o Cf. in i;3 . This should be compared with the much s t r i c t e r  

definit ion of morphism in h8 given i n  181; it is precisely because morphisms in 
- 
w b  are defined in terms of homotopy that  t h i s  category is a useful intermediate 

step between space-level and spectrum-level homotopy theory. The s e t  of maps in - 
w 9  from T t o  U i s  denoted lT ,UIw.  If  U is an Q-prespectrm then t h i s  s e t  is an 

abelian group and is  equal t o  the inverse l i m i t  l i m i l T i , U i l  with respect t o  the maps 

commutes for a l l  i 2 0. Unfortunately, t h i s  map is not in general unique. To 
1 c l a r i v  the si tuation consider the Milnor l i m  sequence 

1 Clearly, the map induced by f i s  unique i f  and only i f  the l i m  term vanishes. We 

shal l  use the notation Zf for th i s  map when t h i s  condition is sa t i s f ied  (and not 

otherwise). We have Z(f o g )  = Zf o Zg whenever a l l  three are defined. 

The l i m l  term jus t  mentioned is only the f i r s t  of many which wi l l  a r i se  i n  our 

work. For applications we wish t o  know when they vanish. This question w i l l  be 

considered in de ta i l  i n  84; for the moment we simply remark that  for the cases of 

in teres t  t o  us (namely Bott spectra and certain bordism spectra) a l l  relevant lim 
1 

terms do i n  fac t  vanish. 

Although Z is not a functor, it has several useful properties. In fac t ,  one 

may think of the pair  (z,Z) as an "approximate adjoint equivalence1' between h d  and - 
the f u l l  subcategory of n-prespectra i n  w53 . The following resul t  makes t h i s  

precise. 

Theorem 1.1. For each T r ;p and E c FA there exis ts  maps r:T + aZT and h:ZzE + E 

with the following properties. 

( i)  x is natural in the sense that  zZf o K = u o f whenever Zf is 
There is an evident forgetful  functor s: cd + ;? . Although there is no 

defined. 
useful functor in the other direction, there is an "approximately functorial" 

(ii) u is an equivalence whenever T is an ii-prespectrum. 
construction Z ,  called the cylinder construction. This can be defined in several 



* 
n (ZT). = nk-iZT = oolim nk-i+j): T. k 1 .I 

= colim colim K ~ - ~ + ~  +z PT. . 
5 2. 

.I 

A Cofinality argument shows that the inclusion of coiim nk-i+j T in the last 
(vi) The nap -r:IZT,EI + IT,zElw defined by ~f = zf o K is an isomorphism 5 5 

whenever liml~~-'T~ = 0. group is an isomorphism. If T is an n-prespectrum, then the inclusion 

rphism and the result follows. 

re define A:ZzE + E to be  an^ man obtained by passage to the telescope 



52. Pairings of spectra and prespectra. 

In this section we give a multiplicative version of the results of 81 which 
particular will allow us to produce a ring spectrum in h8 from suitable input in - 
w p  . 4ain the results are well-known. 

For the rest of the chapter we fix an integer d > 0 and consider prespectra 

indexed on nonnegative multiples of d. This is convenient in the present section "mishes, and we dl 

(for dealing with Bott spectra) and will be crucial in 53. h&e two distinct, 

Tel L-2diZ"(~di A Tii) 

e can obtain an induced pairing ZTAZT' + ZU by passage to telescopes from the 

The irduced pairing is unique if the group 

lim1(~~)2di-1(~di~ Tii) 

?note it by Zyr when this condition is satisfied. Note that we now 

but analogous, meanings for the ssymbol Z, and we shall give 

mother in section 3. There is no risk of confusion since the eontext will always 
Let E,E3,F r hA . By a -of E and El into F we mean simply a map - 

tndicate whether Z is being applied to a map in w?, a pairing, or an extended 
.$:En E' + F. Although the category has no smash product, a suitable . . . -. in section 3. Clearly we have 

Zg o ZI) o (ZfnZf') = Z(g o I) o (f,f')) 

s are defined. 

pairmg as aetinea prespeetrum-level notion of pairing has been given by Whitehead 1108, p. 2551;' we 

recall it here. 

Definition 2.1. ~ e t  T,T',II c w3 .  pairing $:(T,T') + u consists of a whenever both side 
- collection of maps Next, given a pairing .$ :EA E1 -i F in h 8 we wish to define a pairing 

*i,j :TdiA T& + Ud(i+j ) z+:(zE,zEt) + zF (again, this use of the notation z is distinct from that in section 

1). In contrast to section 1, it is inconvenient to do this directly from the 
such that the following diagram comutes in xJ for all i;j 1 0. definitions since the definition of En E' is too complicated. Instead, we use the 

maps provided by Lemma 1.2. First let 

d o .  1 

L TdiA T' *Td(i+l)A T& 4. . :  L - (Edi A E 1  ) + L  d(i+j )F 41 
1,J 41 

dj be the composite 
It 

(-1) *i+l,j 

d \ a! A a! ,I t ) :  di Ehz 41 El = z d(i+j )E nE, --,Ld(i+j )F 
d L * i i  d 

c ~ ( E ~ ~ A  E' ) .  C-E~~AL-E, l 
z (Tdih T' ) --%L ud(i+j +I) 41 dj 41 " "d(i+j ) 

I <  /" Then the diagram 
lA'7. 

TdiA zdT' AT AT' 
41 di d(j+l) 

$i,j +I 
d Z-(L E ~ ~ *  E&) - A E' 

If +:EAE1 4 F is a pairing in F8 and f:E + E, ft:E' + E l ,  and g:F t $ are It ( - 1 P  
maps in hd there is an evident pairing 

A A Z-(Ld(Edin E& ) )  = L ~ ~ " ( E ~ ~  A El 
g o .$ 0 (fbf'): E A E  ' .r F. dj 

- It 
d - Similarly, if *:(T,T'I + u is a pairing in;;'3 and f:i. t T, ft:i' + T', and E (Edi"EE&) -"Edih E&j+l) 

,A+. 
g:ti + are maps in w? there is a composite pairing 

A A 
commutes by Lemma 1.2. We now define 

g o $ o (f,fl):(T,T') + U. 

( ~ 4 ) ~  . :EdiA EAj + Fd(i+j ) 
Next we show how to lift pairings from G? to a . If yr:(T,T8) + U is a ,J 

pairing then ZTA ZT' is equivalent to to be the composite 



222 

ca 

EdiA E' - ficazca(EdihE& ) %ficaid(i+~ IF r F 
41 liml(ZT, )2di-1 (Tdin Tdi) = lim 1 (ZT') Xi-1 t A ~t ) = 0 (Tdi di 

The fact that 54 is a pairing follows from the diagram above and another applicatio 

of L e m  1.2. We clearly have then Zf is a ring map. If E is a ring spectrum and lim1~2di-1(Edi~ Edi) = 0 then 

h:ZzE + E is a ring map. 
5(g o 4 o (fnf')) = zg o z+ o (zf,zfl). 

Finally, given a pairing +:ZT AZT' + F we can define a pairing 53. Extended pairings of spectra and prespectra 
r(4):(T,T1) + 5F by r ( + )  = z4 o l e , ~ ) .  In analogy with Theorem 1.1 we have 

Let n he a fixed subgroup of zj. In this section we generalize the results of 
Proposition 2.2 (i) If ly is a pairing in 73) then'z~ji o (r,~) = K o $ whenever Zji section 2 by relating maps of the form f:DnE + F in h d  to certain structures in 
is defined. - 

w? called extended pairings. This is our basic technical result, which will be 
(ii) If 4 is a pairing in hd then A o Zz+ = 4 o (A A whenever ZB$ is applied in this chapter and the next to various problems in the theory of K ring 

defined. spectra. 
1 2di-1 (iii) If lim F (Tdih Tii) = 0 then i is a one-to-one correspondence 

First we need a generalization of Definition 2.1. The difficulty is that, 
between pairings ZTA ZT' + F and pairings (T,Tt) + SF. 

unlike the smash product, D, does not commute with suspension. The situation 
(iv) The pairing Zji, whenever it is defined, is uniquely determined by the 

becomes clearer when one realizes that D-zdX is a relative Thorn complex. For if p 
equation r (Z*)  = K o +. 

is the bundle 

En x,,(~~)j + Bn 
The proof is completely parallel to that of 1.1 and will be omitted. 

As a special case we consider ring spectra and prespectra. Let S be the sero- 

sphere in and let g be the prespectrum whose di-th term is sdi (with the evident 
structural maps). A ring spectrum is a spectrum E with maps 9:EAE + E and e:S + E 

satisfying the usual associativity, commutativity and unit axioms. Similarly, a 

ring prespectrum is a prespectrum T with a pairing *:(T,T) + T and a map e:g+ T 

satisfying associativity, commutativity and unit axioms. The unit axiom in this 

case is the comutativity of the following diagram in c3 . 

and pX is the pullback of this bundle along the map 

then D,Z~X is the quotient T(pX)/T(p,), where * denotes the basepoint of X. The 

failure of D, to commute with suspension arises from the fact that the bundle p is 

nontrivial. This suggests that we consider theories for which this bundle is at 

least orientable and replace the suspension isomorphisms which were implicitly 

present in section 2 with Thom isomorphisms. Note that the orientability of p with 

respect to a certain theory may well depend on the positive integer d. 

\ 1 *i./ Definition 3.1. 
Let F be a ring spectrum. A n-orientation for F is a map 

~ : D ~ S ~  .r Z ~ F  
Td(i+j ) 

such that the diagram 
(Sd) (j ) I 

There are also evident notions of morphism for these structures. As a consequence - D. sd 
of Proposition 2.2 we have the following. I? 

sa a z e 
Corollary 2.3. (i) If E is a ring spectrum then 5E is a ring prespectrum. If f is 

1: 
r za, 

a ring map in h6 then sf is a ring map in 73 . 
1 commutes in 3 . If U is a ring prespectrum, a "-orientation for U is a map 

(ii)If T is a ring prespectrum with lim ( z T ) ~ ~ ~ - ~ ( T ~ ~ A  Tdi) = 0 then ZT 

is a ring spectrum and k:T + 5ZT is a ring map. If in addition f:T + T' is a ring v:D S d + U 
41 



such that the diagram ci o L:D T . + U 
p dl dij 

There is an evident stable version of 3.2: if F is a n-oriented ring spectrum 

we define an extended pairing from E to F to be a map E:D,,E + F. We do not assume 

comparison with the prespectrum level. We can define composites 
commutes in 1;3 . A ring spectrum F or a ring prespectrum U with a fixed choice of 5 o Dzf and 5 o 1 as in the prespectrum case. 
n-orientation is called n-oriented. A ring msp of n-oriented spectra or prespectra 
is "-oriented if it preserves the orientation. To complete the program of section 2 must show how to define zg and Zy~with 

suitable properties. Both of these will be defined by using a spectrum-level 

variant of the Thom homomorphism to which we turn next. If F is a n-oriented ring 
It is now easy to give an analog for Definition 2.1. Recall the natural map 6 

defined in I§2. spectrum and f:D,,E + znF is any map we write @If) for the composite 

Definition 3.2. Let T be a prespectrum and let lU,v) be a n-oriented ring D ~ ~ ~ E  &D=EAD"S~ a E ~ F  A E ~ F  '+a,. 
prespectrum. An extended pairing 

Since each class in F"(D,E) is represented by some f we obtain a homomorphism 

c:ln,T) + lU,u) 

is a sequence of maps rn:F"lDzE) + ?'a (4zdE) 

c.'D 1. n T di ' 'dij 
called the homomorphism. We write @(i) for the iterate 

such that the following diagram commutes in 3 for all i 2 0. 
is the relative Thom homomorphism for the bundle pX and is therefore an isomorphism. 

Thus the following result should not be surprising. 

Theorem 3.3. is an isomorphism for every E c h8 . 
The proof of this result, while not difficult, involves the definition of D, 

and not just its formal properties and is deferred until section 8. 

We can now define eg for an extended pairing 5:4E + F. Give zF the 

We shall usually suppress the orientation v from the notation. orientation 

Definition 3.1 is general enough for our purposes, but it could be made more 

general by allowing U to be a module prespectrum over some n-oriented ring pre- 

spectrum. Everything which follows would work in this generality. 

If g:U + U' is a n-oriented ring map and f:T1 + T is any map in 3 we define 
the composite 

g 0 5 o ln,f):(n,T') + U' The verification that 85 is in fact an extended pairing is completely similar to the 

analogous verification in section 2. Further, 5 is natural in the sense that 
by letting (g o 5 o (n,f)Ii = gai o ci 0 \Ifdi). We also have composites in the 
n-variable: if 0 is a subgroup of n and U has a P-orientation consistent with its 
n-orientation then the maps 



Unfortunately, Zg cannot be constructed d i rec t ly  a s  in  sect ions 1 and 2. Next. we make some observations tha t  w i l l  be important in  sections 5 and 6. 

Instead we observe tha t  we could have used l . l ( v i1  and 2.2(iv)  t o  define Zf and Zyi r t  ( i i i l  of our next r e su l t  gives an a l te rna te  description of Zg which is  similar  
by means of the equations r(Zf1 = K o f and r(Z$l = K o $. I f  5 is an extended 

pairing from ZT t o  F l e t  ~ ( 5 1  be the extended pair ing 

Corollary 3.6. Let r,:D,,ZT + F be an extended pairing. 
55 o ( n , r ) :  (n,T) + eF. 

( i l  ~ ( 6 ) ~  is the composite 

A t  the end of t h i s  sect ion we sha l l  prove 

( i i l  I f  e 3 : D Z Z T  + F is another extended pairing and r is a b i jec t ion  then 
Theorem 3.4. I f  l i m l ~ - ~ ( ~ , z - ~ ~ z ' ~ ~ ~ )  = 0 then r is a b i jec t ion  between extended 

5 = 5 '  i f  and only i f  
pair ings 4ZT + F and extended pair ings (n,Tl t 5F. 

We can now define Zg f o r  an extended pairing g:(n,Tl t U when the relevant l i m  for  a l l  i 2 0. 

terms vanish. Give ZU the  n-orientation 
(iii) If y : (",TI + U is an extended pairing and Zg is defined then Zg is the 

Z ( V ) : D " S ~ =  z m ~ " S d +  2-u + zqizu.  unique map for  which the  following diagram commutes f o r  a l l  i 0. 
4i 

and l e t  Z ( y 1  be r"(k o g ) .  

Corollary 3.5. ( i l  zZy o In,%) = K o 5 whenever Zc  is defined. 

( i i l  Z(g o g o ( n , f ) )  = Zg o Zg o 4 %  and Z ( y  o ( ~ , 1 1 )  = Zg o I whenever 

both sides are defined. 

( i i i l  A o 255 = 5 o D A whenever 255 is  defined. 
n 

Proof of 3.5. ( i)  is the def in i t ion  of Zy . For the f i r s t  equation i n  (ii) we 

calculate 

r(Zg o Zg o D Zfl = %Zg o 5Zg o (n,%Zfl o ( n , ~ l  

= 5Zg o 5Zg o (n , r l  o ( n , f )  

= 5Zg o u o y o (n , f l  

= a o g o y o ( n , f l  

= r ( Z ( g  o y o ( n , f ) ) ) ;  

the resul t  follows by 3.4. The ver i f ica t ion  of the other equation i n  (ii) is 

similar. For par t  (iii) we have 

with the second equali ty following from l . l ( v ) ;  the resul t  follows by 3.4. 

Proof of 3.6. Part ( i )  is immediate from the  def in i t ion  of r and diagram (31 of 

sect ion 1. Part (ii) follows a t  once from part  ( i) .  In part  (iii) the 

commutativity follows from part  ( i l  and the defini t ion of Zg,  while the f ac t  tha t  Zg 

i s  the only such map follows from (ii). 

Remark 3.7. Let D be a functor which is natural ly equivalent t o  D,, for  some n. 

More precisely,  we assume tha t  there are space and spectrum level  functors , both 

called D and compatible with zs, and space and spectrum level  equivalences D = D,, 

which a re  a lso  oompatible under z"; the cases of i n t e r e s t  are D j h  4, and Dj%. We 

can c lear ly  carry through everything i n  t h i s  section with 4 replaced everywhere 

by D. The necessary maps 



may be obtained from those for D, by means of the given natural equivalence. Of A vanishing condition for liml terms 

course, D may already possess transformations 6 and I compatible with those for D"; 
In order to apply the results of sections 1,2, and 3, one must have some m y  of 

1 
denotes the composite showing that the relevant lim terms vanish. In this section, which is based on a 

paper of D. W. Anderson 1101, we give a simple sufficient condition which is 

satisfied in our applications. 

then (provided that 1 '  preserves the orientations) we can compose an extended If F is a spectrum and X is a space we denote the F-cohomology Atiyah- 

Hir~ebruch spectral sequence of X by Er(X;Fl. We say that the pair (X,F) is Mittag- 
Clearly z and Z will preserve suoh composites. The examples of interest for i '  are Leffler (abbreviated M-Ll if for each p and q there is an r with 

We conclude this section with the proof of 3.4. If 5:DTZT + F is an extended 

pairing we write 151 far the element of F'D,ZT represented by 5. Now 4 preserves Definition 4.1. A pair (T,F) with T a i p  and F t hi is lim 1 -free if 
telescopes by 1.1.2(iiil so (i) F and each Tdi have finite type. 

(iil The pair (Tdi,Fl is M-L for each i 2 0. 
DsZT = Tel D ~ P - ~ ~ ~ ~ T ~ ~  . 

(iii) If d is odd then H ~ ( T ~ ~ )  and nnF are finite for all n. If d is even 

Hence the liml hypothesis implies they are finite for odd n. 

We say that T c & is liml-free if the pair (T,ZT) is. 

The image of 151 in the i-th term of the limit is ( 4 ~ - ~ ~ 8 ~ ) * [ 5  I. 
The integer d in part (iii) is the one which was fixed at the beginning of 

On the other hand if c:(n,Tl + 5F is an extended pairing then each ti section 2. 
represents an element iti] E F ~ ~ ~ D ~ T ~ ~ ,  and Definition 3.2 says precisely that 

In practice it is easy to see whether a particular pair satisfies (i) and 
* 

elsil = (D,,o) (citll. (iii). It is sometimes easier to deal with condition (iil in the following 

equivalent form (110, p. 2911 ). 
Hence the extended pairings (n,T) + 5F are in one-to-one correspondence with the 

elements of Proposition 4.2. Suppose E2(X;F) has finite type. Then the pair (X,F) is M-L if 

and only if for each p and q the infinite cycles Z:'~(X;FI have finite index in 

where the maps of the inverse system are the oomposites 

Thus r gives a map 

For the converse we recall that the rationalization F r FQ induces a rational 

isomorphism of E2 terms. Since Fp splits as a wedge of rational Eilenberg-Mac Jane 

We Claim this map is lim @(il, from which the result follows by 3.3. For by 3.6(i) 
spectra the spectral sequence $(X;FQ) collapses. Hence an element of infinite 

order in E:*~(X;F) cannot have as boundary another element of infinite order. It 
and the naturality of .$ we have 

follows that z:,' has finite index in E:~~ and that the projection zPlq + E::: has r 

i(r5lil = (D 8 .)*@(i1151 = *(i)((~ii~dii*~5~). finite kernel. But if E ~ , ~  = E ~ , ~  then c ~ ' ~  = 0 and hence GP.9 is finite as " dl 



Corollary 4.3. Suppose Er(X;F) and Er(X7;F') have finite type. If 

f:Er(X;F) + Er(X';F8) is a map of spectral sequences which induces a rational 

epimorphism in each bidegree of the E2-terms, and if the pair (X,F) is M-L, then so 

is the pair (X',F1). 

As a oonsequence we get a way of generating new liml-free pairs from lmown 

ones. 

1 Corollary 4.4. Let (T,F) be a lim -free pair and let f:F + F' and g:T1 + T be maps 
X 3 inducing rational epimorphisms onto n*F' and H Tdi.for each i. If F' and each Tii 

have finite type then the pair (T1,F') is liml-free. 

Proof. The pair (TI ,F1) clearly satisfies 4.l(iii), and it also satisfies 4.l(ii) 

since * 
E (T ;F) + E2(T;Ii;F') f*gdi: 2 di 

is a rational epimorphism in each bidegree. 

In the remainder of this section we show that liml terms arising in previous 

sections do in fact vanish for liml-free pairs. The reader willing to believe this 

can proceed to section 5. 

By a filtered group we man an abelian group A with a descending filtration 

A is complete if the map A + lim A/An is an isomorphism (this includes the Hausdorff 

property), or equivalently if lim An = limlAn = 0. Filtered groups form a category 

whose morphisms are the filtration preserving maps. 

Let iAili,O be an inverse system of filtered groups, and let 4 be the n-th 
filtration of %. Let @Ai = q/pfi1. We need an algebraic fact (110, Lemma 

1.131). 

I n Proposition 4.5. Suppose that lim G Ai = 0 for each n and that % is complete for 
each i. Then liml % = 0. i 

Using this we can prove the standard result about convergence of the Atiyah- 

Hirzehruch spectral sequence (110, Theorem 2.11). Recall that the skeletal 
filtration of PX has as its n-th filtration the kernel of the restriction to the 
In-1)-skeleton X(n-1). The associated graded groups of this filtration are the Em- 

term of the Atiyah-Hiraebruch spectral sequence. 

. If the pair (X,FI is M-L then 
(i) lim F ~ X I ~ )  = 0 for each m, 

n 
(ii) The map F% t lim F ~ x ( ~ )  is an isomorphism, and 

n 
(iii) The skeletal filtration of F=X is complete. 

Proof. Clearly (i) 6 (ii) 6 (iii) so we need ordy prove (i). Let Ai = PX4i) - 
with its skeletal filtration. This filtration is discrete, hence certainly 

complete, so by 4.5 it suffices to show liml $"(x(~);F) = 0 for each p and q. 

Now the restriction 
i 

i is an isomorphism for p 5 i, hence the map 

is an isomorphism for p 5 i-r+l. Thus, if r0 is such that ~'(x;F) = E:"(X;F) 
0 

we see that EP_'%(x;F) + EP_'~(x(~) ;FI is an isomorphism for i 2 p+rO-1, so that 
lim'~P_'~(~(i);F) = 0. 
i 

Now we can deal with the liml term of section 1. 

Corollary 4.7. If the pair (T,F) is liml-free then liml F ~ ~ - ~ T ~ ~  = 0. 

Proof. Give Fdi-l~di the skeletal filtration, which is complete by 4.6. Then each 

group of the associated graded is finite by 4.l(iii), hence the hypothesis of 4.5 is 

satisfied and we conclude that liml F ~ ~ - ~ T ~ ~  = 0. 

Next we consider the relation with multiplicative structures. 

Proposition 4.8. 110, p. 2911 Suppose that F is a spectrum of finite type having 

the form ZU for a ring prespectrum U (in particular F may be a ring spectrum). If X 

and Y are spaces of finite type and the pairs (X,F) and (Y,F) are M-L, then so is 

(XAY,F). 

Proof. The hypothesis on F makes F-cohomology a ring-valued theory on spaces (but 

not necessarily on spectra). For each p and q the resulting product map 

is a rational epimorphism. NOW zP_"O(X;F) and z~'~(Y;F) have finite index in 
' 0 ' (X;F) and E:"'~(Y;F) by 4.2, and the image of z!"~ eo z:'~ is contained in 

zP_'~(xAY;F). Hence zP_'~(xAY;F) has finite index in EPlq (XnY;F) and the result 
2 

follows by 4.2. 



1 This allows us t o  handle the l i m  term i n  section 2. H, ring spec : tra and prespectra 

Corollary 4.9. If (T,F) and (TI ,PI are lim1-free and F has the form ZU for  a r ing In th i s  section we show that  ring spectra can be obtained by l i f t i n g  the 

prespectrum U then l i m l  F ? d i - l ( ~ d i ~  TLi) = 0. following structures in G? . 

Proof. The proof of 3.4 shows that  the given inverse system is isomorphic t o  the - 
-1 * 

inverse system F ~ U - ' D , , T ~ ~  v i t h  s t ructura l  maps m o (40) . Now the Thom 
A ring map f:U + U'  between H: ring prespectra is an I<: ring maQ i f  

isomorphism 4 preserves the skele ta l  f i l t r a t i o n  so we have a f i l t e red  inverse system 
.z. - .  ".- - 3 ,  3 :  . * 

of groups which are complete by 4.10. The associated graded groups are f i n i t e  by 

L . l ( i i i )  and the proof of 4.10. The resul t  follows by 4.5. 

Finally, we record a resul t  of Anderson which generalizes 4.6. 

Proposition 4.12 110, Corollary 2.41. Suppose that  X and F have f i n i t e  type and 

(X,F) is M-L. I f  X is a countable CW-complex then the map 

where (Xa) is the se t  of f i n i t e  subcomplexes of X, is an isomorphism fo r  each n. 

The significance of the positive integer d i n  t h i s  definit ion is that  a 

prespectrum may have an H: s tructure but not an H:' s tructure for d' < d. (Some 

examples of th i s  phenomenon are given in the next section.) The third diagram i n  

Definition 5.1 has no analog in the definition of H, ring spectrum since i n  tha t  

si tuation the analog of the th i rd  diagram follows from the other two by (ii) and 

(iii) of 1.3.4. 

Definition 5.1 has several consequences. The f i r s t  diagram implies the 

comutativity of 



for all i and j. In particular the composite 

D e 
vj :Dj sd A Dj Ud % Uq 

is a 2.-orientation for U. These orientations are ,consistent in the sense that the 
J 

diagrams 

. The diagrams 

commute for all j ,k 2 0. 

co 
prodf. For diagram (41 recall that ui is the composite edi o 2 vi, wher; - 
edi is the natural map 2"Udi + zdiF. Hence 

-+D. sU 
3 k u. o B = 8 o z"(v. o 8) 

J k a k J k 

i;k 
= e 4jk o zco(<. 3 3 ) o Z"D.U 3 k by diagram (21 . 

D. U (d,k -$ " 
J dk 41k = a(k'(g. 3 I o D J a  e o D j 2 uk by Corollary 3.6iiii) 

= m(k'i~. ) o ~~u~ . 
commute for all j and k. Now the unit diagram in the definition of a ring 3 

prespeetrum and the third diagram in Definition 5.1 imply that for each fixed j the The proof for diagram ( 3 )  is similar. 
pairing 

cj : ( Z j  ,U) + iu,uj 1 -  Next we need another preliminary result. 

Theorem 5.2. If U is a liml-free $, ring prespectrum then the maps 
Lemma 5.4. The diagram 

z(cj ):DjZu + ZU 

Dk(FA F) 
6 F D  FnDkF 

give ZU an Hco ring structure. If f:U a Ut is an Hd, ring map and U,UT and the pair k 

(U,ZUr) are liml-free then Zf is an Hco ring map. p k *  IS.. gk 

The proof will occupy the rest of this section. We write F for ZU, Ej for 

Z(gj1 and 4 for the multiplication Z$. Let pj be the orientation 
\ Jf 

F 

Z(v. ) :D.s~ + Z ~ Z U  = xqF, 
J J commutes for all k 2 0. 

as defined after Theorem 3.4. First we claim that the U. are consistent in the J 
following sense. In order to prove 5.4 we need the follaviing variant of 3.6iiiI. 

Lemma 5.5. Let q1 and q2 be two maps 

Dm(ZTAZT11 + F, 



where F is a n-oriented ring spectrum and the pairs (T,F) and (Tt,F) are liml- on is the third diagram of Definition 5.1. Part A comutes by naturality of 
free. Then n1 = n2 if and only if the equation parts C a n d  E by definition of 4 = Z*, and parts B and D by 3.6(iiil. 

We now turn to the main part of' the proof of 5.2. We shall show that the 
m(2i)(nl) o D,(BiA Bil = @(2i1(q2) o Dn(ei~ei) llowing diagram comutes; the other is similar. 

holds for all i : 0. 

Proof of 5.5. The composite isomorphism 

e shall apply Remark 3.7 with D = Dj%. First orient D~%s~ using either of the 
talres nl to m(2i1(nl) 0 ~"(8% h ail, and similarly for n2. wo equal composites in diagram (41 of Lemma 5.3, and denote the associated Thom 

somorphism by Q. We write nl and n2 for the counterclockwise and clockwise 

Proof of 5.4. Let nl be the counterclockwise composite in the diagram and n2 the 
By 3.6(ii) it suffices to show 

clockwise composite. Consider the following diagram of spectra, where we have 

suppressed LD to simplify the notation and the unlabeled arrows are all induced by 
b(ilnl D.D 8 = Pn2 0 D.D e 

J k i  J k i  

for each i > 0. Consider the following diagram, where we have again suppressed 

L" and the unlabeled arrows are all induced by maps edi. 

In the inner square the clockwise composite is clearly T(~)(~~]. Using Lemma 5.4 

one can show that the counterclockwise composite is ~ ( ~ ) ( n ~ l .  To verify equation (71 

we must show that the outer square and parts A, B, C and D commute. The outer 

square is the second diagram of Definition 5.1. Part A comutes by naturality of B 

and parts B,C, and D by 3.6(iiil. This completes the proof. 

It is easy to see that the counterclockwise and clockwise composites in the 

inner pentagon are @(2i)(ql) and m(2i1(q2). To verify equation (51 it suffices to 

show that the outer pentagon and parts A, B, C, D and E comute. But the outer 



Theorem 5.2 gives a useful relation between Hm structures in hd and Hm has an HR-orientation then H ~ ~ I ~ S ~ ; R I  r R, so that R must have characteristic 2. 

structures in ;? . However, it does not provide a satisfactory analog for If in addition F is connective and H is augmented over Z2 then the proof of 

Steinberger's splitting theorem 111.4.1 gives the splitting of F. 

Now let F be an H: ring spectrum. An easy diagram chase shows that the 

is a notion of H, ring speetrum with built-in orientations. It turns out that the 
d right objects to look at are Hm ring spectra as defined in 1.4.3. 

be the composite underlying Hm structure and the set of induced z.-orientations. Conversely, we have 
J 

Using this, we can give a precise analog of 2.3. 

Corollary 6.3 (il If F is an H! ring spectrum then zF is an I$ ring prespectrum. 
d .  Proposition 6.1. (i) The sphere spectrum S is not an H_ ring spectrum for any If f is an Hi ring map in hd then 51" is an Hi ring map in 

(iil If U is a liml-free I$ ring prespectrum then ZU is an I$ ring spectrum 
liil If F is an H: ring spectrum for d odd, then n*F has characteristic 2. 

and r:U + zZ(I is an Hi ring sap. If in addition f:U + U' is an Hi ring map and U' 
If, in addition, F is connective and noF is augmented over Z2 then F splits as a 

and (U,ZUT) are liml-free then Zf is an I$ ring map. If F is an I$ ring spectrum 
wedge of suspensions of HZ2. 

and zF is liml-free then A:ZaF + F is an Hi ring map. 

Proof. Let pd be the bundle 

Proof of 6.3. For part (il, the adjoint of the composite 

Then pd is the d-fold Whitney sum of p1 with itself, and p1 is the sum of the Hopf D. Eh 
Z~D. F . D Z - ~ ~ ~ i - f  D~ z d i ~  L zdiJp 

bundle with a trivial bundle. The Thom complex of pd is D2Sd, and so pd is F- 3 dl 3 
orientable if and only if F has a Z2-orientation (for the given value of dl. is a map cjji:DjFdi + FdU. An easy diagram chase shows that the 5 .  . satisfy J ,l 

For li) we recall (e.g. from 171, 111.2.71 1 that a bundle is S-orientable if Definition 5.1. Part (iil is immediate from 5.2, 5.3 and 6.2. 

and only if it is stably fibre-homotopy trivial. But pd clearly has nontrivial 

Stiefel-Whitney classes for every d 2 1. The rest of this section gives the proof of 6.2. Let w denote the composite 
j 

(ii) Let R = noF and observe that F-orientability implies HR-orientability by 

virtue of the canonical map F + HR. Consider the spectral sequence with 

T j q  = IPIz~;HQ(s~ sd;~)) 

converging to H*(D2Sd;R). There is only one nonzero row and so H ~ ~ I D ~ s ~ ; R I  is 
isomorphic to $(z~;H~(s~~\ Sd;H1 I, which is the Z2-fixed subgroup of 



It clearly suffices to show the commutativity of the following diagrams for all 

naturality of 6, and part @ follows from diagram (3) and the fact that + is an H, 
ring map (see parts (ii) and (iii) of 1.3.4). This completes the proof. 

$7. K-theory spectra 

For our work in chapter IX with Dyer-Lashof operations in K-theory it will be 

essential to know that the spectrum KU representing periodic complex K-theory is an 

H, ring spectrum. This is immediate from Corollary 6.3 once one has the necessary 

space-level input. We begin this section with a quick proof using as input the fact 

( j  ) (i) = +(j )+(i)% = *(i+j ) In diagram (3) the clockwise composite is rn uk that the connective spectrum kU has an E, ring structure. This in turn raises a 

the diagram commutes. Diagrams (1) and (2) commute when i = 0 since consistency question which is settled in the remainder of the section. In VIII 84 

e:S + F is an H- ring map. They commute when i = 1 by the consistency of the uj, we shall use Atiyah's power operations as input to give a more leisurely and 

and for i , 1 by induction. A similar induction shows that they will commute for elementary proof that KU is an H- ring spectrum. Although we concentrate on the 

all negative i if they do for i = -1. We prove commutativity of (2) when i = -1; complex case in this section, everything goes through in the orthogonal case with 

the proof for (1) is similar. We apply Remark 7.7 with D = Dj%. Give DjDkS the usual changes. 

either of the two equal orientations indicated in the second diagram of kmma 5.3 First recall from 171, VIII 521 that the spectrum kU representing connective 
and let * denote the associated Thom isomorphism. Let ill be the counterclockwise Complex K-theory is an E- ring spectrum. Hence (as explained in 184) it is an H, 
composite in diagram (2) and let q2 be the clockwise composite. Clearly, we have ring speotrum. Throughout this section we will write 5 .  for the structural maps 

.I 
DjkU + kU. Now by 1.3.9 the zero-th space of kU, which we denote by X, is an H,O 
space with structural maps D X + X which will be denoted by c j .  The space X is of - 

m ( i l  ) - E .  o D.U 
J 

1 J J k '  course equivalent to BU x 2, and by Bott periodicity we can define an a-prespectrum 

XU with XUzi = X. We give X U  an 2 structure by letting each map 
This is demonstrated by the following commutative diagram. 





Proposition 7.6. zkU, zk0 and the pairs (zkU,KUl and (zk0,KO) are liml free. ained in a finite-dimensional subspace. In particular, if we let % be the 
ard copy of R~~ in Rs then there is a finite-dimensional subspace A; of f 

Proof. The Serre spectral sequence shows that the pairs (akU,kUl and (zkU,KUl 

satisfy the finiteness requirement of 4.l(il and (iiil. Now by l10,4.31 and the x(wl(Ai @ @ Ail C hi 

E:"( ( ~ U I ~ ~ ; K U I  = 3jq( ( k ~ l ~ ~ ; k ~ l  

for q 2 0 it follows that Z:~~((~U)~~I;KU) has finite index in E~'~((~UI~~;KUI 

for q 5 0 ,  hence for all q by Bott periodicity. Thus the pair (kU,KUl is liml- 

free. The orthogonal case follows as in the proof of 7.1. 

We can now define the trivial bundle 

P:kU + KU 
2) WixAftVi.. 

I 

he orthogonal complement is a nontrivial vector bundle over Wi. We let ni be the 
is clearly an equivalence of zeroth spaces. Hence the unique lift of i" to cKU is an 

If ring msp and an equivalence. This completes the proof of 7.5. ite S(nil and T(ni) for the total space and the Thom complex of ni. If we let n 

t through permutations on (%lj and trivially on A; we obtain diagonal actions 
The fact that r is an tf ring map, and thus preserves the orientations, has the bundles (11 and (21 and hence on S(nil and T(nil. 

the following additional consequence which will he used in VIII 54. 
Next observe that the diagram of embeddings 

$8 .  A Thom isomorphism for spectra 
ownutes. Hence there is a bundle map 

In this section we prove Theorem 3.3. This is the only place in our work where ni @ B! + ni+l @ (Bil j 
we need the actual definition of D,,, instead of just its formal properties. We 

accordingly begin by giving a form of the definition; for a general discussion see covering the inclusion Wi i Wi+l. The induced map 

B! 
'i ( j ~  T(nil"S I -T(nirl1" (S I 

Let x(j I be the space of linear isometrics from ( ~ 1 ~  to r. Then Z(j I is a 
8. 

free contractible n-space and hence there is a n-map x:Er +t(jl. Choose an f Thorn complexes is a n-map if we give each side the diagonal n-action; here S I is 

he one-point compactification of Bi, etc. 

Now let U be a prespectrum (indexed on multiples of d as usual). We define a 

onsidered prespectra indexed on sets like [ai}, but everything in section 1 goes 



through with the obvious modificationsl. Let (uXlai be the space d (51 
(xdu1i,= T(ni) )-(T(ni) "Eni) h,,(Z UdiL 

1 

T(nil A,, (Udil (j 1 1 'i 
with the structural maps o indicated in the following diagram. d / d (j), U:~D~S = IT(ni) ~~(U,~)(j')niEii+n~(~ I 

1 

a. -a B! B. . ~f F is a n-oriented ring spectrum then the relative Thom isomorphism for q is the 
I lil iT(ni]~x(Udi](j 2 (T(niIA S l ] h n ( ~ d i ~ ( j l + ( ~ ( n i + l ) ~ ( s  'I(' 'I *,,(udi~(jl 

6X 
111 ?(uX a. )----Pt4(~~ a. D ~ S ~ ) - - - - ? - . ? + ~ ( ( I : ~ U ) : , ) ,  

B. 1 
T ( ~ ~ + ~ I A ~ ( u ~ ( ~ + ~ I ( ~  l+-~(ni+l)~n(~d~di~(j ) 2 ~ ( n ~ + ~  ,,(s I* udi)(j 

I 

where the first map is multiplication by the n-orientation u. We denote this 

composite by ei. 

Finally, given E r a we choose a prespectrum U with ZU = E (for example, we could d d Next, we note that if E = ZU then I: E - Z(I Ul. It is shown in the sequel 

let U = aE) and define that the map 

-a. d s:D"I E + DnEADnS d X 1 a, D E = Z(U I = Tel I: C IT(ni) A,, (Udil(J1l. 
i - 

is obtained by passage to telescopes from the 6i. We therefore have a map of Milnor 
This agrees up to weak equivalence with the more sophisticated definition given in lid sequences 
the sequel, and in particular it does not depend on the choice of x or U. 

n+a.-1 n+a. 
Now we can give the proof of 3.3. First we observe that the Thom isomorphism 0-lim F ($,I - F " ~ ~ ~ - - z l i m  F '(~2.1 -0 

theorem holds in F-cohomology of -for any F-orientable bundle. This is well- 1 i 

known when the base space is finite-dimensional (see e.g. 171,111. 1.411 and the I *  lim mi 
1 v general case follows since the Thom homomorphim induces a map of Milnor lim n+dj +ai-1 n+dj +ai 

sequences. Similarly, the relative Thom isomorphism theorem holds for any F- o --+ lim F ( (I:~u)~. - ?+QD~I:~E -1im F 
i 1 i 1 

oriented bundle over a pair (X,Y). For example, let U be a prespectrum, let 

X = S(ni) x, (Udi)j The result follows by the five lemma. 

and let Y be the suhspace in which at least one coordinate is a point at - or the 
X 

basepoint of Udi Note that X/Y is (U )ai. Let q be the pullback of the bundle We conclude this section with a technical fact which will be needed in VIII $6. 
1 Let c:(n,Tl + U be an extended pairing and suppose that the pair (T,ZUl is lim - 

p:En x"(R~I~ + Bn free. Then Zr; exists and is clearly determined by the composites 

along the map (Zr;la, 

x = s(ni) x, (udi)j + ET X" * = ~ii. ~ ( ~ ~ j  A ~ ( T ~ ~ ) ( ~ '  = T:. A(D,,zT)~. - Ii- (zu)~, 
1 1 1 

Then the relative Thom complex T(ql/T(q/~l is F for i 2 0. It is natural to ask for an explicit description of the elements 
i 

Let 6i denote the composite indicated in the following diagram. 1 represented by these composites. We shall give such a description by calculating 

1 the image of z; under the relative Thom isomorphism 



Let yi E (zuldij (w; A,, [Tdi) (j I he represented by the composite CHAPTER VIII 

POVER OPERATIONS IN H: RING THEORIES 

It was shown in Chapter I that an Hd, ring structure on a spectrum E induces 
rtain opirations IS)j in E-cohomology. In this chapter we investigate these 

operations in some important special cases, namely ordinary cohomology, K-theory, 

Proof. Write a for ai. It will he shown 6 the sequel that the following diagram - and cohordism. 

commutes for any space X. In section 1 we collect the properties of the 9. and their internal variants 
J 

P ; most of these have already been shown in Chapter I. We also show that the 
j d 

di (jl 'a results of Chapter VII allow one to construct an H* structure on E by giving space- 
T(nil h,,(L: XI - (D~I-XI~ 

level operations with certain properties. The section concludes with a brief 

R 11 account of a multiplicative transfer in E-cohomology which generalizes the norm map 

L : ~ ( w ; ~ ~ ( T ~ ~ I ( ~ ~ )  C--~.L:~D,,T,~ L(?DXXla of Evens 1 35 1 . 
In section 2 we show that the general facts given in section 1 are strong 

enough to prove the usual properties of the Steenrod operations without any use of 
Letting X = Tdi gives the commutativity of the left square in the next diagram. chain-level arguments. LD section 3 we show that the same arguments applied to the 

di a -  
zaD,,edi - za~,,zdiz~ spectrum HZpAX give the Dyer-Lashof operations in Hx(X;Zp) with all of their usual 

E ~ ( T ( ~ ~ I A  "(L: T~~I"') A Z  D,,L Tdi properties; in particular, we give new proofs of the Adem and Nishida relations 
I<  which involve less calculation than the standard proofs. 

- a  + A  (T .l(jll ' ' "i n dr d 
I -a-s. ,a, In section 4 we show that the power operations in K-theory induced by the H, + % <i a - % za*dij Zu 

z m ~ a ~ n ~ d i  PB"=D"T~~- L: c udii structures on I(U and KO are precisely those defined by Atiyah 1171; this gives a 

rather concrete description of these 5f structures. In section 5 we show that 
cohordism operations defined by tom Dieck in 1311 lead to Hi structures on the 

The right square comutes by Corollary 3.6(iiiI, and we therefore have equality of classical cohordism spectra whioh agree with their E, structures; again, this fact 

the two composites around the outside. But the counterclockwise compoSite is gives a rather concrete homotopical description of the E, structure. In section 6 

clearly zayi, and the proof of Theorem 3.3 given in this section shows that the d 
we show that the Atiyah-Bott-Shapiro orientations are K ring maps; it is still an 

clockwise composite is ysi. This completes the proof. open question whether they are E-maps. 

In seotion 7 we show that questions about Hd, ring maps simplify considerably 

when the spectra involved are p-local. We use this to show that the Adams 

operations are H, ring maps la fact which will he important in Chapter 1x1 and that - 
the Adams surmnand of p-local K-theory is an ring spectrum. We also give a 

sufficient condition for BP to he an $ ring spectrum; however the question of 
whether it actually is an $ ring spectrum remains open. 

1 Notation. In chapters VIII and IX we shall write LX for S AX, instead of 

X A  S' as in chapters I-VII. We shall also use Z to denote the suspension 



1 General properties of power operations 
1 ( v i i l  If E is p-local then %x = j;;r ,:xk whenever In 1 is prime t o  p, where r, is 

the transfer D,X + ~ ( ~ 1  of 11.1.4. 

Let E and F be spectra, l e t  n be a subgroup of lk, and l e t  d be a fixed - 
,v.AvA,, ,.,.,,,, . , "ation 2 hb i n  the most general sense we mean 

( v i i i l  If E is p-local then 

simply a sequence p,, of natural transformations 

EdiX,  Fdik 
D"X, 

Proof. I i l ,  ( i i l ,  and l i i i )  a re  imed ia te  from Definition 1.4.3. Part l ivl  follows - ~ - 

one for  each i r. 2, which are defined for a l l  X e h A . We shal l  also c a l l  p,, an from Remark 1.4.4. Part (v )  follows from 1.3.4(i) .  Parts ( v i )  and ( v i i i )  were 

(E,n,F) power operation when it is necessary to, be more specific.  In t h i s  section shown i n  11.2.1 and 11.2.2, and part  ( v i i )  follows from the proof of the l a t t e r .  

we consider the relat ion between power operations, extended pairings, and HC ring 

structures.  In part icular,  we collect  the properties of the canonical power opera- We shal l  also want t o  go i n  the other direction, that  is, t o  s t a r t  from a s e t  

t ions associated t o  an H: ring structure and of the related in ternal  operations. of operations having certain properties and deduce the existence of an H! ring 

structure. Let E be a ring spectrum. We say that  a s e t  ( F j } j ,  of (E, L.  ,El "'le most important class of power operations for  us wi l l  be the operations 3 
power operations is consistent i f  it sa t i s f i e s  l . l ( i 1 ,  (ii), and (iii). Given a 

9" : EdiX , Edij 
D, consistent s e t  of operations 9. on E we can define maps 

J 

d .  
determined by an He rlng structure on E. As usual, we abbreviate 9 by lyj. .D. z d i ~  . zd% E 

x i  'j ,i. J 

Recall the definit ion from 154: i f  x r E""X is represented by I : X  + I--& then by applying 3. t o  the classes represented by the identi ty naps zdiE + zdZE. It is 
Fnx is represented by the composite 

J d easy t o  see tha t  the <j, i  form an H_ ring structure on E whose induced power 

Dkf d i  zdikE operations are the given 3j. On the other hand, two H: ring structures on E 
DzX -?I ,X - DkL E 

which determine the same power operations are clearly equal. Thus there is a one- 

Our f i r s t  resul t  collect  the properties of these operations. d to-one correspondence between K ring structures on E and consistent se t s  of 

(E,z.,E) power operations. 
J 

Proposition 1.1. Let E be an H: ring spectrum and l e t  x r Edix, y r E ~ Y ,  n C Lk,  Next we consider a more general si tuation.  Let n be a subgroup of L k  and l e t  F 
X 

(i) a Tj+$ = ( F j x ) ( 3 k x )  @ E ~ ( ~ ' ~ ) ~ ( D ~ x A D ~ x ) .  be a "-oriented ring spectrum with orientation u:D,S d + z dk F (see VIIS3). The 

class i n  represented by the orientation w i l l  a lso be denoted by p .  An 
(ii) gXTje = 3 Pkx a (E,n,F) power operation 3, is  stable i f  the equation 

holds i n  F ~ ( ~ * ~ ~ ~ ( D ~ ~ ~ x )  for  a l l  x Edix. l.l(iii1 implies that  the (E,n,E) power 

! .  i r  7 . PO* ie +he ,,-++ +hn? Pnl is the unit in EO(\s) = E'(Bz+). operations determined by an Hd, ring structure on E are stable. More generally, l e t  

S:D,,E + F be any map ( i n  the terminology of VIIB3, is called an extended pairing).  

( v i )  If  X = Y and i = j then If  x P EdiX is represented by f:X + zdiE define 9 - x  r FdikD,x t o  be the element 

represented by the.composite 

T k ( x  + YI = P k x  +J"bS + 1 r ~ , k - c l ( 3 ' L x ) ( ~ k - c ~ ~ l  
O < L < k  D"X A D f  D ~ L  d i  E -----, 6 ( D ~ ~ ) ( ~ ) A  D ~ E  L ( L ~ F ) ( ~ ) A  F & z d i k ~ ,  u(ii 

i n  ~ d i k 4 i [ ,  where 



where $ is the product map for F. Then 9, is a stable power operation. logy, a generalized Steenrod operation is what we have called an (E,n,E) 

Conversely, given a stable operation ?, we obtain a map c:DTE + F by applying pT His axioms P1 and P2 are l.l(iv) and l.l(ii) respectively. In 
to the identity imp E 4 E. Clearly, this gives a one-to-one correspondence between d icaar, if p,, satisfies P1 then $?,I: 1 is a n-orientation for E. Axiom P? is 

maps 5:D-E + F and stable power operations. To sum up, we have shown d tion (1) above with il = 2,P 1. Thus an operation satisfying P1 and P3 is 

le in our sense (but not conversely). tom Dieck's final axiom P4 will also be 

Proposition 1.2. (i) There is a one-to-one correspondence between consistent sets interest in what follows. If q is a vector bundle over X then En nr qk is a 

of (E,zJ ,E) power operations and ring structures on E. ,tor bundle over En x,, X k whose Thom complex is homeomorphic to D,,T(q). If v is 

(ii) If F is a n-oriented ring spectrum and E is any spectrum, there is a one- E-orientation for q and p,, is an operation satisfying P1 then Fv(") is clearly 

to-one correspondence between stable (E,n,F) power operations and maps c:D, E + F. E-orientation for En x,, qk. Axiom P4 is the statement that E has canonical 

ie&,ations for some class of vector bundles and that p,, takes the canonical 
For applications of 1.2 it is usually easiest to work with space-levelinstead rientation for q to that for En x,, qk. This axiom will be satisfied in all of the 

of spectrum-level power operations. Our next result will allow us to reduce to this articular cases considered in this chapter. 

case. Letg be the homotopy category of finite CW complexes. Let { ( E T ) ~ } ~ ~ ~  be 
From now on we fix an H: ring spectrum E and let ?,, denote the associated 

the set of finite n-subcomplexes of En. By an (E,n,F) -operation ontwe mean 
ower operations. Let X be a space. Let A be the diagonal map 

a sequence 3, of natural transformations 
0 0 

-di -dik X A B ~ + = X A D S  + D ( X A S )  = D X  
E X + l i m F  ((~ir)ih~~(~)), 

D 
efined in 11.3.1. We define the internal operation 

one for each i s 2, which are defined for all X € 6 . '3" is stable if it satisfies 
equation (1). A set iPj of (E I: E) power operations on 6 is consistent if ' j '  

pr:xdix + xdik(x AB"+) 

E"-X - E---D"X - 
Proposition 1.3. (i) Let T be a prespectrum and suppose that each Tdi has the - E"--(X A B. 

homotopy type of a countable CW-complex. Let F be a ring spectrum. If the pair ince X'A BZ' = (X n Bn)+ we obtain an unreduced operation 
(T,F) is liml-free in the sense of VII.4.1 then every stable (ZT,n,F) operation 

on & extends uniquely to a stable operation on hd . P":E~~x + E ~ ~ ~ ( x  x Bn). 

(ii) Let E be a ring spectrum and suppose that each Edi has the homotopy type 

of a countable CW-complex and that zE is liml-free. Then every consistent set [ pj} Our next result sumarises the properties of the unreduced operations; similar 

of (E,Ej ,E) operations on d extends uniquely to a consistent set of operations on statements hold for the reduced ones. -. 

Proposition 1.4. Let x t zdix, y e E ~ X ,  n c Zk. 
lexes of Tdi and let 

The elements (i) I*P,,X = xk € E ~ ~ ~ x  

, . nd hence of F ~ ~ ~ D ~ T ~ ~  (ii) P,1 = 1 t E'(X x Bn) 

by VII.4.10 and VII.4.12. It is easy to see that the maps ci:D,,Tdi + Fdik 
(iii) P,(v) = (~,x)(~,y) e ~ ~ ( ~ + j  )k(~ x B") 

representing these elements form an extended pairing of prespectra as defined in 

VII.3.2. Part (i) now follows from VII.7.4. For part (ii), a similar argument (iv) If i = j then 

shows that the set ['$.I determines an ring structure on the prespectrum eE and x 
J P (x+y) =Pkx + P g  + k 1 [(Pe~)(Pk-a~)I the result follows from VII.6.3. O<e<k 

( v )  If E isp-local and in1 is prime to p then P x = 
1 k *  

The definitions we have given are closely related to tom Dieck's axioms for n 'rl' 

"generalized Steenrod operations" 1311. Let E be a ring spectrum. In tam Dieck's 



can give the  same def in i t ion  in degr~ee zero. O u r  next resul t  

s of pa . 

Proof. All par t s  except ( v i i )  are immediate from 1.1. For ( v i i )  we use the 

argument of [LOO, VIII.1.31. If we give the s e t  n x n' its lexicographic order we 

obtain a f a i t h fu l  act ion of "Q on it. Let g e Ck, be the element which switches & -  f 4- 
0-0' 

the fac tors  n and a ' .  The following diagram is readily seen t o  commute. 

d (v )  I f  Y is any space and x s Fdix, y e Fdky then 
n x n' - n ~ n " - ~ * -  E ~ I C ~  

ZkQ X 

(1 x p )  (y  x X )  = [ ( I  x h )  PjyI(pQx) e F 4i ( i + k ) ( y  B )  Iy d ice  
0 

n' x n -----r n 8  i n  E JZ 
Q L. where h:B + BZj is the classifying map of p. 

Here d is the evident diagonal and c, is  conjugation by g. Ey l.l(ii) we have proof. Part  (i) is t r i v i a l  and par t s  (iii) and ( i v )  have the  same proofs as in the 

and similarly 

w - 
X X X *  X additive case. For part  (ii) l e t  f :Z"(X+) + ZdiF and g : z " ( ~ + )  + zdkF represent x 

P ,P x = Ad 1 Bk Q k Q ~  = (1 x B o i o d )  PkQx 
ii n k, Q and y. I t  suf f ices  t o  show commutativity of the following diagram, in which Z" has 

%.--.. *--- 2 A" -'-nplify the  notation. "SR' o u ) l y L s r r s "  "" r n  
P P ,x = (1 x B a 1 o d ) * ~  x. 

x i i  ~ , k  k t  
U I1 g, 

X $ ~ D . X + % D . ( X + ~ X + I  -D.E d(i+lr) 
But (1 x c ) PkQx = PkQx since c :BEkQ + BEkQ is homotopic t o  the  ident i ty .  e e J J 1. I L E Q  ( i+k )F  

We conclude t h i s  section with a br ie f  descript ion of another kind of operation 
D. f n D. g 

induced by H: s t ruc tures ,  namely a mult ipl icat ive version of the t ransfer  f o r  z D.X+nDXf 
/ 

> D. EdiF 6 D. Edi;F - Z4jiFn iqi% 
3 j 3 J 

f i n i t e  coverings. The def in i t ion  i s  due t o  May. F i r s t  r eca l l  the def in i t ion  of the 

ordinary (addi t ive)  t ransfer .  I f  p:X r B is a j-fold covering then one can The pentagon commutes by 1.4.3 and the remaining pieces by na tura l i ty .  For part  ( v )  
construct a map it suffices by (ii) t o  show 

::B+EE. x 3 
J Cj x x (1 x p)@(n Y )  = (1 x h)  Pjy 

as in 18, p.1121. If x eFix is represented by f:X + F; then p,x < FiB is represented 
where n :Y x X + Y is the projection. An inspection of [8, p.1121 shows tha t  the  

diagram 
rJ 

"+ . n+ ( 1  x P ) +  _ n ,"+ A "+\ 
i " D  -Y. <l . ,A i 

where the l a s t  map is the Dyer-Lashof map determined by the i n f i n i t e  loop space J 

s tructure on Fi. B NOW i f  F is an ~ d _  r ing spectrum and i f  x a F ~ ~ X  is repre- 31-h '  l D j l t  

Y* A BE+ A+ sented by f: Z ( X + )  -> PiF  we define pex x FdFdij B t o  he the element represented by j 
7D.Y' 

J 

" * D. f 
d i  L E d i j F .  E"(B+) J-h-L E"(EZ. xj ) +  = D. E"X+ L D~ E F commutes and the r e su l t s  follows. 

J % J 



Hemarks 1.6.(i) Formula (vl is due to Brian Sanderson (also of. 135, remark 6.21). i Pi . For each i E Z there is a unique map €:D,,E H + Z H for which 

If we let p:X + Bz. be the j-fold cover associated to EXj + Bzj and let x = 1 then 
3 

the formula gives (E~H)(~) r4zi~ 

(1 x PI@(Y X 11 = PjY, 

zative 
'2 

zPiH so that the internal operation P. is completely determined by the multipli< 
J 

transfer, an observation also due to Sanderson. ~~. - . . .  . 
(ii) If p:X + B and q:Y + C are any two coverings then p n q is a covering 

mutes, where .$ is the iterated product map. r'or each l,j 6 Z the dlagram 

which factors as (p x 1)(1 x q). We can therefore compute (p x q)@(x x y) in 

principle by using formulas (iil, (iiil and (v), but there is no simple external D"(z~HA~~H) b r Dre i H  AD,^^ H 
analog of formula (ii) . 

(iii) If F is H: then V zdip is H_ by 11.1.3. Thus we can define a map 
i r Z  141 I€ A 

, . T? poiv -rr &in piH A ~ P ~  

which agrees on homogeneous elements with that already given. We leave it as an 

exercise for the reader to show that if x has nonzero degree then 1$(1 + XI has 
components p,x in degree 1x1 and p,x in degree j 1x1 (of. 135, Theorem 7.11 I. comutes up to the sign (-l)mu. 

(iv) In the case F = HZp a multiplicative version of the transfer was first 

defined by Evens, who called it the norm 1351. It seems likely that this agrees The proof is the same as for 1.4.5. One can in fact replace n in this result 

with pg, but we shall not give a proof. Note that in this case one always has by any subgroup of the alternating group A j ,  but we shall have no occasion to do so. 
X X 

PIP x = jx, but it is not true that p@ x = 4 .  For example, formula (v) gives Using the mai, 5 we obtain an external operation 

* X 
(1 x pI@(l x P) (Y x 11 = (1 x hl P.Y. 

J 

which is certainly not equal to y j  x 1 in general. 

Tr:cfix + RPiDnx 

and an internal operation 

2. Steenrod operations in Ordinary Cohomolom. 

as in 51. The uniqueness property in 2.1 implies that these operations agree with 

In this section we use the framework of 51 to construct the Steenrod operations those already defined when i is even. 

in mod p cohomology and prove their usual properties. The construction will be Since l%zll c. PsP is the canonical generator zP1, we see that ?,,Xl is an 
similar to one given by Milgram In, Chapter 271, except that we use stable extended orientation for the real regular representation bundle 
powers instead of space-level ones. On the other hand, the proofs will be quite 

close to those of Steenrod and Epstein 11001 except that we make no use of chain- En xn(~'lp + Bn. 

level arguments. 

X 
It follows that the element x t HP-lBn defined by 

Throughout this section and the next we write H for HZ,, H for mod-p 

' i l z i z  ' " - I I  " i e z  

cohomology, and n for the subgroup of zp generated by a p-cycle. If p is an odd Ex = P,E1 

nrime we write m rnr EL as ,m,a7 . ~ n r  nrlri nrirnes +.ha mart.rnm UR i e  V2 h7,+ 

" Y "  ""Y -. VUU UV6.C"" l w l l r r r  v.ir urrr r u r v s  l"i," "2 AvraL u"rL. rGlr ' iuo, .  . r r r  
real irreducible has nonzero Euler class. 

operation 9, does extend to odd degrees, as we shall now show. 

- --- . . - .. - - - - .,. - - -- ."- "-" "" "..- "r"-" >-., 
1 "-P -- ".- "-" is the Euler class of the real reduced regular representation (i.e., the sum of the not H_ (see VII.6.1), hence the power operation 3p can be defined in even degrees 

h,,+ in ,.A4 Â "..̂ ..̂  ,..-,̂ ^  ̂̂ -A .In^^ "A-^ P....." A" ,^^", ^^^..i.i^.^-.i^, m.. nontrivial real irreducibles). In particular, x is nonzero since each nontrivial 



Our next result gives the basic properties of the operation P,. Note that Î* 
U I Y  * nr+\ 4 "  ".. "*/ nr l -".+.a,., a 

* 
~~t the composite of (1 AT,) with the restriction 

* Proposition 2.2. (i) I P,x = xP 
(1 hl)*:li*(~~~Bt) + E*X 

(ii) ~,(xy) = (-1)mI"I IYI(P~X)(P,~) 
is multiplication by p and hence vanishes. Since (1 A t  )*  is clearly onto we 

(iii) ~,tx = (-l)mlxlX(z~,x) t 
see that (lhr,) = 0 so that BP,x = 0 as required. Finally, if p is odd and 

(iv) P,(x + y) = P,x + Pny HZi-lX we have 

(v) BP,~ = 0 if p is odd or 1x1 is even. 0 = BPn(2x) = 6(x - zPnx) = -X.T(BP~X)\ 

Proof. Parts l i  I and l i i l  a m  i m e A i ~ t . e  from 2.1 a n d  m*t. liii) follows from part since BX = 0. The result follows in this case since x is not a zero divisor. 
(ii). For part (iv) we assume first that 1x1 is even. Then we may apply 1.4(vi) to completes the proof of 2.2. 

get 1 x 
P (X + y) = P X  +P y + -  [(x + y)P- XP - yPl(r 11. 
P P P Pl P Now let x G H%. If p = 2 we define pix e fitix to be the coefficient of 

* * X9-i in P,x. If p is odd we define pix s H ~ + ~ ~ ( P - ~ ) x  to be (-l)*+mq(q-1)/2 ti 
But r*l = T t 1 = p!l = 0 and the result follows in this case. If 1x1 is odd this 

P the coefficient of Xq-2i in P,,x. We also define an element w r ~P-~gii for p od 
gives the equation Bw = x. 

P"(2x + zy) = P"zx + P zy. 
b 

Applying part (iii) gives the equation Proposition 2.4. (i) pi(x + y) = $x + piy 

(ti) pi(zx) = zpix 

(-l)mlX/~(~~,(x + Y)) = (-l)mlxlX(z(~,x + PnY)) (iii) ~ ~ x = x ~ i f q = ~ i a n d p i s o d d o r i f q = i a n d p = 2 .  pix = 0 

5 if q < 21 and p is odd or if q < i and p = 2. 
and the result follows since x is not a zero divisor in H Bii. For part (v) we need 

(iv) POX =x. 
a Lemma. ~b p:n r ZH represent the Bockstein operation. 

(v) If p - 2 then 6pZix = gitlx; in particular, gx = &x. 

(vi) If p = 2 then P,x = Z ( P ~ X ) ~ ~ - ~ .  If p is odd then 
Lemma 2.1. The composite 

oxz2iH & z2~iH +i+lH P,X = z(-1) mi+mq(q-l)/2[ (pix)Xq-2i + (-1)q(Bpix),Xq-2i-1i. 

factors through the transfer (vii) pixy = z(dx)(pi-jy). 

T ~ : ~ ~ ~ ~ H  - (~~~113'~). 
Proof. (i), (ii) and (iii) follow from 2.2(iv), 2.2(iii) and 2.2(i) respective 

For part (iv), we observe that PO is a stable operation of degree 0 and hence 
The proof of 2.3 is rather technical and will be given at the end of this 

-21 represents an element of H'H z Zp. Thus PO is a constant multiple of the ident 
section. For the moment we use it to prove part (v). Let x a H X be represented 

and the result follows since pO1 = 1P = 1 by part (iii). In part (7) we can us 
by f:zmX + zZiH and consider the following diagram, where we have suppressed Z' to 

part (ii) to reduce to the case where q is even. The result follows in that ca 
simplify the notation. 

+ A 
D f 2Pi 2Pi+lH 2% & 3 from 2.2(v) and the relation BX = x2. In part (vi) the p = 2 case is true by 

XhBii - - - - - - - D " X L D ~ ~ :  H ,/* definition. If p is odd we can use part (ii) and 2.2(iii) to reduce to the cae I 1  Tn 1.. a#r*  
where q is even. We then have P,x = i x P P x. We recall from 168, Lem 1.41 the 

A X(~) fo (pH)(p) ,rr image of X 
I*:H*B~ P + H*BT 

The dotted arrows exist by 2.3 and the diagram comutes. The top row represents is nonzero only in dimensions of the form 2i(p-1) and 2i(p-1)-1. Thus this im& 
BP,x. Thus BP,x is in the image of the transfer generated as a ring by x and w and we have 



both S 

hold for all x. The usual Adem relations can easily be obtained frm these as in 

1102, p. 1631; the basic idea is simply to expand the right sides of (1) and (2) as 

power series in U and T and compare coefficients. The proof of (1) and (2), like 

any proof of the Adem relations, is based on the relation 

given by 1.4(vii). In order to compute PnPnx in terms of the pi we need to know 
more about the element x a HP-~B~. We have mentioned that x is the Euler class of 
the real reduced regular representation of n, and that this representation is the 

sum of the nontrivial real irreducibles of r. Choose one such irreducible, and let 

u r $Bn denote its N e r  class. Then the N e r  classes of the remaining 

irreducibles (suitably oriented) are 2u, 3u,. . . ,mu, and thus x = alum. The 

ambiguity in the sign arises from the question of whether the various orientations 

have been chosen consistently, but it turns out that we shall not need to eliminate 

this ambiguity. Thus we shall assume x = mlum (it is in fact possible to choose the 

orientations so that this holds) and leave it to the reader to check that the other 

possibility leads to the same relations (1) and (2). We define b 8 H1ai by the 

equation Bb = u, so that w = mlbum-l. Then the equation 2.4(v) may be written as 
follows. 

X X * 
Now we apply equation (3). We have y u = v, y U = V, and y S = T. Since 

VPS = IPT = ~*(vPs) we have 

Collecting the terms in (12) and (13) which do not involve b or c gives equation 

(I), and the terms wNch involve c but not b give (2). This completes the proof. 

Finally, we give the proof of Lema 2.3. Let M be the Moore spectrum Sup e 1 

and let i:S + M be the inclusion of the bottom cell. 

Lemma 2.5. H1(Dp) has a basis {x,y} such that (D,i)*x = 0, (D,i)*y f 0, and X is 

in the image of the transfer 
T::~l~(~) + H'D~M. 



- - 
The generator of the l a t t e r  group clearly survives t o  Em and re**--n+.= a* a' 

y 6 H'D,M. Since I ~ ( P ~ ) * : H ~ M ( P ~  + $8 is an isomorphism, so is bile  map rnou, 

D T i  on E:,'. Hence (D, , i l fy  # 0. Now l e t  z e RIM(p) be a gene--+-- -* 
* 

HIM @ $M @ ,.- @ H% and l e t  x = r ~ s .  Clearly, x is represene 

262 

Proof of 2.5. We use the spectral  sequence 

Hi1n ;d  ( ~ ( ~ ~ 1 1  * HiijD,~ h interesting feature of the treatment of Steenrod operations in 02 is that  is 

eneralises t o  give the properties of Dyer-Leshof operations; thus homology opera- 
of 1.2.4. Each of the groups E:" and E:,' is generated by a single element. . 16811. The use of stable ,. ---..... -. -1ement 

AL.  +~~. . .  stead of space-level extended powers is crucial fo r  th i s  since homology does not 

have a simple space-level description. We give the deta i l s  i n  t h i s  section; IX01  
:La""z "1 

will give. another approach t o  homology operations which generalizes t o  extraordinary 
lted by a generator of 

* * * *" * E:", and 1D"i) x = I D  i l  T z = ~ , , I i ( ~ ' l  z which is zero since H ~ S  = 0. theor i e s  We continue t o  use the notations of 52, so that  H denotes HZp 
" " 

Firs t  l e t  M be any module spectrum over H and l e t  Y be an arbitrary spectrum. 

Proof of 2.3. Let HZ be the spectrum representing integral  cohomology. Then There is a natural transformation 

H = H Z A M .  Let e:S + HZ be the unit and l e t  ri be the composite 
A:M*Y + HomlH*Y,n,M) 

defined as  follows: i f  y < M*Y is represented by f:Y + CiM then Alyl is the 

Let  w be the element of $D"M represented by n. Then lD,,il*Bw = 0 since 8 vanishes composite l b f l *  
on H0Dn5 = $ ~ n .  Hence by Lemma 2.5, Bw is a multiple of x and i n  part icular it is  H Y = n , ( H c Y )  - n*(HAMI - - + n * M ,  X 

which is a homomorphism raising degrees by i. Clearly A is a morphim of cohomology 

theories. Since it is an isomorphism for Y = S we have 

DxM ; H  * # - C H  

Lemma 3.1. A is an isomorphism. 

Now l e t  Xbe a fixed Hm ring spectrum with structural  maps e j  ( fo r  example, X 

might have the form i z +  for  an in f in i t e  loop space Z l  and l e t  M = HAX.  Then M is 
Now consider the diagram 

an 3 ring spectrum with s t ructura l  maps 

6 2 i  DTCZiH = T ~ ~ ( z ~ ~ H ~ A M )  - - - - - v D n P  HZ A D ~ M  a C 2 P i ~ * . ~  & CZPiH D (2 21 H A X I  AD Z ~ ~ H A D . X  
55 ,i Aej _ P2ij  

J 
H A X  

J J IT" 1 @ \ \!Z and we obtain gj : M ~ ~ Y  power + M ~ ~ J  operations D. Y 

I+ J 

- and Rj :$Y + M2' I Y  x BPj I .  
l Z 2 i H l ( ~ l  . (z2iHZ.M11~1 , l Z 2 i ~ l ~ ~ l A M ( ~ )  SD c2iHZnM1~1  w P 2 p i H Z  A Z H  

ii 
The operation 2, can be extended t o  odd degrees by means of the maps 

The uniqueness clause in 2.1 imples tha t  the composite of the top row is  

S : D ~ Z ~ ~ H  + CZPiH, so it suffices t o  show that  the diagram commutes. Part @ D C ~ M  = D ~ ( P ~ H ~ X I  -L D ~ C ~ H  A ~ i l ~  W EP'HAX 

Commutes by VI.3.10 of the sequel, and the other parts  clearly commute. where 5 is the map given by 2.1. The unit of X gives an $ ring map h:H + H A X  = M 

and h, a lso  preserves 9, i n  odd degrees. 

isomorphisms fa r  any space Y. 





where F: is the dual of the conjugate Steenrod operation F~ and U, V, S and T 

- 
Hence the following diagram commutes, where f :S + I - ~ H  W represents x. irst transls 

XB, ,~  A z ~ z ( ~ - q ~  W )  A D ~ I - ~ H  zDnW - Z - ~ Y ~ A ~ W  = Z - " ~ H A  X 
d 

Proof for  p = 2. The basic idea w i l l  be t o  show that  the t o t a l  Steenrod operation 

is an Hm ring map, and t h i s  in turn w i l l  follow easily from 1.4(vi i ) .  To make th i s  

Work, however, we need a part icular H, Structure on V ziH whi 



* 
Let E*X he the functor H ( X  x Bnl  on the category of spaces. We denote the l ) H  is P[. Either from the definit ion or from formu.la (111 we get the 

generators of HIBn and H2Bn by c and v, so that  E*X is the polynomial ring 

(H*xllc,vl. E* is a multiplicative cohomology theory and hence is represented by a 

ring spectrum E. The projection X x Bn + X gives a natural transformation t,c = b - cuv- 1 

X 
H*X + E X which is represented by a map g:H t E. Of course, E is equivalent t o  

i t*v = u + uhl-l = u(1  - wll V r H with its usual ring structure and g is  the inclusion of H in th i s  wedge. 
i < O  x E 

Next we define power operations in E . Let 3. he the composite t*v = -uP-l(l - w-l]P-1 ; U ( 1  - w 1 ) P - l  . S. 
3 

* 
FX = i ? i ( ~ ~ ~ n + ~  - - -L i r@iJ (~ l (~&~i i+) )  ~ $ i J ( ( ~ I ~ l A ~ n * l  = $ i J ~ l ~ .  

is clearly a ring map, hut it turns out not t o  he an $ map. However, we have 

. L a  
It is  easy t o  see tha t  the @ are  consistent in the sense of Bf in i t ion  1.2 and 

a lso  preserves 9- i n  odd degrees. A n  inspection of the definitions gives the mi= f ~ n t  .mi?? mfr(nn +-A- -33,. .,-,r.,-enr hll+ -a +hot h.. .,...,,~i~:-- A +  .":A, - .  
following description of the internal  operation 9,. .2 below one can show that  t is actually an H, map. It is certainly not 3 since 

E + + t does not preserve FZ. 
(101 Pn = ( l A y l * ~ n : % i ( ~  hBnt1 + % P i ( ~ ~ ~ n  h Bn ) 

For the proof of 3.4 we need a standard lemma. 
Note tha t ,  with the conventions we have adopted, c and v are the generators i n  the 

second copy of Bn i n  t h i s  si tuation.  As in Section 2 write h and u for the Lemma 3.5. For any space Y the map * X 
generators in the f i r s t  copy of Bii; thus gX:H Bn + E Bn takes v t o  u and c t o  h. * X ..X 

X * 
Now l e t  F*X he the Laurent ser ies  rim (H X I  l l c , v . ~ - ~ l  I = E X I  lv-'~ I. F* is  a 

i O A : H Dry + R " H X ( ~ '  @ "H(Y AB,') 

18 mOIIIC. 
multiplicative cohomology theory and hence is represented by a ring spectrum F, and 

the inclusion H*X + F*X is represented by a ring map H + F which we again c a l l  g; of 
For completeness we shal l  give a proof of 3.5 a t  the end of t h i s  section. 

course F is  equivalent as  a ring spectrum to zz Z i ~  and g is the inclusion of H 

in t h i s  wedge. Now observe tha t  the element F v  (HXBZ 111C,v,v-~ll is a Laurent 
3 J Proof of 3.4. Since both sides of the equation are stable (H,n,Fl operations in the 

ser ies  which is  hounded above, and that  by l . l ( iv1  it has leading coefficient sense of 1.2 and 1.3 it suffices t o  show that  they agree on f i n i t e  complexes. By 
1 s HOBz,. Hence p ? v  is invert ible.  and it follows that  we can extend the 



= -85 . Thus (111 gives . - 

(thl),E = 1 1g,~i5 - (-1)~g,6$B CV-~IV-~ 
i - - 

or any 5 E HqX. NOW let x e H X, y = & Then we have 
* F 9 

D"F 
(tnl),Hny = (t~l), 1 (-1) mq(q+1)/2(m! )-q~&-(-l)q(&)bv-llv-mqYj 

comutes, where the unmarked arrows come from the H, structures of H and F. j 

= (-1) mq(q+1'/2(m!)-q1 ~(thl),$X-(-l)~(t~l)~~&(t,bl(t,v)'~l(t,v)~~~(t,~)~  owlet X be an H, ring spectrum. Then, as we have seen, H A X  is an $ ring j 

spectrum and there is an operation = (-l)mq(q+1'/2(m! )-%~-~%-q 1 [$gix - (-l)q8$i$xcv-1 
i,J -- 

;~~,:(HAxI~Y + (HA XIP~D,Y 

- 

- (-l)q~i8($x(bu-1- cv-l) (1 - IJV-')-' + B ~ ~ B ~  xbcu'lv-l(l - w-~)-~]s~v-~ 
for Y < h d  . Similarly, FI\X is an $ ring spectrum and we obtain an operation 

- 

the other hand, we have 
;ft;:(~,.x)q~ 4 (FAX)~~D"Y, 

The unit of X induces % ring naps h:H + H A X  and h':F + FAX. 
W-~R;(~AI),~ = w-q~z I~,$*X - ( -l)qg,~$,xcv-ll~-j 

J - - 

Corollary 3.7. If Y is any spectrum and y € ( H ~ X I ~ Y  then the equation 
= IR,,$!x - (-l)q(-l)m(q+l)~ B$*x ((P>)(P>)-~I(P>)-~ 

j li- 

(tI\l),&y = wqe:(t ~ 1 1 % ~  
= (-l)mq(q+1'/2(m! )-qu-m%-q [Qi$,x - (-114 8Qi$,xbu-1 

i,j - - 
holds in (FAX)P~Y. + (-1)q~i8$,x(bu-1-cv-1 I ( ~ - u ' ~ v ) - ~ - B Q ~ ~ $ * x ~ c u - ~ v - ~ ( ~ - u - ~ v ) ~ ~  - 1UiT-j 

Proof. For q = 0 this is immediate from 3.6. If y = 11 we have - f we collect the terms in (18) and (19) not involving b or c we get ( 8 ) .  
F 

(tnl)x'&rl = (t~ll,%h,rl = hit, "11 = wZn(t ~l),zl ollecting the terns' involving b but not c gives (9). 

by 3.4. For general y let I. = z-qy r (H~x)~(z-~Y). Then y = (111% and we have 



I Ul,.."aP € A >  and ere the f i r s t  map is induced by the projection E0 x Y + Y. The map A is additive 
A 'P 

dhence i f  Y is a f i n i t e  G-complex we obtain a map the E*-term has a basis consistine of representatives for the elements 

= min a,, $ m x  ai> 

>w from 1.2.3). Hence 
which w i l l  a lso be denoted by A. Now i f  X is a f i n i t e  nonequivariant complex and we ,, &,. . d nonzero element with 
l e t  z act  on XJ by permuting the factors then the j-fold tensor power gives a map , , - , , - ,. ,,,,, , , - ,, , ,, a f i n i t e  sum of the form j 

- 

B i 
'P : ~ e c t  x + Vectz ~j + K, ,x~  

j 
AOL,E,ib ?rxa- j .I 

X 
a , s , i  

Since A % = 0, we have which however is not additive. In order t o  extend it t o  v i r tual  bundles and t o  the 

relat ive case we must use the "difference construction" 194, Proposition 3.11. Let 

(20) 0 = 1 Aa ibeui~ x ( Y , B )  be a G-pair and consider the s e t  of complexes 
ii a a , c , i  ' ' 

dl d 0 c - E o +  El- ... &.LEn-O 
1 1 l 1 1 1  1 - 1  i+"l,"l-7im 9 . - i  . . . l n i  . -i .. -1. 

It remains t o  show 3.5. ant vector bundles over Y; we write Vect Y fo r  the case where G is the 

i a l  If  Y is a free 0-space there is a natural bijection 

Woof of 3.5. Let p be odd; the p = 2 case is similar. We use the Spectral 
VectGY I Vect(Y/Gl 

sequence 1.2.4 
-i+j 

H~(,;%$X") 1 H ( D ~ x ) .  ee 118, 1.6.111. I f  Y is any G-space we write A fo r  the composite 

Let {xaIaEA be an ordered basis fo r  E*X. Let / a /  denote the degree of xa. The VectOY + VectO(EG x Y l  .r Vect(EG xG Y l ,  

graded group f i * ( ~ ( ~ )  ) 5 E*(x)@' has the basis {x Q * . e  Q xa 

L 

{beui~Txul a s A, E = 0 or  1, i 0) and ir,,(x @ . . .Oxa ) la l  
al P 

(in part icular,  the spectral sequence collapses, as  we a lso  k c  

these elements form a basis for "HX(" "' - , G * ~  *- , 

* " a - " - . * - - n  - a -  

= ) " "  ) u- -'I' - Y 3 " l p x a  + ( - l j ' ~ ' (@IYXD/bU j 
-~ 

a , s , i  
of G-vector bundles Ei over Y which are acyclic over B. We m i t e  R G ( y , ~ )  for the 

set  of isomorphism classes of such complexes. Two elements Ex and EL of BG(Y,B) 
by equation ( 4 )  of section 2. Now l e t  K be max[i+m/a 1 / A  f 0) and l e t  S be are homotopic, denoted Ex = E' i f  there is an element & DG(Y x I, B x I) (with 0 
the s e t  of t r ip l e s  ( a , ~ , i )  with Aa 

# 0 and i+mla/ = K. Then the coefficient  *' 
2 , acting t r i v i a l l y  on I )  which r e s t r i c t s  t o  Ex and E; a t  the two ends. We say that  EX 

of uk in l ine  (20) is  and E; are equivalent> written Ex - E;, i f  there are complexes F* and F' which are  * 
acyclic on Y such that  

since a l l  other terms in l ine  (20) involve smaller powers of u. But t h i s  is a i': BG(Y,B1 + KG(Y,B) 
contradiction since the x, are l inearly independent. which induces a bijection from the equivalence classes in .i+@(Y,B) t o  KG(Y,B).  If B 

-' "'.A" "--"A".. ,,- -..-,. "..-" "..- ru.. ". -F"*-"-"..- -. ..- - 
d Atiyah 117) give H- s tructures for  these spectra which agree 

We begin by recall ing the definit ion of Atiyah's operations. Let G be 

group. I f  Y is a G-space l e t  VectGY be the se t  of isomorphism classes of 

i is empty r i s  easy t o  describe: it talres Ex t o  1 (-11 Ei. I. i s  additive and - 
multiplicative i f  we define addition and multiplication i n  QG t o  he the d i rec t  sum 

84. Atiyah's power operations in K-theory 
and tensor product of complexes. Now i f  (X,A) i s  any pair  of f i n i t e  CW complexes 

the j-fold tensor product of complexes give a map 
i, +hir F ~ , . w  thst tha T)~W.=V nnnrat.innr i n  KIT a d  KO defined by 

with those con- 8 (X,A)  + B,. ( ( x , A ) ~  ). 
structed in V I I  87. We shal l  work with complex K-theory, hut everything is  similar .I 

fo r  KO. If EX and Ei in U(X,A) are homotopic by a homotopy & then the res t r ic t ion  of 

a f i n i t e  j along the diagonal map 



lclusion ce ?;z% is an orientation for the Thom complex D.s2 th i s  implies J 
ice by 

b = d = P j h .  It therefore suffices by 1.3 t o  show that  3 and $ are equal on 
the Kunneth theorem, so that  qJ - (EX@ F , Y J .  It follows that  the j-fold 

tensor product preserves equivalence and we can pass t o  equivalence classes t o  for any f i n i t e  complex X, and by 4.3 it suffices t o  show that  they agree on 

obtain a map (x+) = KX. They do agree on Vect X by 171, VIII.1.21. But any element x of KX 
- can he written i n  the form V-W with V,W c Vect X,  and we have 3 :K(X,A) + K@( ( x , A ) ~  ). 

5 -1 
Letting A be the basepoint * of X we write for the composite 5'.V=?.(x J 

J 
+ W )  = P x  +?.w + 1 ~ ~ , ~ - ~ l ( g ~ x ) ( ' ? .  J -1 . w ) l  

J J i;l 

A a = K ( X , % )  -K ((X,*lJ 1 -K(EL. n (x,*)') = C[D.X. by l . l ( v i ) ,  and similarly for p: H~~~~ 5 J =j  J J 

1.3, so by 1.2 and 1.3 we have and similarly for $. We therefore have 6?x =?!x by induction on j . 
J J 

Theorem 4.1. KU (resp. KO) has a unique Hf (resp. 8) r ing structure for which By analogy with Section 2 we now ask what operations in K-theo~y can he 
the power operations are those defined by Atiyah. obtained from the internal  power operation 

8 4 We shal l  see in Section 6 tha t  the H_ structure on KO extends t o  an K P,,:KX +. K ( X  x B n l  

s tructure.  hu' next resul t  answers an obvious question. 
The structure of K(Bn1 has been determined by Atiyah 1161: "KBn) is a -module 

P 
and the composite 

Proposition 4.2. The structures on KO and KU given by 4.1 are the same as  those 

given by V I I  .7.2. I R ( n )  Q A Z ~ K ( B ~ )  @ ip -K(Bnl  
P 

is an isomorphism, where I R ( n )  is the augmentation ideal .  I f  p is the automorphism 
For the proof we need a lemma. 

group of n then the invariant subgroup "KBn)' i s  generated by A(N-p), where N i s  

the regular representation of n. Atiyah also shows that  K 1 h  = 0. In part icular,  
Lemma 4.3. L e t  X be a based space and l e t  A:Xt + X be the based map which is the 

K * B ~  is f l a t  over ~ * ( p t )  and we obtain a i-eth isomorphism 
identi ty on X. Then 

( D  A)*:F*D.x + F*(D. (XI))  
.i 3 J KXO K ( B n )  1 K ( X  x Bw) 

is a s p l i t  monomorphism fo r  any theory F. for f i n i t e  complexes X. Since P, is the res t r ic t ion  of P we see that  P,, actually 
P 

lands in the invariant subring K X @  K ( B V ) ~ .  We can therefore define operations 
Proof of 4.3. If  v:LPX + zmX+ is the map.given in the proof of 3.3 then 

X X * 
@:KX + KX 

(D.v) (D.A)  = ( D . ( ~ - A  o " 1 1  = 1. 
J 3 J 

"d eP:m + KX x i 
P 

Proof of 4.2. Let 9. he Atiyahls power operation and l e t  $ be that  given by 
J by the equation 

VII.7.2. By VII.7.7 we have 

= (3;r21).bj (1) P,X = ~ P x  1 + @ x @  A ( N  - P). 

Ey 1.4(iI we have 
while by 1 .l( iii) we have 





t w n  nomnnaites are induced by bundle maps into a universal bundle. Thus We have lative Thom isomorphism 

Proposition 5.1. The maps 5 are an H: structure for TG. j ,i 
which takes 

Now define MG = Z(TG1. Every G(i1-vector bundle q has a canonical Thom class 

in this theory represented by the map 
n - ". 

, (pi$ I. Thus vzi = '43: and the result follow&. 
T(q1 -Tlpi1 -% (MG)di J 

1 We conclude this section with a discussion of cobordism operations related to 
At this point we need some lim information. 

P,. The situation in unoriented cobordism is quite simple: there is a 

~hneth isomorphism 
L e m  5.2. AlOof the pairs (TG,MG1 I, (TG,KU), (TG,KO), (TG,h) and lTG,kOl are 

liml-free. MO*(X x BZ21 ~ M O * X ) I I ~ I ~  
t 

where x is the MO Eulw class of the Hopf bundle, and we can define operations 
Proof. First consider (TG,MG8I. The pair (TU,MUl is clearly lim1-free since the - 
spectral sequence Er(TU2i;MU) collapses for dimensional reasons. For each other q+i 

Ri:MG%+MO x 
choice of G and G' there are maps f:MU + MG' and g:TG + TU satisfying the Imotheses 

for i F Z  by the equation 
or VAL.+.+, ilencr raurl pan- ,LU,LV~U , LO irrv -rLrr.  - .,A,.A-.. argument gives the 

remaining cases. P2x = 1 ( ~ ~ x ) ~ ~ - ~ .  
i 

Corollary 5.3. MG is an H: ring Spectrum. One can prove various properties of the Ri exactly as in 82 (see 13, 8151). 

To deal with the case of complex cobordism we need some formal-groups notation. 
On the other hand, it was shown in 171,IV§21 that MG has an Em ring structure. Let F(x,yl be the formal group of MU and let lnl(x) be the power series defined 

in 184; see IEquiv, 
inductively for n 2 0 by 111(xI = x and Ln+ll(xl = F(Inl(x1,xl. There is a 

maps obtained in this Kunneth theorem due to Iandweber 1491: 
way and let <" be those obtained- from 5.1 and 5.3. As one would expect, the two 

j 
structures agree: W*IX x ~ir) 5 (~~*~)lluli/l~l(u), 

E H where u is the Euler class of a nontrivial irreducible complexrepresentation of n. 
Proposition 5.4. For each j , 5 = Sj . 

j The Power series lpl(u) has leading term pu but is not divisible by p, so that in 

Proof. We use the notations and Definitions of VIISB. Fix i and let a = ai. If Particular MU*B~ is torsion free. We cannot continue as in the unoriented case 
H X suffices to show that the elements si and St in cobordism represented by the since the power series Ipl(u1 and the ring MU Bn admit no simple descriptions. 

composites E There is however a relation between P,, and the Iandweber-Novikov operations sa which 
IF. 1 

T ( ~ ~ I A ~ ,  T(P~I(~) ~ ( D ~ N G I ~  -J--L (MGI, is due to Quillen and was used by him to give a proof of the structure theorem for 

J ZXMU. Let aj (XI for j 2 1 be the coefficient of d in the power series 
and 

kE1 P-1 

T(nil hZ,T(pi)(' &(D.MG), J &(MG), F i-1 
~ I X I Y I  For a multi-index a = (al, ..., akl let a(xla = al(xlal..- ak(x) uk . 

J 
2 2 

.-. , - : + + , . A  I nr 7 71 .*a IB~,~,~. VTT.~.~] Define x r MU2P-2~n by the equation x.Z 1 = PTZ 1; thus x is the Euler class of 
the complex reduced regular representation. 

shows that the second composite is induced by a bundle map from qi @ (pi1j into 

a a+dij 
'4:(MG) (T("~) AZ, (T(P~I(~'I - (MGI (za~(m. x ( P ~ I ~ I I  

A J 
H 
ni to the canonical Thom class in the target group. Since the 

lm class of a Whituey sum is the product of the Thom classes, the 

\ isomorphism '4 takes the Thom class of T(ni) A, (T(pi) (j '1 to that 

. . , . .  . .  , : l  n ~ ; . " i ,~~  

Such structures always determine Hm structures, as mentioned 
E 

VII521 for the details. Let 5.:D MG + MG be the structural .. .l d 



Proposition 5.5. For any finite complex X there is an integer m > 0 such that the quence illi} is a map of prespectra, and 4 is defineb to be Z{ui} (see 

equation $1): The multiplicative Property 119, 11.1 and 11.31 of the Atiyah-Bott-Shapiro 

(1) 
a m-la/ (P,,X)X~-~ = (Sax)a(u) x entation implies at once that {vil is a ring map, and hence so is 4 by 5.2 and 

1.1 '_ m 1.2.3. Similarly, Theorem 6.1 is a consequence of the following property of il. 

holds for all x e M U ~ ~ X .  
reposition 6.3. If p is any Spin(8i)-vector bundle then 

For the proof see [931 or [Ill. There is a similar relation between P, and s "(EX. x 4) = Tiu(p), 
in the unoriented case. Since the right side of equation (1) is additive in x we 3 Tj 

have where @. is the power operation defined in 54. J 

Corollary 5.6. (P,)(x+y) - P,x -P,Y).~~ = 0 for large m. In the terminology of 51, Proposition 6.3 says that 9. satisfies tom Dieck's 
J 

axiom P4. tom Dieck gives a simple proof of the analogous statement for the KU- 

orientation of complex bundles in 131, 0121. 
56. The Atiyah-Bott-Shapiro orientation. 

For the proof of 6.3 we need to recall several technical facts from 1191. The 

first is the "shrinkingw construction in P(D,Y). Let 
It is well-known that the KU and KO orientations constructed by Atiyah, Bott 

dl d and Shapiro in 1191 give rise to ring maps E,: O + E o + E 1 t  ... &En-0 
+U:~pinC + KU be a complex of real vector bundles over X which is acyclic over Y. Choose 

Euclidean metrics in each Ei and let Gi:Ei-l + Eibe the adjoint of di with respect 
and m0:~pin + KO 

to the chosen metrics. Let 

In this section we shall prove 
s(E*): D 0 c-- S(E)~- s(E), - 0 

be the complex with S(E)~ = @ Ei, s(EI1 = @ Ei , and differential 
i even i odd 

Remark 6.2. Mpin actually has an 4 structure, as shorn in 85. Ftf combining 6.1 D(el, e3 ,... ) = (dlel, S2el + d3e3, 6 p 3  + d5e5 ,... ) 
with VII.6.2 we see that the lf structures for KO and kQ constructed in 54 and in 

VIIB7 extend to 4 structures. Then s(E) is in &(X,Y) and it defines the same element in KO(X,Y) that E does (see 

[19, p.221). The same construction works G-equivariantly provided that the chosen 
We shall give the proof of 6.1 only for +O, whlch will henceforth be denoted by Euclidean metrics are G-invariant. 

4; the remaining case is similar. If p is a Spin(8i)-vector bundle we denote its 
Next we need the Clifford algebra Ci. By definition, Ci is the quotient of the 

Atiyah-Bott-Shapiro orientation in KO(T(p)) by il(p). 
tensor algebra T(R~) by 'the ideal generated by the set {x 8 x - lixli2.1/x < Iti]. The 

First we translate 6.1 to a bundle-theoretic statement. As usual, let Psi be i grading on TIR gives Ci a Z2-grading by even and odd degrees and we will write 
the universal Spin(8i)-vector bundle. If X C  BSpin(8i) is any finite complex, we [I?I for the Z2-graded tensor product of two Z2-graded objects. By a e M  over 
obtain an orientation class Ci we mean a Z2-graded real vector space with a map 

C 

V ( P ~ ~ \ X )  KO(T(P~~IX) ). 
Ci @ M + M  

These classes are consistent as X varies, hence by 5.2 and VII.4.2 they determine a 
satisfying the usual properties. Equivalently, such a structwe is given by two 

unique class in 5(TSpingi) which is represented by a map 
maps 

vi:TSpingi + 80 x 2. Xi @ M" + MI 



each denoted by x @ mt-+ m, such t h a t  (x,ml@ ... O m  . @ x i m i @ r n i + , O ~ ~ ~ Q m  1. 1-1 j 

*quired isomorphism is given by taking (x,ml @ .., @ m j l  t o  i t s e l f  i f  

f o r  al l  %,m. In par t icu lar ,  the l a t t e r  description shows tha t  i f  M is  a Ci-module 1 + ... + I m j  1 is congruent t o  0 or 1 mod 4 and t o  its negative i n  the remaining 

( x e y I ( m @ n )  = m e n  + ( - l ) l m l x @ y ,  Next we r eca l l  tha t  Spin(i1 is a subgroup of the group of uni t s  of Ci ( i n  f ac t  

for  all r e  lli, y eFti,  m e  M, n r  N.  I f  M is any module over Ci we can define a 

ction of Spin(i1 on E(M1 through automorphisms by g(x,m) = (gxg'l,gm). Now i f  P i s  

principal Spin(i1-bundle over X with associated vector bundle 

of r e a l  vector bundles over Ri by l e t t i n g  EO(MI = lli x &, E1(MI = Ri x M ~ ,  and 

d(x,ml = (x ,ml .  Equation (1) shows tha t  t h i s  is acyclic except a t  0, and i n  E(M,P) = P xsp in ( i )  E(M). 

par t icu lar  it defines an element of K O ( D ~ , S ~ - ' I .  

We can now define two complexes over (lli1j ,namely E(M j I and the external -equivariant principal  bundle for  some G (i.e.,  G ac t s  from the l e f t  on P and 
tensor product E(M1 @ j .  The f i r s t  has length 2 and the second has length j + l .  We ~ ~ u t e s  with the r ight  action of S p i n ( i ) l  then E(M,Pl has a l e f t  G-action and 
need t o  he able t o  compare them. - 

e f ~ e s  an element of KOG(T(p)). I f  G a c t s  f ree ly  on P we can divide out by i ts 

ction , and it is easy t o  see t ha t  the quotient complex E(M,P)/G is j u s t  E(M,P/Gl. 

isomorphic t o  E(M Atiyah, Bott and Shapiro specify a module A over C8 for  which E(A) represents  

he Bott element i n  ii6'(s8) (see 119, p.15 1 I ,  and i f  P is a principal  Spin(8i 1-bundle 

hey define p(p1 e % ( T ( ~ )  I t o  be the element represented by E(h a i , ~ ) .  
tha t  the adjoint  of X : M ~  + @ is  -x:@ + M' for  eaoh x F lli. We define an inner From now on we f i x  i, P and p and denote h hy M. bt q = d with its 
product in  M ' j by 

rV 
xternal tensor product E(M,Pl @ j define the same element of KO (T(q1 I .  We can 

with the understanding tha t  <m,m'> = 0 i f  / m l  # / m t  1 .  Then s(E(M) j I and escrihe these complexes more simply: the  f i r s t  is 
z j  

E ( M  @ j  1 clear ly  involve the same two bundles, hut they  have d i f ferent  

d i f f e r en t i a l s ,  say d and d ' .  The defini t ion of the shrinking construction gives 4 x E ( M * ~  I 
s p i n ( 8 i ) j  

d the second is  

d x 
~ p i n ( 8 i 1 J  

(E(M) @ I ;  

hosen t o  be invariant  under Spin(Bi1, hence the inner product on E(M1 @ j  used i n  



57 P - r n  H, rinz maps. 

In this Section we make some general observations ahout ~ - 1 0 ~ ~ 1  H rinrrmsna 
~~ --~s ~ ~ ~ ~ . r .  

and apply them to show that the Adams operations are H, ring maps and that the  dam^ her case the result follows from 7.1 and the inductive hyPothesis. 

S ~ a n d  of KUtp) is an H$ ring spectrum. We also obtain a sufficient condition for 

BP to be an H: ring spectrum. 1 Under the usual lim hypotheses, it suffices to check equation (1) for spaces 

Throughout this section we let p be a fixed prime and let n c z be generated P for finite CW complexes. However, far actual halcualtions it is much easier to 
by a p-cycle. ai with the' internal operation P, than with Or. O u r  next result allows us to 

to this case when we are dealing with spectra like KU or MIMU. 
Lemma 7.1. Let F be a P-local spectrum and let Y be any spectrum. The map 

* X Let F be a p-local spectrum such that nXF is free over Z(p) in 
8 :F (D. Y) -+ F'(D Dry) 

JP "en dimensions and zero in odd dimensions. Let Xbe a space such that H*(X;Z) is 

is Split monic, and if j is prime to p the map ee abelian in even dimensions and aero in odd dimensions. Suppose that X and F 

ave finite type. Then the map 
X * * 
a :F D.Y + F (YAD. Y) 

3 3 -1 I* 0 A*:F*D$ i Y*X(P' 0 P*(XABV+) 

is split monic. 

X Proof. The subgroup I. I n of Z. has index prime to p, and hence the composite J JP P -X proof. First let F = HZtp,. The Bockstein on (D,,X;Z ) is given by 11.5.5 and 
it follows that E2 = Em in the Bockstein spectral sequence. Thus H (D,,X;Ztp,) is a 

X X * 
H (I. ; H I M H (I. ;M) 

JP J P J P X X direct sum of copies of Zip, and Zp, so it suffices to show that the maps 
d (I 0 A ) @Zp are monic. For the first we observe that 1 OQ 

is an isomorphism for any p-local Z. -module M. Thus 
J P is a split injeotion by a simple transfer argument. For the second we use 3.5 and 

x the universal coefficient theorem. This completes the proof for F = HZtp,. For the 
X X X X 
FD. Y L F D  Y 

JP general ease, we observe that I @ A  induces a monomorphism on E2 of the Atiyah- zj 3- 
Hirzebruch spectral sequence and that the spectral sequences for X(P) and XABF' 

is split monic by 1.2.4. The result for B* follows since B factors as collapse for dimensional reasons. 

O u r  first application is to the Adams operation 
D.DY = D  Y A D  Y 
J n 2.3~ 

3 jP 
$ k : y p )  + KU<pl 

and the result for a* is similar. 

As an application, we have 

with k prime to p. This is well-known to be a ring map. 

k 
Theorem 7.4. If Y is any spectrum and y E K U ~ ~ Y  then g $jy = k-jnej [kngky). In 

particular, gk is an H, ring map hut not an $ ring map. 
Proposition 7.2. Let E and F be tf ring spectra with power operations 7. and pi. 

3 
Suppose that F is p-local. Let f:E + F be a ring map such that the equation proof. k t  @Iy = k-jnT.lmy for y 14%. we must show g k j  = g k .  ~he(S;i are 

j J -, consistent in the sense of 1.2 and thus define another H: structure on KU,,, (which 
(11 - .r, f, o F p  = JjP o f, 

agrees with the standard H, structure but has different z$-orientations). By 7.2 it 
holds on E ~ ~ Y  for all i c Z and all spectra Y. Then f is an ring map. k ' k 

suffices to show g Tp = Fpg , and by 1.3 it suffices to show this for finite corn- ' k 
plexes. Since gk is a ring map we clearly have I*$% = I*F~+ , so by 7.3 it Proof. We shall show that fx o Fj = 2 o f, for all j by induction on j . This is 
suffices to show 

trivial for j = 1 since .jl is the identity. Suppose it is true for all k < j. If j 



( 2 )  
k V PTx = p'vkx ch be the Chern character and l e t  X be a f in i t e  camplex. We have 

for a l l  x ~ K ~ " X  whenever X is a f in i t e  cornleu. I f  x is  the Both element. h than 



d the result follows since 

If M*X has no p-torsion then, since f(x) has constant term p, u is not a zero- We can now use Quillen's formula 5.5 to give a very explicit equation which is 

divisor in M*(x) I lul l/f(uI. The element x of Corollary 5.6 has leading term quivalent to (7) .  

(P-l1!uP-l, hence x is also not a zero divisor. Thus 5.6 implies that P is additive 
for such X. It is also multiplicative by l./r(iii). In particular we have a ring . Equation (71 holds for all X if and only if the element 
homomorphism 

X 
Since the elements IC?I generate M (pt) Q Q as a ring and since MU*(BnI is torsion f BP*BZ is zero for each n not of the form pk-1. Here the (ca,b"-ll are certain 

free, equation (81 implies umerical coefficients defined in 16, Theorem 4.1 of part 11. 



Proof. This is immediate from 5.5, 7.7, and 16, Theorems 1.4.1 and 11.15.21 

There is no obvious reason for the elements specified in : 
they were zero, it would be evidence of a rather deeo connectic 

Dyer-lashof operations in K-theory were first considered by Hodgkin, whose 

of K,(QSO;Z~) 1411 led him to conjecture the existence of a single 

operation analogous to the sequence of operations in ordinary homology. He con- 

structed such an operation, denoted by Q, for odd primes 1421; a similar construc- 

tion for p = 2 was given independently by Snaith, who later refined Hodgkin's 

construction for odd primes and analyzed the properties of Q. The construction of 

Hodgkin and Snaith was based on the term of a certain spectral sequence (namely 

the spectral sequence of 1.2.4) and therefore had indeterminacy, and Hodgkin showed 

that in fact any useful operation in the mod p K-homology of infinite loop spaces 

must have indeterminacy. He also observed that the Dyer-Lashof method for calcu- 

lating H,(QX;Z ) by use of the Serre spectral sequence completely failed to 
P 

generalize to K-theory. The indeterminacy was a considerable inconvenience, but the 

operation was still found to have applications, notably in the caloulation of 

K,(Q@;z~) given by Miller and Snaith [841. This result, which was proved by using 

the Eilenberg-Moore spectral sequence starting from Hodgkin's caloulation of 

K,(QSO.Z I was the first indication that K,(QX;Zpl might be tractable in the ' P ' 
presence of torsion in X. The main technical difficulty in the proof was in 

determining exactly how many times Q could be iterated on a given element, since Q 

could be defined only on the kernel of the Bockstein 8.  (Incidentally, a joint 

paper of Snaith and the present author showed that the odd-primary construction of Q 

contained an error and that in this case as well Q could only be defined on the 

kernel of 6.1 The answer for RP" was that Q could be iterated on an element exactly 
as many times as the element survived in the Bockstein spectral sequence. 

Unfortunately, the methods used in this case did not extend to spaces more 

complicated than @. 

In view of these facts, it is rather surprising that there is in fact a theory 

of primary Dyer-lashof operations in K-theory for which practically every statement 

about ordinary Dyer-Lashof operations, including the calculation of &(QX;Zp), has a 

precise analog. We shall remove the indeterminacy of Q by constructing it as an 

operation from mod p2 to mod p K-theory, and more generally from mod pr+' to mod pr 

K-theory. It follows that Q can be iterated on any element precisely as often as 



the element survives in the Bockstein spectral  sequence. There are also operation 

%.nd R taking mad pr t o  mod prtl K-theory in even and odd dimensions respectively ed in section 4; th i s  fac t  is considerably more d i f f i cu l t  than its analog in 

( 2 is the K-theory analog of the Pontrjagin p-th power 157, 281, while R has no mo~ogy because of the nonadditivity of the operations. 1 
analog i n  ordinary homology). These w i l l  play a key role in determining the proper- I would l ike  t o  thank Vic Snaith for  introducing me t o  th i s  subject and for  the 

indecomposable generators i n  the K-theory Bockstein spectral  sequence for QX.' The 

operations Q, 3 and R form a complete se t  of Eyer-Lashof operations in the sense owe Gaunce Lewis many commutative diagrams, as  well as  the f i r s t  version of 
tha t  they exhaust the poss ib i l i t ies  i n  a certain universal case; see Section 8. The Finition 1.7. Finally, I would l ike  t o  thank Peter May for encouragement and for 
key t o  defining primary operations i n  higher torsion is the machinery of stable s careful reading of the manuscript. 
extended powers, which gives a very satisfactory replacement f a r  the chain-level 

machinery in ordinary homology; more precisely, it allows questions about the 

operations t o  be reduced t o  a universal case in the same way that  chain-level . Generalized Homology Gperations 

arguments allow reduction t o  BEp. In applying th i s  mchinery t o  K-theory we mke 

essent ia l  use of the fac t  tha t  periodic K-theory is an % ring spectrum, as  shorn i Let E be a fixed H, ring spectrum. In th i s  section we shal l  construct 

V I I  57 and VIII 0 4 ,  and the fac t  tha t  the Adams operations are p-local H- maps as  neralized Eyer-Lashof operations in the E-homology of He ring spectra X. When E 

shorn in V I I I  57. 
einberger in chapter 111, and fo r  E = S they are Bruner's homotopy operations. 

This chapter is largely self-contained, and i n  part icular it does not depend 
en E is the spectrum K representing integral  K-theory we obtain the operations 

logically on the ea r l i e r  work of Hodgkin, Snaith, Miller and the author. The 
eferred t o  i n  the introduction which w i l l  he studied in deta i l  in sections 3-9. 

organiaation is as  follows. In section 1 we give a very general definit ion of Eyer- 
Far simplicity, we shal l  begin by defining operations i n  E,X, although 

the ordinary Eyer-Lashof operations. In section 2 we use some of the properties ltimately ( for  the application t o  K-theory) we must introduce torsion coefficients. 

ix a prime p. For each n e Z  the operations defined on F$ w i l l  he indexed by 

,(DpS"), i .e.,  for each e t s ( D  S") we shal l  define a natural operation 
P 

the equivalence QQZX = QX; instead the basic ingredients are the approximation 
Qe:E,X + E,X 

theorem and the transfer.  In section 3 we give the properties of Q, @,and R and the 

statement of our calculation of K,(QX;Z ); up t o  isomorphism the resul t  depends only 
P the E-homology of H_ ring spectra called the internal  Eyer-hshof operation 

on the K-theory Bockstein spectral  sequence of X, hut for functorial i ty we need a 

modeled on that  i n  section 2. Sections 5 through 8 give the construction and 

properties of Q, 3, and R. In section 5 we lay the groundwork by giving very 
with an external operation 

Precise descriptions of the groups K,(D S";Z 1. Section 6 gives enough information 
pr Q, : #X + #DpX 

about Q t o  calculate K*(D X;Z ), a resul t  needed i n  section 4. The argument d i f fers  P P 
from that  i n  1771 in three ways: it is shorter (hut l e s s  elementary), it gives a 

which is defined for arbitrary spectra X and is natural fo r  arbitrary maps X + Y. 
more precise resul t ,  and it applies t o  the ease p = 2. Sections 7 and 8 complete 

Throughout th i s  chapter we shal l  use the same symbol for  corresponding internal  and 

external Dyer-Lashof operations, with the context indicating which is intended. In 

th i s  section we shal l  he concerned only with the external operations, and thus X and 

*1t was asserted i n  the original  version of th i s  work (176, Theorem 51) that  certain Y w i l l  always denote arbi t rary  spectra. 
composites of Q and R gave indecomposable generators in K,(QX;Z ). Doug Ravenel has 
Since pointed out t o  the author tha t  t h i s  is incorrect: his  argument is given in  In order t o  motivate the definition of the external operation Qe we give it in 
Remark (ii) following Theorem 3.6 below. The corrected versions of 176, Theorems 5 
and 61 are also given i n  Section 3. (The mistake i n  the original  version was in the stages. Fix m,n a Z and e < sDpsn. L e t  u 6 EDS denote the unit element. Yle define 

Proof Of Lemma 4.7 for M = Z q ,  where it was asserted that  the r > 1 and r = 1 cases Qe f i r s t  on the element r"u G ~ S "  by Q,(Z%) = e. If x a q X  happens t o  he 
are  similar. They are not.) 



~ L E & Y ~ E ~ , E A Z ~ E ~ Z .  

- 
:cE +CE, and we can also define a smash product on E by letting fl A f2 be 

to do this in a somewhat more general context, so let Y be any spectrum and let 
f:Y -t E A X  be any map. First we define f,, to be the composite 

ally, E homology is a functor on CE which takes f to f,,, and the following 

l e m  shows that both Q, and the external product in E-homology are natural 

transformations. 

L 4 ( E A x )  A D ~ E A D ~ X  AE.D"X, 

(ii) (flxgl) 8 (f2*g2) = (fl fl)xx(~1Q~2). 
where 5 comes from the H- structure of E. Combining these definitions we obtain a 

As one would expect, the maps l,u,B and 6 of I51 also give natural 
(ETf)**:~*~"~ --E,D"x . transformations. 

lemma 1.4. (i) 1,(5,,f),, = (Epf),,~, if n c  P. 
Definition 1.1. If x E,X is represented by f:Sn i En X and e is an element of 

- 
(ii) a*(\f X E  f),, = 

P (D" x ,,f)**u* - 
Q,x = (E f),,(e) cE D X. 

P m P (iii) 6,(5B f),, = (EqfPf),,8, . 
n 0 

Of course, this agrees with the definition given earlier when x is spherical, (iv) 6,(.En(fl " f2)),, = (Exfl "fi,f2),,6,. 

and in particular when E = S we recover the external version of Brunerls operation. 

Next let E = HZp. The standard external operation (as defined by Steinberger) is 
We shall need two further transformations, namely the "diagonal" A:E%X + ~ z X  

denoted ei Q xP, where ei is the generator of H.(Z .Z  (n)) defined in l68,section 11 
1 P' P and the transfer r:D X + DnX. The first of these was constructed in 1153. The 

P 
transfer was defined in I151 for certain special cases, and will be defined in IV53 

representation if n is odd). Now it is easy to see that the map 
of the sequel whenever n c p. 

(i) (Ontf ),,A, = A,(z\~ ),,. 

given by ei h e i  Q (Pu)' is an isomorphism, and we have 
(ii) r,(E f),, = tij,,f),,r, . 

P 

Proposition 1.2. If e = m(ei) then Qex = ei Q xP for all x. The proofs of 1.3, 1.4 and 1.5 are routine diagram chases (using IEqui. ,VI.3.91 

for 1.4(ii) and (iii) and IEqui.,IV.531 for 1.5(ii)). 
The proof of 1.2 will be given later in this section. 

Next we would like to define Dyer-Lashof operations in E-homology with torsion 
It is possible to put Definition 1.1 in a more categorical context. Let cE be 

the Category in which objects are spectra and the morphisms from X to Y are the 

stable msps from X to EAY. The composite in GE of f:X + E AY and g:Y + E 1 2  is 

the following composite of stable maps nn(ErhX). Thus if Er is an H_ ring spectrum (for example, if E is ordinary 

integral homology) we can apply Definition 1.1 directly to Er. However, it is a 



melancholy fact that in general E, is not an Hm ring spectrum, as shorn by the chains functor on CW-spectra, and we have a natural equivalence D C, = C D P * P 
following, which will be proved at the end of section 7. 

Proposition 1.6. K, is not an H ring spectrum for any r. maps from C,X to r,. In particular, we obtain chain maps B:C,E + r, and 

Thus we must generalize 1.1. First of all, if f :Y -t E A X  is .my map we defin 

f,, to be the composite 

ne such element, hence we have we have c o D a = a ' .  Next, observe that f,, is 
P 

to the composite 

Next observe that the Spanier-Whitehead dual of zEri, is Eri,, so that there is a E*Y --+E,(EAX) -E*X, 

natural isomorphism 

#(X;r) 2 IL"M~,EAXI. 0 re the second map is the slant product with the identity class in E E. Hence f,, 

represented on the chain level by the composite 

In Particular, any x s  #(X;r) is represented by a map f:z%tr + E A X  and there 

results a homomorphism ~:c,Y -C,(EAX) s C,EQ C,X m r ,  Q C,X = C,X. 

ince h is a chain map we have 

for any s t 1. Note that f,,z"ur = x, where L+. is the composite 

- - 
o it suffices to show (D f),, = (Dph),. Now (Dpf),, is equal to the composite P 

Definition 1.7. Let e r %($z"Mp;s). Then 

Q,:#(X;r) + %(DpX;s) ere the last map is the slant product with the structural map in E'D~E. Hence 

Dpf),, is represented on the chain level by the composite H around the outside of is defined by Qex = (Dpf),,(e), where f:xnEri, + E A X  is a map representing x. 
he following diagram 

Lemmas 1.3, 1.4, and 1.5 remain valid in this generality. 

When E is integral homology and r = s = 1 Definition 1.7 provides another way 

of COnStrUCting ordinary Dyer-lashaf operations, which are of course the same as 

those given by Cefinition 1.1. However, even in this case 1.7 has certain technical 

advantages; for example, it gives the relation between the Bockstein and the Dyer- 

lashof operations, and by allowing r and s to be greater than 1 one obtains the 

Pontryagin p-th powers. 

We conclude with the proof of 1.2. We write E for Up. The result holds by 
definition when x = xnu6 #sn,so it suffices to show that 

Here d is the evident diagonal transformation and the diagram clearly commutes. 

(\f),,(ei @yP) = ei Q (fxgP Inspection of the piece marked @ shows that H = D P h as required. 

for all f :Y + EA X. We shall do this by a direct comparison with the mad p chain 

is a fixed resolution of Zp by free Z [z I-modules. Vle let C, dezote the mod p P P 



A:CA + H,CX 

show 

A is an isomorphism. 

derive this theorem from an analogous fact about extended powers. Let 

trum and let A be a basis for H,Y. CA is defined as before, and we 

tered ring by giving Q'X filtration pe(I1. Let h$i = FkCA/Fk-lCA for 

,as a standard basis consisting of the standard basis elements in 

.. There is an additive map 

,110~s. If all Dyer-Lashof operations and products are interpreted 

Len a standard basis element of represents an element of 

. . . A(~p)js~l with 2' + ... + 7 = k; here (D P 12 denotes the J-th 

. Applying the natural maps a, and 0, gives an element H,%Y which by 

the value of Ak for the original basis element. We then have 

hk is an isomorphism for all k , 1. 
2 2.2 for the moment, we give the proof of 2.1. Let X be a unital 

let A "("1 be a basis for H,X. Let Y = X/S. Then A projects to a 

sis for H,Y which we also denote by A. For each k l the map A/FkCA lifts to a 

D CX - CX p h(Ir):FkCA + &FkCX and the following diagram commutes. 

.i' t 
0- FkmlCA ---" FkCA -- DkA - 0 

Now let X be a unital spectrum and assume the element n rHOX induced by the H,Fk-lCX -H,FkCX b H , D k Y  

unit map is nonzero. We can then choose a set A C H*X such that A u {n) is a basis 
for &X. Let CA be the free commutative algebra generated by the set ince hk is an isomorphism, the map y is onto and hence the bottom row is short 

xact. It now follows by induction and the five lemma that hCk) is an isomorphism 
{Q'X I x <A, I is admissible and e(1) + b(1) > 1x1) or all k, and 2.1 follows by passage to colimits. 

(here 1x1 denotes the degree of x; see 128, 1.21 for the definitions of admiss- 
We begin the proof of 2.2 with a special case 

ibility, e(1) and b(I)l. The elements of this set, which will be called the 

standard indecomposables for CA, are to be regarded simply as indeterminates since . h is an isomorphism for all Y. 
the Q' do not act on H,X. The basis for CA consisting of products of standard P 

indecomposables will be called the standard -for CA. Using the inclusion 

X + CX and the fact that CX is an E_ ring spectrum we obtain a ring map 
": % .... ,... r , *  ...L. 

na is a szanaaro o i ~ a ~ r ~ - i a v r r  a a ~ o u ~ a ~ ~ u ~ ~  m ~ r a ~ ~  WALL z ~ v v  u r  

alvru r i e r r  (set? iw, tieucion Ill. It is interesting to note, however, that one can 



prove 2.3 without any reference to the chain-level using the methods of section 6 
below. 

Next we use the machinery of section 1 to reduce to the case where Y is a wed 
of spheres. For each x s A choose a map fx:~IxI + HAY representing x. Let 

Z = VSIxI and let f:Z + H A Y  he the wedge ofthe fx. Then f,,:bZ + &Y is an 

isomorphism. We claim that 2.2 will hold for Y if it holds for Z (where H*Z is 
given the basis B consisting of the fundamental classes of the SIxI ) .  To see this 

consider the following diagram . . . .  

The diagram commutes by 1.4(i) and (iii) and 1.511%). The map 0 ,  is an isomorphism. D. 
d 



I 
Here y , z ~  %(@v 9) are the fundamental classes of the first and second summands. let d. = %ix)/b . This has the basis (Q xl1 admissible, pa(" = k, 

The set a C &D~S' is {gEQSx 12s-E i n). (The reader is warned as this point to 

distinguish carefully between the Bockstein 6 and the natural m p  6 of section 1.1. omorphism. The basic idea is to use the homology suspension, or rather its 

This is made easier by the fact that we never use the latter map per se, only the ternal analog which is the map A*Z:H~D~S~ + H~+~D~S~+', to detect elements of -Q . 
homomorphism 6% induced by it.) The set a' C H*D~(@~S") is {B'Q$,B~Q~~~~S-E 2 n) 

I t 2 s Hn+lS"fl be the fundamental class. We define r:J + ~ ~ { 3  by r(Q x) = 

if n is odd and is the union of this set with {yizP-i/l 5 i 5 p-1) when n is even. p, where we interpret Q12 as zero if e(I) < n+l and as a p-th power in the usual 

if e(1) = n+l and b(I) = 0. The key fact is the following, which will be proved 

by inductive hypothesis. The maps gi:snvsn + S" are defined for i = 0,l and 2 by the end of this section. 

go = lvl, gl = lv* and g2 = *vl, where 1 and * denote the identity m p  and the 

trivial map of sn. To complete the construction of the diagram we require . The diagram 

comutes for i = 0,l and 2. 

The proof of 2.7 is given at the end of this seetion; all that is involved is 

to "simplify" expressions in Dj a' and DjO. using the Adem relations and the Cartan 
formula in a sufficiently systematic way. 

Now consider the inner square of diagram ( * ) .  Byassumption on k we see that We also need the fact that the evident action of the Bockstein on $ comutes 
Bjpx o T* is an isomorphism, hence Ak is onto. Let e:Dk{x] + Dk{x) be the 

composite y. o AT' o r* o Ak. Clearly Ak will be manic if e is. In fact we shall I 
J J Now let $, be the suhspace of Q spanned by the set {Q x/I admissible, 

show that e is an isomorphism. We claim first of all that e takes the subspace pa(1) = k, e(I) + b(I) 5 n+m). We shall show first that is manic on Jl. Let Q; 
B C %{XI generated by the decomposable standard basis elements isomorphically into be the subspade of J1 spanned by the set {Q1xl I admissible, pa(') = k, el I) = n+l, 
itself. To see this we use the outer square of diagram (* ) .  Let b(1) = 0). Then dl = .Pi@@$; From the definition of r we see that 6 9 1  is 
8':Dk{y,z) + Dk{y,s) be the composite y! o A3-l o r* o Ak. Let 4'  C Dkiy,z) be 

J the kernel of r, that r is manic on 9; and that r(d;) = r(j ) A B . Let w he a 
nonzero element of 4; . We claim that gw lies in J1, so that it can he written 
uniquely in the form w1 + Bw" with w1,w"J;, and furthermore we claim that w' f 0. 

kernel of the map To see this note that rw is a nonzero decomposable, hence BPw is also a nonzero 
Dk(gl)* @ %(g2)* : %iy,z) - Dktx} @ %{x) 

and hence 8' takes p' into itself. But %(go)*( 8 ' )  = @ and 

Next we claim that 7 is monic on J m  for all m 2 1. Let w E Q with & = 0. 
m- 

Let $ = D {fi)/& and let I' be the composite 4 %{?I + $. Then rw is in the 
subspace t-l generated by Q1fi with I admissible, pa") = k and 

Since both J.? and & have finite type e: B t 8 will be an isomorphism if e(1) + b(1) . (ntl) .< m-1. Since ? ?w = ? Fw = 0 and since (hy induction on m) 8 

8': 0 '  + 19' is manic. But Ak is monic on 8 '  by 2.5 and the inductive hypothesis, is manic on we see that Fw = 0. Now the kernel of I' is precisely J1, and we 
have shorn already that ? is monic on J1, hence w = 0 as required. Thus 8: + 



is monic, and since =J has finite type T is an isomorphism. This completes the 

proof of 2.6 for the case k = jp. 

Now suppose k is prime to p and consider the following diagram 

Dl{y,5) 0 Dk-ll~,zl Y' - Dkly,5) 
\llgil* @ Dk-ligi)* j g i I *  

DIIx) 0 %-l(xl Dk(xl 

I Y L O X .  . " A, 8 A,. . A, 

elations are applied at a position in the sequence as fan to the right as 

le). Tiie result is an element of C(x1, where we agree to interpret all 

noes with excess less than 1x1 as zero, and we extend multiplcatively to get a 

rjcQ+ FkC{xl. The map yj is obtained by passage to quotients. The map y! is 
J 

ined in the same way except that we use the Cartan formula to simplify 

essions of the form ~ ~ ( y ~ s ~ - ~ )  with 0 < i < p. The inner and outer squares of 

ram (*I commute as a consequence of the external Cartan formula and Adem 

tions,.and the upper trapezoid clearly conunutes when i is 1 or 2. When i is 

the element yisp'i of lL' goes to g"/'x, and so it is necessary to check that 

esult of simplifying QIQn/'x with the Adem relations is the same as &ing the 

an formula on Q1xP; the result in. each case is zero unless all entries of I are 

ible by p, in which case it is ( Q I ~ ~ X ) ~ .  

Finally, we give the proof of 2.8. We need two facts about n,:H,(X%X) + 
S EX), namely that A,EQ~X = Q Cx if k = p and that (ai,k-ilx(x Q y) is zero 

0 < i < k. The first of these, which is the external version of the stability 

S, was proved in 11.5.6. For the second, which is the external analog of the 

ct that the homology suspension annihilates decomposables, we use the third 

2.7 and 2.8. For these we need certain properties of the externa 

these operations are additive, and QSx = I*(X(~)I if 2s = 1x1. T 
- . .  

Here y and y' are obtained from the products in C(x) and C{y,5) by passage to the 
gram of 11.3.1 with X = S1, noting that the diagonal n:S1 + S1b S1 is 

lhomotopic. Now 2.8 is immediate from the commutativity of the following 
associated graded. The diagram clearly commutes. The analysis of this diagram 

proceeds as before, except that in this case the msp ~,(gOl* takes the kernel of 

%(gl)* @ %(g2)* onto all of Dk(x),so that we can conclude at once that hk Is an 

isomorphism without having to consider indecomposables. 

This completes the proof of 2.6, and thereby of 2.2, except that we must still 
r .  

D. 
3 

-DklxI 

A 
cartan rormula 1s S ii 1 Ak Ak 

6,QS(x 0 y) = Qix 0 Q'-~Y. H*Dj $9 Bj PX 
i=o %- HID$' 

The external Adem relations are obtained by prefixing Bppx to both sides of the 
standard Adem relations. All of these relations can be obtained directly from the 

Y /*X 

H*D~$~'+' *&,* 

A" 
definitions of section 1, without any use of internal operations (compare sections 

- H ~ D ~ ~ ' + ~  

and 8 below). They can also be derived from the corresponding properties for 

internal operations by means of the equivalence is the map constructed in the proof of 2.7 and r '  is the composite 
r 

c(xlrSO) v DkX 
XI -9 --+D~(~I. We define r n  to take decomposables to zero and Q1(~'QSx1 to 

k>O BEQS?1. Conunutativity of the left and right trapezoids follow from the two 
proved in IEqui., VI1951. ulas given above. Commutativity of the upper trapezoid is obvious except on 

merits of the form Q1(,5'QSx) with e(1) = n+l + 2s(p-1) - E and b(I1 = 0, and it 
Proof of 2.7. Wery standard indecomposable in C& has the form Q1(8'Qsx~ We C lows in this case from a simple calculation. 
formally simplify such an expression by means of the Adem relations into a sum of 

admissible sequences acting on x (for definiteness we assume that at each step the 



3. Dyer-Lashof Operations in K-Theory s odd then the following a lso  holds, where T :XAY + Y~X-switches the factors. 

( v i i )  T,(x @ y) = (-1) lYlIxly @ 

In t h i s  section we give our main resul ts  about K-theory Dyer-Lashof op 

We begin by fixing notations. We shal l  work in the stable category, so tha t  X w i l  = 2 there are two external products for each r satisfying (i), (ii), (v )  and 
alwws denote a spectrum. Homology operations are t o  be inferpreted as  in ternal  . If  these are denoted by@ and @ ' the relat ion 

r-1 
( v i i i )  x 0 Y = x 0 ' y + 2 Brx Q Bry 

ds. Relations (iii) and ( i v )  hold when either mod 2' product is paired with 
n : K ( X ; r )  -Ka(X;r-1) i f  r , 2 

a her mod zr-' product. If  r 2 2 then ( v i i )  holds for both Q and Q I, while 
s p,: K a ( X ; r )  -K ( X ; r + s )  i f  s 2 1 then the following holds. 

a 

or : Ka(X;rl - K a + l ( X ; r )  ( v i i ) '  T,(x Q Y )  = Y Q x = y Q x + t3y @ 0x. 

r: : K a ( X ; r )  - K,+,(ZX;r) . 
We shal l  actually give a canonical choice of mad 2r multiplications in Remark 

1 1 (Recall tha t  ZX means S A X  in t h i s  chapter, not XAS as  in chapters I-VII.) ( iv )  below. When X is a ring spectrum we obtain an internal  product denoted xy. 

p1 w i l l  usually be written simply a s  6. We write nS fo r  the s-th i t e ra t e  of n. write n s  K o ( X ; r )  for  the unit in t h i s  case, reserving the l e t t e r  u for the unit 
0 0 It  wi l l  often be convenient t o  denote the ident i ty  map.either by n O r  p,. 

Our next resul t  gives the properties of our f i r s t  operation, which i s  denoted 
elementary fac ts  about mod pr K-theory; the proofs may be found in 1131 ( e  Q. In order t o  re la te  Q t o  the K-homology suspension we must r e s t r i c t  t o  the 
3 .2( i i i ) ,  which is Lemma 6.4 of 1631, and 3.2(iv), which w i l l  be proved in section vel ,  and we f i x  natations for dealing with t h i s  case. If  Y is any space we 

7). , + 
e K , ( Y ; r )  f o r  K,(X Y ; r )  and, i f  Y is based, we write i(,(Y;r) for K , ( z - Y ; ~ I .  

logy suspension o is  the composite 
Proposition 3.1. (i) K,(X;r) is a Z -module. 

P" - 
(ii) If s 2 1 then nSt3,+,p~ ' 8, Za(fiy;r) A Z a + l ( r : n ~ ; r )  A K ~ + ~ ( Y ; ~ )  c K ~ + ~ ( Y ; ~ ) .  

Y i s  an H, space then SiY i s  a lso  an H, space and Z'Y' i s  an H- ring spectrum; see 

.7 and 1.3.8. 

Proposition 3.2. For each r 2 1 there is an external product . Let X he an H, ring spectrum. For each r 2 2 and a e  Z2 there is an 

K a ( X ; r )  @ K a , ( Y ; r )  + K a + a , ( X ~ Y ; r ) ,  
Q : K a ( X ; r )  + Ka(X;r -1)  

denoted by x B y ,  which has the following properties. 
the following properties, where x,y K,(X;r). 

(i) @ is natural, b i l inear  and associative. 
) Q is natural  for H, maps of X. 

(ii) If  n KoS is the unit then x Q n-u = n,u@ x = X. - 's 

(iii) n ( x @ y )  = n x Q  TY and nm(x @ Y )  = n X Q  n Y. 
) Qnx = nQx i f  r 2 3. 

( i v )  p*(x 0 TY) = (p*x) 0 Y. 

( v )  Br(x B y )  = BrX @ y  + ( -1)IX'X@ 

( v i )  r : ( x @ J y )  = ZXQY = ( - l ) J X I X @ J  r:Y. 



0,2,Qx if r - > 2. 

IY I  = 0 r-1 2 
particular (n XI €KO(X;ll is zero if r t 3 and is equal to (nB2x) 

2 

(vil Q(x+ y) = Qx + GJ - n(xy1 + 2r-"(n0rx~(n0ry) if p = 2 and 1x1 = /yl = 0 b + @, if 1x1 = /yl = 1. (i) There are no analogs for the Adem relations. 

e shall write Q":K,(x;~I + K,(X;r-s) for the s-th iterate of Q when 

Q(kx1 = kQx - (kP-kl(nxlP if k Z, 1x1 = 0.  imilarly for the operations R and a to be introduced later). 
P 

(iiil If x<K,(X;ll has 0x = 0 then x lifts toy cK,(X;2). Thus one can - 
fine a secondary operation 6 on the kernel of 0 by Qx = W. The element y is 

(viil Let 1x1 = /yl = 0. Then 
11-defined modulo the image of p* and thus 3.3(iv) shows that ?ix is well-defined 

I dulo p-th powers if 1x1 = 0 and has no indeterminacy if 1x1 = 1. This is 
~x.n($) + (xPl.Cy + p(QxI(Qy1 if p is odd 

sentially the operation defined by Hodgkin and Snaith 142,991 (although their 

2 nstruction is inoorrect when p is add, as shown in 1771 ). 
Q(xy1 = Qx.n($l + n(x 1.W + 2(QxI(Wl + 2r-2n(x0pX~n(y0ry) 

(iv) When p = 2, parts (vi) and (vii) are corrected versions of the 

orresponding formulas in 1761. Note that ~'~-4 = 0 mod 2'-l unless r = 2. The 

rmula for Q(xy) with 1x1 = ly/ = 1 and p = 2 implicitly assumes that the mod 2r 

Let 1x1 = 1, ly/ = 0. Then tiplioations for r 1 2  have been suitably chosen, since the evaluation of 

(xy + 2r-1(0rx)(0ry~) by means of 3.3(vi) and (viil gives a different formula. 

us we m y  (inductively) fix a canonical choice of mod 2' multiplications by 

oosing the mod 2 multiplication arbitrarily and requiring the formula to hold as 

ated for r 2 2. From now on we shall always use this choice of multiplications. 

Let 1x1 = lyl = 1. Then 
Our next result shows that, in contrast to ordinary homology, K,(X;l) will in 

I (Qx)(Qyl if p is odd eneral have nilpotent elements. 

r 
2 

Q(xy) = (QxI(Q1 + 2r-2n(x0rxlo(~0r~) + 22r-4h0rxl ( 8 ~ 3 ~ ~ 1  Corollary 3.5. If X is an H_ ring spectrum and x K1(X;r) then (nr-18rxlP = 0 in 



Proof of 3.5. (By induction on rl . If r = 1 then that, this is a smaller exponent than would be given by 3.5. In terms of the Q- 
r 

ation this. re4ation may be written lnr-S-l~S~rx)P = 0 for s < r and 
(8~)' = = BQP~X = o (QS~s+l~~-r+l~)P = o for s 1 r. 

by j.l(ii1, 3.31~1 and 3.3Ii.v). If r 2 2 then lii) The second statement of 3.6(viiil was not in the original version of this 

work (of. 176, Theorem 3Iivl I). The decomposability of QRx when r = 1 (which 
r r-1 

(nr-'grxlP = I (nr-16rx~P~P = I ~ ~ - ~ B ~ - ~  ctually implies its vanishing, as we shall see in Section 81 had been asserted by 

aith when P = 2 (199, Proposition 5.2Iiill1, but was not included in 1761 because 

by 3.31~) and the inductive hypothesis. e author 'erroneously thought he could prove QIix to be indecomposable in K1lQX;l) 

enever x€KILX;l) had nonzero Bockstein (of. 176, Theorem 411. This point was 

It turns out that iterated Q-operations on t-th Bocksteins are also ecently settled by Doug Ravenel, who observed that if one starts with the descrip- 

nilpotent. In order to see this we must make use of the operation R described in ion of K*IQIS~ U e21;1) given in 176, Theorem 41 and applies the Rothenberg- 

our next theorem. eenrod spectral sequence (which collapses) then one can see that the only 

decomposable in K~(QIS' Up e31;l) is the generator of K~(S' U e3;l), and in P 
Theorem 3.6. Let X be an H, ring spectrum. For each r 2 1 there is an operation rticular &R of this generator is decomposable. This contradicts part of 176, 

eorem 41 and a corrected version of that result will be given later in this 
R:K1lX;r) + K1(X;r+l) tion. We shall give a completely different argument in Section 8 to show that 

is decomposable, and in fact vanishes, for all x <K1(X;ll. 
with the following properties, where x,y <K1IX;r). 

(i) R is natural for H, maps of X We next introduce an operation &which is the K-theoretic analog of the 

lii) n P J  = Qxx - XI 8,x)P-', and if r 2 2 then Rirx = Q*x - ~P-'x(B~x)P-~ Pontrjagin p-th power 157, 281. This operation is a necessary tool in our 

calculation of K*IQX;ll and will also be used to give generators for the higher 
liiil p,Pa = Rpxx 

terms of the Bockstein spectral sequence. 

Theorem 3.7. Let X he an H, ring spectrum. For each r 2 1 there is an operation 

i-1 p-i-1 2:KOlX;rl + KOIX;r+ll 
+ ( P ~ l ) ~ r + l ~ x l ~ ~ ~  ( B~+~P*XI (B,+~P$) 

with the following properties, where x,y e K*(X;rl. 
lvil If Y is an H- space and x 6 3IY;rl then 

(il d. is natural for H- maps of X. 

p,11~x)~l if r = 1 Lii) n2x = xP, and if r 2 2 then nx = xP. 

2 Liiil dpxx = pP-lpx d, x. 
P,[ (0x1~1 + prQux if r 2 2. 

(ivl n8,+12x = xP-18rx 
k k 

(viil If k is prime to p then jl PJ = Rp x. 
P-1 1 

(viii) If r 1 2 then QRx = FQx. If r = 1 then QRx = 0. Fx + . 2 y +  1 p ( ~ ) ~ x l ~ i ~ P - i ~  i f p i s o d d o r r > 2  
* .  

S 

therefore have the following nilpotency relation. (vi) Let 1x1 = /yl = 0. Then qlxyl = (ax)(~yl if p is odd, while if p = 2 

here is a constant cr r Z2, independent of x and y, with 



I 2 
(Rxl($y) + p*1(Qxl(GYlI i f  p is odd and r 2 2 

hei r  values are for our canonical choice. It is quite possible tha t  the 

t and E; are a l l  zero. 

Next we shal l  use the operations Q and H t o  describe K*(CX;lI for an arbi t rary  

a1 spectrum X. If Y is a based space then the homology equivalence of 128, 

orem 1.5.101 is also a K-theory equivalence (by the Atiyah-Hirzebruch spectral  

uenee ), hence 

K , ( Q Y ; l I  n ( n O ~ ) - l ~ * ( ~ ~ ; l l  = ( n O ~ l ~ l ~ , ( ~ z " ( ~ t ) ; l l  

that our calculation w i l l  a l so  give K x l Q Y ; l ) .  

1, F i rs t  recal l  the-K-theory Bockstein spectral  sequence E ~ X  (abbreviated BSS) 

m 113. section 111. X was assumed t o  be a f i n i t e  ComDlex in 11'31 but we wish t o  - -, . ~ - .  -~~~ - ~- 

( ~ x I ( 2 y l  + 4*1(Qx)(clY11 + 2r -2 (0 r+14 ,&x~(0 ,+ l~~)  I in greater generality. The finiteness assumption is necessary for those 

+ Z ~ ~ ~ ( B ~ + ~ R X I ( B ~ + ~ ~ Y )  i f  P = 2 and r 1 2, u l t s  which deal with the E"1 term, since in general there is no useful re la t ion  

ween E ~ X  and K,X ( fo r  example, E ~ W -  is concentrated in dimension zero, while 

is concentrated i n  dimension one). On the other hand, the resul ts  of 1131 

and R(yx) = ($y)(Rx) + (1 + 2 ~ ~ ) ( ! 3 ~ % y ) ( @ ~ R x )  i f  p = 2 and r = I. Let h deal with Er for r f i n i t e  remain valid for arbitrary spectra X. In part ic-  

I x  1 = l y  1 = 1.  hen there is a constant 6; r Z independent of x and : 
P' 

y, with r ,  any (r-1)-cycle x can be l i f t e d  t o  an element y r K*(X;rl and we have d x = r 
'gry. The element y has order pr i f  and only i f  x is nonzero in Er. If we write 

X;-1 for  the inverse l i m i t  of the K,(X; r l  then an in f in i t e  cycle always l i f t s  t o  

X;-1; we shal l  frequently use t h i s  notation. Our next definit ion gives the kind 
L f p = 2 a n d r = l  data necessary for the description of h ( C X ; l ) .  

( v i i )  Let Y be an H, space and l e t  x c G ( ~ ; r ) .  If p = 2 then o a x  = 

while i f  p is odd there is a constant s;, independent of x, with o a x  ; 

k ( v i i i )  If k is prime t o  p then $ 3 x = 3$kx. 

kt 1 5 n 5 -. A s e t  A = U Ar with %C K*(X;r)  is called a 
16r6n 

of M n  for  X i f  fo r  each s 5 n the s e t  

: z r ~ ( a x ) ,  ojects t o  a basis for E ~ X .  

= pre;~(ox 
If the height of a suhbasis is not specified, it w i l l  always be assumed t o  be 

f in i te .  Suhbases with f i n i t e  height w i l l  occur only in sections 7 and 8. It is 

f t hard t o  see tha t  any spectrum has a suhbasis of any given height. The term 

basis is motivated by our next resul t ,  which is an easy consequence of the 

( i x )  Q 9 x  = 4 su l t s  of 113,8111. Recall tha t  a subset S of an abelian group G is a basis for G 

G i s  the direct  sum of the cyclic subgroups generated by the elements of S. 

. I f  A = U A is a subhasis of height n fo r  X and i f  s 5 n 
The undetermined constants e ,  i n  part ( v i )  depend on the choice of multipli- h s < - i f  n = A) then the s e t  

cations; they can be made equal t o  zero for  a suitable choice hut it is not clear 
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[nr-sxlx s Ar, s 2 r 2 n) v [nr-S~rx/ x rA,, s 2 r < n) commutator of two elements is the product of their Eocksteins. To build 

S-r S-I' 
to the 'definition of CA we define the modified tensor product C1 6 C1 of 

U[P, x I x rAr, F < S) u[BsP, x / xt Ar, r < s) 1;2-graded differential algbebras over Z2 to be their Z2-graded tensor product 

multiplication given by S-r is a basis for K,(X;sl. The elements of the form p!-rx and BSp, x have order 

and the remaining basis elements have order pS. (X Q yI(x' Q yll = XX' Q m' + ~(dx' 1 Q (dyly'. 

Now let X be a unital spectrum. Let q r KO(X;-I be the unit and suppose tha can define the modified tensor product of finitely many Ci similarly and of 

Initely'many Ci by passage to direct limits. Now for each x~ % we define Cx 
n"n is nonzero in KO(X;ll. Then we may choose a set A = u A,, such that 

A.L*- e the free strictly commutative algebra generated by [nr-S-l~Si~~ 5 s \: r) and 
A U{n) is a subbasis for X. We write App0 and Aptl for the zero- and one- < -, {nr-s-lgr-s~sx/ 0 5 s < r). Give this the differential which takes Qr-'x 

dimensional subsets of Ap. Let p be odd, and let CA be the quotient of the free s~r-lx and all other generators to zero. For each x r a,,l we define C, to be the 

commutative algebra generated by the three sets rnmutative algebra generated by the sets [nr-s-l~sx/~ 5 s < r) and, if r < -, 
r+s~sx10 5 s < r), with the relations 

["r-s-1 s 
Q x  / xeAr, 0 2 s  < r  2 - J  

(il (nrtS-1~r+,~Sx~2 r = 0 

r - 1  s 
B,_,Q x / xe 0 2 s < r < -1 

if 0 2 s < r-2 

and {"r+s-l B,+,R~X I x < A ~ , ~ ,  r < -, o : < -1 
(ii~ (or-S-1~S~~2 = if s = r-2 

by the ideal generated by the set if s = r-1. 

{("r+s-l r 
67,s R'XIP / X €  A ~ , ~ ,  1. < -, o 2 s < - 1 .  Relation (iil js motivated by 3.3(xll. Give Cx the differential which takes Qr-lx 

~ r - L  
a (8-'%,XI and all other generators to zero. Finally, we define CA to be the 

The elements of the first three sets will be called the standard indecomposables of - 
dified tensor product Q Cx. mere is an evident ring map h:CA + K,(CX;lI and 

CA. Here symbols like nr-s-l~sx are simply indeterminates, since the Dyer-Lashof x < A  
t.h these Aefinit.inn~. Thenrem ?.I0 and its oroof are valid. ".. ------ ~ 

operations are not defined on K*(X;rI. However, by means of the inclusion X + CX 

we may interpret these symbols as elements of K,(CX;lI. Thus we obtain a ring map 0 (i) When X = S , or when p = 2 and X is a sphere or a real projective 

pace, we recover the calculations of Hodgkin 1411 and Miller and Snaith 183,841. h:CA + KU(CX;ll. 

(iil We can describe the additive structure of CA more explicitly as 
Our main theorem is 

ollows. When p = 2 we define the standard indecomposables of CA to be the same 

hree sets as in the odd-primary case. If we give these some fixed total ordering 
Theorem 3.10. A is an isomorphism. hen CA has an additive basis consisting of all ordered products of standard 

decomposables in which each of the odd-dimensional indecomposables occurs no more 
We could have defined CA in terms of the Q-operation alone, without using R, han once and each nrlS-lp . RSx oacurs less than Zr times. This basis will be 

since the third generating set is equal to called the standard basis 
-r*s 

I for CA. We define the standard basis in the same way when 

The definition we have given is more convenient for our purposes, however, since it Next we discuss the funetariality of the description given by 3.10. If X and 

allows us to treat the cases s r and s > r in a unified way. X' are unital spectra with subbases A "In] and A' y[nl then a unit-preserving map 

Then?-- 7.10 alan hnlrla for. n = 7 hnt. the rlnPini+.im -f CA in this is f:X + XI will be called based if fxArC 4 y (0) for all r 2 1. Such a map clearly 

induces a map f*:CA + CAI, and we have h o f, = (Cfl, o A. If f is not based, it 
more complicated since mod 2 K-theory is not commutative. Recall from 3.2(viiI8 
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is still possible in principle to determine (Cf), on K*(CX;lI by using 3.3, 3.6 
3.9 (although in practice the formulas may become complicated). For ex%q 

f:s2 + s2 is the degree p map and x f %(s2;2) is the generator then 

in %(CS~;~I. Since ~*:K,(S~;~I + &(s2;11 is zero this gives another prc 
Rodgkin's result that K,(CX;11 cannot be an algebraic functor of K,(X;lI. 

calculation for the degree pr map shows that K*(CX;lI is not a functor of 

for any a r ~ r r  < -. Finally, the projection s1 up e2 + 5' onto the top cell 1 

zero map in integral K-homology but is nonzero hn K,(c(s~ up e21;11 so tl 
K,(CX;l) is not a functor of K,(X;Z). Thus it seems that the use of sub& 

be avoided. 

We conclude this section by determining the 8SS for CX. 

Theorem 3.12. For 1 5 m < m, 9 CX is additively isomorphic to the quotic 
X 

free strictly comutative algebra generated by the six sets 

tion 2 for ordinary homology, and in several places we shall simply refer to 

First we reformulate 3.10 as a result about extended powers. let Y be any 

$rum and let A be a subbasis for Y. We define CA with its standard indecom- 

ables and standard basis as in Section 3. We make CA a filtered ring by giving 

ments of A filtration 1 and requiring Q and R to multiply filtration by p. Let 

s FkCA/Fk-lCA for k 2 1; this has a standard basis consisting of the standard 
is elements in FkCA - Fk-lCA. There is an additive map 

hk:D$i + K,(I&Y;ll 

ined as in Section 2 by interpreting Q,R and the multiplication externally and 

n applying a, and 8*. We shall prove 

. hk is an isomorphism for all k , 1. 
. Using 4.1 and the external versions of 3.3(vl, ?.6(ivI and 3.7(ivl 

be proved in sections 7 and 81 one can determine the BSS for T&Y as 

llows. If m 2 1 let PA denote the algebra whose generators and relations are 
ven in 3.12. We make PA a filtered ring by giving elements of A filtration 1 and ["r-s-1 S,_,Q~X I x e % 0, m 5 r-s < -, 0 5 s < r) uiring R, Q and 3 to multiply filtration by p. If %A is the k-th subquotient of 

inm-12m-r+s~sx 1 x O, 1 5 r-8 < m there is an isomorphism D:A --r @$. The proof is similar to that for 3.12 and 

inm-18m'&m-r+s~sx 1 x e %,o, 1 5 r-s < m ) 

(p-lRm-r+s Q x  s 1 ~ e % , ~ ,  lr:r-s<m) 

and {,,r+s-1 B,+~R~X I x c %,1, m 5 r+s < -1 

by the ideal generated by the set 

i(nr+s-1!3r+s~sxlpt I x tA,,l, m 5 r+s < m, t = min(r,r+s+l-ml}. 

If p is odd or m 2 3 the isomorphism is multiplicative. 

The proof of 3.12 is the usual counting argument, and is left to the 

In order to determine the differential in ~ C X  one needs the formula 

r-s+t-1 t s r+t-1 Rtx)ps 
Br-s+tR Q x = (n %+t 

all r and %(M_;rl is a copy of Z generated by the image of u,. let 

for x €% 0 5 s < r < -, t 2 0; this is is a consequence of 3.3(viii) and 3.3(vI. 
pr 

G K,(M-;-I be the element which projects to the image of u, for all r. Then iu-1 

left to the reader. 

The derivation of 3.10 from 4.1 is the same as that given for 2.1 in section 2. 

therefore turn to the proof of 4.1. We need the following special case, which 

1 be proved in section 6. 

. h P is an isomorphism for all Y. 

We shall reduce the proof of 4.1 to the case where Y is a wedge of Moore 

reader. ctra. First we need some notation. As in section 1 we write Mp for 8-lu eO. 
P' 

set (I+} is a subbasis for M,. We write M- for the colimit of the M, with 
pect to the maps M, + Mp+l having degree p on the bottom cell. Then K1(Mm;rl = 0 

4 Calculation of K,(CX;Z,I * 

" - 
a subbasis for M,. 

For each xr A, we can choose a map + KnY representing x. (If r = - 
let f, be any m+p which restricts on to a representaive for the mod 

In this section we give the proof of Theorem 3.10, except for two lemas which reduction of x.) Let Z = V V I IXIMr -and let f:Z + Kn Y be the wedge 
ltr<m x e A,. 

will be dealt with in Sections 6 and 9. The argument is very similar to - ' -  

' . 
that given 

the fx. We give Z the subbasis B consisting of the fundamental classes of the 



4.5. pis an isomorphism, and the diagram - 

a="-- 
which commutes by 1.3 and 1.4111) and (iii). If 4.1 holds for 2, its validity for 

will be imediate from the diagram and the following lema. 
The proof is 1 

nee we have shown 
Lema 4.4. Let h:W + K A X  be any map. If %*:K,lW;l) + K,(X;l) is an isomorphism, 

;he same as for 2.5. The lemma implies that 4.1 will hold for Z 

the following. We write x for znur c ~1z"M~;r). 

then 

(i) f,,:K,lW;r) + K*(X;r) is an isomorphism for all r, and 

lii) lEkf )**:K,(DkW;l) 4 K (D X;1) is an isomorphism for all k. * k . By induotic 
the following d: 

Proof. (i) By induction on r. Suppose the result is true for some r 2 1 and 
consider the short exact sequence 

D 
0-2 - 2  - 2  d o .  j 

P pr+l pr 

This gives rise to the following comutative diagram with exact rows. i 

Part (i) follows by the five lemma. The proof of part lii) is now completely 

parallel to that of Lemma 2.4. 

Next we reduce to the case of a single Moore spectrum. We assume for 

simplicity that Z is a wedge of two Moore spectra z%$,v PM,; the argmnt is the 
same in the general case. Let B1 and B2 be the subhases {z%) and {z"usl, so that 
B = B1u B2. There is an evident map CB1@ CB2 + CB which on passage to the 

associated graded gives a map 

+ K,(%P%;I) is an isomorphism for all k 2 1 and all n. 

m on k. First let k = jp with j > 1. We need the commutativity 

Lagram for i = 0,l and 2. 

SIP* 
K,ID.D 1MvM);l) >K,(DklM vM);l) 

J P 

ere M denotes zn% and y,5 tK,(M M;r) are the fundamental classes of the first and 

econd sunmands. The setsa and a' are subbases for D P M and DpIMvM) which will be 
ecified later. The maps gi:MvM + M are defined by go = lv 1, gl = IV*, and 

= * Vl, and the Fi are determined uniquely by the requirement that the left-hand 
apeaoid commute. To complete the diagram we need 



The proof w i l l  he given in Section 9. Like the proof of 2.7, it consists E?'(%") would he nonzero fo r  a l l  m. But the transfer embeds ~ ~ z h $ .  in * 
systematic simplifications of the elements of D.a and Dj a'. The deta i l s  are J 

xh$., and the l a t t e r  is sero for pm-r-l > j by Remark 4.2 and the inductive 

more complicated, however, because of the nonadditivity of the operations. 

Now consider the inner square of the diagram. Since 6. o T* i s  an Finally, part  l i i i )  follows from (i) and the equation 
-1 J P* 

isomorphism, we see tha t  hk is onto. Letting 0 = y. o A. o r* o hk, we see as  
3 J znr-s-lgsx = nr-8-1 s 

section 2 tha t  0 induces an isomorphism of the subspaces of %{x) spanned by t Y Q Zx, 

decomposable standard basis elements. In part icular,  hk is monic on B .  
l e  ( i v )  follows from (iii) using the argument given for (ii). 

The remainder of the proof d i f fers  from that  in Section 2, and is in fac t  

considerably simpler since there are only a few indecomposahles. It suffices t o  
mis completes the proof of 4.6 for the case k = jp. The remaining case, when 

show the following. 
i s  prime t o  p, is  handled exactly as  i n  Section 2. 

Calculation of ? ( D  S";Z r )  
* P  P 

If  n = 0 then In order t o  construct and analyze the Q-operation we shal l  need a precise 

S 
scription of K,l~~~"h$.;r- l) .  In t h i s  section we give some fac t s  about K * l $ ~ ~ ; r )  

l i i i )  h lnr-s- l~Sx - w) # 0, where k = p , 2 2 s < r < - k ich w i l l  he used in Sections 6 and 7 t o  obtain such a description. We work with 
S ( i v )  hklzr-s-l QSx - w) # 0, where k = p , 2 5 s < r < -. 8r-s 

theory on spaces i n  this section. 

If  X is  a space there is a re la t ive  mom isomorphism 
Proof. We need two fac ts  about the map A :K lz X ; r )  + K,lDkEX;r) , namely tha t  - * * %  - 

2 
A,E(ai,k-l)xlxQ~) = 0 for  0 < i < k and that ,  when k = p, #:%ID X ; r )  ?*(D E X ; r )  

P P 

i f  1x1 = 0 
orresponding t o  the bundle 

(nl*fExI"' + PQEx i f  1x1 = 1 . d the inclusion 

The f i r s t  fac t  is shown as  in the proof of 2.8, while the second, which is the EE 1 % )  + EE 
P XEp . P %EP 

external version of 3 .?Ivi i i ) ,  w i l l  he shorn in section 7. 

NOW consider part  l i ) .  We have A*Ew = 0 and s we have seen in V I I S j  and VIIS8, t h i s  isomorphism can in fact  he defined for an 

r h i t r a ~  spectrum X. In calculating B,(D sn;r) we may therefore assume n = 0 or  
A E"r-s-l s S 

Q x = n ' - ' l*(~x)~ . o P+ X = 1; in the former case we have D S = BE . 
P P 

S 
But $ - l l* (Ex)~  is nonzem since Ak i s  monic on decomposahles. - 1 . K,(BE ;1) i s z e r o i f  o = l a n d Z p O Z p i f a = O .  K 1 D S ; l )  i s z e r o i f  

P a P 
Combining part (i) with the fac t  that  hk i s  onto and is monic on decomposahles, Z i f  a = 1. 

P 
we see that  

&of. We use the Atiyah-Hirzehruch spectral  sequence for  mod p K-homology. By hk:Dk{xj + KX(DkzMr;l)  1 1  
[40, 111.1.21 the d i f ferent ia ls  di vanish for i < 2p-1 and d2p-l is  BP, - P*$ 

is an isomorphism in degree 1 and is onto in degree zero. I t  i s  monic in degree 0 ( h e ~ e  P' denotes Sq2 i f  p = 2) .  For spaces of the form D X, a basis for the $-term 
P 

i f  and only i f  part (ii) holds. But i f  not then KOI%zh$;1) and K l ( % z h $ ; l )  would coneisting of external Dyer-lashof operations is given i n  (68, 1.3 and 1.41. The 

have different dimensions as vector spaces, and therefore the Eockstein spectral  d i f ferent ia l  d?,-, can he evaluated using the external form of the Nishida relat ions 



[68,  9.41; the expl ic i t  resul t  is that  dZpml(ei Q yp) is a nonzero multiple of * 1 
order t o  give a specific generator for f t  ( D  S ;r) we.consider the nap 

P 

( Bei+2-2p) Q 3P - ei+l-p Q  BY)^ n*:fX(D s"+l;r) + fX(zDpS" ; r ) .  
P 

for  any y r & ( X ; l ) .  Letting X = So or  S1 we see that  is generated by e0 Q up . The composite 
and e2p-2 Q UP in the former case and by ep-l Q in the l a t t e r .  Then SP = 

X * 
fo r  dimensional reasons and the resul t  follows. 0 2  0 0 -L??(~D S1;r) a f  ( E  D S ;r) 5 K (BEp; r )  

P P 

As an imedia te  consequence we have 
work in K-cohomology, as  we nay by the following. 

Lem 5.2. The natural  map 

1 Before proving 5.4 we give the desired bases for K*(Bzp;r) and ft ( D  S ;r).  
* P 

is an isomorphism for a l l  r < t-. 

for an arbitrary space; in part icular it holds fo r  npsn. The resul t  for  general r 

follows from the BS'. 
Note that  the unit r, i n  KO(BX ; r )  is the f i r s t  element of the canonical basis 

P 

natural map 

is an isomorphism. If  p is the group of automorphisms of n then a standard transfer 

argument shows that  the res t r ic t ion  

X X * 
t :K (Bzp; r )  + K ( B n ; r )  

duced by x,x2, .. .,xP-l. These bundles have Euler classes 1-x,. .. ,l-xP-l, hence 

Bi I*€, has Euler class (1-x) .. (1-xP-l) . Evaluation of characters shows that  

where r '  is the transfer z * ( ~ n + )  + S. Since 1, and (14) ... (LxP-l )  = p - (1 + x + ... + xP1) 

d the resul t  follows. 



Next we collect  some information about the elements q,v and v' fo r  use in 

section 7. 



clearly takes @(TI) to m(q) Q TI and m(v) to We can now define elements vla Ko(Dp%;l) and v K 1 D p 2 ;  by the 

@(TI) Q v + c(v) Q TI + pe(v) Q v. 

(ah l),(l6,m(riI) = (I~AI,(~(TI) Q ETI) = 0 . Q:K,(X;21 + Ka(D X;1) is the generalized Dyer-Lashof operation Qy 
P 1 

by the diagram and part (ii), while 

(AA l),(xs,m(v)) = (IA AI,[~(TII Q zv + m(v) Q ETI + pm(v) Q ~ v l  Observe that vl = @ and vi = Q?. 

Next we turn to the proof of 4.3. We use the spectral sequence of I.2-.4 with n 
= m(n) O v l  + pm(v1 671' . equal to Zp or Ep and E = X. This spectral sequence will be denoted by Er (n;X); 

q,a 
by Bott periodicity it is Z x Z2-graded, so tbat a < Z2. 

6 .  Calculation of "KD X;Z I We can describe E2 9rX (nix) = H 9 (T;K,(x;~)@ P, as follows. When q = 0 it 
* P  P s just the coinvariant quotient of K,(x;~)@ P. Let n = Z with p odd. If 

P 

In this section we define Q on K,(X;21 and prove Lemma 4.3. We work with c Ka(X;l) then xP &(~;1)@ P generates a trivial n-submodule and we mite 

K-theory on spectra in this section. 

bottom cell of x n 4  and the projection onto the top cell. Note that j,Enu, = E x  K~(x;~') + <,a(Zp;X) 
and i,zn-lu = Brzn%, where % and u are the fundamental classes of $ and S . 

aking x to eq Q xP is an isomorphism if q > 0 and p is odd. We continue to write 

2 (Z ;x) + ?3 (E ;X). 
q,a P q,a P 

isomorphism. By L68,1.41 we see that this map is onto in all bidegrees, is an isomorphism when 

q = (2i-a)(p-1) or (2i-a)(p-1)-1 for some i 2 1, and is zero in all other bidegrees 
an isomorphism if r 2 2. with q > 0. Finally, if p = 2 then by ?.2(vii)' the Z2-action on K,(X;~I~ is 

(vl (D~~I,:K~(D~S~;~) + KO(Dpx$;l) is onto. If r = 1 it has kernel generated given by x Q y fi-c y 0 x + BY Q BX; in particular, x2 is invariant if and only if 

by TI and if r 2 2 it is an isomorphism. x = 0. Using tbis it is easy to see that the map taking x to eq Q x2 induces an 

(vi) The sequence somorphism from ker B/im B to Eq,0(Z2;X) if q > 0, while Eq,l(Z2;Xl = 0 for q > 0. 
* 

Our next two results describe the groups E (L ;X). Let A be a subbasis for 
q,= P 

X and let % C  K,(x;~) be the set 

(nr-'x / x r Ar, 2 5 r 2 *I u tnr-2~rz 1 x x Ar, 2 5 r < -1 .  

z 
In parts (iv) and (vi), Kl( (En%)(P1;l) P denotes the subgroup invariant under 

Proposition 6.3. (i) The kernel of the epimorphism E~,*(Z~;XI + E;,,(Z~;X) is 

generated by the set ( ( 8 ~ ) ~  I x €K1(X;l)} if p is odd and by 

2 
((nB2x) + (TX)' I X € K1(X;2)} if p = 2. 



(ii) The terms Em (I: ;X) with q > 0 are freely generated by the sets 
q,a P 

- 5 m O W J  ' V "  . 
9 

{e2p-2 @ ~nx)~lx 

- (i) Let x be represented by f:M2 + KA X. Then f**u2 = x, 
[ep-l @ (nx)' I x r 

)rr(ep-2 Q uz) = e2p-2 Q xP. Hence we may assume that 

and, if p is odd, {ep-, Q xP I x uffices to show that vl = Ql9 is not in the image of 

this is clear since (Dpi)*vl = v. 

Part (ii) is similar. For part (iii) we may assume that X = EM1 and x = xul. 

this case it suffices to show that QB2pxu1 is nonzero. But B2pxul = i,u, where 

e%(s0;2) is the unit, and Qu = v. Hence QB2p*u1 = (D i)*v is nonzero by P 

Note that kmma 4.3 is an immediate consequence of 6.3, 6.4 and the external 
First let p = 2. Since every element of ker 6 lifts to K*(X;2), 

versions of 3.3(iii), 3.3(v), and 3.6(iv). 
ill be a consequence of the following facts. 

When p is odd, Roposition 6.3 is Corollary 3.2 of 1771. We shall give a 

different proof, using the methods of Section 1, wbich'also works for p = 2. First 2 .  (b) d3(e2q-a-l @ ( n x )  ) - ezq-&-& Q (n62~) 2 
observe that there are two equivalent ways of constructing the spectral sequence 

E;,(n;X); one can either apply mod p K-theory to the filtration of DpX given in (c) d3(e2q-a 8 (nx)') = e2q-a-3 Q [(zxl2 + (r62x)2~. 

Section 1.2 or one can apply mod p stable homotopy to the corresponding filtration te that, when B2x # 0, formulas (b) and (0) differ from those given in 
of KhDpX. The latter procedure has the advantage that the map 9, 3.8(a)(ii)l. 

- 
D,,f:D"Y c KAD,,X First consider the case X = SO. Then the spectral sequence of 1.2.4 is 

omorphic to the Atiyah-Hirzebruch spectral sequence, so that (a), (b) and ( c )  hold 

induced by w map f:Y -r K A X  clearly gives rise to a homomorphism this case by 5.1. 

Next we need the coproduct Y defined in the proof of 6.5. this has the form 
(E"f),,:Ei,(n;~) + E;*(Z;X) 

of spectral sequences. 



d3(eZq Q (ZUI'I = eZq-3 o (ZUI' 2 2 2 2 e P'd3(e3Q (nZu1 I = (eo Q (ncul I O leg@ (nu2) + eU@ (nB2uZ) 1 

d3(e2q-l Q (ZUI'I = ezq-~ o (ZUI'. d the result follows. 

Only the second is consistent with 5.1, and hence (bl and (cl hold in this case. Next let P be odd. We must show the following 

Next observe that, by 6.5, d2 (a) di = 0 for i 5 p-2 

In each of these cases, d2 is zero (bl $-l(eq Q xP1 = eq+l-p o (BxIP 
only element that could be hit is 

(CI d i = O f o r p  (i (2p-2 

(d I d2p-l(eq O xPI = eq+l-2p Q xP 

Finally, (b) and (,cl will hold for all x if they hold for x = u2 and x. = Zu2. le) di = O for i 2 2p. 

First consider z%. It suffices to show that As before, when X = SO the spectral sequence is isomorphic to the Atiyah- 

2 2 2 iraebruch Spectral sequence so that (a)-(el hold for 5.1. They also hold for d (e Q (nu2) I = (wu21 + (nB2u21 . 
3 3 = S' by 5.1 and the coproduct. Now 6.5 implies that (a1 and (bl will hold for all 

From inspection of the maps if they do for X = Ml and X = ZM1 Inspection of the maps 

E&(Z~;SOI + E~,(Z2;EM21 E~*(z P ;Sam11 + 

3 3 I d E;*(L. ,zQ1) t E' (Z ;Sa) and E,,(Z2;ZM21 + E,,(Z2;S 1 P ** P 

d the coproduct shows in each case that either (a) and (b) hold or (al,(cl,(dl, 

Now applying 6.5 again we see that (cl, (d) and (e) will hold in general if 

hey hold for % and ZM2. But one can see that they do by inspection of the maps 
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1 (Dpj ) *  @ r,:K1(DpEMr;r-1) + K (0 S ;r-1) @ K1((zMr)(~);r-l)*~ 
1 P if a =  0- 

and 0 (D i) .K (D S ;r-1) + K (0 EM ;r-1) Q(kX) = 
P *'O P O P T  

if u = 1. 
are isomorphisms, and the sequence 

(Dpi), r* E i f o = O  1 o -K (D s ;r-1) -K ( D M  ;?-I) -K~((M~)(P);~-I) P-o 
1 P 1 P ?  a*zQx = 

is exact. r n~*(Ex)(~) + pQEx if a = 1. 

Note that the terms in 7.1 which involve iterated mash products may be i QBrx - pn,,(x(P-l) Q Brx) if a = 0 

calculated by using 5.8. Assuming 7.1 for the moment we may define vr-l and v,!-l by Br-lQx = 

the equations (D$ = v, (g;j),~&_~ = v', and ~ * v & _ ~  = 0. n~*(B~x)(~) + pQBrx if a = 1. 

Definition 7.2. Q:K,(X;r) + K,(D X;r-1) is the operation &Y if a = 0 and 
Q v l  

The constant w in parts (i) and (iii) will turn out to be 1, as required for 
. - P r -1 r -1 .3(vi). In order to avoid circularity, we shall prove 7.1 and 7.3 by a simul- 

Observe that vr-l, v, v;-l and v' are equal respectively to Qu,., 63, mu,., and aneous induction. More precisely, we shall assume that 7.1 holds for r 5 ro and 

Qru. From now on we shall always use the latter notations for these elements. hat 7.3 holds for r < ro (vacuously if r0 = 2) and then prove 7.3 for r = ro and 

.1 for r = ro + 1. Before beginning, we need two technical lemmas. 
We shall prove 7.1 by showing that E' = in the K-theory BSS for D ~ E ~ $  

when r 2 2. Far this we shall require a formula for the Bockstein of the external f h Let Y - Z &Cf - EY be a cofiber sequence in h A  and let 
Q-operation, and this in turn depends on the other formulas collected in the 

ose that Br-l vanish on K1(Zjr-11. Let y K1(zY;2r-2), 5 r  Kg(Z;r-1) 
following lemma. 

d w < K1(Cf;r-1) be any elements satisfying nr-ly = k w  and p$-l(za) = f*y. Then 

Lemma 7.3. Let x,y cKa(X;r) with r 2 2. 

f Consider the following diagram in % d . 
(i) if a = 0 and p is odd 

1 S 

Here w Z2 is independent of x. 

Here the bottom row is the evident cofiber sequence, with the first map induced by 

the inclusion Z ,_, C Z .,-, and the second by the projection Z 7r-7 + Z *-, . 
"-' 1 

+ Q - st  I 1 5 ( y)x(i) Qy(p-i)l if o = 0 and p is odd transformati 
* i-1 left-hand square commutes up to homotopy since nr-'y = h*w. Hence there exists an 

r-2 
+ QI - ni,(x Q y) + w2 ni*l(Brx) Q Bry)l if a = 0 and p = 2 element 5 making the other two squares commute, and we have -Br-lEw =(zg)*~. Now 

the map 
if a = 1. 

Cs : EMr-l + KA EZ 

(iv) Let k e  Z. Then makes the middle square commute, hence 5 - Ea restricts trivially to EM2,-*. Thus 

5 - C 5  extends to a map 
2 g:E Mr + KhEZ 
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with a r - l ~  = 6 - Zz. Since 8r-1 vanishes on K g ( Z Z ; r - 1 )  we have 6 = En. Thus J $ ~ ) T , Q U ~  = ~ , ( D ~ j ) * B u p  = r,Qu = -(p-l)lu; 

-a,-,Cw = E(g,n) and the resul t  follows. 
l a s t  equality is 5.7(iv).  

Lemma 7.5. If f:X + K A Y  is  any map then f,, commutes with n, a,, P* and C .  (ii). Let a = 1. By 7.1 it suffices t o  show that  

The proof of 7.5 is t r i v i a l .  Before proceeding we use 7.5 t o  dispose of ( D  P j ),nQZur = (Dpj  )*Qnzur 

r*nQEur = rxQnZur . 
Proof of ?.2(iv). For any x €K,(X;r-1)  and y & ( Y ; r )  there exis t  maps 

is second equation follows from p r t  (3.) and the f i r s t  from 5.7(1). The~case 

f:clxlMr-l + K A X  and g : Z I y I ~ r  + K A Y  with fx,ZIXIUr-l = x and g*XZIyIur = y. = 0 is  similar. 

(iii). L e t  a - 0 with p odd. By 1.3, 1.4 and 7.5 we may assume that  X is 

vM, with x and y being the fundamental classes of the two summands. Let 

Q nur, u , -~ 0 n6,ur1 F: V P D i M r ~  Dp-iMp + D (M v Mr) 
i = o  P r 

is a subbasis for Hence by 3.9 we have 
the equivalence of 11.1.1 and l e t  f:M, + M,vM, be the pinch map. Then 

(1) (P,U,-~) Q ur = al~x(ur-l Q nur) + B ~ B ~ P * ( U ~ - ~  @I nBrur) f),Qu, = Q(x + y ) ,  and it suffices t o  show that  

for some al,a2,eZpr-l. Applying n t o  each side gives 
p-l 1 p (p-i)  F ; ~ ( D  f )  &U = &u? m u  + u m w r  - - ( . ) s l ,up)  ~n lxur 

p * r  %-I P I 

Pur-l Q nur = alPur-l Q nur + a28r-l(~r-l Q n8u,) ce F* applied t o  the r ight side of this equation clearly gives the r ight side of 

desired formula. Now the projection of F-'O D f on the i-th wedge sumnand is 
= alpurml Q nur + a28r-1~r-1 Q n8,ur . P 

Hence a2 = 0. Now applying ( j b  j)* t o  each side of equation (1) gives . D M  + D i M r ~ D  M 
p i  p r p-i r . 

p(u  Q U )  = alpx(u Q u) = alp(u Q u) 
n i is 0 or p t h i s  transfer is the evident natural  equivalence, hence it suffices 

in %(DpSAD S;r)  2 Z Hence al = 1 in Zpr-l. 
P pP' 

1 P (p-i) (T ) &U = - j; ( i)nl ,UF) Q ntXur i,p-i * r 
Next we give the proof of 7.3 for r = ro. The 

similar t o  tha t  jus t  given for ? .2( iv) .  F i r s t  we observe that  by 1.3, 1.4, 1.5 and r 0 < i < p. Now the transfer 

7.5 we may assume in each part except (iii) that  X is zaM, and that x is the 

fundamental c lass  Zau. .  

( i). If  a = 1 the result holds by Cefinition 7.2. Suppose a = 0 and conside duces a monomorphism since the order of Z i  x Z is prime t o  p for 0 < i < p. 
P-i 

the map 
Z have 

0 j i~ ) :~~(~F) ; r - l )  + KO(S ;r-1). = 7*&Ur = -(p-l)!ur (p )  

This is monic when p is  odd and has kernel generated by z ~ - ~ ~ ( B ~ % ) ( ~ )  when p = 2. part  (i) while 

0 The resul t  follows since j $ ~ ) ~ p )  = urKo(S ; r)  and 
Q n ~ * u ? - ~ ) l  = ~ ! ( ~ - i ) ! ~ ~ )  





when p = 2. &om t h i s  it w i l l  follow tha t  nPr-'+' vanishes on t h i s  subgr 

therefore tha t  P, vanishes on K1(LMpr;r-11,  since nPr-r'l maps onto the I 

group; thus we w i l l  have shown r*r,w = 0 as required. To verify the clai  

observe that the se t  

{xur@ x 2 0  -.. @ x  I xi = xur or Brmr) 
P 

is  a subbasis for (zM,l(p). Using the basis for  K1( ( Z $ l ( ~ ) ; ~ r l  given bj 

see a t  once that  the elements 

pr-r 
z1 = p* l(zurl c3 (Brzurl(p-lll 

P-1 
and z2 = ~ ~ ~ ~ - ~ l Z u ~ @  1 1  ( B ~ ~ u ~ I ( ~ ~  QZur@(Brzur) (p-i-1 I 1 I 

i=l 

339 

t o  K,,(DpM,;r-11. Next we have . 
r-3 r-3 Qx = n QBr-lx = n BpY = 0, 

s follow from 7.3(vil and 7.3Civl respectively. 

r-3 r-2 d r Z r 3  = x Br-2@ = T = 0. 

s completes the inductive proof of 7.1 and 7.3. 

Next we shall  prove the external version of 3.3. Rather than wrliri-te out the 

l e t e  l ist  of external properties, we give rules for changing the internal 

ements t o  the i r  external analogs. A l l  internal products and Dyer-Lashof 

ations are t o  be changed t o  external ones, with the map I*  prefixed t o  any 
are a basis for the Zl x Z invariant subgroup. Now i f  T is  the map sr 

f i r s t  two factors of (EMp)fii we have T,al = z1 and 
old product which is t o  l i e  in  K*(DpX;r). The map 6* is t o  be prefixed t o  the 

T * z 2 = z2 - 2 ~ ~ ~ p r - ~ l  ( Z U , I ( ~ )  @ ( B , ~ u ~ I ( P - ~ ~ I ;  t-hand side of each Cartan formula. In the s t ab i l i ty  formulas, o is t o  be 

the claim follows. 

Finally, we must prove part  (v i l  with cl = 0. By 7.1 we have 

(31 B ~ - ~ G u ~  = a1~erur + a2wlX(~$-11 0 B ~ U ~ I  

for  some al, a2 G Zpr-l. Applying A*Z and using part (vl gives 

Br-lQzur = alln~,(8rhurl(P1 + p Q ~ , z u ~ I .  

Comparing t h i s  with the case u = 1 of (v i l  gives al = 1. Now applying T 

using part t i )  gives 

But B,~"(U$)I = pn~,(u$)) and it follows that  a2 = -p as required. 

ged t o  z and A* prefixed t o  the left-hand side. These conventions give the 

ect  external analog for each part  of 3.3 except for part (ii) which has no 

ternal analog. 

. The external Q-operation sa t i s f i e s  the external versions of each 

rt of Theorem 3.3 except part  ( i f ) .  

Before beginning the proof we need a lemma t o  deal with the prime 2. (See 

.4.3 for another proof of t h i s  lemma.) 

. Let X be any spectrum. The sequence 

AD~ZX E ~ ( X A X I  L Z  2 D2x 

. Consider the cofiber sequence 

1 s1 as -,s 2 
This completes the case r = ro of 7.3. Next we must show 7.1 for r 

It suffices t o  show that  E' = $-' in the K-theory BSS for DpM, and DpZM,. 

give the proof for DpM,, the other case being similar. Let x and y denote the 
Z2-spaces. Here Z2 ac t s  t r i v i a l l y  on the f i r s t  and fourth terms and by switching 

elements ny, and sgry,. by 6.1,7.2 and 7 .3 ( i i )  we see thaf the se t  
ctors (respectively, wedge s m a n d s l  in  the second and th i rd  terms. Now slnS1 is  

r-2 ( p ) ,  ,,r-3Qx, "'-2 (p-1) v 
IW i*x l n ( x  ~ Y I ,  n r - 3 ~ ~  e one-point compactifioation S of the regular representation V of Z2, and it is 

is a basis for K*(Dp$;ll. Since a l l  elements of th i s  basis l i f t  t o  K,( 

have E' = I!?-' i n  the BSS. The elements nr-2x(p1 and nr-'(x(p-l) 0 yl a 

sy t o  see that  the second map in the sequence (41 s tabi l izes  t o  the transfer 

DpM,;r-2) + ~ 3 6 ~ ' .  The siquence of the lemma is  obtained by applying the functor 
r e  (r-21- ( IhXnXI t o  the sequence (41. 



ds. We begin by giving a basis for 

and r,QpxEu, = 0 for all r. The result follows, and the case a = 0 is similar. KO(D2EM, hD2Ef$;r-11. 

fe have 
set 

set 

{QZur, l,(Zur 8 BrE~rl,QBr+12,Zur~ a subbasis of height r-1 for %EM, and in particular it is a basis for 

is a subbasis of height r for hence by 3.9 we have ~h$.;r-11. By 5.8 we have 

(51 = a1Br2,Q~ur + %QBr+12,Zur 
K (D XM h D  XM ;r-1) e K,(D2EMr;r-11 0 Kx(D2EMr;r-11 
x 2 r  2 r  

with al r Z2P-l and a2 e Z Applying I* to (51 gives 
the tensor product taken in the Z2-graded sense. We therefore obtain a basis 

2" K*(D2"~D2~f$;r-l) by taking all 16 external products of the elements in the 

0 = -a2(Brz%)(21 given above. It will be convenient to denote Zul. by x in the first factor and 

in the second factor. Let al, . . . ,ag e Z 1 be the coefficients of 6*Q(x O y] 
hence a2 = 0. Now applying n to (51 gives 2 - 

respect to this basis, so that we have 

(61 t*(n~u,.l(" = a1Br_1QZ%. 
6,Q(x O yl = $nl,(x Q Brxl Q n~,(y @ Bry1 + a2&x O ~L*(Y Bry) 

If r = 2 the inductive hypothesis gives 
+ a ni,(x 8 Brxl 8 Qy + a4Qx Q Gy + a5n~*(Brx~(21 O nt*(By~) (2 1 

3 
i*(nZu2,1 (" = QB22x(zZu21 = Q(2B2Zu2I = n ~ * ( % ~ Z u ~ j ~ )  = BQE? 

+ a6nlb(Brx1(21 O QBry + a7QBrx Q nl,(B,y~(~~ + agBBrxO QBry. 

(where the third and fourth equalities follow from 7.3(ivl and 7.3(vill and we 

conclude that al = 1 as required. If r 3 the inductive hypothesis gives laim first that 2a5 = 0, so that a5 is either 2"' or 0. When r = 2 this is 
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t r i v i a l ,  while for r 2 3 it follows from the inductive hypothesis and the equati Next l e t  1x1 = 1, ly/ = 0. Consider the following commutative diagram ~ 
nQ(x Q y) = Q(nx 8 ny). Now as  in Remark 3.4(iv) we see tha t  changing the choice 

t s  CD2X n D2Y 

commutativity of the multiplications gives a5 = 0.) 

It remains t o  determine the other coefficients in equation (7) .  If  we apply' 

the map (D2j A 4j t o  th i s  equation, the l e f t  side becomes Qu Q Qu by 5.7(vii) 

while the r ight side becomes a4QZuQ QZu. Hence a4 = 1. Next consider the 

following diagram 
L L L 

6 r D2X A D2Y 
f we l e t  X = Mp, Y = tm1M,. we obtain 

,1 6*[D2(Tnl)]*~*~Q(-Cur 6 C -1 ur) = ( ~ A A ) ~ ( T A ~ ) * ( Z ~ ) * Q ( - L U ~ Q  C -1 ur) 

e can evaluate the l e f t  side of (10) using 7.3(v); the resul t  is  ~ * Q ( C U ~ Q  up). 

the other hand we can evaluate the r ight side of (10) by using 7.3(v) and the 
The commutativity of this diagram w i l l  be proved in VI.3.10 of the sequel. With t of 7.6(vii)  just  shown; the resul t  is 
X = Y = C M p  we obtain 

Qtur Q T,,Url) + 2QCu r 6 Qur + Z ~ ~ - ~ T L , ( B , C U ~ ) ( ~ '  Q QBrur. 

( T * I ) * ~ * Q ( x  Q Y )  = ( I A  I ) * ( ~ ~ T A ~ ) * z * Q ( x Q Y )  
us equation (10) gives the desired formula when x = x u ,  and y = s, and therfore 

r-2 is  formula holds in general. 
= ( l ~ ~ ) * ( l ~ T ~ l ) * n i - x O y Q x Q y  + 2 Br(xQ y) 8 Br(xQy)1 

Finally, l e t  1x1 = l y  1 = 0. We may assume x = u,, y = %. The se t  

= ( 1 ~  1 ) , n 1 x ( ~ '  Q y(') + 2r-2x(2) a (cry) (2 )  

<nx*x(*' Q n l * y ( ~ ) , ~  Q n,*y"), xi,a") Q a, ~x Q a, 
+ 2r-28rx Q x Q y Q Bp + 2'-'x @ Brx @ Bp Q y  + 2r -2 (~rx ) (2 '  Q y")] 

n % * ( x Q  Brx) O n ~ , ( y  Q Bry),QBrx@ nt,(y Q B,Y). 

= ~ x ( ~ )  0 nlxy (2' + 2r-2nx(2) 0 n l x ( ~ r y )  ( 2 )  n ~ , ( x  Q Brx) Q QBry, QBrx Q QBry) 

(2 )  
's a basis for %(D2MpAD2%;r- l ) .  kt al,...,ag be the coefficients of S*Q(x Q y) 

th i s  basis. By 5.7(v) we have 
- 2 r - ~  - n.r,t,(x 8 Brx) 8 m*(y Q Bry) + 2LP-4 

(D2j A D2j )*S,Q(X 8 Y )  = 6*Q(u Q U) = QU Q 0 + ii Q QU + PQU Q QU, 

with the l a s t  equation following from part (x) .  Now applying ( r r  l ) *  t o  the r ight ce al = 0, a2 = a3 = 1 and a 4 - - 2. Diagram (8) gives 

side of (7 )  and comparing coefficients gives a, = zr-', a, = 0, &I = 22r-4 and 
(?A1),6*Q(x Q Y )  = ( 1 ~  1),6,~,Q(x B Y )  

whence ag = 2a6 = 0. This completes the proof of par t  ( v i i )  when 1x1 = / y /  = 1. it follows that  a5 = 2r-2 and a6 = 0. Similarly, 

(1Ar),6,Q(x Q y) = ( 1 ~  1)*6,r,Q(x Q y )  

d hence a7 = 0. Thus we have 



(111 &Q(x O yl = QX O ~t*y(~' + n~*x(2) @ Qy + 2Qx @ Qy zero under the nontrivial map from BE' P to SO. k t  th? induced map 

+ 2r-2n~*(x O $x) O ~I,(Y O Bry1 + a8Qt?,x O Q B ~ Y  fiO(s0;r1 + "KO(O, P ;TI 

es 1 to 1, and = o by kfinition 5.6, whence the result follows- 
and it remains to determine a8. Consider the following comutative diagram 

me proof of part (~iii) is more difficult. First recall that if X is 

LD2(X AY) z6 - co2x A 02u ndegenerately based and A:X+ + x is the identity on X then the cofiber 

1121 / A  nl 
Emso A E'x+ r'x 

split by the evident retraction U:X+ + SO. ID particular, there is a 

With X = Y = I$ we have natural transformation 

v :zmX + 2-x+ 
(131 (AA~I*EG*Q(x x yl = 6,A*ZQ(x Q 71. and the inclusion 

w 

KX(X;rl C K,(X;rl We evaluate the left side of (131 using 7.3(vl and equation (111; the result is 

can be identified with v*. NOW let Y be an H, space, let 2 nY, and let E:~Z + Y 
QEx @  XI,^'^) + 2Qrx O Qy + a8~~*(~rzx~(2) O Q6,y + 2a8Q6,zx @ Q8,y. 

be the counit. Then 
Evaluating the right side of (13) using 7.ULv) and the part of 7.6LviiI already 

o:"K(it~;rl + Ka+l(Y;rl shown eives (I 

is the composite v*a*E. 

Let x c$(nY;r); the case 1x1 =1 is similar. First we must show that @ is 

(ixl We have seen in VIII.7.4 that $k is an H, ring map of K(p) for k prime in (nY;r-11, i.e., that uxQx = 0. But !L:Z'(OYI+ + X'S' is clearly an H, ring 
0 

to p. Hence we have map, and therefore V*QX = Qp,x = 0. Next we state the required formula more 

precisely as follows: 
k k -  (6 P f),,$ = $ (Dpfl,,:K,(DpY;r-1) + K,(D X;r-1) 

P 
(141 oh*Qvxx = Qox. 

for any map f:Y + K A X. Thus we may assume x = r%+ with a = 0 or 1. First let 
since applied to each side of (141 gives zero, it suffices to show that Ax makes 

u = 0. Since the map 
the two sides of (14) equal, i.e., that 

( P  j )  .K (D M ;r-1) + K (D S;r-11 p *'0 p r  0 P 
sX~hXQvXx = A*Qv*aXEX. 

lally, it suffices to 

:diate from 5.3 since  hi^ in turn follows at once from 7.3(vl and the commutativity of the following 
X P' 

$k commutes with r . Now, if a = 1 we have diagram in h x  (where we suppress L' to simplify the notation) - 
k k k 

$ QEur = $ A*ZQur = A,EV Qur = A*ZQu = Qru . r r 

This completes the proof of 7.6. 

Next we must prove 3.3. Each part of this theorem is in fact an easy 
consequence of the corresponding external formula except for parts (iil and 

(viiil. For part (ii) we may clearly assume X = S, and it suffices to show that Qu 



W = and the unlabeled arrows are the evident quotie~t maps. It suffices 

show that the inner square of this diagram comutes, since combining it with 

diagram (16) gives diagram (15). Since 

A,, 1:WhD Z + zD Z 
P P 

f the commutativity of the rest of the diagram. Each of the remaining parts 

learly commutes except that marked @. To show that @ comutes it suffices to 
show that the composites 

W A Z  l*Y_whzf = (slX z)' - (sl* z)' 
Ah1 1 1 + 

WAZ-S AZ&(S AZ) 
Here F and 6 are the H, structural maps for Z+ and Y+ respectively. In order to s 
that (15) commutes we need two further diagrams. The first is the following in th 

catgory of spaces. - 
equal since wedges are products in ha. This completes the proof of 3.3. 

We conclude this section with the proof of 1.6. First we calculate 

Bp,QIur = BrQp*zur = 1,(6~zu~)(~) + P Q B ~ + ~ P ~ Z U ~  

in b(DpP$;r). Multiplying by P'' gives 

r-1 o = pr-lgP,~zur = p ~,(B~ZU~)(P), 

hence I,(B~ZU~)(P) has order 5 pr-l. Now suppose Kp has an H, structure. Let 
Here is the evident diagonal map. This diagram comutes by definition of 5; se 

u:S + Yp be the unit map for this structure. Then 7 = cu € Kg(S;r) for some c 
169, Lemma 1.51. Next we have the following diagram in h g  (where we again suppres 

prime to p. Let f be the composite 

EM,. = s A L M ~  U KAZM, = K~ 

and let F be the composite 

(D f), 5% 
K (D zM ;r) &K (D K ;r) -+K (K ;r) --+KO(S;r), 
0 P r 0 p r  o r 

where the last map is induced by the product for Kp. We claim 

= <, which contradicts the fact that L,(6rzur)(p) has order 

2 pr-l. The claim is a consequence of the commutativity of the following diagram 



Here the composite I1 n I I o I~h(ci1 Ip1 I represents Ip1 and - 
diagram commutes since u is an H, ring map. 

8. Construction and properties of R and t . 
In this section we construct R and$ and prove the external and intern 

versions of 3.6 and 3.7. 

We begin with the construction. 

Lemma 8.1. The map particular the group K,(D E ;r+ll has the same order pZr for u = dand a = 1. The 
:K1(D LM ;r+ll d K  (D LM ;r+ll 'r+l p r 

P M' 
0 P r emma will follow if we show that 6r+1 0 Zp maps onto Kg(DpEb$;r+l) O Z But the 

is an isomorphism. P' 

349 

r-2 r-1 (p-11 r-1 
{1;~-~QEu~,n QO,Eur," txIEur 8 l6,Zur1 1 ,n ix(BrCur) (P)] 

s a basis for E'. By 7.6(vl we have 

r-2 r-1 dr-l" QEur = n 

ile clearly dr-l~r-2~6rZu, = 0 and 

r-1 
dr-lx txlEur @ (6rEur~(p-11~ = 0; 

the 
r-1 

inr-2~0rLur,n 1+,1Lq O ( B ~ E U ~ I ~ - ~ I I  

is a basis for !Lr. Now drnr-2~0rEu, = 0 by 7.6(vI, and 

drxr-ll,lEur O (Brur1 lp-Ill = ,,r-1 lx(OrEurl (PI , 
a1 which is zero in E ~ .  Thus there is an element x in K1lDpZlilp;r+ll with 

r-1 (p-1 I nrx = n ~ * l L u ~  8 l6,Zur) I, 

2 and the set { Q E U ~ , X , Q ~ ~ + ~ ~ ~ E U ~ ]  is a subbasis of height r+l for DpLb$. In 

Lemma 8.2. The map 

(Dpjlx:Ko(D M ;sl +K (D S;sl 
P r 0 P is an isomorphism, hence it suffices to show that nr6r+1 maps onto ~ ( D p E ~ ; l l .  Now 

r 
is monic if s = r or s = rtl, and n E Kg(D S;r+ll is in the image of (D jlx. equation (1) shows that nr-11x(,9rZur~1p1 is in the image of n and it 

P P remains to consider nr-2~6rLs. By the exact sequence 

Definition 8.3. Let er Kl(Dp~M';r.t.ll be the unique element with 
2 

Or+le = QBrt2px~up. Let e' G K (D M ;r+ll he the unique element with (DpJl 
0 p r  

Then 

R:K1(X;rl + K ID X;r+ll 1 P 

and %:Kg(X;rI + Kg(DpX;r+ll 

are the operations Qe and Q,t. 

Note that e and e' are equal to mu, and 2,s respectively. We shall 

use the latter notations for these elements. Also note that 2 u  = n in Kg( 

Proof of 8.1. Let r 2 2; the case r = 1 is similar. Consider the K-theorg 

$E~v$.. By 6.1 the set 

r r+l 
n Br+l PX 

*e' = n. K (D EM ;r+ll (D EM ;11 -K (D EM ;r+21 
I P ~  O P ~  O P ~  

it suffices to show pr1nr-2~6 Lu = 0. But 7.6tviI gives 
r r  

3 3 r 2 (PI 0 = ~ p ~ ~ ~ 0 ~ + ~ p , z u ~  = prt1~6r+3~x~~r - (pPrtP-' - p )L~(B,+~P~EU~I 
r+l 3 r+l r-2 

= P Q6r+3~rZ~r ' Px n QBrWr 

always ich completes the proof. 

BCp;r+ll. 

. It is easy to see that nr-lOr~xu,,(~l and nr-lOri,~u~-l) 63 Brurl are 

BSS for ero, hence by the exact sequence 

r-1 
'r K,(D M ;r+ll -AK (D M ;rl - (D M ;11 

P r a p r  Ka-l p r 



2 s e t  {x,p*Qur} is  a basis for Kg(Dp$;r+l) .  Since {n,Qu) i s  a basis for 

. The operation 

(2 )  ( D  j),x = q q  + a2@. R:KIIX;r)-bK ( D  X ; r + l )  
P 1 P 

where al, a2 Zpr+l' Applying n t o  both sides of (2 )  gives i s f i e s  the external analog of each part of 3.6. 

( p )  = $,, + %Qu n = (Dpj)*'*$ . The operation 

r r '  i n  q ( $ S ; r ) ,  hence a = 1 + aip  and 5 = a;p for some al,a2 1 $:Kg(X;r) + Ko(DpX;r+l )  
together with the equation (Dpj ),piQur = p2Qu, shows that ( D  j ) 

P 
Kg(Dph$,;r+l). A similar argument shows that  ($j ) *  is  manic on Q(L$,h$,;r). If  t i s f i e s  the external analog of each part of 3.7. 

r 2 2 we have 
r-1 r-2 2 

( D  j ) , l x -  sip p p , l , ~ 2 )  - aip  p,hrl  = n  Theorems 3.6 and 3.7 w i l l  follow a t  once from 8.4 and 8.5 by the same proof 
P 

given fo r  3.3. The r e s t  of t h i s  section is  devoted t o  the proofs of 8.4 and 8.5. 

so tha t  n Kg(D  S; r+l )  is i n  the image of (Dpj)* as  required. If  P 
a; = 0. For t h i s  we need the map j '  : M1 + % induced by the incl  rt (i) is t r i v i a l .  In each of the remaining parts  except ( v )  we 

have j ' o j = j :MI + S, hence y assume X = Ehl ,  with x = L u ~ ;  par t  ( i v )  now follows from Definition 8.3. 

serve that  by the proof of 8.1 the se t  {QEur,REur) is  a subbasis for DpChl, i f  
( D  j),(D j ' ) , (x )  = (1 + aip)n + a$Qu 

P P 2 2 while {REul) is a subbasis for DpEM1. 

= ( ~ ~ j ) * l  (1 + a j p ) u p )  + a;p*8u21 . (iii). Themap 

V B ~ + ~ : K  ( D  EM ;r+2) + K ( D  CM ;r+l) 
Since ( Dpj ) * is monic we conclude l p r  0 P r 

s an isomorphism since it takes the basis for the f i r s t  group t o  tha t  for  the 
(DpJ1)*(x) = (1 + p a i ) u p )  + a!p*Q? . econd. Now 

3 2 
Hence u B ~ + ~ R P * E u ~  = nQBr+3P*Eur = Q8r+2~xmr 

(3)  nB ( D  j ' ) * < x )  = $BQu2 = $QB2u2 . 
2 P = Br+lRCur = n B r + 2 ~ * ~ u r  

On the other hand, 6 . l ( v i )  implies tha t  O Bul i generates K1(DpM1;l), d the resul t  follows. 

hence nB2x = c ~ , ( ~ - ~ ) @ B u ~ )  for some c a Z and 
P ( i v ) .  The map 

(4 )  n$ ( D  j ' ) * ( x )  = ( D  j ')*(nB2x) = ci,l(j;ul) (P I )  @ j q ~ ~  1 = 0 * 1 
B,+lpr:K ( D  EM ;r) + K ( D  EM ;r+l) 

2 P P l p r  0 P r 

since j;Bu1 = 0. Comparing (3 )  and (4 )  gives a; = 0 and thus s manic since it takes the basis elements nRE? and (when r 2 2 )  p*&Cu, t o  
2 $r+lR~u, and $r+lp*Q~ur respectively. We have 

( D  j),lx - a ip , l*up)~  = n 
P 

which completes the proof. 2 Br+l~*nRCur = P B , + ~ R E U ~  = P Q B ~ + ~ P * E U ~  

Next we shal l  prove the external analogs of 3.6 and 3.7. The conventions 
2 

= B , + l ~ x " r  - l 'x(Br+l~~Cur) 
(P)  

preceding 7.6 give the correct external version of each statement except fo r  
= B p IQPxzur - I*(Eu, 8 (BrZur) (9-1) 

3 .6(vi i i )  and 3.7(ix). For 3 .6(vi i i )  we must prefix t o  both sides, where r+l * 



whieh gives the first formula. For the second formula, we have 

B rtl P * Rnlur = Br+lR~,nC~r ' Br+lRPCUr 

2 2 
= QBr+2~*(~C~r) = QPBr+2P*"Up 

2 
= PQB,+~P~CU~ - (PP-l - ~)I*(B,+~P~"~) (PI 

2 
= B,+~BP*~U~ - $-'I*( B,,~P*ZU~) (P) 

(~-1))~ = - $-lt*(Cur Q (BrCur) 
and the result follows. 

(v). Let 5 denote q, and fix i with 0 < i < p. As in the proof of 7.3(iii) 

it suffices to show that the equation 

(5) (T~,~-~)*RX = a 2 ip z B  8 I*(B,+~P*Z) 
(p-i) 

l *  * 
(p-i-1) 11 + a28r+1p*l~x(58 (I~~B)(~-") Q 1*1aQ (Bra) 

Thus the set 

5 Q r i l l  Q 1 (B I))(p-i).~x~5 8 (Br51 (i-1) I Q 1 ~ 1 5 8  (Bra) lp-i-1) * 1. 
11 

T*B,+~%! = i! (p-i) !al(~r+1p*5)'P'. 

On the other hand we have 

2 
T*Br+l RZ = ~,Q8,+~p*s = -1p-l)! l ~ ~ + ~ p ~ 5 ) ( ~ ) ;  

( -ll! 1 
hence a = - if;)p-i,f = - p ( ). Next we apply n to ( 5 )  to get 

1 

( 6 )  (Ti,p-i I * n~z; = -( )I*IZQ (B,z)(~-~'I 8 l,(8,5) (p-i) 

+ 51 IB B)(~' Q I*[% Q (Br5) (p-i-1) I * r 

- a I 15 Q (6,~) (i-l)] @ i,lBr5) (p-i). 2 * 
But we have 



a* 

which holds in ~((D,~l(~~;r-l) for each x e%(X;rl provided that p is ' 
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n p = 2  the last expression is clearly zero, while if p is odd it is zero by (71. 
I 

proof is by induction on n from 7.6(iil 1. ence we have 

First let r = 1. The set {QRz,FPal is a subbasis for %DpZM1, and it follows 
nB*(QRe - RQzl = 0. 

easily from Proposition 3.9 that the map 
A similar calculation gives 

B~P::%(D~D~~~;~I --+Ko(DpDpC%;31 
2 

0r+2~*0,(QR~ - RQ51 = 0. - - - - -  ct-.- r i n  . mn. . 1 1  4 s  imh~aaea in K.(D D r M .  :11 bv the transfe la a '""',"'u"l-ljiirr'u. ur..rr rr " -- -- ..L.- p~p.~l,. " 

we see that To proceed further we need the case k = p2 of 4.1. First we must cheek that the 
2 

03pX:t5(Dp2Z %;I) -+KO(? T%;?) argument is not circular, since the present result is certainly used in the proof of 
P 4.1. However, it enters only through the proof of 4.7, to he given in Section 9. An 

2 
is a monomorphism. It therefore suffices to show that 0 0 p QRz is zero. We hav * 3 *  inspection of Section 9 will show that only the case r = 1 of the present result is 

used in PZ-oVing the case k = p2 of 4.7. Thus we may proceed. We suppose r , 3; the 
@,B3pcQRe = 6,83Qp*(Rp*z) by 7.6(ivI and 8.4(iiil case r = 2 differs only slightly. By Remark 4.2 we obtain a subbasis 

- 0 0 IRnRp*z + pP-lt*(lip*z8 (03Rp*51 (P-1 ) 1 1 - * 3  A = %-2 u Ar-1 u A, u Ap+2 
2 

= 0 0 R[BP*5 - 1*(p*5 8 (B2P*5) * 3 (p-ll 1 1  + P~-~B,I~(B~RP,~I(~', for D P xh$. with = {B*QQ~), 

where the last two equalities follow from the second and first parts of 8.2 
* 

i(ii1. A,.-,,, = Ia*[Qz 8 ( B ~ - ~ Q Z I ( ~ )  8 (n 2 Or+lRzl (p-i-1 I I I O <  i 6 p-21, 

Now @:a = 0 by 7.6(ivI, and 
2 Q51i-ll 2 (p-i-1 I 

Ar-l,O = {ax [QZ B R Rz O ( Brml O (n Br+lR5) I / 1 < i < p-21, 

B * B ~ R ~ * ( P ~ ~  8 (B~P*ZI (p-ll) = . * * ?  6 0 ~(p*" 8 ( ~ ~ ~ ~ l ( ~ - ~ ) l  by 1.2.12 

% = iB*RQs) and Art2 = {B*RRal. Therefore the set 
= u,~*Q( (84pz5~(p1~ by 8.4(iv) 

r +l 
inr-30,~~z,nr-16,~~~,n B*RXz) v nr-2q-l,l v n r-2 A 

= $-1a,(Qs4p~5)(p1 by 7.6(viil when p = 2 and equation (71 when p is odd 
'r-1 r-1,0 

= $-1g,I,(831ip,5](p1 by 8.4f3.v) and 1.2.11. is a basis for K 1 (D Ph$. Z ;I), and the subset nr-28r-1~-1,0 is a basis for the image 
r-1 of nr-2~r-l, hence for the kernel of p* . By (81 we see that B,(QRz - RQal is 

2 
We conclude that 0 0 p QR5 = 0 88 required, which concludes the case r 1. in the image of p$', hence there exist constants a,h,c,do,...,$-2 Zp with 

* 3 *  

Next let r = 2. We have (10) B,(QRz - RQzl = p:-1~anr-30,~~a + bnr-16,R~?; 

(p-ll] r-2 p-2 (il 2 Rzl(p-i-l)ll. 
XB*(QR~ - RQa) = B*iQIQp,z - i,(z 8 (8,~) + cnr+lO*FPa + a*" 1 (diQz 8 (B,-,Qz) 8 (n Or+l 

i=o 

- Qp*@ + I*(Qz 0 (Or-lQ~) ( ~ - 1 ) ~ ~  2 If we apply Br+2px to both sides of (101 then the left side becomes zero by (91, 

(p-lll + ,*(QsO (Or-,Qzl(p'lll hence we have 
= 0*1-Q1,(5 8 (0,~) 

r-3 4 r-1 2 r + 1 
= a,l-6,Q(5 8 Brz1 (p-ll) + Q 8 (~r-lQs)(p-lll by 1.2.11 0 = ap 0r+2~x0xQQz + bp p*B*RQ% + CP 0r+20*m~ 

and 1.2.12. 
+ P-2 1 di$-20r+2p~a*l~a O (O,-l~~)(il 8 (n20r+1~zl(P-i-11 I. 

(pllp-l - pQz 8 6,8(0,zl (p-1 I i=o 
= o,l-Qz 8 (nt,(Brz1 

Since the set A is a subbasis this gives a = b = c = Q = ... $-2 = 0 as required. 

+ &a Q (i*(n~~51(~' + p ~ 0 ~ 5 1 ~ - ~ 1 .  This completes the proof of 8.4. 
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Proof of 8.5. Part ( i l  is t r i v i a l .  

( i i l  We may assume x = 3. We have 
I u(pl (DpJ1 )xnBr+12. Ur = nBr+l%nur+l = nBr+l * pl 

( D  j] ,n2ur = n  = t ru(pl  = ( D  j )*I*uF1 
P P 

(p-1 I 
= p n > x ( ~ ~ + l  Q B r + l ~ r + l )  

hence n2ur  = I,~:' by 8.2. I f  r > 2 then and comparing with (121 gives a2 = 0. Next we have 

(Dpjl,2nur a n u  = $ u =  ( D  p j )  * * r  t u (PI  ' 
T+"B,+~$U, = n B r + l ( p - l ~ ~ p , u ~ )  = ( p - 1 1 1 6 ~ ~ ~ ~  = r*l,(u>-ll Q B u 1 r r  

hence a n +  = ixuF1 by 8.2. and comparing with (121 gives al = 1. 

(vl As in the proof of 7 .3 ( i i i l  it suffices t o  show (iii) By part  ( iv l  we see that  the se t  [&,,a up} is  a subhasis for Dp$ i f  

r 2 2, while [$ur} is a subhasis for DpM1. It follows that  the map r ( P I  (p-11 1p*ur i f  p is odd or r > 2 
( D  j l  :K ( D M  ;r+21 t K (D S;r+2) 

r*%u = P * 0 p r  
r 

0 P 
is monic. But 

2,uF1 + (B22,url (21 i f p = 2 a n d r = l .  

P P-1 ( D p j ] & p x u r = ~ ( p u ~  = S ( n p u ~  = t * ( p u ~ ( " ) =  P-lp*q= ( D ~ ~ I * P  p+3ur  
We prove this when p = 2; the odd primary case is similar. The element 1 ~ 2 %  is in 

the z2-invariant ubgroup of K o ( ~ ~ ) ; r + l 1 ,  and th i s  subgroup has a basis 
72 1 

and the resul t  follows. 

consisting of 2*u, with order 2' and 2r-1(Br+12,%1(21 'with order 2. Thus we have 
( v i l .  Let p = 2; the odd primary case is similar. F i r s t  l e t  1x1 = / y /  = 0 

(2 1 w i t h r > 2 .  Wemayassumex=+,  y =  ?+. Theset  
(111 r , a  ur = a12*uF1+ a22r-1(fir+12xur~ 

( ~ l x  Q ~ y , n t * x ( ~ )  Q W , Q ~  Q m x y ( 2 1 , ~ x  Q w , a x  Q B , + ~ ~ Y ,  
with al t Z and a2 e Z2. Now 

2' 2 
3 x  Q Br+14*QS,gX Q n Br+lQ~,Qx Q Br-lW> ji21T,$ur = ~ * ( D ~ j l * S u ~  = T*" = 2u; 

thus applying j i2 '  t o  both sides of (111 gives 2u = 2alu i n  KO(S;r+ll so tha t  is a suhbasis for D2M, A D2$, hence we have 

a1 = 1. Next we have 
(131 s x 3 ( x  Q Y )  = ? a x  Q aY + $%x s 4 , ~  + a34,&@ A Y  

(21 = m * 2 u  = 7*I*Ur r Wl + Z?.X C4 %Y 

hence applying n t o  (111 gives a2 = 0 i f  r 2 2 and a2 = 1 i f  r = 1. 
+ a63r+12x Q a r+14 ,~  + 9ar+14*k Q B , + ~  SY 

( i v )  We may assume x = +. Let r , 2; the case r = 1 is  similar. The s e t  + a86r+14*k @ Br+14*W 

[ ~ u ~ , t , u ~ ' ,  i , (uF- l1  Q hrur1} 

n6* acx  B YI = 6*1*(x Q 71 t 2 )  = t,x(" 6 ,*y (2 )  

is a subbasis of height r for Dp$, hence we have 

we have a6 = a7 = a8 = 0. The equation 
(121 n ~ , + ~ a u ,  = a l t X ( ~ F - l )  Q B,.U~I + a2sp*&, 

( D 2 j ~ D  j l  6 % ( x Q y l  = 6,211 = 6,q = n 6 q 
with al a Z 3 t Zpr-l. Let j '  :b$ + be the map induced by the inclusion 2 x *  

P 
Z r C  Z r+l. Then j o j '  = j:Mr + S, hence ( j l ) * +  = n++l  and (j'l*Br+ = implies al = 1 and a2 = a? = a4 = 0. Hence we have 

P P 



(14) 6,%(x Q Y )  = a x  Q2.y + a 5 ~ r + 1 a ~  @ B,+,&Y hence al = 1 and a 3 - - 0. To determine a2 and a4 we calculate.. 

with a5 depending on r. A similar argument shows that  (14) holds also when r = 1. 2 
6 R ( x Q y )  = 6,QBr(x Q y )  = n Br+,IRx Q a y  + 4*(QxQ W ) l ,  " Br+1 x 

Now l e t  T1 and T2 switch the factors of qAMp and D2k$AD2M,r. Then 
hence a2 = 0 and a4 = 1. Next we calculate 

6,a(Tlx(x 8 y)) = T2,6,d(x @ Y )  @ a x  - a5Br+l%Y 8 Br+l 3x0 n6,R(x 8 y )  = GxnR(x 0 y )  

On the other hand, i f  r 1 2 then = nRx 0 n$y + n4,(Qx 8 + 2r-2!3r2u~~ @ ~ 8 , + ~ 4 y  

6,3(Tlx(x Q 7 ) )  = 6 , % ( ~  Q x) = a y  Q%x + a5Br+1%~ 8 Br+l%~, . ( 2 )  
+ 22r-31x(~rx) Q Q B , + ~  2 ~ .  

hence 2a5 = 0 a s  required. If  r = 1 then 
Now the element 22r-3 ,x(~rx)(2)  is  zero when r 1 3 since 2r-3 > r while when r = 2 

we have 
6,%(T1*(x Q y ) )  = 6,%(y Q x  + BY Q B X )  ( 2 )  

0 = 2822,&X = 2B2Q2,x = 21,(B~x) . 
= 6*%(y O x )  + 2B2%y 0 B28x. 

Thus applying n t o  both sides of (15) gives 2a5 = a6 = a8 = 0 and a7 = zr-'. It 

Hence in t h i s  case -a5 = a5 + 2 mod 4, so tha t  a5 E 1 mod 2 as  required. 
remains t o  show a5 = 2'er, where s r  < Z 2  is  the constant in the formula for 

6,%(x Q y ) .  But this follows from the equation 
Next l e t  1x1 = 1, lyl = 0 with r ?_ 2 we may assume x = z 3 ,  y = 3. Choosing a 

subbasis for qzk$/\D2k$ a s  in the preceeding case, we see that  (16) ( S A ~ ) , ~ , R ( ( Z ~ Q U ~ )  @ u r )  = ( 1 ~  6 ) , 6 , ~ ( t u ~ Q  (ur 8%))  

(15)  S*R(X 8 y )  = alRx 6 3 0 2 ~  + a2Rx Q 4,W + a34,Qx 82.7 
i f  we expand both sides using the formulas already shown. 

Next l e t  x = Zul , y = ul. A suitable choice of subhasis for D2ZM1 AD2M1 gives 
+ a44*(Qx 0 QY) + a5Br+1Rx Q B,+l$Y 

Rx 0 Bri14*W + %,Br+14,&X 8 8r+l 3 Y  
6,R(x 8 y )  = alRx Q$y + a2~2Rx 8 B$Y 

+ a6Br+1 

+ a8Br+14x* Br+14*@ and we see a s  before tha t  al = 1. Evaluating both sides of equation (16) in this 

case gives a2 = -(1 + 2 9 ) .  Finally, we have 

with a1,a5e ZZrtl and the remaining ai i n  Z2r-1. I f  f denotes the composite 

1 D2j 
6,R(y Q x )  = 6,R(T1,(x Q y + 6x Q By)) 

D2zMr A D2Mr -----+ D2mr A D ~ S O  D2Mr A SO = D2EMr 
= T 6 R ( x Q y  + 8X0By)  2% * 

then the diagram = %y 8 + (1 + 2 ~ ~ ) 8 ~  S Y  @ B2Rx 

Dl ( EMr A M r )  D2Mr A D2Mr a s  required. 

Now l e t  x = zul. and y = XI+, with r > 2. We have 

(17) 6, (x  0 y )  = alRx Q Fg + a2Rx 0 4,W + a34,Qx Q Fg 
'. - * 

+ a44,(Qx Q QY) + a5Br+l 
connnutes. Applying f, t o  (15) and using the equation S,Qu = 0 (which was shown i n  Rx @ Br+lW + a6Br+1" @ 8r+14*Q 

the proof of 3 .3( i i )  ) gives 
+ &jBr+14*&X @ Br+lRf + a8f'r+14*@ 61 Br+14*W 

Rx = alRx + a34*Qx, 
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P 
with a1,a2 fZZr i l  and the remaining ai i n  Z2r-1. The equation B X Q I  b x ( ~ )  = , *&,QX(~)  = l X 1  1 (~)pi - l (z lbx(p)  @ ( Q X ) ( ~ ) I .  

i=1 

(18) 7 ~ 6 ~  ( X  8 y )  = 6*1,(x Q y )  When D = 2 t h i s  eouation follows from 7.61viil since ( u r n  a u n u  n a TI anrl 

The l e f t  side becomes { Q ~ U , , I , U ~  ' 1  is a basis for  K ( D  D M ; I ) .  Lemma 4.3 also implies tha t  the s e t  0 P P l  
2 

( D 2 j  n ~ ~ j ) , 6 ,  %[X Q y )  = 6% acz~ s E U )  = na,atcu ~3 c u ~ ,  ( ~ % u , t , u ( ~  ) I  c K ~ ( D ~ D ~ s ; ~ )  

which is zero by (18). By 8 .4 ( i i )  we have is  l inear ly  independent. Hence ( D  D ' ) *  is monio on KolDpDpb$.;l). Since the 

transfer 
P d 

(D2 j  )*Rzur = RTu = RnCu = ZQEu, rX:Ko(D 5;l) .+ K O ( D p D p Y ; l )  
P 

hence (since 8al z 8a2 r 8a = 0 mod 2"l) the r ight  side of (17) becomes 3 - 
4a4Qzy x Qzu, so that  a4 = 0 in Z2r-l. Next we calculate 

is monic and ( D  DJ )* o r = r* o ( D  T j  )*, i t  follows that  ( D  j ), is monic on 
P 

K O ( D 2  M l ; l ) .  But P P 

r-2 P 
~ 6 ~ + ~ 6 ~ % ( x  Q Y )  = 2 Z B ~ + ~ I R X  Q 4*Qy + 4*Qx 8 Wl, ( D  j )X~XQ&ul  = BXQ 4 u  = @*Q~,U(P), 

P 

hence a2 = a? = 2r-2. Finally, i f  we expand both sides of the equation which is zero by (20), hence BXQ ul = 0 as  required. 

( 6 ~ 1 ) , 6 , $ [ [ c u ~  8 cur) Q ur) = (1 ~ 6 ) ~ 6 * 2 ( z u ~  Q (xur 8 u r ) )  Next l e t  r 2 2 and l e t  y denote the element 

using the formulas already shown, it follows that  a5 = 0. The proof when r = 1 is  
~ , Q t n ,  - I* P 1 ( ~ ) P i - 2 ~ ~ X U ~ ) ~ ( P - i )  Q P ~ I I Q U , ) ( ~ ) I  

similar. i=1 

( v i i ) .  We may assume x = 5. Let r t 2; the case r = 1 is similar. Then i n  Ko(D b$.;r). Then (20) implies tha t  liy = 0 and (D_2 j )*Y = 0, and we must show 
P 

(19) 
2 y = 0. Since 

A * E $ U ~  = alEur + a2PXQzup 

* [ ( -  I \a-11 
) Since ~ 2 %  has order 2'11, it cannot be in the image of ( ~ 1 ) ~  and the resul t  * r @ 5 , ~ ~ )  

follows. r-2 (p-i-1) s (n Q U ~ )  s 6-2~r - l~~r  I I 1 2 i 2 p-1) 
( v i i i ) .  We may assume x = I+. We have 

k k ( D  j ),lyk2ur = ly d u  = lykn = = (Dpj)*a$ ur 
and, i f  r 2 3, {z~-~B*QQu~},  is a basis for KO(D &.;1).  he second of these se t s  

P r -1 P 

k generates the kernel of pX and a lso  the kernel of ( D  j )*, and it follows tha 
since ly ur = up; the resul t  follows by 8.2. P 

( D 2  j), is monic on the imay- -" - r-1 ,, a .. - . . ~.~ ~ * 

( i x )  By equation (7 )  in the proof of 8.4fvii i)  and 1.2.14 we have the P 

following equation in q ( D  2X; r - l )  when p is odd and r ? 2. 
required. 

P 



9. Cartan formulas 

In this section we shall prove Lemma 4.7. As in the proof of 2.7, the basic 

idea is to "simplify" each expression in Ca(respectively CU'I to obtain an expres- 

sion in C[x) (respectively C[y,ri)). We shall refer to the simplified expression as 

a Cartan formula for the original one. Some explicit examples of such formulas will 

be given below. However, some of the formulas we need are too complicated to give 

explicitly, and instead we shall use an inductive argument to establish their 

existence. 

In order to do so it is convenient to work in a suitable formal context. Zet 

be indeterminates and suppose that to each has been assigned a mod 2 

dimension denoted /cil and two positive integers called the and filtration 

and denoted UciU and Intuitively, ci should be thought of as an element of 
K (D X;U5ill far some spectrum X. We wish to consider certain finite formal 

I I VS 
comhnati&ns E(Sl, ..., ctl involving the ti and the operations of section 3, namely 
those combinations which would represent elements in one of the groups K,(DjX;rl 

when interpreted "externally" as in section 4. More precisely, we define the 

allowable expressions E(cl,. . . ,ct) and assign them dimensions, heights and 
filtration by induction on their length as follows. 

Bfinition 9.1. (i) Each indeterminate ti is an expression of length 1. For each 

a cZ2, r ? 1, j , 1 there is an expression Oa j 9 (called zero sub a,r,jl having 

length 1, dimension a, height r and filtration j. These are the only expressions of 

length 1. 

(ii) Suppose that the expressions of length < % have been defined and assigned 

dimensions, heights and filtrations. The expressions of length %+l are the follow- 

ing, where E ranges over the expressions of length %. 

(a1 p,E. We define IpxEl = IEl, llp,Ell = IlEIl + 1 and v(p,E) = vE. 

(bl 8,E if UEII = r. We define I B ~ E ~  = /El-1, IIBrEU = IIEII and 

v(8,EI = vE. 

(cl nE if 2 2 IIEII. We define /nEl = /El, unEU = IIEII-1 and v(nE1 = vE. 

(dl El + E2, where El and % are any expressions whose lengths add up to %+I 

and which satisfy /%I = /%I, &Elll = lIE2U, and v% = v%. We define 

IE1 + E2/ = \Ell, 11% + E2ii = uElil and v(E1 + E21 = vE1. 

(el %.% (the formal product1 where 5 and % are any expressions whose 
lengths add up to it1 and which satisflr U%ll = IIE2u. We define 

I%.E2/ = /El\ + IE21, UE1.E211 = IIEIII, and v(E1-%l = vEl + wE2. 

(fl QE if 2 < UEU. We define IQEI = \El, IIQEII = IIEU-1 and vQE = PvE. 

(gl &E if /El = 0. We define I&EI = 0, II&EII = llEll+l,, and v2.E = pvE. 

(h) REif /El = 1. We define /RE1 = 1, IIREII = IIEII+l, and *RE= pvE. 

Note that we have not required formal addition and multiplication to satisfy 

commutativity, associativity or other properties. However, in writing down 

particular expressions we shall often omit some of the necessary parentheses, since 
their precise position will usually be irrelevant. We shall also abbreviate 0, , ,j 
by 0. 

We have given Bfinition 9.1 in complete detail as a pattern for other, induc- 

tive definitions about which we will not be so scrupulous. For example, let E be an 
expression in the indeterminates El, ..., St. If 3, ...,% are expressions in another 

set of indeterminates q,...,qS with / E ~ /  = 1 ,  uEi" = ilciii, and uEi = vui for 

1 < i 5 t then we may (inductively) define the composite expression E(E1, ..., Et) in 
nl,...,nS. Again, if X is any spectrum and x.eK 1 ISi/ (D USi X'U ci 11) for 1 2 i < t then 
we can define 

E(xl, ..., xt)( KIEI(DYEX;uEu) 

as in section 4 by interpreting Q,a, R and the multiplication externally and 
applying ox and 8, to formal products and composites. 

Definition 9.2. Zet cl,...,ct be a fixed set of indeterminates. Equivalence, 

denoted by -, is the smallest equivalence relation on the set of expressions in 
clr..,St which satisfies the following. 

(11 - is preserved by left composition with Q,% ,R, n, px and 8, and by formal 
addition and multiplication. 

(21 For each r 2 1 the equivalence classes of expressions of height r, graded 
by dimension and filtration, form a Z2 x Z graded ring (without unit1 with the 

Oa,r,j as zero elements. The relation E1.E2 = (-11 
IE I E I Z ' E ~ E ~  is satisfied and 

left composition with n, Br or p, is additive. 

3 If x and y denote expressions 3 and E;, having height r and the required 
dimensions then the following hold with = replaced by -: 3.1; 3.2(iiil, (ivl and 

I 3 i i  (ivl, (vl, (vil, (viil and (XI; 3.6(iil, (iiil, (ivl, (vl and (viii); 

7 i  (iiil, (ivl, (vl, (vi) and (ixl. 

Roughly speaking, two expressions are equivalent if one can be transformed into 

the other by using the relations of Section 3. 

It is easy to see that equivalent expressions must have the same dimension, 
height, and filtration but not necessarily the same length. An inductive argument 
shows that E(E1,. . .,Etl and E' (Ei, . . .,E;) are equivalent if E - E' and Ei - El 
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for 1 5 i 5 t. A similar inductive argument using 3.1, 3.2, 7.6, 8.4 and 8.5 gives r+t-1 t i-1 p-i (viil If 1 5 i 5 p-1 then n B,+~R [(8r511~1 c2 I -is equivalent to 
the following. 

t t i(~r-151) (i-1)p (,r-t-1 QtE1) ("r-lE2) fp-i-l)p ("r-t-1 t 
'r-t Br_+,Q 62) Lemma 9.3. k t  E and E' be equivalent expressions in Let X be any 

spectrum and let xi be an element of K (D X;II<iUl, for 1 5 i 5 t. Then Isi/ YEi if t < r and to zero otherwise. 
E(xl, ... xt) = E1(xl, ..., xtl. 

(viii) B Q ~ ~  c1 - 0. 

If A = [~~,...,5~} is any set of indeterminates we can define the filtered lixl, If s 5 t then ~~~~5~ is equivalent mod pt-st2 to 

algebra CA and the subquotient groups DjA with their standard bases exactly as in s-1 t-E+l 8-1 s 
sections 3 and 4. If A' is another set of indeterminates and f:A + A' v {O) P ( Q E ~ I ~  + , 
preserves degree, height and filtration we say that f is subbasic. Clearly, the where 

constructions CA and DIA are functorial with respect to subbasic maps. We can think (1 if p is odd or s < t 

of the elements of D A  as expressions in by inserting parentheses so that 3 
addition and multiplication are treated as binary operations. (Of course, up to 

= 1 
-1 if p = 2 and s = t. 

equivalence it doesn't matter how the parentheses are inserted.) This identifies 

DjA with a subset of the expressions of height 1 and filtration j in El,. ..,Et. By 
~ ~ p ~ - ~ 5 ~  is equivalent mod p to 

a Cartan formula for an expression E of height 1 we mean simply an equivalent - 7  -8-l _S 

expression in Dv,$. The next result, which will be proved later in this section, 

provides some examples which will be useful in the " " ' - "' 
.. & L where 

proor or 4. r .  we say Tnaz TWO I 

expressions and % are equivalent mod p if there is an expression E' with 0 if p is odd 

II%U-1 1158-1 
El - 4 + pE'; in particular this implies n % - n 1 if D = 2. 

Proposition 9.4. Let cl, c2, E3, E4 be indeterminates of height r with dimensions There remain expressions, such that Qr2 El, for which the Cartan formula is too 

0, 0, 1, 1 respectively. Let 1 2 s < r and let t 2 1. complicated to give explicitly. O u r  next result will guarantee the existence of 

such formulas. bt A = (~~,...,5~1. We say that an element of D A is homogeneous 
S 

(il Br-,Q El - ~ ~ 6 ~ 5 ~  mod p. if it is a sum of standard basis elements each of which involves j every ti. Note 
a - - 

(iil 8r-s~S~3 - that such elements are in the kernel of Djf whenever f:A + A'u{O) takes at least 

one Ei to 0. 
(iii) Q ~ ( E ~ s ~ )  - p if p is odd or r 2 3. 

(iv) QSlE 5 I is equivalent to (Q~<~IIQ~F,~) if p is odd and to 
3 4 Proposition 9.5. Aoy expression E of height 1 in is equivalent to an 

2~-1 2S-1 
(QSt3) (QSE4) + 2r-Sd(r~s-1<31 ( ~ ~ 8 ~ 5 ~ 1  

expression in DjA for some j. If the 5% have height r and degree 0 then the 
. r - s -  . , 3 .  3 &. . - ~ - ~ ~ . ~ ~ ~  ~ . . * . "  

- 
(vil If 1 i: i 2 p-1 then 

The proof of 9.5 will be given at the end of this section. Unfortunately, 
p-i) - ~ ( B ~ ~ ~ Q ~ E ~ ) ( ~ ~ ~ ~ ~  ps(i-llI s P~(P-~) Br-sQ (EIEZ n E21 there seems to be no direct algebraic proof that the Cartan formulas provided by 9.5 

s s are unigue, that is, that distinct elements of D A cannot be equivalent as 
s P (p-i-11 mod - ~ ( I T ~ E , , I ~ P  fBr-sQ52)(n 5,) expressions. If we had uniqueness in this sense j then Lemma 4.7 would be an 

immediate consequence of 9.5. Instead we shall have to give a much more elaborate 
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avoid appealing to uniqueness. (A similar difficulty in ordinary homology is 

implicit in our proof of 2.7). On the other hand, it is easy to see from 4.1 and y far e < m 

9.3 that uniqueness does hold, but of course such an argument cannot be used in 

proving 4.7. However, we can and shall use uniqueness in filtrations less than k in 5 f0re.m. 

the following inductive proof of 4.7. 
Finally, we define h: (el,. . . ,cp) + A by h(ctl = x for all e. Note that 

Proof of 4.7. We shall give the proof for r < -. The case r = -, which is similar (go)* o fm.= h for all m. 

and somewhat easier, requires some straightforward modifications in Definition 9.1 

to allow for infinite heights; details are left to the reader. 

First let M = Mp with r ) 2 (the r =1 case is similar and easier). We of Fo on each. The first four entries in column 2 are precisely the standard inde- 

define a to be { Q x , ~  x).  Let u,,, and vm respectively denote p5P-m and ( ~ ~ 1 p - ~ 5 ~ - ~  

for 1 2 m 2 p-1 and define a' to be 

(@,QZ,~Y,$Z) v {urn I 1 5 m 5 P-1) u {vm I 1 5 m 2 P-11- 
iterate intended can easily be determined since all entries in the table are to have 

Lemma 4.7 implies that a and are in fact subbases for DpM,, and Dp(h$. V $)a 

to aero. In particular (Dpgllx: a' +aw{Oi is a subhasie map and hence The values of Fo claimed in column 2 are either obviously correct or follow 

F1 = Dj (Dpgllx. Similarly, F2 = Dj (Dpg2Ix. On the other hand, (Dpgol* is not easily from 9.4 or the formulas of section 3. For example, in line 10 we have 

subhasic since it takes u,,, to n2x and vm to ZB,+~~X, hence Fo is not induced by P-s r-s r-s+l s 
n - n B ~ - ~ + ~ " Q ~ ~ x  - pii B ~ - ~ + ~ Q  a x  - o 

functoriality from (Dpgolx. Itgdetermined by (Dpgolx, however, in the following 

and in line 12 we have 

E(@,Qz, 2 7 ,  25, ~l,.-.jUp-l~V1,..~~Vp-l) r+s-1 s 2 x  - ,,r+s-1 s 2s 
%+sR "%+I Q Br+2sPx nBr+l%~ - 0. 

E(Qx,Qx,$x,dx,n2.x ,..., n 4 ~ , n B ~ + ~ A x  ,..., nBr+12~) 

yt and y; 
on indecomposables and extending multiplicatively, we can define 

Let el, . . . , cp be indeterminates with dimension zero, height r, and filtration 
1. If s < r we use 9.5 to choose a homogeneous expression E in %{e1,...,Spl 

equivalent to nr'S-l~S(S1...Sp). If s = r, let E be an expression in %{el, ..,Spl 

equivalent to Qr3 el. We define subbasic maps 



To complete the proof of 4.7 for M = $ it remains to show that diagram (* I  of 
2 section 4 comiutes for i = 0, 1, 2. In order to see that the inner square commutes 
Lh it suffices, by Lemma 9.3, to show that the first four entries in columns 2 and 3 

are equivalent as expressions in x. This is clear for lines 1, 3 and 4 and for line 
2 if s = r (by 9.4(viiil). If s < r in line 2 we have 

r-s r-S-l s r-s-1 s p-1 
ii 6r-s+l~S( 5x) - n Q "Br+l a x  - " Q (X Brx) 

which is equivalent to the required farmula by 9.4(iii). 

To see that the outer square commutes, we must show that the entries in columns 

1 and 4 are equivalent as expressions in y and 5. The first eight cases follow as 

in the preceding paragraph. Line 9 follows from the definition of E, line 10 from 

9.4(vi), line 11 from 9.4(iii), and line 12 from 9.4(vii). 

For commutativity of the upper trapezoid when i = 1, we must show that %(gl)* 

takes the first four entries in column 4 to the corresponding entries in column 3 
(which is obvious) and takes the remaining entries in column 4 to zero. This 

follows in line 9 from the fact that E is homogeneous (since (gl) * o fm takes at 

least one <,to zero if 1 5 m 2 p-1) and the remaining cases are clear. Similarly, 

we see that the upper trapezoid commutes when i = 2. Finally, we observe that each 

entry of column 4 goes to the corresponding entry of column 3 under %(go)*, and 

hence the upper trapezoid commutes when i = 0. This completes the proof of 4.7 for 
M = %. 

Next suppose M = zM,.. We define a= {Rx) when r = 1 end d= {Qx,Rx) when r : 2. 
Let u,,, = Y(~rY)m-l(~rz.)P-m and vm = y(t?9)m-1z(8rs)P-m-1 for 1 5 m p-1. We define 

when r =l and 

when r 2 2. 

Then (D g 1, end (D g ), induce subbasic maps from I&' to aend we therefore 
P 1 P 2 

have Fi = Dj(Dpgi)* if i = 1 or 2. The map (D P g 0 ), takes u,,, to -sRx when r = 1 and 

to p*Qx - nRx when r 2 2. it takes vm to zero when p is odd. When p = 2, 3.3(x) 

implies 

u f r = 1  

We begin with the case r = 1. We define y and y '  on decomposables by 
j j 

inductive hypothesis as in the M = h$ case. To define y and y '  on indecomposables 
j j 
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we use Table 2. and 3.3(vi) and ?.?(viil show that Qt of a product of elements of degree zero is 

Table 2 equivalent to a sum of terms each of which has either p or a D-th power as a factor. 

1. Q(W1 Q(Rx1 0 0 for M = zM1. 

Rs+lX 
Next let r : 2. We can define y. and y! on decomposables precisely as before. 

2. n ~ ~ + ~ ~ ~ ( & f l  T B ~ + ~ R ~ ( R ~ )  %+2 uBs+2 Y 3 J 
In defining y and y! on indecomposables when r 2, it will be convenient to modify 

j J 
3 Q(Rz1 Q(Rx1 0 0 the standard basis we have been using as follows. Let nl and q2 be indeterminates 

with, dimension 1, filtration p and heights linlii = r-1, iin2ii = r+l. We use~9.5 to 
4 ~ B ~ + ~ R ~ ( R ~ )  nBs+2 R~~~~ %+2 RStlz obtain an expression E(nl,~21 in Dj (n1,q2) equivalent to nrtS-l~r+s~S(p,nl - nn2). 

0 0 
We claim that the coefficient of nr+S-2Br+s-l~Sn1 in E(t~,n~2) is 1. To see this, 

5. ~ B ~ + ~ R ~ %  FO( ~ B ~ + ~ R ~ ~ )  
write E(q1,n2) as El + E2, where El involves only q1 and every standard basis 

element in E2 involves n2. If f: (n1,n2] '. inl] u (0) takes ill to itself and n2 

Here the first column lists the indecomposables of Dj a' and the second column (we to zero then (D.fl(E(n1,n211 = El. On the other hand, 
J 

claim) gives the value of F0 each (note that lines 1 and 3 are relevant only when s 
r+s-1 s r+s-2 

= 1, i.e., when k = p21. The first two entries in c a l m  2 are the indecomposables (D.f1(E(n1,n21) - E(nl,O1 - n Br+,R Pxnl - R Br+s-l~Snl. 
J 

of D.a, and the corresponding entries in column 3 give our definition of y. on 
3 3 

each, while the remaining entries in column 3 are claimed'to be values of y. Since uniqueness holds (by inductive hypothesis) in filtration j we have 
3 

determined by the definition we have just given. The entries in column 4 define y! 
3 - ,,r+s-2 

on indecomposables. The necessary verifications are similar to those in the case 1 - Br+s-l~snl 7 

M = M_, and they are straightforward except in line 5. Here we must show that 
s r+s-2 

and D. J a' when r 2 2 by replacing nr+s-2 Br+s..lR (Qx', Br+s-l 
equivalent to zero as an expression in y and 5. For simplicity we assume that p is r+s-2 

%+s-1 RS(Qz) in the standard bases by E(Qx,Rxl, E(Qy,TtyI and E(Qx,R%I 
odd -- the case p = 2 differs only slightly. First recall that to calculate 

respectively. 
F0("S6s+1~S~) we need only find an element of D. a which is equivalent to 3 
-ITB,+~R~~(R~I as an expression in the indeterminate Rx. Now Next let c1....,5 P be indeterminates with dimension 1, height r and filtration 

1. We use 9.5 to choose a homogeneous expression E'(s~,...,s~) in Dk(51,...,~p} 
S 9 S 2s 

-n @s+l~Sn(Rxl - -n Q BZs+,p, n(Rx) by ?.6(ivI equivalent to 

s-1 ~ r + s - 1 6 r + s ~ S ( 5 1 ( ~ r ~ 2 ) ~ ~ - (  6,~~)). - -Q'P( B,+~P* 1. 
Finally, we define the subhasic maps fm and h exactly as in the case M = b$. 

We see by induction on t using (3.3(vi) and 3.3(vii) that Qt of a multiple of p is 
We can now define y. 

equivalent to a sum of terms each of which bas either p or a p-th power as a factor. 3 

p w s ,  '""V"' , LY'U 
claim1 gives the values of F0 on each basis element. 

But by definition all 

s ~ ~ ( y ( 6 y 1 ~ - ~ ( @ z 1 ~ - ~ 1  - n s Q s B ~ ~ + ~ P ~ S ~ Y ( B Y I ~ - ~ ( B ~ I ~ ~ ~ I  @s+1 

s m s p-m - Q'( ( B,+~P*Y) ( B~+,P,~) 1, 



llle first six entries in this column are the new basis for the indecomposables 

of D, a ,  and fhe first six entries in column ? define y . ,  while the remaining 
J 

entries in column 3 give the values of y .  on the remaining entries in column 2. The J 
entries in column 4 define y '  The verifications necessary to prove 4.7 in this J ' 
case are again similar to those in the case M = b$,. The less obvious ones are the 
following. If s < r we have 

r-s s r-s-1 s+l 
n Q Rx - nr-S-l~SnRx - n Q pxx - n r-S-1 Q s 

in lines 1,5 and 9 by 9.4(iii). (In particular we observe, as claimed in the proof 

of 8.4(viiil, that the relation ?.6(viiil is not used in the present proof when 

s=landr,2.1 If s = r w e h a v e  

QSRx - QRQS-'x - 0 

in lines 1 and 5 by 3.6(viii). In line 11 with p = 2 we apply 9.4(ixl to show 

0 if s < r-2 

r-1 2r-2 - (n Br2,Qx1 if s = r-2 

* r-2 2"2 
(T~-~Q$~~,QX) + (nr-l~$x~xl if s = r-1 

and the claimed values of Fo follow from ?.l(ii), 3.5 and ?.6(iiil and (ivl. This 

concludes the proof of 4.7. 

Proof of 9.4. Let - denote mod p equivalence. Parts (il, (ii), (iiil, and (ivl 

follow easily by induction from 3.3(vY and 3.3LviiI. For part (v) we have 

S 
QS((c1c21e4l - ~ ~ ( ~ ~ ~ ~ l ~ ~ ( ~ ~ 1  - (nScllP (Qse3l(QSe4) 

by (iiil and (ivl. For part (vil we have 

s i p-i 
B,-,Q (c1c2 - ~ ~ ~ ~ ( e : e ~ - ~ 1  

i-1 p-i = pi-1 - ~ ~ 1 i ~ 8 ~ c ~ l c ~  c2 (p-ilcf(~,c~l I 

= i~' I ( $,el lc:-lc;-i I - i ~ ~ 1 c ~ ( ~ ~ c ~ 1 c ~ ~ - ~ l  
. . . 
* c , & 2  5 

S 

- i (nScllP ( ~ ~ 8 ~ c ~ l ( ~ ~ e ~ )  (p-i-1 lps 



and the result follows by part (i). 

(vii) First we claim 

(* I  Q~B,+~P*S~ - 0. 

This is true when r = 1 by 3.31iv) and ?.?(v). If r: 2 we have 

and the claim follows by induction on r. 

Now we have 

r+t-1 i-1 p-i r+t-l t 2t i-1 p-i 
n B ~ + ~ R ~ ~  ( B ~ s ~ ) ~ ~  c2 I - n Q S,+~~P, I (6,5,)5, c2 I 

r+t-1 t 2t , 2t i-1 p-i - T Q 8,+2t1(6r+2tP* (El 

- -(,r+t-1 t 2t r+t-1 t 2t i-1 p i )  
Q Br+2tPx cl)[" Q B,+2tP* (51 52 

If t > r then 
r+t-l t 2t t-r 

n Q 8r+2tP* El - Q~~~+~P*(P, C1), 

which is equivalent to 0 by I*). Otherwise we have 

(rr+t-l t 2t r+t-1 t 2t i p-i 
Q 6r+2t~* 1% Q 8r+2t~* (c1~2 ) 1 

r-t-1 t r-t-lQtg (5i5p-i)l - (n Q Brcl)ln r 1 2  

and the result follows from part (iii). 

For (viii), we have 

but the expression for r 2 2 is also equivalent to aero by (*). 

Finally, part (ix) follows from 3.?(vi) by induction on s. 

It remains to prove 9.5. In order to keep track of when en element of 

Dj[51,...,5t)' is homogeneous, we make the following definition. Let S be a fixed 

set and suppose that we have assigned to each Si a subset h(ci) of S called the 

homogeneity of Si. Then we define the homogeneity of an arbitrary expression in 

el, ..., ct by requiring that Oa have homogeneity S, that px,gr,n,Q, 2 and R , , 
commute with h and that h(E + E') = h(E) fl h(E') and h(E.E1) = h(E) u h(E'). We say 

that an expression Elgl, ...& ) of height 1 is reducible with respect to h if 
t 

there is an E' Dj{cl, ..., ctj with E' - E and h(E1) 3 h(E). 
~roposition 9.6. If S is any set and h(gl), ..., h(ct) are any subsets of S then 

every expression of height 1 in C1, ...,St is reducible with respect to h. 

If S = [El, ..., 5,j and h(gi) = [ci) for 1 2 i 2 t then the expressions listed 
in 9.5 have homogeneity S, while an expression in Dj[51,...,~tj has homogeneity S 

if and only if it is homogeneous. Thus 9.5 follows from this case of 9.6. The 

extra generality allowed for S and h is technically useful in proving 9.6. 

In the remainder of this section we prove 9.6. We fix a set S and assume from 

now on that any indeterminates mentioned have been assigned homogeneities contained 

in S as well as dimensions, heights and filtrations. It will be convenient to let 

5. q and 0 denote indeterminates and to let E, F, G and H denote expressions. We 

say that two expressions (possibly involving different sets of indeterminates) match 
if they have the same dimension, height, filtration and homogeneity. We shall 

frequently use the fact that a sum or product of reducible expressions is reducible 

and that homogeneity is preserved by substitution, i.e., if F is any expression in 

nl ,...," and El ,..., Es matching n1 ,..., ns respectively then b(F(E1, ..., Es)l = h(F). 

Note, however, that equivalent expressions generally have different homogeneities; 

for example, p5 is equivalent to 0 if lieu = 1 but hlc) is not necessarly equal to S. 

For our next two results we fix a set [ql, ...,", ni, ..., +,qIr, ..., q") of inde- s 1 S 
terminates such that each ni matches Qqi and each n; matches Rqi. Here and else- 

where we shall interpret Qni as 0 
1,1,1 

if 1ln.Il = 1 and Rqi as 0 if l n i \  = 0. 
1 1,1,1 

We say that an expression is elementary if it does not involve Q or R. 

Lemma 9.7. Let G be an elementary expression of length 2 in ql,...,ns and let 0 

match G. 
11 0 il -1 (i) If F is n"O"-lB or n 61,0u0 then there is an elementary 

expression G' DyG[nl, ..., ns) with G' - F(G) and hG' 3 hF. 
(ii) If F = QB or F = RB then there is an elementary expression 

G'(nl, .. . ,q ,q', . . .;n',nl', . . . ,fl with hG' 3 hF and s 1 S 1 S 



F1(F"), where F" = Qal or Re1 and c(F') = c(F) - 1. Thus 

F(E1) = F'(FV(G(E ll,E12))). If ni,n;,n;,n; are as in 9.7 then by 9.7(ii) there 

is an elementary expression G' (n1,q2,ni,n;,n~,n;) such that h(G' ) h(FE1) and 
Next we define the complexit~c(E) of a standard indecomposable E in G'(n1,n2,Q",Qn2,Rn1,Rn2) - FX'(G(n1,n2)). Thus 

F(G(n1,n2)) - F'(G'(n1,n2,Qn1,Qn2.Rn1,Rn2)). 
Now since c(F') < c(F) the inductive hypothesis gives an expression 

' j n l , n , n , n , n , n  with c(H) 5 c(F7) < c(F), h(H) 3 f(F') 3 h(F), and 

H - F'(Gr(n1,n2,ni,n:,n;,n;)) 
F(G(n1,n2)) - H(n1."2'n1,Qn2,R%,Rn2). 

H(" ,..., ns,Qnl, . . a ,  Qns,Rnl, ..., Rn,). 
Now by Lemma 9.8 there is an expression H' r DJ{",n2) such that 

In particular, the latter expression is reducible. c(H') 5 c(H) + 1 5 c(F) and h(H') 3 h(H) 2 h(F) with H' - F(G(n1,n2)). Hence F(q) 

- H'(E11,E12). Since EL1 and EL2 both have lengths less than e ,  the result now 
follows by the subsidiary inductive hypothesis. 

only one of the indeterminates. If it involves one of the ni the result is 
trivial. Otherwise H has one of the forms 

Finally, we complete the proof of 9.6. h t  G(il, ... ,s+,) be any expression of 

height 1. lk proof is by induction on the length of G, which we may assume is 2 
2. It is easy to see from definition 9.1 (by another induction on the length of G) 

that G can be written in the form G' (el, ..., E~,E), where G' (cl, ..., ,et,n) has length 
less than k and E has length 2. Then G' has height 1 and h(G') = h(G). By 

inductive hypothesis we may assume G'e DvGt~l,...,~t,n). If E is elementan the 
formulas of section 3. 

result now follows by 9.9, while if E is Qii or Rn the result follows by 9.8. This 

concludes the proof. 
Lemma 9.9. Let %, ...,E, be elementary expressions in S1,...,it and let 

trivial. We shall prove the result in general by induction on c(F) with a 

subsidiary induction on k. We may assume that F is a standard indecomposable, and 

hence that it involves only one of the ai, say el. Now by Definition 9.1, % can he 
written in the form G(Ell,%>), where Ell(il, .. .,St) and E12(g1,. . .,St) are 

elementary with lengths less than k and G(n1,n2) is elementary with length 2. If 

c(F) = 0 then F has the form a 

follows by 9.7(i) and the subsidiary inductive hypothesis. Otherwise F has the form 
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