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Preface  

This volume i s  a collection of five papers (to be r e f e r r e d  to a s  

I-V). The f i r s t  four together give a thorough treatment of homology 

operations and of the i r  application to the calculation of, and analysis 

of internal  s t ructure  in, the homologies of various spaces of inter&. 

The l a s t  studies an  up to homotopy notion of a n  algebra over  a monad 

and the role of this  notion in the theory of i tepated loop spaces.  I have 

established the algebraic pre l iminar ies  necessa ry  to  the f i r s t  four 

papers and the geometric pre l iminar iesnecessary  fo r  a l l  of the papers 

i n  the following references ,  which shall  be r e fe r red  to by the specified 

l e t t e r s  throughout the  volume. 

[A]. A general  algebraic approach to Steenrod operations. Springer 

Lecture Notes in  Mathematics Vol. 168, 1970, 153-231. 

[GI. The Geometry of I terated Loop Spaces. Springer Lecture  Notes 

in  Mathematics Vol. 27 1, 1972. 

[GI]. Ew spaces,  group completions, and permutative categories.  

London Math. Soc. Lecture  Note Se r i e s  Vol. 11, 1974, 61-93. 

In addition, the paper I1 h e r e  is a companion piece to m y  book (con- 

tr ibuted to by F. Quinn, N. R a y ,  and J. Torneha~e) 

[R]. E Ring Spaces and E Ring Spectra. 
m w 



With these  papers, this volume completes the development of a 

theory of the geometry and homology of i tera ted loop 

spaces. There  a r e  no known resul ts  in o r  applications of this a r e a  of 

topology which do not f i t  naturally into the framework thus established. 

However, the re  a r e  several  papers by other authors which seem to m e  

to add significantly to the theory developed i n  [GI. The relevant 

references will be incorporated in the list of e r r a t a  and addenda to [A], 

[GI, and [GI] which concludes this volume. 

The geometric theory of [GI was incomplete in two essential  

respects.  F i r s t ,  i t  worked well only for  connected spaces (see [G, p. 156- 

1581). It was the p r imary  purpose of [GI] to generalize the theory to  

non-connected spaces. In particular,  this allowed i t  to be applied to 

the classifying spaces of permutative categories and thus to algebraic 

K-theory. More profoundly, the ring theory of [R] and fI was thereby 

made possible. 

Second, the theory of [GI circumvented analysis of homotopy 

invariance (see [G, p. 158-1601). It i s  the purpose of Ladals  paper V 

to  generalize the theory of [GI to one based on homotopy invariant 

s t ructures  on topological spaces in the sense  of Boardman and Vogt 

[Springer Lecture Notes in Mathematics, Vol. 3471 I. In Boardman. and 

' ~ n c i d e n t a l l ~ ,  the c la im the re  (p. VII) that [GI failed to  apply to non 
2 - f ree  operads is based on a misreading; see  [G, p. 221. 

Vogtls work , an action up to homotopy by a n  operad (or PROP) on a 

space was essentially a n  action by a l a rge r ,  but equivalent, operad 

on the  same  space. In Lada1s work, an  action up to homotopy i s  

essentially an  action by the given operad on a l a rge r ,  but equivalent, 

space. In both cases ,  the expansion makes room for  higher homotopies . 

While these  need not be made explicit in the f i r s t  approach, i t  s eems  to 

m e  that the second approach is nevertheless technically and conceptually 

s impler  (although s t i l l  quite complicated in  detail) since the expansion 

construction i s  much l e s s  intricate and since the problem of composing 

higher homotopies largely  evaporates. 

We have attempted to  make the homological resul ts  of this volume 

accessible to the  reader  unfamiliar with the geometric theory in the 

papers cited above. In I, I se t  up the theory of homology operations on 

infinite loop spaces. This is based on actions by E operads on spaces 
m 

and i s  used to compute H*(CX; Z ) and H*(QX; Z ) a s  Hopf algebras 
P P 

over the Dyer-Lashof and Steenrod algebras,  where CX and QX a r e  

the f r e e  -space and f ree  infinite loop space generated by a space X. 

The s t ructure  of the Dyer-Lashof algebra i s  a lso  analyzed. In 11, I se t  

up the theory of homology operations on E ring spaces,  which a r e  spaces 
m 

with two suitably interrelated E space structures.  In particular,  the 
m 

mixed Cartan formula and mixed Adem relations a r e  proven and a r e  



shown to determine the multiplicative homology operations of the free 

E ring space c(x') and the free E ring infinite loop space Q(x') 
m m 

generated by  an*^ space X. In the second half of 11, homology 
m 

operations on E ring spaces associated to matrix groups a r e  analyzed 
m 

and an exhaustive study i s  made of the homology of BSF and of such 

related classifying spaces a s  BTop (at p> 2) and BCoker J. Perhaps 

the most interesting feature of these caleulations i s  the precise homo- 

logical analysis of the infinite loop splitting BSF = BCoker J X BJ a t  

odd primes and of the infinite loop fibration BCoker J * BSF - BJ@ 

at p = 2. 

In III, Cohen sets up the theory of homology operations on n-fold 

loop spaces for n < a. This i s  based on actions by the little cubes 

operad Cn and i s  used to compute H*(C~X; Z ) and H*(Q~z%; Z ) 
P P 

as  Hopf algebras over the Steenrod algebra with three types of homology 

operations. While the f i rs t  four sections of 111 a r e  precisely parallel to 

sections 1,2,4,  and 5 of I, the construction of the unstable operations 

(for odd p) and the proofs of a l l  requisite commutation formulas between 

them (which occupies the res t  of 111) i s  several orders  of magnitude more 

difficult than the analogous work of I (most of which i s  already contained 

in [A]). The basic ingredient i s  a homological analysis of configuration 

spaces, which should be of independent interest. In IV, Cohen computes 

H*(SF(~); Z ) as  an algebra for p odd and n even, the remaining 
P 

cases being determined by the stable calculations of 11. Again, the 

calculation is considerably more difficult than in the stable case, the 

key fact being that H*(SF(n); Z ) i s  commutative even though SF(n) 
P 

i s  not homotopy commutative. Due to the lack of internal structure 

on BSF(~) ,  the calculation of H*(BSF(n); Z ) i s  not yet complete. 
P 

In addition to their original material, I and 111 properly contajh 

all work related to homology operations which antedates 1970, while 

11 contains either complete information on o r  at least an introduction 

to most subsequent work in this area, the one major exception being 

that nothing will be said about BTop and BPL at the prime 2. Up to 

minor variants, a l l  work since 1970 has been expressed in the language 

and notations established in I § 1-5 2 and II 5 1. 

Our tflanks . to @ ! a  May for preparing the mex.  

J .P.  May 
August 20,1975 
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The Homology of E Spaces 
m 

J.P. May 

Homology operations on i terated loop spaces were  f i r s t  introduced, 

mod 2, by Araki and Kudo [1] i n  1956 ; thei r  work was clarif ied and ex- 

tended by Browder [2] i n  1960. Homology operations mod p, p > 2, were  

f i r s t  introduced by Dyer and Lashof [6] i n  1962. Thework of Araki and 

n 
Kudo proceeded in  analogy with Steenrod's construction of the S q  i n  

t e r m s  of V.-products, whereas that of Browder and of Dyer and Lashof 

n 
proceeded in  analogy with Steenrod's l a t e r  construction of the P i n  

t e r m s  of the cohomology of the symmetr ic  group I: The analogy was 
P' 

closest  in  the case  of infinite loop spaces and, in [A], I reformulated the 

algebra behind Steenrod's work in a sufficiently general  context that i t  

could be applied equally well to the homology of infinite loop spaces and 

to the cohomology of spaces.  Later ,  in  [GI, I introduced the notions of 

E operad and E space. Their  use greatly simplifies the geometry 
a3 m 

required for  the construction and analysis of the homology operations and, 

i n  the non-connected case ,  yields operations on a wider c lass  of spaces 

than infinite loop spaces. These operations, and fur ther  operations on 

the homology of infinite loop spaces given by the elements of H*F, will 

be analyzed in  section 1. 
f 
t Historically, the obvious next s tep  after introduction of the homology 

operations should have been the introduction of the Hopf algebra of all 

i / 

homology operations and the analysis of geometrically allowable modules 



2 

(and m o r e  complicated structrues) over this algebra, in analogy withthe 

definitions in  cohomology given by Steenrod [22] i n  1961. However, this 

step seems not to have been taken until lectures of mine in  1968-69. The 

requisite definitions will be  given i n  section 2. Since the idea that homology 

operations should satisfy Adem relations f i r s t  appears in [6] (although 

these relations were  not formulated o r  proven there),  we cal l  the resulting 

algebra of operations the Dyer-Lashof algebra; we denote i t  by R. The 

main point of section 2 i s  the explicit construction of f r ee  allowable struc- 

tu res  over R. 

During my 1968-69 lectures,  Madsen ra ised and solved a t  the pr ime 2 

the problem of carrying out for  R the analog of Milnor's calculation of the 

dual of the Steenrod algebra A. His solution appears in  [8]. Shortly 

after,  I solved the problem a t  odd primes,  where the s t ructure  of R* 

turned out to  be surprisingly complicated. The details of this computation 

(p = 2 included) will be given in section 3 .  

In section 4, we reformulate (and extend to general  non-connected 

spaces X) the calculation of H* QX, QX = l im  anxnx, given by Dyer 
-C 

and Lashof [6]. Indeed, the definitions in  section 2 allow us to describe 

H*QX a s  the f r ee  allowable Hopf algebra with conjugation over R and A. 

With the passage of t ime,  i t  has  become possible to give considerably 

s impler  details of proof than were  available in  1962. We also compute 

the Bockstein spect ra l  sequence of QX (for each prime) i n  t e r m s  of that 

of X. 

Jus t  a s  QX is the f r e e  infinite loop space generated by a space X, 

so  CX, a s  constructed in [G, 921, is the f r ee  -space generated by X 

(where & i s  an E operad). In section 5, we prove that H*CX i s  the 
m 

3 

f r e e  allowable Hopf algebra (without conjugation) over R and A. The 

proof is quite simple, especially since the geometry of the situation makes 

half of the calculation an  immediate consequence of the calculation of H*QX. 

Although the resul t  h e r e  seems to be new, i n  this generality, special  cases  

have long been known. When X is connected, CX is weakly equivalent to  

QX by [G, 6.31. When X = So, CX = U K(B 1) and the result thus 
j ' 

contains Nakaokats calculations [16,17,18] of the homology of symmetr ic  

groups. We end section 5 with a generalization (from So to a rb i t r a ry  

spaces X) of Priddy's homology equivalence BEm - aosO [201. 

In section 6, we describe how the i terated homology operations of 

an infinite loop space appear successively in the stages of i t s  Postnikov 

decomposition. 

In section 7, we construct and analyze homology operations analo- 

gous to the Pontryagin pth powers in  the cohomology of spaces.  When - 

p = 2, these operations were  f i r s t  introduced by Madsen 191. 

Most of the mater ia l  of sections 1-4 dates f rom m y  1968-69 lec tures  

a t  Chicago and was summarized in  [12]. The mater ia l  of section 5 dates 

f rom my 1971-72 lec tures  a t  Cambridge. The long delay in publication, 

for  which I must apologize, was caused by problems with the sequel 11 

(to be explained in  i t s  introduction). 
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51.. Homology operations 

We first define and develop the properties of homology 

operations on Em spaces. We then specialize to obtain further 

properties of the resulting operations on infinite loop spaces. 

In fact, the requisite geometry has been developed in [GI 51,4,5, 

and 8.1 and the requisite algebra has been developed in [A, 51-4 

and 91. The proofs in this section merely describe the transition 

from the geometry to the algebra. 

All spaces are to be  compactly generated and weakly Hausdorff; 

'T denotes the category of spaces with non-degenerate base-point 
[GI p.11. All homology is to be taken with coefficients in Z 

P 
for an arbitrary prime p; the modifications of statements required 

in the case p=2 are indicated inside square brackets. 

We require some recollections from [GI in order to make sense 

of the following theorem. Recall that an Em space (XI@) is a 

'$-space over any Em operad [GI Definitions 1.1, 1.2, and 3.51 ; 

@ determines an H-space structure on X with the base-point * E X  

as identity element and with O2 (c) : XxX -+ X as product for any 

c (2 (2) [GI p, 41 . Recall too that the category & [ TI of 
c-spaces is closed under formation of loop and path spaces 

[GI Lemma 1.5 I and has products and fibred products [G, Lemma 1-71. 

Theorem 1.1. Let # be an E, operad and let (XI@ 1 be a $-space. 
s Then there exist homomorphisms Q : H,X + H,X, s 2 o, which satisfy 

the following properties: 

(1) The QS are natural with respect to maps of %-spaces. 

(2 Q' raises degrees by 2s (p-1) [by sl . 
( 3 )  

s Q x = 0 if 2s < degree (x) [if s < degree (x)], x 6H,X 

( 4 )  
S 

Q x = xP if 2s = degree (x) [if s = degree (x)] , x EH,X 

(5) QS(P = 0 if s > 0, where (P E Ho (X) is the identity element. 



(6 The e x t e r n a l ,  i n t e r n a l ,  and d iagonal  Cartan formulas hold: 

QS (xy) = C (Qix) (Qjy)  i f  x ,  y  E H,X; and 
i+j=s 

(7) The QS a r e  s t a b l e  and t h e  Kudo transgression theorem holds:  

s s % 
Q a, = o,Q , where 0,: H, QX -+ H,X i s  t h e  homology suspen- 

s ion;  i f  X i s  simply connected and i f  x E H  X t r a n s g r e s s e s  
4  

t o  Y E ; H ~ - ~ Q X  i n  t h e  Se r r e  s p e c t r a l  sequence of t h e  pa th  

s 
space f i b r a t i o n  n: PX -+ X, then Q x  and f3QSx t r a n s g r e s s  

t o  QSy and and, i f  p  > 2 and q  = Z s ,  x P - l a y  

~ t r a n s g r e s s e s u  t o  - B Q ' ~ ,  dq (P-') (xP-l e y )  = -BQ'Y. 

(8)  The Adem r e l a t i o n s  hold:  I f  p  2  and r > ps ,  then 

r+i r+s-i i 
QrQS = C (-1) (p i - r ,  r- (p-1) s-i-1)Q Q ;  

i 

if p  > 2, r  2 ps, and @ denotes the mod p Bockstein, then 

r+s-i i QrBQS = c (-l)r+i (p i - r ,  r- (p-1) s-i) 8Q Q 
i 

r+s-igQi - C (-1) r+i (pi-r-1 , r- (p-1) s-i) Q 
i 

(9) The Nishida r e l a t i o n s  hold: Let P:: H,X -+ H,X be dua l  to pr 
r  r *  4. 

where pr = S$ i f  p = 2 (thus P  = (P*) on H*X = (H$)*). Then 

p:QS = C (-1) r+i (r-pi, s (p-1) -pr+pi) Q 
s - r + i  i. 

p* 1 

i s-1 
i n  p a r t i c u l a r ,  8QS = (s-l)Q i f  p=2; i f  p  > 2, 

s - r t i  i 
p ~ 8 ~ ~ = C ( - l ) ~ ~ ~ ( r - ~ i , s ( p - l ) - ~ r t p i - i ) ~ Q  P* 

i 

( I n  (8)  and (91, ( i , j )  = ( i + j )  !/i! j! i f  i > 0 and j > 0, ( i , O ) = l = ( O , i )  

i f  i 2 0, and ( i , j )  = 0 i f  i < 0 o r  j < 0; t h e  sums run  over t h e  

i n t ege r s -  ) 

Proof: The symmetric group Z a c t s  f r e e l y  on t h e  c o n t r a c t i b l e  
P  

space % ( p ) ,  hence t h e  normalized s ingu la r  cha in  complex C,P(p) 

i s  a  C - f r ee  r e s o l u t i o n  of Z [ 7 , I V  1 1 1 .  Let W be t h e  s tandard 
. P P  

n-free r e s o l u t i o n  of Z [A, Def in i t i on  1.21, where n  i s  c y c l i c  of 
P  

order  p ,  and l e t  j  : W -+ C, $ (p)  be a  morphism of a-comple&es over  

Z Let ( c , x ) ~  denote t h e  p-fold t enso r  product .  We a r e  given a  
P '  

-equivar ian t  map Op: & ( p ) ~ ~ P  - X I  and we d e f i n e  O, : W B(c,x)~-C,X 
P  

t o  be t h e  fol lowing composite morphism of a-complexes: 

Here Q i s  t h e  s h u f f l e  map; f o r  diagram chases ,  it should be r e -  

c a l l e d  t h a t  n :  C,X@C,Y -+ C,(XxY) i s  a  commutative and assoc ia-  

t i v e  n a t u r a l  t ransformat ion  which i s  cha in  homotopy inve r se  t o  t h e  

Alexander-Whitney map 5. I n  view of [ G ,  Lemmas 1 .6  and 1.9 (i) 1 , 
(C,X,O,) i s  a  u n i t a l  and mod p  reduced o b j e c t  of t h e  ca tegory  

$ (plm) def ined  i n  [A, Def in i t i ons  2.11 . Moreover, (x ,  0) -+ (C,X, O,) 

i s  c l e a r l y  t h e  o b j e c t  map of a  func to r  from < [ T I  t o  t h e  subcate-  

gory p(p,m) of % (p ,  m) def ined  i n  [A, Def in i t i ons  2.11 . Let 

x  E H X .  A s  i n  [A, Def in i t i ons  2.21 , we d e f i n e  
4  

(i) Q ~ ( x )  = ~ , ( e ~ ~ x ~ ) ,  0,: H W ~ H X ~ H W C X  - H,X, 

s 
and we d e f i n e  t h e  d e s i r e d  ope ra t ions  Q by t h e  formulas 

s (ii) p = 2: Q x  = 0 i f  s < q and Q'X = Q (x)  i f  s q ;  and 
s -q 

s S 
(iii) p > 2: Q x  = 0 i f  2s  < q and Q x=(-1) ' v ( ~ ) Q  (2s-q) (p-1) (x)  

i f  2,s > q ,  where v ( q )  = (-1)q(q-1)m/2 1 
(m! ) with  m = 2- (p-1) . 



The QS a r e  homomorphisms which s a t i s f y  (1) through (5) by [A, 

proposit ion 2.3 and Corollary 2.41. Note t h a t  [A, Proposition 2.31 

S s 
a l s o  implies t h a t  i f  p > 2, then f3Q x = (-1) v ( q )  Q(2s-q) (p-l) -1 (x) 

and the  and p QS account f o r  a l l  non- t r iv ia l  operations Qi. For 

( 6 ) ,  r e c a l l  t h a t  the  product of &-spaces ( X I @ )  and ( Y , Q 1 )  i s  
'I, 'I, 

(XxY,O)  , where O i s  the  composite 
P 

8 X e '  

$(P)x(XXY) 
p .  AXu 

> & ( P ) x ~ ( P )  x x p 1 X t X i  
< > r ( p ) x x P  X,$(P)XY P > X X Y  

(Here A, u, and t a r e  the diagonal and the evident shuffle and interchange maps.)  

Similarly, the tensor  product of objects (K, 8*) and (L, 0;) in  C(p, m)  i s  

.-d N 

(K X L, e*), where @* i s  the composite 

e*@e; 
w@(K@L) P-> W @ W Q ~ K ~ @  L~ lBTQ9' > w @ K ~ @  W @ L ~  - KQL. 

(Here $, U, and T a r e  the coproduct on W and the evident shuffle and in ter-  

change homomorphisms. ) Since ( j  @ j)$ i s  s-homotopic to ( 5  0 C*A)j, an easy 

diagram chase demonstrates that 11: C*X@ C+Y + C,(XxY) is a morphism in the 
-A- 

category C(p ,  m). The external Cartan formula now follows f rom [A, Corollary 

2.71. By [G, Lemmas 1.7 and 1.9 (ii)], A: X + X X X is a map of & -spaces 

and (C:,X, 0+) i s  a Cartan object of $(p, m); the diagonal and internal 

Cartan formulas follow by naturality. P a r t  (7) i s  an immediate consequence of 

[G, Lemma i. 51 and [A, Theorems 3.3 and 3.41; the simple connectivity of X 

2 
se rves  to ensure  that E = H*X@H*OX in the S e r r e  spect ra l  sequence of 

TF: PX -+ X. F o r  (8), note that the following diagram is commutative by 

[G, Lemma 1.41: 

An easy diagram chase demonstrates t h a t  (C,X,O,) i s  an Adem object ,  

i n  the  sense of [A, Definit ion 4 . 1 1 ,  and (8 )  follows by [A, Theorem 

4.71. Pa r t  ( 9 )  follows by t h e  n a t u r a l i t y  of the  Steenrod operations 

from [A, Theorem 9 . 4 1 ,  which computes the  Steenrod operations i n  

H, ( % ( P ) ~ , r ~ P ) .  A s  explained i n  [A, p.2091, our formula d i f f e r s  

by a s ign from t h a t  obtained by Nishida [19]. 

Let xm be the  category of in£ i n i t e  loop sequences. Recall 

t h a t  an ob jec t  Y = {yi} i n  f,, is  a sequence of spaces with 

- yi - QYi+l and a morphism g = Igi1 i n  xm i s  a sequence of maps 

with gi = Ogi+l. Yo i s  sa id  t o  be an i n f i n i t e  loop space, go an 

i n f i n i t e  loop map. By t h e  r e s u l t s  of [ l o ] ,  these  notions a r e  equi- 

valent  f o r  the  purposes of homotopy theory t o  the  more usual ones 

i n  which e q u a l i t i e s  a r e  replaced by homotopies. By [G, Theorem 

5.11, the re  i s  a functor Wm: f m  + c m [ q 1  , with WmY = (YvOm) 

and Wmg = g where Gm i s  the  i n f i n i t e  l i t t l e  cubes operad of o r  
[G, Definit ion 4 . 1 1 .  The previous theorem therefore  appl ies  t o  

H,YO; t he  resu l t ing  operations QS w i l l  be referred t o  a s  t h e  

loop operations.  The re levant  Pontryagin product i s  t h a t  in-  

duced by the  loop product on Yo = OY1. Note t h a t  the re  a r e  two 

d i f f e r e n t  ac t ions  of Gm on O Y o r  one coming from [G, Lemma 1.51 

and t h e  o ther  from the  f a c t  t h a t  OYo i s  again an i n f i n i t e  loop 

space; by [GI Lemma 5.61, these  two act ions  a r e  equivar iant ly  

homotopic, hence p a r t  (7)  of the  theorem does apply t o  the  loop 

operations. . Similarly,  p a r t  ( 6 )  app l i e s  t o  the  loop operations 



s ince ,  by [GI Lemma 5.71, the  two evident ac t ions  of cm on t h e  

product of two i n f i n i t e  loop spaces a r e  i n  f a c t  the  same. 

The recognit ion theorem [ G I  Theorem 1 4 . 4  ; GI]  gives a weak 

homotopy equivalence between any given grouplike E space X and 
CO 

an i n f i n i t e  loop space BOX; moreover, a s  explained i n  [G, p.153- 

1551, the  homology operations on H,X coming v i a  Theorem 1.1 from t h e  

given Em space s t ruc tu re  agree under t h e  equivalence with the  loop 

operations on H B X.  Thus, i n  p r inc ip le ,  it i s  only f o r  non * 0 

grouplike Em spaces t h a t  t h e  operations of Theorem 1.1 a r e  more 

general than loop operations.  In p rac t i ce ,  the  theorem gives 

considerable geometric freedom i n  the  construction of the  opera- 

t i o n s ,  and t h i s  freedom is  of ten  e s s e n t i a l  t o  the  ca lcula t ions .  

The following addi t ional  property of the  loop operations,  which 

i s  implied by [ G I  Remarks 5.81, w i l l  be important i n  the  study 

of non-connected i n f i n i t e  loop spaces. Recall t h a t  the  conjugation 

x on a Hopf algebra,  i f  present ,  i s  re la ted  t o  the  u n i t  n ,  

augmentation E ,  product 4, and coproduct + by the  formula 

Q E  = 4 ( 1 ~  X 

Lemma 1.2. For Y f xm, ~4 = x QS on H,Yo, where the  conjugation 

i s  induced from the  inverse map on Yo  = QY1. 

In the  next t w d  sec t ions ,  we w i l l  def ine  and study t h e  global  

a lgebraic  s t ruc tu res  which a r e  na tu ra l ly  suggested by the  r e s u l t s  

above. We make a preliminary de f in i t ion  here. 

Definit ion 1.3. Let A be a Hopf algebra. Let A a c t  on Z through P 

i t s  augmentation, a.1 = € ( a ) ,  and l e t  A a c t  on the  tensor product 

M @ N  of two l e f t  A-modules through i t s  coproduct, 

a (m a n )  = c (-i)deg a"deg ma'mbpa'ln i f  +a = Cat e~ a" .  

A.,left o r  r i g h t  s t ruc tu re  (algebra,  coalgebra, Hopf algebra,  

Hopf algebra with conjugation, e t c . )  over A i s  a l e f t  o r  r i g h t  

A-module and a s t ruc tu re  of the  speci f ied  type such t h a t  a l l  of . . 

t h e  s t ruc tu re  maps a r e  morphisms of A-modules. 

We s h a l l  def ine  a Hopf algebra R of homology operations i n  the  

next sect ion and, i f  YE, zmI H Y w i l l  be a l e f t  Hopf algebra * 0 
with conjugation over R. For any space X ,  H,X i s  a l e f t  coalgebraover  

the  opposite algebra A' of the  Steenrod algebra; here the  oppo- 

s i t e  algebra en te r s  because dual iza t ion i s  contravar iant .  Hence- 

forward, although we s h a l l  continue t o  wr i t e  the  Steenrod opera- 

t i o n s  P: on the  l e f t ,  we s h a l l  speak of r i g h t  A-modules r a t h e r  

than of l e f t  AO-modules. Thus H,YO i s  a r i g h t  Hopf algebra with 

conjugation over A,  and t h e  Nishida r e l a t i o n s  give commutation 

formulas between the  A and R operations on H,YO. 

There i s  ye t  another Hopf algebra which a c t s  na tu ra l ly  and 
'I, 'L 

s tab ly  on H,YO namely H,F where F i s  t h e  monoid (under compo- 

s i t i o n )  of based maps of spheres. The precise  d e f i n i t i o n  of 8 
is  given i n  [ G I  p.741, and it i s  shown the re  t h a t  composition 

'I, 'I, of maps def ines  a n a t u r a l - a c t i o n  c - YOxF -+ Y o  of F on i n f i n i t e  
FO- 

loop spaces. The following theorem gives the  bas ic  ~ r ~ p e r t i e s  

'I, 
of the  induced ac t ion  of H,F On H,YO. 

f 'L 
Theorem 1 . 4 .  For YE j&o, cm,: H,Yo ED H,F -+ HxYO gives H,Yo a 

i 'I, 

s t ruc tu re  of r i g h t  Hopf algebra with conjugation over H,F. 
I- 

Moreover, cm, s a t i s f i e s  the  following proper t ies ,  where 

c m , ( x ~ f )  = xf :  

(I) cm, i s  na tu ra l  with respect  t o  maps i n  zm. 
I. 
h 

'I, 

( 2 )  u, (xf)  = (u,x)f, where a,: H,QYO -+ H,Yo i s  the  suspension. 
i' 

deg x ( 3 )  P:(xf) = c ( P ~ x )  (p i£ )  and B(xf) = (Bx)f+(- l )  x(6.f) 
i + j = r  

(4) (QSx)f = c ~ ~ ~ ~ ( x p t f )  and, i f  p > 2 1  
i 

(BQSx) f = C B Q ~ + ~ ( ~ P ~ ~ )  - c (-1) deg (X P:B~) . 
i i 



Proof: Part (1) is trivial. The maps * + Yo and Yo +* are 

infinite loop maps, hence the unit and augmentation of H,YO are 

morphisms of H,%-modules. The loop product is a morphism of 

H,$-modules by a simple diagram chase from [GI Lemma 8.81, and a 

similar lemma for the inverse map implies that the conjugation 

is a morphism of H,$-modules. The coproduct on H,YO is a 

morphism of H,$-modules and formula (3) holds because cm, is 

induced by a map. Formula (2) is an immediate consequence of 

[G, Lemmas 8.4 and 8.51. For ( 4 ) ,  consider the following dia- 

gram, in which we have abbreviated ?$ for Sm (p) and X, X(P) , and 
xP for C,X, (c,x) ', and C, (xP) : 

Here Q: W@ C, (xP) -t W 69 (c,x)' is given by [A, Lemma 7.11 , and 
(1 0 q) Q is 8-homotopic to the identity by [A, Remarks 7.21 . 
The bottom left square is I: -homotopy commutative by [GI Propo- 

P 

sition 8.91, and the remaining parts of the diagram commute 

trivially. The shuffle and interchange homomorphisms U and T 

merely involve signs, the composite cmq: C,YO @ c,$ + C,YO in- 



duces cm*, and the map induced on s-equivariant homology by 

d = @(I69 A) is explicitly computed in [A, Proposition 9.13. 

Of c o u r s e ,  it is the presence of d in the diagram which leads 

to the appearance of Steenrod operations in formula (4). 

The verification of this formula is now an easy direct cal- 

culation from the definition of the operations Q'. 

The essential part of the previous diagram is of course 

the geometric bottom left square. Henceforward, we shall 

omit the pedantic details in the passage from geometric dia- 

grams to algebraic formulas. 

We evaluate one obvious example of the operations on 
'l, 

H,Yo given by right multiplication by elements of H,F. 
'l, 

Lemma 1.5. Let [i]EHOF be the class represented by a map 

of degree i. Then x [-I] = ~ x  for all xEH.,YO, Y E x m .  

Proof: Define f: sn + sn by f (sl,. . . ,sn) = (1-sl,s2,. . . ,sn) , 
where Sn = In/aIn. For any X, the inverse map on Qnx is given 

by g -t go£, g: Sn -t X, and similarly on Yo by passage to 

limits via [ G I  p.741 . The result follows. 

Recall that QX = lim 0%"~ and QX = QQZX [G, p. 421 . * 
As we shall see in 11 f! 5 ,  application of the results  

N 

above to Y = QS', where c reduces to the product on F, completely 
0 m 

rV 

determines the composition product on H+F. 

Remarks 1 .6 .  A functorial definition of a smash product between objects 

of xm i s  given in [13], i n  which a new construction of the stable homotopy 

category i s  given. (In the language of [13], m is a category of 

coordinatized spectra;  the smash  product i s  constructed by passing to the 

category & of coordinate-free spectra,  applying the smash product there,  

a&d then returning to . ) F o r  objects Y, Z E xQ3 and elements 
m 

x, y .E HeyO and z E H*ZO, [G, Lemma 8.11 and a s imi lar  l emma fo r  the 

inverse map imply the formulas 

( X * ~ ) A Z  = ): (-1) d e g y d e g z ' ( x i u ~ )  * ( y h z ~ )  if +z = z 1 6 z "  

and (XY)A z = X ( Y A Z )  , 

where * and A denote the loop and smash  products respectively. Via a 

diagram chase precisely analogous to that i n  the proof of Theorem 1.4 ,  

[G, Proposition 8.21 implies the formulas 

and, if p > 2, 

In particular,  these resul ts  apply to A : QX X QX' Q(XLX1) fo r  any 

spaces X and XI. By [G, Lemma 8.71, the smash and composition pro- 

0 - 
ducts coincide and a r e  commutative on HeQS = H 'F . * 



i $2. Allowable structures over the Dyer-Lashof algebra 

I 
I I We here describe the Hopf algebra of homology operations 

I I on Em spaces generated by the QS and BQS and develop analogs 

of the notions of unstable modules and algebras over the Steenrod 

algebra. The following definition determines the appropriate 

I I "admissible monomials". 

Definition 2.1. (i) p = 2: Consider sequences I = (sl,...,sk) 

such that s > 0. Define the degree, length, and excess of I 
j - 

k 
d(1) = C s g(1) = k; and 

j' j=1 

k k 
e (I) = sk - C (2sj - Sj-l) = S1 - S 

j =2 j=2 j' 

The sequence I determines the homology operation Q' = Q 

1 / I is said to be admissible if 2sj sjel for 2 2 j 2 k. 

(ii) p > 2 : Consider sequences I = ( E ~  , s1 , . . . , sk) such 

that E = 0 or 1 and s > E.. Define the degree, length, and 
j j -  I 

excess of I by 
k 

I Ek sk 
The sequence I determines the homology operation Q1 =BEIQS1.. . Q . 

I! 1 I is said to be admissible if psj - E~ 2 s ~ - ~  for 2 2 j 2 k. 

(iii) Conventions: b(1) = if p > 2 and b(1) = 0 if p = 2. 

The empty sequence I is admissible and satisfies d(1) = 0, 

I/ k(I) = 0, e(1) = m, and b(1) = 0; it determines the identity 

1 homology operation Q' = 1. 

S generated by {QSls 2 0) if p = 2 or by {QSls 2 O}~{BQ 1s > 01 

if p > 2 (not B itself) . For q 2 Or define J(q) to be the 
Z 
k two-sided ideal of F generated by the Adem relations (and, 

t 
[ if p > 2, the relations obtained by applying B to the Adem 
ii 

! relations, with B2 = 0) and by the relations Q' = 0 if e(I)< q. 

Define R(q) to be the quotient algebra F/J(q), and observe that 

E 
k there are successive quotient maps R(q) -t R(q+l) . Let R = R(0) ; 

! R will be called the Dyer-Lashof algebra. 

i To avoid circularity, we have defined the R(q) purely 

algebraically. The following theorem implies that this defini- 

tion agrees with that naturally suggested by the geometry. 

Theorem 2.3. (i) Let i 6 H sqc H Qsq be the fundamental class 
9 4 q 

if q > 0 and the class of the point other than the base-point 
c 

if q = 0; then 

f 
{Q1i I I is admissible and e(1) 2 q) 

q 

is a linearly independent subset of H,Qsq. 

t (ii) J(q) coincides with the set X(q) of all elements of F 

which annihilate every homology class of degree 2 q of every 

Em space (equivalently, of every infinite loop space). 

(iii) {Q'II is admissible and e(1) 2 q} is a Zp-basis for R(q) . 
(iv) R(q) admits a unique structure of right A-module such. 

that the Nishida relations are satisfied. 

(v) R = R(0) admits a structure of Hopf algebra and of un- 

stable right coalgebra over A with coproduct defined on gene- 

rators by 

I# Q' = E Qi @ Q' and )8QSt1 = 6 ( BQitlg, Q' + Qi s BQ j+l) 
i+j=s i+j=s 

Ok 
and with augmentation defined on Ro = PCQO} by E (Q ) = 1, k 2 0. 

Proof: We shall prove (i) in 54. It is obvious from the Adem 



relations that R(q) is generated as a Z -space by the set speci- 
P 

fied in (iii), and J(q) is contained in K(q) by (3) and (8) of 

Theorem 1.1. Therefore (i) implies (ii) and (iii) . For (iv) , 
the A operations on if R o(q) are determined by = 1 and Ri (q) =O 

I 
for i < 0 and the A operations on a11 elements Q1 = Q .1 with 

$(I) > 0 are determined from the Nishida relations by induction 

on $(I). This action does give an A-module structure since 
I I 

if f (q) : R(q) + H, (Qsq) is defined by T(q) Q = Q iqr then 

f(q) is a monomorphism which commutes with the Steenrod opera- 

tions. Let f(0) = f; since Ji(1) = 1Q)Iand Ji(i 0 ) = i 0 @i 0 and 
k 

since ~ ( i . )  = 1, f commutes with the coproduct and augmentation. 
0 

Here Ji is well-defined on R and R is a Hopf algebra since 

J = J(0) is a Hopf ideal, Ji (J) c F 63 J + J QIF, by commutativity 

of the following diagram (where a is the quotient map): 

Observe that this argument fails for q > 0 since Jii = i LBl+lepi 
q q q' 

Since H,QSO is an unstable right coalgebra over A, so is R. 

Of course, we understand unstable right structures over 

A in the sense of homology: the dual object (if of finite 

type) is an unstable A-structure of the dual type, as defined 

by Steenrod [22,23]. We shall study the structure of R it- 

self in the next section. The remainder of this section will 

be devoted to the study of structures over R. In order to 

deal with non-connected structures, we need some preliminaries. 

De~ginition 2.4. A component coalgebra is a unital (and aug- 

mented) coalgebra C such that C is a direct sum of connected 

coalgebras. Given such a C, define 

aC = { g l g ~ ~ ,  Jig = g m g  and g # 0). 

Clearly aC is a basis for Co. For gE nC, define C to be the 
9 

connected sub-coalgebra of C such that gE C and the set of 
9 

positive degree elements of C is 
g 

- 
C = {xIJix = xdDg + Cx'ax" + gex, deg x'>O and deg xn>O}. 

Then C is the direct sum of its components C for gcnC . Note 
9 

that &g = I for g e K .  nC contains the distinguished element $ = tl(i), and 

JC = Coker q may be identified with 63 ( 63 Cg) C C. 
g f $  

If X i s  a based space, then H*X i s  a component coalgebra; the base-point 

determines q and the components determine the direct sum decomposition. Indeed, 

there  i s  an obvious identification of T X with nH*X. As another example, we 0 

have the following observations on the structure of R. 

Lemma 2.5. R i s  a component coalgebra. -rrR i s  the f ree  monoid generated by 

0 Ok 
Q and the component ~ [ k ]  of (Q ) , k 2 0, i s  the sub unstable A-coalgebra of 

R spanned by 
I 

{Q I I i s  admissible, e(1) 2 0, and l(1) = k}. 

The product on R sends R[k] @R[l] to R[k+ P ] for  a l l  k and 1, and the ele- 

ments and pQS a r e  a l l  indecomposable. 

Definition 2. 6. A component Hopf algebra B i s  said to be monoidal (resp., group- 

like) if nB i s  a monoid (resp. , group) under the product of B. Equivalently, B i s  

monoidal if a l l  pairwise products of elements of nB a r e  non-zero. 

The proof of the following lemma requires only the defining formula 

?E  = $(I @x)+ for  a conjugation. 

Lemma 2.7. A component Hopf algebra B admits a conjugation if and only if 

- 1 B i s  grouplike, and then xg = g if g e TB and 



if d e g x > O  and + x = x @ g + Z x t @ x " + g @ x  wi th  d e g x t >  0 and d e g x N >  0. 

We can now define allowable structures over R, by which 

we simply mean those kinds of R-structures which satisfy the 

algebraic constraints dictated by the geometry. 

Definition 2.8. A left R-module D is allowable if J (q) D = 0 9 

for all q 2  0. The category of allowa,ble R-modules is the full 

subcategory of that of R-modules whose objects are allowable; 

it is an Abelian subcategory which is closed under the tensor 

product. An allowable R-algebra is an allowable R-module and 
s 

a commutative algebra over R such that Q x = xP if 2s = deg x 

[Q'X = x2 if s = deg x] . An allowable R-coalgebra is an al- 
lowable R-module and a cocommutative component coalgebra over 

R. An allowable R-Hopf algebra (with conjugation) i s  a monoidal Hopf 

algebra (with conjugation) over R which is allowable both as 

an R-algebra and as an R-coalgebra. For any of these struc- 

tures, an allowable AR-structure is an allowable R-structure 

and an unstable right A-structure of the same type such that 

the A and R operations satisfy the Nishida relations. 

Theorem 1.1 implies that the homology of an Em space is 

an allowable AR-Hopf algebra. Lemma 1.2 implies that the 

homology of an infinite loop space is an allowable AR-Hopf al- 

gebra with conjugation. Observe that a connected allowable 

AR-Hopf algebra is automatically an allowable AR-Hopf algebra with 

conjugation. 

In order  to take advantage of these  definitions, we requ i re  five basic 

f r e e  functors, D, E, V, W, and G, of which E 

apd W are essentially elaborations of D and V in the presence 

of coproducts. In addition, each of these functors has a 

more elaborate counter-part, to be defined parenthetically, in 

the presence of Steenrod operations. The composite functors 

WE and GWE will describe H,CmX and H,QX, with all structure in 

sight, as functors of H,X. 

We shall describe our functors on objects and shall show 

that the given Internal structures uniquely determine the re- 

quired internal structures. The verifications (not all of 

which are trivial) that these structures are in fact well-defined 

and satisfy all of the requisite algebraic indentities will be 

left to the reader, since these consistency statements obviously 

hold for those structures which can be realized geometrically. 

It is trivial to verify that our functors are indeed free, in 

the sense that they are adjoint to the forgetful functors 

going the other way. The functor V, which is a special case 

of the universal enveloping algebra functor on Abelian restricted 

Lie algebras, and the functor W occur in many other contexts 

in algebraic topology; they are discussed in detail in [ I l l .  

D: Z -modules (resp., unstable A-modules) to allowable R-modules 
P 

(resp., AR-modules): Given MI define 

R acts on DM via the quotient maps R + R(q); thus DM is just 

the obvious quotient of the free R-module R@M. The inclusion 

of M in DM is given by m + ICom. If A acts on MI then this 

action and the Nishida relations determine the action of A on 

DM by induction on the length of admissible monomia1.s. 

E: Cocommutative component coalgebras (resp., unstable A-coalgebras) 

to allowable R-coalgebras (resp., AR-coalgebras): Given C, de- 

fine EC as an R-module, and as an A-module if A acts on C, by 



EC = DC/IR.Imn = Z @DJC, IR = Ker E and JC = Coker n. 
P 

The inclusion of C in EC is induced by that of C in DC. The 

coproduct on C and the diagonal Cartan formula determine the 

coproduct on EC. The unit of C and the augmentations of R and 

C determine the unit and augmentation of EC. Equivalently, 

EC is the obvious quotient component coalgebra of ReC; thus 

0 k aEC = {(Q ) qpglk>O and g€aC, k=O if g=+=q(l)), 

and the component of (no) @ g is the image of R [k] @ C in EC 
g 

if g f + while the component of I@+ is the image of RQDC + -  
V: Allowable R-modules (resp., AR-modules) to allowable R-algebras 

(resp., AR-algebras): Given D, define 

VD = AD/K 

where AD is the free commutative algebra generated by D and K 

is the ideal of AD generated by 

{xP - nSx12s = deg x if p>2 or s = deg x if p=2). 

The R-action, and the A-action if A acts on D, are determined 

from the actions on DCVD by the internal Cartan formulas (for 

R and A) and the properties required of the unit. 

W: Allowable R-coalgebras (resp., AR-coalgebras) to allowable 

R-Hopf algebras (resp., AR-Hopf algebras): Given El define 

WE as an R-algebra, and as an A-algebra if A acts on E, by 

WE = VJE, JE = Coker n. 

The inclusion of E in WE is given by E = Z 63JE and JECVJE. 
P 

The coproduct and augmentation of WE are determined by those of 

E and the requirement that WE be a Hopf algebra (it is a well- 

defined Hopf algebra by [11, Proposition 121). The components 

of:WE are easily read off from the definition of VOJE. 

G: Allowable R-Hopf algebras (resp., AR-Hopf algebras) to 

allowable R-Hopf algebras (resp., AR-Hopf algebras) with conju- 

gation : 

Given W, define GW as follows. aW is a commutative monoid under 

the product in W and Wo is its monoid ring. Let sGW be the 

commutative group generated by aW and let GOW be its group ring. 

Let + = n(1), let E be the set of positive degree elements of 

W, and let k be the connected subalgebra Z + OV of W. Define 
P 

G W = E + ~ P G W  o = W B  G W  
a W  0 

as an augmented algebra. Embed W in GW as the subalgebra 

The coproduct on GW is determined by the requirements that 

W and GOW be subcoalgebras and that GW be a Hopf algebra. 

The conjugation is given by Lemma 2.7. The R-action, and the 

A-action if A acts on W, are determined from the actions on 

WCGW by commutation with X and the Cartan formulas. If the 

product in WG is denoted by *, then the positive degree ele- 
ments of the component of f€aGW are given by 

Observe that GW = W if W is  connected and that, as  a ring, GW is  just 

the localization of the ring W at the rnonoid f l .  



53. The dual of the Dyer-Lashof algebra 

Since EH,SO is the allowable AR-coalgebra Z @ R (which 
P 

should be thought of as Z 4 [Ol @R* [l]), a firm grasp on the 
P 

structure of R is important to the understanding of H,cmsO a d  

of H,QSO. The coproduct and A-action on R are determined by 

the diagonal Cartan formula and the Nishida relations, but these 

merely give recursion formulas with respect to length, the ex- 

plicit evaluation of which requires use of the Adem relations. 

To obtain precise information, we proceed by analogy with 

Milnor's computation of the dual of the Steenrod algebra 1141. 

In the case p = 2, the analogy is quite close; in the case p > 2, 

the Bocksteins introduce amusing complications. The structure 

of R*, in the case p = 2, was first determined by Madsen [8 1 ;  

his proofs are closer to the spirit of MilnOr's work, but do 

not generalize readily to the case of odd primes. 

By Lemma 2.5, R = @ R[k] as an A-coalgebra. Of course, 
k> 0 

R[O] = Z We must firsF determine the primitive elements PR[k] 
P' 

of the connected coalgebras R[k],.k 2 1. To this end, define 

P[k] = {I \I is admissible, e(1) O., R(1) = k, and I ends with 11. 

We shall see that IQ' ]I€ P[k] 1 is a basis for PR[k] . Define 

(inductively and explicitly) certain elements of P[k] as follows: 

(I) lzj~k, p=2: Ill = (1) , Ij,k+l = (2k-2k-j, I. ) if j k ,  
3 k 

k 
and 1k+l,k+l=(2 , i then d ( ~ .  3k )=2k-~k-j, e(xjk)=O if j<k, 

k-1-2k-l- j 2k-2 - 2k-Z-j 
e (Ikk) = 1; I = (2 

j k 
I ,..., 2j-i,~j-~ ,..., i). 

k k-j 
(I1) Ijk, lLjLk, ~ > 2 :  Ill =(0,1), Ij,k+l=(Of~ -P , I. 3k ) if j<k, 

k- k-j 
and I ~ + ~ , ~ + ~ = ( O ~ ~ ~ , I ~ ~ ) ;  thend(1 )=2(p p 1, e(Ijk)=O if j<k, 

jk 

k k-j (111) Jjk, 1 3 5  P>Z: Jll=(~,l). J~,~+~=(o.P -p , J. ) if j<k, 
3k 

k k k-j 
and Jk+l,k+l=(lf~ ,Ikk); thend(J. = 2(p -p 1-1, e(~. 1-1; 

3k . 3k - 
k-1 k-1- j 

Jjk = ( 0 1 ~  -p I ..- f ~ f ~ ~ ~ ~ f ~ f  pj-1f~fpj-2f . a *  roll). 

k k-i k-j (IV) Kijk. lzi<jk, p>2: Xi, ,k+l=LOfp -p -p , K ~ ~ ~ )  if j<k, - 
k k-i k k-i k-j and Ki , k+l , k+l= (1. P -P Jik) i then d (Ki k) = 2 (p -p -p . , 

If we look back at the definition of the in terms of 

the Qi in the proof of Theorem 1.1, we see that, when acting 

on a zero-dimensional class, our four classes of sequences 

correspond to sequences of operations of the respective forms 

Many arguments in this section and the next can be illuminated 

by translation to lower indices. 

Lemma 3.1. P[k] = {I. Il~jzk} if p=2; ~ [ k ] = ~ ~ ~ ~ . J ~ ~ , K ~ ~ ~ / l ~ j ~ k , l ~ i < j }  
3 k 

I I I if p > 2. If I&P[kl, then Q is primitive, +Q =Q @(QO)~+(QO)~@QI. 

Proof: Proceed by induction on k, the case k = 1 being trivial. - 
Consider I = (E,S,J)EP[~], k>2. Then, since I is admissible and - 

e(1) > 0, JE_P[k-11, pr-6:s if J = (6,r,K), and 2s-E 2 d(J) . The - 
first part follows inductively from these inequalities by a 



trivial examination of cases. The second part is an easy calcu- 

lation based on the facts that 13'QiQJ=0 if 2i-y<d(J) and that 

!3'Q1Q0=0 by the first Adem relation. 

The computation of R[k]* as an algebra is based on a cor- 

respondence between addition of admissible sequences and multi- 

plication of duals of admissible monomials. We first set up 

the required calculus of admissible sequences. 

Definitions 3.2. The sum I+J and difference I-J of two sequences 

(as in Definition 2.1) of length k is defined termwise, under 
th 

the conventions that I+J is undefined if p>2 and the i- "Bockstein 

entry" E~ is one in both I and J and that I-J is undefined if 

any entry is less than zero. Observe that e(I2J) = e(I)te(J) 

and d (I+J) = d (1)fd (J) . If I and J are admissible, then I+J 

is admissible but I-J need not be admissible. In order to 

enumerate the admissible monomials when p>2, consider all sequences 

e = {elf...,e 1 with 1 2  el< ... <e.<k and define 
j 3 - 

I [k]={I is admissible, e(I)>O, 1?(I)=k, and el. e 

Write I, [k] = I [k] when e is empty. When j>l, define L E [kl by 
e ,k 

Kele2k+' "+Kej-lejk if j is even 

Ke k+. . +K 
1 2  ej2ejlkJe.k 3 if j is Odd 

If p=2, write I[k] = {III is admissible, e(I)LO, and 1?(1)=kl. 

With these notations, we have the following two counting 

lemmas. 

Lemma 3.3. Let N denote the set of non-negative integers. For 
k 

>2 and k>l, define f: N~ + I[k] by f (rill.. . .nk) = P njIjk. Rr j=1 

Then f is an isomorphism of sets. 

I Proof: For p>2, omit the irrelevant zeroes corresponding to 

/ absence of Bocksteins. Then f is given explicitly by 

j -1 k 
f (nlr. . . ,nk) = (sl , . . . , sk) , where s k+l-j= P nq(p j-1 -P j-l-q)+ pj-l. 

q=1 +j 9 

The required inverse to f is given by 

if lcj<k 
-1 f (sir.. .,s )=(nlI.. . ,n ) where n.= k k 

k 
- C (p sq-sq-l) if j=k 
q=2 

Lemma 3.4. For p>2, k>l,and each non-empty eldefine fe: I[k] + ~,[k] 

by fe(I) = I+Lek. Then fe is an isomorphism of sets. 

-1 -1 Proof: Obviously fe must be given by fe (J) = J-Lekl J EIe[k] , 
and it suffices to show that J-Lek is defined, admissible, and 

has non-negative excess. Write Lek = (61,r1,...16kfrk) and 

J = (E~,s~;...,E~,s~). Observe that 

k k 
e(J) = 2sk - 1 E - 2 C (p S~-E~-S~-~)>O and ps -E >s 

q=l q q=2 q q- q-1' 

Lek is the unique element of I [kl such that, if e has j=2i-E 
e 

elements, then e(Lek)=~ and Lek ends with i. Explicitly, 6 = E  
9 q 

is determined by e, rk=i, and rq-l=prq-6q for q k .  The result 

follows from the inequalities satisfied by the entries of J. 

As a final preliminary, we require an ordering of sequences. 

Definition 3.5. For a sequence I=(E~,s~,...,E s ) ,  define 
kf k 

I.= (E~,s~,...,E~,s~), l~jLk, and similarly when p=2. Note 3 
that e(I .)=e (J. 1 for all j implies I=J, and define a total or- 

3 3 
dering of the sequences of length k by I<J if e(I.)<e(J.) for 

3 3 
the smallest j such that e(I.)#e(J.). Observe that 151' and 

7 3 
J<J' implies I+J<I1+J'. 

An easy 'inspection demonstrates the following lemma. 



I J Lemma 3.6. If I is inadmissible and Q =ZAJQ where the J are 

admissible, then AJ#O implies J<I. If P:Q1=~A p J ,  where r>O 

and the J are admissible, then AJ#O implies'J<I. 

R* = lT R[k]* as an A-algebra. In the dual basis to that 
k'0 

of admissible monomials, define elements of R[k]* by 

To simplify statements of formulas, define Sjk=O if j<Oor 

j>k, 0 if j o r  k and oijk=O if i<l, j i ,  or j>k. 

SOk is ,the identity element of R[k]* and lT EOk is the 
k>O 

identity element of R*. The augmentation of R* is given by 

E( II AkCok) = Ao. Of course, R* is not a coalgebra since Ro 
k> 0 - 

is not finite dimensional (although R is finite dimensional for q 

q>O). However, R* does have a well-defined coproduct on positive 

degree elements and on finite linear combinations of the SOk; 

the latter is evidently given by 

*So, = 'So ,k-i @'o,i . 
n 

It is perhaps worth observing that although II R[kl* is a 
k= 0 

quotient augmented A-algebra of R* and a coalgebra (dual to the 

quotient algebra R/Z R[ml of R) such that ,the product is a 
m> n 

n 
morphism of coalgebras, lT R[k]* is nevertheless not a Hopf 

k= 0 
algebra because its unit fails to be a morphism of coalgebras 

(dually, (QO)~" = 0 but EQO = 1) . 
We shall successively compute R[k]* as an algebra, compute 

the Steenrod operations on generators, and compute the coproduct 

on generators. 

Theorem 3.7. If p=2, R[k]* = P{S~~,...,S 3 as an algebra. kk 

, If p>2, let M[kl be the subspace of R[k]* spanned by the set 

consisting of SOk together with the monomials 

and 

u ek-s.ae e.kr Icel< ...< e.<k and j even, 
1 2  j-1 I I - 

ae k.. .a k~e.k , Icel<. . .<e.<k and j odd. 
1 2  ej-2ej-1 3 3 - 

This set is linearly independent, and the product defines an 

isomorphism of Z -spaces 
P 

P{Slk1. . . BM[k] -+ R[k]*. 

R[kl* is determined as an algebra by commutativity and the 

following relations: 

(i) T~~ T~~ = Skkaijk if i<j (and T ~ ~ T ~ ~  = 0); 

(ii) oijk T~~ = ( T ~ ~ T ~ ~ T ~ ~ ) / S ~ ~ ;  and 

(iii) uijkumk = (T T T 
2 

ik jk mkTnk)/'kk' 

(In (ii) and (iii), the right sides are to be evaluated in terms 

of the basis monomials by use of (i); the numerators, if non-zero, 

2 are divisible by the non zero-divisor Skk or Skk.) 

Proof: By the counting lemmas, an admissible monomial I with 

~(1) =k and e(1)~O can be uniquely expressed in the form 

I = nlIlk+. . .+nkIkk+Lek, n > O  and e = {el,. . . ,eJ3, 
9- 



Let j=2i-E,  E=O o r  1, and def ine  n ( I ) = i f  Enq. Let he denote the  
a 

monomial i n  M[k] corresponding t o  t h e  seq;ence e ,  Let <, > 

be t h e  Kronecker product ( t h a t  i s ,  t h e  eva lua t ion  p a i r i n g  

R[k]*@R[k] -t Zp). We claim t h a t  

"1 n k 
(1)  <Elk . . Ekk h e ,  Q'> = 1, and 

"1 n k 
(2)  <Elk  . . . Ekk h e ,  Q ~ >  # 0 and J # I imply J>I. 

Let $: R[k] + ~ [ k ] " ' ~ )  be t h e  i t e r a t e d  coproduct.  For any J ,  

Now ( 1 )  i s  immediate from the  d e f i n i t i o n  of t h e  Lek. Given J 

a s  i n  ( 2 ) ,  we can ob ta in  a summand 

I1 
hQ @ . . . @ &  I n ,  E l i  = I 2nd h Z 0 .  

on the  r i g h t  s i d e  of (3 )  by applying Adem r e l a t i o n s  t o  put t h e  

,Ji i n  admissible form, and ,>I fol lows.  I f  we express t h e  

n 1 monomials g1 = elk..  . ~ ~ k  h e  i n  t h e  ordered b a s i s  dual  t o  t h a t  

of admissible monomials, 

then  (1) and (2) s t a t e  t h a t  (aIJ) i s  an upper t r i a n g u l a r  mat r ix  

wi th  ones along t h e  main diagonal .  Therefore {SI} is  a b a s i s  

f o r  R[k] *. It remains only t o  prove (i) , (ii) , and (iii) . By 

inspect ion  of t h e  d e f i n i t i o n s ,  we have 

An easy dimensional argument shows t h a t  ckkuijk i s  t h e  only 

poss ib l e  summand of rik -r jk ,  and t h i s  proves (i). Since 

formulas (ii) and (iii) fol low immediately from (i). 

In  order  t o  determine t h e  Steenrod opera t ions  on t h e  

genera tors  of R[k]*, we need t o  know a l l  opera t ions  i n  R[k] 

I which h i t  any of  t h e  Q , I ~ P [ k l ,  from above; of course,  w e  
L 

may r e s t r i c t  a t t e n t i o n  t o  t h e  genera tors  pP and B of A .  For 

dimensional arguments, it should be observed t h a t  R can be 

given a second grading by t h e  number of Bocksteins which occur 

i n  monomials and t h a t  a l l  s t r u c t u r e  (except ,  of course,  a c t i b n  

by B )  p reserves  t h i s  grading.  

Lemma 3 . 8 .  The fol lowing formulas a r e  v a l i d  i n  R[k], k > l ,  - 
r 

and these  formulas spec i fy  a l l  opera t ions  pQJ and PI: QJ, r,O, 

on b a s i s  elements QJ, which have a summand of t h e  form X Q  I 

wi th  0 # ~ € 2 ~  and I € P [ k ] :  

J ik  (i) p>Z: j3QIkk=pJkkandj3Q = Q  Kikk if l(i<k 

+J  J 
pk-I Q1jk l k  = 20 jk if 12j2k ( v i i i )  p> 2 : P, 



Proof:   he statements about 6 are obvious. For the rest, we - 
first reduce the problem to manageable proportions by a search 

of dimensions. Observe that 
k k-l<d (I) <2 k -11 . (a) ~g P [k] implies zpk" ( ~ ~ - ~ - 1 )  Fd (I) F2 (p -1) C2 - - 

Since R[k]* is an unstable A-module, (a) implies that 

PpqQ1') = 0 i f  r 2 k and i t  P[k]. For  r <  k and I t  P[k], we have 

k k-i  k-2 2 
(b) d(1) t 2pr(p-i) 2(2p - p - 1) < 6p (p - p-l)[d(I) + 2r < 3 ~ 2 ~ - ~ ] .  

I 
Clearly (a) and (b) imply that i f  P ; P ~ Q ~  has a summand hQ with h # 0 and 

I t P[k], then either J t P[k] o r  J = J 1  + J "  with both J 1  and J1' in ~ [ k ] .  1 
I 

Observe further that k-2 2 
d(I) ~ p ~ ( p - 1 )  < 4p (P - P-i),  IcP[kl, 

if either p> 3 and r ( k-2 o r  p= 3 and r 5 k-3; thus the possibility J = J 1  t J n  

i s  also ruled out in these cases. Simple dimensional arguments in the few re- I 
maining cases demonstrate that our list will be exhaustive provided that the 

following formulas also hold: 

k-i I. +Kiik 
P Q ~k (xi) p>Z: P* = O  i f  l < i < j S k ,  

(xii) p = 2 :  = O  if Z ( j 5 k .  

To prove (ii) through (xii), observe that the Nishida relations can be described I 
J 

as  follows on admissible monomials Q . I 
r 

(4) 
J 

Let J = ( c , s , K ) ;  if r 2 O  and S < ~ ~ S E ,  then ~ , 5 )  Q = O ; i f  r ) l  I 
r r - i  r-1"- 

J e s - p t p  
and s > pr + & , then P t  Q E @ Q P: QK modulo linear I 
combinations of admissible monomials QL such that e(L) ( e(J) - 2(p- E ) I 

Further, we have the particular Nishida relations 

(5) 
I s 

P'Q = (s-i)QS-'  and p:@QS = sPQs-' - Qs-'@ if s ,  i .  

Formulas (4) and (5) clearly imply 

k-1 J-Ilk 
(6) If e(Jj)<Z (p-E) , lLj<k, then P: Q = ( s ~ - ~ + E ~ ) Q  

k-1 
[If e(Jj)<2, lj<k, then P: QJ = (sk-l)Q 

J-llk] I 

where J = ( E ~ , s ~ ,  . .. , E ~ , s ~ )  and J = ( E ~ , s ~ ,  . . 
j kl sk) ' 

In all cases (vi) through (xi), the hypothesis of (6) is satis- 

fied, and this proves (vi), (vii), and (ix) . In (viii) , (x) 

and (xi), the sequence J-Ilk obtained on the right side of 

(6) is not admissible. However, the only Adem relation re- 

quired to reduce J-Ilk to admissible form is 

(7 )  Q ~ ~ B Q ~  = B Q ~ ~ Q ~  if s2.1.. 

The proofs of (ii) through (v) and (xii) are similar applications 

of ( 4 )  and (5); they are simplified by use of induction on k. 

The following Adem relation is needed in the proof of (xii). 

(8) Qps+lQS = 0 if s2O. 

Because of the change of basis involved in our description 

of R[k]*, our formulas simplify slightly upon dualization. 

Theorem 3.9. The following list of relations specifies all 

non-trivial actions of the generators p p r ,  rlO, and 6 of the 

Steenrod algebra on the generators (Ejkl T~~~ aijkl of Rtkl*. 

(i) p>2: Brkk = Ekk and @aikk = -T if l<i<k ik - - 

k- i - j  
(iii) p > 2: pp = -7. 

Tjk j+l,k 
i f  . i S j < k  



k- 1 -i 

(iv) p > 2: pp if 1 5 i < j - 1 < k  i+I,j,k 
k-I-j  

crijk jk= - u+ 

(v) p > 2: pp cr. - i f  I S i < j < k  ijk - -ui,j+l,k 

(vi) p 2 2: p ~ k - i  'jk = '1k6jk if I c j 5 . k  

k- 1 
(vii) p > 2: pp ijk = C i k i j k  + Cjkr lk  if 1 5 j c k  

k- 1 
(viii) p > 2 pp qjk = Slkuijk + Cikuljk - ejkrIik if 1 < i < j ( k ,  u I l k  = o .  

Proof. (i) is trivial since, as  explained in [A, p. 2071, the cohomology and 

homology Bocksteins are related by 

<pel a >  = (-l)deg fffl < c ,  @a>. 

Relations (ii) through (vi) a re  immediate from the corresponding numbered 

d. 

relations of the lemma, since ~ [ k ] *  i s  one-dimensional in the degrees in which 

these relations occur. For (vii), we can certainly write 

k- 1 
pP rjk = aglkrjk + bgjkilk 

(with a = 0 if j = l). 

J + I  
Fo r  j 2 2 ,  I l k + J j k < J l k + J  and < 6  lkrjk' 

Ik jk> = 1, a s  can be seen 
jk 

J1k+ljk 
by examination of L$ Q . By (vii) and (viii) of the lemma, and by 

formulas (1) and (2), we find 

k-1 I + J  
1 = < p p  , Q ' ~  jk> = a i f  2 5 j 5 . k  

jk' 
and 

k- 1 
J1kf Ijk 

2 = < p P  I- Q > = a + b  i f  1 < j ( k .  
jk' 

This proves (vii). Similarly, for (viii), we can certainly write 

k- 1 
pp qjk = a61kcrijk i b6ikuijk t c6ikulik (with a = 0 and c = 0 if i = 1). 

I. + Klik 
I,, +'Kijk < Iik + Kijk < Ijk + Klik . and < 6 ik"l jk' Q Jk > = 0, 

by examinations of coproducts. Now (ix), ( x ) ,  and (xi) of the lemma, to- 

k- 1 
gether with (1) and (2), imply (viii) by evaluation of PP u.. on 

13k 

Ilk+ K.. qk,  di*+ K1jk 
J + K  

Q , and Q jk like Note that (viii) can be predicted 

k-1 
from (vi) and (vii) by application of pZp to the relation rik;k = Skkcrijk. 

We have the following immediate corollary. 

Corollary 3.  10. If p = 2, ~ [ k ]  l' i s  generated as an A-algebra by 

CIk. If p > 2, ~ [ 1 ] *  is generated a s  an A-algebra by r and ~ [ k ] *  , 11 

k 2 2, is generated as an A-algebra by 5 and cr 
Ik 12k' 

* :: 
In other words, R[k] is a quotient A -algebra of H K(Z n) o r  of 

P. * 
H*K(Z , m) @ H K(Z , n) for appropriate integers m and n. 

P P 

Remarks 3.  i1. In order to obtain an upper bound on the spherical classes 

of HIQsO by determination of its A -annihilated primitive elements, it would 

be desirable to have complete information on the A-module (rather than the 

A-algebra) generators of ~[k]* :  we can add classes not in R to elements 

of R to obtain primitive classes of H*QS': we cannot so obtain A-annihi- 

lated classes of HIQSO unless the given class in R was A-annihilated. 

I have not carried out the necessary calculations. Madsen [ 8 ] has 

obtained considerable information in the case p = 2 and has used this 

information to retrieve Browder's results [ 4 ] on the Arf invariant. 

.b * 
It remains to compute the coproduct on generators of ~ [ k ]  , and we 

I 
need information about the products in R which hit any of the Q , 

I e P[k]. Fortynately, we do not need complete information when I = K ijk' 



Lemma 3.12. Let IOk denote the sequence of length k, k 2 0, 

with all entries zero. Suppose that J and K are admissible sequences 

I 
such that QJQK has a summand XQ with X f 0 and I E P[k]. Then 

either K E P[i] o r  K = I for some i < k and, in the latter case, 
O i  

I = I for some j. A l l  possible choices for J and K when I = I o r  
jk jk 

I = J a re  specified in the following relations; in (i) and (ii), if h < i 
jk 

and h < j, then the asserted relations merely hold modulo the subspace of 

1 
R[k] spanned by the admissible monomials which do not end with Q . 

i i-h i-h I 
(i) Q ( P - P  )'k-i,k-itP I j -h ,k- idhi .  Q jk  , oChStLk ,  Olj-hck-io 

i i-h i-h 
J (P -p  i k - i  'j-h, k-i :hi _ jk , i5h.=-i~k , 0 5 j - h ~  k-i . 

(ii) Q 

i 
I. (P -l)L-i, k-itJj-i; k-i li J 

(iii) Q Q = Q  jk , O c i < j ( k .  

Proof. If (J, K) is admissible and in P[k], then K E P[i] for 

some i; such decompositions of I and J account for the relations 
jk jk 

with h = i in (i) and with h = j @ (i) and (ii) and for all relations in (iii). 

If (J,  K) i s  inadmissible, then K E ~ [ i ]  o r  K = I for some i since the 
O i  

1 
only Adem relations which have Q appearing on the right side are  

We claim that i f  (t, ki) is inadmissible, 0 I h 2 i ,  then Qt dhi has no 

1 i 
non-zero summand ending with Q unless t = p and h < i, when 

t Iii dMititi is the only such summand. Indeed, Q Q can have no such 

summand because, in the Adem relation QrQS = 
x.Qr+s-j aj for r > ps, 

J 

A. = 0 unless j > s. The claim now follows by upwards induction on i 
J 

and, for fixed i,  downwards induction on .h, via explicit calculation from 

the ~ d e m  relations and the inductive definition of the Ihi. The essential 

i i-1- i-1-h Pi-l-hQpi-* 
. fact 5s that QP Q' has the summand I 

Ihi 
0 ( h  < i. Note that, since f3Q = 0 for h < i, it follows that if (J, &) 

is inadmissible, 0 5 h 5 i, and if any Bockstein entry E in J i s  non-zero, 

J Ihi j 
1 then Q Q has no non-zero summand ending with Q . We claim also 

that i f  (t, J ) i s  inadmissible, 1 2 d 5 i ,  then Qt dhi has no non-zero . hi 
1 i 

summand ending with Q unless t = p , when Q Jhila iii i s  the only such 

summand. The proof i s  again an easy double induction; the Adem relation 

(7) i s  used to prove the claim when h = i. A straightforward bookkeeping 

argument from our claims shows that the relations of (i) and (ii) with h < i 

J K and h <  j giveallpossibilitiesfor Q Q tohaveanon-zero summand 
I J. 

hQjk  o r  XQJk when (J,K) isinadmissible. 

* 
In our formulas for the coproduct in R-', the sums are  to range 

over the integers; this makes sense in view of our convention that 6. 
Jk' 

Tjk, and o. 
ijk 

a re  zero except where explicitly specified otherwise. 

The formula for 4 o.. announced in [12 ] is incorrect; the correct 
1Jk 

formula given here i s  in fact somewhat simpler. 

Theorem 3.13. The following formulas specify the coproduct on 

* 
the generators of R'. 

i i-h i-h 
= s p - p  (i) "jk 

(h, i) k-i,k-i j-h,k-i 

i i-h i-h 
(ii) + T ~ ~  = cP - eP 

, , j ,  @ 

h-f h-g 
s - sP sP 

j-g,k-h i-f,k-h j-f,k-h i-g,k-h 

h h:g- 
P - P  i('Ph-g h- g - cp T '(5) 'k-h, k-h j-g,k-h i-h, k-h i-g,k-h j-h,k-h)Q9Tgh 



ph- 1 
0- ' Sk-h, k-h i-h, j-h, k-h @ 'hh 

h 

Proof. Observe f i r s t  that if J = X n I ik +Leks  then e(J) = n k S € ,  

where E = e (L  ) i s  zero  o r  one. In view of the lemma, (i) and (ii) will 
ek 

hold provided that the monomials to the left of the tensor  signs a r e  precisely 

J 
dual to the corresponding admissible monomials Q . By (1) and (2) in the 

proof of Theorem 3.7, this will certainly hold if the J a r e  maximal among 

a l l  admissible sequences of the requisite degrees. A dimensional argument 

i i -h  
shows that, due to the multiple p - p of Ik-i, k-i which appears,  

the J actually have maximal excess among the admissible sequences of 

the requisite degrees.  We prove (iii) by a trick. By the lemma, we can 

certainly write 

(ggh for  g < h cannot appear on the right because, a s  noted in the proof 
I 

*'jk unless of the lemma, Q ~ Q  gh cannot have a non-zero summand AQ 

(J ,  i s  admissible, when g = h .  ) We have T. T = Ik jk 'kkUijk and 

therefore ( +rik)(+rjk) = uijk). After expanding both sides by 
* * 

use of Theorem 3.7 and the fact  that R[klT. R[I 1- = 0 fo r  k # P , we find 

that the re  i s  a unique solution for  the unknowns a @ and y f gh' gh' h ' 

namely that specified in (iii). 

§4. The homology of QX 

In this section and the next, we shall  compute H*QX and H,CX 

fo r  any space X, where C i s  the monad associated to an E operad 
m 

[see G, Construction 2.41. We shall  also fompute the mod p 

Bockstein spectral  sequences of QX and CX, hence our  results  will 

determine the integral homology groups of these spaces. 

(M i s  the f r ee  infinite loop space generated by X in the sense 

that if Y r xm and f:X + Y o  i s  any map in 5 ,  then there  i s  a 

unique map g: { Q Z ~ )  + Y in Xrn such that go q = f, where 

q :  X + QX i s  the natural  inclusion [see G, p. 431. Since, for a l l  finite 

n, the composite 

i s  the identity, where A i s  the evaluation map, q*: H*X -+ H*QX i s  a 

monomorphism. It i s  therefore reasonable to expect H*QX to be an  

appropriate f ree  object generated by H*X. 

Similarly, for  any operad c ,  (CX, p) i s  the f r ee  -space 

generated by X in the sense that if (Y, 8) i s  a $ -space and f:X + Y 

i s  a map in 2 , then the re  i s  a unique map g: CX + Y of -spaces 

such that gq = f ,  qr X + CX [see G, p. 13,16,17]. Again, i t  i s  reason- 

able to expect H*CX to be an appropriate f ree  object generated by H*X, 

a t  least  for  nice operads . 

We have constructed certain f r ee  functors WE and GWE in 

section 2 and, by f reeness ,  there  a r e  unique morphisms ?j:, of allow- 

able AR-Hopf algebras and ';i* of allowable AR-Hopf algebras with 

conjugation such that the following diagrams a r e  commutative: 



and 

.,- 

We have the following two theorems. 

f- 
Theorem 4. 1. F o r  every space X G J and every E operad & , m 

- 
q*: WEH,X + H*CX i s  an isomorphism of AR-Hopf algebras. .,- 

i-- rG 
Theorem 4.2. F o r  every space X 6 J , .q*: GWEH,X + H,QX 

is an isomorphism of AR-Hopf algebras with conjugation. 

The second theorem i s  a reformulation (and generalization) of the 

calculations of Dyer and Lashof [ 6 1. 
0 

By [G, Lemma 8.111, CS = U $(j)/Z. for any operad (where 
j 2 0  J 

U denotes disjoint union). If & i s  an E operad, the orbit space 
m 

j )  i s  s t  a K 1). Thus, a s  a ve ry  special case,  Theorem 4.1 
j' 

contains a concise reformulation of Nakaoka's results  [16,17,18] on the 

homology of symmetric groups. An E operad should be thought of 
C13 

a s  a suitably coherent construction of universal bundles for symmetric 

groups; the simple statement that CSO i s  a c - s p a c e  contains a great  

deal of information that i s  usually obtained by more' cumbersome alge- 

bra ic  techniques. 

The elements of H,X C H,CX and of H*X C H*QX play a 

role in  the homology of E spaces and of infinite loop spaces which i s  
m 

analogous to that played by the fundamental c lasses  of K(a, n) 's  in the 

cohomology of spaces, In particular,  the following corollaries a r e  

analogs of the statement that the cohomology of any space can be rep re -  

s ented, via the morphism induced by a map, a s  a quotient of a f r ee  

Corollary 4.3. If (X, B) i s  a &-space, where i s  an 

Em operad, then 8,: H,CX -. H,X represents  H*X a s  a quotient AR- 
T .,. .,- 

Hopf algebra of the f r ee  allowable AR-Hopf algebra WEH,X. 

Proof. 0: CX * X i s  the unique map of c - s p a c e s  such that 

Corollary 4.4, If Y i s  an infinite loop sequence, then 

-$ ,: H*QYO + H*YO represents  H,YO . a s  a quotient AR-Hopf algebra 
WT 

with conjugation of the f r e e  allowable AR-Hopf algebra with conjugation 

GWEH,X. -,. 

Proof. g m S Y O  * Yo i s  the unique infinite loop map such 

that -$ q = 1: ljm i s  defined explicitly in [G, p. 431. 
m 

Of course,  Theorems 4 .1  and 4 ,2  a r e  not unrelated. By 

[G, Theorem 4.21, there  i s  a morphism of monads a : C + Q. Thus 
m m 

amq = q, amzCmX + Q x  i s  a map of -spaces for a l l  X, and we m 

have the following commutative diagram: 
- 
Tr, 

Here L i s  the natural  inclusion. Since L i s  the identity if X i s  con- 

nected, Theorems 4.1 and 4.2, coupled with the Whitehead theorem 

f o r  connected H-spaces, imply the following result. 

Corollary 4.5. a : CmX + QX i s  a weak homotopy 
m 

equivalence fo r  a l l  connected spaces X. unstable A-algebra. 



The corollary was proven geometrically in  [G, Theorem 6.11 

n n 
by use of the much deeper fact that cr CnX * S? Z X i s  a weak homo- 

n * 

topy equivalence for a l l  n and a l l  connected X. We shall  prove 

Theorem 4.1 and shall generalize the corollary by obtaining a homology 

approximation to QX, for a rb i t r a ry  X, in  the next section. We prove 

Theorem 4.2 and compute the Bockstein spectral  sequence of CX and 

QX here. 

For counting arguments,  i t  will be useful to have explicit bases  

f o r  WEH,X and GWEH,X. .,. Let tX be a bas is  for JH*X which con- 

tains the s e t  of components of X, other than the component $ of the 

base-point, regarded a s  homology c lasses  of degree zero. Thus 

N 

tX u { $ } i s  a basis fo r  H*X. Let NnOX and Nn X denote the 
? 

f ree  commutative monoid and the f r e e  commutative group generated 

by n X, each subject to the single relation $ = 1; le t  Z NnOX and 
0 P 

N 

Z NIT X denote thei r  monoid and group rings. Let ATX be the f r ee  
P O  

commutative algebra generated by the  se t  

I 
(1) TX = { ~ I x f  xetX, I i s  admissible,  e(1) tb(1) >deg x, deg Q x >  0) 

(Recall the conventions, Definition 2.l(iii). ) Then, as  algebras, 

(2) WEH,X = ATX @ Z  NnOX and GWEH,X = ATX@Z h O x .  
P P 

I I 
Note that the Q x with e(1) = deg x,  b(1) = 0, and deg Q x  > 0 pre- 

cisely account for a l l  p-th powers of positive degree elements. Note 

also that Theorems 4.1 and 4 ,2  a r e  correct  in  degree zero  by com- 

parison of (2) with [G, Proposition 8.141. 

We need some preliminaries in o rde r  to prove Theorem 4.2 

for rion-connected spaces. The following well-known lemma clear ly  

I implies that Theorem 4.2 will hold provided that i t  correct ly  describes 

the homology of the component X of the base-point of QX. 9 
Lemma 4.6. Let X be  a homotopy associative H-space such 

that s X i s  a group under the induced product. Choose a point a e [a] . 0 

- 1 - 1 fo r  each component [a] of X, write a for the chosen point in  [a] , 

and le t  X denote the component of the identity element. Define 
$ 

I - 1 
I f: X + X$ X sOX by f(x) = (x- a , [a]) if x F [a]. Then f i s  a homo- 

topy equivalence with homotopy inverse g given by g(y, [a]) = ya. If 

left translation by any given element of X i s  homotopic to right transla- 

tion by the same element, then f and g a r e  H-maps. 

To study Q X, which i s  the component $2 QXX of the tr ivial  
$ $ 

I 
I loop in QZX, observe that we may assume,  without loss  of generality, 

that a l l  connected spaces Y in sight a r e  sufficiently well-behaved 

locally to  have universal covers n: UY -+ Y. Of course,  S2s:QUY 
* "gY 

I !  i s  then a weak homotopy equivalence. We require two simple lemmas 

I that X i s  connected and IT X i s  a f r e e  Abelian group. Then there  
I 1 

exists a map p: K(n X, 1 )  + X such that p induces an isomorphism on 
1 

nl. 
The composite of the product on X and .rr X p i s  therefore a weak 

homotopy equivalence UX X K(n X, 1) -+ X. 
1 

Proof. K(nlX, 1 )  i s  the res t r ic ted  Cartesian product of one 

copy of s1 for  each generator of s X, res t r ic ted  in the sense that a l l  
1 

but finitely many coordinates of each point a r e  at a chosen base-point in  



product on X f rom any chosen representatives S' -t. X for  the generators 

of alX. 0 f  course,  if X is a monoid, we can use the product directly 

ra ther  than inductively. 

Lemma 4.8. Let (X, 0) be a connected c-space,  w h e r e  

& i s  any operad. Then UX admits a s t ructure  of &-space such 

that n :UX+X i s a m a p o f  &-spaces .  

Proof. UX = PX/(N ), where two paths in  X which s t a r t  

at + a r e  equivalent if they end a t  the same point and a r e  homotopic 

with end-points fixed, and s i s  induced by the end-point projection. 

It i s  t r iv ia l  to verify that the pointwise k -space s t ructure  on PX of 

[G, Lemma 1,5] passes  to the quotient space UX. 

As a final preliminary,  we have the following observation con- 

cerning the homology suspension. 

Lemma 4.9. Let X be  a space. Let x E HOQX and y E H+QX. 

Then, if & y = 0, the loop product x +  y suspends to (EX)(U+YJ. 

Proof. Let a and b be representative cycles in  C+QX for 

x and y. Let i:QX + PX and s: PX * X be the inclusion and end- 

point projection. u*y i s  the homology c lass  of n+c, where c eC+PX 

is a chain such that i+b = d c .  QX acts  on the left of PX by composi- 

tion of paths, and s(f +g)  = s g  for  a loop f and path g. Now 

d(i+a * c) = i,(a .,. + b) and n,(i,a .,. .3. + c) = (E a)(s*c). The result  follows. 

Proof of Theorem 4.2. If X i s  (q-1)-connected, q > 1, 

then q+:H+X + H+QX i s  an isomorphism in  degrees l e s s  than 2q , 
i 

a s  can easily be verified by inductive calculation of H$ C ~ X  fo r  i( n 

in low degrees (by use of the Se r re  spect ra l  sequence). Indeed, this 

i s  just the standard proof that q,: n+X -t n+QX = T:x .,. i s  an  isomorphism 

in  degrees 'less than 2q-  1 and an epimorphism in degree 2q- 1. Thus 

the theorem i s  tr ivially t rue  in degrees l e s s  than 29 if X i s  (q-1)- 

connected. We cla im that if the. theorem is t rue  for  ZX i n  degrees 

l e s s  than n, then the theorem i s  t rue  for X in degrees l e s s  than n-1. 

This will complete the proof since i t  will follow that the theorem for 

zqx in degrees l e s s  than 2q implies the theorem fo r  X in  degrees 

l e s s  than q, for  a l l  integers q >  1, We shall  prove our claim by con- 

structing a model spect ra l  sequence {'Er}, mapping it into the S e r r e  

spect ra l  sequence {Er) of the path space fibration over UQZX, and 

invoking the comparison theorem [7 ,XI  11.11. By [G, Proposition 8-14] 

and Lemma 4.7, we may write 

H , ~ Z X  = ~ , u a x x  -%. @ ~ + x ( i j n , x ,  1). 

Let x' = x - (EX)$ for  x E H+X. We take tZX = {Z_xl I x e t ~ )  a s  our  
-,- 

IY 

basis for  JH+ZX, Z*: H+X ~ + Z X .  We may then wri te  

Of course,  if p = 2, this is not a sub-algebra and the squares 

2 1 d 

( z+x l )  = Q Z*xl l ie  in H+UQXX. Define WEH,ZX to be the sub- 

algebra of WEH*ZX generated by the elements of TZX of degree 

1 greater  than one and, if  p = 2, the squares Q E*xl, x E t X. Define 
0 

2 
(1f X i s  connected, 'E reduces to WEH,ZX@WEH,X. ) The 

.,. .I- 

differentials of { ' E ~ )  a r e  specified by requiring { ' E ~ }  to be a 

I spect ra l  sequence of differential algebras such that if Q x E TX, 

then 

and, if p > 2 ' and deg Q*X = 2s - 1, 



( ( Q X ) ~  @ Q x a x ] )  = (-1) d(1) 3-1 /3Q s Qx*Ep I P(I)+l ax]. 

Here ax E n X denotes the component i n  which the homology c lass  
0 

x l ies  ( q x  = x @ a x  t a x @ x  plus other t e r m s  if deg x > 0) and, f o r  

a E n X and n E 2, [na] denotes the n-th power of a in  the group 
0 

4 
Nn X C GWEH,X. An easy counting argument demonstrates that {lEr} 

0 

i s  isomorphic to a tensor  product of elementary spectra l  sequences of 

the  forms E { ~ ) @ P { T ~ )  and, if p >  2, 

p{z}/(zP) @[E{Tz} @ P { T ( Z P - ~  @ -rz)H, where E and P denote exterior 

and polynomial algebras. Here y runs through 

I I 
{QZ*x1 I I admissible, e(1) >deg x ,  deg QZ,xl> 1 and odd if p> 21 

and, i f  p > 2, z runs through 

I 
{ Q% l '  I I admissible, e(1) > deg  x, deg Q E l 1  even) 

(Note that, if p > 2, e(1) d(1) mod 2, hence e(1) = deg x S 1 implies 

I 
that  deg Q Z*xl i s  even. ) Of course,  to the eyes of {'Er}, the base 

N 

WEH*ZX looks like a tensor  product of exterior and truncated poly- 

nomial algebras ra ther  than like a f r ee  commutative algebra. Clearly 

'Em = Z By construction, there  i s  a unique morphism of algebras 
P' 

f: lE2 _* E2 such that the following diagram i s  commutative.' 

I f 
Since Q x  = Q x '  i f  d(1) > 0, by Theorem 1.1 (5), Lemma 4.9 implies 

that, %for u,: H,QX + H,QZX, 

(the sign comes f rom up = -pu ). By the naturality of u*, the same 

formula holds for u*: H*SZUQZX -+ H,UQZX, although here  the ele- 

ments QSZ,x', x E t X, a r e  of course not operations because the ele- 
T 0 

ments Z,x' a r e  not present in H*UQZX. By Theorem 1.1 (7) and the . T 

definition of { 'Er),  f induces a morphism of spect ra l  sequences. 

Since f = f(base) 8 f(fibre), our  c la im and the theorem now follow 

directly f rom the comparison theorem. 

The following observation on the s t ructure  of HQQX i s  some- 

t imes  useful. Note that H*Q X i s  the f r e e  commutative algebra 

-1 
a' 

generated by iy * (ay) I y c TX) , where ay  i s  the component 

in  which y l ies.  This description uses operations which occur in  

various components of QX. We can instead use just those operations 

which actually occur i n  the component Q X. a' 
Lemma 4.10. H*Q X i s  the f r e e  commutative algebra 

ff 
generated by the union of the following th ree  sets: 

I 
{Q1xl Q X E  TX and a x = @ }  

{x*[-axI I xetX, deg x > 0 ,  and ax # ff ) 

{aJ(# QSx * [-p. ax]) I QJpc QSx E TX and a x  # ff)  . 
Proof. [-P- ax] = [-ax] * . . . *[-ax], and we therefore have 

J . 5  s l(J) t 1 aJ({ QSx 4 ax]) = (Q  p Q X) * [-P ax] , 

modulo decomposable elements of H,Q X, by the Car tan formula. 

0 
ff 

When X = S , the f i r s t  two se ts  above a r e  clearly empty. 

We complete this section by computing the Bockstein spectral 



sequences of H*CX and of H,QX. Let {ErX} denote the mod p 

Bockstein spect ra l  sequence of a space X. A slight variant (when p > 2 

and r = 2) of the proof of [A, Proposition 6.81 .yields the following 

lemma. 

Lemrna 4.11. If (X, 8) i s  a -space, where i s  an E 
CKJ 

operad, then {ErX) i s  a spectral  sequence of differential algebras 

such that i f  Y E  Er-'X, then pryP = yp-lBr-ly if p >  2 o r  if p = 2 
2q 

2 
and r > 2, and f3 y = ypy + Q~~~~ if p = 2. and r = 2. 2 

Let Y = CX o r  Y = QX, and let  { E ~ A T X }  denote the 

restrict ion of {Ery} to ATX; in .both cases ,  we clearly have 

E r y  = E ~ A T X  @HoY for a l l  r 2 1. To describe E ~ A T X  explicitly, 

we require some notations. 

Definition 4.12. Let C r 2 1, be a basis for  the positive 
r' 

degree elements of E r x ,  and assume the C to be so chosen that 

Cr = DrU BrDr'J Crt1 * 

where D prDr, and C a r e  disjoint linearly independent subsets rS1 

of ErX such that prDr = {pry I y E D ~ )  and Cril i s  a se t  of cycles 

r+l 
under p which projects to the chosen basis for E X. Define A'X, 

r 2 2, to be the f r ee  str ict ly commutative algebra generated by the 

following set  (s t r ic tness  requires the squares of odd degree elements 

to be zero): 

pr- j  
where S = {y I y eDj, deg y even} and 

j r 

The proof of the following theorem i s  precisely analogous to the 

computation of the cohomology Bockstein spect ra l  sequence of K(Z t, n) 

P 
given in  [A, Theorem 10.41 and will therefore be omitted. It depends 

2s Q2s-l only on Lemma 4.11, the fact that f3Q = if p = 2, and counting 

arguments. 

Theorem 4.13. Define a subset SX of TX a s  follows: 

I 
(a)  p = 2 : SX = {Q1x 1 I = (25, J), deg Q x  i s  even, 1 (I) > 0) 

(b) p > 2 : SX = {Q1x 1 b(1) = 0, deg dx i s  even, ~ (1 )  > 0 )  
I 

1 
Then E ~ + ' A T X  = P{ypr I y E SX} @ E { @ ~ + ~  ypr / ~ E S X }  @ Ar+'X fo r  

a l l  r 2 1, where 

Therefore E ~ A T X  = AC0X i s  the f ree  str ict ly commutative algebra 

03 generated by the positive degree elements of E X. 



- 
$5.  The homology of CX and the spaces CX 

We f i r s t  prove Theorem 4.1 and then construct a homology approxi- 

- - - 0 
mation a :CwX -+ Q X for  a rb i t r a ry  spaces X. The space 

03 pl CwS 

will  be a K(Z,, I ) ,  and this special  case  of our approximation theorem 

was f i r s t  obtained by Priddy [ 201. 

Observe that the maps T* of Theorem 4.1 a r e  natural  in k a s  well 

a s  in  X. In particular,  the following result  holds. 

Lemma 5.1. If and &' a r e  E operads , then the following 
w 

i s  a commutative diagram of morphisms of AR-Hopf algebras: 

Moreover, a and a a r e  isomorphisms fo r  a l l  spaces X. 
1 * 2 * 

Proof. X & I  i s  an E operad by [G, Definitions 3 .5  and 3.81, 
m 

and n and n2* a r e  isomorphisms by [G, Proposition 3.101 and the 
1 s 

proof of [G, Proposition 3.41. 

By Theorem 4.2 and Figure  I, we already know that 

- 
qg: WEH,X -*. H,C X i s  a monomorphism (since a _T*L i s  a mono- 

-.- -.- m m-.- 

morphism); by the lemma, we know this for every E operad $. In 
OD 

order  to prove that Tis i s  an epimorphism, we need the following stan- 

dard  consequence of the properties of the t ransfer  in  the (mod p) 

homology of finite groups; a proof may be found in  [ 5 , p. 2551. 

Lemma 5.2. If n i s  a subgroup of the finite group II and if 

the index of a in II is prime to p, then the restrict ion 

i s  an epimorphism for  every Z II-module M. 
P 

We shall  also need the definition of wreath  products. 

~ e f i n i t i o n  5.3. Let a be a subgroup of En and le t  G be  any 

monoid. Then the wreath product n J  G i s  the semi-direct  product of 

n 
n and G~ determined by the permutation action of a on G ; explicitly 

if u E n and T . E G, then, in a j  G, 

n t l  
Embed G~ in  G a s  G~ X {e) and embed Z in  Z a s  the sub- 

n n t 1  

group fixing the las t  le t ter ;  this fi*es an embedding of Z {G in  
n 

z n t l  
IG, and Z IG i s  defined to be the union of the Z J G  for  finite n. 

m n 

Proof of Theorem 4.1. Consider the monad (C,p, q) associated to 

an  E operad & . As in  [G, p. 171, we wri te  p both for  the f-action 
43 

on CX and fo r  the monad product p: CCX + CX. Recall that, by [G, p. 13 

and 141, CX i s  a f i l tered space such that the product :: and &-action p 

re s t r i c t  to give 

*: F .CX X FkCX -+ F CX 
J j t k  

and 

p,: t ( k ) X F .  CXX ... X F .  CX -+ F.CX , j = j t . . . t j k .  
1 J k  J 

1 

Indeed, * i s  p (c) for  any fixed c 5 $(2) and, if y denotes the 
2 

s t ructura l  map of the operad [G, Definition 1.11, then 

p,(d; [el, ~ ~ 1 , .  . . , [ekt ykl) = [ ~ ( d ;  el' • . a  $ ek); Y ~ ,  ' a  • s ~ k ]  

j 
f o r  d E c ( k ) ,  ei E & (ji), and y. E X . We define a corresponding alge- 

bra ic  f i l trat ion of WEH*X by giving a l l  elements of the image of . 



~ [ k ] @  JH*X i n  WEH? filtration precisely pk and by requiring WEH*X 

to be a f i l tered algebra. Then FOWEH$ i s  spanned by fl, F 1 WEH,X - = 

H,X, -,. and each F WEH*X i s  a sub A-coalgebra of WEH*X. Visibly, 
k 

the restrict ion of y*: WEH,X -. + H,CX to FkWEH_X .%. factors  through 

H,F CX. H*FICX = H*X since F CX = $ (1) X X and $(1) i s  con- 
k 1 

- 
tractible.  Assume inductively that q9: F.WEH*X + H,F.CX i s  an  iso-  

J - J 

morphism for a l l  j < k. Define 

0 0 
E CX = F C X / F ~ - ~ C X  and E WEH,X = F ~ w E H ~ / F ~ - ~ W E H , X .  

k k k T 

Consider the following commutative diagram with exact rows and columns: 

Here L: F CX * F CX i s  the inclusion, which i s  a cofibration by 
k - I  k 

[ G ,  Proposition 2.61, and IT i s  the quotient map. The maps ?, a r e  
-8. 

known to be monomorphisms and the left map 7, is assumed to be an .,. 

epimorphism. It follows that L* i s  a monomorphism, hence that 

a = 0 and n, i s  an epimorphism. Define A by commutativity of the 
9- 

right-hand square; then A i s  a monomorphism by the five lemma. If 

we can prove that X i s  an epimorphism, i t  will follow that the middle 

- 0 
a r r o w  q, is an isomorphism, a s  required. By [G, p. 141, EkCX is 

the equivariant half-smash product 

where  Xfkl denotes the k-fold smash  product of X with itself. By 

[A, Lemma I . l ( i i i )  and Remarks  7.21, the re  i s  a composite chain homo- 

topy equivalence 

c* C(k) @ (H*xlk + C*( C ( k )  x ~ 7 ,  
zk zk 

k 
hence we may identify ~ * ( & ( k )  X X ) with H*(%; ( H * x ) ~ .  Let 

0 ,k 
IT': r ( k )  Xz xk -+ E CX be the evident quotient map and le t  

k 

v : &(k) Xz k ~ k  + F CX be the sub-quotient map given by the definition 
k 

k 

of CX. Then, since q(x) = [ l ,x] ,  where 1 E If(*) is the identity ele- 

ment and since p oCq = 1 on CX, the following diagram i s  commutative: 

Of course,  r' induces an epimorphism on homology. If k < p, then 

0 
H,E CX = HA(* X xLkl) and X i s  an  epimorphism since, by the - k - =k 

0 
diagram, H*E CX i s  spanned by images under n* of k-fold products. 

k 

P Let  k = p. Since i,: H&n; (H*X) ) * H*(Bp: (~$1:) i s  an  epimorphism, 

where n i s  cyclic of o rde r  p. H*(Zp; (HZ)') i s  spanned by images 

under i* of elements of the forms e @ x @ . . . P 
0 1 @xp and e i @ x  , by 

0 [A, Lemma 1.31. By the diagram, H*E CX i s  therefore spanned by 
P 

images under TF* of p-fold,products x a -,. . . . * x and operations 
P 

pE aSx,  hence A i s  an  epimorphism. We now have that 

- 
q*: F WEH,X * H,F CX i s  an isomorphism of A-coalgebras. Let 

P " -  P 

be  the unique morphism of allowable AR-Hopf algebras such that 6 
- 1 rest r ic ts  to on H*F CX; observe that the restrict ion of 5 to 

P 

F.WEH,F CX h a s  image in  F .WEH*X. Suppose that k = pj, j > 1. 
J - P  PJ 



The index of Z .  Z i n  Zk i s  prime to p since 

j P-1 
k! = n n (pi - n) = pj(j!)q , where q i s  prime to p. Consider 

i=l  n =  0 

the following commutative diagram: 

- - 
Here qa5 = paqa since both maps res t r i c t  to the inclusion induced by 

L : F CX + F CX on H,F CX. The map y is 23 Z -equivariant 
P k - P j P 

by the ve ry  definition of an operad, hence ( y X 1):: may be identified 

- 
with the restrict ion i, and i s  therefore an epimorphism. q* on 

F.WEH*F CX i s  an  epimorphism since our  induction hypothesis can be 
J P 

applied to any space, and in  particular to F CX. Since n,va = n1 i s  
P * 

also an epimorphism, i t  follows f rom the diagram that X i s  an  epimorph- 

i sm.  Fidally, suppose that k i s  pr ime to p. Let p(l): c ( k - l )  + &(k) 

be  the Zk-l-equivariant map defined by p(l)(d) = d a  l = y (c; d, 1) and 

considel. the following commutative diagram: 

( p ( i )  X i)+ may be identified with the restrict ion i, and i s  therefore an 
T 

epimorphism, i s  an  epimorphism by the induction hypothesis, 

n,v, i s  an epimorphism, and therefore X i s  an epimorphism. The proof 
T T 

i s  complete. 

Our homology approximation to Q$X realizes geometrically the 

obvious algebraic isomorphism from H+CX @ 2 to H a Q x g o m Z p :  
HOCX P 

indeed, non-invariantly, each of these i s  just the connected f ree  commutative 

I algebra ATX. Of course,  v ia  Q x -t Q'X a [-pe(l). ax] on generators,  

ATX i s  isomorphic as  an algebra to HaQ X. 
P, 

Henceforward in  this section, we res t r i c t  attention to t h e  full sub- 

category ?/ of f7 which consists of spaces of the basedhomotopy type of 

CW-complexes. By [GI, Corollary A.31, CX 6 ?/ if X 6 ?/ and g i s  a 

suitably nice operad (as we tacitly assume below). 

Construction 5.4. Let be an operad and le t  X ~1/. Construct a 

- 
space CX as  follows. Choose a point a in  each component [a] of X. 



i 
Choose a point c .  e (i) fo r  i 2 1,  with c = 1, and l e t  i a  = [ci; a ] 6 CX. 

1 

(Thus, by abuse, a i s  identified with ?(a) = [ l ;  a]. ) Let  (CX) denote the  
i a  

component of CX i n  which i a  l ies .  Define p (a): CX + CX to be  right 

translation by a ,  p(a)(x) = x * a .  Define (CX), to be the telescope of the 

sequence of maps  

* 

Define CX to  be  the  res t r ic ted  Car tes ian  product (al l  but finitely many 

coordinates of each point a r e  * ) of the spaces (m) f o r  [a] e sox. The 
a 

homotopy type of (CX) i s  independent of the choice of a E [a], and i s  
a 

the  object function of a functor f rom the homotopy category of to i tself .  

Remarks  5 5 .  (i) CX i s  a functor of Gf a s  well  a s  of X. 

(ii) If X i s  connected, then ??x i s  homotopy equivalent to CX. 

(iii) If [a] @, then (CX)ia = c(i) X xi , where X = [a], and 
Xi a a 

P ( ~ ) : ( C X ) ~ ~  + (CX)(i+l)a i s  given by the formula 

Lemma 5.6. Let  be an  E operad. Then H , ~ X  i s  naturally 
a> 

isomorphic to the connected a lgebra  HsCX Z Bocx p. 

Proof. Since ( x s a )  +(y + a )  = ( x s  y) s a s a  fo r  x, y e HsCX, each 

H * ( ~ x ) ~ ,  hence a lso  H*Ex, i s  a well-defined algebra. The resul t  i s  

obvious f rom Theorem 4. i and the construction. 

Lemma 5.7. Let  6 be  a n  E operad. Let  G be  any discre te  a 

group and l e t  X = K(G, i )  ', the union of a K(G, i )  and a disjoint base- 

- 0 
point. Then ZX i s  a K ( Z ; ~ ~ G ,  I). In part icular,  with G = { e )  , CS 

Proof. &(i) XC K ( G , ~ ) ~  is c l ea r ly  a K ( z ~ - ~ G ,  I) ,  and EX i s  .- 
i 

t h e  l imi t  of the $(i) X K(G, i)i under appropriate maps by Remarks  

5. 5 (iii). 

We now consider the functors derived f rom the l i t t le  cubes 
n 

operads. 

a, a, Construction 5.8. Fix n, 1 .5  n o r  n = m (when D 2 = Q). _ 

Withthe same  notations a s  in  Construction 5.4, le t  i a  a lso  denote the 

image of i a  under a;l:CnX + Dnz% and le t  nf C% denote the com- 
l a  

ponent of DnZ:% in  which i a  l ies.  Define p(a): Dnz?X + Dnznx by 

-n n p(a)(x) = x s a  and l e t  D Z: X denote the telescope of the sequence of 
a 

inclusions 

The inclusion of ClnCnx i n  xnznx i s  a homotopy equivalence (since 
a' a 

each p(a) is);  choose a n  inverse  homotopy equivalence 

:X"anx + Dnz%. Observe that nn p(a) = p(a) an and let  
a 
- 

a' 
-n 

n : ( y n ~ ) a  - D 2% be the map obtained f rom n by passage to 
n,a a n 

l imits.  Ei ther  by (possibly transfinite) induction and use  of the ordinary 

loop product o r  by di rec t  construction in  t e r m s  of the monoid s t ructure  

n-1 n - -$z% on the Moore loop space of D 2 X, the maps  ( CnX)a 

- n n a' 
determine a map  Z n : CnX -). D C X. Up to homotopy, B~ i s  natural  in X. a' 

Lemma 5.9. Let  I, : (CnX)ia -* Tnx be the inclusion. Then, for 

X E  H,(C _ X) ia r m s L  ,(XI = a n s  (x) * [-ia] , where [-ia] i s  the component 

inverse  to [ia] i n  the group s a%%. 
0 

Proof. The res t r ic t ion  of Ba t o  DYaz% is homotopic to right 

translation by any chosen point of [-ia]. 



Our approximation theorem is now an immediate consequence of 

Theorems 4.1 and 4.2 and Lemmas 5.6 and 5.9. 

Theorem 5.10. F o r  X EY , Fa*: H * ~ ~ x  -+ H*a  X is an iso-  pr 
morphism of algebras.  

Since the resul t  holds for a l l  pr imes p, a lso  induces an  iso- 

- 1 
morphism an integral homology. Via ii; , H*EX i s  an allowable 

m* 

AR-Hopf algebra. However, if X i s  not connected, then X is not 
m 

an  H-space, le t  alone a n  E space, hence much of this s t ructure  i s  purely 
m 

algebraic. As i l lustrated in  Lemma 5.7, -d X generally has a non- 
m 

Abelian fundamental group. Clearly .ir a . .rr -d X 
1 co. 1 co -.rr lQBX 

i s  the Abelian- 

ization homomorphism. 

As explained in  [G', 5 21, Theorems 4.1,4.2;  and 4.13 imply that 

a : CoDX + QX i s  a group completion in  the sense  of [GI, Definition 1.  31. 
co 

Theorem 5.10 i s  a reflection of this fact (compare [GI, Proposition 3.91). 

This fact also suggests that any natural  group completion of CX for  any 

E operad $ should yield a homotopy approximation to QX. GCZX i s  
03 

one example [G, Corollary 4.61, and GBDX i s  another (but the second re -  

sult labeled Theorem 3.7 in  [GI], about the monoid s t ructure  on DX, i s  

incorrect;  see  [R, VII. 2.71). Yet another example i s  B CX, the infinite 
0 

loop space obtained by application of the recognition principle to the E 
m 

space CX [GI, Theorem 2.3 (vii)]. As explained in  [R, VII $41, this l a s t  

construction often admits a multiplicative elaboration and yields the most  

s t ructured vers ion of the Barra t t -  Quillen theorem to the effect that QS 
0 

i s  equivalent to  the group completion of .h K(Z 1). 
J Z O  j' 

n .: In III, Cohen will prove that a : CnX - S2 2% i s  a group completion 
n 

59 

fo r  all spaces X by proving the analogs of Theorems 4.1,4.2,  and 4.13. 

Thus his calculations will imply the following unstable analog of Theorem 5.10. 

n Theorem 5.11. F o r  X r?/ , k: H*Z X - H G Z% i s  an  iso- 
n " B 

morphism of algebras.  



5 6. A r e m a r k  on Postnikov systems 

Infinite loop spaces can be approximated by stable Po'stnikov towers,  

and i t  i s  natural  to a sk  whether there  i s  a relationship between the homology 

operations and the Postnikov decomposition of such a space. We present 

such a result  here ,  and we begin with the  following easy (and well-known) 

lemma. 

Lemma 6.1. Let X b e  a K(T, n) for  some Abelian group IT and 

integer n 2 1. Then the Nishida relations and diagonal Cartan formula 

imply that  the operations (no mat ter  how constructed geometrically) 

a r e  all t r iv ia l  on %*x. 

Proof.  Assume the contrary  and le t  i be  minimal such that 

a r x #  0 fo r  some x E E.x and some r a n d l e t  r ' b e  minimal such 

that Q ~ X  # 0. Then a r x  i s  primitive and i s  annihilated by all Steenrod 

r 
operations P* . It follows that Qrx = 0, which i s  a contradiction. 

It should be emphasized that this result  fai ls  far products of 

K T  n ) .  The loop operations on such a product a r e  certainly tr ivial ,  

but such a product can a lso  be the zeroth space of a spect rum the higher 

t e r m s  of which have non-trivial k-invariants. If we wish to analyze 

infinite loop spaces in t e r m s  of Postnikov systems, then we must  use the 

Postnikov sys tems of a l l  of the de-loopings (or pass to spectra).  

The l emma admits the following generalization, which may also be 

regarded a s  a generalization of [15, Theorem 6. 2 1. 

Proposition 6. 2. Let  X be a stable k-stage Pos,tnikov system, 

I N 
a s  an  infinite loop space. Then Q x = 0 if x e H*X and P(1) 2 k. 

: Proof. A 1-stage stable Postnikov system is a product of K(s, n) 's  

.rr Abelian and n 2  1. Inductively, a k-stage stable Postnikov sys tem X 

is the pullback f rom the path space fibration over a simply connected 

1-stage Postnikov sys tem Z of an  infinite loop map f:Y * Z, where Y 

i s  a (k-1)-stage stable Postnikov system. The natural  map IT:X -2. Y 

and the inclusion i: Q Z -. X of the f ibre  of a a r e  infinite loop maps.  

Direct  calculation by Hopf algebra techniques (see [15, Theorem 6.11) 

'demonstrates that E = E in  the Eilenberg-Moore spectra l  sequence 
F' m 

of the fibre square and that the following i s  an exact sequence of Hopf 

algebras : 

Here H*Y \\f* i s  the kernel of the composite 

4 

(H*Z = H*Z/H Z) and i s  isomorphic to H*z//~* by the displayed exact 
0 

..d J sequence. If x e H*X, then sr*Q x = 0 for  P(J) 2 k-1 by induction. 

Thus consider QSx where n x = 0, say x = X.Z. with * 1 1  
rcl 

z. E i*H*Q Z. aSx = ). aS(x.z.) = 0 by the Cartan formula, since 
1 1  

al l  Qrz. = 0 by the lemma, and the conclusion follows. 



$7. The analogs of the Pontryagin pth powers 

AS was f i r s t  exploited by Madsen [ 9 ]  (at the prime 2), the homology 

of Em spaces c a r r i e s  analogs of the Pontryagin pth powers defined and 

analyzed by Thomas [25] on the cohomology of spaces.  These operations 

a r e  often useful in  the study of torsion. Indeed, i n  favorable cases ,  they 

se rve  to replace the fuzzy description of torsion c lasses  in  Z(P) 

derived by use of t k  Bockstein spect ra l  sequence by precise information 

in  t e rms  of pr imary homology o.perations, with no indeterminacy. 

We rever t  to the general  context of $1, except that the coefficient 

groups i n  homology will vary,  and we f i rs t  l i s t  the various Bockstein 

operations that will appear in th is  section in the following diagram: 

In each row, the notation a t  the left specifies the homology Bockstein 

derived f rom the short  exact sequence a t  the right. All of the homo- 

morphisms labelled T a r e  natural  quotient maps.  Z = l&m Z and 
em pr 

ir: ZPr - ZPm 
i s  the natural  inclusion; p: Q -. Z i s  specified by 

en, 
a b  

P( 7 i - )  = i (a) for  a , b  E Z. r 2 1,  and q prime to p. Since 
P 

9 r 

determines a l l  of the remaining Bocksteins l isted,  i t  should be thought of 

a s  the universal Bockstein operation. Clearly f3, = = 8-  and 
A 1 

r -1  
(P )*Br = , T :  Z 

+ zp ,  if r > 1. At leas t  if H*(X; Z ) i s  
P (PI 

of finite type over Z so  that the natural  homomorphism 
(P) ' 

jr: H*(X; Z r) -. E r x  i s  a n  epimorphism, B determines the rth differ- 
P 

e n  dr (previously denoted B ) of the mod p Bockstein spect ra l  
i 

1 sequence {E~x].  Explicitly, for  x r H*(X; Z ), B x r H*(X; Z ) = E X 

i- pr P 
r.l' survives to d J (x) r E r x ;  alternatively, d;r(x) = jrzr(x).  

Theorem 7.1 .  Let k be an E operad and le t  (X, 0) be a & -space. E 
i 

m 

5 Then there  exist functions 

6 
9 :Hq(X; Z r) - H (X; z r+l) 

P pq P 

f o r  a l l  q 2 0 and r ) 1 which satisfy the following properties: 

(1) The 2 a r e  natural  with respect to maps of -spaces. 

(2) If x r HZqtl (X; Zpr), then a x  = 0 if p > 2 and, if p = 2, 

= { 2 ~ 2 i 2 x i  2 * ~ ~ ~ ~ ~ ~  if r = 1 

&+2 
aril T*X 

if r > l  . 

(3) The following diagram i s  commutative: 



(4) The following composites both coincide with pth power operations: 

and 
'd. TF 

> H (X; Zprtl)L> H (Xi Z ) . Hq(X; Z ) - 
pr P9 P4 pr 

(5) If x E H (X; Z r), then 
2q  P 

X. (px) t ~ ~ ~ ( j 3 x ) .  if p = 2 and r = 1 

where the product H*(X; Z )@H*(x; Z ) -+ H*(X; Z ) i s  understood; 
pr P P 

P-1 i p-i 
(6) ~ ( x + y ) = a ~ t a ~ t ~ ( i , p - i ) * ~ y  for X , ~ ~ H * ( X ; Z  ) ,  

i=  1 pr 

where (i, p-i)* i s  induced f rom (i, p-i): Z 4 Z 
er prtl - 

(7) If x E Hs(X; Z ) and y E Ht(X; Z r), then 
er P 

and 
t f l  s f 1  

~ ( x Y )  = (XX)(AY)  t (2r)*[~.  prxa Q T,Y + Y. p r y  Q ~ 8 1  if P = 2. 

Here s and t a r e  not assumed to be even; when p = 2 ,  r > 1,  and s and t 

a r e  even, the e r r o r  t e r m  vanishes (since aZq-' = j3aZq and 2 : ~  = 0). 

(8) . u * 2 x  = o if p > 2 and u ,bx = (~~),[('lj,*x)(.-,x)] if p = 2, 

w 

where u*: H*(QX; ? ) -* H*(X; ? ) i s  the homology suspension. 

Proof. Precise ly  a s  in the  proof of Theor e m  1.1, except that W 

i s  h e r e  taken a s  the standard w-free resolution of Z and C* is taken to 

mean chains with integer coefficients, 8 induces 8*: WC3) (c*x)' C*X. 

'In the language of [A,Definition 2.11, (C*X, 8*) i s  a unital Cartan object 

of the category (l= (w,m, Z). The r e s t  i s  elementary chain level algebra, 

the details of which a r e  the same  for  the present homology operations a s  

for  the cohomology Pontryagin pth powers. Given x E H (X; Z ), le t  x 
q pr 

be represented by a chain a E C,X such that da = prb. Let a generate 

PA i 
the cyclic group s ,  le t  M = & i a  , and define 

i= 1 

3 x = { 6.,.(e0 @ a p t  p r ~ e l  @aP-'b)} E H (X; Z r f l )  . 
?- 

pq P 

r f l  H e r e  e o @  aP f prMe 1 @Jap-lb i s  a cycle modulo p by explicit 

computation (see [25, p. 321). The salient facts a r e  that TM = p - N = MT, 

P-1 i 
where T = a-1 and N = L) a , that dap = prNap-'b if p > 2, and that 

i = O  
rf 2 de = T e  The same  calculation ca r r i ed  out mod p ra ther  than 

1 0- 
r f l  

mod p yields (5). 2 x  i s  well-defined and 2 i s  natural  by the method 

of proof of [21,3.1] o r  [A, Lemma 1.11. When p > 2, the fact that a, x = 0 

if q i s  odd depends on the factorization of 8* through c* & (p) 43) (c+x)'; 

s ee  [24, g9-101 for  details. When p = 2, see  [25, p. 421 fo r  the verification 

of (2). P a r t s  (3) and (4) a r e  t r iv ia l  to verify, and par t  (8) i s  straight-  

forward.  See [25, § 91 for  the verification of (6) and [25, $81 (or [9] 

when p = 2) fo r  the verification of (7) 

We have 'chosen the notation 2 since i t  goes well with Q' and 



since the Pontryagin pth powers a r e  often denoted by  @ . 

Remarks  7.2.  Le t  2' =a and a r  = aOdlr-'. F o r  an  E space 
CO 

X, define 

and consider 

Madsen [9] suggested the t e r m  "Henselian a t  p" f o r  E spaces  X such 
03 

that the torsion subgroup of the r ing H*(X; Z ) coincides with the ideal 
(PI 

generated by pax. In  view of (4) and (5) of the theorem, th is  will be 

the case  if H<.,(X; Z ) i s  of finite type over Z and a l l  non-trivial (PI (PI 
differentials d l ,  r 1 2, i n  the  mod p Bockstein spect ra l  sequence of X 

a r e  determined by the general  formulas fo r  differentials on pth powers 

specified in Lemma 4.11. In part icular,  by Theorem 4.13, QY i s  

Henselian a t  p fo r  any space Y such that H*(Y; Z ) i s  of finite type (PI 
over Z and has  no p2-torsion. (PI 

Remarks  7.3.  The operations 2 can a l ready be defined on the  homology 

of 6 , -spaces ,  where c2 i s  the l i t t le  2-cubes operad, and thus on the 

homology of second loop spaces.  All of the properties l i s ted  in Theorem 

7.1 a r e  valid fo r  -spaces,  and most  of the proper.ties a r e  valid fo r  
3 

C2-spaces .  The exceptions, (2) and (b), a r e  those properties the proof 

of which requires  use  of the element e2  e W, and they have m o r e  compli- 

cated vers ions  with e r r o r  t e r m s  which involve the two var iable  operation 

X discussed in Theorem 1 . 2  of Cohen's paper 111. 
1 
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The Homolopy of Em Ring Spaces 

J. P. May 

+ 
The spaces  Q(X ) fo r  an  E space  X, the zeroth spaces of the 

w 

various Thom spect ra  MG, the classifying spaces of bipermutative 

categories and tlie zeroth spaces  of the i r  associated spect ra  a r e  all 

examples of E ring spaces.  The l a s t  example includes models fo r  
m 

BO X Z and BU X Z a s  Em ring spaces. A complete geometric theory 

of such spaces and of the i r  relationship to  E ring spect ra  i s  given in  
w 

[R], along with the examples above (among others)  and various applications. 

On the level  of (mod p) homology, the important fact is that  a l l  of the 

formulas developed by Milgram, Madsen, Tsuchiya, and myself for  the 

C d 0 
study of H*F (where F denotes QS regarded a s  an  E space under 

m 

the smash  product) a r e  valid in  H*X for  an a rb i t r a ry  E ring space X. 
w 

Moreover, the general  setting leads  to v e r y  much s impler  proofs than those 

1 ,.d 1 originally obtained f r o m  the geometry of F. 

1 The f i r s t  three  sections a r e  devoted to these  formulas. Thus section 1 
1 
F establishes notations and gives formulas f o r  the evaluation of the 

i 
F "multiplicative Pontryagin product 3 on elements decomposable in  t e r m s  
I 

s 
of the "additive" Pontryagin product * o r  of i t s  homology operations Q . 

- 
f rom cyclic groups. Comment. Math. Helv. 32 (1957), 

The formula fo r  (x * y) # z i s  due to Milgram [ZZ] and that for  ( a D x )  # y 
Y 

I is due to m e  [20]; both date to  1968. Section 2 gives the mixed Car tan  L 
G 

i 

I formula for  the evaluation of the multiplicative homology operations "QS 
25. E. Thomas. The generalized Pontryagin cohomology operations B 

on elements x * y. A part ial  resul t  and the basic geometric idea a r e  due 
and rings with divided powers. Memoirs Amer.  Math. Soc. 

No. 27 (1957). 
to Tsuchiya [36], but the complete formula is due to Madsen [15] when 
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p = 2 and to myself [ZO] when p> 2; it dates to 1970. Section 3 gives 

- r  s 
the mixed Adem relations for the evaluation of Q Q x. Again, the basic 

geometric idea is due to Tsuchiya. These relations are incredibly com- 

plicated when p > 2, and Tsuchiya and I ar r ived a t  the co r rec t  formulas, 

fo r  x = [I], by a sequence of successive approximations. I obtained the 

complete formula, fo r  a rb i t r a ry  x, in 1973 but it is published he re  for the 

f i r s t  time. As we point out formally in section-4, the formulas we obtain 

a r e  exhaustive in  the sense that + and the 6' a r e  completely determined 

-I- -k 
in H*C(X ) and H* Q(X ) f rom # and the 2 on H*X, where X i s  a 

-I- 
(multiplicative) E space. Indeed, H*C(X ) is the f r ee  AR-Hopf bialgebra 

m 
-I- generated by H*X and H*Q(X ) i s  the f ree  AR-Hopf bialgebra with con- 

jugation generated by H*X. 

Section 5, which is independent of sections 3 and 4 and makes mini- 

m a l  use of section 2, i s  devoted to analysis of the sequence of Hopf algebras 

H,SO + H,SF - H*F/O -, H,BSO - H,BSF . 

At the prime 2, this mater ia l  i s  due to Milgram [ZZ] and Madsen [15] and 

has  also appeared in  [5]. At p > 2, this material  is due to Tsuchiya [36,38] 

and myself [20], but the present proofs a r e  much simpler (and the results  

m o r e  precise) than those previously published. 

I made a cer ta in  basic conjecture about the R-algebra structure of 

H*SF in 1968 (stated in  [zo]). It was the pr imary purpose of Madsen1s 

paper [15] to  give a proof of this conjecture when p = 2. Similarly, i t  was 

the pr imary purpose of Tsuchiyals paper [38] to give a proof of this con- 

jecture when p > 2. Unfortunately, Tsuchiyals published proof, like 

sevqral  of m y  unpublished ones, contains a gap and the conjecture i s  a t  

present st i l l  open when p > 2. It was  my belief that this paper would be 

incomplete without a proof of the conjecture that has so long delayed i t s  

publication. Since the proof has been reduced to pure algebra, which I 

a m  unlikely to c a r r y  out, and since more  recent geometric results  make 

the conjecture inessential to our la ter  calculations, further delay now 

seems  pointless. This reduction will be given in section 6. It consists 

of a sequence of lemmas which analyze the decomposable elements of 

H*SF. These results  a r e  generalizations to the case  of odd primes of 

the  lemmas used by Madsen to prove the conjecture when p = 2, and we 

shall  see  why these lemmas complete the proof when p = 2 but a r e  only 

the beginning of a proof when p >  2. (To reve r se  a dictum of John 

Thompson, the  virtue of 2 i s  not that i t  is so even but that i t  i s  so small. ) 

The mater ia l  described so fa r ,  while clarified and simplified by 

the theory of E ring spaces,  entirely antedates the development of 
m 

that theory. In the l a s t  seven sections, which fo rm a single unit wholly 

independent of sections 3,4, and 6 and with minimal dependence on 

section 2, we exploit the constructions of [R] to obtain a conceptual 

se r i e s  of calculations. Various familiar categories of matr ix  groups 

a r e  bipermutative, hence give r i s e  via [R] to E ring spectra  whose 
CO 

zeroth spaces a r e  E ring spaces. In section 7,we give a general dis- 
m 

cussion of procedures for  the computation of the two kinds of homology 

operations on these spaces. F o r  the additive operations as, the basic 

idea and the mod 2 calculations a r e  due to Priddy [27] while the mod p 

calculations a r e  due to Moore [24]. Examples for which the procedures 

discussed in principle give complete information a r e  the categories 0 

and U of classical  orthogonal and unitary groups (section a), the category 

h q k r  of general  l inear groups of the field with r elements (section 9), 



and the category 0 kq  of orthogonal groups of the field with q elements, 

q odd (section 11). In the c lass ical  group case,  we include a comparison 

with the ea r l i e r  results  of Kochman [13] (which a r e  by no means rendered 

s u p e r ~ u b u s  by the present procedures). The cases  h % k r  and 0 k 
q 

a r e  entirely based on t he calculations of Quillen [29] and Fiedorowicz 

and Priddy [ 6 ] ,  respectively. 

In sections 10,12, and 13, we put everything together to analyze 

the homologies of BCoker J and the classifying space B(SF; kO) for  

kO-oriented stable spherical  fibrations. At odd primes,  

B(SF; kO) r! BTop a s  an infinite loop space and our resul ts  therefore 

include determination of the p-primar y characterist ic c lasses  for  stable 

topological (or PL)  bunrlles. The la t ter  calculation was f i r s t  obtained by 

Tsuchiya [37] and myself [20], independently, but the present proofs a r e  

drastically simpler and yield much m o r e  precise information. In particular, 

we obtain a precise hold on the image of H*BCoker J in  H*BSF. This 

information ra ther  tr ivially implies Peterson's conjecture [25] that the 

* 
kernel of the natural  map A * H MTop i s  the left ideal generated by 

Qo 

and Ql, a result  f i r s t  proven by Tsuchiya [37] by analysis of the p-adic 

construction on cer ta in  5-cell Thom complexes. 

The essential  geometry behind our  odd pr imary calculations i s  the 

splitting BSF = B J  X BCoker J of infinite loop spaces a t  p, The 2 

primary'analysis of sections 12 and 13 i s  more  subtle because, a t  2, we 

only have a non-splittable fibration of infinite loop spaces 

Be 
B Goker J + BSF - BJ@ . Indeed, we shall  see  that, with the model 

for  J relevant to this fibration, i t  i s  a triviality that SF cannot split a s  

J X ~ o k e r  J a s  an H-space. Section 12 i s  primarily devoted to analysis of 

e *' ' H  . * SF + H J and the internal structure of H J The main difficulty * €3 * €3" 
i s  that, until the calculation of e* i s  completed, we will not even know 

explicit generators for the algebra H J An incidental consequence * (3 
of our computations will be the determination of explicit polynomial 

generators for H*BSO In section 13, we give a thorough analysis 
(23- 

of the homological behavior of the fibration cited above. On the level of 

mod 2 homology, complete information falls  out of the calculation of e*, 

and the bulk of the section i s  devoted to analysis of higher torsion via the 

calculation of the Bockstein spect ra l  sequences of a l l  spaces i n  sight. The 

key ingredients, beyond our  mod 2 calculations, a r e  a new calculation of 

the torsion in  BBSO, which was f i r s t  computed by Stasheff [31], and 

Madsen1s determination [16] of the crucial  differentials in the Bockstein 

spectral  sequence of BSF. The results  we obtain a r e  surprisingly intri-  

cate, one interesting new phenomenon uncovered being an  exact sequence 

of the fo rm 0 + Z4 -c Z2 B) Z8 -, Z4 * 0 contained in  the integral homology 

sequence H .BGoker J + H 
4i 

BSF - HqiBJ@ for  i # 2', the Z8 in 
41 

H .BSF being in the image of H BSO. 
41 4i 

Because of the long delay in publication of the f i r s t  few sections, 

various results  and proofs originally due to myself have long since appeared 

elsewhere. Conversely, in  o rde r  to make this paper a useful summary of 

the field, I have included proofs of various results  originally due to Milgram, 

Madsen, Tsuchiya, Kochman, Herrero ,  Stasheff, Peterson, Priddy, Moore, 

and Fiedorowicz, to  a l l  of whom I a m  also greatly indebted for  very  helpful 

discussions of this material .  
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Before proceeding to the analysis of their  homological structure,  

we must recal l  the definition of E ring spaces. This notion is based on 
m 

the pr ior  notion of an  action A of an  E operad k on an E operad . 
m m 

Such. an action consists of maps 

.. . - . .  
A :  k ( k )  x &(jl) x . .  . X C(jk) - c ( j l .  j k  k L 1 and jr 2 1, 

subject to certain axioms which state how'the A relate to the internal 

s t ructure  of and n . Only the equivariance formulas a r e  relevant to 

the homological calculations, and we shall not give the additional axioms 

required fo r  theoretical  purposes here.  We require some notations i n  

o rde r  to state the equivariance formulas. 

... Definition 1 .1 .  F o r  j 2 1, le t  SOl, .  jk) denote the se t  of a l l  

... .. sequences I = { i l , .  i ) such that 1 5 ir (- jr and o rde r  s ( j l , .  
jk) k 

.... lexicographically. This fixes an  action of Z. on S(jl, jk), where 
3 

j = j l . . . j  k. F o r  U E  Z define I k' 

... ...' ..... u < j  l , .  jk>: S(jl, jk) -. Sdi J 1 
u- l ( l )  u- (k) 

u< jl, .... jk>{il, .... \} = {i 1 - 
u- (k) 

Via the given isomorphisms of S(j l , . . . a j k )  and S(j ..... j 1 
u-l ( l )  u- (k) 

... with {1,2 , .  j), u <  j ... s J k  > may be regarded a s  an element of Z 
j' 

F o r  T E Z , define T ~ @  ... @ T ~ E  X by 
r jr j 

( T ~  €3.. . @ T ~ ) {  il, .... &} = {-rlil,. ... T k k  i } . 

Observe that these a r e  "multiplicative" analogs of the permutations 



cr(jl ,..., jk) and -rl@ ... €+ T in Z 
k 

which were  used in the 
jl +. . . -+ jk 

definition, [G, 1 .I], of an operad. 

The equivariance formulas required of the maps A ' a re  

and 

f o r  g e b (k), c r  r & (jr), o r zk , and -r c Z. . 
Jr 

We require  two other preliminary definitions. 

j l  jk 
Definition 1.2. Let X E 3 . F o r  j 2 1, define 6:X X . . . X X + 

k J1' "jk 
(X by 

w h e r e i f  y = ( x  r l I . . . , x  ) and I = { i  . . . ,%I , then yI = (xli . . . . .x%). 
r j  1 

Definition 1.3.  A .& O-sPace (X, 6 ) i s  a b -space with basepoint 1 

together with a second basepoint 0 such that 

fo r  a l l  ge &(k) if any x = 0. Let  /j [d  ] denote the category of 
0 

bo-spaces .  

Definition 1.4. Let  .& act  on . A (c, k)-space (X, 6 ,  8) is a 

fjo-space (X, 5 ) and a c - s p a c e  (X, 8) with basepoint 0 such that the 

following distributivity diagram i s  commutative f o r  a l l  k ) 1 and j > 1, 
r - 

where j = j - jk : 

1 x 8 .  X.. . X 0 
j l  

b ( k ) x C ( j , ) X  X X. . .XC(j , )XX jk 1 jk > n(k) X xk 

Here the maps p a r e  shuffle homeomorphisms and A i s  the i terated diagonal. 

j, 
Let 5 k: h (k) X 6(ji) X X X .  . . X c(jk) X XJk - e ( j )  X X' be defined 

by commutativity of the left-hand side of the distributivity diagram. This 

definition makes sense  for  any -space (X,f ), and the omitted par ts  of the h, 
definition of an action of k! on & se rve  to ensure  that the 5 induce an  action 

k 

of 8 on CX such that q : X -r CX and p: CCX-c CX a r e  morphisms of 

& O-spaces. In other words, if /d acts  on & , then C defines a monad in 

$j o[ 31. The distributivity diagram s ta tes  that 8: CX + X gives (X, 6) 

a s t ructure  of an algebra over  this monad. It is this m o r e  conceptual 

formulation of the previous definition which is central  to the geometric 

theory of [R]. We re fe r  the r eader  to [R, VI !j 4 and VII S 2 and 41 f o r  

examples of suitable pai rs  ( , .&) and to [R, IV !j 1-2, VI !j 4-5, and 

VII $21 f o r  examples of (t;, k) - spaces .  

We should perhaps mention one technical problem which a rose  in [R], 



if only to indicate i t s  irrelevance to  t h e  calculations here.  In practice, one 

i s  given a pair ( $ ' , ,&I) of locally contractible (e. g., E ) operads such 
a3 

that 4' acts  on e' . In o rde r  to pass f rom ($' , &' )-spaces to ring 

spectra  with s imi lar  internal s t ructure  onthei r  zeroth spaces,  one replaces 

(6 ' .  &') by ( c. 8 )  = ( c' X x,, X ), where xm i s  the infinite 

l i t t le convex bodies operad and i s  the l inear i sometr ies  operad. How- 

ever, k, and a r e  in  fact only partial  operads, in that thei r  s t ructura l  

maps y a r e  only defined on appropriate subspaces of the relevant product 

spaces. (see [R,VII $ 1  and $21 f o r  details.) The results  of I apply to 

-spaces since, when only the additive s t ructure  is a t  issue,  2: may a s  well 

be replaced by i t s  sub operad c' X , where cm i s  the infinite l i t t le 
m 

cubes operad used in I. On the other hand, since the maps y do not appear 

in the distributivity diagram, they play little role in the study of multipli- 

cative operations and their  interrelationship with additive operations which 

i s  our  concern here.  (1n the few places the y do appear, in the proofs of 

2 . 2 a n d 3 . 3 ,  w e c a n a g a i n r e p l a c e  k by C ' X  .) 
m 

Henceforward, throughout this and the following two sections, we 

tacit ly assume given a fixed pai r  of E operads c' and ,& such that 2 
a3 

acts  on Q and a fixed (c , A)-space  (X, $ , 8). (This general  hypothesis 

remains in  force even vh en results  a r e  motivated by a discussion of their  

N 

consequences for H+F. ) We re fe r  to such spaces X a s  E ring spaces. 
a3 

It should be noted that E semi-ring would be a more  accurate term: we 
1 0 3  

have built in  a l l  of the axioms for  a ring, up to a l l  possible higher coherence 

homotopies, except fo r  the existence of additive inverses. 

We intend to analyze the interrelationships between the two R-algebra 

s t rhctures  on H,X, and we must  f i r s t  fix notations. F o r  i e  ?r X, we write 
0 

X. fo r  i considered a s  a subspace of X and wri te  [i] f o r  i regarded a s  
1 .  

an element of HOX. Of course,  n X i s  a semi-ring, with addition and multi- 
0 

plication derived f rom 0 and . Fix c E $ ( r )  and define the r-fold 

" additive " product on X to  be 0 (c ) :xr  X. Write * for  this product 
r r 

both on the level of spaces and on homology. Note that * takes 

Xi X X. to Xi+j and that [i] * [j] = [itj]. Write QS f o r  the homology operations 
J 

determined by 8: QS takes H q  to H*Xpi and QO[i] = [pi]. Fix g e h ( r )  

and define the r-fold "multiplicative" product on X to be 5 (g ): xr + X. 
r r 

Write # for  this product both on the  level  of spaces and on homology; however, 

to abbreviate, we write # on elements by juxtaposition, x #  y = xy. Note that 

# takes X. X X. to X.. and that [i][j] = [ij]. Write 2 for  the homology 
1 J  1J 

* s 
operations determined by $ : Q takes H*X to  H*X and Z0[i] = [iP]. 

i P 
Let  E : H*X + Z be the  augmentation and note that E [i] = 1 . 

P 

Let  $ : H,X .,- + H,X .,. @ H*X be the coproduct and note that $ [i] = [i] @ [i]. 

F o r  x E H*X, we shall  wri te  $ x  = x l @ x " ,  a s  usual; the i terated co- 

product t/J : H,X + (H*x)~ will sometimes be writ ten i n  the form 

$ x = x(*)@. . . Q X ' ~ ,  with the index of summation understood. 

If n X i s  a ring (additive inverses  exist), then H*X admits the con- 
0 

jugation x (for *) defined in  Lemma 1.2.7; of course,  q E  = *(l@x)t/J , 

where TI i s  the unit fo r  4 , q(l )  = [O]. Moreover, Qsx = x ~ s  by inductive 

calculation o r  by Lemma 1.1.2 and the fact that the operations QS agree  with 

the loop operations on the weakly homotopy equivalent infinite loop space 

B X. In contrast ,  multiplicative inverses  do not exist in  nOX in  the interest-  
0 

ing examples, hence the product # does not admit a conjugation. 

We complete this section by obtaining formulas for the evaluation of 

S 
# i n  t e r m s  df * and the QS. Formulas  fo r  the evaluation of the Q i n  



t e r m s  of * and the QS will be obtained in the following two sections. A l l  

of our  formulas will be derived by analysis of special  c a s e s  of the dis- 
N 

tributivity diagram. The following resul t  was f i r s t  proven, for X = F, by 

Milgram [ 22 1. 

Proposition 1 .5 .  Let  x,  y, z E H,X and i ,  j E n X. Then 
.A. 0 

(i) [O]x = (EX)[O] (and [I]x = x); 

(ii) if a X is a ring, [-1]x = xx  ; 
0 

(iii) (x* y)z = C (-iIdeg Y' deg " XZ'  * YZ"; 

deg y' degx" 
(iv) (xa[il) (y*[jl) = >: (-1) xlyl * xlt[j] * y"[i] * [ij] . 

Proof. Since (x, 5 )  i s  given to be a -space, we have that 
0 

0 # x = 0 fo r  x E X, and (i) follows. Formula  (iii) holds since the 

following diagram i s  homotopy commutative: 

* X 1  
X X X X X  - XXX, 

I 

1X1XA 

X X X X X X X  

Indeed, by the distributivity diagram applied to elements (g , c , x, y, 1, z), 2 2 

where 1 E (1) i s  the identity, the diagram would actually commute i f  * 
on the bottom right were  replaced by the product 0 (c' ), c '  = X (g2; c2,  1) ,  

2 2  2 

and any path f rom c 2  to c '  in c ( 2 )  determines a homotopy f rom 

* =  9 (c ) to 9 (c ') .  Formula( iv)fol lowsformallyfrom (iii) a n d t h e  
2 2 2 2 

commutativity of the product # on homology. Formula  (ii) follows by in- 

duction on the degree of x f rom (i), (iii), the fact that [0] = [i] *: [-11, and 

the equation q E = *(1@ x)+, since these formulas give 

Proposition 1 .6 .  Let x, y c: H*X. Then 

( ~ ' x ) ,  = aSti(xpjy) a n d ,  it p > 2 ,  
i 

deg x s f i  
( P Q ~ X I Y  = C B Q ~ ~ ' ( * ; Y )  - C ( - i )  Q (*:BY) . 

i i 

Proof. The following diagram i s  T3. -homotopy commutative: 
P 

e X 1  xr P X X X  

1 X I X  A 

df(p) X x p  X xP X 
f 

Indeed, by the distributivity diagram applied to elements (g2, C, y, 1, X) f o r  

(c, y) E E ( p )  X xP and x E X, the diagram would actually commute i f  the 

identity of C(p)  on the bottom a r row were  replaced by the map 

c -* X (g2; C ,  1), and these  two maps $(p) -+ $(p) a r e  B -homotopic 
P 

since & (p) is B -free and contractible. The r e s t  of the  argument i s  
P 

identical to  the proof of Theorem 1.1.4. 

rV 

Of course,  in the  c a s e  of QSO = F, the previous two results  a r e  con- 

tained in  Theorem 1.1.4 and Lemma L1.5. Since, by Theorem h 42, H * QSO is 

generated by [kl] a s  an  R- algebra,  the previous results  completely determine 

IV I 
the smash  product on H*F; a l l  products Q [l]x can be computed by induc- 

iu 

tion on ~(1). The following observation implies that H*F i s  generated 

under the loop and smash products by [-11 and the elements /3 '~~[1] (or  

QS[1] if p = 2). 



I 
Proposition 1.7. Every element Q [I] of HgX is decomposable 

S~ Ek Sk 
a s  a l inear combination of products j3 Q [I]. . - j3 Q [I] 

S1 . Sk 
(or Q [I]" 'Q [I] if p =  2), where k =  P(1). 

s t i  i J 
r o o f .  If I = (s,  J ) ,  then Q1[1] = QS[l]QJ[1] - I: Q (P+Q [I]). 

i >O 
s t i  i J 

On the right, Q (P*Q [I]) = QSii[l]~~QJ[1] - Q ~ ~ ~ + ~ ( ~ * P ~ Q ~ [ I ] ) .  
j>O 

Iterating, we reach t e r m s  where the e r r o r  summation i s  zero af ter  finitely 

i J K 
many steps. Since P*Q [I] i s  a l inear  combination of monomials Q [I] 

such that P(K) = P(J), the resul t  follows by induction on the length of I. 

When s X i s  a ring, we can define a product - 0 
* in  H*X1 by 

Thus 2 i s  just the translate of the product * f r o m  the zero  component to 

the one component. Since 

modulo elements of H*X1 which a r e  decomposable under the product 5 ,  
," 

we have the following corollary when X = F. 

Corollary 1.8.  The elements (3' QS[l] * [I-p] (or QS[l] * [-I] if 

p = 2) generate H,SF under the products i? and 5 .  
.%. 

The following explicit calculation i s  due to Milgram [22]; his proof 

depended on use of t h e  known structure of the cohomology algebras of the 

4' 

Lemma 1.9  . Let p = 2. Then QS[l]QS[l] = Qs QS[1] and, if 

s > 0 and sr X i s  a ring, (~ ' [ l ]  * [-l])(Qs[l] .* [-I]) = 0. 0 

: Proof. By Proposition 1.6 and the Nishida relations, we have 

s+i s-i 
aS[l.] QS[l] = QS QS[l] t as, where a = (i, s(p-I)  - pi) Q Q [I]. 

i > o  
Visibly a = 0. Assume inductively that a = 0 for  0 C k < s ,  s >/2. 

1 k 

Rather than use  the Adem relations to compute a directly, we observe 

that, by an  easy calculation, the induction hypothesis implies that a i s  

primitive. Since a i s  a l inear  combination of length two elements of R 

1 1  
acting on [I], TheoremI.3.7 implies that a = 0 ,  as .=  Q Q [I] , o r  

2 1 
a = Q Q [I]. Since deg as )/ 4, the f i r s t  alternative must  hold  F o r  the 

second formula, 

(QS[1] = 1 ~ ~ - ~ [ l ] Q ~ ~ ~ [ l ] *  Qi[1]- [-I] * $[I].[-I] * [I] 
i j  

Here  the f i r s t  equation follows f rom Proposition 1. 5 (iv), the second f rom 

our  f i r s t  formula and symmetry  (the t e r m s  with i $ j cancel in pairs) ,  and 

the l a s t  f rom the definition of x . 



5 2. The mixed Cartan formula 

Nr & s 
We shall  compute Bs(x * y) i n  this section and Q /3 Q x in  the 

next, x, y e  H*X. To do so, we shall  have to decompose special  cases  

of the distributivity diagram. We need the following notations. 

Definition 2 . 1. Let S be a subset of S(jl ,  . . . , j ) and give S 
k 

the ordering induced by that of S(jl, . . . , jk). Let n(S) denote the num- 

b e r  of elements ,in S. Define 

~ ( s ) :  G(j l .  . . jk) + Z(n(S)) 

to  be the i terated degeneracy (as in  [G,  Notations 2.31) given by 

ji.. . jk 
where s i s  that element of [ G ( 0 )  %(i)] whose coordinate 

i s  * E  c ( 0 )  if I / S  and i s  1 e  &(I)  if I e  S.  or example, if & =  ya, 
then u(S) deletes those l i t t le convex bodies of c which'are indexed on 

I / S. Define 
*(s) = (5). * : b ( k )  x k (j l)  x . . . x (Z(jk) - a n ( s ) )  

and define 
j1 Jk k n<S) 

6 ( S ) : X  X . . . x X  .+ ( X )  

by letting 6 (S)(yl, . . . , y ) have ith coordinate (x 
k l ,  2 .  . ., Xk, % 1 if 

1 
Yr = (xr1, . " .  , x . ) and I  = {i . . , jk) E S. Then define a map 

rJ r 
c(S) by commutativity of the following diagram: 

Abbreviate S(j; k) = S(j *, . . . , jk) when j = . . . = jk = j. TO com- 
1 

n' s A, 

pute Q ( x * ~ )  and /3'~'x, we must  analyze ~ s ( z ;  p) and $ ~ ( p ;  p). 

The definition suggests the procedure to be followed: we break the relevant 

se t  S(j; k) into an appropriate union of disjoint subsets in o rde r  to decom- 

N 

pose cS(j; k) into pieces we can analyze. The following result  gives the 

general  pattern. Observe that the evident action of the wreath product 

Bk Jzj (defined in DefinitionI.5.3) on the se t  S(j; k) fixes an inclusion of 

Bk( B j  i n  T. . The distributivity diagram i s  c lear ly  -f B .-equivariant 
j k J 

when j1 = . . . = jk = j . 

Proposition 2.2. Let G be  a subgroup of zk{z and le t  
j 

S C  S(j; k) be the disjoint union of subsets S1, . . . , S such that each S 
9 i 

i s  closed under the action of G. Then each c(S.) i s  G-equivariant, and - 
c(S) i s  G-equivariantly homotopic, to the composite 

Proof. Consider the following diagram: 



Here p is a shuffle homeomorphism and $ denotes right action by that 

permutation v of n(S) letters which corresponds to changing the order- 

ing of the set S from that obtained by regarding S as the ordered union 

S . . S (where each Si i s  ordered as a subset of S(j: k)) to that 
9 

obtained by restricting the ordering of S(j; k) to S. The map * in the 

operad $ i s  defined by 

(dl.. . . , dq) + ~ ( c q i  dl.. . . . dq) , di' &(n(Si)). 

for our fixed c e (4. By [G, Lemma 1.41, the right-hand triangle 
9 

and trapezoid commute. In the left-hand rectangle, the coordinates in 

x ~ ( ~ ) ,  in order, given by c(S) and by the specified composite a re  the 

same. To study the coordinate in c(n(S)), consider the diagram 

Obviously the left-hand square commutes. Let (S): G -+ Z 
n (s) be the 

homomorphism (not necessarily an inclusion) determined by the action 

.k of G on S. Clearly r(S) i s  G-equivariant, where G acts on $(j ) 

via the given inclusion of G in zk l j  c Zjk and G acts on & (n(S)) 

via L(S). If 7 i s  defined by ?(T) = v-'T v, then L(S) coincides with the 

composite 
a 

9 
since ;o@ i s  the inclusion of i=l X 23 n(Si) in Z determined by the 

n(s) 

inclusions of the S. in S as  ordered subsets. Therefore the composite 

$a* 0 r(Si)o A is  also G-equivariant. Since c(jk) is  G-free and 
i=l 

&(n(S)) is contractible, the right-hand square is G-equivariantly homo- 

topy commutative and the proof is complete. 

We give two lemmas which will aid in the homological evaluation 

of the composite appearing in the proposition. It will sometimes be the 

case that all c(Si) induce the same map on G-equivariant homology. 

The following lemma will then be used to simplify formulas. 

Lemma 2.3. Let gi: Y + X, l (i ( q, be maps such that 

fliU = gji. Then the map on homology induced by the composite 

q 
x gi A - yq  i=l * 

-xq-X 

is given by y -) [ql(P(l_ y) for y e H*Y. 

Proof. Define i : X + X  by i x  = ( 1  *... * l )  + x ,  qfactors 
9 9 

of 1. The distributivity diagram (applied to (g2, cq, (llq, l, $l(y)), y cz Y) 

implies that i o  $:-A i s  homotopic to i r and the result follows. 
q f l l a  

N 

When the c(Si)* are  distinct, the following observation will allow 



computation of A* on G-equivariant homology. 

Lemma 2.4. The following diagram is commutative: 

(where /I i s  the evident shuffle homeomorphism). 

j When k = p and G contains the cyclic group n = IT X 1 C Z {Zj, 
P 

k 
the maps (1 X A )* and /I,.(A X I), on G-equivariant homology can be  

-,. -,. 

readily evaluated by the naturali ty of equivariant homology and by use of 

the explicit coproduct on the standard n-free resolution of Z (compare 
P 

[A, Proposition 2.61). 

d 
The following theorem was f i r s t  proven, fo r  X = F ,  by Madsen 

[ 15 ] when p = 2 (using Kochmanls calculations [13] of the operations in  

H*O) and by myself [20] when p > 2; the present proof i s  a simplification 

of that given by Tsuchiya in  a l a t e r  reformulation of my resul t  [38 1. 

Theorem 2.5 (The mixed Cartan formula). Let  x, y e Hex . 
Then 

where x @  + z x ( O )  Q y(0)@ . . . @x(P)@ y(p) under the i terated Co- 

product of H,X @ H,.X ; .,. .a. 

PJS ,.IS 
(ii) Q ~ ( x B Y ) = ( E Y ) Z ~ X  and Q P ( X @ ~ ) = ( E X ) " ~ ~ :  and 

rvs (in) 4 (x@ y) = [?- (i, p-i)]QS( c x"). . . x(p-i)y(l)~ a a y(i)) , o < i < p, 
P 

* 
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1 N S PJ 2 
(iv) r i  p = 2 ,  (X i y )  = C c ~ ~ ~ x '  * d (xI'Y ' )  * d yu. 

s 0 t s  1 + s 2 = s  

Proof. Formula  (iv) i s  just the case  p = 2 of (i) through (iii). 

We use the distributivity d iagram and Proposition 2. 2 with k = p and 

= j = 2; we fix c E &(2) and omit the coordinates &(2) f rom the 
2 

notation in these  results. We must  analyze the s e t  S(2; p) of sequences 

I =  {i I, .  . . ,ip] , i = I o r  2. Let  111 denote the number of indices r 

such that ir = 2 and note that I I I i s  invariant under permutations of the 

entries of I. F o r  O (  i Lp,  le t  S. = {I I I I /  = i}. By the cited results ,  

with G = Z C B l Z in  Proposition 2.2 , the following diagram i s  
P P 2  

Z -equivariantly homotopy commutative: 
P 

I x *p 
P J ( p ) x ( ~ 2 ) p  - & ( p ) x x P  S~ r x 

AI I* 
2 P PSI 

P; -iq, 
( B  (P) x (X 

i = O  . x ~ + l  

n's N 

Define Qi(x@y),  05. i  (p, by use of the map  e(Si) 'in precisely the 

same  way that the homology operations were  defined for  Em spaces 

(X, 8) by use of the map 9 in the proof of Theorem 1.1 .l. Then formula 
P 

, (i) follows f rom the diagram by use of Lemma 2.4 and the subsequent 

remarks .  The se ts  S 0 and S each have a single element and, fo r  these  
P 

c' 
i, e(Si) i s  the composite 

S@.) 
,kJ(p) x (x2)p A @I 

$(I) X X d  X .  

Since c ( 1 )  i s  contractible to the point 1 ,  8 1 i s  homotopic to the pro- 

jection n onto the second factor. By Definition 2.1, n 0 S(Si) coincides 

P 
with the composite of 6 with either 1 X .rrP (when i = 0) o r  1 X  IT^ 

P 1 



(when i = p), where u.:x2 -+ X i s  the projection onto the j-th factor,  
3 

j = 1 o r  2. Formula  (ii) follows. It remains to prove (iii). F i x  i, 

1 
0 < i < p, and le t  r .  = -(i, p-i). Let a be  the cyclic group of o rde r  p 

1 P  

with generator r and le t  T ~ ,  1 (j( ri, run through a s e t  of double coset 

I 

representatives for  a and I: X X. i n  I: (under the  standard p-i  1 P 

inclusions). Thus X = u a-r.(X . X 222" Note that, for  7 E I: 
P j J P - 1  P ' 

the group 7-'n-r n X Xi) i s  tr ivial  and-there a r e  therefore 

p = [T-~TT: {e}] complete right cosets of I: X X. i n  the double 
p-i 1 

coset  TT(Z X Xi); thus precisely r. double cosets a r e  indeed r e -  
p-i  

quired. Let  I. = (1,. . . , l , 2 , .  . . , 2} ,  i twos, observe that X X Xi p-i ' 
k 

acts  tr ivially on I., and define S.. = {IT 7.1. I 1 ( k l  p}. Clear ly  S. i s  
1 4 3 1 

the disjoint union of the se ts  S.. and, by Proposition 2. 2, the following 
13 

diagram i s  n- equivariantly homotopy commutative: 

We claim that, on the s-equivariant homology c lasses  relevant to (iii) , 
,., 

each e(S..)% agrees  with the map induced on homology by the composite 
13 

- 1 x u p  
e 

' x ( ~ x ~ ) P h ~ ( p ) x ( X ~ - i X X 1 ) P  5 6 ( p ) x x P  A X. 

(The claim makes sense  since C+ B(p) and C* &(p) a r e  both u-free 

resolutions of Z . ) Formula  (iii) will follow by use of Lemma 2.3 . 
P 

To prove our  claim, consider the following diagram: 

X.. XAXA 
+ C(p) X X P - ~  xxi 1 x #  

$(P)xx 

P 
The map $: c ( p )  + C(p) X /d(p)' i s  defined by $(c) = (c, g ) and the upper 

P 

right trapezoid commutes because # = 6 (g ):xP + X. The maps 
P P 

X..: f l (p)-+ C(p) and + . . : h ( p ) - c $ ( p ) X  b ( p ) P  a r e d e f i n e d b y  
13 1J 

k 
If we could identify S with {1, . . . , p} by r 7.1. + k, then the  homomorphism 

i j  J 1 

( S . ) :  a + X given by the action of a on S.. would coincide with the standard 
4 P 4 

inclusion L: a -+ I: Actually, the given ordering of S. a s  a subset of 
P' 4 

~ ( 2 ;  p) may differ f rom the standard ordering of {k}, hence L(S. ) may differ 
I j  

f rom L by an inner automorphism, given by cr.. say, of I: The map 
13 P' 

2. .:xP + xP is left action by a. and the right-hand tr iangle commutes 
4 ~ j '  

A 
trivially. Of course,  cr.. is a-equivariant i f  u ac ts  on the domain via L 

13 

( that  i s ,  by cyclic permutations) and on the range via ~ ( s . . ) .  If a acts  on 
13 

)3 (p) via L andon (P) v ia  L (s..), then X .. i s  a-equivariant. If a 
9 13 

P acts  on B ( p )  by cyclic permutations and acts  diagonally on $(p) X &(plP, 

then +. and ff a r e  a-equivariant. Thus the upper left triangle is 
1j 

a-equivariantly homotopy commutative since b (p) i s  a-free and 

&(p) X %(p)' i s  contractible. The bottom par t  of the diagram commutes 

2 since 6 i s  X -equivar iantandsince ,  for  g r  h ( p )  and (x1,x2) E X , 
P P 



S(Sij)(l x A)(g, x l ,  x2) = ( Aij(g). X Bp(g. xi . . . .xi 1) 
I€  S.. 1 

4 
P 

P k . . 
while (g, x l ,  x2) * (Aij(g), a. .( X 5 (gv -rj, xy-'. x i  )) under the corn- 

1J k =  1 P 

posite through the center of the diagram. If j: W -+ C* B(p) and 

j': W + C* g ( p )  a r e  any two morphisms of a-complexes over Z 
P 

(as  used in  the proof of Theorem I.l.l),then (C_Xij) 0 j i s  T-homotopic 

to j1 by elementary homological algebra. Thus, when we pass to 

a-equivariant homology, we may ignore A... By the diagram and by 
13 

[A, Proposition 9.11, which evaluates (1 xA),: H+(T; H 2 )  + H*(a; H*x') 

f o r  any space X , we conclude (by induction on the degree of x@y) that 

2 P 
By [A, Lemma 1-31, H*(T; H,(X .,. ) ) i s  generated.as a Z -space by 

P 

c lasses  of the form? er  @ (x@ y)P and eO @xl  @ y1 8.. .@x @ye. 
P 

The la t ter  c lasses  a r e  c lear ly  irrelevant to our  formulas. The proof 

of our  claim, and of the theorem, a r e  now complete. 

N &S 
In H*F, the computation of the  operations Q therefore reduces 

to their  cornputation on generators under the loop product and thus, by 

the ordinary Cartan formula, to thei r  computation on generators under 

both products. We have the following lemma (as always, fo r  any E a, 

ring space X). 

NS 
Lemma 2.6. (i) % s [ ~ ] = O  and Q [ l ] = O  f o r a l l  p a n d a l l  

s >  0. 

(ii) If a X i s  a r ing and p> 2, then zs[-l] = 0 for  all s >O. 
0 

NS 
(iii) If a X i s  a r ing and p = 2, then Q 1-11 = ~ ~ [ l ] * [ - l ] ,  s, 0. 

0 

rJs 
Proof. Q [l] = 0 for  s > 0 by Theorem 1.1.1.(5) and SS[0] = 0 

fo r  s >  0 since 6 (g, (0)') = 0 for  all g E b ( p ) .  Now assume that 
P 
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-k 
a ring.'. Let p > 2  and assume that Q 1-11 = 0 fo r  0<  k <  s 

(a vacuous assumption i f  s = 1). Then, by the  Cartan formula and 

-0 
the fact that Q [-I]  = [-11' = [,-I], we have 

0 = "a"[l] = "a"([-11. [-I]) = (as[-I])[-11 + [-l](BS[-11) = 2[-l]ES[-11. 

e s 0 
Q [-I] = 0 follows. Finally, le t  p = 2, observe that 8 [-l] = [I], and 

e k  k 
assume that Q [-I] = Q [ l ]  *[- 11 fo r  0 I. k < s. Then, by the mixed 

Cartan formula,  by d[-l] = x d[l], and by the defining formula fo r  x , 

we have 

"'S 
Q [-I]  = as[l] *[-l] follows. 

The following implication of Theorem 2. 5 i s  due to Madsen [15 1. 

Lemma 2.7. If T X i s  a r ing and p = 2, then, for  s > 0, 
0 

42~4-1 s s 
Q (Q Q [l] *[-31) = 0. 

Q2s+1 s 1~2s+ l , . I s  
Proof. Q = 0 and Q Q = 0 by the Adem relations, 

and ?2s~s[1]  = aS[l] by Lemma 1.9  . An easy calculation f rom the 

- ~1 
mixed Car tan formula and the  l emma above shows that Q [-31 = 0. 

.-2s4-1 s s 
Each summand of Q (Q Q [I ]  :: [-3]), a s  evaluated by the mixed 

~ 2 i 4 - 1 4  i 
Cartan formula, has  a * factor of one of the forms Q Q Q [I], 

Q2i+1 i i -1 
Q Q [-31, o r  Q [-31 (or  e lse  i s  zero  by (3) of Theorem I. 1 .1  

The resul t  follows. 

Finally, we record the following consequence of Theorem 2.5 

for  use i n  [R, VLU $41, where i t  plays a key role in the  proof that SF  



spli ts  a s  an infinite loop space when localized a t  any odd pr ime . 
4 s 

Lemma 2.8. F o r  any r > 0 and s > 0, Q [r] l i e s  i n  the sub- 

t 
algebra of H*X generated under * b y  [1] and the Q [1] and, modulo 

elements decomposable a s  l inear  combinations of *-products of positive 

degree elements, 
N S  1 P 
Q [I] I - (rP- r )  1;~[1] * [r - p]. 

P 

Proof. The result  holds tr ivially wEen r = 1 and we proceed by 

induction on r. The f i r s t  par t  i s  evident and, inductively, Theorem 2 .5  

gives that 

P-1 
+ [ i ( i y  p-i)]~s[(r-l)p-i]* [rp - ( r - ~ ) ' - ~ ( i ~  p-i)]. 
i= l  ' 

By Proposition 1.5(iii), the second t e r m  i s  congruent to 

p-i 
S h e  rp = ( i  p - i - 1  , the coefficient h e r e  is equal to 

i= 0 
1 - ( rP - ( r - ~ ) ~  - 1) and the conclusion follows. 
P 

* 

§ 3. The mixed Adem relations 

We shall  f i r s t  obtain precise  (but incredibly complicated) formulas 

- r  E s 
which implicitly determine Q $ Q x by induction o n t h e  degree of x, 

x E H*X. We shall  then derive simpler expressions in  the case  x = [I]. 

Modulo corrections a r r ived  a t  in  correspondence between us,  the la t ter  

formulas a r e  due to Tsuchiya [ 381. 

The proofs will again be based on Proposition 2.2, and the following 

.-., 
l emma will a id  in the homological evaluation of certain of the maps 5 (S). 

Lemma 3.1. The following diagram is commutative fo r  any subset 

Proof.  F o r  x E X, each coordinate of €i(s)(xjk) is just xk. The r e -  

sult follows tr ivially by inspection of Definition 2.1. 

Let G be a subgroup of T. X 2.C %(Zj such that S i s  fixed 
k J  - 

under the action of G. The l emma reduces the evaluation of (S)* on 

c lasses  coming f rom the G-equivariant homology of Jd(k) X &(j) X X to the 

analysis of the [X(S)(lX A)]* f rom the G-equivariant homology of 

(k) X $(j) to the T. equivariant homology of (n(S)), and this map 
4 s ) -  

clearly depends only on the homomolp h i sm L (S): G 2 determined by 



the action of G on S. 

In o r d e r  to  simplify the statement of the mixed Adem relations, we 

introduce some notations. 

.w k 
Definition 3 .  2. Define 2 r x  = D z t % * x  for  x r H*X and r > 0. 

." 
Observe that evaluation of the z r x  is i n  principle equivalent to the evalua- 

tion of the 'Grx in  view of the  equations 

where x i s  the conjugation i n  the Steenrod algebra. Observe too that, by 

Proposition 1.6, the analogous operation 2 rx = artkp:x coincides 

with the j? product ~ ~ [ l ] x .  

Theorem 3 . 3  (The mixed Adem relations). Let  x E H*X and f ix  

- r  E s r 2 0 ,  E = 0 o r  1, and s z E . Then Q p Q x is implicitly determined by 

the following formulas (p > 2 in (i)- (v)). 

r O , E O ,  SO rlae I *  s l  r E  s 
(i) f r p D ~ ' x  = C (-1)' ti0 X I *  Q, * [ p ~ - 2 - l l q 2 '  2' zxn1, 

where Jpr = 2 xlX xu X xu1 , y = E deg x1 t E2(degxt + deg xu),  and the 
1 

(rm, Em, sm), 0 I m 5 2, range over those t r ip les  with r m 2 0, 

E ~ =  0 o r  I ,  and s m' 'm 
whose termwise  sum i s  ( r ,  & , s). 

(Here each operation .- r s e y  has  degree 2 ( r + ~ ) ( ~ - l )  t E  . ) 
'm 

& = 0 o r  I ,  s > E and r + s = 0 mod (p-1) whose termwise  sum 
. n n - n' n n 

- r , E ,  s 
i s  ( ( p - 1 )  , ( p - I ) ) .  (Here each operation Q has  degree 

1, n 

2(r+s) + E . ) 
r , ~ ,  stk(p-1) k 

x =  Ir: Q P * x  f o r  i 5 n S . p - I .  
k 1 0  - I a n  

(iii) z ; .oas  x = QS[1]- Z r x  and 

d 9 r 2  O1 'x = 
nr(r-i(p-l) ,  s)  ~ ~ - ~ [ i ] .  2 'x and 

i , n  i ) O  

where r ts  = t(p-I) .  

- r, s t k  k 
where, if 3'' " x = 1 Qm P* x for  m = 0 o r  1, then 

m k,O 
.., ." . 

. - r ,E,s  
Define am - r , E , s t k  k 

x =  c a m  P*x for  0 < m L  2. 2 r' 'x = QS[I]- YX and 1;' x = (r-i, s )  2'x . 
k z  0 0 i ) O  

s - r l ~ E 1 ~ s l x ( i )  * r e s  (ii) 2;.E,sX= 22 C (-1) Qi ,  p-I' p-1' p-I x(p-l) ... * Qi,p-l I Proof.  Since [pp-2- I] = [0] if p = 2 ,  (vi) can be  viewed a s  the 

where +x = x x(')@ ... @x(P-'), 6 = E . deg x ( ~ ) ,  a d  the 
special  case  p = 2 and E =  0 of (i) through (iv). We shall  use the distri-  

i < j  J 
butivity diagram and Proposit ion 2. 2, with k = j = j = p, and we must  

a. (m, En,  sn), I ( n 5 p- I ,  range over those t r ip les  with r n 2 0, 
analyze the se t  S(p; p )  of sequences I = {iI, . . . , ip], I I ir i_ p. Let  U de- 



note the set of all  sequences J = {j*,. . . , j ) such that 0 ( jk I p and 
P 

j1 +. . . + jp = p. For  I E S(p; p), define J(1) E U by letting the k~ entry of 

J(IJ, 1 I k 5 p, be the number of entries of I whose value i s  k (that is, 

the number of r such that i = k). Let IT and v be cyclic groups of order 

p with generators cr and T. Embed v as the diagonal in vP and embed rr 

and v in (copies of) C in the standard way a s  cyclic permutations. 
P 

These embeddings fix inclusions 

r r v  C C xv CI: f v  C Z P l Z p  
P P 

of subgroups of Z , where I; acts a s  permutations of S(p; p). Thus cr 
pP pp 

acts on sequences I E S(p; p) by cyclic permutation of the entries and T acts 

diagonally, adding one to each entry. Let T act on sequences J E U by 

cyclic permutation of the entries and observe that J(r1) = TJ(I). Let T be a 

subset of U obtained by choosing one sequence in each orbit under the action 

of v ; we insist that T contain the particular sequences 

JO  = {p,O,. . . ,0]  and J = {I , . .  .,1). 
1 

k 
F o r  J E T, define SJ = {I 1 J(1) = T J for some k, 0 ( k  < p}. Since permu- 

tations of the entries of I do not change J(I), each S is closed under the 
J 

action of C xv . Obviously S(p; p) is the disjoint union of the SJ. For  
P 

J = {j,, . . . , j$ E T, define I(J) r S by 

I(J) = (1,. . . ,1 ,2 , .  . . , 2 , .  . . , p, . . . , p), where k appears jk times. 

We next break the S into smaller subsets which are  still closed under the 
J 

n 
action of rxv  . First,  consider the possibility 0-1 = T I for 

I = { i . .  . i E S ( p )  and some n. Then 

; { i  . i 3 = { i t n  ,..., i + n ) , h e n c e  i + n = i  
P-1 1 P r-1 ' 

Here n = 0 if and only if J(1) E v. Jo; we agree to write S = S . Thus 
O Jo 

Lf 1 c n  (p-1, then all entries of I are distinct and J(1) = Ji. Define 

- i 
E C by y (i) = (p+i-i)n. Then Y~I ( J , , )  = {pn, (p-i)n, . . . , n). Define 

'n- p n 

and note that 
P-i 

= Ui '1,. 
= { I /  J(1) = J i  and T I =  vI] 

n- 

Each Si,,, hence also S t ,  is closed under the action of lnrv since 

n 
o y n ~ ( ~ i )  = T yn1(Ji). Clearly the complement S; of S 1 in S is also 

J1 

closed under the action of rxv. Define 

Note that rrxv acts freely on S 2' Choose a subset {$ q i  (J )) of I; P such 

that { $ q ( ~ i ) . ~ ( ~ i ) )  is a r x v  -basis for S; (the $# 9 (J i ) may be chosen 

from among a set of left coset representatives for a in C P ). Similarly, 

for J E T, J # Jo and J # Ji ,  let {$ q (J)) be a set of double coset repre- 

sentatives for r and C. X . .  . X C in I: . thus 
J i  jP P ' 

B = U T$q(~)(ij X . . . X Z. ): Note that, for any $ E C the group 
q 1 3~ 

P ' 

$-'4 (Cj X . . . X Z. ) i s  trivial (since j < p for all k) and there a re  
k 

i P 

p = {el ]  complete right cosets of I: X . . . X C in the double 
j i  

i jP 
coset a$(C X . . . X Z. ); thus precisely ( j ,  . . . ) double cosets 

ji  P 
' J ~  

a re  required, where (j . . . , J ~  ' ) denotes the multinomial coefficient. Ob- 

serve that 2: X . . . X C acts trivially on each T%(J) and define 
j i  jP 
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s J, q = { J T ~ $ ~ ( J ) . I ( J ) / I ( ~ < ~ , ~ ( L L ~ }  
right- hand square. The left-hand vertical maps A* on n-xu -equivariant 

homology are  easily computed by use of Lemma 2.4. The map (1 X A)* i s  

(J = J1 is allowed here). Clearly S (or S' i f  J = Jl) i s  the disjoint 
J 1 explicitly computed in [A, Proposition 9.11. Fo r  x e H X, define classes 

union of the sets S , and each S i s  closed under the action of n-xu. 
q 

J, q J, q 

By Proposition 2.2, we now have the following three n-xu-equivariantly f (x) = (-i)r'sv(q)e 
X I & ,  S 2r(p-I)@ e(2S-q)(p-i)-~ 8 xp 

homotopy commutative diagrams: 

PJ(P)XC (P)xxp- W ( P ) ~ ( C ( P ) ~ X ~ ) ~  t 
and gr,e , s(x) = (-I) v(q)e2r@ e2s-q(p-l)-E @xp if r+s= t (p -1 )  

A 

in H* (7; H*(V ; (H*x)')). Then define 

p 3 (1x1)~ > (B (PIX &(P)XX Y 

- "r S -3, 

-r ,E,  s(x) = 
1 5 (S1)*(i X A)*fr,E, [Q,' (4 = 5 (Si)*(iXA)*fr, ,(x)l9 

a r , E ,  , s ( 4  = - 5 (Sl,n)*(l X A)*gr,E, s ( ~ )  3 and 

- r , E  
Q, = % (SJ,J*(l X A)*fr,&, (4 . 

- 
We claim that, for p > 2 and y = e @ ej@xp, 5 (So)*(l XA)*(y) = 0 and 

2i - 
5 (S ) (1 X A ) * ( ~ )  = 0 unless y is a multiple of some f (x) and J,q * T,E, S 
d 

5 (S ) (y) = 0 unless y i s  a multiple of some g (x). We also claim 
l , n *  r,E, s 

that the q'" '(x) a re  indeed well-defined, in the sense that the same 

operations are  obtained as J and q vary, and that formulas (iii), (iv), and 

(v) hold. Formulas (i) and (ii) will follow by use of Lemma 2.3 and chases 

4 

of the three diagrams above. Thus i t  remains to evaluate the maps 5 (S ) 0 *' - 
P (Xiere n(s 3 = p - p2 since n(S ) = p -and n(S ) = p(p-1); compare 5 @I,  d+.  and Z(S . In each case; we shall rely on Lemma 3.1; we 

0 1 J, s)* 
shall ignore those classes of H*(b (p) x=( &(p) x ~ x ~ ) ~ )  which are  not in the 

pp = ( j  . . . , j ) . )  In each case, the left-hand square i s  required in 
J e U image of H*(h (p) X ~ ( C  (p) X,X)) under ( I X A ) * ( ~ X  IxA)* since these 

or'der to obtain explicit formulas since we only have n-xu-equivariance in the 
classes a re  clearly irrelevant to our formulas. First ,  consider So; since 



cr acts  tr ivially on l(JO) = (1, . . . , i), the homomorphism L ( S ~ ) :  axv 
-+ I: 

P 
determined by the action of m v  on S i s  just the composite of the projec- 

0 

tion m v  + v and the inclusion of v in I: Therefore 
P' 

X(S )(iXA): h (p )  X (p) * c (p )  i s  nxv-equivariantly homotopic to the pro- 
0 

jection on the second factor. By Lemma 3.1, we conclude that the following 

diagram is a x v  -equivariantly homotopy commutative: 
-, 

Formula  (iii) follows by a chase of the resulting diagram on nxv-equivariant 

homology, start ing with the element e 
~ r ( p - i ) @  e 2 s ( p - i ) - ~  C ~ X  

(or e @ e @ x  if p = 2) and applying [A, Proposition 9. i] to evaluate maps r s 

( i  XA)*. When p > 2, the vanishing of 6 (s0)*(1 x A)* on c las ses  

eZi@ e j  @ xP which a r e  not multiples of some f (x) follows f rom the 
l r E  9 S 

4 

I: X I: -equivariance of a l l  maps  .other than fj (so) i n  the diagram. Next, 
P P 

consider S 1 ( n ( p-i;  L (Sf ,n): a X v + I: i s  the composite 
i ,nY P 

XnX 1 
a X  V > vXv $ Z V C I :  , 

P 

i 1x1 
where x (u ) = T and $ i s  the multiplication of v. Therefore 

n 

L(SiZn)(i X A): 6 (p) X c(p)  + e (p) i s  nxv-equivariantly homotopic to the 

composite 
2 x i  A 

&(el x 6 ( e )  ' ~ I P )  x C(P) --L- &(PI, 

: A  A 
where x and $ a r e  any x and $ equivariant maps.  By Lemma 3 .  i ,  

n n 

we conclude that the following diagram is a X  v-equivariantly homotopy 

commutative; 

Formula  (iv) and our vanishing claim when p > 2 follow by chases of the result-  

ing diagram on s Xv -equivariant homology. When p > 2, the key facts a r e  

A i 
that ~ ~ * ( e ~ ~ - ~  = n e 2i-E fo r  i s n s p - 1  (anda l l  i L 0 ,  F = O o r i )  b y t h e  

proof of [A, Lemma 1.41, and that 

since H*v is the tensor  product r ( e  ) @ ~ ( e ~ ) ,  with e2i = y. (e ) and 
2 1 2  

A 

e2i+i = eZiei; when p =  2, Xi* = 1 and $*(ei@ ej) = (i, j)eiSj Finally, 

): a X v + Z: i s  determined by the action of consider any S ' ; L (S J, 
3, q P 

a X v on S C S(p; p). If we.could identify S with {(j, k)) via 
J, q J, q 

~ T ~ $ ~ ( J ) I ( J )  + (j, k), then L(S J, q) would coincide with the standard com- 

posite inclusion 
T x v  c ~JJ 'cI : ,  

P 

(see [A, p. 172-1731). Actually, the given ordering of S a s  a subset of 
J, q 

S(p; p) may differ f rom the lexicographic ordering of {(j, k) 1 ,  hence L (S J,q) 
may differ f rom the specified composite by an inner automorphism, given by 
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a say, of 'C . It follows that ) (1 x A): fl (p) x (p) -, t: (p2) is Now formula (v) and our  vanishing claim follow by simple diagram chases.  The 
J, q P q 

-IT XV-equivariantly homotopic to the composite proof of the theorem is complete. 

A 
h 

i X A  
a Remark 3.4. In [38,3.14], Tsuchiya stated without proof an explicit, ra ther  

h(P) x c (PI = c (PI x $(PI - r 
than implicit, formula f o r  the evaluation of $2 Q'X when p = 2. The formula 

where y i s  the operad s t ructure  map, x = x -r -+ v is the isomorphism 
appears to be incorrect ,  and Tsuchiya's unpublished proof contains an e r r o r  

i i~ A 
XU = T , x i s  any X-equivariant map, and a i s  right action by a - . 

J, q J ~q stemming f rom a subtle difficulty with indices of summation. 

By Lemma 3.1, we conclude that the following diagram i s  71- X v -equivariantly While the full strength of the theorem i s  necessary  (and, with the 

com'mutative: -r S 
mixed Cartan formula, sufficient) to determine the Q on H*Q(X ) fo r  a 

2 " 
Here,  o n t h e b o t t o m r i g h t ,  w e m a y p a s s t o  C ( p  ) X z  X ,  where a X i  

J*q 
p2 

is the identity, since e 2(1 XA) i s  'C 2-equivalent. To evaluate the composite 
P P 

observe that, by the definition of an action of an  operad on a space (see [G, 

Lemma 1.41) and by a t r iv ia l  diagram chase, this composite coincides with 

-r 
general E space X, our resul ts  greatly overdetermine the operations Q 

a3 

- r  & s 
on H*QS': a l l  that was absolutely necessary  was a knowledge of Q p Q [i]. 

The Nishida relations, Theorem I. I. 1(9), can be used to derive simpler 

expressions for  these  operations. 

Corol lary3.5 .  Let  p = 2  andf ix  r > s L O .  Then 

-rSk s-k 
Proof. We have (k, s-2k)Q Q [i] = (r ,  s-j)Q'[i]r ~ ~ ' ~ - j [ i ]  

k j 
- r  s 

since ~ ~ ' ~ [ i ]  = QS[i], Qoy [I] = 0 if r > 0, and 5;' '[i] = (r, s)QrtS[i] .  
0 

By induction on s ,  it follows that if r 2 s 2 0, then 

where the constants a satisfy the formulas 
r s j  

s - j  

(2) (k, s-2k)a rSk, s-k, j = ( r , s - j )  , O ( j ( s  . 
k= 0 

the composite -r 0 
Visibly Q Q [ i ] = [ Z ] * ~ " [ i ] ,  hence a = I  fo r  r > O .  By induc t ionons ,  

i x e  r O O  
i X l X A  1 ><A 

&P)X tP(p)xx 
@P 

> ~ ( p ) x c ( p ) x x p  P ~ ~ ( ~ ) ~ ~ - > & ( ~ ) ~ ~ P 4 x .  there  i s  a unique solution of the equations (2) for  r > s which s t a r t s  with 



a = I .  By Ademts summation formula [3, Theorem 25.31, 
r 00 

s - j  
(k, s-2k)(r-s-1+2k, S-j-k) = (r ,  s-j) fqr 0 ( j  5 s and r > 0, 

k =  0 

hence a = ( r -s- I ,  s-j) is this solution. 
r s j  

Remark 3 . 6 .  By the mixed Cartan formula and Lemma 2.6, we have 

-rl S1 r2 s~ 
( Q ~ [ ] * [ - I ] )  = Q Q [I]* Q Q I-i]* ar3[i] *[-i] , 

when ~f X i s  a ring. The zr QS[1] a r e  evaluated by the corollary and; 
0 

when r = s,  by Lemma 1.9. 

F o r  the case  of odd pr imes,  we need a l emma on binomial coefficients. 

Lemma 3.7. The following identity holds for  a l l  a 2 1 and b 2 0: 

2 (-ilktb(k, b-pk)(b-k(p-i), a-1-btpk) 4 (a(p-l), b) mod p. 
k 2 0  

Proof.  Calculate in Z When a = i, both s ides  a r e  one i f  b I 0 (p) 
P' 

and a r e  ze ro  if b 0 (p). When b < p, the identity reads  

b 
(-1) (b, a-1-b) = (a(p-i), b), 

and this i s  true- since if a ZE as (p), I <_ a t  ( p a  then both sides a r e  zero  i f  

b 
I < a t ( b  and a r e  (-1) (b, a1-i-b) = (p-at, b) if b < a t  5 p. F o r  a > 1 and 

b 2 p, proceed by induction on a. By i terative use  of ( i-I ,  j) + (i, j-I) = (i, j), 

we see  that, for n 2 0, 

n 

(a(P-i), b) = (m, n-m)(a(p-l)-m, b-ntm).  
m =  0 

Set n = p, where (m, p-m) = 0 for  0 < m < p. By another use  of 

( i -  j) t ( i  I )  = ( i  j) and by the induction hypothesis, 

= ( ~ ( P - I ) , ~ - P )  - ( (a- l ) (p- l ) ,b-I )  + ((a-i)(p-l) ,b) 

= (-i)j'ii-b(j, b-p-pj)(b-p-j(p-l), a-1-b+p t pj) 
j>O 

+ ( - ~ ) ~ + ~ ( k ,  b-l-pk)(b-l-k(p-l), a - i - b t p k )  
k2O 

Here the l a s t  equality i s  obtained by changing the dummy variable in  the 

f i r s t  sum to k = j t i ,  so that this sum becomes 

I) (-1)~'~(k-1,  b-pk)(b-l-k(p-I), a - l - b t  pk) , 
k, 1 

and then adding the f i r s t  and second sums and adding the resul t  to the third 

sum. 

Corollary 3.8. Let  p > 2 and fix r 2 I ,  E = 0 o r  1, and s > & . Then 

- r  E k - r + k p  Qs-k[ll 2 $ Q ~ [ ~ I =  x ( - l )  (k ,s (p-1)-pk-E)Q 

= 
- *  ( p - i ) r ~ - l ( r i ,  s l -  El)- - .  (rp-l ,  sp- l -  E p - l )  

t 
€p-i p-I r € S  

~ E O Q ~ O [ I I * B  '9 [I]* . . .  * p  a * [ p ~ - 2 - i l ~  P [ ~ ~ p  ~ [ i ]  

summed over all t r ip les  (0, E s ) and (m, En, sn), 1 C n i p, with 
0' n 

rn + sn = t (p-i)  for  some tn and with termwise sum n 

P-1 
(0, E0, s ~ ( P - ~ ) )  + (rn, En* sn) + (rp(p-1)> s ~ ( P - ~ ) )  = ( ~ ( P - I ) ,  € 2  ~ ( P - I ) ) .  

n =  i 

Moreover, modulo l inear combinations of elements decomposable a s  * pro- 

ducts between positive degree elements of H*X, 



Proof.  The f i r s t  statement i s  a direct  consequence of the theorem 

and the Nishida relations. F o r  the second statement, note that 

n n 
[p - i]x = -x* [[p - l)i] modulo *-decomposables if x e H*Xi, n > 0, and 

deg x > 0. Therefore inspection of our formulas gives 

E E r f s  2 p Qs[i] r -(r(p-I), s(p-1) - f  ) p  Q [ i ]  *[pP- p] - Qr[i]pEQS[i]*[pP- p2]. 

In view of Proposition 1.6, i t  follows by induction on s that 

where the constants a satisfy the formula 
r e  s 

S 
k 

('I (k, s ( ~ - i )  - P ~ - ~ ) ~ ~ + ~ , ~ ,  s-k = ( r ( p - i ) , s ( p - I ) - € ) .  
k =  0 

E 
We claim that a = (-1) (s(p-1) - E, r-s(p-1) +& - 1). Visibly r e  s 

hence a = 1. Jus t  as visibly, , 
r O O  

Nr 1 
Q pQ [i] = -(r(p-i),p-2)pQrfi[i]*[pp-p] - ~ ~ p Q ~ [ i ] * [ p ~ - p ~ ] ,  

hence a = (r(p-i) ,  p-2). Calculating i n  Z we see  that 
ri  i P' 

1 i f r ~ O  (p) 

b (p - I ) ,  p-2) = -1 if r = -i (p) , 

0 otherwise 

which i s  in  agreement with the claimed value -(p-2, r-p+i). By induction 

on s ,  there  i s  a unique solution for  the a which agrees  with the known 
r& s 

values fo r  a and a 
r 00 r i i '  

By the lemma, with a = r and b = s(p-1) - 6 , 

our claimed values for  the a do give this solution. 
r €s 

Remark 3 . 9 .  The mixed Car tan formula and the corollary imply that, when 

n X i s  a ring, 
0 .  

modulo elements decomposable under the 5 product. The point i s  that, in 

the mixed Cartan formula, the t e r m  involving 

5' ( P ~ Q ~ [ ~ ] @  [I-p]) = ~ ~ ( p ~ ~ ~ [ i ] ( [ i - p ] ) ~ - ~ )  
P- i 

r e s  2 
gives r i s e  to a summand Q p Q [i] * [i -p ] which cancels with the negative 

- r  E s 
of the same  summand which a r i s e s  f rom Q p Q [i]. (The t e r m s  which in- 

-r  E s 
volve the Q.(p Q [I]@[i-p]) fo r  l ( i <  p-1 are*decomposable by 

Proposition 6. 5 (i) below. ) 



t + 
$ 4 .  The homology of C(X ) and Q(X ) 

Recall that we have assumed given a fixed pai r  of E operads 
a3 

and h such that ,& acts  on . Let  X be  a ,fj -space, with basepoint 1, 

and le t  X' be the union of X and a disjoint basepoint 0. Clear ly  X' i s  

then a h o - s p a c e  (Definition 1.3) with X a s  a sub ?L-space. As pointed 

out in  [R,VI 921, c(x*) i s  the f r e e  (c ,  h )-space generated by the & 0 - 
t t 0 .  

space X . An obvious example i s  X = (11, when C(X ) = CS 1s the dis-  

joint union 1 K(Z 1). This example generalizes to X = G, a d iscre te  
j 2 0  j' 

t 
Abelian group, when C(X ) = U K ( z . ~ G ,  1) by I. 5.7. Similarly,  if k 

J 2 0  J 

maps to the l inear  i sometr ies  operad (as can always be ar ranged [R,IV 

t 
1.10]), then Q(xt) i s  the zeroth space of the f r e e  h -spectrum Q (X ) 

a3 

[R, IV. 1.81. The example of greatest  interest  i s  QS', but the  Kahn-Priddy 

theorem [ l o ,  111 and i t s  analog due to Segal [30]make i t  c l ea r  that Q(RP"') 

and Q ( c P ~ ~ )  a r e  also of considerable interest .  

Define an allowable AR-Hopf bialgebra to be an allowable AR-Hopf 

"' S 
algebra under two R-algebra s t ructures  (*, as) and (#, Q ) such that the 

formulas of Proposition 1.5 (i), (iii), (iv), Proposition 1. 6, Lemma 2. 6(i), and 

the mixed Cartan formula and mixed Adem relations a r e  satisfied. Such an  

object with (additive) conjugation x i s  a lso  required to satisfy Proposit ion 

1. 5(ii) (namely ~ ( x )  = [-l] 8 x), and the formulas of Lemmas 1.  9, 2.6(ii) and 

(iii), and 2.7 then follow. 

Let  K be an  allowable AR-Hopf algebra with product #, unit [I], 

andoperations zS. Construct WE(K63 Z [o]) and GWE(K@ Z [O]) by 
P P 

I92  f rom the component A-coalgebra K 63 Z [0] with unit q (1) = [o]; the 
P 

constructed R-algebra structure (*, as) i s  thought of a s  additive. The 

formulas cited above determine a unique extension of the product # and 

-s 
operations Q f r o m  K to a l l  of WE(K 63 Z [o]) and GWE(K63 Z [o]). 

P P 

Tedious formal  verificat'ions (omitted since they a r e  automatic when K 

can  be  realized topologically) demonstrate that  WE(K 8 Z [O]) is a well- 
P 

defined allowable AR-Hopf bialgebra and that GWE(K 8 Z [o]) is a well- 
P 

defined allowable AR-Hopf bialgebra with conjugation. Moreover, these  a r e  

the f r e e  such s t ructures  generated by K. 

~ e t u r d i n ~  to our  h - s p a c e  X, we s e e  that f reeness  gives molphisms 

- 
q* of allowable AR-Hopf bialgebras and ';i* of allowable AR-Hopf bialge- 

b r a s  with conjugation such that  the following diagrams a r e  commutative: 

H*X - WE(H*X CB Z [O]) and H*X > GWE(H*X@ z [o]) 
P P 

The following pair  of theorems a r e  immediate consequences of I. 4 . 1  and 

I. 4 .2 .  (In the  second, we as sume  that .& maps to . ) 

Theorem 4.1. F o r  eve ry  ?CJ -space x,?*: WE(H*X 63 Z [o]) + H*c(x') 
P 

is an isomorphism of AR-Hopf bialgebras.  

Theorem 4 .2 .  F o r  every  -space X, q*: GWE(H*X@Z [o]) -c H*Q(x') 
P 

is an  isomorphism of AR-Hopf bialgebras with conjugation. 

These resul ts  a r e  simply conceptual reformulations of the observations 

t 
that Proposit ions 1. 5 and 1.6 completely determine 8 on H*C(X ) and 

t 
H* Q(X ) f r o m  # on H*X and that the mixed Car tan  formula and mixed Adem 

- s t 
relations completely determine the Q on H*c(x') and H* Q (X ) f r o m  

the zs on H*X. In  o ther  words, if we a r e  given a bas is  for  H*X and if we 

-k t 
give H*C(X ) .and H*Q(X ) the  evident derived bases  of *-monomials in 
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I 
degree zero elements and operations Q x on the given basis elements 

x E H*X, then, in principle, for any basis elements y and z, our formulas 

-S 
determine y# z and the Q y as  linear combinations in the specified basis. 

There a re  two obvious difficulties. The formulas for the computation 

S 
of y # z and the Q y are  appallingly complicated, and the result they give 

+ 
i s  not a global description of H* Q(X ) as an R-algebra under # and 

the Gs. In practice, one wants to determine the homology of the component 

Q,(x+) of the basepoint of X as an R-algebra, with minimal reference to * 
and the as. We shall only study this problem for also = SF, but it will be 

clear that the methods generalize. 

In view of these remarks, the term AR-Hopf bialgebra should be 

regarded merely as a quick way of referring to the sort of algebraic 

structurepossessedbythehomologyof E ring spaces. Inthe absence 
0 

of an illuminating description of the free objects, the concept i s  of limited 

practical value. (The term Hopf ring has been used by other authors; this 

would be reasonable only if one were willing to rename Hopf algebras 

Hopf groups. ) 

3 5. The homology of SF, F/O, and BSF 

The results of 3 1 (or of 131) completely determine H*SF as  an 

algebra. In this section, which is independent of $ 3  and $4, we shall 

analyze the sequence of Hopf algebras obtained by passage to mod p 

homology from the sequence of spaces 

Here j: SO * SF is  the natural inclusion, Bj i s  its classifying map, and T 

and q are  the natural maps obtained by letting F/O be the fibre of Fj. As 

explained in [R, I], these are  all maps of x-spaces,  where i s  the linear 

isometrics operad, and thus of infinite loop spaces. When p = 2, a variant 

of this exposition has been presented in [5,98]. We end with a detailed proof 

of the evaluation of the suspensions of the Stiefel-Whitney and, if p > 2, Wu 

N 

classes on HxSF. 

Recall Definition I. 2.1. F o r  any admissible sequence with d(1) > 0, 

define 
x I = d [ i ] * [ i - p l ( I ) ~ ~  H*SF. 

In particular, x = QS[l J * [ l  - for s 2 1. 

For  a graded set S, let AS,PS, and ES denote the free commutative, 

polynomial, and exterior algebras over Z generated by S. If p = 2, 
p .  

AS = PS. If p > 2 ,  AS = ES-@ PS' where S- and S' a re  the odd and even 

degree parts of S. 

The following theorem is  due to Milgram [22] (except that (ii) and the 

algebra structure in (iii) a re  addenda due, respectively, to myself and 

Mads en [ 1 51). 

Theorem 5.1. The following conclusions hold in mod 2 homology. 
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(i) H*SF = E {X ) @ AX a s  an algebra under # , where 

X = {xI I P(1) > 2 and e(1) > 0 o r  P(1) = 2 and e(1) > 0). 

(ii) I m j * = ~ { x ~ )  and H * F / o ~ H * S F / / ~ * Z A X .  

(iii) H+BSF = H*BSO@ E {u x ) @ ABX a s  a Hopf algebra, wher e * (3, s )  

BX = {u x ] P (I) > 2 and e(1) > 1 o r  P(1) = 2 and e(1)) 1) . * I 

(iv) H*BF = H*BO@E{u x ) @ABX a s  a Hopf algebra. " (s,  s )  

P a r t  (i) of the following theorem i s  due to Tsuchiya [ 361 and myself, 

independently, while (ii) is due to me  and the f i r s t  co r rec t  line of argument 

fo r  (iii) is due to Tsuchiya. Recall  f rom [l, p. 911 that, when localized a t  an 

1 
odd prime p, BO spli ts  a s  W X W a s  an infinite loop space,  where the non- 

zero  homotopy groups of W a r e  u W = Z  andwhere  H*W i s a  
2i(p-1) (PI 

polynomial algebra on generators of degree 2i(p-l), i L 1. 

Theorem 5.2. The following conclusions hold in  mod p homology, 

p >  2. 

(i) H*SF = E{f3xs) @ P { x  ) @ AX has  an algebra under #, where 

x = {xI J 2 2  and e(I) + b ( ~ )  > 0) . 

(ii) Im j* = E {bs) , where b i s  a primitive element of degree 

2s(p-1) - 1 to be specified below, and 

1 
H*F/o H*sF//~*@H*Bso\\ (Bj)* Z H x s )  @AX @H,W . 

(iii) H*BSF = H*BF = H*W @ E {u*xs) @ ABX a s  a Hopf algebra, where 

B X = { U * X ~ I P ( I ) >  2 a n d e ( I )  t b ( I ) > l  o r  P ( I ) =  2ande(1) tb(1)21) .  

, Of course,  the elements u*y e H*BSF a r e  primitive. The map j* 

will be  computed in Lemmas 5. 8,5. 11, and 5. 12, and the maps 
T * ,  Q, 

and (Bj)* a r e  a s  one would expect f rom the statements of the theorems. It 

i s  instructive to compare these results  with those obtained for the * pro- 

0 
duct on H*QS in  I§  4. Recall that H*SF = AXO a s  an algebra under 5 ,  

where 

Xo = {x,/ P(1))l and e(1) tb (1 )  > 0 )  , 

and that 

H,QS' = A { ( x 1 * [ - 1 )  1 ( I )  > 1 and e(1) t b(1) > I ) .  

The following remarks  show how Bj dictates the difference between 

1 
H*BSF and H*QS . 

Remarks 5. 3. Let p = 2. Here X is obtained f rom Xo by deleting the 

elements x and adjoining thei r  squares,  x under the 5 product. 
(s,s) '  

Thus the appearance of the generators x in H*SF is forced by the 
(s*s) 

relations x2  = 0, which i n t u r n  a r e  forced by the fact that H*SO i s  an 

exterior algebra. Again, while 

2 
u*(x(s+l , 5) *[-11) = u*(xs *[-Ill 

in H*s', the squares  of the elements u*xs in H*BSF l i e  in  H*BSO and 

the elements u x a r e  exceptional generators.  This behavior may * (stl ,  s )  

propagate. If, a s  could in  principle be checked by use of the mixed Adem 

-2s +2i+lx 
relations and the lemmas of the next section, Q is decom- 

(s ti, s )  
i i: 

posable in  H*Sl?, then, fo r  all i )  0, u*x i s  an element of H*B SF 
( s t i ,  s) 

the suspension of which i s  an element of square zero  in H*B~"SF. The 

i 
problem of calculating H*B SF  fo r  i 2 2 depends on the evaluation of 

differentials on divided polynomial algebras,  which a r i s e  a s  torsion products 

2 
of exterior algebras, in  the E - t e rms  of the relevant Eilenberg-Moore 

spectral  sequences. 



Remarks 5. 4. Let p > 2. Here X is obtained f rom X by deleting the 0 
E 

elements f3 x = x and the two Pontryagin algebra s t ructures  on H*SF 
s (E , s)' 

1 
a r e  abstractly isomorphic. In  H*QS , 

*[-Il l  = .*(PX~ * [-lllP and . * ( x ( ~ , , ~  -,,I ,,) *[-I]), = 0. u*(x(o, ps-s, 1, s )  

In H*BSF, the pth powers of the elements r*(bs) l i e  in H*W and the ex- 

ceptional generators u x with l(1) = 2 and e(1) f b(1) = 1, namely those * 5 
i 

with I = (& , ps-s, 1, s) ,  appear. Calculation of H*B SF  f o r  i 2 2 i s  l e s s  

nea r  h e r e  than in the case  p = 2 because of the l e s s e r  precision i n  the 

resul ts  of the next section. 

The following remarks  m a y  help clarify the s t ructure  of H*BSF. 

Remarks  5. 5. F o r  n l  2, l e t  Xn = {xI l(1) = n ) C X. Obviously 

AX = @ AX a s  an algebra. When p = 2, AX2 is a sub Hopf algebra 
1112 

of AX. When p > 2 o r  when p = 2 and n ) 3, AXn i s  not a sub Hopf 

algebra of H*SF because the coproduct on x can have summands x @x 
I J K 

with e(K) = b ( ~ )  = 0; x is then a pth power in the 2 product and therefore,  
K 

by Proposition 6. 4 below, i n  the # product. (For this reason, [5,8. 12 and 

8. 16 ] a r e  incorrect  a s  stated. ) Similarly, we can compute the Steenrod 

operations on elements of X, modulo elements which a r e  pth powers in  

both products, by use  of the Nishida and Adem relations fo r  the owra t ions  

I 
Q [I] (compare I. 3. 8 and I. 3. 9). It follows that these relations completely 

determine the Steenrod operations in H*BSF. Moreover, if 

B% = { u*x1 1 e(1) = n )  C BX , 

then, a s  a Hopf algebra over the Steenrod algebra, 

H*BSF = H*BSO@ (E{ x 1 ~ I A B ~ X ) ~  @ ABH ii p = 2 * (s,  s )  n 1 3  

and 

the point being that, when p = 2, E{ u x @ AB2X and each ABnX * (s, s )  

with n 2  3, o r ,  when p > 2, each AB X with n 2 2 i s  a sub A-Hopf 
n 

algebra of H*BSF. 

,.2 

To begin the proofs, we define a weight function w o n H*F by 

and, if x # O  and y # 0 ,  

w(x*y) = wx t w y  and w(x+ y) = min(wx,wy) 

It i s  easy to verify that w is well-defined Clearly wx i s  divisible by p 

e 
fo r  a l l  x, and we define a decreasing filtration on H*F by 

N 

FiH*F = { x I wx>-pi 1 for  i 2 0. 

0 ,., 
Define E.. H*F = . Since the product * is homogeneous 

1J 

0 with respect  to w, E H*? may be identified with H*? a s  an  algebra 

0 -, under *. Clearly 1 and x a r e  filtration preserving and reduce in E H*F 

to 

1 Q ~ I  = Q ~ [ ~ I @ [ ~ ( ~ ) ]  I [ p e ( l ) ] ~  al[l] 
and 

I I xa [I ]  = - Q  [l] * [-zpe(I)] . 

0 Lemma 5 .6 .  The product # is filtration preserving. In E H*F 

(x * [i])(Y * [j]) = jrisx * * [(kti)( l+ j) - ( k t  1 )] 

11 Ir . 0 91 Js 0 - 
f o r  X =  Q [ I ]*  . . .  * Q  [ l ] i  E H*?~ and y =  Q [I ]*  . . .  * Q  [ I l r E  H*Fe . 
where d(In) > 0, d(Jn) > 0, and, if p = 2, either 1(In)2 2 o r  l(Jn) 1 2 fo r  a l l  n. 

Proof. ' B ~  Proposition 1.6 , w(Q1[l] QJ[l]) = p'(I) '('), which i s  



greater  than t unless p = 2 and I(I) = l ( J )  = 1. By Proposition 

1. 5 and the fo rm of + , we easily deduce that 

(X * [il)(y * [jl) = x[jl * y[iI * [ij f k l  I 

O h  ,.s 

i n  E H*F. In H*F, we have 

(x, *x2)[j] = xl[j] * x [j] and, for  j > 0, 
2 

1(1 ,(j) 
~ I [ l ] [ j ]  = Q'[~I([I.]*. . . *[I]) = 2 Q [I]*. . . * Q [I] 

and &[11[-j1 = x ( Q ' [ ~ I [ ~ I )  . 

0 
It follows that, in E H*F, ~ ' [ l ] [ ~ ]  = d[ll *[(j-l)p'(l)] and therefore 

~ [ j ]  = jrx* [(j-l)k] fo r  any integer j. 

With i = 1-k and j = 1-1 ,  the lemma gives most  of the multiplication 

0 0 - 
table for # on E H*SF. If p > 2, and # coincide on E H*F, and 

Theorem 5.2(i) follows. If p = 2, le t  A(X; 5 )  denote the subalgebra of 

H*SF under 5 generated by the se t  X. Propositions 1.5 and 1.6 imply 

that A (X; 5 )  i s  closed under # and contains the subalgebra of H*SF 

0 
generated under # by X. By the lemma, # and 5 coincide on E A(X; h). 

Therefore X generates a f r e e  commutative subalgebra of H*SF under # 

and this subalgebra coincides (as a subset of H*SF) with A(X; I). We know 

by Lemma 1. 9 that { x  } generates an exterior subalgebra under #. Visibly 

E{xs} and AX a r e  sub coalgebras of H*SF, and i t  follows easily that 

H*SF = E{x } @AX a s  a Hopf algebra. This proves Theorem 5. l ( i  ). 

In o rde r  to compute H*BSF a s  an algebra and to compute - r 
j*: H*SO * H*SF when p > 2, we need information about Q xI when p = 2 

and r = d(1) + 1 and when p > 2 and 2r  = d(1) 4- 1. Together with Lemma 

& 7, the following result  more  than suffices. 

Lemma 5. 7. Let  1 (I) = k 2 2 and le t  r 2 0 be  such that e(r ,  I) < k 
-r 

Then Q x . x modulo F H*SF . 
I ( r ,  1) k 

P f l  

i 
I- Proof. e( r ,  I) = r - d(1) i f  p = 2 and e(r ,  I) = 2r-d(1) if p > 2. By 

Proposition 1. 7, d[1] i s  a l inear  combination of monomials 

S1 ek Sk 
f3 Q [I] .  . p Q [ l ]  (where irrelevant Bocksteins a r e  to be suppressed 

when p = 2). The Cartan formula gives 

,r. & .  s .  
If 2ri 4 2si(p-1) - cia then Q 'p 'Q '[I] = 0. Thus 2r. 2 Zs.(p-1) - E . for 

a l l  i i n  each non-zero summand and, since 

r-d(1) = (ri- si) < k if p = 2 and 2r-d(1) = x ( 2 r i -  2si(p-1) f Ei) 4 k if  p > 2, 

I 
.,ri S1 

2r.=Zs.(p-1) and € = O  f o r a t l e a s t o n e i n d e x  i. Here Q Q [l] i s t h e  
1 1  i 

# dh power of QS[l], and i t  follows that each non-zero summand has  weight' 

k-1 p pfk-1 
a t  leas t  p . p = p . Now the mixed Car tan formula gives 

N Q r (x ) . x + "d~'[l] * [l -ppk] mod F H*SF , I ( ~ 3  1) pk+l 

and the conclusion follows. 

We f i r s t  complete the proof of Theorem 5. 1 and then that of 

Theorem 5. 2. 

Let  p = 2. Then H*SO = ~ { a ~  1 s 2 1) where a i s  the image 

00 CO 
of the non-zero element of H*RP under the standard map R P  + SO. 

S 

Clearly + ( a  ] =  ai@as-i, where a = 1. Define Stiefel-Whitney 
i= 0 

0 

* * 
=lasses  w = Q - ' S ~ ~ Q ( ~ )  in both H BO and H BF, where Q i s  the stable 

* 
Thom isomorphism. Since ( ~ j )  (ws) = w , o * ( ~ j ) *  = j*b, and 



a r e  certainly epimorphisms. 

Lemma 5. 8. Let p = 2. Then j*(as) = x for  all s 2 1. 

Proof. Clearly j*(al) = xl. Assume j*(a.) = x. fo r  i < s. Then 
1 1  

j*(as) + xs is a primitive element of H*SF whose square.is  zero. Since 

H*SF = E{xt) @AX a s  a Hopf algebra, i t s  primitive elements split a s  

PE{xt) @ PAX. Therefore j*(as) + x must  be in E {x ) . Since j* is a t 

monomorphism, j*(as) + xS must be decomposable. Since the natural  

homomorphism P E  {x ) -c QE {xt) is a monomorphism, it follows that 
t 

j*(as) + xs = 0. 

Remark 5. 9. The l emma asse r t s  that the two maps 

e2  nprn -. so - SF and R P ~  = %,(2)/x2 --+ a2s0 S SF 

induce the same  homomorphism on mod 2 homology, where c, i s  the 

infinite l i t t le cubes operad and 8 is given by the action map res t r ic ted  to 
2 

cm(2) X {I} X {I). R. Schultz and J. Tornehave have unpublished proofs 

that these two maps a r e  actually homotopic. 

Remark 5.10. Kochman [13, Theorem 56 ] has proven that, in  H*SO, 

QraS = (s-i. r-s-j-1)a i j k  a a ( i , j , k 2 0  and a. = 1). 
i+j+k= r+s  

In view of the l emma and the mixed Cartan formbla,  this formula implies 

and i s  implied by Lemma 1.9 and Corollary 3. 5 (compare Remark 3.6). The 

actual verification of either implication would entail a lengthy and unpleasant 

algebraic calculation. A proof of Kochman's formula will be given in  section 11. 

Proof of Theorem 5. 1. We have proven (i). F o r  (ii), Lemma 5. 8 

shows that Im j* = E {xs ) and H*SF i s  a f r e e  H*SO-module. Therefore 

2 HxSO 
the E - t e rm Tor  (Z2, H*SF) of the Eilenberg-Moore spectra l  sequence 

+. 
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converging to H*F/O (e. g. [8, § 31 o r  [2 l1l3 . l0]) reduces  to 

H*sF//~* 2 AX. F o r  (iii), consider the Eilenberg-Moore spectra l  sequence 

2 H*SF 
which converges f r o m  E SF = T o r  (Z 2 , Z2) to H*BSF and the  analogous 

spectra l  sequence { E ~ S O  ) . In view of (i) and (ii), 

The elements cry have homological degree 1, hence a r e  permanent cycles, 

N 

=d the homomorphism r: HiSF - E~ SF induces the homology suspension 
1 ,i 

.., 2 r*: H.SF - H BSF (e. g. [a. 3. 121). E SO = r{cras) = E ~ S O  and i t  i f 1  
2 00 -1 -r 2 followsthat E S F = E  SF. If d e g y = r - 1 ,  r*Q y =  Q r * y =  ( u * ~ )  . I n p a r -  

t icular,  ( r  x ) 2  = 0 by Lemma 2. 7. Recall that if J = ( r ,  I), then * (sss) 

. e(J) = r - d(1). Thus e(J) = 1 implies r = d(1) + 1. By Lemma 5. 7, we may  

N r  a s  well replace ox 2 
( r ,  1) 

by crQ xI in our  description of E S F ,  and (iii) 

follows by a t r iv ia l  counting argument. In view of the obvious compatible 

splittings BO BO(1) X BSO and BF -- BO(1) X BSF, (iv) follows f rom (iii). 

In  o r d e r  to describe the image of H*SO in H*SF when p > 2, we 

shall  have to  replace x and ws by the elements ys and Bys specified 

in  the following result. 

Lemma 5. 11. Let p > 2 and le t  r = r(p) be  a power of a prime q 

such that r reduces mod p2 to a generator of the group of units of Z 

E 
P2 ' 

There exist unique elements p y H*SF such that 

(pEys)[rP] = pEGS[r] H*?? . 
pr 

E f3 ys i s  an element of the subalgebra of H*SF under the ;iC product generated 

E E 
by { p  xs}, and ,9 Xs - kpEYs i s  ;iC decomposable, where k = r -p (rp- r) .  

P 

Moreover, the subalgebra ~ { p y , )  @ P{ y ) of H*SF under the # product 

i s  a sub AR-Hopf algebra. 
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Proof By [R, VII. 5. 31, the localization of SF at p is the 1- 

component of an infinite loop space in which the component rp i s  invertible 

in vO. This implies the existence and uniqueness of the pEy and the 
s' 

second statement follows from Proposition 1. 5 and Lemma 2. 8. The proof 

of the splitting of SF as an infinite loop space at p in [R, VIIL 4. 11 gives 

that E{@~,} @ P{ ys) i s  precisely the image of H J6  in H*SF under a * P 

certain infinite loop map u6  : J 6  + SF, where J6 is an appropriate dis- 
P P P 

crate model for  the fibre of +r-l: BU + BU at p (see § 10 below), and the 

last statement follows. 

Let p > 2. Then H*SO = ~ { a ~  ] s 2 1 ) , where deg a = 4s-1. The 

a may be specified as the unique primitive elements such that 

<P , u*as> = (-l)Stl, where P is  the sth Pontryagin class reduced mod p. 

 h he sign is introduced in order to simplify constants below. ) Define Wu 

* * 
classes w = @-'ps@(1) in both H BO and H BF. There seems to be no 

generally accepted notation for these classes ; our choice emphasizes the 

1 
analogy with the Stiefel-Whitney classes mod 2. Let m = $p-1). Since 

* * * 
(Bj) ( w )  = w ( B )  = j r , and w is indecomposable (indeed, 

m t l  
w (-1) mP  modulo decomposable elements), j*(ams) i s  certainly a 

non-zero primitive element of H*SF. Moreover, since SO has no p-torsion, 

f-t p Q j*(as) = 0 for all s and t. 

Lemma 5. 12. Let p > 2 .  Then j*(as) = 0 i f  s 0 mod m and 

j*(ams) = (-1)'cbS, where 0 # c r Z and b is the unique primitive element 
P 

of E{pys) @P{ys) such that bs - Bys i s  decomposable. 

Proof. The Z space of odd degree primitive elements of H*SF 
P 

h?s a basis consisting of the b and of elements of the form pj: = xI t yI, 

where l(1) 2 2 and yI is a linear combination of (decomposable) 5 mono- 

mials all of whose positive degree * factors can be written in the form 

aJ[l] with l ( J )  = l(1). If d(1) = 2t-1, then, by Lemma 5. 7 and the mixed 

Cartan formula, 
- t  

p Q p  1 
1 "(l,t ,~) 

mod F H,SF . 
t 1 

a t  
On the other hand, /3Q b = 0 for all  s and t since p annihilates all odd 

degree elements of E {f3ys) @ P{ys) . Therefore scalar multiples of the bs 

- t  
a re  the only odd degree primitives annihilated by all operations /3Q . It 

follows that j*(as) = 0 if s & 0 mod m and that j*(ams) = c b s s a  

0 # cs r Z Let c = - c l  By the known values of the Steenrod operations 
P' 

on the P and by the Nishida relations and the previous lemma, 

i - (i, s(p-1) - pi - 1)a p*ams - and P % ~  = (-l)'(i, s(p-1.1- pi - ~ . ) b ~ - ~  
m(s -i) 

i 
Thus (-1) cs = c if (i, s(p-1) - pi-1) # 0. Since (i, ~ ( p - 1 )  - pi-1) # 0 for 

s- i  
k k 

all i >  0 implies s = p and since, if s = p , 

when k > 2 

and 

- - 2bs-l when k = 1, 

we see by induction on s that c = (-llSc for all s 2 1 . 

Remarks 5.13. In [20], I asserted the previous result with bs ieplaced by 

the unique primitive element b1 in E { / ~ X ~ )  @ p{xs) such that b1 - pxs 

is decomposable (and an argument for this was later published by Tsuchiya 

[38]). This assertion would be true i f  and only if b were kbl and this 
s J  

would hold if f3 Q s(p'l)b: were zero. In principle, this could be checked 

by direct calculation from the results of the next section, but the details a re  

forbidding. Looked at another way, the point is that By - kpxs i s  5 de- 

composable but'possibly not # decomposable. 



Remarks 5. 14. Kochman [13., p. 1051 has proven that, in H*SO, 

It follows that f irb = (s(p-1)-1, r-i(p-l))br,s, a s  could also be deduced 

f rom Remarks 3. 9. Indeed, by use of the cited remarks ,  Lemma 5.11, 

the mixed Cartan formula, and the filtration on H*SF, we easily deduce 

that 
-r  E s E E 
Q p y I -(-I)  (s(p-1)- E ,  r-s(p-1) +€- I )& yrts modulo .%F %F. 

Proof of Theorem 5. 2. Note f i r s t  that (i) remains  t rue  with E{FX } 

replaced by E{bJ.  F o r  (ii), observe that, i n  the Eilenberg-Moore spectra l  

sequence converging to H*F/O, 

E 2  = TorqS0 (Z , H*SF) = ~ * s F j / j  *@ r{r as  I s f 0 mod m )  , 
P 

where H*SF//~* S' P{xs} @AX. By [R, V!3 and § 41, the Adams conjecture 

yields a map of fibration sequences (localized a t  p) 

such that a and y a r e  equivalent to inclusions of direct  fac tors  with 
P P. 

common complementary factor C It follows that  E2 = E~ and that 
P' 

I 
y . maps H*W onto a complementary tensor product factor to H*sF//~*. 

P* 
6 6 

(warning : J " J but i t  i s  not known that a r-" a where a i s  a s  
P P' P P '  P 

in  Lemma 5.11 ; compare [R, p. 306 1. ) F o r  (iii), consider the Eilenberg- 

Moore spect ra l  sequences {E~SF} and { E ~ S O }  converging to H*BSF 

and H*BSO. 

'E~SF = I'{crbs}@ E{mS}@ E{ux1 IP(1) 2 2, e(1) t b(1) > 0, d(1) even} 

@ ~ { o x ~ ] P ( I ) )  2, e(1)tb(1) > 0, d(1) odd} . 

2 
Here .I'{ubs) i s  the image of E SO and consists of permanent cycles. 

Recall that if J = (&  , s ,  I), then b(J) = E and , e(J)  t b(J) = 2s-d(1). Thus 

e(J) + b(J) = 1 implies 2s = d(1) + 1. If P(1) ) 2 and 2s = d(1) + 1, then 

" S - s 
uQ x, survives to (T x and upQ xI survives to p ( r  x )' = 0. By * I * I 

e n s  
Lemma 5. 7,  we may a s  well replace ax by crp Q xI i n o u r  des- 

( € 3  s, 1) 
2 

cription of E SF. Then 

d ~ -  1 -"S 

~ ~ ~ ~ ( a ~ )  = -(up Q x I J  )y.(axI) for  j 1 0. 

This statement i s  just an application of the appropriate analog fo r  the 

Eilenberg-Moore spectra l  sequence of Kudo t ransgress ion fo r  the ~ e r r e  

spect ra l  sequence and follows f rom Kochman's resul t  [12] that -@asy i s  

the p-fold symmetr ic  Massey product < y>P if deg y = 2s-1 together with 

either a direct  calculation in the b a r  construction on the chains of SF o r  

quotation of [8, Theorem 5.6 1, which codifies the relationship between 

Massey products and differentials in the  Eilenberg-Moore spectra l  sequence. 

Clearly all generators of E'SF not i n  r { r b  } have homological degree l e s s  

than p and a r e  thus permanent cycles. Therefore E'SF = E ~ S F ,  and 

Theorem 5.2(iii) follows by a t r iv ia l  counting argument. 

* 
I t  remains to give the promised evaluation of < cr w x >  for x e H*SF. s '  

This depends os, the following folklore result ,  which i s  usually stated without 

proof. Since I find the folklore argument based on use of the Hopf construc- 

tion somewhat misleading and since the precise  unstable fo rm of the resul t  

* 
will be  needed in  the study of H BSF(2n) a t  odd pr imes (see IY), I will give 

a somewhat different argument (which was known to Milgram). 

Lemma 5. 15. Let A be  a connnected based CW-complex, l e t  

a: A + SF(=) be a based map, le t  u: X A -C BSF(n) be  the composite of 



Za and the adjoint of the standard equivalence l; :SF(n) nBSF(n), and let 

n n 
a,: Z"A + sn be a based map with adjoint A - no S homotopic to Q * [-11. 

Then the Thom complex of the spherical fibration classified by ?? i s  homotopy 

equivalent to the mapping cone of a 
0 ' 

Proof. BSF(n) classifies integrally oriented spherical fibrations 

with a canonical cross-section which i s  a fibrewise cofibration, and the 

Thom complex of such a fibration i s  defined to be the quotient of the total 

space by the base space (see [21, 5. 2 and 9. 21 and [R,III]). With notations 

for the two-sided bar construction as in [21, § 71, let v : D + ZA be the pull- 

back in the following diagram: 

Here z ( a ~  t) = ] [a(a)], (t, 1--t) I .  Via the correspondence 

x e  8 <4 (*, ] [  Ix, ( I ) ] )  e D 

and 
n 

(ah t, x) e CA X S +> ( a ~ t ,  ] [a(a)]x, (t, 1 -t)] ) E D , 

n 
D is homeomorphic to the quotient of the disjoint union of S and CA X sn 

(where CA = A X I/A X {0 ) X { * ) C, I) obtained by identifying 

. n n 
(*, x) E CA X sn with x E S and (afil, x) e CA X S with a(a)(x) E sn. 

n 
Moreover, v is specified by ~ ( x )  = * for xc: S and v ( a ~ t , x )  = ant. By 

the standard Dold-Thom argument (e. g. [G, 7. I]), v is a quasi-fibration. 

n 
The section of p i s  determined by the basepoint m E S and pulls back to 

the cofibration cr: ZA + D specified by u(an t)  = ( a ~ t ,  m). By comparison 

yith the diagram obtained by replacing p and v by fibrations with section 

[21, 5. 31, we conclude that the Thom complex of the fibration classified by 

- 
a is homotopy equivalent to the Thom complex Tv = D/ZA. Clearly Tv 

n 
can be viewed as obtained from S Cyl A K sn by identifying (a, 1) K x 

n 
to a(a)(x) E sn and (a, 0) D< x to xe S (where Cyl A = A X I/{ *) X I and 

CylA K sn = CylA X s n / c y l ~  X {m) ). Modulo neglect of the basepoint of 

n n 
A (a*[-11: A + no S not being basepoint preserving), Ca can be viewed 

0 
n n n n  ' 

as obtained from snU C(AA S ) by first using the pinch map S -t S v S 

n 
to collapse the base A A S of the 'cone to ( A , - , S ~ ) V ( A A S ~ )  and then id&ntifying 

n 
the point (a, x) of the first wedge summand to a(a)(x) E S and the point 

(a, x) of the second wedge summand to [-l]x e sn (where [-11: sn + sn is  

any fixed map of degree -1). The conclusion follows by an easy direct com- 

parison of these constructions. 

Remarks 5.16. For  a spherical fibration If,: E + X of the sort classified by 

-1 s * Y * 
BSF(n), define w = @ P Q(1) e HX, where @ : ~ x -  H  TI^, i s  the mod p 

* * 
Thom isomorphism. For  wS e H BSF(n), rr w e ?i*~F(n) i s  characterized 

* * 
by Zu ws = z*ws e H ZSF(n), :ZSF(n) + BSF(n). Thus, for the fibration 

c.' * If, over ZA classified by E = 13ao 5 , w e H ZA is  the suspension of 

* * -" * 
a u w E H A. In terms of the cofibration 

> sn L  TI^, j Zn+l Z ~ A  - A 

n 
given by the lemma, the Thom class CL(I~,) e H TIf, i s  the unique element such 

* N * 
that i p is the fundamental class in H ~ S ~  and, for x e H ZA, the Thom 

If, * n 
isomorphism @(x) = x u  p(If,) can equally well be specified as  @(x) = j Z x. 

In particular, 

* 
Since u*x = 0 if x E H*SF is  # decomposable, < rr ws, x >  = 0 

* unless x i s  indecomposable. Tsuchiya [36 , 6.31 showed that < u ws, xI> = 0 



if P (I) 2 2. By Corollary 1 .8 ,  this asser t ion i s  a consequence of the following 

technically simpler result ,  which i s  due to Brumfiel, Madsen, and Milgram 

[5,3. 51 and gives maximal unstable information. 

* E 
Lemma 5.17. < u p ws ,xEy> = 0 fo r  s 2 1, E = 0 o r  1, and all 

N 

x, y E H*SF(n). 

* * 
Proof. Since ir p = -pr , < pw , Z >  = + < W ,  pz>, and 

P(X 3i Y) = (M) 2 y rfr x (pY), the resul t  for  E = 1 will follow immediately 

f rom the resul t  for  E = 0. Let x = @*(a) fo r  @:A - SF(n) and y = p*(b) 

fo r  p: B -c SF(n), where A and B a r e  connected CW-complexes. Then 

n 
x 2 y  = y*(a@b) where y = 5 o(aXf3):A X B -SF(n).  Let a 0 : 8  A -sn, 

n n n Po: Z. B -+ S , and yo : B ~ ( A  X B) - S have adjoints homotopic to 

n n n 
a * [-11, f3 * [-11, and y *[-11. If p:S + snv sn .and f: S V S  -+ sn a r e  

n n 
the pinch and fold maps and if X = f 0 (a Z. -rlV POX p2), then standard 

0 0 

properties of cofibre sequences give dotted arrows such that the following 

diagram, whose rows a r e  cofibre sequences, i s  homotopy commutative: 

A 
N 

fig 

CL 

'TI 

fig 

a 



By Lemma 5.16, each of the displayed cofibres is a Thom complex. By the 
* 

previous remarks ,  we can use the i to read off relationships between the 

* 
various Thom classes  and can then use the j to read off relationships between 

thei r  Steenrod operations. We conclude that 

* n t l  * * * n t i  * * * * 
j z  y u s  ( a o w s @ i t i @ p u w s ) .  

. - 

* * * * * * * Thus y u w = a u wS @ 1 t 1 @ p u ws, and < u w , y*(a@ b)> = 0 
whenever 

a and b both have positive degree.  

1/ 6. The R-algebra structure of H*SF 

Theorems 5.1 and 5. 2 describe generators of H*SF in  t e r m s  of the 

0 
loop operations Q~ in  H*QS . F o r  the analysis of infinite loop maps in  

and out of SF and for the understanding of characterist ic c lasses  for  

spherical  fibrations in t e r m s  of the infinite loop s t ructure  of BF, i t  would 

be highly desirable to have a description of generators of H*SF pr imari ly  

in  t e rms  of the operations Zr. The following conjecture of mine was proven 

by Madsen [15 ] . 
- 

Theorem 6.1. When p = 2, H*SF = E { X ~ )  @AX a s  an algebra under #, 

where 

Both E{x~)  = H*SO and A% a r e  sub AR-Hopf algebras of H*SF. 

The analogous result  for  p > 2 would read as. follows 

Conjecture 6. 2. When p > 2, H*SF = ~ { p y ~ )  @p{ys} @A? a s  an  

algebra under #, where 

-. J P = { Q  y K I ~ ( ~ )  = 2 X ( J I K ) ~  X) 

E 
and y - x i s  an  appropriately chosen element of A{p y ). Both 

K K 

~ { f 3 ' ~ , )  = H*J: and A% a r e  sub AR-Hopf algebras of H*SF. 

The change of generators f rom xK to .yK, I(K) = 2, se rves  to ensure 

that A? i s  a sub AR-Hopf algebra of H*SF and will be specified in  

e 
section 10 below. Since we know that A{B y ) i s  closed under the opera- 

tions ?Sr, the conjecture will be t rue  as  a statement about R-algebra 

generators if and only if i t  i s  t rue  with the y replaced by the. x 
K K' 

Thus {xK]I(K) = 1 o r  P(K) = 2) certainly generates H*SF a s  an  

R-algebra whek p = 2 and i s  conjectured to do so  when p > 2. The opera- 



-r 
tions Q x with (r, K) inadmissible can be  shown to decompose many of 

K 

the x with K admissible and l ( K )  = 2. Madsen proved the following 
K 

theorem; since use of the mixed Adem relations would not appreciably 

simplify his argument, we re fe r  the reader  to [15] fo r  the proof. 

Theorem 6. 3. Let p = 2. Then the  following se t  i s  a bas is  for  the 

2. -module of R-algebra indecomposable elements of H*SF: 
2 

{x s ]  s,o)u {x n T 1  and s 20). 
2 (zSn + 2', zSn) 

-4 

Observe that X contains.precisely one element of this se t  in each 

degree 2 2 .  Even if Conjecture 6. 2 i s  correct ,  the  analog of the previous 

resul t  when p> 2 will have a considerably more  complicated statement and 

proof. Even when p = 2, determination of a defining s e t  of R-algebra 

relations in  t e r m s  of the displayed minimal se t  of generators would probably 

be prohibitively difficult. 

We shall  give a variant of Madsen1s proof of Theorem 6.1. The argument 

i s  based on analysis of the # decomposable elements of H*SF, and we shall  

c a r r y  out this analysis simultaneously for  a l l  primes.  In the process,  we 

shall  see  where the gap in Tsuchiya's proof of Conjecture 6. 2 occurs  and 

shall  make c lear  what remains to be done in o rde r  to prove that statement. 

The following three  propositions generalize results  of Madsen [15] to 

the case  of odd primes,  and much of this mater ia l  was stated without proof 

by Tsuchiya [38]. The key to these results  i s  our analysis of the dual of the 

Dyer-Lashof algebra in  I $3. 

.- 

P.roposition 6. 4. Let 6 and 6 denote the pth power operations on 

.., 
H*? in  the * and # products respectively a n d l e t  F denote the union of 

.V 

P* 

the components F . fo r  j E 2. Then. 
PJ 

.- 
(ii) If y E H*SF, 6 y E (1m 6 )  *[I]; that i s ,  any # pth power i n  H*SF i s  

also a - * pth power. 

r... 

(iii) If p > 2  a n d y  e H*SF o r  p = 2 and Y E  AX, 6(y*[-l])*[1]e I m c ;  

that i s ,  any * pth power in  H*SF (of an  element of AX if p = 2) - 
th  

1 i s  also a #  p power. 

I 
Proof.  We f i r s t  prove (i) when x = Q [I]. To this end, observe that - 

the evaluation map f: R + H*F, f ( r )  = r[l 1, i s  a monomorphism of coalgebras 

& 

with image closed under f (obviously) and (by Proposition 1.6).  We 

.,, 
may therefore regard 6 and f a s  morphisms of coalgebras defined on R. - 
We must  show that the image of 6 : R[k] + ~ [ p k ]  i s  contained in the image of 

* -* 
f : R[pk-1] + R[pk]. Dually, i t  suffices to show that Ker 6 C Ker 6 . 

* 
Now 6 and t* a r e  k o r p h i s m s  of algebras (which annihilate a l l  odd degree 

* 
elements if p > 2), and i t  i s  immediate f rom Theorem I. 3 -7 that 6 i s  

given on generators (of even degree if p > 2 \ by 

6 if' i < p k  
i,pk-1 

0 if i = p k  

and, if p> 2 , 

Since the degrees of 6 and the cr. a r e  not divisible by p, 
Pk, Pk 1, Pk, Pk 

T* also annihilates these elements, a s  required.  By the mixed Cartan 

formula (together with the facts that operations below the pth power a r e  

.- 
identically zero  and that I m  6 i s  a subalgebra of H*F under *), 



-" - ." 
6 (X * X  ) E Im 5 whenever 5 (xl) E Im 5 and 5 (x2) E Im 5 .  This proves (i), 

1 2  

and (ii) follows from (i) by the mixed Cartan formula applied to the calculation - 
of 5 (x* [l]), x = y * [-11. Par t  (iii) follows by dimensional considerations 

from (ii), part (i) of Theorems 5.1 and 5.2, and the fact that AX = A(X;;lc) 

when p = 2. 

Par t  of the usefulness of the proposition lies in the fact that many 

linear combinations that arise in the analysis of our basic formulas turn 

out to be in the image of 5 .  

-.. N 

Proposition 6 . 5. Let x, y E H*F, with y E H*Fp,* in (ii) and (iii). 

Then 

n 

(ii) C ( ~ ~ - ~ x ) ( G ~ y )  E Im 5 
i= 0 

n 

(iii) ( Q ~ - ~ X ) ( ~ ~ Y )  E lm 6 a 

i= 0 

Proof. We prove (iii); (i) and (ii) are  similar but simpler. By 

Proposition 1. 6, Definition 3 .  2, the Nishida relations, and the change of 

dummy variables m = i- j, we find that 

n n i t  -i+k-j +l+,iy) 
= ( - 1  - 1 ,  ( i k ) ( - j  p )  (xQ 

i = 0 j,k, P 

k 
F ix '  k,P, and m. Observe that P* y = 0 if 2kp > deg y (or 2k > deg y if p = 2). 

+Pfm P k ' It follows easily that Q ~ - ~ ( X $  P* P* y) = 0 unless mtpl  2 0 and 

k(p-1) t pm 5 n. We may therefore let i run over m+pl ( i ( k(p-l)+pm +p( 

in the last sum. ~f we set q = i-m-pP , the constant becomes 

which i s  zero unless k t m  = 0. We therefore have 

-1 e 
Fo r  any z, an easy excess argument gives Q P* z = 0 unless 2Pp = deg z 

- P I  P 
(or 21 = deg z i f  p = 2), when Q P* z = 5 P*z. By (i) of the previous 

-1 e k 
proposition, each Q P*P* y i s  in Im 5 .  Since Im 5 i s  an ideal under # 

(by Proposition 1. 5) and i s  closed under the Q' (by the Cartan formula), 

the result follows. 

We can now show that a variety of combinations of the operations *,#, 
,., 

QS, and ZS in H*F lead to elements which become decomposable under 

# when translated to H*SF. It will often be convenient to write x*[?] 

U 

for translates of x E H*F; in such expressions, the unspecified number in- 

side square brackets will always be uniquely determined by the context. 

Proposition 6. 6. Let I. ' denote the set of positive degree elements of 
J 

H*?. andlet I = Ipj and I =  G I . .  Define D.C I by 
J P* J J J  

D = {XI X E  I and x * [ l - j ] ~ I ~ # ~ ~ )  
j j 

and let D = D Then D satisfies the following properties. 
j ' 

(i) X * ~ Y E  D if  X E  I ., y e  I., and j i seveni f  p =  2. 
Pl J 

lk 
(ii) xl* . . . *x t (-l)'(r-l)! x 1 . ax r * [?] E D if % = Q [I] E I for 1 5  k 5 r. 



Ik JP 
(iii) If \ =  Q [ l ] e I  f o r l ( k 5 r  and y = Q [ J ] € I  fo r  l ( e S s ,  then e 

(y*. . . *xr)(yl+. . . *ys)eD if  1 ( r <  s and, if r = s ,  

n-i  . ~i (4 2 Q x * Q y e D  if x e I  and ye1 . . 
i= 0 P* 

Proof. The weight function takes on only finitely many values in  any 

given degree, and the proofs of (i) and (ii) proceed by downwards induction 

on weight. F o r  (i), Proposition 1.5 gives 

(x* [l-pi])(c y * [l -pj]) = x*fj y * [1-pi-pj] + xs * [1-p2ij] 

plus t e r m s  of the fo rm u * 6 v * [l -pk-p 1 ] with u E I v a I P even if 
pk ' e ' 

p = 2, and wu $ pwv > wx + pwy. Either xg y = 0 o r ,  i f  deg x = pq , 

X ~ Y  = 6 (P*%. y). When p = 2, Propositions 1.5 A d  1.6 imply that 

P ~ X .  y*[l-2ijl a AX (since j i s  even). By Proposition 6.4(iii), xf y i s  

in D, and i t  follows that x* 6 y i s  also in  D. F o r  (ii) and (iii), note f i r s t  

Y 

that [pklx E Im  £+ fo r  any x e H*F and any k and that if x = dill then 

r -1  
X'X" a I m  6 b y  (i) of the previous proposition. If pi = $('k) and 

k = l  

pj = pe(Ir), then, modulo t e r m s  known to be #-decomposable by (i), 

By the induction hypothesis on weight and by (i), a l l  t e r m s  which have a * 
factor x!x(')E I with either 0 ( deg x! < deg x. o r  0 5 deg x ( ~ ) <  deg x . r 

add up to an element of D. Therefore the right side reduces modulo D to  

r- 1 
&x,x_*x * .  . -  * x  * x  * .  .. * x  *[?I. 

1 k-1 k f l  r-1 

By induction on weight (and, when p = 2, by induction on r for  fixed weight) 

and by the commutativity of 8 ,  the s u m  reduces modulo D to 

( - l ) r ( r -  l)! x 1 . . . x r * [?I, a s  required. P a r t  (iii) follows without difficulty 

' 
f r o m  ~ r o ~ o s i t i o n  1. 5 and (i) and (ii). P a r t s  (iv) and (v) a r e  easy consequences 

of Proposition 1.5,  the previous two propositions, and (i). 

P a r t  (ii) implies that  all (pf1)-fold 2 products i n  H*SF a r e  decom- 

posable under # and-allows us to express  any element decomposable under 

* a s  a l inear  combination of elements of X plus t e r m s  decomposable under #. - 
I 

P a r t s  (iii) and (iv) imply that Q [1](1 P* *I P* ) C D and Q ~ ( I  P* * I p* ) C D. 

Note that D i s  obviously closed under the operations f3 and P: . 

Remark 6.7. When p = 2, the arguments above a r e  essentially those of 

Madsen [15], although his  details depend on several  assert ions t rue  only a t  2 

(and a few of his claims a r e  marginally too strong; e. g. I (I 2 * 2* * IZ*) = D, 

not I(I*I) C D). The key effective difference betweenthe cases  p = 2 and 

p > 2 comes f rom the factorial  coefficients in  Proposition 6.6. 

Proposition 6.8. The following congruences hold modulo D. 

,-r 
(i) Q (x * [l]) = 'Grx* [?I + a rx*  [?I if x a I P* . 

-r 
(ii) Q (x*[pj]) = Zrx*[?] if X E  1 .  and j E O m o d p .  

P* 

(iii) Q ~ ( x *  [pj]) m Q'X* [?I if x E I and p > 2 o r  j 0 mod 2. 
P* 

- r - r  I 
(iv) Q (x,) E X  f Q  Q[ l ]* [? ]  if d(1)> 0 and P ( 1 ) 2 2 .  

(rl 1) 

I 
Proof. Since x = Q [1]*[1-pP(')] (where I i s  not assumed to be  

I 

admissible), (iv) will follow immediately f rom (i), (ii), and (iii). P a r t  (i) 

holds since Propositions 6. 5(i) and (ii) and 6. 6 (ii), (iv), and (v) imply 



that a l l  * decomposable t e r m s  in  the mixed Cartan formula for  the evalua- 

tion of Qr(x*[l]) a r e  in D, that  [j]Qry E j a r y  for  any y E I and 
P* ' 

(1) (i)) that Qr(x . . . x e D for  i 1 2. F o r  (ii), note f i r s t  that all t e r m s  of 

the mixed Cartan formula for the evaluation of Q (x * [pj]) with a positive 

- S 
degree * factor Ql (y @ [pj]), 0 < i < p, a r e  in  D because a l l  such 

" S % (y QD [pj]) involve products z . [pj] and a r e  thus in I m  5 .  We claim $hat 

0 
Gr[pj] i s  a lso  in  I m  5 ,  and this will imply (ii). Obviously [pj] = Q [j], 

and the mixed Adem relations reduce to give 

E ~ Q ~ [ ~ ~  = c ~ 0 [ l ~ ~ ~ 0 [ ~ 1 *  d l - i [ l ~ % j j  if p = 2 

and,  if p > 2, 

With j = 0 mod p, Propositions 6. 5(ii), 6. 4(iii), and 6. 6(i) imply that 

Nr 0 
Q Q [j] E Im 5 .  Note that Proposition 6. 5(ii) would no longer apply with 

j gf 0 mod p, hence that (ii) may well fail then (a point missed in [15] and [38], 

'-r 
both of which neglect to consider possible t e r m s  arising f rom the Q [pj]). 

P a r t  (iii) holds by the Cartan formula, the fact that Qr[pj] e I m  5 ,  and 

Propositions 6. 4(iii) and 6. 6(i). 

Unfortunately, the mixed Adem relations appear not to simplify so 

pleasantly modulo D. We do have that one type of t e r m  drops out when p > 2  

however. 

Lemma 6. 9. If p > 2 and x E I then 
P* 

: 
Proof.  Comparison of Proposition 6. 5(iii) to Theorem 3.3(v) shows that 

2rSE ' 
e Im 5 .  It follows by induction on t h e  degree of x that -''' ' 'x e h 6 % 

and thus that [pp-2-l ] q'' 'x e I m  5 . The conclusion follows f rom 

Proposition 6. 6(i). 

Fortunately, we need only use a special  case  of the mixed Adem relations. 

The following result ,  which i s  now merely  an  observation, i s  the core  of the 

. proof of Theorem 6.1. 

Proposition 6.10. Let p = 2 and le t  k = P(1) 1 2. Then 

Proof. By Proposition 1. 7, we may wri te  QL[l] a s  a l inear combina- 

1 Sk 
tion of elements Q [I]. - . Q [I]. By the Car tan formula, Corollary 3. 5, 

and Proposition 6. 6(iii), 

- r .  s. 
the essential  point being that the * decomposable summands of the Q 'Q '[I] 

make no contribution modulo D since Iz*(12* * 12*) C D. The conclusion 

follows by Proposition 1. 6 .  

Propositions 6. 8(iii) and 6. 10 imply the f i r s t  of the following corollaries,  

and the second follows f rom the f i r s t  by induction onP(1). It should be noted 

that neither of these corollaries requires restrict ion to admissible 

sequences L 

Corollary 6.11. Let p = 2 and l e t  k = P(1) 2 2. Then 

"ax = x t aI,JxJ modulo 1 1 # 1  
I ('3 I) ~ ( j )  = k 1 ' 



Corollary 6. 12. Let  p = 2 ,  and l e t  I = (J, K), l(K) = 2. Then 

-=5 
Q x 3 x t cIILxL modulo I1 # I 

I zce (L)<e( I )  
1 ' 

In view of Theorem 5. 1, Corollary 6.12 implies Theorem 6. 1. 

We t r y  to  complete the  proof of Conjecture 6. 2 in the same way. 

Proposition 6. 13. Let p > 2 and le t  k = Z(I) 2 2. Then 

Proof. By Proposition 1. 7, we may write QL[l] a s  a l inear  combina- 
E s E 

tion of elements p l Q '[I] . . . p k~ k[l]. We evaluate 

-r '1 '1 & k  Sk 
Q (p Q [I]. . . 8 Q [I]) by the Cartan formula and Corollary 3. 8. By 

Proposition 6. 7(iii), the only possible contributions modulo D f rom 
r. E S 

- - I  i i 
*-decomposable summands of the Q /3 Q [l] come from products of such 

summands with each other (and not with * indecomposable summands); such 

K 
products lead to the sum writ ten ,' b Q [I]* [?] with l ( K )  2 2 k  By 

I, K 

Propositions 6. 5(ii) and 6. 4(iii), a l l  t e r m s  which involve the * indecomposable 
r. F si r. E .  s .  

summands - Q Q [I] * [?] of the 5 'p 'Q '[I] add up to an element of 

the image of e and thus to a n  element of D. We a r e  left with the products 

of the * indecomposable summands which a r e  multiples of the 
E~ r . t a .  J 

p Q ' '[I] * [?I, and these lead to the sum written '5;1 a Q [l] * [?] with 
1, J 

e(J) = k. 

Corollary 6. 14. Let p > 2 and le t  k = ~ ( 1 )  L 2. Then 

.-Jr 
Q x  3 x  + aI, fJ t bI, K ~ K  modulo Il ii I 

I ('*I) P(J) = k l(K) 2 2 k  
1 

.. Unfortunately, we cannot go on to obtain an  analog of Corollary 6. 12 

since, upon application of i terated operations, the higher length t e r m s  can give 

r i s e  to successively lower length t e r m s  which might cancel with the desired 

dominant terms.  

Tsuchiya [38,4. 6(3)] a s s e r t s  that the b a r e  all zero,  but the core  of 
I, K 

his argument (namely the l a s t  two sentences on page 308 and the next to las t  

1 
sentence on page 310) i s  stated without any indication of proof. He may  con- 

ceivably be right, but a proof will sure ly  require many pages of v e r y  careful 

computation. In view of Proposition 6. 7(ii) and (iii) and Corollary 3.  8, i t  

would suffice (for example) to show that, for a l l  k 2 2, 

where O ( i  < . . . < i k ( p - 1 ,  r = O  and s = t  >O when i = C ,  
1 0 0 0 1 

r. t s = ti (P-1) > 0 when i.> 0, and the sum ranges over a l l  such t e r m s  
1 i 
j j j  3 

"r E s with corresponding *-monomial a summand of 2 p Q [I]. 

Note that this i s  definitely not implied by the much simpler statements of 

Proposition 6 .5  (or by analogous proofs). Finally, i t  should be observed 

that Conjecture 6.2 could well be t rue  even if some of the b were 
1, K 

actually non-zero 

1 My le t t e r s  t o ' ~ s u c h i ~ a  pointing out the difficulty went unanswered. 



$7. Homology operations fo r  matr ix  groups 

Let A be a topological ring and le t  G(n) be a topological subgroup 

of GL(n, A) such that G(i) @ G(j) C G(i4-j) and B n C  G(n). Le t  /kl de- 

note the category with objects the non-negative integers and with morph- 

i s m s  f rom n to n the elements of G(n). Then b i s  a sub permutative 

category of the category ~ X A  [R,VI $3 and 5.21; i t s  classifying space 

Bfi = U B G ( ~ )  i s  a -space over a certain-E 03 operad B [R, VI. 4.11. 

The homology operations Qr on B.8 a r e  induced f rom the action maps 

where c : I) 1 G(n) -, G(pn) i s  the homomorphism specified by 
P P 

fo r  u E 22 and g. E G(n). (See I. 5.3 fo r  our  conventions on wreath pro- 
P 

ducts and [G. 1.1 o r  R. VI. 1.11 for  the notations on the right-hand side. ) 

Let  I ' B ~  denote the zeroth space of the spectrum derived from 

B B  in [G $14 o r  R VII $31. iioI?B% = Z and rnB% denotes the nth 

component. There i s  a natural  map L : BB - r B . b  which sends 

BG(n) to  r n B h  and which preserves  the E s t ructure  [R,  VII 3.1 and 
03 

VIII 1.11. Moreover, L i s  a "group completion", so  that 

H * ~ B B  = G H * B ~  a s  an  AR-Hopf algebra with conjugation, G being 

the functor specified a t  the end of I $2. Less  formally, H * ~ B &  i s  

generated a s  an  algebra under * by [-I]  and -k r *H*BG(n), hence 
n 2 1  

the in  H * r B b  a r e  entirely determined by those in  H*B B via  

Lemma I. 1.2, which gives Qr[-1] = X ~ r [ l ] ,  and the Cartan formula. 

Of course,  the operations in  H*B& can be computed by purely group 

(or representation) theoretic techniques i n  view of (1) and (2), 

Now suppose that A i s  commutative and that G(i)@ G(j) C G(ij). 

Then is a sub bipermutative category of &ZA [R,vI $3  and 5.21. 

The operad B acts on itself [R,VI. 2.61, and B b  i s  a (~g, p ) - s p a c e  

" B [R, VI. 4.41. The operations Q on B& a r e  induced f rom the action 

maps 
B; 

(3 J3 (p) X X  BG(~) '  2 ~ ( 2 2 J ~ ( n ) )  A B G ( ~ ~ ) ,  
P 

where 2 : 22 G(n) - ~ ( n ' )  is the homomor$ism specified by 
P P 

fo r  u E I) and gi E G(n). (See Definition 1.1 fo r  the notations on the 
P 

right.) Moreover, rBf3 i s  an E ring space and L : BB - I'B& 
03 

respects both E s t ructures  [R,VII. 2.4,4.1, and 4. 21. The homology 
a3 

operations in  H * ~ B &  a r e  entirely determined by those in H*B& 

via Lemma 2.6, which specifies the operations Er[-11, and the mixed 

Cartan formula. Again. the operations zr in  H*B kj can be  computed 

by group theoretic techniques in view of (3) and (4). 

We shall  give a uniform general discussion of procedures for  the 

explicit calculation of the Q~ and zr i n  a number of special cases.  

We assume that A i s  a (commutative) field which contains a primitive 

,i th root of unity T for some i 2 1 and we assume  that h is a sub 

bipermutative category of .&ZA such that T E ~ ( 1 ) .  Let T .  be the 

i 
cyclic group of o rde r  p with generator u and le t  3: n + ~ ( 1 )  be  

i 

the injection specified by q(u) = T . Recall that H*Bai has a bas is  

consisting of standard elements e of degree s , s 2 0, and define 

fs = 3 (e ) E H*BG(l). Here we agree to write I;* fo r  the map on * S 

homology induced by the classifying map B 5 of a homomorphism 5 . 
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Define elements (some of which may  b e  zero) 

v = L * ( ~ ~ ) E H * I ; B ~  and = v s * [ - l ] c  H*TOB& . 
In particular, vo = [ I ]  and 7 = [O]. In many interesting cases ,  H * I ? B ~  

0 

is generated as an-algebra under * by [-I]  and the elements vS, o r ,  

equivalently, H I' B b  i s  generated by the Vs. Pr iddy [27] discovered * 0 

a remarkably simple way of exploiting (1) and (2) to compute the operations 

Qrf and thus the operations Qrvs . Indeed, consider the following dia- 

g ram of groups and homomorphisms, where T is cyclic of o rde r  p with 

generator p , p i s  the evident shuffle isomorphism, Xn: a - + T  i s  
i-I 

n 
specified by x ( p  ) = p , 5 : T -r a. i s  the injection 5 ( p  ) = up n 1 

i s  the multiplication of riS and y denotes conjugation by a suitably 

chosen mat r ix  (also denoted y ) in the normalizer NG(P) of ~ ( p )  in  

GL(P, A). 

Thinking of -rS E 4 (1) C GL(1, A) a s  a sca la r  in A and thinking of 

r S 

ur( l ,  . . . , I )  a s  a permutation matrix,  we see  that ( p , u ) maps to 

s r -1 
T y r ( l , . . , l ) y  under yc P ( l l q ) ( l ~ A )  a n d t o  

TSdiag(l,T , . . . , T under the lower path. The charac- 
P-1 i- I 

t i r i s t i c  polynomial of cr (I, . . , I )  i s  xP-I = X (x - T' n). It follows 
n=O 

that we can choose y E GL(p, A) such that the diagram commutes when 

.a = fI A, and the diagram will remain commutative for  h (1 CXA 

if y can be  chosen in  NG(p). If y i s  actually in  G(p), then 

By = 1: BG(P) -* BG(p) and y* = 1 on H*BG[P). The following result  

i s  due to Priddy [27] when p = 2 and to Moore [24] when p > 2 and 

Theorem 7.1. Assume that the matr ix  y can be chosen i n  N G ( ~ ) .  

Then the following formulas evaluate the operations QrfS. 

(i) Let  p = 2 and i = 1. Then, for  r > s 2 0, 

2rSI (ii) Let p = 2 and i > I. Then Q fs = 0 for  r, s 2 0 and, fo r  

2r  -1 
Q fZs = (I-S-I, S-j)y* (fZj * f ~ r + ~ s - ~ j  1 

j 
and 

(iii) Let p > 2 and i ) I. Then, for  r 2 0, s 2 0, and E = 0 o r  1, 

where the right-hand sum ranges over a l l  se ts  of t r ip les  (m, En,  s ), 
n 

0 ( n  < p, with r = 0, r > 0, s 2 0 ,  E = 0 o r  1, and with termwise sum 
0 n -  n n 

(r(p-I) ,€,  s); moreover,  if y* = I, 

r +s 
QrfzS,, = -(-I) (s, r-s-1)f 2r(p-I) +2s+&* [p-ll 

modulo elements decomposable under * . 
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Proof. Apply the classifying space functor to the diagram (*) and 

* 
pass  to homology. As Hopf algebras,  H B T ~  = ~ { e * )  if p = 2 and i = 1 1 

* * * 
and H BT = p{piel)@ ~ { e  ) if p > 2 o r  if p = 2 and i > I (e. g., by 

i 1 

[8, p. 85-86]); {es} i s  the evident dual basis,  and we read off formulas for 

k 
the product (P*, coproduct A*, and Steenrod operations P* on H*Bai 

by dualization. When p> 2, the resulting formulas a r e  c lear ly  indepen- 

k 
dent of i. In (* ), (1 X A)* i s  evaluated in  t e rms  of the P* es in 

[A, Proposition 9. I], and (1 q )* can be read off f rom q * by [A, Lemma 

1.31. g5X0 x 1 ) : a X a. -L a.  is just the projection on the second factor, 
1 'L- 

while X n*(e2r-e ) = nre 2r-  E fo r  0 < n < p by the proof of [A, Lemma 1-41. 

F o r  i =  I, 5 = 1 on a =  a t ;  f o r  i >  I ,  t;*:H*Ba + H*Bai is given by 

t;*(e2,) = eZr (e. g., by di rect  comparison of the standard resolutions o r  by 

a Chern c lass  argument) and t;*(e2r-1) = 0 (because @ e2, = 0 i n  H*Bai). 

In particular, comparison of the diagrams (*) for  i = 1 and i > 1 shows 

that our  formulas f o r  i = 1 and s even imply our formulas for  i > 1 and 

s even. When p = 2, note fo r  consistency that (r-s-I ,  s - j )  (2r-2s-I ,  2s-2j) 

mod 2. To prove (i), chase er  @ es  around the diagram. The resulting 

formula i s  

(k, ~ - 2 k ) Q ~ ' ~ f ~ - ~  = x(r, s-j)yi i ( f j  *fr+s-j) . 
k j 

This formula i s  precisely analogous to that obtained with x = [1] in  the 

mixed Adem relations, and the derivation of formula (i) i s  formally identical 

to the proof of Corollary 3.5. (Priddy [27] reversed this observation, de- 

Q2r+l 
riving our Corollary 3 .5  f rom his proof of (i). ) In (ii), fs = 0 

holds by induction on s since, inductively, e *2r+l 
Zr+l 8 es maps to 

. f s  
along the top of (*) and to zero  along the bottom (because t;*(e2r+l) = 0). 

~ h d . f o r m u l a  fo r  QZriZS follows f rom (i) and that fo r  Q 2 r  
f2s+l  is 

.. 
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proven by chasing e 2rQge2s+1 around the diagram to obtain the formula 

2r+2kf - - 1 z. (k, ~ - 2 k ) Q  2s+l-2k - )7.(r1 (f2j*f2r+Zs+~-2j i f 2 j + ~ * f 2 r + ~ s - 2 j  1 
k j 

and again formally repeating the argument used to prove Corollary 3.5. 

Finally, the f i r s t  part  of (iii) i s  proven by chasing (-f)re2r(p-l) 8 eZStE 

around the diagram and the second part  follows f rom the f i r s t  by an applica- 

tion of Lemma 3.7 along precisely the same  lines a s  the proof of 

Corollary 3.8. 

Moore [24] goes fur ther  and derives closed formulas for the QrfZslE. 

keeping t r ack  of the *-decomposable summands. 

- r 
Determination of the operations Q fs i s  much simpler.  Since 

q : a .  A G(1) i s  a homomorphism of topological Abelian groups, it and 
1 

Bq : Bni + BG(I) a r e  infinite loop maps. By [R, VI. 4.51, BG(I) i s  a sub 

Em space of ~5 with i ts  tensor  product E m structure.  By Lemma 1.6.1, 

we therefore have the following result. 

.u r 
Lemma 7.2. Q f = 0 unless both r = 0 and s = 0 (when 

-0 
Q [I1 = [Ill. 

In summary, when H* I?B& is generated a s  an  algebra under * 
by [-i] and the elements v = L *(is), i ts  operations Qr a r e  determined 

by Qr[-I] = xQr[l], by Theorem 7.1, and by the Cartan formula while 

-r  
i ts  operations Q a r e  determined by Sr[-I] = Qr[l]* [-I] if p = 2, by 

-0 
Q [-I] = [-11 and zr[-I] = 0 when r > 0 if p > 2, by Lemma 7.2, and by 

the mixed Cartan formula. 



5 8. The orthogonal, unitary, and symplectic groups 

We turn  to examples to which the procedures of the preceding 

section apply. Consider f i r s t  the bipermutative categories 0 C  fag^^ 

and U C  h$c of orthogonal and unitary groups and the additive per- 

mutative category & of symplectic groups [R,VI. 5.41. Of course,  

r B @ " BO and r O B U  " BU, but the essential  fact  i s  that the 
0 

machine-built spect ra  of [ R , v I I ~ ~ ] ,  which we denote by KO and kU, 

a r e  equivalent to the connective ring spectra' associated t o t  he periodic 

Bott spect ra  and so represent  r ea l  and complex connective K-theory 

[R, VUI. 2.11. The weaker asser t ion that the maps (7.1) a r e  compat - 
ible up to homotopy with the E actions on BOX Z and BU X Z r e -  

m 

garded a s  the zeroth spaces of the Bott spect ra  i s  ari unpublished theorem 

of Boardman. 

To apply the theory of the  previous section, we define q :T + U(1) 

by means of a primitive complex pth root of unity for each prime p. F o r  

p = 2, we define q : s -c 0(1) to be the obvious identification. It is t r iv ia l  

to check that the matr ix  y needed to make the diagram (*) commute can 

be chosen i n  U(p) in the fo rmer  case  and in  O(2) in the la t ter  case. We 

will thus have y* = 1 in the formulas of Theorem 7.1. Recall that 

fs  = q *(es), v = L (f ), and Vs = v * [-I]. We recollect  a few standard 
S * s  

facts about the homologies of BO, BU, and BSp in the  following theorem. 

It will be  c l ea r  f rom these facts that the result  of the previous section in  

principle determine all operations Qr for  I'BB., I'BU , and I?B& 

and all operations G r  fo r  r B 6 .  and I ' B ~  . Note that the standard 

a r e  all morphisms of additive permutative categories,  and complexifi- 

cation v : 0 -C ?J.. i s  a morphism of bipermutative categories. 

Theorem 8.1. The following statements hold in  mod p homology. 

(i) .In H*Bu(~), fZsfl = 0 and {fZs} i s  the standard basis;  

H*BU = P{VZs 1 s 2 1) a s  an algebra under * . 

,(ii) Let  p = 2. In H*BO(I), {fs) is the standard basis; 

H*BO = P{ vs I s ) 1) a s  an  algebra under * . Moreover; 

v *: H*Bo(~) + H*BU(1) sends fs to f and 

p*: H*BU(I) + H*BO(Z) sends f to fs* fs . 
2s 

(iii) Let  p > 2. Define B = (-l)Sp*(<s) zj H*BO. Then 
4s 

H*BO = P { Y ~ ~ ~  1 s 2 1) and v*(Eqs) = i+j= 2s ( - i ) l V z i * ~  e HIBU. 

(i.1 Define = (-i)Sv*(;4s) r H*BSp. Then H*BSp = P{ Z4s 1 s 2 i }  4s 

To i l lustrate the use of Theorem 7.1, we consider H*BO when 

p = 2. We think of BO and J? BC? and we have 
0 

i 0 
a r V S  = Q v * a'[-11 by the  Car tan formula. Q [-11 = [-21 and , 

i f j  = r 

fo r  j > 0, 

Clearly this formula can  be  solved recursively fo r  QJ[-11 i n  t e r m s  of 

the ai[l] for  i( j. Finally, Theorem 7 .1  gives 

= (r-s-1, s - j ) v - * ~ ~ + ~ - ~  , hence Qr[i] = vr * [I]. 
.i 3 

In pait icular,  Q r 7  5 (r-s-1, s )V modulo * decomposable elements. 
rf s 

Kochman [13, .p. 1331 and Priddy [27, 5 21 give tables of explicit low 



dimensional calculations of the Q r 7  . 

Remarks 8. 2. The f i rs t  calculations of the homology operations Q~ of 

the classifying spaces of classical groups were due to Kochman [13]. 

Actually, although Theorem 7.1 i s  a considerable improvement on his 

result [13, Theorem 61, there i s  otherwise very little overlap between the 

material above and his work. His deepest results a r e  most naturally ex- 

pressed in terms of the dual operations Q: in cohomology. In particular, 

he proved that, on the Chern and Stiefel-Whitney classes, 

and 
r 

Q*ws = (s-r-1, 2r-s)w . 
S - r  

Due to the awkward change of basis required to relate the bases for 

H*BO and H*BU given in Theorem 8 . 1  with those given by the duals 

to monomials in the Chern and Stiefel-Whitney classes, it i s  quite 

difficult to pass back and forth algebraically between the formulas of 

Theorem 7.1 and those just stated. To illustrate the point, we note that 

Theorem 7 .1  gives 

whereas Kochmanls result [13, Theorem ZZ] gives Qr[i] = (C;-*)* * [p]. 

Remarks 8.3 (i) Well before the theory of Em ring spaces was invented, 

.- r 
Herrero [8] determined the operations Q in H*(BO X Z) and 

H*(Bu X Z) by proving all  of the formulas of sections 1 and 2 relating the 

products * and # and the operations Q I  and Zr and proving Lemma 

71 2. She worked homotopically, using models for BOX Z and BU X Z 

defined in terms of Fredholm operators (and i t  does not seem likely that 

any such models a re  actually E ring spaces). 
m 

(ii) While the mixed Adem relations a r e  not required for the evaluation 

of the sr on H* I'B@ and H*I'BU , they a r e  nevertheless available. 

Tsuchiya [38,4.17] asserted what amounts to a simplification of these 

s 
relations for Q Q [1] in  H*I 'B~,  p > 2, but his argument appears to 

P, E be incorrect (as i t  appears to require the composites ~ X T  -3 u -> U(p) 

and aXu 'l XE > @ U(l) X U(p) -> U(p) to be equivalent representations, 

where E i s  the regular representation). 

Let BO and BU denote T ~ B ~  and r BU regarded as  E 
63 (23 1 m 

spaces and thus infinite loop spaces under . By [R, IV. 3.11, 

BO BO(1) X BSO and BU = B U ( ~ )  X BSU as infinite loop spaces. 
Q9 Q9 63 Q9 

We shall need to know H*BSO as  an algebra in section 10. Adams and 
63J 

Priddy [Z] have proven that the localizations of BSO and BSO and of 
Q9 

BSU and BSU at any given prime p a r e  equivalent a s  infinite loop 
Q9 

spaces, and we could of course obtain the desired information from this 

fact. However, to illustrate the present techniques, we prefer to give a 

quick elementary calculation, We first  recall  some standard facts about 

Hopf algebras. 

Lemma 8.4. Let A be a connected commutative Hopf algebra of 

finite type over Z which i s  concentrated in even degrees i f  p > 2. If 
P 

all  primitive elements of A have infinite height, then A i s  a polynomial 

algebra. 

Proof. By Borells theorem, A G @ A. as  an algebra, where A. 
iri 

has a single generator a. and deg a. < deg a i f  i < j. By induction 
I - j 

on i, each a. has infinite height since either a i s  primitive o r  +(a.) 
i 



has  infinite height (by application of the induction hypothesis to the calcu- 

_th 
lation of its pn powers). 

Note that the hypothesis on primitives certainly holds if A i s  a sub 

Hopf algebra of a polynomial Hopf algebra. We shall  l a t e r  want to use 

this l emma in  conjunction with the following resul t  of Milnor and Moore 

[23,7.21]. 

Lemma 8.5. Let A be a connected commutative and cocommutative 

Hopf algebra of finite type over Z , p > 2. Then A S E €3 B a s  a Hopf 
P 

algebra, where E i s  an  exterior algebra and B i s  concentrated in  even 

degrees. 

We also need the following useful general  observations. 

N 

Lemma 8.6. Let X be a n  E ring space w d  l e t  x e HexO be a 
m 

primitive element. Then z r ( x  * [l]) = z r x  * [1] + a r x  * [f]  fo r  all r. 

N - 
In particular, f (x * [I]) = 5 (x) * [l] + f (x) * [i], where f and f a r e  the 

th  
p- power operations i n  the # and * products. Moreover, the # pro- 

duct of two primitive elements of H*XO is again primitive, and the # - 
product of a primitive and a *-decomposable element of H*XO i s  zero. 

Proof. F o r  0 < i < p-1, the t e r m s  z:(x@ [i]) of the mixed - 
Cartan formula a r e  zero  since x . [0] = 0. The f i r s t  part  follows, and the 

las t  par t  i s  also immediate f rom x [O] = 0. 

Proposition 8.7. H*BSO and H*BSU a r e  polynomial algebras. 09 09 
Proof. F o r  p > 2, v*:  H*BSO + H*BSU@ i s  a monomorphism of 

B, 

Hopf algebras (by translation of Theorem 8 . 1  (iii) t o  the 1-components), 

hence i t  suffices to consider BSU for  a l l  p and BS0@ for  p = 2. 
€3 

Since the two arguments a r e  precisely the same, we consider only BSUm. 
V 

n- 1 
Let  p = ( -1 ) '+ '~  2j * 'n-j + (-i)n'inTzn be the basic primitive 

n 
j= 1 

e 

element in  H BU . We shall  prove that f ( p  ) = 0 fo r  n > 1. Since 
2n n 

{pn 
* [i]] n > i) i s  a bas is  f o r  PH*BSU and since the p certainly have 

@ n 

infinite height under *, the resul t  will follow f rom Lemmas 8.4 and 8.6. 

& -., 
Since p = v1 * [-11 and f (vl) = 0, f ( P ~ )  = -5 (pi) by Lemma 8.6. Since 1 

p.p. is primitive, j = c.p with c.  # 0 fo r  2 1 j <_ p. Since 
1 J '1 J j J 

.., 

N 

by Proposition 1. 5 (iii), it follows that f (p.) = 0 for  2 <_ j i p. Again, 
J  

.-d 

since p.p. is primitive, we necessar i ly  have 5 (p ) = k p = knf (pn) 1 3  n n pn 

f o r  some k E Z and then 
n P' 

i P p = (i, n-pi-1)p and a standard calculation shows that for  n > p, * n n-i(p-i) ' 
r either pip f 0 fo r  some i > 0 o r  e lse  n = mp with 1 ( m ( p-l  and 

* n  
k r 2 1, in which case  p n = a P  * p ntk(p-1) 

and < ~ n t k ( ~ - i )  f 0 f o r  some 

k < l and a # 0. It follows by induction on n that a l l  k n  = 0. 

In the case  p = 2, explicit algebra generators in t e r m s  of the 

standard bas is  fo r  H*BO (obtained by translation to t h e  1-component 
€3 

f rom Theorem 8.1) will  b e  given in  Remarks 12.7. 



§ 9. General linear groups of finite fields 

As explained in [R,VIIT $11, when A i s  a discrete ring the zero com- 

ponent rosO X A  of the infinite loop space I'B ~ X A  is  equivalent to 

Quillen's plus construction on BGLA and its homotopy groups are  there- 

fore Quillen's algebraic K-groups of A. 

a 
Let kr be the field with r = q elements, q # p. We shall recall 

(and give an addendum to) Quillen's calculatSon of H * ~ B  <kr [29] and 

shall show that the procedures of section 7 again suffice for the computation 

of both types of homology operations. We shall also compute H*I' B N X  kr 

as  an algebra under # . 
Via Brauer lifting and the Frobenius automorphism, these calculations 

translate to give information a b u t  spaces of topological interest. We shall 

utilize this translation to study the odd primary homology of Goker J, 

B(SF; kO), and BTop in the next section. 

Let d be the smallest positive number such that rd 1 mod p and 

let  rd - 1 = pit with t prime to p. Let p be the group of pth roots of 
P 

- 
unity in the algebraic closure k of kr and let k (p ) be the extension 

9 r e 
over k generated by p Clearly k (p ) has degree d over k hence 

P' r e ry  

its multiplicative group i s  cyclic of order 1 and contains a primitive 

pi& root of unity T . Define q : ( 1  k )  by q ( r ) ; T. As 

in section 7 ,  set f = e s )  v = ( f )  e ~ r B k ~ ( p ~ ) ,  and 

- 
v = vs*[-I]. Define a morphism of additive permutative categories 

r: - &fir 

by p(n) = dn on objects, with p: GL(n, k (p )) GL(dn, kr) specified by 
r E' 

d 
fixing a basis for k (p ) over k using i t  to identify k (p ) with kr 

P r' T P  
n dn d n 

as  a k -space, and then identifying k (p ) with kr = (kr ) . The Galois 
r P 

group of k (p ) over k is cyclic of order d with generator the 
r F' 

r Frobenius automorphism ,dr, ,dr(z) = z , and i t  i s  easy to see that 

po b'.q = mo pop. where a: GL(d, k ) + GL(d, kr) is a suitably chosen 
r 

inner automorphism. It follows that )I*(fs) = 0 unless s f 0 o r  s z -1 

mod 2d. Finally, note that the inclusion of k in k (p ) induces a 
r E' 

morphism of bipermutative categories 

v: 4 + bXkr(pp). 

With these notations we have the following theorem, all but the last state- 

ment of which is due to Quillen [29]. 

Theorem 9.1. H*TbB IY x k r  = P{ p*vZds I s 2 I} 8 E {p*'FZds-, I s 2 I} 

as  an algebra under *. Moreover, for s 2 1 and & = 0 or 1, 

'1 2s2 (d-')sd-l 
* ... *f fzso-5.,*fzs1-Fi s f .  . . fsd-l = Zds 

0 .so+. . . = e  

Proof. We must analyze v p: GL(1, kr(pp)) + GL(d, kr(pp)). We 

claim that the following diagram commutes, where 6 denotes conjugation 

by a suitably chosen matrix: 

Let k (T) C k (p ) be the subfield generated by T. Since d i s  minimal r E' 
r d such that (6 ) (T) = T* the degree of k (7) over k is d and thus 

kr(7) = k (p ). We may therefore choose {I ,  7,. . . , -rd-'} as  our basis 
r I' 

d 
for kr(p ) over kr . If g(x) = c . '  , cd = I, i s  the minimal poly- P j = o  J 



nornial over k satisfied by T, then the matr ix  p . ( ~ )  is obviously the 

companion mat r ix  of g(x). This remains t rue  for  v p.(~), but here,  as a 

polynomial with entr ies  i n  k (p. ), 
r e 

Our &aim follows. We may res t r i c t  to T. ,  and we s e e  that 

$f(e2s-a) = r s e  2s -E by a t r iv ia l  calculation with the standard resolutions 

[8, p. 86 ] when s = 1 and by use of A*$: = ($: X $:)A* fo r  s > 1 and 

r 
e = 0 and of pi$* = $:p. fo r  s > I and E = I. The formula for  

v*p.*(f2ds-E ) follows by a diagram chase.  In interpreting it, i t  is useful 

to remember  that 

i 
r e =  1 m o d p  r e =  1 mod p -.d divides e 

. d-I  
bj) 

andthat ,  since r d j - l = ( r J - 1 ) ( z r  , 
b =O 

d- I 
rbj  - 0 m o d p  if j f 0 mod d. 

b =O 

Of course,  when d = 1 (which holds automatically if p = 2)' p. and v 

a r e  the identity functors. In this case ,  the procedures of section 7, with 

y* = 1 i n  Theorem 7.1, apply directly to allow .computation of the opera- 

tions QS and Gs jn H * ~ B  h Xk (compare the discussion following 

Theorem 8.1). In the case  d > 1, the operations as a r e  determined by 

.- s 
commutation with p.* and the operations Q a r e  determined (not very  

efficiently) by commutation with the monomorphism v * .  
In the key case  

d = p-I and i = 1, a more  efficient procedure will be  given in  the next 

section. 

~ i m a r k  9. 2. The Bockstein spect ra l  sequence of rOB.& kr  can be 

read off f rom Theorem 9 .1  and Lemma I. 4.11 since p 7 = T 
i 2ds 2ds-1 ' 

Explicitly, if p > 2 o r  if p = 2 and i > 1 we have 

Er+i - r 

- P { ( P * ~ ~ ~ ~ ) ~  1 @ {(p.*'2ds)pr-1'2ds-1} 

r 

with p r+i('*'2ds)' = ('*vZdS - )p r - l r  
2ds-1 ' while i f  p = 2 and i = 1 

we have 

r 
-2r -2 -2 

with prt1V2s = V2s ( ~ s ~ 2 s - l  t Q ~ ~ T ~ ~ - ~ ) .  Here 

2s-1 - v 
2s-1 

vj *v4s-l-j by Theorem 7 .1  and the Car tan formula. 
J =o 

We next consider the homology algebra of the multiplicative infinite - 
loop space r1B 0 7kr .  IT BfI 3: kr = Zr-l , and we wri te  r1B b <kl 

1 1  

for  the fibre of the infinite loop map r l B  & Xkr+ K ( Z , - ~  1) which 

represents  the identity element of Hom(Z 
1 

r-I' zr - l )  = H (r lB %.RBI iZr-l). - t 
As a space, r1B% X kr  i s  equivalent to (BSGLk ) . 

Lemma 9.3. r IB .bxkr  i s  equivalent a s  an infinite loop space to 

the product BGL(1, kr) X FIB& i: kr .  

Proof.  The inclusion of BGL(1, kr) i n  B.hX kr i s  a n  E map with 
OD 

respect to @ by [R, VI. 4.51, hence the evident composite 

i s  an infinite loop map. It c lear ly  induces an  isomorphism on homotopy 

groups, and the conclusion follows. 

We have the following analog to Proposition 8.7.  

Proposition 9.4. H BPI;( k r  i s  the tensor product of an  exterior * 1 

algebra on primitive generators of degrees 2ds-1 and a polynomial algebra 

on generators of degrees Zds, where s 2 2 if d = 1 and s 2 1 if d > 1. 



A 
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Proof. Lf d = 1 and p > 2, the result  follows f rom Lemmas 8.4-8.6 5 
nr,sax E q - r o s h i  k r  A rOsfii: ii 9 > roal$ E 

and an argument precisely analogous to  the proof of Proposition 8.7. If 
9 

rY 
d > 1 (hence p > 2), then r-1 i s  prime to p and H * T ~ B ~  < kr  (A) In* 
~*rpli i kr  maps monomorphically to H*?,,B b~ k (P ) under V* , 

I; 1; i; 
nsu - ~ ( + ~ - l )  - BU BU 

r P 

hence the conclusion follows f rom Lemmas 8.4 and 8.5. Finally, le t  Here ~ ( + ~ - l )  denotes the homotopy theoretic f ibre of +r-l, j$r is 

p = 2. The following elements comprise a bas is  for the primitive elements A 
induced f rom the Frobenius automorphism, a n d  the maps X a r e  derived 

i n  H*I '~B.QJ~~ : f rom Brauer  lifting. There is a n  analogous equivalence of fibration 

and 

- " s-1- 
= ST .*vZs + 2 v *G s 21, when i =  1, 

2s =1 Zj 2j * '4s-4j a 

P.8 

Both 5 (p2s-1) = 0 and 6 (P2s-1) = 0, the la t ter  bding tr ivial  when i = 1 and 

requiring a calculation f rom Proposition 1.5 and Lemma 8.6 when i > 1, - 
hence 5 (P2s-1 * rl]) = 0. Thus 

E { p ~ s - l  *-[*]I s L Z ] @ ~ { V ~ }  if i = i o r  ~ { p ~ ~ - ~  * [ i ]  / s 1- 1) @ r{vZ} if i > 1 

is a sub Hopf algebra of H*~~B&) ; :  k , where r { v  1 } if i = 1 o r  

E{V } @ r { v  } if i > 1 i s  the image of H*Bri. It follows easily f rom the 
1 2 

l a s t  sentence of Lemma 8.6 that the primitive elements i n  the quotient of 

H I? B ~ X  kr by the Hopf ideal  generated by this sub Hopf algebra have * 1 

infinite height. The conclusion follows f r o m  Lemma 8.4  and an  obvious 

lifting of generators argument. 

Quillen's calculations i n  [28 and 291 yield an equivalence of f ibra- 

- 
tion sequences completed away f rom q (where k i s  the algebraic 

9 

closure of k ): 63 

9 

sequences completed away f rom q: 

A detailed discussion of these  diagrams may be found in  [R, VIU: § 2  and § 31. 

As explained there,  resul ts  originally due to Tornehave [34, unpublished] 

imply that both (A) and (B) a r e  commutative diagrams of infinite loop spaces 

and maps.  

In Proposition 9.4, the exterior subalgebra of H,?B~ $ k is the 

image of H,s2r1B&l X ii a s  can be  verified by an easy spectra l  sequence 
q '  

argument. There is a general  conceptual statement which can be used to 

obtain a n  alternative proof of part  of that proposition and which will l a t e r  

be used in  an  algebraically m o r e  complicated situation 

F o r  any E ring space X, l e t  p:X + X I  denote the translation 
w 0 

map, p(x) = x * l .  

PI,+ 
Lemma 9.5. Let  X -& Y Z be maps of E ring spaces 

w 

such that $ K  = JIK . Then there  a r e  infinite loop maps pB :Xo -+F($-+)  



and p8:Xi -+ F($/$) such that the following triangles of infinite loop 

spaces and maps homotopy commute 

and there is a map 7:  F($ - $) + F($/$) such that the following diagram 

homotopy commutes 

Xo 

Here the maps T and L a re  natural maps of fibration sequences . 
Proof. ff - $ = * ( $ , X $ ) ~  :Yo - Zo and $/$ = #($,x$)A :Y1 -+ Z1. 

~ i d c e  p i s  not an H-map, ( $ / t / ~ ) ~  is not homotopic to p($ - $). It i s  

therefore convenient to replace the fibres ~ ( f f  - $) and I?($/$) by the 

homotopy equalizers E ~ ( $ ,  $) and E ~ @ ,  $) of $,$:yo -) ZO and 

$, $: Y + Z1 . To justify this, recall that the homotopy equalizer E(a ,@ ) 

of maps a, : C + D of spaces or  spectra i s  the pullback of the endpoints 

t 
fibration (po, pl): F (I , D) -) D X D along the map (a, @ ): C -c D X D, 

t 
where F(I  , D) i s  the function space o r  spectra of unbased maps I + D, 

and that, in the case of spectra, there i s  a map E(a , @ ) -) F@ - @ ) which 

makes the following an equivalence of fibration sequences: 

This diagram yields a diagram of the same form on passage to zero 
th 

spaces. (These statements a re  immediate verifications from the defini- 

tions of spectra and function spectra in [R, 111. ) Since $ and $ are  maps 

of Em ring spectra, $p = p $ and $p = p$ (with no homotopies required), 

and we are  given that $K = $K. We can therefore write down explicit maps 

by p@(x)= ( K X , ~  ) for  xe X o ,  p (x )=  (a,,$_) for x r  X i ,  and 9.x €3 
- P(Y, 4 = (PY* P o  4 for  Y . Y and , . F(1 t 3 2,) with (p0,p1)(4 = ($Y, $ Y), 0 

where o denotes the constant path at z. The requisite diagrams commute 

trivially. pCB and paare infinite loop maps because the passage from 

E spaces to spectra i s  functorial and.the formulas for p and 
m 63 p8 

make perfect sense on the spectrum level (applied on the spaces which 

make up the spectra determined by X , X etc. ) where they yield maps 
0 1 

equivalent to the given p@'and p on the zeroth space level. @. 
In diagrams (A) and (B) above, the identification of the top rows as 

fibration sequences proceeds by construction of maps ' p  and pa a s  in 

the lemma, with ($,$) = ( f ,  1). (Completion away from q was only 

needed to establish the equivalence with the bottom rows.) Here p and 
Ql 

- 1 
are  equivalences, and the maps l; of (A) and (B) a re  p 63 L and 

-1 
Pg, ' . 

Corollary 9.6 The following diagram i s  homotopy commutative: 

Therefore pl; is an H-map (since R p  and the L: are) and 

(x*[l])(y*[l]) = x*y*[l]  for x , y e  $H*RrOBQ<c . 
9 



$10. The homology of BCoker J, B(SF; kO), and BTop at  p > 2 

When E is a commutative ring spectrum, we have a fibration 

sequence, natural in E: 

(1) SF [:> SFE L B(SF;E) -A BSF 

Here SFE denotes the component of the identity element of the zero 
th 

space of E, e is' obtained by restriction to the 1-componeuts of zero 
th 

0 
spaces from the unit e: Q SO -, E of E (whdre Q S denotes the 

w w 

sphere spectrum), B(SF; E) is the classifying space for E-oriented 

stable spherical fibrations, and q corresponds to neglect of orientation. 

See [R,III $21 for details. When E i s  an E ring spactrum, (1) is  
w 

naturally a fibration sequence of infinite loop spaces, by [ R , R  §3]. Thus 

to calculate characteristic classes for E-oriented stable spherical fibra- 

tions, we need only compute e*: H*SF -) H*SFE and use the Eilenberg- 

Moore spectral sequence converging from 

Explicitly, B(SF; E) i s  the two-sided bar construction B(SFE, SF, *), 

and the spectral sequence is obtained from the obvious filtration of this 

space (e. g. [G, 11.14 and 21,13.10]). One way of analyzing e* i s  to 

note that, if X denotes the zeroth space of E (which i s  an E ring w 

space), then we have the homotopy commutative diagram 

Thus we can use the additive infinite loop structures to compute 

e .H Q SO + H*XO and can then translate to the 1-components. The * ' *  0 .  

advantage of this procedure i s  that, as  our earlier work makes amply 

clear, analysis of the additive homology operations tends to be con- 

siderably simpler than analysis of the multiplicative homology operations. 

As explained in [R, IV 6 1, results of Sullivan [32,33] give an 

equivalence of fibration sequences localized away from 2: 

SF --+ F / T O ~  > B T O ~  FBSF, 

where BO - SFkO. By [R,VTTI $11, kO i s  an E ring spectrum and 8- w 

the rows a re  fibration sequences of infinite loop spaces. Recent results 

of Madsen, Snaith, and Tornehave [19], which build on earlier results 

of Adams and Priddy [2], imply that (*) i s  a commutative diagram of 

infinite loop spaces and maps. (See [R, V § 71. ) Thus analysis of 

characteristic classes for stable topological (or PL) bundles away from 2 

i s  equivalent to analysis of characteristic classes for kO-oriented stable 

spherical fibrations . 
Henceforward, complete all spaces and spectra at a fixed odd 

prime p. Here analysis of B(SF; kO) in turn reduces to analysis of 

another special case of (1). To see this, let r = r(p) be a power of a 

prime q p such that r reduces mod p2 to a generator of the group 

of units of Z 2. Equivalently, p-l i s  the smallest positive number d 
P 

such that rd 5 1 mod p and rp-'- 1 = pt with t prime to p. Define 

to be (the completion at p of) the E ring spectrum derived from 
j P w 

the bipermutative category b ~ k , .  The superscript 6 stands for 



"discrete model", and j i s  equivalent to the fibre j of 
P P 

Ir-1 : k 0  + bo (bo being the O-connected cover of kO) by [R, VIII, 3.21. 

As shown in [R, VIII. 3.41,. we have a commutative diagram of infinite 

loop spaces and maps (completed a t  p): 

SF 2 J' => B ( s F ; ~ ~ )  > BSF 
P 

(**I 11  e % O K  7 lB$oxK 
>B(sF ;~o)  

9 > 
SF BOB- 

I I 
BSF 

where J6 = SFj  = TiB h X kr , K : J - BO' = r i B @  5 i s  such 
@ P  P @P 63 

that i t s  composite with r,B - r ,~f i  f q i s  induced f rom the 

h 
inclusion of 8 ;f kr i n  *< , and h : Boa - BO @ is the equivalence 

obtained by Brauer  lifting. As explained in  [R, VIII $3  and V $ 4 and $51, 

B(SF; j ') is equivalent to the infinite loop space usually called BCoker J 
P P ' 

abbreviated BC and defined as the fibre of the universal  cannibalistic 
P 

c la s s  c(ltrr): B(SF; BO) + 

"O@ 

By [l and 21, any infinite loop space of the homotopy type of BO 

I 
(completed a t  p) splits a s  W X W- a s  an  infinite loop space, where 

A 

?r W = Z and T.W = 0 if j 0 mod 2(p-1). By [R, V.4.8 
~ i ( p - 1 )  (PI J 

and VIII. 3.41, the composite 

i s  an equivalence, where g: BO + B(SF; kO) can be  taken to  be  either 

the Atiyah-Bott-Shapiro orientation o r  the restrict ion to BO of the 

Sullivan orientation g. The cited results  of Madsen, Snaith, and 

Tornehave [19] and of Adams and Priddy [2] imply that both choices a r e  

infinite loop maps (here a t  an  odd prime; see  [R, V $71 ). Thus the 

specified composite i s  an equivalence of infinite loop spaces,  and 

analysis of B(SF;kO) reduces to  analysis of B(SF; j ') " BC . 
P P 

Write J 6  = r B , & X k  (inconformitywith J6 = r l ~ & j k r ) .  
P 0 @P 

By diagrams (A) and (B) of the previous section, these a r e  d iscre te  

models for  the additive and multiplicative infinite loop spaces usually' 

called Im J P and Im J @P ' abbreviated J P and J @P ' 

We have reduced the computation of H*BTop and H*B(SF; LO) 

to the study of e*: HISF - H J6 and we have analyzed H*SF in  
* @ P Y  

6 
sections 5 and 6 and H J in  section 9. As explained in [R, VIII $41, * QOP 

the= i s  a commutative diagram of 6 infinite loop spaces and maps 

a e 
Q~SO 

P 
X 
- SF 

such that e n 6  : J -) J6 is an (exponential) equivalence. The dia- 
P P QOP 

6 g ram produces a splitting of S F  a s  J P X (SF; j P ') a s  an  i n l n i t e  loop 

space, where (SF; j P 6, = QB(SF; j P '1. More over, the proof given i n  

[R, VIII 5 41 shows that 

as a n  algebra under * . Thesegenera to r s  a r e  not the same  a s  the 

generators F *(%(p-l)s-E ) of Theorem 9.1. Indeed, Theorem 7 .1  

implies that 

n 



and the operations Q ~ ( Q ~ [ ~ ] * [ - ~ ] )  a r e  now determined by that result. 

The elements = (cx6)~(Qs[i] *[-PI) in H*SF were discussed in  
ys P 

6 
Lemma 5.11. Their images e*(ys) in  H J give explicit algebra * @P 

generators on which the operations Zr a r e  determined by commutation 

6 
with (eu )* . In particular, note that Theorem 7 .1  implies 

P 

modulo #-decomposable elements, in agreement with Remarks 5.14. 

Looking at  diagiam (**), we see that {e*ys = 60 roe)*(ys)) i s  a se t  of 

polynomial generators for H*W C Ker T * C H*BO 
( 8 -  

6 
Of course, the splitting of SF gives H*SF = H J @ H * ( s F ; ~ ~ )  * P 

2 
and E = Tor (Z , Z ) in  the spectral  sequence (2) for  

P P 

. We require a se t  of generators for H*(SF; j6  ) C H*SF. 
= jP P 

6 
Certainly ( S F ;  j6  ) i s  contained in the kernel of e*: H*SF - H J , 

P * @ P  

and standard Hopf algebra arguments [23, $ 41 show that H*(SF; j6 ) i s  
P 

in fact exactly the se t  of a l l  elements x ,such that if +I x = ): x' @ x u  , 

then e*xl = 0 when deg x1 > 0. We shall content ourselves with the 

specification of generators in Ker e*. Their suspensions w i l l  be 

primitive elements in  Ker(Be)* and thus, by simpler Hopf algebra 

6 
arguments, wi l l  necessarily be elements of H*B~SF; j ) C H*BSF. F o r  

P 
E 

K admissible of length 2, choose z E A{P ys} such that e*(xgf zK) = 0 
K 

and set y = xK + z These a r e  the elements y referred to in  
K '  K 

Conjecture 6.2 . If we knew that conjecture to be true, we could take the 

V 

se t  X of elements ?JYK specified there a s  our set  of generators in 

E Kgr e* . As we don't know this, we instead choose z E A{P ys) such 
I 

that y = x + z i s  i n  the kernel of e* for  each x E X and set  
I 1 1  I 

It follows immediately from Theorem 5.2 that 

as  an algebra under i? . We have the following complementary pair of 

results. 

Theorem 10.1. As a sub Hopf algebra of H*BF (via s), 
H*B(SF; j6 ) = ABY where 

P 

BY = { U * ~ ~ I Q ( I )  > 2 and e(1) f b(1) > 1 o r  ~ ( 1 )  = 2 and e(I)+b(I) ) 1). 

proof. BY (51, ~ i ~ ( ~ - ' )  Bys Byps modulo # -decomposable 

elements. The requisite calculation of the spectral  sequence (2) i s  

virtually identical to the proof of Theorem 5. 2(ii) (which follows 5. 14). 

Theorem 10. 2. As a sub Hopf algebra of H*BF (via Bm 6 
p *I* 

Proof. This follows from Lemma 5.12 and Theorem 5. 2. Note 

that f3cr*ys E (Bj)*H*W i s  indecomposable if s f 0 mod p but that 

As discussed in [R, V $7 and VIII $41, I conjecture that Bj: BO + BSF 

6 
actually factors through B a  . Of course, Bj coincides with the com- 

P 
g posite BO -> B(SF; k0) %> BF, whereas qr r *: BO 

QP* BF . By 

the splitting (3) and diagrams (*) and (**), we obtain the following 

corollary. 

I .6 
Theorem 10.3. H*BTop si H*B(SF; kO) si H*W@ H,W @H*B(SF;~ ). 

P 
Under the natural map to H*BF, H*W maps isomorphically onto 

1 6 
(B~)*H*W, H*W maps trivially, and H*B(SF; j ) maps isomorphically 

P 



to ABY. 

The correction summands a*zI by which a * y I differs f rom a * x I 

a r e  significant. They explain Peterson's observation [25] that, while 

* * * 
hs maps to zero  under (Bj) : H BF + H BTop for  s I p (for 

dimensional reasons,  B(SF; j6) being 2p(p-1)-3 connected and 
P 

H2p(p-1)t1B(SF; j6 ) being zero), j3ws maps non-trivially for  all s >p. 
P * 

As pointed out by Peterson, 4 w = >: wi@wsei implies (Bj) (pw,) # 0 

fo r  all s > p if ( ~ j ) * @ w  ) # 0. The following resul t  i s  considerably 
p+l 

stronger.  

k- I * 
Theorem 10.4. Let p(k) = 1 + p  +. . . + p  , k 2 2. Then ( ~ j )  (pw P(k)) 

* 
i s  an indecomposable element of H'B(SF; j6) P C H BTop. 

k-1 k-2 
Proof. Let  & =  (0,p , 0, p , . . . , 0, I) ,  a s  in formula (II) of 

k 
153. d ( I k k ) = 2 ( p - 1 ) = d e g w  and e ( & ) = 2 .  W e c l a i m t h a t  

p(k) 

< w ~ ( ~ ) .  B ~ , Y ~ >  # 0 . hence < B w ~ ( ~ ) ~ ~  *Y&> # 0 , 

and the theorem will follow immediately f rom the claim. By Corollary 1.8 

E 
and Lemma 5.17, < p ws3 a*x> = 0 if x i s  - * o r  # -  decomposable o r  if 

6 
x = x with 1 (I) ) 2. By Lemma 5.11, i t  suffices to verify that, i n  H*J 

I P 

modulo * decomposable elements, since then z will differ f rom 
LM, 

X ~ ( k )  
by summands annihilated by w and we will have 

P (k) 

<.a ~ ( k ) '  B ~ . + Y ~ > = < w ~ ( ~ ) ~ B ~ * ~ ~  > = & < w  ~ ( k ) '  a"x~ (k) > f o .  

k- I 
By Theorem 7.1, f = f , and this remains t rue  

~ ( ~ ~ - 1 -  1) 2(pk-1) 

with the f 's  replaced successively by v', pXvls, and p*T1s. By (4), 

s+l - 
Qs[i] * [-p] z (-1) p,v2s(p-l) , and the  conclusion follows. 

The following consequence of this theorem was f i r s t  conjectured by 

Peterson [25] and f i r s t  proven by Tsuchiya [37, $41, who used quite 

different techniques. 

* * 
Theorem 10.5. Let  @: H BSTop -, H MStop be the Thom iso- 

* 
morphism and define $:A -, H MSTop by ,  $(a) = a@(l ) .  Then $(Q.)_# 0 

for  i ) 2, and Ker $ i s  the left ideal  A(%,  Ql) generated b; Q and Q 
0 1' 

Pi Proof. Q0 i s  the cohomology Bockstein and Q = [p , Qi-l] fo r  

i ) I. As pointed out by Peterson and Toda [26,3.1], the definition 

p S @ ( i )  = @(ws) = @(I)  u ws and the Wu formulas 

r e  
p p w z s(p-1)-r+ E -l)pEw mod decomposable elements 

r+s * 
in  H BSF formally imply the relation 

%@(I) = A i@(l)  u ( ~ w ~ ( ~ )  +decomposable t e rms) ,  0 # hi r Z P ' 

* * 
in H MSF. Application of ( ~ j )  and (Bj)* and use of the previous 

* theorem shows that Q.@(1) # 0 for  i 2 2 .  Q0@(1) = 0 in  H MSF, 

* 
Ql@(l) = a(*)" pi in H MSF, and (sj)*(pw1) = 0. Thus Ker  $ 

contains A(Q 0"1) and $ induces a morphism of coalgebras 
- 0 $:A/A(Qo,Q1) + H*MSTO~. { Q ~ I ~ ~ Z } U { P . }  i s a b a s i s f o r  

J 
the primitive elements of A/A(Q , Q ), where P O  is the Milnor bas is  . o  I j 

element given by the sequence with 1 in  the jth position and zero  in  all 

* other positions, and P.' maps nontrivially to H MSO. Thus T i s  a 
J 

monomorphism because i t  is a monomorphism on primitive elements. 

Remarks 10.6 . Although I have made no attempt to do so, it should 

not be  unreasonably difficult to push on and obtain sufficient information 



* 
on the  structure of H MSTop a s  an A-module to compute E of the 

2 

Adams spectra l  sequence converging to  r*MSTop. This requires  cal-  

* 
culation of cer ta in  Steenrod operations in H BSTop, and these  a r e  

accessible f rom the Nishida relations and the theorems above (compare Remarks 

5.5). Indeed, considerable relevant information on this dualization 

problem has  alle ady been tabulated i n  our  calculation of the dual. of the 

Dyer-Lashof algebra in  I s3 .  

Remarks 10.7. It is straightforward to read off the mod p Bockstein 

spect ra l  sequences of B J ~  B(SF; j '), BF, and BTop f rom Lemma 
P ' P 

I. 4.11 (and i t s  analog in cohomology). F o r  BJ  i t  is most convenient 
P a  * 

to work in  cohomology where H B J 6  = P (w )@ E{RW ) a s  a quotient 
P 

* 
of H BF and thus 

The homology Bockstein spect ra l  sequence of B(SF; j P ') i s  specified 

by Er+l 
r 

= p ~ y p ~ ) ~  EIP -igy} with prilypr = y~r-iBY , 

where y runs through {o*yI I b(1) = 0, d(1) i s  odd} C BY. The 

Bockstein spect ra l  sequence of J i s  specified in Remarks 9.2, and 
P 

that  of (SF; j 6, can again be read off f rom Lemma I. 4.11. 
P 

Remarks 10.8. In [4, $51, Brumfiel conjectured that the image of 

* * 
H (BTop; 2[1/2]) in H ( B ~ o p ;  Q) was  a polynomial algebra on c las ses  

4i 
Ri r H (BTop; Q) such that + Rn = R. @ R. and 

i t j  = n 1 J 

Zn- 1 
Rn 5 (2 - 1) num ( B ~ / & ) P ~  modulo decomposable elements, where 

B i s  the nth Bernoulli number and n u m ( ~ ~ / & )  i s  the numerator  of 
g 

the fraction B /& in lowest t e rms .  As observed by Tsuchiya [37, $31, 
n 

an up to an undetermined factor 2 in the congruence, the conjecture i s  

an  easy consequence of the fact that the primitive elements of 

FI*(BTop; z [ ~ / Z ] ) /  torsion a r e  generated by the images of the basic 

primitive elements elements in H*(BO; ~[1/2]) and i n  H*(F/TOP; ~ [ 1 / 2 ] ) .  

Madsen and Milgram 1181 have recently proven the conjecture in i t s  

original  form. 



§ 11. Orthogonal groups of finite fields 

When A is a discrete commutative ring, the zero component I? BOA 0 

is equivalent to Quillen's plus construction on BOA and its homotopy groups 

can reasonably be called KO*A. 

a 
Let k be the field with q = p elements, where p is an odd prime. 

9 

Fiedorowicz and Priddy [6 ] have made an exhaustive study of the homologies 

of the orthogonal groups and of various relatedfamilies of matrix groups of k 
9' 

We shall recall their calculations of H*rBOk and shall show that a slight 
9 

elaboration of the procedures of section 7 suffices for  the computation of both 

types of homology operations. We shall also compute H*r1B Qk as an 
9 

algebra under # . 

Via Brauer lifting and the Frobenius automorphism, these calculations 

translate to give information about spaces of topological interest. We shall 

utilize this translation to study the 2-primary homology of BCoker J and 

B(SF; kO) in the following sections. 

We repeat that the homological calculations in this section are due to 

Fiedorowicz and Priddy [6 1. A l l  homology groups are  to be taken with Z 
2 

coefficients. 

O(1, kq) = Z2 and we let q : Z. -- O(1; k ) be the identification. As 
2 9 

usual, this fixes elements fs = q e vs = L *fS E H*rlBOk and * s '  s' 
- 
v = vs*[-11 E H*r0B6k . 

9 

Let eevk be the full subcategory of (Ykq whose objects a re  the 
9 

even non-negative integers. Let 

2 
where a i b2 is a non-s quare. Let 6n = 6 B . . . 69 6.6 GL(2n. k ). Define 

9 
- 1 

@: o e v k  - CfeVk by @(2n)= 2n onobjectsand Q ( A ) = ~ ~ A ~ ~  on 
9 q 

matrices A E O(2n, k ). Then @ i s  a morphism of (additive) permutative 
9 

2 
categories such that @ = i. 

With p = 2 and G(n) = O(n, k ), the diagram (*) above Theorem 7.1 
9 

is made commutative by use of conjugation by the matrix 

If q r + 1 mod 8, then 2 i s  a square in k and conjugation by y i s  equal to 
9 

conjugation by (i/&)y E 0(2, k ). Thus y* = I in Theorem 7 .1  in this case. 
9 

If q r + 3 mod 8, then 2 is a non- square and we may take 6 = y in the 

- I 
definition of @. Thus y* = @ in ~ h e d r e m  7.1 in this case. * 

With these notations, we have the following theorem. 

Theor em 11. i . H*rOB 0 k = P {vs ] s 2 I) @ E {us 1 s > I) as  an 
9 

algebra under *, where (Q - i)*(Vs) = iis. Therefore Q*Ts = i t j  = s V. * ii. , 
1 J  

- @*us = us, and the following formulas a re  satisfied. 

(i) a r v s =  x ( r - s - 1 , s - j ) v . * v  i f  q p  f I mod8 , 
J r t s - j  

j 
- 

(ii) arvS = (r-S-I,  s-j)v. 1 *v k XU j-i *u r ts- j -k i f  q r  A 3  m o d 8 ,  
i,j,k 

(iii) = ): (r-s- i- i ,  s-j)ii. *ii.*u for all q . 
1 J  r ts- i - j  

i , j  

Proof. We refer to [6] for the first sentence and show how the rest 

follows. @-I = *(@,x ) A ,  hence 

- - - 
Us = (@-i)*(~,) = m+n 1 = s @,urn* x v n .  

By induction on s,  these formulas admit a unique solution for the @ 7 * s '  

That solution is @*% = Ti *q since 
i t j =  s 
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( yi*iij) * x g  = (Ti*xFn)* 8. = 5 . 
m + n = s  i + j = m  i+j+n= s J 

Since @(@-1) = I -@ = X(@-i )  and xii = ii (by induction on s), @*us = u . 
S S 

Now formulas (i) and (ii) a r e  immediate consequences of Theorem 7 .1  (i). 

Formula  (iii) is proven by writing Ts* [2] = v * [I], computing Qr(vS * [Z]) 

by the Cartan formula, noting that (@-I)* commutes with * and the QS 

and takes [2 ] to [O], and explicitly calculating ar \ = (@ - i)* d ( G s  * [Z]). 

An essential  point i s  that ( a - l )* (E  ) = 0 for  s > 0, and i t  i s  this which 

allows (i) and (ii) to yield the same  formula (iii). 

Of course,  these formulas completely determine the operations ar 

in  H*rB 6 k The operations Zrvs a r e  tr ivial ,  and we shall  compute 
9' 

the operations u s  in Proposition 11.7 below, u = \*[I]. Formula  (ii) 

i s  extremely illuminating, a s  our l a t e r  work will make c lear .  F o r  example, 

i t  yields the following simple observation. (Compare Madsen [ 16, § 21. ) 

Remarks 11.2. Consider the Bockstein spect ra l  sequence of roB @ k  . 
q 

- 
Obviously = v hence p i i  = ii Thus 

2 r  2r-1' 2 r  2r-1' 

2 2 
E = P{VZsI C3 ECU2s.l * z2sI. 

- 2  - 2 s- 
By 1.4.11, p2vZs = v * V  +. Q v ~ ~ - ~ .  Let q a _f 3 mod 8. Then 

2s 2.5-1 

- 
Addingin * v  and reducing modulo I m  p, we find that 

2 s  2s-1 

2 2 

i t j  = s ,  j, 1 

We conclude f rom Lemma I. 4. 11 that, for  r 2 2 , 

2r-2 2 2r 2r-2 2 - 
Ert' = P{y:sr I (8 E{VZS p2VZS) with pr+lF2s = vZS p2TZS . 

2 
When q a Jr 1 mod 8 ,  p2??2s = 0 and a ra ther  complicated calculation of 

Fiedorowicz and Priddy [b]  shows that i f  r i s  maximal such that 2r 

1 2  
divides ~ ( q  - l ) ,  then p r v ~ s  # 0 f o r  all s .  

The homology algebra of the multiplicative infinite loop space r l B  W k  
9 

can be computed the same way that of r B a f i  was computed in  
1 

1 
section 8. n i r l B  a k = Z Z  B) Z and the non-zero elements of H r B a k 

9 2 1 9 

correspond to the families of homomorphisms O(n, k d  --. Z2  given by the 

determinant, the spinor norm,  and their  product. The f i r s t  and l a s t  of these 

r e s t r i c t  non-trividly to  ~ ( l ,  kq). Let T B 6 k  be the fibre of the 
1 q 

,-.' 
infinite loop map det: r B 6 k - K(Z2, 1). As a space, r l ~  0 k is 

1 q 9 + 
equivalent to (BSOk ) . The proof of the following resul t  i s  the same  a s  

9 

that of Lemma 9 . 3 .  

Lemma 11.3. I? 1 B @ k is equivalent a s  an  infinite loop space to 
9 

the product BO(1, k 9 ) X F1B& k 9 . 

Proposition 11.4. H ? B  Q k i s  the tensor  product of the exterior 
* i  q 

algebra on the generators u = iis *[I]  and a polynomial algebra on one 

generator i n  each degree 2 2. 

While an elementary proof along the l ines of those of Propositions 8.7 

and 9 . 4  i s  possible, we prefer  to re ly  on application of the S e r r e  spect ra l  

sequence to diagram B below (together with Proposition 8.7) fo r  identifica- 

tion of the polynomial algebra and on Corollary 11.5 below for identification 

of the exterior algebra. 

As explained in  detail i n  [R, VIII $2 and $31, the calculations of 

Fiedorowicz and Priddy [6]  together with the machinery of [R] and, for 
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n diagram B, resul ts  of [2] and [19] imply that, when completed away f rom p, with the standard map Rprn - SO. This proves that (m)*(Es) = as .H,SO . 
both of the following a r e  equivalences of fibration sequences and commutative In particular,  Theorem 11.1 (iii) implies Kochmants calculation of ~~a s '  . 
diagrams of infinite loop spaces and maps. Here  the infinite loop spaces cornpare Remarks 5.10. Now the following analog of Corollary 9.6, which 

F o ~ s  i; and FIB @i; a r e  the f ibres  of thenontrivial maps f rom r B I i s  again an immediate consequence of Lemma 9.5, implies the identification 
P P 0 P 

and r i ~  6 to K(ZZ, 1). 
P 

of exterior algebra generators specified in Proposition 11.4. 

P ,,l 

QBSO 
@ 

. >F(+q/l)  BO BSO 
8 @ 

Therefore pl; i s  an H-map and 

( ~ * [ l ] ) ( ~ * [ l ] )  = ~ * ~ * [ l ]  fo r  X , Y G & H * S ~ ~ ~ B B ~  P . 

In a ra ther  roundabout way, quite explicit generators for  the poly- - 
h 

XK: r l B  B k  * BO@ lifts to an infinite loop map F1B @ k - BSO nomial part  of H*r1B@k will appear in the next section. It is also use- 
9 8 9 9 

" * 
since (XK) (wl) = det. Since the Brauer  lift of q : Z - O(1, kq) i s  ful to have, i n  addition to the global statement Proposition 11.4, part icular 

2 
A \ 

q : Z2 - O(1, R), ( XK)*(V~) = vi . formulas which determine the # -product on H*r1B o k  i n  t e r m s  of i t s  
9 

Since contains a square root of a2 + b2, conjugation by 6 i s  bas is  in  the %-product. Lemma 11.3 implies that v v = (r, s)vrts, the 
r s 

P n 

an  inner automorphism of 0 ( n , k  ) f o r  all n. It follows that previous corollary gives u u = u * u and the remaining formula 
r s  r s' 

P 

K @  " K: I' B k - r 0 B  & I; Therefore @-1 factors a s  &I for  some required is given in  the following result. 
0 9 P' 

map a: FOB @'k + QrOB 6 I? By Theorem 11.1, we see  that E{- Us3 Proposition 11.6. 
u r v s = (i, r)urti + uj 5 vk for a l l  r and s. 

9 P ' i+j t k  = s 

coincides with ~ * H ~ S ~ ? ~ B B K  Of course,  the composite 
P' I Proof. By Proposition 1. 5 (iv), the specified formula is equivalent to 

* * 
mofphism H SO * H Rpm, hence this composite must  coincide homologically 

& + QBSO ~1 SO 

i s  homologically non-trivial. There  is only one non-trivial A- algebra homo- 

We claim that the following diagram i s  homotopy commutative, where we 

have abbreviated X = r o B @ k  : 
9 



A X 1  > X X X X X  
$ x x x 1  

X X X  > X X X X X  > X X X  

(1 X ~ X  1)(1 x 1 xA) I ( l X t X l ) ( l ~ l ~ A )  

X X X X X X X  g X I X x - X 1  > X X X X X X X  U lI 

The crucial  relation Qo # " #o (Q X 1) follows f rom the corresponding 

commutative diagram on the level of categories and functors, and the 

analogous relation xo # -- 8 0  (X X 1) follows f rom the fact that x x = x # (-1) 

(see  I. 1.5). Chasing 7 @T around the diagram, we obtain 
r s 

- - 
U V = (Q - l)*(Vr)Vs = (Q - l)*(VrVs). 
r S 

By Proposition 1.5(iii) and the formula vrvS = (I, s ) v ~ + ~ ,  we have 

- - - 
v v = *x",-~* xvs- j  . Since ( - 1 )  commutes with * and x 
r s 

1 8  J - 
and since xu = u , the conclusion follows. 

S S 

Finally, we prove the analog of Corollary 11.5 fo r  the operations zr 
and thus complete the theoretical  determination of these operations in  

~ * r ] . B o k  . 
9 

e r  
Proposition 11.7. Q (x* [l]) = Q ~ X  * [l ] for  x r ~ * H * ~ F ~ B ~ E  . 

P 

Proof. By the Adams-Priddy theorem [Z], there  exists an equivalence 

of infinite loop spaces completed a t  2, 5 : 'Fo~@ %-. ? B OK . Any two 
1 P 

-, 
H-equivalences S2f B e'j; -+ S2r Be/ necessari ly induce the same homo- 

0 P 1 P 

morphism on homology since they necessar i ly  r e s t r i c t  to the same  homo- 

m - H , T B ~ ~  m 
morphism H*RP and since the image of H*RP 

- - 
generates H*S2rOB@k a s  an  algebra. Therefore,  i n  the diagram of 

P 

Corollary 11. 5, S2 p behaves homologically a s  if i t  were  S2 6 and, since 

the'' !, a r e  infinite loop maps,  p!, behaves homologically a s  if i t  were  

an  infinite loop map. 

  he reader  i s  referred to [ 6 ,  App. B] for  alternative group theoretical 

proofs of the previous results  and for  further details on the algorithm they 

-r 
imply fo r  the computation of the operations Q on H*II;B@k s' 



12. Orientation sequences a t  p = 2; analysis of e: S F  3 3  
We re tu rn  to the study of orientation sequences of the fo rm (10. l ) ,  

but he re  all homology groups a r e  to be  taken with Z coefficients and a l l  
2 

spaces and spectra  a r e  to be completed a t  2. 

Although apparently unrelated to BTop a t  2, B(SF; LO) does play 

a centra l  role,  explained in  [R, V 53-51, i n  Adamsl study of the group; J(X) 

both a t  andawayfrom 2. It i s  thus also of i n t e ~ e s t  to  understand i t s  mod 2 

homology. We begin by using the spaces studied i n  the previous section, 

with q = 3, to reduce the analysis of B(SF; k0)  to that of B(SB; j:) and 

then give a detailed analysis of the behavior of the relevant unit map 

e: SF J~ on homology. 
8 2  

6 
Define j 0 2  to be the (completion a t  2 of) the E ring spectrum 

,a 

derived f rom the bipermutative category @' k3. As 'explained in  [R, VI. 

5.71, 0 k 3  contains the biperrnutative subcategory n k3 whose morph- 

i s m s  a r e  those elements -r E O(n, k ), n 2 0, such that V(T) det (T) = 1, 
3 

where v i s  the spinor norm. Define j to be  the (completion a t  2 of) 2 
6 

the Em ring spectrum derived f rom n k 3 .  By [R, VIII. 3.21, j02  i s  

equivalent to  the fibre j02 of +3-1 : k 0  - bso and j is equivalent to 
2 

3 6 6  6 
the fibre j of 4 -1: kO -*. bspin. Let J02 , J2 , JOB2, and J~ be 

2 @2 
6 

the 0-components and 1-components of the zeroth spaces of j 0 2  and j 
6 
2' 

and s imilar ly  without the superscript  6. Diagrams (A) and (B) of the 

previous section give infinite loop equivalences JO: + J02 and 

6 
JOQ2 + JOQ 2. By [R, VIII. 3.2 and 3.41, we have analogous equivalences 

'of fibration sequences of infinite loop spaces 

6 5  6~ 
Spin -J2 - > BO 

6 

I C  3 
Spin J2 V BO 

* > BSpin 

Here B O ~  = r O ~ @  5, BO& = r l ~  oK3, and  spin^ and BSpin & a r e  

thei r  2-connected covers. J is our choice for  the space Im J at  2. 
2 

Many authors instead use the fibre J i  of 4 ~ ~ - 1 :  BSO - BSO, which has 

the same  homotopy type a s  J2 but a different H-space structure.  Various 

reasons for preferring J2 were  given i n  [ R , v § ~ ] ,  and the calculations 

below give further evidence that this i s  the co r rec t  choice. 

By [R, VIII. 3.41, we have a commutative diagram of infinite loop 

spaces and maps 

> BSF SF  J' B(SF; j2)  

11 ioKr2 
7 S F  BO - B(SF;kO) 

@ 

I I 
*BSF 

As explained in [R, VIII $3 and V § 4 and § 51, B(SF; I;) i s  equivalent to the 

infinite loop space BCoker J2, abbreviated BC where the la t ter  can and 
2' 

should be  defined a s  the fibre of the universal  cannibalistic c lass  

3 
C( * ): B(SF; kO) -) BSpin By [R, V. 4.8 and VIII. 3.41, the composite 

'8' 
h 

BXOBKX g 
(1) B(SF; I:) x  pin > B(SF; k ~ )  x B(SF; k ~ )  -> fl B(SF; k ~ )  

is an equivalence, where g is the Atiyah-Bott-Shapiro orientation. Using 



work of Madsen, Snaith, and Tornehave [ i9]  and of Adams and Priddy [2], I With these facts in mind, we re turn  to homology. Comparison of 

Ligaard recently proved that g i s  an infinite loop map (see [R, V $ 71). Thus diagram A' to diagram A of the previous section yields the following 

- - 
the specified composite is an  equivalence of infinite loop spaces,  and adsendurn to Theorem 11.1. Let  u = vo = [o]. 

As explained in [R, VIII $41, there  i s  a commutative diagram of infinite I where E l  r E{% and Ks t E; i s  decomposable (under *). 

analysis'of B(SF; k 0 )  reduces to  analysis of B(SF; j 6, * BC2 . 
2 

loop spaces and maps 

- - 6 Proposition 12.1. %J: = P{ ui*v.1s?l}@ E{E;] s $ 2 i ~ ~ ~ * ~ 0 2 ,  
ii-j = s J 

Here  a; i s  emphatically not a n  equivalence. In homology, the proof of 

[R, VIII. 4.11 gives the formula 

2 a(1) 
(a:)* ( 9 4 1 1  * [-21e)])- [3 ] = ?f[3]. 

On the other  hand, the Adams conjecture yields a homotopy commutative 

diagram 

6 Proof.  The following evaluation formulas hold for  J O  . 
2 '  

<det,;S > =  1 , < v - d e t , V >  = 1, , < v , F  > =  0 
1 1 1 

<det,K > = O  , < v ' d e t , E  > = 1  , <v,E > = I .  1 1 1 

Indeed, for Tl, these hold by consideration of the composite 

6 det 
BO(1, k3) -. J O  

8 2  
-> K(Z2, I ) ,  while < det, u > = 0 since det = (det) 5; 1 

the remaining formulas a r e  forced by the fact that det, v. det, and v a r e  

distinct cohomology c lasses .  Therefore + vl i s  the image of H J 6 
1. 1 2  

6 
in H J O ~  Since J consists of 

1 2' * 2 

I 6 
{ x  ]@ = xIQDx1l, (v. det)*(xl) = 0 if deg x l >  0) C H*J02 , 

2 - I 
SF A sF/spin  

I I 
> BSpin 

J2 - BO > BSpin 

6 
primitive elements if s > 1 that u . * ~ .  c H J . The r e s t  i s  clear.  

1 J " 2  

* * * 
Recall that H SO = P{ a w ] s 2 1) and H Spin = H*SO/(U*W~). 

2s 

i t  follows by induction and the fact that H K ( z ~ ,  1) contains no non-zero 

the following composites a r e  equivalences by [R, V. 4.7 and VIII$3], where I s > 2) C r{a>s-l  I s 2 1) = H*SO. H*Spin = r{ahsml 1 --. 

Here SF/Spin " BO(1) X F/O a s  an  infinite loop space by [R, V. 3.41, and 

6 6 
(SF; j 2 )  = QB(SF; j2) * C2 . 

The change of basis implicit in the proposition corresponds to that com- 

In the dual basis,  with < a * ~  2 s ~  a'2s-1 > = 1, 

paring this description of H*SO to that given by H*SO = E{as), 

03 
as E I m  H*RP . 

The following corollary,  a l e s s  obvious analog of which for  J1 
2 Was 

f i r s t  proven by Madsen [15], explains why e a 6  could not possibly be an 
2 



equivalence and demonstrates that no choice of or - J * S F  can be  an 
2' 2 

H- map. 

Corollar y 1 2.2. No H-map J2 SF  can induce a monomorphism 

i n  (mod 2) homology in  degree 2. 

2 2 
Proof. {F - = (iil+ 7 )  } and {x2, ~ ( ~ , ~ p  a r e  bases  for  

2' v1 

H J H J and H SF, and TI2 maps to zero  under any H-map. 
2 2 2 2 2 

We wish to study e: SF and i t  is -convenient to f i r s t  use - J@ 2' 

Proposition 12.1 and Theorem 11.1 to study e: Q SO -+ J 
6 

0 2 '  

Theorem 12.3 . The restrict ion of e*: H*Q~SO + H J ' to the * 2 

*- subalgebra 

~ { ~ ~ [ 1 ] * [ - 2 ]  ] s 1 1 )  €9 P{Q 2snt2s QzSn [l] * [-4] / s ) 0 and n 2 1) 

Proof. By Theorem 11.1, the rollowing congruences hold modulo 

*-decomposable elements of HJB 0 k ' 
3' 

and 
r s 

Q Q [1] = Q ~ ( ~ ~  * [l]) t Qr(uS *[1]) . (r-S-1, S)V r f s  *[3]. 

Since (r-s-1,  s) = 0 f o r  all r > s such that r t s  = t if and only i f  t i s  

a power of 2, the coefficient prevents decomposition of u in  t e r m s  of 
29  

6 6 * and the operations Qr (as is consistent with I m  e*C H*JZ C H*J02 ). 

S S 
If t = ~ ~ ( 2 n f 1 ) ,  then (2 -1'2 n) = 1 and therefore 

The conclusion follows immediately f rom Proposition 12.1. 

Turning to multiplicative structures,  we note f i r s t  that comparison 

of diagram Bt  to diagram B of the previous section yields the following 

addendum to Propositions 11.4  and 11.7 and Corollary 11.5. Let y6 
0 2  

6 
denote the universal  cover of J~ namely the fibre of det: JQ2 - K(Z2, 1 )  , Q zz 
and observe that we have the following commutative diagram of fibration 

sequences of infinite loop spaces: 

6 6 >;6 > BSO 
6 

Spin@ 632 @ &> "Spin@ 
- 

I I 6 I 1 II . -  
> J &  - p3/1 BSpin 6 

Ci92 "OQ 63 1 det I det 

Proposition 12.4. H is the tensor  product of the exterior * '82 
- I  

a lgebra on the generators u' = u * [1] and a polynomial algebra on one 
S s 

generator i n  each degree > 2. F o r  x, y c: E {uk} = 6 *H*SpinC3,, 

xy = x y and - z r x  = Qr(x*[-11) *[I]. 

Recall that & is the t ransla te  of the * product f rom the 0-component 

to the 1 -component. 

Y' has been constructed by f i r s t  taking the fibre of 
(82 

v . det: - K(Z2, 1) 
632 

and then that of det. Since we could equally well 

,., 
r eve r se  the order ,  Y~ i s  a lso  the universal  cover of I? B o k  Since 

@2 1 3' 
6 6 

V .  det r e s t r i c t s  non-trivially to  O(1, k 3 ), JOQ2 = BO(1, k3) X J a s  
€92 

an  infinite loop space, this splitting being distinct f rom the splitting 

J O ~  = B O ( I , L ~ )  x F l ~  o k 3  of Lemma 11.3. 
632 

6 
Theorem 12.5 The res t r ic t ion of e*: H*SF -) H*JQP to the 

G-subalgebra 



of H SF is an isomorphism. * 
Proof. Note first that e x = F, vk 5 u ~ - ~  maps non-trivially to * r 

H*K(Z2. 1) under det: J 6  - K(Z2, 1) since this assertion holds for x 
€32 1 

by Theorem 12.3. Of course, we must not confuse 

. j, e* 6 * 6 
H*SO --+ H*SF - H J 6  with H*Spin - * €32 €9 'H*J@2 . 

Indeed, u' e Im 5 *  and the inverse image of u' in the #-subalgebra of 

H*SF specified in the statement i s  most unobvious. Let 
s 

be the non-zero primitive element of 

s-1 
degree 2s+l in E{x } and let pi = sxs + x. &p '  be the non-zero 

j =  
J s- j  

primitive element of degree s in P({xr} ; 5). Obviously pl = pi, and 

Propositions 1.5 and 1.6 give 

x1x2 = x ( ~ ,  l )  + x2 I x1 + x1 )Ir x1 5 x1 , hence p 3 - ~ ;  - - I -X  
(231) - 

Therefore e*(pl) # 0 and e (p ) # 0 by Theorem 12.3. Since * 3 

P: QS[l] = (r,  s-2r) ~ ' - ~ [ l ] ,  we have 

2r 
P* pZsC1 = (2r, Zs+l-4r)p = (r,  s-2r)p 

2s-2r+l 2s-2r+l 

In particular, 

2s 2' 
and P* p - P* P4sfl = P2s+l 

if s 2 1 and t is odd. 
27t+l)+l - P2st+l 

The second of these shows that p can be hit by iterated Steenrod 
2St+l 

operations acting on some p , and the first of these shows that p 
zq+l 2 q+l 

hits p under some iterated Steenrod operation. The same formulas also 
3 

hold for  the Steenrod operations on the odd degree primitive elements of 

P{us+ vs ) and ~ { i i  ' ) hence, by translation to the 1 -component, on the 

two basic families of odd degree primitive elements of H J6 . There- * €32 
fore e p # 0 for all  s 2 0, and the restriction of e* to E{ x } i s  a * 2s+l 

monomorphism. Let f denote the composite 

6 6 . .  
where BO €3 - B S O ~  

is  induced by the evident splitting of infinite loop 

spaces z ~ o ( 1 . L ~ )  X BS$ By an easy comparison of dimensions 
B0€3 € 3 .  

argument, it suffices to prove that f is an epimorphism and thus an iso- 

6 
morphism. By the Adams-Priddy theorem [2], BSO " BSO as an c3' 
infinite loop space. In particular, the known formulas for the Steenrod 

operations on the indecomposable elements of H*BSO apply equally well to 

H ~ B S O ~  Explicitly, if y is the non-zero element of degree s in € 3 .  
QH,BSO~ then €9' 

2r 
2s-2r+l ' 

By the Nishida relations I. 1 .1 (9), the analogous formulas 

r t s  2r 
P* X ( ~ r ,  2s) = X(r, s) 

and P* x (s+l, s) = (r, s - 2r)x 
(s-ri-1, s - r )  

hold in H*SF. By use of appropriate special cases (exactly like those in 

the first half of the proof), it follows that f induces an epimorphism on 

indecomposable elements since, by Theorem B 2.3, fx 
(11 1) 

and fx 
(231) 

a re  non-zero indecomposable elements. 

An obvious comparison of dimensions argument gives the following 

corollary, which complements Proposition 12.4. For  notational con- 

venience, define t r e H r J6  €32 for  r 2 2 by 



Corollary 12.6 . As an  algebra under # , 

6 
H*JQ2 = E{u;] r # ~ ~ } @ E { e x  1 q ~ 0 } @  ~ { t ~ I ~ , 2 } .  * 29  

Comparison of this result  to Theorem 6 . 3  is illuminating: The R- 

algebra generators of H*SF map onto algebra generators for  the com- 

6 6 
plement of L *H*Spin B i n  H J  * €32 * 

-x. 
Remark 12.7. By (*), the composite SF  J BO - 

@2 C3, > 

is the unit infinite loop map e: S F  + BO@. Since x ' = Qr QS[l] * [-31, 
(r ,s)  

e x can be read off i n  t e r m s  of the bas is  fo r  H*BO specified by * ( r ,  s) c3 
H*BO = P({v } *) byappl icat ionof  Theorem7. l ( i ) .  Thus the resul ts  

@ s ' -  
.above yield explicit polynomial generators fo r  H*BSO C H*BO@ ; that 

(29 
the images of the t do actually l i e  in  H*BSO can be  checked by ver i -  €3 
fying that they come f rom H*BSO(Z). 

We require two fur ther  technical results  in o rde r  to obtain complete 

information about the various algebra s t ructures  on the  classifying space 

level. The following resul t  was  f i r s t  noted by Fiedorowicz. 

Lemma 12.8. F o r  r # 2q, e x is a # -decomposable element * ( r ,  r )  
6 

o f H J  . * a 2  

Proof. Working in  H*rB 0 k we find that 
3' 

Q r ~ ' [ l ]  = Qr[l]* Qr[l] = (x v j*u  .) * (x v k * u r d  
I - J  

b y  Theorem 11.1, symmetry,  and the fact that u. * ui = 0. Thus 

e * ( r , r )  x = v  r 2 v r .  Since JI (vr 5 v,) = ( v i ~  vi) €3 (vj f v-1, We Can 
i.+j = r J 

I 

fo rm the (Newton) primitive elements 

s - l  
bs = s ( v s f  vs) + (v. l ~ . ) b ~ - ~  . 

j = 1  J J 

If s is odd, b = v I v  modulo # -decomposable elements and b has  
S S 

-6 
even degree. In degrees > 2, a l l  even degree primitive elements of H J * @2 

a r e  squares.  Therefore v 2 v r  i s  #-decomposable if r 2 3 i s  odd. 

* 6 
Since H J i s  a polynomial algebra, the squaring homomorphism on i t s  

632 

primitive elements i s  a monomorphism. Dually, the halving homomorphism 

n 
P* : H J' -+ H J' induces an epimorphism, and thus an isomorphism zn a 2  (32 

2r  
if n 2 2, on indecomposable elements. Since P* (vZr f v2,) = v E v 

r r '  

the conclusion follows. 

Lemma 12.9. F o r  r # zq, 3" t t 
r 2r+1 e*x~r+l 

modulo 

6 
# -decomposable elements of H * J B ~  . 

Proof. By the Nishida relations and the proof of Theor e m  12. 5, 

-r+l 2r 2r 
= t  ~ : ~ d ~ " t ~ ~  = Q  t ,  P t 2r+,,  and P* x = x 

4r+l  21-4-1 

Thus, by t h e  argument of the previous proof, i t  suffices to prove the resul t  

when r i s  odd. Similarly, if 2q ~r-i-1, 

By the special cases  cited in  the proof of Theorem 12.5, i t  suffices to prove 

- 4 
the resul t  when r = 3. Since t 

3 = e*x(2, 1) 
is primitive, C2 t i s  also 

3 

primitive and i s  therefore of the fo rm a q  + br7  , where 
7 



Clearly, the coefficients a and b can be read off from a calculation of 

.- 4 
Q t3 modulo r-decomposable elements. Theorem 11.1 implies that 

e*x(2, 1) = q 3 = v 3 + v  2-  * v  1 + v l * v l * v  1 '  

The mixed Cartan formula, Proposition 1.5 (in particular x- [0] = 0 if 

-r -. 
degx>O),  Theorem11.1, andthefact that  Q v s = O  if r > O  and s > O  

-4 
imply that, modulo r-decomposable elements, Q (vl * vl 5 vl) z 0 , 
- 4 
Q v = 0, and 

3 - 4 4 4 
Q (v2?v1) = Q (v 7 )  *[I] E Q V  *[ - I ]  = u + V  

2 1 3 7 7 '  

-4 
Therefore a = b = 1 and Q t3 = q7 + r7. We must still calculate q 4- r 

7 7 

modulo # -decomposable elements. Recall from the proof of Theorem 12.5 

that p = pi + x Since p = x modulo # -decomposable 
3 (2, 1). 2s+l - 2st l  

elements, the formulas for Steenrod operations in the cited proof imply 

that 
z e x  + e x  modulo # -decomposable elements. 

e * ~ i s + l  * 2s+l * ( s t l ,  s) 

s-1 
Since p1 = sx + )3 xj * p:-j , Theorem 11.1 implies that 

j = 1  

e x - - 
e*Pis+l = * 2sfl - 

v 
2sf 1 + U2s+l 

modulo 5- decomposable elements 

Therefore - 
e*Pis+l - 92s+l + r2s+l 

and 

e x + e x  modulo j$ -decomposable elements. 
92s+l r2st1 * 2sfl * (s+l,  s )  

We shall also need the following consequence of the previous lemma. 

~ 2 r 4 - 2 ~  = 
+ e x  Grollaryl2.10.  Fo r  r # z q  Q 2 r -  t4r+2 * 4 r + 2  modulo 

6 
4 -decomposable elements of H J . * 632 

d2r+2t 
Proof. Certainly Q 2r at 

4rf2 be*x4r+2 
for some constants 

a and b, and we see that a = b = 1 by applying /3 to both sides. 

I 

j13. The homology of BCokerJ, BSF, and BJ at p = 2. 
- @- 

1 Until otherwise specified, all homology and cohomology groups are  

to be taken with Z2 coefficients. Again, all spaces and spectra a re  to be 

1 Precisely a s  in Section 10, we can now exploit our understanding of 

.6 e .H*SF - H J~ to compute H B(SF; J~ ) as a sub Hopf algebra of *' * €92 * 
I 
I 

H*BSF. We first specify certain elements of H*SF which lie in the kernel 

I of e*. Here there a re  two different choices available according to whether 

i we choose to use the description of H*SF given in Theorem 5.1 or  in 

1 Theorem 6.1. For each I = (J, K), l (K)  = 2, such that x I E X (as in 5. 1), 

- J ,., 
write 2 = Q xK for the corresponding element of X (as in 6. 1). There 

I 

a re  unique elements 

1 - 
* I = e*xI and e 'z = e x and we define such that e z * I  * I '  

YI = xI + zI and * y1 = XI + z I ' 

The following sequence of results gives a complete analysis of the behavior 

I on mod 2 homology of the diagram 



Our f i r s t  resul t  i s  an immediate consequence of Theorems 5.1 and 6 .1  

and the observation that E 2  = Em in the Eilenberg-Moore spectra l  sequence 

converging f rom Tor  
H*(F/O) 

(Z2, Z2) to H*B(F/o). It i s  recorded in  o rde r  

to clarify the counting arguments needed to prove the following two results ,  

which implicitly contain alternative, m o r e  geometrically based, descriptions 

of H*BSF and H*B(F/o). 

and 

Theorem 13.1. As Hopf algebras, 

H*BSF = H ~ B S O  g~ E{ glx(s, s) I s 2 1 g~ ABZ 

H*B(F/O) = H*BSF//H*BSO = E{U x I s 2 1) €3 A B ~ ,  * (s,  8) 

N 

where BX ={a ] P(I) > 2 and e(1) > 1 o r  ~ ( 1 )  = 2 and e(1)) 1). * I 
6 

Theorem 13.2. The image of H*B(SF: j ) in  H*BSF (under q*) 
2 

is the tensor  product of the following three  sub Hopf algebras: 

E u * ( ~ , )  I 2 3 and r # zql 

r > 3 and r # 2 4  
~ { ~ * ' ( r + i ,  r )  1 - 

P 1 I 2 2 and e ( ~ )  2 2 ; I # (2sn+2s , zSn)) . 

Moreover, 
u*"(r, r )  = u*x(r , rl and, if r = 2'(2n+l), 

The resul t  remains t rue  with u 7 replaced by u y in the th i rd  algebra. * I * I 

Theorem 13.3. The restrict ion of (Be)*:H*BSF - H*BJ~ to the 
632 

sub Hopf algebra 

@ P{u*x I s 21 and n L 1 )  
(zSn+zs, zsn) 

of H*BSF i s  an  isomorphism. 

C o r o l h r y  13.4. (BG)*: ~ * B s p i n &  - H * B J ~ ~  i s  a monomorphism and 

6 6 
H*BJB2 ' H * B S P ~ ~  €3' €3 P{u*e*xZs 1 s 2 01 8 E{u*tZS 1 s 2 11 63 P{u*~ 1 s 2 i] 

2 $1 

@P{r*t 2 (2n t l )  1 s 2 1  and n z l }  

Corollary 13.5. The sub coalgebra r {u a 1 s 2 0) of H*BSO * zS 
maps isomorphically onto H*K(Z2, 2) under the composite 

Corollary 13.6. The sub Hopf algebra 

E{uf ] s Z 1) 8 P{oj;t ] s 2 11 @ P{u*t 1 s 2 1  and n 2 1 )  
2 2 +I 2 (Znti)  

of H B J 6  maps isomorphically onto H ~ B S O ~  under the natural  map. * €32 8 
I 
1 Proofs. Write { E ~ X  ) fo r  the Eilenberg-Moore spectra l  sequence 

2 H*X 
converging f rom E X = Tor  (Z2, Z2) to H*BX. By Theorem 12.5, the 

1 composite 

2 o> 6 
is an isomorphism. Thus E SO €3'  lit^ / r 2 2) G E'P = E J 

€32 8 2  ' 

By Lemma 12.9, 4 t z r t 1  = (u*tr)' + ( ~ e ) * u * x ~ ~ + ~  if r # zS, and this 

implies Theorem 13.3. Corollary 13.4 follows in view of Corollary 12.6. 

Theorem 13.3 implies that E 2  = Em i n  the S e r r e  spectral  sequence of 

6 
B(SF; ji ) - BSF - BJa2 and thus that $r i s  a monomorphism. The sub 

Hopf algebra of H*BSF specified in Theorem 13. 2 certainly l i e s  in  the 

image of q* and i s  a l l  of this image by an  obvious counting argument. The 

formulas fo r  a y and u 1'5: a r e  immediate f rom Lemmas 12.8 * (r ,  * ( r ~ i ,  r )  



2 
and 12.9. Recal l that  E S O =  r { u  a } = E ~ S O  and E r n s o =  H*SO a s  * r 

a coalgebra. This makes sense of Corollary 13.5, which now follows easily 

f rom the f i r s t  sentence in the proof of Theorem 12.5. Note that only the 

odd degree generators of H*BSO a r e  in  the image of u* since 

u a * 2r+l  
= ( a 2  fo r  r 2 2. Finally, Corollary 13.6 holds since the 

2 6 
analogous asser t ion for E2J' * E BSO holds by the proof of 

(82 QD 

Theorem 12.5. 

In the remainder of this section, we shall  analyze the behavior of the 

diagram (*) with respect to higher torsion. Henceforward, {Erx} will 

denote the mod 2 homology Bockstein spect ra l  sequence of a space X. We 

begin by identifying those par ts  of {E~BSF} which a r e  already determined 

by the formula B ~ s i i  = s Q', the fact that u*P = Pu*, and the general  

formulas fo r  higher Bocksteins on squares  given i n  I. 4.11. We need a 

lemma. 

Lemma 13.7. h2it2x(i, i) i s  # -decomposable in  H*SF fo r  all i. 

i i -i i 
Proof. x(. .) = Q Q [l]* 1-31, and Q ~ Q ~ [ ~ ]  = Q Q [l] by Lemma 1.9. 

1,1 

-1 a2i+l-i 
As pointed out in the proof of Lemma 2.7, Q [-31 = 0, Q = 0, and 

Q2i+1 i - 
Q - 0. In the evaluation of N2if2x Q by the mixed Cartan formula, 

(i, i )  
-2i i i 

all t e r m s  not zero  by these facts o r  by I. 1. l( i i i)  have either Q Q Q [ l ]  o r  

2i i i 
Q Q Q [-31 a s  a *-factor and a r e  therefore #-decomposable by 

Propositions 6.4 and 6. 6. 

The following two propositions should be regarded a s  egtablishing 

notation and identifying cer ta in  differentials in  {E~BSF).  F r o m  this point 

of view, the proofs a r e  immediate f rom I. 4.11 and the lemma. That the 

s p e c t r e  sequences { Er} and { Er} do actually embed a s  stated in  the 
0 1 

various spect ra l  sequences {E~x} (with no relations and no interference 

f rom other differentials) will emerge f rom la te r  counting arguments. 

Proposition 13.8. Define a spectral  sequence { O ~ r }  by 

zr-2 
with = (PIY) [(\Y)(P~*Y) + G2qPr*Yl if deg Y = 2q-1, 

where y runs through the union of the following two sets: 

{'?,I 1 = (Zs, J), 41) odd, 41) 2 3) and {T(2i, 2i- 1 i ?21, 

-2q the e r r o r  t e r m  Q Pu*y being zero  for all y in the second set. Then 

{ Er} i s  a sub spectra l  sequence of {E~BSF} which i s  the image of an  
0 

isomorphic copy of { E i n  {E~B(SF;  j62)} and which maps onto an  iso- 
0 

morphic copy of { Er} i n  {ErB(F/O)}. 
0 

Proposition 13.9. Define a spect ra l  sequence { Er} by 
1 

2 zr 
E l  = * ( 2 ,  ) 1 8 E i ~ ~ + ~ ( u * x ( ~ ,  1 fo r  r 2 1, 

with Pr+1("*x(2, 1) IPr  = ( u * * ~ ( ~ ,  I) ) 2 r 1 ( u x l ,  ) Then { l ~ r )  i s  a sub- 

spectral  sequence of {E~BSF) which maps onto an isomorphic copy of 

{ l ~ r }  in  {E'x} for  x = BJ @ Z a  ' BBSO' and B(F/O). 
8 2 '  

To calculate the portions of the various Bockstein spectral  sequences 

not determined by the results  above, we require information about the 

f i r s t  Bocksteins i n  H G J  ' and about the higher Bocksteins on the ele- 
692 

ments u x in  H*BSF. It i s  immediate f r o m  the definition of the * ( Z i ,  2i) 

elements t. E H BJ ' (above Corollary 12.6) that 
(82 

Pu*t . = 0 and pu t = 0 for j? 2 and fitrLif2 = t 4i+2 = t4i+1 for i 2 1 .  
2J * 2j+l 

The remaining Bocksteins Pu*t = v e x  for  s 2 2 * * 
2 (2n+i) ( ~ ~ n i - 2 ~  - i , zsn) 

and n 1 1 could 'in principle be  determined by direct  calculation of 



e x * modulo #-decomposable elements. We prefer to obtain 
( ~ ~ n - i - 2 ~  - i , zsn) 

partial  information by means of the following theorem, the proof of which 

gives a new derivation of Stasheff's results  on the torsion i n  BBSO [31]. 

Write f fo r  the image of t in  H*BBSO 
6 

r - € 3 .  
- 

Theorem 13.10. If i # 2J, then pcr*tZi = u 7 F o r  2 g r i 0 3 ,  * 2i-1 ' 

- - - ) zS- i  s t i  
where ? - 4if i  - u*t4i f.("*t&+2)(u*t &+i if 4 i = 2  (Znfi), s k i  

and n 2 1 .  

Proof.  By the Adams-Priddy theorem [2], B B S O ~  i s  homotopy @ 
equivalent to BBSO. By Bott periodicity, there  i s  a fibration sequence 

TT * 2 
BBSO -2 BSpin + BSU, where IT i s  the natural  map. Since rr (c.) = wi, 

* * 
a standard calculation shows that H BBSO= ~ { e .  I i ) 3 ) ,  where e = L w. 

i 

I 
if i # 2'4-1 and where e . = S q  e3, I = (2'-', 2j-2,. . . ,2) ,  r e s t r i c t s  to 

zJ+i * 
an indecomposable element of H SU. This specification of the e implies 

i 

that pe = e' if i # 2' and that pe 
2 = e . = 0 if j z i ,  while 

2i 2iSi 
2jti+i zJ+l 

- - 
pe3 = e4 since pu t = cr t by  Proposition 13.9. Therefore 

* 3  * 2  

- - 
Obviously pcr*tqi i s  ei ther 0 o r  u*t4i-1 = (u*t4nSl)2S if 4i = ~ ~ ~ ~ ( 2 n t l )  

- 
(u*t&ti 

being indecomposable if n = 2q and being (u$2n)2 otherwise). 

2 
We have just determined E BBSO 

2 $ E E BBSO additively, and an easy 

- 
counting argument shows that we must  have f3u*t4i # 0 for i $ There- 

2 * 
fo re  E BBSO' ha& the stated form. Since H (BBSO; Q) i s  c lear ly  an 

(29 
exteri0.r algebra on one generator i n  each degree 4iS1, i 2 1 ,  the r e s t  i s  

The determination of P cr x 
r * (2i, 2i) 

is the central  calcufation of 

Madsen's paper [ib], and we shall  content ourselves with a sketch of his 

2 OD 
proof. Recall that E BSO = E BSO i s  a polynomial algebra on generators 

d4i (of degree 4i) such that ( d  = d4j @ d4i-4j . Let 
4i 

i- 1 
2 

pdi = id t d4jp4i-4j be  the ith non-zero primitive element of E BSO 
4i  j = i  

(which i s  dual to w in E2BSO). 
2i 

Theorem 13.11. In {E~BSF),  p2u~x(2i, 2i) = 0 and 

P3"*x(2i, 2i) = ( B ~ ) * ( P ~ ~ ) .  

Proof. Intuitively, the idea i s  that the differentials in  {E~BSF} 

a r e  specified in Propositions 13.8 and 13.9, except for  determination of 

the p cr x hence p cr x must  be (Bj) (p ) fo r  some r 
r * (Zi, 2i) ' r * (2i, 2i) * 4i 

OD 
(perhaps depending on i )  since the re  is no other way that E BSF can be 

tr ivial .  In H*Q~SO, 

2i 2i-i p , ( ~ ~ ~ [ i ] *  Q2'[1]) = QZi-![I] * QLi[l] t Q Q [I]. 

Therefore p x can be calculated directly (modulo #-decomposable 
2 ( Z i ,  2i) 

elements and the image of p). The resulting computation, which Madsen 

ca r r i ed  o& but did not publish, yields P cr x = 0. Madsen's 
2 * (2i, 2i) 

published proof of this fact re l ies  instead on analysis of a2*: H*J -+ H*SF, 

for  a suitable choice of a , and use of { E ~ J )  (see Remarks ,li. 2). Thus 
2 

r 2 3 .  Madsen proves that r = 3 by a d i rect  chain level calculation. 

* 
Alternatively, an  obvious dualization argument yields c l a s ses  in  H (BSF; Z ) 

2' 

which pull back to  the mod 2r reductions of the Pontryagin c lasses ,  and the 

equivalent c la im (to r = 3)  that the Zi6  Pontryagin c lasses  of vector bundles 

a r e  not f ibre homotopy invariants can be verified by geometrical example. 

The previous results ,  together wi th the  cohomological analog of 1.4. 11 immediate f r o m  the differentials in  Proposition 13.9 and counting arguments. 



= zp. + EZqpZ if deg z = 2q and (3 r = zp r-1 . if r >2) and our  mod 2 

calculations, suffice to determine the Bockstein spect ra l  sequences of a l l  

spaces i n  sight and the natural  maps  between them. Certain of the rele- 

vant spect ra l  sequences a r e  most  naturallly described in cohomology, and 

we shall  not introduce the extra  notation necessary  to state the results  

obtained in  homology by double dualization; appropriate formulations may 

be  found in [ib]. We collect results  before proceeding to the proofs. 

- 1 
Write q* y E H*B(SF; j 2) fo r  the inverse  image of an  element 

y E Im q*C H BSF. * 
Theorem 13.12. ErB(SF; ji) = E r  for  all r > 2, while 

0 

- 1 -1 - 
@ PC pzq* u*Y(2i, 2i) I1 3 

- 1 6 - 1 
where p q 

2 * u*'(~i, 2i) 
i s  represented in H*B(SF; j2) by q* pg fo r  

4 i f l  

a cer ta in  element g E H*BSF. 
4iSl 

Theorem 13.13. {E~BSF)  = { o ~ r }  @ { i ~ r } @  where 

2 3 2  
E = 2E = E  BSO@E{u x i >1) and p u x 

2 * (2i ,2i)/  - 3 * (2i, 2i) = (Bj)*(pqi). 

The dual spect ra l  sequence { E ) i s  specified by 
2 r 

The elements u x map to permanent cycles in  H*B(F/O) and, fo r  r 2 2 ,  * (2i, 2i) 

ErB(F/O) = o ~ r  €9 l ~ r @  E { % X ( ~ ~ ,  2i) I i 21) .  

Theorem 13.14. {E'BJ&~} = i l E r }  @ j4Er), where 

2 2 
3 
E @ 4 ~ 2  = E B S O @ E { U * ~ ~ ~  1 i = 2j, j 2 0 )  @E{fqiii 1 i Z 3 ,  i f 2') , 

B2f4i+1 
'= (BeBj) (p ) if i f 2' , and B3u*t4i = (BeBj) (p .) if i = 2' . * 4i * 41 

- 
Here.  f = (Be)*(gqif1) maps to  4i+l 

E H*BBSO~ and i s  primitive in  
4i+ I @ 

E'BJ 
692 ' 

The dual spect ra l  sequences { E ) and { E ) a r e  specified by 
3 r 4 r 

and 

2 * 6 
where w 2i E H B g 2  survives to (BeBj)*(pqi) i n  E 2 BJ 632' 

s f  1 Proofs. Theorem 13.10 implies that if 4i = 2 (2n+l), s 2 1 and 

n 2 1 ,  then 

u e x  * * (2s+ lnt2s+l s f  1 = Pu*t4i = u*t4i-l + a 4i u * e * x 4i-1 
-1, 2 n) 

for  some constants a (which could be, but have not been, computed 
4i 

explicitly). By the general  definition of the 7 i t  follows that 
I' 

Theorem 13. 2 and the fact that ( u * ~ ~ ~ - ~ ) ~  = u;i;x4i-i imply that if 1 l k <s, 

then,  with m = 2nf1, 

An obvious cancellation argument then shows that 



where g i s  defined by 4 i t1  

g4iti = u*x s+ i  s t 1  
( z ~ ~ ~ ~ + z  , 2  n) 

(u*x(2nt~,  ~ n ) ) ( ~ * ~ ( ~ n t i ,  2n) 

It i s  now a simple mat ter  to prove Theorem 13.14. We have 

Obviously pf = 0 (as could also be verified directly, by use of Lemma 4 i t1  

12.9). Therefore E'BJ~ i s  a s  specified. Since u e x = 0 for  
@2 * * (2i, 2i) 

j 3 6 
i # 2 , by Lemma 12.8, ( ~ e ~ j ) * ( p ~ ~ )  must  be zero  i n  E BJ €32 by 

Theorem 13.11. The only way this can happen i s  if P2f4i.ti = (BeBj)*(p4i). 

On the other hand, P34t4i = (BeBj)*(p4i) if i = 2' since then 

t4i = u*e*x(2i, 2i) In view of Proposition 13.9 (and the cohomological 

formulas cited above), Theorem 13.14 follows by a counting argument. 

Theorems 13. 12 and 13.13 also follow by counting arguments, but the 

details a r e  considerably l e s s  obvious. We claim f i r s t  that H*BSF can be 

writ ten a s  the tensor product of the following algebras,  each of which i s  a 

sub differential algebra under P. Algebras written in  t e r m s  of elements 

-6 
come f rom subalgebras of H*B(SF; j2) and algebras written i n  t e r m s  of 

I 

elements x map isomorphically onto subalgebras of H*BP 
I @2 ' 

where z ranges through the union of the following four sets: 

(a) d(1) even, 1 = (2s. J). e ( ~ )  2 4 ,  I + ( ~ ~ n t ~ ~ ,  zSn)} 

(b) {u*YI]1 = (zStin t 2'+2, 2Snt2S. zSn), s 2  1 and n > i) 

- 
In (ii), note that pu 7 * (Zi, 2i-1) = u*Y(2i-~,  2i-1) 

by Theorem 13.2. 

2 
Clearly (i) and (ii) together have homology E under P, (iii) has homo- 

0 
2 

logy 1E , (iv) has homology E', and (v) i s  acyclic (because 
2 

"Hk 2 
pQ z = (Q  z) ). In (v.b), with m = 2nt1, 

4 

by Corollary 12.10, hence @u*YI = u*y by Theorem 13.2. 
( ~ ~ m t i ,  zSm) 

To check the claim, consider H a s  a generic notation (varying with q), 
k 

Ho 
le t  H be empty (so that Q z = z) and observe that, modulo decomposable 

0 

and 

Hk "kt i 6 e Q u,x 
-% 

t Q u*x 
(2Sn+2s, zsn) (2'm+2, 2'm) 

s s s  where 4i  = ~ ~ ~ ~ ( ~ n t l ) ,  I = ( ~ ~ ' ~ n f  2' + 2,2 ni-2 , 2 n), and m = 2n t i .  

Together with the elements u x * f rom (v. c), these elements 
(zS+2, 2') 

-Hk account for a l l  of the generators of the fo rm Q x in  
( ~ ~ n t ~ ~ ,  zsn) 

Theorem 13. i (by an  amusing and, in  the case  s = i ,  unobvious counting 

argument).   he r e s t  of the verification of the claim is straightforward 



l inear algebra based on Theorem 13.1 and the definition of the 7 The 
I' 

6 claim clear ly  implies that the image of H*B(SF; j2) in  H*BSF i s  the 

tensor  product of the algebras l isted in  (i), (ii), (v. a), and (v. b) with the 

Theorems 13.12 and 13.13 now follow f rom the observation that, for  r 2 2 ,  

0 
E r  and E r  contain no non-zero primitive cycles in  degrees 4i (by in- 

1 
- 1 

spection of Propositions 3.8 and 3. 9). Certainly P2q* u*y(2i, 2i) i s  a 

2 6 -1 - 
non-zero primitive cycle i n  E B(SF; j2), since P 2$i: u*Y(2i, 2i) = 0 would 

- 1 
be incompatible with Theorem 13.11, and q* pg4i+ is the only candidate. 

This proves Theorem 13.12. The description of {E~BSF) given in  

Theorem 13. 13 i s  correct  since the observation implies the required splitting 

of spect ra l  sequences (compare [16, p. 721). Finally, the description of 

{E~B(F/o)) i s  qorrect  since the observation implies that the u x * (2i, 2i) 

map to permanent cycles in  H*B(F/o). 

The following consequence of the theorems explains what i s  going on 

integrally in  the crucia l  dimensions. 

6 
Corollary 13.15. F o r  i # zJ, the sequence HqiB(SF; j2) -e HqiBSF -+ 

6 
H4iBJQ2 

of integral  homology groups contains a short  exact sequence 

where the Z in  H B(SF; j;) i s  generated by an  element r which 
4 4i 4i 

- 1, reduces mod 4 to p q y the Z8 in  H BSF i s  generated by 
2 * (2i, 2i) ' 4i 

(Bj)* (P4i) (pqi being the canonical generator of the group of primitive 

6 
%(r4i) ?. 2(Bj)+(pqi), and the Z in  H4iBJ@2 i s  gene'rated by 

4 

( B ~ B ~ ) * ( I J ~ ~ ) .  

Proof. Choose an integral  chain x E C4i+lB(SF; j2) such that 

- 1 
dx = 4y md the mod 2 reduction of x represents  $i: u*'(2i, 2i) The 

mod 4 reduction of y represents  p - 1, 
2% '(~i,  2i) 

(by an abuse of the 

notation p ). Of course,  dq*x = 4 % ~ .  Since P u 7 
2 3 * (2i, 2i) = (Bj)*(~4i)2  

there  i s  an integral  chain z e C BSF such that dz = - 2 % ~  + 4p, so  
4i+l 

that d(%x + 22) = 8p, and the mod 2 reduction of p represents (Bj)*(pqi). 

The conclusion follows. 

Remark 13.16. In cohomology with Z coefficients, there  a r e  c lasses  
8 

4i 4i t h  
in H BSF which res t r i c t  in  H BSO to the mod 8 reduction of the i 

Pontryagin class.  Our resul ts  c lear ly  imply that there exists such a c l a s s  

4i i n  the image of ( ~ e ) * :  H ~ ~ B J ~  -+ H BSF if and only i f  i = 2j, although 
632 * 

t he re  i s  such a c lass  whose mod 4 reduction is in the image of (Be) fo r  

a l l  i. This fact makes explicit analysis (e. g . ,  of the coproduct) of such Z 
8 

Pontryagin c lasses  for  spherical  fibrations ra ther  intractable. 

elements of H fib  torsion), the Z in  H BSF i s  generated by 
4i 2 4i 
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THE HOMOLOGY OF -SPACES, n 2 

F r e d  Cohen  

The construct ion of homology operations defined f o r  the homology of f i n i t e  

loop spaces p a r a l l e l s  the  construct ion of homology operations defined f o r  the  

homology of i n f i n i t e  loop spaces, with some major differences.  To r e c a l l ,  

the operations f o r  i n f i n i t e  loop spaces a r e  defined v i a  c lasses  i n  the homol- 

ogy of the symmetric group, C Working a t  the prime 2, Browder [24], gen- 
j' 

e r a l i z i n g  and extending the operations of Araki and Kudo [ I ] ,  found t h a t  an 

appropriate  skeleton of B C ~  may be used t o  describe na tura l  operations 

which allow computation of H*(~*'z*'x;~) a s  an algebra. Dyer and 

Lashof [a], using s imi la r  methods, subsequently obtained p a r t i a l  analogous 

r e s u l t s  a t  odd primes. However, comparison of the r e s u l t s  of Dyer and Lashof 

1 n+l 
t o  Milgram's computation [20] of I&(e C X) a s  an algebra made it ap- 

parent  t h a t  the skeleton of BC i n t r i n s i c  t o  the geometry of the f i n i t e  
P 

loop space f a i l e d  t o  give s u f f i c i e n t  operations t o  compute I&(~*'z*'x;z ) . 
P 

To be precise,  only l /p -1  times t h e  r e q u i s i t e  number of operations (defined 

i n  t h i s  paper) may be described using the  methods of Dyer and Lashof. 

I n  addi t ion,  there  is a  non- t r iv ia l  unstable  operation i n  two var iab les ,  

In, which was invented by Browder; the  method of using f i n i t e  ske le ta  of BC 
P 

does not lend i t s e l f  t o  f inding the re la t ionsh ips  between An and the other 

operations. These re la t ionsh ips  a r e  espec ia l ly  important i n  determination of 

f i n e  s t r u c t u r e  and our l a t e r  work i n  I V .  

An a l t e r n a t i v e  method f o r  defining operations seemed t o  be prwided  by 

n+lsn+l. 
the composition pa i r ing  and the p o s s i b i l i t y  t h a t  I$(n , Z ) i s  univer- 

P 

s a l  fo r  Dyer-Lashof operations. I f  n  = w ,  t h i s  method works i n  p r inc ip le ,  

but it f a i l s  almost completely i f  n  < w :  It i s  shown i n  I V  16 t h a t  there  

a r e  f i n i t e  loop spaces with many non- t r iv ia l  Dyer-Lashof operations f o r  which 

the composition pa i r ing  i s  t r i v i a l .  



The observation of Boardman and Vogt t h a t  the space of l i t t l e  (ri-l-1)-cubes 

a c t s  on (nt-1)-fold loop spaces, together with May's theory of i t e r a t e d  loop 

spaces [GI, led ane t o  expect t h a t  the  equivariant  homology of t h e  l i t t l e  

cubes ought t o  enable one t o  define a l l  r e q u i s i t e  homology operations i n  a 

na tura l  s e t t i n g  analogous t o  t h a t  provided f o r  an i n f i n i t e  loop spaces by BC P' 

This is the case. I n  addi t ion,  one can describe e a s i l y  understood construc- 

t ions  with the l i t t l e  cubes which, when linked with May's theory of operads, 

enable one t o  determine the  commutation r e l a t i o n s  between a l l  of the  operations, 

and between the operations and the  product, coproduct, and Steenrod operations 

on the  homology of i t e r a t e d  loop spaces. 

Knowledge of t h i s  f i n e  s t r u c t u r e  is  e s s e n t i a l ,  fo r  example, i n  t h e  analy- 

s i s  of the composition pa i r ing  and the  Pontr jagin r i n g  &(SF(n f 1);Z P ) fo r  

a l l  n and p i n  I V .  Indeed, a l l  of the  formulas i n  111. 1.1-1.5 a r e  ex- 

p l i c i t l y  used there.  A fu r ther  app l ica t ion  of the f i n e  s t r u c t u r e  is  an imprwe- 

1 nt-1 
ment [28] of Snai th 's  s t a b l e  decomposition for  x X [25]. 

We have t r i e d  t o  p a r a l l e l  the format of I a s  c lose ly  a s  possible ,  point ing 

out e s s e n t i a l  differences.  Sections 1-4, which a r e  analogous t o  I. 1,2,4, 

and 5, contain the computations of &~*'c~'x and QCelX, n > 0, together 

with a catalogue of the  r e l a t i o n s  amongst the operations. 

I n  more d e t a i l ,  Sect ion 1 gives a l i s t  of the  commutation r e l a t i o n s  be- 

tween a l l  of the operations, coproduct, product, and between them and the  

Steenrod operations, conjugation, and homology suspension. The re la t ionsh ip  

between Whitehead products and the kn is a l s o  described. ' 

Section 2 contains the d e f i n i t i o n  of c e r t a i n  a lgebra ic  s t ruc tures  na tura l ly  

suggested by the  preceding sect ion;  the f r e e  versions of these a lgebra ic  s t ruc-  

tu res  a r e  constructed. 

we compute % ; ~ * ' z ~ ~ x  i n  sec t ion  3, using the r e s u l t s  of sec t ion  1 and 

2. The associated Bockstein s p e c t r a l  sequences a r e  a l s o  computed, and the in-  

2 2 t e r e s t i n g  coro l la ry  t h a t  H*(O C X;Z) has p- torsion prec i se ly  of order p i f  

H*X has no p-torsion i s  proved. Using the r e s u l t s  of sec t ion  3 together 

wi& May's approximation theorem [GI ,  we compute H*CelX i n  sec t ion  4. We 

use these computations t o  prove the  group completion theorem i n  sec t ion  3. 

I n  sect ions 5-11> the  equivariant  cohomology of the  space of 1ittl.e 

(nt-1)-cubes a s  an algebra over the  Steenrod algebra is  computed i n  order t o  

s e t  up the theory of operations described i n  t h e  previous sect ions.  Here we 

replace the  l i t t l e  (nt-1)-cubes by the  configurat ion space ~ ( l g n f l , ~ )  which 

has the same equivariant  homotopy type of the  l i t t l e  cubes [GI. The crux of 

our method of computation l i e s  i n  the ana lys i s  of the  (non- t r iv ia l )  loca l  co- 

* e f f i c i e n t  system i n  the Leray s p e c t r a l  sequence EE 't fo r  the  

After  summarizing our r e s u l t s  and giving the def in i t ions  of the operations 

Srtl i n  sec t ion  5, we compute the  unequivariant cohomology of F(R ,p) i n  sec- 

t i o n  6 .  

We analyze the ac t ion  of the symmetric group on the  indecomposables i n  

cohomology i n  sec t ion  7. To obtain complete understanding of the loca l  co- 

e f f i c i e n t  system, we a l s o  completely analyze t h e  r e l a t i o n s  i n  the cohomology 

algebra of F(RnC1,p) a s  an algebra w e r  the Steenrod algebra. 

We completely describe E: of the s p e c t r a l  sequence together with a l l  

of the d i f f e r e n t i a l s  i n  sec t ions  8 and 9. The "extrau c lasses  present  i n  

E:'* a r e  e s s e n t i a l l y  the  obstruct ions t o  the construct ion of a l l  r e q u i s i t e  

homology operations v i a  the method of Dyer and Lashof. One of the main too ls  

* fo r  computation here is  a vanishing theorem f o r  
E2 which is prwen  i n  sec- 

t i o n  10. 



An automorphism of F(R*',~) which commutes with the  C -act ion i s  
P 

described i n  sec t ion  11 and is  used t o  compute the  prec i se  algebra s t r u c t u r e  

* ~ ( P l . p )  
of H ( ;Zp). Of course, t h e  s p e c t r a l  sequence only provides such 

CP 
information up t o  f i l t r a t i o n .  The methods used here generalize: We s h a l l  

give a descr ip t ion  of &F(M, j )  and Et; f o r  more general  manifolds, 

M, i n  [30]. 
'j 

The l a s t  6 sect ions a r e  occupied with the der iva t ion  of the  f i n e  s t ruc-  

ture .  F i r s t  we must obtain i n f o r k t i o n  concerning-the s t r u c t u r e  maps Y of 

the l i t t l e  cubes [GI i n  unequivariant homology. Using the  methods of sec t ion  

7, we a r e  a b l e  t o  compute Y* on primit ives  i n  sec t ion  12. This ca lcu la t ion  

is  c r u c i a l  t o  l a t e r  sect ions.  

I n  sec t ion  13, we prove our statements about the  obstruct ion t o  the con- 

s t r u c t i o n  of the  homology operations using the joins  of the  syrmnetric group. 

The homological p roper t i es  of the  Browder operation, together with its r e l a -  

t i o n  t o  the  Whitehead product, a r e  a l s o  derived here. 

Because of c e r t a i n  r e c a l c i t r a n t  behavior of the  space of l i t t l e  (d-1)- 

cubes, n < a, one must f i n d . s l i g h t l y  more geometric methods t o  compute the 

r e s t  of the f i n e  s t r u c t u r e  described i n  Theorems 1.1, 1.2, and 1.3. Section 

14 contains a sketch of the  methods and the  c r u c i a l  a lgebra ic  lemma. 

The commutation of the operations with homology suspension is derived i n  
I 

sec t ion  15. The proof is  non-standard i n  the  sense t h a t  we do not  construct  

an equivariant  chain approximation f o r  the  space of l i t t l e  (d-1)-cubes, but 

r a t h e r  use the  methods described i n  sec t ion  14. 

The remaining proper t i es  of the  operations, except f o r  the  unstable  ana- 

We a l s o  include an appendix giving the  descript ion of the homology of 

the  c l a s s i c a l  braid groups, t h i s  information being i m p l i c i t  i n  sec t ions  3-4. 

Here, we describe the  homology of these groups with Z Q, and Z-coefficients 
P ' 

(with t r i v i a l  ac t ion) .  I n  the  case of X the ac t ion  of t h e  Steenrod alge-  
P' 

bra i s  a l s o  completely described. 

Several c r u c i a l  papers of Pe te r  May a r e  re fe r red  t o  a s  [A], [GI,  and I 

i n  the  t e x t  and bibliography. A discussion of these papers i s  contained i n  

the preface t o  t h i s  volume. 

The r e s u l t s  announced i n  [26 and 271 a r e  contained i n  sec t ions  1 through 

5. 
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1. Homology operat ions on cn+l-spaces, n 2 0 

A l l  spaces a r e  assumed t o  be  compactly generated and Hausdorff with 

non-degenerate base point .  A l l  homology is  taken with Z -coef f ic ien t s  
P 

unless  otherwise s t a t e d .  Modifications required f o r  t h e  case p = 2 

. a r e  s t a t e d  i n b r a c k e t s .  

k e c a l l  from [GI t h a t  a &+l-space (X,O) is  a space X together  

with an ac t ion  of t h e  l i t t l e  cubes operad, on X; Yn+,[rl .- 

n+l-~paces. I n  t h e  following theorems, we denotes t h e  category of 

assume t h a t  all spaces a r e  i n  rn+l[t]. Proofs w i l l  be  given i n  sec t ions  

12 through 17. 

Theorem 1.1. There exist homomorphisms QS: HqX -f Hq+2s (p-l)X 

[HqX -f Hq+sX], s 0, 'for 2s - q < n [s-q<n] which a r e  n a t u r a l  with 

respect  t o  maps of pn+l-spaces and s a t i s f y  t h e  following proper t i es  : 

(1) QSx = 0 i f  2s < degree (x) [s < degree (x)], x E H&. 

(2) QSx = xP i f  2s = degree (x) [s = degree (x)], x E H*X. 

(3) QS@ = 0 i f  s > 0, where 9 E H 0 X is  t h e  i d e n t i t y  element. 

(4) The ex te rna l ,  i n t e r n a l ,  and diagonal Cartan formulas hold: 

(5) The Adem r e l a t i o n s  hold: i f  p 2 2 and r > ps ,  then 

i f  p > 2, r L p s  and B i s  t h e  mod p Bockstein, then 

rt-s-i i 
Q ~ B Q '  = 1 (-l)r+i (pi-r,r- (p-1)s-i) B Q Q 

. i 



r+s-i i - - l i i - - 1 ,  r - s -  Q 89 . 
I 

( 6 )  The Niskida r e l a t i o n s  hold: Let P::H*X -+ H*X be  d u d  t o  pr 

where pr = sqr i f  p '= 2. Then 

s-rt' i 
P=Q' = 1 ( - 1 . 1 ~ ~  (r-pi, s (p-1)-pri-pi) Q Ip* , 

i 

s-rti+i 
p;8QS = 1 (-1) *i (r-pi , s (p-l)-pr+pi-i) 8Q * 

i 

s-rt' i + 1 ( - ~ ) ~ + ~ ( r - p i - l , s  (p-1)-pr+pi)~ %*B. 
i 

(The c o e f f i c i e n t s  a r e  (2, j ) = i f  i > 0 and j > 0 , 

(i,O) = 1 =  ( 0 , i )  i f  i L 0 ,  and ( i , j )  = 0 i f  i < 0 o r  j < 0.) 

Compare Theorem 1.1 with Theorem 1.1 of [I]. 

'Remark 1.2. When X = an+%, t h e  QSx were defined, f o r  p = 2, by 

Araki and Kudo [I] ,  and i n  t h e  range 2s - q 5 n/p-1, x E H X, f o r  
4 

p > 2, by Dyer and Lashof [8].Milgram1s ca lcu la t ions  1201 ind ica ted  

t h a t  there  were operat ions defined in t h e  range 2s - q I n  f o r  p > 2. 

The "top" operat ion and i ts Bockstein, f o r  2s - q = n [s-q=nl has 

exceptional p roper t i es  and w i l l  be discussed below. 

We note  t h a t  Dyer and Lashof used t h e  (n+l)-fold j o i n  of , & 
denoted . J n + l ~  i n  t h e i r  construct ion of t h e  QS. However, any 

P' 

C -equivariant map J n+1 
P Cp -+ gn+l(p) is  e s s e n t i a l  ( see  s e c t i o n  13) .  

Consequently, t h e r e  is an obs t ruc t ion  which prevents t h e  construct ion 

of a l l  t h e  QS of Theorem 1.1 by use of t h e  i t e r a t e d  j o i n s  of C 
P' 

This obs t ruc t ion  a r i s e s  from t h e  presence of Browder operat ions,  

which a r e  r e l a t e d  by t h e  following commutative diagram t o  t h e  Whitehead 

product: 

[ , ] denotes t h e  Whitehead product,  O* t h e  n a t u r a l  isomorphism and 

h* t h e  Hurewicz homomorphism. (We a r e  using i n t e g r a l  c o e f f i c i e n t s  i n  

t h i s  diagram.) We hold t h e  proof of c o m u t a t i v i t y  i n  abeyance u n t i l  

s e c t i o n  13. 

Theorem 1.2. There e x i s t  homomorphisms An: HqX @ HrX + Hq+*X which 

a r e  n a t u r a l  with respect  t o  maps of gn+l-spaces and s a t i s f y  t h e  following 

propert ies:  

(1) I f  X is a gn+2-space, hn(x,y) = 0 f o r  x, y E H*X. 

(2) A ~ ( X , Y )  = xy - (-llqryx f o r  x E H X, y E H,X. 
4 

(3) An(xYy> = (-1) q*l*'qt*l'\(y,x) f o r  x E H q x and y E H ~ X ;  

X (x,x) = 0 i f  p = 2. 
n 

( 4 )  An(+,x) = 0 = X (x,+) where $ E H X i s  t h e  i d e n t i t y  element of 
n 0 

H*X and x E H*X. 

(5) The analogues of t h e  ex te rna l ,  i n t e r n a l ,  and diagonal Cartan formulas 

hold: 

\(x O y ,  x '  @ y ' )  = ( - l ) l x l i ( l y l f n ) n ' @  A (y ,y l )  n 

+ (-1) I Y ~ ( ~ x '  I + ~ Y '  I+ n) h;l(x,xl) 0 YY' 



where 1 z 1 denotes t he  degree of z ;  

Xn(xy,xly') = x hn(y,x')yl 

+ (-1) Jy l  Cn+IuJ) )in(x,xl)yy' 

+ (-1) l ~ l ~ n + l ~ l + l ~ l ~ ~ ~ ~  

+ (-1) I ~ l ( ~ ' l ~ l ~ l ~ l )  + I"l(n+lxl) h ( x l , y r ) y  

i f  Jtx = Ex' @ x" and Jty = Cy' @ y". 

(6) The Jacobi Ident i ty  (which i s  the analogue of the  Adem Relations) 

holds : 

(-1) (qtn)(scn)An[x,An(s,z)l + (-1) 

+ (-l)(sm)(rtn))in[z,)in(xyy)] = 0 

fo r  x E H X, y E HrX, and z E HsX; hn[x,An[xyx]J = 0 f o r  a l l  
4 

x i f  p = 3 .  

(7) The analogues of the Nishida re la t ions  hold: 
. . 

p~An(x,y> = 1 ~ n [ ~ ~ x y ~ ~ ~ ~ ;  and 
i+j =s 

B hn(x,y) = hn(kx,y) + (-l)"'lXl An(x,By) where x,  y E H*X. 

(8) ~ ~ [ x , Q ~ y ]  = 0 = X ~ [ Q ~ X , Y I  where x, y E H,X- 

We next discuss the  "top" operation, En, and its Bockstein. The 

operation 
)in 

i s  analogous t o  the bracket operation i n  a Lie Algebra; 

En i s  analogous t o  t he  r e s t r i c t i on  i n  a r e s t r i c t ed  Lie algebra. 

Theorem 1.3. There ex i s t s  a function Cn: H X +  H 
4 P q f n ( ~ - l ) ~  

[HqX + ' H ~ ~ + ~ x ]  defined when n + q is even [for  a l l  q] which i s  

na tura l  with respect t o  maps of ~n+l-spaces, and s a t i s f i e s  the 

f ollawing formulas, i n  which ad (x) (y) = A (y ,x) , 
n n 

i 
zidn(x) (y) = adn(x) (ad:-'(%) (y) ), and in(x)  is defined, f o r  p > 2, 

by the formula in(x)  =Ben (x) - adP-'(x) (Bx) : 
n 

n+q 
2 

(1) If X i s  a & n+2-space, then En(x) = Q (x) [En(x) = Qn*(x)], 
n+ 

hence C (x) = BQ3x, f o r  x E H X. n 9 
n+s 

(2) I f  we l e t  Q x [Qn+%] denote E (x), then En(x) s a t i s f i e s  
n 

formulas (1)-(3), (5) of Theorem 1.1, the external  and diagonal 

Cartan Formulas of Theorem 1.1(4), and the  following analog of 

the  i n t e rna l  Cartan formula: 

where the r . .  a r e  functions of x and y specif ied i n  sect ion 
'-3 

13; i n  par t icu lar ,  i f  p = 2, 

(The in t e rna l  Cartan formula f o r  ~ ; n  follows from those f o r  ED 

and )in.) 

(3) The Nishida re la t ions  hold: 

(x) = 1(-1) (r-pi, y(p-1)-p-i)  Qm-*$& 



where m = , & = n + 1x1 and t h e  second sum runs over 

all sequences Ckl, ..., i p )  such t h a t  il + ... 
+ i~ = r y  

\ \ - .  < i , > 1, and a runs over a complete 
e 

s e t  of d i s t i n c t  coset  represen ta t ives  f o r  

Ckl-l XEk2-k1 x . . . x c ~ - ~  L L-1 i n  Cp-l . 
n+s 

2 
I f  p > 2 ,  P=<,(X) = P ~ B Q  (x) (which i s - g i v e n  by Theorem 

(4)  An(x,Cny). = ad;(y>(x) and An(xYGn~) = 0 f o r  x ,  Y E H*X. 

k l  jr k r  idi (x) (y) = la&: (x) adn (y) . . . adn (XI adn (y) ( 4  f o r  1 l i l P - 1 
n 

where t h e  second sum runs over a l l  sequences 1 ~ l , k l , . . . , j r , k r )  

such t h a t  jl 2 0, ke 21, and jL 21 i f  > 1, and 

C j, = i - 1, Ck = p - i. (Compare ~ a c o b s o n ' s  Formula [12,p.187] 1 

f o r  r e s t r i c t e d  L i e  Algebras. ) 

(6) gn(Ex) = kPgn(x) f o r  k E Z whenever cnx is  defined. 
P 

I f  X = an+%, we have t h e  following theorem r e l a t i n g  t h e  pre- 

viously described operat ions t o  t h e  homology suspension 
'I, 

a*: H*an+% * H*Q='Y. 

Theorem 1.4. I f  X = an+%, then 

(1) o*qS (x) = QSo,(x) , x E H*X. 

(2) u,SnCx) = 5n-1(o*x) , x E H*X. 

(3). a*X (x,y) = \-l(a*x, ' 5 * ~ ) ,  X 3  Y E H*X. n 

(4) I f  is simply connected and x E H 0 5  transgresses  t o  
4 

y Hq-1 an+% i n  t h e  Ser re  s p e c t r a l  sequence of t h e  path f i b r a t i o n ,  

then QSx, 6qSx, 5n-l(x) , and .5n-l(x) t ransgress  t o  qSy, 

even, then xp-l @ y l l t ransgressesl l  t o  -cl(y) . 
d q(p")(xp" o y) = -cl(y); and i f  p > 2,  n > 1, and 

q = 2 s  , xP-I @ y "transgresses" t o  -~q'(y),  

q(p-l) (,p-' qP y) = -BQSy 

The Hopf algebras  H*Q~+% admit t h e  conjugation x = C*, where 

C i s  t h e  standard inverse  map, and we have t h e  following formulas. 

n+ 
Proposi t ion 1.5. on H$ 4, 9.x = iQs , gnx = x ~ n  , cnX = x ~ n  if 

P > 2, and xXn(y,z) = -An(xy,xz). 

Remark 1.6. I n  t h e  sequel ,  we s h a l l  o f ten  use t h e  no ta t ion  * t o  denote 

t h e  Pontr jagin product i n  homology. 



2. Allowable Rn-structures, n>O 

We describe some a lgebra ic  s t r u c t u r e s  which a r e  n a t u r a l l y  suggested 

by t h e  r e s u l t s  above. We r e s t r i c t  a t t e n t i o n  t o  t h e  cases n > 0 here. 

We s h a l l  consider 72 -modules and w i l l  usua l ly  assume t h a t  they a r e  
P 

unstable  A-modules, i n  the  sense of homology, where A is t h e  Steenrod 

algebra.  

Recal l  t h e  d e f i n i t i o n  of admissible monomials i n  t h e  Dyer-Lashof 

algebra,  R, [ I ,  821 and l e t  Rn(q) be t h e  Z -subspace of R having 
P 

addi t ive  b a s i s  

IQ'I I admissible, e(1) q ,  2 sk < n + q [sk < n + q] 1 .  

IJe do not  g ive  R (q) any addi t iona l  s t r u c t u r e  y e t .  n 

Def in i t ion  2.1. A Z -module L is a r e s t r i c t e d  A;-algebra i f  
P 

t h e r e  is a homomorphism An: 
Lq @ 

-t Lqtrtn and funct ions 

En: L -t L 
4 pqfn(p-1) 

[En: L + L2qfn], and, i f  p > 2, 
q 

en: L -t L f o r  n + q even such t h a t  t h e  L ie  analogs 
q pq+n(p-11-1' 

(3) and ( 6 )  of Theorem 1.2 and t h e  r e s t r i c t i o n  analogues ( 4 ) ,  (5),  and 

( 6 )  of Theorem 1.3 a r e  s a t i s f i e d .  

Remark 2.2. A r e s t r i c t e d  A -algebra is  a general izat ion of a r e s t r i c t e d  
n 

L i e  algebra i n  t h e  presence of an addi t iona l  operat ion f o r  odd 

primes. 

Defini t ion 2.2. A 72 -module M is an allowable Rn-module i f  the re  
P 

a r e  homomorphisms 

f o r  0 5  2s < q + n  [s < q + n J ,  such t h a t  Q' = 0 f o r  2 s <  q[s  < qJ 

and t h e  composition of the  QS s a t i s f i e s  t h e  Adem r e l a t i o n s .  M i s  an 

allowable ARn-module i f  M i s  an allowable R -module with an A-action 
n ' 

which s a t i s f i e s  t h e  Nishida r e l a t i o n s .  M i s  an allowable AR -algebra 
n 

if M is  an allowable AR -module and a commutative algebra which s a t i s f i e s  
n 

t h e  i n t e r n a l  Cartan formula and (2) and (3) of Theorem 1.1. M is  an 

allowable AR A -m a l ~ e b r a  (with conjugation) i f  M is a monoidal Hopf 
n n 

algebra (with conjugation).which s a t i s f i e s  t h e  p roper t i es  of Theorems 1.1, 

1.2,  and 1.3. I f  M has t h e  conjugation, X, then M i s  required to  

s a t i s f y  Propostion 1.5. 

Remark 2.3. Since t h e  coproduct appl ied t o  An requires  t h e  presence of  

products (formula 1.2 (5)) ,  we have chosen not t o  define separa te  not ions 

of allowable AR A -algebras o r  coalgebras. Also, because of t h e  mixing 
n n 

of t h e  En ,  en, Q', and An i n  t h e  presense of products and coproducts 

(formulas 1.3(2)  ), we must bu i ld  t h e  desired proper t i es  of our s tzuc tures  

i n  f i v e  separa te  s tages.  

To explo i t  t h e  global  s t r u c t u r e  suggested by our d e f i n i t i o n s ,  we 

describe f i v e  f r e e  functors  ( l e f t  ad jo in t s  t o  t h e  evident f o r g e t f u l  

functors)  Ln, Dn, Vn, Wn, and G. Note t h a t  G has been defined i n  

[I, 921. The o ther  functors  a r e  defined on ob jec t s ;  t h e  morphisms 

a r e  evident .  

Ln: 22 -modules t o  r e s t r i c t e d  A -algebras: Given M, l e t  L M denote 
P --- - n 0 

t h e  f r e e  r e s t r i c t e d  L i e  algebra generated by M. (Explici t ly ,  LOM is 

t h e  sub-Lie algebra of T(M) generated by M where T(M) is t h e  tensor  

algebra of M.) I f  p > 2, def ine L M =' s-kos~ @ (el) ( s - k  o~M) where 1 - 
s M  is a copy of M wi th  a11 elements r a i s e d  one higher degree, s kOsn 



i s  a copy of L s M  with all elements lowered one degree, and (il) (S-%~SM) 
0 

has 72 -basis consis t ing of elements (gl) (x) of degree 2pq-2 f o r  each x a 
P 

b a s i s  element of S-%~SM of degree 2q-1. I f  p = 2, s e t  L M = s-toos~. 
1 

Induct ively,  def ine L M = S-'L s M  f o r  n > 1 and make LnM i n t o  a 
n n-1 

r e s t r i c t e d  A -algebra by s e t t i n g  A (x,y) = s-%n-l(sx,sy), 
n n 

-1 -1 
En(x) = s 5 n - 1 ( ~ ~ ) ,  in (x)  = -S iP1(sx) and An(xYiny> = 0. 

We f u r t h e r  describe c e r t a i n  elements i n  L M. x E M is a 
9 

An-product of weight 2. Assume t h a t  A -products of weight j have 
n 

been defined f o r  j < k.  Then a An-product of weight k is  any 

X (a,b) where a and b a r e  A -products such t h a t  n n 

weight (a) + weight (b) = k. x E M is  a b a s i c  An-product of w e i ~ h t  L. 

Assume t h a t  t h e  b a s i c  A -products of weight j have been defined and 
n 

t o t a l l y  ordered amongst themselves, j < k .  Then define a b a s i c  

An-product of weight t o  be any A (a,b) such t h a t  
n 

(1) An(a,b) i s  of weight k ,  and 

(2) a < b where a and b a r e  b a s i c  An-products and i f  b = A,(c,d) 

f o r  c and d b a s i c  then c 5 a. 

We include addi t iona l  b a s i c  products not  defined by t h e  above induct ive 

procedure. 

(2 ' )  a = b i f  p > 2 where a i s  a b a s i c  An-product of weight one and 

n + degree (a)  is  odd. 

Remark 2.3. Compare t h e  above not ion of b a s i c  An-product t o  Hil ton 's  

[12 ] o r  Hall' s [ l l b o t i o n  of b a s i c  product. Note t h a t  (2 ' )  i s  not  con- 

ta ined i n  E l t o n ' s  l ist  of c r i t e r i a .  I n  Hi l ton ' s  ca lcu la t ions ,  

A (a,a) = 2a2 i f  degree (a) is odd is "seen" a s  a2 up t o  non-zero 
0 

coef f ic ien t  ( for  p > 2). Since Xo(a,a) t ransgresses  t o  

Al(Ta, ~ a )  i n  the  Ser re  s p e c t r a l  sequence of t h e  path-space f i b r a t i o n  

(T denotes t h e  t ransgress ion) ,  we f i n d  it more convenient t o  count 

2 A (a,a) r a t h e r  than a . ( See [8; page 801. ) 0 

D i :  Z -modules t o  allowable R -modules: Given L, def ine  
P -  n- 

DnL = 1 Rn(q) @ Lq. Let (DnL)j be t h e  subspace of D L spanned 
n 

q2.0 

I 
by {Q @ e l  degree ( I )  + degree (e)  = j}. Then D L is an 

n 

allowable R -module with t h e  ac t ion  of t h e  QS determined by t h e  
n 

Adem r e l a t i o n s  and QS : (D$) + (DnL)j+Zs (p-l) [ (DnL) -+ (DnL) . 1 
J+S 

I g i v e n b y  QS(Q1@L) = QSQ16L. I f  e (1)  < q, s e t  Q B e =  0 i f  

t h e  degree of e is  q. The inc lus ion  of I, i n  D L is given by 
i n 

e - 1 ~ e .  
Vn: Allowable R -modules t o  allowable R -algebras: Given D, def ine 

n -  n 
AD 

V D = -where AD is  t h e  f r e e  commutative algebra generated by D and 
n K 

K i s  t h e  two-sided i d e a l  generated by {$) - QSx I 2s = degree (x) 

[ s  = degree (x)]}. The %-action is determined by t h e  Rn-action on 

D, t h e  i n t e r n a l  Cartan formula and t h e  formulas f o r  as@. 

Wn: Cocommutative component coalgebras over A to allowable 

AR A -=algebras: Given M, l e t  q denote t h e  composite 
n n 

Z + M -+ LnM -+ D (LnM) . Define WnM a s  an allowable Mn-algebra by 
P n 

W (M) = Vn(JDnLnM) where JDnLnM = cokernel q. The product i s  
n 

determined by t h e  product i n  Vn, t h e  i n t e r n a l  Cartan formulas and t h e  

formulas f o r  @ i n  Theorems 1.2 and 1.3. The coproduct and augmentation 

a r e  determined by t h e  diagonal Cartan formulas ( f o r  as, An, Sn, 5,)) 



t h e  augmentation of D L M = Z @ c o k e r ~  and t h e  requirement t h a t  
n n  P 

WnM be a Hopf algebra (one must check t h a t  K is  a Hopf i d e a l  t o  

ensure t h a t  WnM is a.wel1-defined Hopf algebra.) 

The ac t ion  of An i s  given by t h e  ac t ion  of An on L M and n 

t h e  formula An[x, = 0. The ac t ions  of Sn and Gn a r e  given 

by the  ac t ions  on L M and t h e  Adem r e l a t i o n s .  The A-action on M 
n 

together  with t h e  Nishida r e l a t i o n s  determine t h e  A-action on WnM. 

For convenience,we def ine  W H X t o  be  T(H*X), t h e  tensor  algebra 0 * 
of H*X. Here we r e s t r i c t  a t t e n t i o n  t o  spaces X which a r e  connected. 

. . 

By Hi l ton ' s  ca lcu la t ions  we may w r i t e  T(H*X) addi t ive ly  a s  a tensor  

product of polynomial and e x t e r i o r  a lgebras  whose generators  a r e  b a s i c  

Ao-products [12] . 
Remark 2.5. By sec t ion  1, H* Cn+lY i s  an allowable =_An-Hopf 

algebra and H*Q~+% is  an allowable ARnAn-Hopf algebra with 

conjugation. 

3. . The homology of Q ~ + ~ E ~ + ' x ,  n > 0; t h e  Bockstein s p e c t r a l  sequence 

Recal l  t h a t  nu+' Enflx is  t h e  f r e e  (n+l)-fold loop space generated 

by X i n  t h e  sense t h a t  i f  f : iL -+ nn+12 i s  any map, then t h e r e  e x i s t s  

a unique map of (n+l)-fold loop spaces, g: nnfl cn+lx -+ P f l z  such t h a t  

t h e  following diagram is  commutative: 

*n+l n+ Here Q is t h e  s tandard inc lus ion  of X i n  E 5 [G;p.43]. Since 

Q*: H*X -+ H * Q ~ + ~ C ~ " X  is  a monomorphism, H * Q ~ + ~ c ~ + ~ x  ought t o  be an 

appropriate  f r e e  functor  of  H,X. That i s ,  t h e  c lasses  i n  H*X should 

play an analogous r o l e  t o  t h a t  of t h e  fundamental c lasses  in the  ca lcu la t ion  

of t h e  cohomology of K ( r  ,n) 's . 
By t h e  freeness  of t h e  functors  Wn and GW,, t h e r e  a r e  unique 

- % 

morphisms Q* of allowable ARnAn-Hopf algebras  and Q* of allowable 

AR A -Hopf algebras  with conjugation such t h a t  t h e  following diagram is 
n n 

commutative, where C X and u a r e  as defined i n  [G; 92 and 551: 
n+l n+l 

- 
Theorem 3.1. For every space X, r)*: fJ H,X -+ H*c X i s  an isomorphism n n+l 

of allowable ARnAn-Hopf algebras. 



2, 
Theorem 3.2. For every space X, 9.: GitnH*X -+ H*Q~+'C~+% i s  an 

isomorphism of allowable AR A -Hopf algebras  with conjugation. n n 

n+ n+ 
Corollary 3.3. cntlX 4 Q % h is a group completion. 

Corollary 3.3 was f i r s t  proven by Graeme Segal[22]  but 

n+lCn+h.  
without a ca lcu la t ion  of t h e  homology of Cn+lX o r  fi 

By [G; Lemma 8.111, C.+~SO = n+l(j). Since [G; Theorem 
j 2 0  c 

- j 
4.81 and [9] imply t h a t  p 2 ( j )  is  a K(B. 1 )  where B. is Ar t in ' s  

J 3 J 
C 
j 

braid group, Theorem 3.1 provides an amusing ca lcu la t ion  of the  homology 

of a l l  t h e  b ra id  groups. More complete descript ions of H*(Bj; M), 

M = Z , z , and [p w i l l  appear i n  t h e  appendix. 
P 

We have two obvious c o r o l l a r i e s  of Theorems 3 . l . and  3.2. 

Corollary 3.4. I f  (X, 8) is a kn+l-space, then 8,: H, Cn+lX+ H*X 

represents  H*X a s  a quot ient  allowable BRnAn-Hopf algebra of t h e  

f r e e  allowable ARnAn-Hopf algebra WnH* X. 

Corollary 3.5. I f  Y i s  an (n+l)-fold loop space, then 

p + l  n+ 
cn+l* : * C 'Y + H*Y represen ts  HAY a s  a quot ient  allowable 

AR A -Hopf algebra with conjugation of t h e  f r e e  allowable ARnAn-Hopf 
n n 

algebra with conjugation GW H*Y. 

Before proceeding t o  proofs ,  we exhib i t  bases f o r  W H*X and GW H*X. 
n n 

Let  n: * -+ X be  t h e  inc lus ion  of t h e  base point  i n  X and l e t  

JH*X = coker TI,. Let  t X  be  a t o t a l l y  ordered b a s i s  f o r  JH*X. We 

def ine  ATnX t o  be  t h e  f r e e  commutative algebra generated by t h e  s e t  

n+ 
~ o t i c e  t h a t  i n  our d e f i n i t i o n  of T n H we denote f n x by Q9x[Qn+qx] 

n+q 
and cnx by B Q  2 x f o r  x E H X. 

9 

I 

2, 
Let  Z NIT X and Z NIT X be a s  defined i n  [G;p.80]. 

P 0 P 0 

T n X = . ( Q L y  

% 

Lemma 3.8. WnH,X 2 AT X @ Z NIT X and GWnH,X ATnX @ Z NIT X a s  algebras .  
n P 0 P 0 

y a b a s i c  X -product, I admissible, e ( I )  + b ( I )  > lyl , I Q  yl > 0; i f  . 
n 

= q, then e(1) ~ q ;  and i f  p > 2,1 = (cl,s l,..., ck,sk) ,  then 

sk. [ I f  I = (sl,. . . , sk) ,  then n + q 5 sk]. 
2 - 

Prcsof: By t h e  d e f i n i t i o n  of Nn and Gign, it s u f f i c e s  t o  check t h a t  t h e  

b a s i c  X -products of weight k span t h e  subspace generated by a l l  
n 

X -products of weight k. By Hi l ton ' s  r e s u l t s  [l2] , t h e  b a s i c  i -products 
n 0 

of weight k span t h e  subspace of L H X generated by a l l  XO-products 
0 * 

of weight k. By the  induct ive d e f i n i t i o n  of L H,X and t h e  d e f i n i t i o n  of n 

b a s i c  X -products, t h e  r e s u l t  follows. 
n 

For our f i n a l  preliminary, we r e c a l l  t h e  ca lcu la t ion  of H*QCX f o r  

connected X. 

Lemma 3.9 [5] . I f  X i s  connected, H*QGX is  t h e  f r e e  assoc ia t ive  algebra 

on t h e  t ransgress ive  elements of H*X i n  t h e  Serre  s p e c t r a l  sequence of 

t h e  path f i b r a t i o n .  

Evidently, H*QCX = W H X a s  an algebra.  
0 * 

Alte rna t ive ly ,  we may use [G; Proposi t ion 2.6(a)] which s t a t e s  t h a t  

(F.C X,Fj-lCIX) i s  an NDR p a i r  f o r  j 1_ 1. Here t h e  r e s u l t  
3 1 



H P G X  = H C X = W H X follows. 
* 1  o *  

Proof of Theorem 3.2: By [I; Lemma 4.61 there  is a homotopy equivalence 

f :  Qnf1Gn+lX + Qntl Cn+lX X n Qn+'Cn+% Qn+\ Cn+'l( i s  t h e  + 0 
n+ n+lx 

component of t h e  basepoint of Q 5 . Furthermore f i s  a map of 

5 5 
Nn X 2 H X r H C"lx 2 nn+4n+1~ 2 n$ 

0 - 0 - n+l 
n+l~n+l~.  Since 

f* : apn+lCn+lx -+ gpn+: G"+'x H * n o Q ~ + ' Z ~ + % ,  = H*Q~+\ zn+lx B z B X, 
P 0 

i t  c l e a r l y  s u f f i c e s  t o  show t h a t  H $ ~ + \  Cn"x 2 ATnX, a s  an algebra. 

We show t h a t  H $ ~ + \  Cn"X 2 AT X by induction on n. TO avoid re- 
n 

p e t i t i o n  we s t a t e  t h e  general  s t e p  and note the  minor modifications 

required i n  case n = 1. 

5 
Obviously X,: H*X + H*CX is  an isomorphism and we may choose 

t C X  ={C,xq l x  E t X ]  a s  a b a s i s  f o r  H*CX where x'  = ' x  -(EX)+. Define 

5 

Wn-l 
H,CX, n 2 1, t o  be  t h e  subalgebra of W H,CX generated by a l l  

n-1 

operat ions on t h e  elements of  t C X  of degree grea te r  than one and, i n  

addi t ion,  t h e  elements derived from non-tr ivial  appl icat ions of the  

E E 
operat ions,  €3 QS,B En, and An on t h e  elements of t C X  of degree 

5 
grea te r  than zero. (Compare our d e f i n i t i o n  of W t o  t h e  d e f i n i t i o n  n-1 

of $ i n  [I; $41, espec ia l ly  i n  t h e  case p = 2.).  Observe t h a t  

[ I ;  4.7 and 4.81 together  with Lemma 3.9 shows t h a t  

2 5 
H*UQC X 2 W  H CX a s  an algebra. Also observe t h a t  i f  our ca lcu la t ions  

0 * 
n n of H$ C X a r e  cor rec t ,  then H * u ~ ~ G ~ + ' x  2 $ l ~ * C ~ .  

2 
We now describe a model s p e c t r a l  sequence {'Er}. Define 'E , a s  

(Observe t h a t  'E2 = Wn-lH*CX @ W H H i f  X is  connected.) Specify 
n * 

t h e  d i f f e r e n t i a l s  by requir ing { 'Er} t o  be  a s p e c t r a l  sequence of dif-  

f e r e n t i a l  a lgebras  such t h a t  t h e  t ransgression,  T ,  is  given by 

a TI adn-x(~nx;) . . . adn-l(E*X;,-l) (C *<)I = adn(%* [-=,.I 1 . . . (%* [-?I 1 , 

I t Q  &x' = (-l)d(l)Q1x*[-$(l)ax], and i f  p > 2 and t h e  degree of Q1x - 

is  2s-I., T ( ( Q ~ E , ~  lP-l e Q'X* r - t ' ' ) ax~  1 = c n  ~ ( I ) + ~ ~ ~ s ~ I ~ *  (1) . 

(Recal l  t h a t  [ax] denotes t h e  component of t h e  element x and t h a t  i f  

[ax] E H QX, x E H$X, then t h e  loop product x * [ax] suspends t o  
0 

E [ax] (a*x) by [I; Lemma 4.91.) It is easy t o  see  t h a t  { 'Er] is  isomorphic 

t o  a tensor  product of elementary s p e c t r a l  sequences of the  forms 

Eiyl O P h y I  and, i f  p > 2, 

denote e x t e r i o r  and polynomial algebras. The elements y run over 

I I 
I 

I admissible, e(1) > degree (x),  degree (Q C*xl) > 1, 1 
< n-l+ 1 C,xf [ [sk ( n-1 + I C*xq I I ,  and of odd degree i n  

S k -  2 

I I case p > 2 

and i f  p > 2, t h e  elements z run through 

I 
{Q%*xf I I admissible, e(1)  > degree (x) ,  degree Q C*x' is  even and 

an algebra, by the  equation 



Note t h a t  t h e  Ser re  s p e c t r a l  sequence behaves a s  i f  t h e  even degree generators 

were generators of t runcated polynomial a lgebras  s ince  dr(xP) = 0 i f  

dr (x) = TX. Clearly 'Em = Z . 
P 

2 2 
Evidently, t h e r e  is  a unique morphisrn of a lgebras  f :  'E -+ E 

such t h a t  t h e  following diagram i s  commutative: 

I I Since A (x,y) = An(xl,y') and Q x = Q x' i f  d ( I )  > 0 ,  [ I. Lemma 4-91 
n J 

implies  t h a t  

u, Xn(x * [-ax], Y * [-ayl) = A ~ - ~ ( c ~ x ' ,  *Y '1 and 

By t h e  n a t u r a l i t y  of a*, t h e  same formula holds f o r  

n n+ 
Note t h a t  t h e  c lasses  C1*x' a r e  not present  i n  H*UQ C 'X i f  x is  a 

zero dimensional b a s i s  element f o r  H*X, bu t  t h e  t ransgress ive  c lasses  

B ~ Q ~ C * X '  and A (C*xl, c , ~ ' )  a r e  present  i n  H * U Q ~ E ~ + %  (although no t  a s  
n 

operat ions) .  

By Theorem 1.4 (commutation with suspension), f O f  induces a 

m 
morphisrn of s p e c t r a l  sequences. Since f @ f is  an isomorphism on E , 

i t  s u f f i c e s  t o  show t h a t  f (base)  i s  an isomorphism t o  show f ( f i b r e )  

is  an isomorphism [15 ; chap. 121. 

Now we show t h a t  our r e s u l t s  a r e  cor rec t  f o r  t h e  case n = 1. Recal l  

2 'L 
t h a t  by previous remarks H*USZE X Z W  H EX as  an algebra. By a s l i g h t  

0 * 
'L 

, modification of 18; p.803, we may w r i t e  W H XX addi t ive ly  as a tensor  
0 * 

product of polynomial and e x t e r i o r  a lgebras  generated by b a s i c  AO-products 

of weight g rea te r  than one and b a s i c  A -products of weight one on t h e  elements 
0 

of t C X  of degree grea te r  than 1. It follows from previous remarks t h a t  

our r e s u l t s  a r e  cor rec t  f o r  t h e  case n = 1. 

The remaining d e t a i l s  follow d i r e c t l y  by induction on n and t h e  

above methods. Compare our proof t o  t h a t  of [ I ;  4.21 and [8; p .80]. 



n+ n+lx 
The Bockstein s p e c t r a l  sequences f o r  R*Cn+<l and R& 

We require  a preliminary lemma concerning t h e  higher  Bocksteins on 

Sn(x) mod 2. 

Lemma 3.10. Let  X E F ~ + ~ [ T ]  and X E  R X, p = 2. Then 
4 

(1) BSn(x) = Qn+q-lx + Xn(x,$x) i f  n + q i s  even, and 

(2) i f  x is  defined, then 6 5 x is  defined i f  n + q is  odd and r n 

BrSnx = X (x,B x) modulo indeterminacy. n r 

Proof: Let a be a chain which represents  x and a (a )  = zrb. Then 

2 
a(en@a ) = [a + (-l)n]en-la a2  + ( - l ) n e n @ a a Q  a + (-l)ntqen@a&' aa 

where e and a have been defined i n  [A: sec t ion  l . a n d  61. Clearly n 

Since -zr 5 ~ ~ ( 2 * ' ) ,  we observe t h a t  

i f  n + q is  even and 

i f  n + q is odd. 

We r e c a l l  t h e  d e f i n i t i o n  of Xn i n  [A; sec t ion  61 and observe t h a t  

(a) implies (1) and (b) implies (2).  

Let  {Erx} denote the  mod p Bockstein s p e c t r a l  sequence of a space 

X. I f  A i s  an algebra equipped with higher Bocksteins, l e t  C E ~ A I  denote 

t h e  obvious Bockstein s p e c t r a l  sequence associated t o  A. By Theorems 3.1, 

3.2 and Lemma 3.8, 

Ery = E ~ A T ~ X  @ HOY where Y = Cn+lX o r  O n+lEn+l X. 

We decompose ATnX i n t o  a tensor  product of algebras which a r e  closed 

under the  Bocksteins. The anomaly f o r  t h e  mod 2 Bockstein implied by 

Lemma 3.10 r e q u i r ~ s  some addi t iona l  a t t en t ion .  

Defini t ion 3.11. Let  t h e  Bockstein s p e c t r a l  sequence of X be given by 

Cr and Dr as  i n  [ I ;  s e c t i o n  41 : Further ,  l e t  Cm be a s e t  of b a s i s  

m 
elements which pro jec t s  t o  a generating s e t  f o r  E X. Let xi E Dr or 

i 

x .  E Cm. Define L (xl, ...,\) t o  be t h e  f r e e  commutative algebra generated 
n 

by a l l  An-products of weight k which a r e  constructed from yl, ...,yk 

where y(J(i) = xi o r  = B r  x i f o r  some f ixed (J E Ek. Observe 

t h a t  by [A; 6.71, t h e  algebras  L(xl,. . . ,$) a r e  closed (modulo indeter-  

minacy) under t h e  higher  Bocksteins. I f  p = 2, f u r t h e r  define Gn(x) 

t o  be  t h e  f r e e  commutative algebra generated by Sn(x) and X (x,B x) 
n r 

f o r  n + 1x1 odd and x E Dr and def ine  Bn(x) t o  be t h e  f r e e  s t r i c t l y  
- 

commutative algebra generated by 5 x. 

We observe t h a t  ATnX may be  w r i t t e n  a s  a tensor  product of algebras 

of t h e  following forms: 

(A) I f  p = 2, 

where i n  ( i )  and ( i i ) ,  I is  admissible, L( I )  ->  1, o r  L(1) = 1, and 



e i t h e r  Q1x # inx o r  i n  case  Q1x = 5 2  we then  r e q u i r e  n + 1x1 t o  

b e  even. (The complications he re  a r e  in t roduced by t h e  i r r e g u l a r  h igher  

J 
Bockstein i n  Lemma 3.10; t h e  case  Q x = 5 x and n + 1x1 i s  odd is  n 

accounted f o r  i n  ( i i i )  below. Here n o t e  t h a t  n + 15 x l  i s  even.) n 

( i i i )  G (x) i f  n f 1x1 is  odd, and 
n 

( iv )  Ln(xl,. . . ,%) where {xl,. . . ,%I runs  over  d i s t i n c t  

s u b s e t s  of elements x .  E D o r  Cm, k / 1. 
I r 

i 

(B) I f  P > 2, 

(5) E 1 ~ ~ x 1  @ p  [BQ1xl, 

( i i )  P [Q1x] @ E [BQ1x] , and 

( i i i )  Ln(xl ,... ,%) where {xl,.. .,%I i s  descr ibed above. 

With t h e  above p r e l i m i n a r i e s ,  we have t h e  fol lowing Theorem. The 

proof is  s i m i l a r  t o  t h a t  o f  [A; s e c t i o n  101 and i s  de le t ed .  

Theorem 3.12. Define a subse t  SnX of  TnX a s  follows: 

(b) p > 2: S ~ X  = iQ1x I Q I X  E T,X, b(1) = 0 ,  1 ~ ~ x 1  even, L(I) > 0) .  

(a) p = 2: 

n 

Then i f  p = 2, 

E e l A T  x = ptyzr 1 y E S XI E ~ B + ~ ~ ~ ~  l Y  E S ~ X I  O E * ~ ~ ( X ~ ~ . - - ~ % )  @E*'G~(x) 
n n 

I 
QIX E T ~ X ,  Q x + cnx i f  n + 1x1 odd, I = (2s ,J) , 

1 ~ ~ x 1  even, L(I) > o I 

and i f  p > 2, 

E~+'-AT,x = p t y p r ~  y E S ~ X I  B E I B ~ ~ ~ P ~  I y s S ~ X I  ~ * t ~ ( x ~ ,  . . . ,%I, f o r  

r j l l  r > 1 where 

Y ( Y $ Y + Q ~ ~ B ~ )  i f p = 2 a n d l y l = 2 q ,  

i f  p > 2, and 

i f  Brt-lx and Brtly a r e  def ined.  Therefore  i f  p = 2 

where {xl, .. . ,%) runs  over  d i s t i n c t  s u b s e t s ,  x C {%,x2} # {x,x} 
i E  rn 

f o r  n + 1x1 odd, and {XI runs  over  Cm where n f 1x1 odd. I f  p > 2, 

where {y, ...,% 1 runs  over  d i s t i n c t  s u b s e t s  o f  elements xi E cm 

Since t h e r e  a r e  only  3 non- t r iv ia l  ope ra t ions ,  cl, cl, and A 
1 

2 2 def ined i n  H*(Q C X; Z ), where deg(Clx) is  odd i f  p > 2, Theorem 3.12 
P 

immediately impl i e s  t h e  fol lowing c o r o l l a r y .  

2 Corol lary  3.13. I f  X has  no p- tors ion p 2, then E AT X = E ~ A T ~ X .  
1 

2 2 Hence t h e  p-torsion o f  H*(Q C X; Z) is  a l l  o f  o rde r  p. 

Observe t h a t  3.13 i s  obviously f a l s e  f o r  ATnX, n > 1. 

Another immediate c o r o l l a r y  of 3.12 is  

Corol lary  3.14. Let  b e  t h e  fundamental c l a s s  of sk, k 2 0 . 
Then 



(a)  E - A T S ~  is t h e  f r e e  s t r i c t l y  commutative algebra generated by 1 and 

i f  n + k i s  odd, An((, I) when p > 2. 

(b) E - A T ~ s ~  is  t h e  f r e e  s t r i c t l y  commutative algebra generated by and 

i f  n + k  is  odd, Sn( when p = 2 .  

Remarks 3.15. It is amusing t o  observe how t h e  complications i n  t h e  Bockstein 

s p e c t r a l  sequence introduced by Lemma 3.10 give r i s e  t o  t h e  i n f i n i t e  

cycles  which must appear. It is,  on t h e  f a c e  of i t ,  surpr i s ing  t h a t  Snx 

when p = 2 accounts f o r  t h e  i n f i n i t e  cycle  corresponding t o  t h e  c l a s s  

\(x,x) when p > 2. Since A,(x,x) = 0 mod 2, Sn(x) i s  "trying" t o  

be  h a l f  of the  Browder operation. 

~ + I . ~ ~ + I . ~ o  = a pi-1 
A remark concerning-3.14 seems approrpiate: a i2 

i Q i+nfl 

n+l Cn+lsO 
i f  i > 0. Clearly "i" 

has a 2 sumnand i f  n C 1 is even 

and i = n. I n  t h i s  case, t h e  obvious map 

is  a r a t i o n a l  homotopy equivalence .with t h e  fundamental c l a s s  of K(P,n) 

corresponding , t o  t h e  Whitehead product [ln+l, L + ~ ]  E a2n+l sn+l. Hence 

our ca lcu la t ions  (3.14) and t h e  remarks i n  sec t ion  1 about Whitehead 

products a r e  a t  l e a s t  reasonable. 

4. The homolow of Cn+lX, n > 0 

We o u t l i n e  t h e  proof of  Theorem 3.1. Consider t h e  commutative 

'L 
diagram a t  t h e  beginning of s e c t i o n  3. Since t h e  composite rl* o G is 

- 
a monomorphism, i t  is immediate t h a t  r ) ,  is  a monomorphism. The 

crux of t h e  proof of 3.1 is t o  show t h a t  < is an epimorphism. To 

do' t h i s ,  we requi re  a t echnica l  lemma (4.3). Conceptually, t h i s  lemma 

s t a t e s  t h a t  611 homology operat ions on gn+l-spaces derived from the  

spaces Fn+l(k) can be expressed i n  terms of t h e  operat ions of  

Theorems 1.1, 1.2, and 1.3. Succinct ly,  the  homology of Cn+lX is  

n+l 
b u i l t  up from H*X, H,TnC1(2), H*(B(B ,p) ; Zp(q)) ,  and homological 

i t e r a t i o n s  of t h e  s t r u c t u r e  map of operads, Y*. 

Before proving Theorem 3.1, we requi re  some preliminary information. 

Observe t h a t  H*X @ . . . @H,X = (H*x)~ has a bas i s  given by A U B 

where 

A = {x @ . . . @ x I x a homogeneous b a s i s  element f o r  H * x ~ ,  

and 

B = {xl 0 . . . @ xk I xi a homogeneous b a s i s  element f o r  B*X, 

x i + x j if i + j f o r  some i and j 1. 

(We do no t  assume t h a t  k is  prime.) Clearly,  t h e  Ck-action on 

induces a permutation a c t i o n  on t h e  s e t  A U B. Let C be 

t h e  subset  of A u B which cons i s t s  of one element from each 

C o r b i t  i n  A u B. I f  x E C,  we l e t  
k- 

Bx denote t h e  Z -submodule 
P 

of (H*x)~ spanned by t h e  Ck-orbit of x i n  A U B. 

k 
Lemma 4.1. For any space X, H* (gn+l(k>x X ) @ ~ ~ ( ~ * y ~ + ~ ( k &  Bx). 

k XEC k 



Let  xEkl denote the  k-fold smash product of X. 

 emm ma 4.2. The quotient  map n * : fn+l(k)xE 2 +Fn+l(k)~.z X [kl 
k k 

F ~ + l ( ~ ) ~ z ~  * 

is  an epimorphism i n  Z -homology. Furthermore, t h e  kerne l  of 
P 

n i  has a & -basis cons i s t ing  of a l l  c lasses  i n  ~ * ( p ~ + ~ ( k ) x  2) 
P Ek 

of t h e  form c@ xl@ . . . @ 5, c E c * T ~ + ~ ( ~ )  and xi = [O] f o r  

some i where [O] denotes t h e  c l a s s  of the  bade-point. 

The conclusions of t h e  following lemma i n d i c a t e  t h a t  any operat ion 

derived from $n+l(k) on t h e  var iab le  x1 @ . . . @ \ can be decomposed 

i n t o  (a) a product o r  Browder operat ion on c lasses  which involve 

operat ions on fewer than k var iab les  o r  (b) a Dyer-Lashof operat ion 

(6€QS, B~S, )  on c lasses  which involve operat ions on fewer than k 

var iab les .  

Lemma 4.3. Let A @ x E H * ( C * F ~ + ~ ( ~ ~  Bx) , k > 2. Then t h e r e  e x i s t s  
k 

some r O x  such t h a t  A @ x = y,(r @ x) , where e i t h e r  

(a) r g  x E H,[c .+Q~+~(~) gn+l(il)xcn+l(i2)) @ x~ B 1 o r  
1 Z X  

(b) ~~1 
P ~ I P  

We prove Lemmas 4.1, 4.2, and 4.3 a f t e r  the  proof of 3.1. 

Proof of 3.1: 

Consider t h e  monad (C n+l, pn+l, associated t o  t h e  l i t t l e  

cubes operad. We w r i t e  u f o r  t h e  n+l-action on C n+lX - 
[G; 9133, Cn+lX is  a f i l t e r e d  space such t h a t  t h e  product * and 

t h e  yWl-action Vn+l r e s t r i c t  t o  

We def ine  an a lgebra ic  f i l t r a t i o n  of W H*X which corresponds t o  t h e  
n 

given f i l t r a t i o n  of 
CnflX 

by giving t h e  image of an element 

Q1@ A E Bn(q) Lq f i l t r a t i o n  $'I)w(A) [w(A) denotes t h e  weight 

of A ]  and requi r ing  W H*X t o  be a f i l t e r e d  algebra. Loosely 
n 

speaking, t h i s  f i l t r a t i o n  is  given by t h e  number of var iab les  (not 

L 
necessar i ly  d i s t i n c t ]  required t o  def ine  t h e  operat ion Q A .  

Transparently F W H X is  spanned by t h e  c l a s s  of t h e  base-point and 
o n *  - 

F W H X = H,X. We observe t n a t  rl* : F W H X + H*Cn+lX f a c t o r s  
I n *  k n *  

through HkFkCnflX s i n c e  every operat ion involving QS, A Ens - n' 

and Pontr jagin products i n  F W H X has already occurred geometrically 
k n *  

i n  H*FkCn+lX. Clearly H*X = F W H X + H*FICn+lX = H,X is  an 
1 n * - 

isomorphism. We assume, induct ively,  t h a t  q,: F.H H*X + H*F C X 
3 n j n+l 

is  an isomorphism f o r  j < k. Define 

$ C ~ + ~ X  = F k c dlx and $W~H*X = F ~ W ~ H * X  

Fk-lCn+lx Fk-lWn H*X 

n o 
Note t h a t  Fk-lCn+lX FkCn+lX.--t E C X is  a cof ib ra t ion  by [GI. k n+l 



We consider t h e  following commutative diagram with exact  rows and 

columns : 

0 0 

'-b 
is  a monomorphism s i n c e  (1) t h e  diagram below commutes, (2) < 

is  an isomorphism, and (3) WnM + GW M i s  a monomorphism. 
n 

We define 9 by commutativity,of t h e  r i g h t  hand square and observe 

t h a t  t o  show t h e  middle < is  an isomorphism i t  s u f f i c e s ,  by t h e  

f i v e  lemma, t o  show 9 is  an epimorphism. 

By lemma 4.2, n; is  an epimorphism. So we consider t h e  a r b i t r a r y  

c l a s s  A @ x E H* (C *rn+l 'P ( k q k ~ x )  and t h e  f o l l o h g  commutative diagrams : 

f o r  *il + i2 = k and 

f o r  k such t h a t  p divides k. 

ByLemma4.3 A @ x = Y * ( T @ x )  f o r  

(b) r @ x  E H ~ ( c * ( ~ ~ + ~ ( P ) x ~ ~ + ~ ( ~ / P ) ~ > @ ~  j C  Bx). I n  case (a) ,  t h e  
P k/p 

diagram ( i )  shows t h a t  v2*(A @ x)  i s  e i t h e r  X1 * X2 o r  An(X1,X2) 

where Xi a r e  c lasses  derived from operat ions on fewer than k variables .  

I n  case (b) ,  t h e  diagram ( i i )  shows t h a t  (A a x )  is  given by t h e  
P* 

E S operat ions B Q ,  BE^,, An and * on a c l a s s  X3 derived from operat ions 

on fewer than k-variables. (Observe t h a t  non-equivariant operat ions 

from gn+l(P) a r e  giving products of i t e r a t e d  Browder operat ions 

by Theorem 12.1.) By our induct ion hypothesis,  Xi E F W H X f o r  
ki n * 

E + k = k o r  pk3 = k. By d e f i n i t i o n  of WnH*X and t h e  f i l t r a t i o n  
1 2  

of W H,X, it is  apparent t h a t  X1 * X2, $(+X2), B ' Q ~ X ~ ,  and n 



0 
~ € 5 2 ~  a r e  present  i n  E W H*X. Hence @ is  an epimorphism and we a r e  

k n 

done. 

Proof of Lemma 4.1: By [15; Chap.XI] i t  i s  easy t o  s e e  t h a t  

k k 
H* (gn+l(k)xC X ) = E * ( c , ~  n + l ( k q  (C,X) ) ) . Since we a r e  working 

k k 
over a f i e l d ,  t h e r e  is  a chain homotopy equivalence i: H*X+ C,X 

given by mapping a b a s i s  element i n  H*X t o  a cycle  which represents  

it. Obviously H*(M%$ ( 8 , ~ ) ~ )  + H*(@$~(c*x)~) is  a homology isomorphism 
k 

where M is  a Ek-module. I f  we l e t  M = c,$ n+l(k), an easy argument 

using t h e  s p e c t r a l  sequence of a covering [IS] shows t h a t  

k H* (c& n+l (k@ (C,X) ) = H, (C,r , (k@ ( H ~ x )  k, . We observe t h a t  
k k 

(H*x)~ = @ Bx a s  Ek-modules and we a r e  done. 
XEC 

Proof .of Lemma 4.2: By [G; 5A.41 ( 2 ,  F) is an equivariant  

NDR-pair where F i s  the  subspace of Hk given by {<xl,. . . ,%> 1 x = * 
i 

f o r  some i }  . Consequently, t h e  inc lus ion  f n+l(k) x F + F n l ( k ) x  Hk 
0 

k Ek 
is a cof ib ra t ion  with cof ib re  EkCn+lX. Clearly 

H , ( C * F ~ + ~ ( ~ %  C,F) = H * ( c , F ~ + ~ ( ~ ~  H,F). Visibly,  H,F is  a 
k k -- 

G -submodule of @ Bx where each b a s i s  element i n  H*F can be w r i t t e n  k 
xEC 

as x1 0..  . @ x i  f o r  some x = [O]. We w r i t e  @ Bx a s  H,F & D 
i XEC -- - 

a s  E -module where D has add i t ive  b a s i s  given by x1 @ . . . 
k Q%J 

x # [O] . The map 
i 

is a monomorphism. Application of t h e  long exact  homology sequence f o r  

a cof ib ra t ion  f i n i s h e s  t h e  proof. 

Proof of Lemma 4.3: Recal l  t h a t  an+l: 
Cn+l 

x -t is  a weak 

homotopy equivalence i f  X i s  connected [GI. I n  t h i s  case 

yk, (A @ x1 @ . . . @ %) i s  c e r t a i n l y  given i n  terms of t h e  operat ions 

@€QS, An, and * on t h e  c lasses  xi. By t h e  d e f i n i t i o n  of these  

operat ions (see s e c t i o n  5 ) ,  

vk,(A@xl@ ... @%) = I * ... * Q Is AI where t h e  A a r e  
r i r Ii 

Browder operat ions on t h e  var iab les  xl, ..., % aod 'f pL(lj)w(AI = k 
j =l j 

(w(AI ) is t h e  weight of hIj ) . I n  p a r t i c u l a r ,  we may express 
j 

11 Q hIl * . . . * 91rh1 by v2*(r@ x1 0.. . o r  v (rOxl o . . . B %), 
r P* 

where @ . . . @ xr has been described i n  4.3. By Lemma 4.2, 

0 
H * ( c * ~  n+l(k% D) + H*EyentlX is  a monomorphism. (D has a Z -basis 

k P 

given by x 1 @ . . . @ %, xi $ [O]. See proof of 4.2). By l e t t i n g  

X = sql . .. V sqk, qi > 0, f o r  appropriate  q i' i t  i s  c l e a r  t h a t  

Y , ( T @ x ~ @  ... @%) = h @ x l @  ... @ %  by t h e  obvious vec tor  space 

considerat ions.  

A d i r e c t  geometrical proof of Lemma 4.3, without reference t o  t h e  

approximation theorem of [ G I ,  should be  poss ib le  bu t  would be formidably 

complicated. 



5. The cohomolom of braid spaces: t h e  d e f i n i t i o n s  of t h e  operat ions 

I n  t h e  next  7 sec t ions ,  we c a l c u l a t e  

H* ( H O I ~ I ~ ( C , F ( E ~ + ~ , ~ )  ; z p ( q ) ) ,  G = ii P o r  P 

where (1) F( IR~+ ' ,~)  is t h e  c l a s s i c a l  configurat ion space of  k-tuples 

of d i s t i n c t  po in t s  injRn+', 

(2) E k  i s  t h e  permutation group on k l e t t e r s ,  

(3) Tk is  t h e  c y c l i c  group of order  k, 

(4 )  C*F(lPfl, k )  denotes t h e  s ingula r  chains of F(&',k) , 

(5) p i s  prime, and 

( 6 )  Zp(q) is  Z considered a s  a E -module wi th  E -action 
P P P 

defined by a . x = (-l)qS(u)x, where (-l)S(u) is  t h e  s ign  of cr E 1 P . 
Since t h e  E -act ion on F@ n+l,p) i s  proper, we may i d e n t i f y  

P 

H* (HOT (C,F(Rn+l ,p) ; Z (2q))) with H* (B (RnflYp) ; Zp) where 
P 

P 

B ( R ~ + ' , ~ )  denotes F(Rn+lyp' [ 15; Chap I V ] .  By an abuse of no ta t ion  E 
P 

* n+l 
we denote H (HOT (C*F(R ,p ) ;  Zp(q))) a s  H*(B(R~+',P); Zp(q)). 

P 

Since $ ( j )  has  t h e  equivariant  homotopy type of F(IRn+', j )  
n+1 

[G: § 41, each c l a s s  i n  H*(B (Rn+lYp) ; Z (q)) determines . a  homology 
P 

operat ion on all c lasses  of  degree q i n  t h e  homology of any (n+l)-fold 

loop space. We simmarize t h e  ca lcu la t ions  and def ine  t h e  operat ions 

i n  t h i s  sec t ion .  

n+l 
The main t o o l  used f o r  ca lcu la t ing  H*(B (R ,p) ; Zp (q))  is t h e  

map of f i b r a t i o n s  

m 
where F(R- ,~)  = Lim + F(Rn+',p), B(R ,p) = '(R; lp )  and ? and f a r e  

n P 
m 

t h e  evident inclusions.  Since F(R ,p) is cont rac t ib le  with f r e e  
m 

-action, B(R ,p) is  a K ( E ~ , ~ ) .  The s p e c t r a l  sequence f o r  a 
P 

covering allows ca lcu la t ion  of t h e  des i red  cohomology c lasses .  Since 

H*(Z,; Z (q)) plays an important r o l e  i n  our ca lcu la t ions ,  we now 
P 

r e c a l l  t h e  following r e s u l t .  

Proposi t ion 5.1 lA; p.1581. 

Let  j: r -t E be  t h e  inc lus ion  given by a c y c l i c  permutation 
P P 

and consider j,: H*(np; zp(q)) + H*(Ep; zp(q)),  p odd. Then 

(i) i f  q i s  even, j*(e.) = 0 unless  i = 2t (p-1) -~ ,  E = 0 , l ;  

( i i )  i f  q is odd, j*(e.) = 0 unless  i = (2t+l)(p-1)-E, E = 0 , l ;  

( i i i )  i f  q i s  even, H*(E Z (q)) = E[v] 0 P[Bv] a s  an algebra, 
P; P 

where v is  a c l a s s  of degree 2(p-1)-1; and 

(iv) i f  q is odd, HX(Ep; Z (4)) has  t h e  add i t ive  b a s i s  { ( f 3 ~ ) ~ $ ~ v ' }  
P 

where v'  i s  a c l a s s  of degree p-2, E = 0 , l  and s L 0.  

To f a c i l i t a t e  t h e  statement of our r e s u l t s ,  we r e c a l l  t h e  d e f i n i t i o n  

of "product" i n  t h e  category of connected Z -algebras. I f  A and B 
P 

a r e  connected Z -algebras, t h e i r  product,  denoted A B, is  defined 
P 

by ( h B )  = A nB i f  q > 0 and (A n B)O = Z with mul t ip l ica t ion  
q q q  P' 



specified by Aq Br = 0 i f  q and r > 0, and by requiring the  

projections AIIB -+ A and AIIB -+ B to  be morphisms of connected 

Z -algebras. 
P 

The following two theorems summarize our resul t s :  

Theorem 5.2. For p an odd p r h e  and n 2 1, 

H * ( B ( R ~ ' , ~ ) ;  Z ) = Anfln I&* as a connected Z -algebra, 
P P 

where Ker f* i s  the  idea l  of H*(Z . Z ) which consists  of all 
P' P 

elements of degree greater  than n(p-1) and, where 

E lo] i$  n + 1 is even 

An+1 = 1 zp 
i f  n + 1 is odd 

fo r  a cer ta in  element a of degree n. Further, t he  Steenrod 

operations are  t r i v i a l  on a and a r e s t r i c t s  t o  an element 

a E H ? F ( I R ~ + ~ , ~ )  which i s  dual t o  a spherical  element i n  t he  homology 

of F (R~+ ' ,~ ) .  

We remark t h a t  by proposition 5.1, I&* is  completely known as 

an algebra over t he  Steenrod algebra. 

Theorem 5.3. For p an odd prime and n 2 1, 

H* (B ( R ~ " , ~ )  ; Z (2q+l)) = Mu @ I&* as a module over H* (E . Z ) 
P pY P 

where Ker f* is the H*(E ; Z  )-submodule of H*(Cp; L (q)) generated 
P P P 

by all elements of degree greater  than n(p-1) and where 

I o i f  n + 1 is even 

Mn-tl - 
Z . A i f  n + 1 is odd 

- i p  
for  a cer ta in  element A of degree (F) which r e s t r i c t s  t o  an 

element T E H~(+)F(&',~) . 
ke remark tha t  the statement implies t ha t  A i s  annihilated by 

a l l  elements of posi t ive degree i n  

Theorem 5.4. For p an odd prime and n 2 1, 

H * ( ~ ' P ~  Zp) = ~ m f *  nC addit ively 
P 

where Imf* i s  a subalgebra over the  Steenrod algebra and is given 

F ~ n + l , ~ )  by the  image of the  c lass i fy ing  map f * : H* (BII~;  Lp) -+ H* ( ( II ;zp>, 
P 

Ker I* is the idea l  of H*(BII Z ) which consists  of dl elements 
P' P 

of degree greater  than n(p-l), and C i s  a subalgebra of classes i n  

H* (F(X *I) ; L ) which a re  fixed under II Furthermore 
P P '  

a. Irnf* = A . Irnf* = 0 where a and A a re  the  images i n  H*( 
P 

of the classes specif ied i n  Theorems 5.2 and 5.3. 

We a r e  deliberately incomplete i n  our descript ion of C because 

n+l there a r e  classes in H*(F(R ,p); Lp) which a r e  f ixed by II . 
P 

but a r e  not i n  C. 

For the  case p = 2, we s h a l l  prove the  following r e su l t  i n  

The next sect ion 



Proposi t ion 5.5. FCRnf1,2) has  t h e  r -equivariant homotopy type of 2 

sn. Consequently B ( R ~ + ' , ~ )  h a s  t h e  homotopy type of R P ~ .  

2 
I n  passing, we note t h a t  B(R ,k) is  a K(Bk,l) where Bk is  

t h e  bra id  group on k s t r i n g s  a s  defined by A r t i n  141 and considered 

by Fox and Neuwirth ko]. This f a c t  l e d  Fadel l  and Neuwirth t o  

t h e  name "braid space" f o r  B(M,k) . 
We dua l ize  t h e  cohomology of the  braid space and l e t  ei be t h e  

homology b a s i s  element dual  t o  t h e  i-dimensional generator  i n  t h e  

image of H*(BCp; z p ( q ) ) ;  a, and A* a r e  b a s i s  elements dual t o  a and A .  

With t h i s  no ta t ion ,  we d e f i n e  t h e  operat ions qS i n  t h e  homology 

of pn+l-spaces p rec i se ly  as  i n  [A:2.2] (see [I: 1.11). I n  addi t ion,  

we have two more def in i t ions .  

Def in i t ion  5.6. 

1. 5 (x) = B * ( e n @ x @ x )  i f  p = 2 ,  and 
n 

@xP) and 

@ xp) i f  n + q is even 

- E 
X E  HX, and p > 2, where y ( 2 j  + E )  = ( - ~ ) ~ ( m ! )  f o r  , j  an 

4 

i n t e g e r  and E = 0 o r  1, m = %(p-1). 

(The consistency of t h i s  d e f i n i t i o n  of 5 (x) with t h a t  given i n  
n 

Theorem 1.3 w i l l  be proven i n  s e c t i o n  17). 

We r e c a l l  t h a t  gn+l(2) h a s  t h e  homotopy type of sn[prop. 5.51. 

Def in i t ion  5.7. 

hn(x,y) = (-I.)~~+' 8*( I @ x  Q Y) f o r  x E H x and y E H ~ X ,  
4 

where is t h e  fundamental c l a s s  of Tnf1(2). 

,. 
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Compare 5.7 with [A; 6.21. 

The reader  i n t e r e s t e d  i n  t h e  p roper t i es  of t h e  operat ions and w i l l i n g  

t o  accept the r e s u l t s  of  t h i s  s e c t i o n  on f a i t h  may sk ip  d i r e c t l y  t o  

s e c t i o n  12. 

We note t h a t  Arnold [ 2 and 3 ] has obtained information on 

* 2 * 2 
a H F(R , j )  and H B(R , j ) .  



n+l 
6. The homology of F(1R ,k) 

The d e f i n i t i o n  and Theorem 6.1 of  t h i s  sec t ion  a r e  due t o  Fade l l  

and Neuwirth [g] . Let  M be  a manifold and define F(M,k) t o  be 

t h e  subspace {< 5 ,..., %> I xi E M, x .  i x i f  i i! ji of $. 
1 j 

There is  a proper l e f t  ac t ion  of Ck on F(M,k) given by 

p ' <xl,. . . ,%> = <X > f o r  p E G k .  Let  B(M,k) 
P - ~  (k) P - l W  '. -. y x  

F(M k) denote - . 
Ck 

Theorem 6.1. [Fadell and Neuwirth] 

Let  M be  an n-dimensional manifold, n 2. Le t  Qo = $ and 

l e t  Qr = Iq1 ,..., qr), 1 2  r < j, be a f ixed  s e t  of  d i s t i n c t  po in t s  

i n  M. Define nk: F(M-Qr,k) + M-Qr by nk < xl., . . ,\> = xl. Then 

nk is  a f i b r a t i o n  with f i b r e  F(M-Qr+l, k-1) over t h e  point  qfil, 

and, i f  k 2 1, nk admits a cross-section Uk. 

lie now s p e c i a l i z e  by l e t t i n g  M = Rn+l and compute t h e  i n t e g r a l  

cohomlogy of F(IRn+l,k). 

k-1 

Lenuna 6.2. Additively, H*F(Rnil-Qr,k-r) = @ 8*(jsn) where j sn  
j =r 

denotes t h e  wedge of j copies of  sn. 

Proof: For t h e  moment, assume t h a t  ?r has t r i v i a l  l o c a l  c o e f f i c i e n t s  - i 

f o r  i 21. Proceed by downward induct ion on r. I f  r = k-1, 

n+l- 
F(R~*'-Q~-,,I) = R Qkel; 

t hus  assume the  r e s u l t  f o r  r and consider 

t h e  f i b r a t i o n  

(Rn"-Qr, k-r) 

I 

I n  the  Ser re  s p e c t r a l  sequence, 

n-1 
By t h e  induct ion hypothesis,  H*) . (R~+ ' -Q~,~-~)  = @ H* ( jsn)  , hence 

j =r 

all d i f f e r e n t i a l s  a r e  zero and E** = E** . Since E2 is  f r e e  
2 - 

Abelian, t h e  concl is ion follows. 

Next, we check t h e  t r i v i a l i t y  of  t h e  l o c a l  coef f ic ien t s .  For 

n > 1, t h e  r e s u l t  i s  c lear .  For n = 1, we need the  following lemma. 

2 Lemma 6.3. The f i b r a t i o n  n : F(R -Qr,k-r) + R'-Q, has  t r i v i a l  l o c a l  

coef f ic ien t s .  

Proof: Again t h e  proof i s  by downwards induct ion on r. The r e s u l t  

i s  c l e a r  f o r  r = k - 1 and, by Proposi t ions 6.4 and 6 . 5 ,  only t h e  

cases r 2 2 requ i re  checking. F ix  r, 2 5 r ( k  - 2, and assume 

2 2 t h e  r e s u l t  f o r  r + I. Consider t h e  f i b r a t i o n  n : F(R -ar, k-r) + R -Qr 

2 2 with f i b r e  F(R -Qfil, k-r-1) . Define a funct ion pi: 1 x R' - Qr + R -Qr 



i n  terms of t h e  following p i c t u r e  where qi = 4(i- l )el  and el is 

t h e  canonical u n i t  vec tor  (1,O): 

\ 
B a l l  of r i d i u s  2 

Figure 1. The funct ion P i 

The funct ion pi r o t a t e s  t h e  2-disc with cen te r  qi contained within 

t h e  shaded 2-annulus by an angle 21rt a t  time t ,  f i x e s  t h e  unbounded 

region ou ts ide  of t h e  shaded 2-annulus, and appropriately "twists" 

t h e  shaded 2 annulus, a t  time t ,  t o  insure  t h e  cont inui ty of pi. 

2 
Define h i (  = p i  q )  ; then hi: 1 + R -Qr i s  a t y p i c a l  generator 

2 
of n l ( ~  - Q ~ ,  q+l). Define a " l i f t "  

2 2 a. :I x F(R -Q+l, k-r-1) + F(R -Qr. k-r) , of hi by 

~ , ( t ,  <zl, . . . , z  k-r-1 >) = < ~ ~ ( t , q * ~ )  , pi(t,z1),. , P ~ ( ~ Y ~ ~ - ~ - ~ )  . 
Obviously t h e  diagram 

combutes on t h e  nose. 

Hi induces a map of f i b r a t i o n s ,  f o r  j 0, 

where H.. <zl, ..., z > = <pi(l,zl),  - • . 3~i( l ,zk-r- j )> and 
11 k-r- j  

- Hij <z> = p . ( l , z ) .  

By defini t ion. , the l o c a l  coef f ic ien t  system f o r  Irr i s  t r i v i a l  

i f  (H. ), = 1, f o r  a l l  i or ,  equivalent ly,  (H. ) * = 1,. We 
1,1 r , l  - 

v e r i f y  t h a t  (H. )+ = l* by an argument involving t h e  maps Hij 
r , l  

and t h e  exis tence of appropriate  cross-sections. F i r s t ,  appealing t o  
- 

t h e  appropriate  p ic tu re ,  we s e e  t h a t  (H. .), = 1,: Let  a, 8 ,  Y, 6 
13 

be t h e  depicted generators  of T~(R'-Q+~,  *) f o r  * outs ide  of 

the  shaded 2-annulus; then t h e  following p i c t u r e  



- 
Figure 2. Hij 

represents 
"i j 

and shows tha t  (1) (Zij)#(a) = 606-', 

-'.-lea6 , and (3) (Tiij))(y) = Y -  Hence ( E - . ) * = 1 * .  
'-J 

Next define cross-sections, such tha t  the  f allowing 
k-r- j a 

diagram commutes fo r  j 2 1: 

2 
Hi. 2 

F (R - Q ~ j ,  k-r- j 1 + F(R -Qrtj , k-r-j) 

la k-r-j ia k-r- j 

Commutativity of this diagram implies the va l id i t y  of Lemma 6.3 v i a  

i t e r a t ed  applications of Lemma 6.2 on the  cohomology algebra of 

2 
F(R - Q ~ j  a k-r-j.) . 

I f  i > 1, the  cross-section defined by Fadell and Neuwirth suf- 

f ices .  Indeed, l e t  ~ ~ , . . . , y ~ - , - ~ - ~  be k-r-1-j d i s t i nc t  points 

1 
on the boundary of a b a l l  of radius - 2 with center a t  the  origin;  

then Fadell and Neuriirth define 

1 I z 1 1  y l , - - - ,  I I z I l  Y ~ - ~ - ~ - ~  > i f  1 1 ~ 1 1  21.  

a <z> = 
k-r- j 

> i f  11~1151.. Y1¶...¶ Yk-r-j-l 

- 
He check tha t  6ijak-r-j = ak-,jHij as  follows: i f  z' 5 1, then 

- 
ak-r-jHij<z> = a <p . ( l ,z )>  = 0 <z> 

k - j  r k-r- j 

= < Z %  l l z l !  Y 1 9 . ' . 9  / l z I I  Y ~ - ~ - ~ - ~ >  

= H a <z> 
i j  k-r-j 

and i f  1 1 ~ 1 1 )  1, then 

- 
ak-r-jHij<z> = a k-r-j <pi(l,z)> 

* 
= H . a  x j  k-r-j <z>. 

To check the case i = 1, l e t  p denote some deleted point out- m 

s ide  of the  shaded 2-annulus (which ex i s t s  s ince r 2 2 ) .  Then define 

a cross-section, a '  i n  a manner s imi lar  t o  the  above. Let 
k-r-j ' 

1 
Y1,..., 'k-r-3-1 be k-r-j-1 d i s t i nc t  points on the b a l l  of radius 7 



center  a t  p and define 
m ' 

1 - u H = g  a' is checked a s  above-and t h e  lemma is  proved. 
k - j j  i j k - r - j  

Next we demonstrate some i n t e r e s t i n g  geometric p roper t i es  of 

F(Rn+lYp) and B ( R ~ + ~ , ~ ) .  

Proposi t ion 5.5. F(Rnf1,2) has t h e  r2-equivariant homotopy type of 

s". Consequently B(Rnf1,2) has  t h e  homotopy type of RPn. 

Proof. Define 

(1) Q:  Sn -+ ~@.',2) by $<5> = <5,-5>, 

n t l -  
(3) 9: F(R~+',z) -+ R (01 by $<x,y> = x-y. 

* * 

Clearly $Q<x> =2x  s o  $$ 14 1. 

n+l 
Define a homotopy G: I x F(Kn+',2) -+ F ( x  ,2) from '$$ t o  1 by 

t h e  formula G(t, <x,y>) = <tx  + (1-t) (x-3) , t y  + (1-t) (y-x),. 

Q induces a map of f i b r a t i o n s  
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with Q given by 7{5)= {<5 , -PI .  By t h e  long exact  homotopy sequence 
- 

f o r  a f i b r a t i o n ,  ($I9 i s  an isomorphism. 

Henceforth, we assume t h a t  p i s  an odd prime i n  our homological 

calculat ions.  The following two r e s u l t s  a r e  paren the t ica l .  

Proposi t ion 6.4. I f  M is  a topological  group, F(M,k) is homeomorphic 

t o  M x F(M-e, k-1) , where e is  t h e  i d e n t i t y  of  bi. 

Proof. This  s i t u a t i o n  is  covered by Fade l l  and Neuwirth's not ion of a - 
"sui table"  space, bu t  t h e  proof is amusing: 

2 2 Prpposi t ion 6.5. F(R -Q1,k) has t h e  homotopy type of S1 x F(R -Q2,k-1). 

(This f a c t  can be generalized t o  XZn f o r  n = 4,8, but  seems t o  be  

i r re levan t . )  

2 2 2 Proof. Define p: I x R -Q1 -t R -Ql by r o t a t i n g  R -Q1 about 
41  

through an angle 2xt a t  time t. p induces maps 

1 2  2 * 1 2  R: S ~ F ( R  -Q2,k-1) -+ F(R -Ql,k) and R: S -+ R -Q2 given by 

R(5 ,<x13.. . = <P (5 ,q2) ,  P (5 ,xl), . . . ,P ( 5 , ~ ~ - ~ ) )  and 

E(5) = P (S,q2). Hence R defines a fibre-wise homotopy equivalence: 



7. Action of \ on H*F(IRnt1.k) 

The geometric ac t ion  E k F ( ~ ~ ' l , k )  f F(Rn+',k) induces a Ek-module 

s t r u c t u r e  on t h e  ( in tegra l )  cohomology algebra H*F(R~+' ,~) .  Evaluation 

of t h i s  ac t ion  allows e x p l i c i t  ca lcu la t ion  of t h e  s p e c t r a l  sequence men- 

tioned i n  s e c t i o n  5 .  

To' determine this a c t i o n  of k on H*(F(Rnfl,k)), we f i r s t  ca lcu la te  

t h e  ac t ion  of a t ranspos i t ion  T = ( r , r f l )  on a b a s i s ,  {aij lk-l>i2jtl}, 

f o r  HnF(Rn+',k). Since H* = (a,)* here,  one then passes t o  t h e  induced 

ac t ion  on t h e  dual b a s i s  {a:j 1 k - l t i 3 2 1 1  f o r  ~ ? F ( l ~ + ~ , k ) .  Since each 

permutation is induced by a map of spaces t h e  a c t i o n  of a permutation in- 

duces an algebra morphism on cohomology and t h e  ac t ion  of a permutation, 

T ,  on a product of indecomposables i s  given by t h e  diagonal map, 

T (aZj a&) = (iaZj) ( ~ a & ) .  This information, together  with a few technica l  

f a c t s  about t h e  product s t r u c t u r e  i n  F(Rnfl,k), i s  enough t o  carry out 

t h e  ca lcu la t ion  of t h e  cohomology of t h e  "braid" space. 

Fatiell  and Neuwirth's work allows us t o  define a 2-basis f o r  

HnF(Rn+l,k), but  a "geometric" change of b a s i s  is  needed t o  a r r i v e  a t  

t h e  c lasses ,  a i j ,  f o r  which t h e  a c t i o n  is e a s i l y  computed. 

We f i r s t  give t h e  b a s i s  a r i s i n g  from Fade l l  and Neuwirth's work v i a  

the  cross-sections of Theorem 6.1. We have t h e  map 

or: Rnfl- F ( R ~ + ' - ~ ~  ,k-r) F(Rnfl,k) which induces an isomorphism of Qr 

H ~ ( R ~ + ' - ~ ~ )  onto a d i r e c t  summand of HnF(Rn",k). Let  

s n = { s l ~ E  Rn", I I C I I = l }  and Q r = l q  ,,..., q }  where q i i 4 ( i - l ) e l ,  

with el t h e  canonical u n i t  vec tor ,  and def ine  6r,i: sn + F(Rn+l,k) by 

6 .<5> = < q  1 , . - -$qr3  0 <5+9.>>. pr,=5> =<q1, - . -3qr ,  ~+qi,Y12'--~yk-r-l >. 
r ~ 1  r 1 

By an abuse of notat ion,  l a b e l  (6 .)* (1) a s  Br , i  where is  t h e  
r, 

fundamental c l a s s  of sn. Clearly {6r,i/ k - 1 . r ~ i . .  i s  a 2-basis f o r  



ntl 
HnF(R Sk). 

We next  def ine t h e  promised "geometric" change of bas i s .  Let  r i L 1 

and l e t  a , :  sn -+ F(RnH,k) be given by a .<f> = <ql,. . . , qr, 
r, 1 

C+qi,qrtl, ...,qk-<. By f u r t h e r  abuse of notat ion,  l e t  a denote r , i  

(ar,i)*(o - 

Lemma 7.1. For F (Rn", k) , 

(1) i f  i > 1, then (Br,,), = (aryi>*, , 

k-l n+l 
(2) i f  i = 1, then (Brailk = (ary1)* +- (-1) (aj,rH)*s and 

J =r+l 
n+l 

(3) { a r , i l k - l ~ r ~ i ~ l )  is  a 2-basis f o r  HnF(R ,k).  

Proof: (3) follows from (1) and (2) .  

(1) : There a r e  paths y . I -+ RnH such t h a t  y .  (0) = y Y .  (1) = qr+j , 
j' 3 3' 3 

I I ~ ~ ( t ) - ~ ~ l j >  1 i f  l<kLr andimage yi f l  image y.. = $  i f  i f  j. 
3 

Let  H: lxsn  -+ F(Rnfl,k) be given by H<t ,S>= <pl,. . . ,pr, S+Pi. 

y l ( t ) ,  . . . , ~ ~ - ~ - ~ ( t ) > .  H y i e l d s  a homotopy between a and Br,i f o r  r , i  

1 .  (2) : Define an embedding Ir: sn + Rnfl- Qk-l whose image is given 

by t h e  following p ic ture :  

Figure 3 .  Embedding of sn i n  Rnfl- Qk-1 

~ e g  vi: sn + gnfl- Qk-l be given by v i < p  = c+q i' 

Subdividing t h e  (nf-1)-disc enclosed by t h e  image of Ir, we have 

Define 6: R ~ + ~ - ~ ~ - ~  + F (RnH,k) by 

and B r  1<5>= <q , . . . , qr, 5+q1, Y ~ , . . . , Y ~ - , - ~ > .  Using t h e  paths of p a r t  
3 

(1) and "stretching" t h e  u n i t  sphere centered a t  t h e  o r ig in ,  we obtain a 

homotopy between 8 and G a I r .  But 6.v1 = ak,l. I f  j~rt-1, define 
r , l  

a homotopy H: sn X I -f F(Rnfl,k) by 

H<S , t>  = <ql,. . . ,qrr  q . + ( l - t ) ~ ,  qrtl,. . . ,qj-tc,q + , . . . ,qk-l>. Then 
J , j  1 
n+l 

c l e a r l y  (G-vj), = (-1) (aj Hence 

k-1 k-1 
= ( ~ - 1 ~ ) ~  = 6*[(vl), + j ~ + l  hi)*] = + j =r+l z (-l)n+1(aj,.+l)*9 

and t h e  lemma is  proved. 

We can now e a s i l y  determine t h e  a c t i o n  of T on {ai; j l  k - k c j 2 1 3 .  

~ r o ~ o s i t i o n  7.2. For F(Rn+l,k), 

= a  
( 1  T r - , j  r , j y  

hence T a = a i f  j < r, 
r r , j  r-1,j 

- - (2) a i l  aiYr, hence r r a .  r , r  = ai,r+l i f  i > r ,  

"+la 
(3) TrarYr = (-1) r , ry and 

(4) r a .  . = a otherwise. 
r r j  i j  

Proof: 

(1): T p r - l ,  j<S>= T r <sly. .  . ,qj , . .  . ,qr-13 5+qj,qr3. -> 

- - <ql,. . . ,qj.. . . .qr-1'9,, 5+qj,. . .> 



= a . < p .  
r13 

(2) : ='r@i,,tl<S'= rr<q13.. . ,qr, 4rf-1". ' ,qi, 5+4,t1'9i+l' ' ' .'9k-1> 

= <ql, ..., qrt13 qr, . . . 'qi' 5+'lri-l' qi+l'. . . ,Clkal>. 

SO r a i,rtl is homotopic t o  a i ,r '  

(3) : T a <S>= r <ql,.. . ,qr, 5+4,, qrfl,. . . , r r,r 'k-1' 

= <q1,..,5 + 4,s qr, 4rf-l'..'> ' 

n+1 
Define ahomotopy H: I x sn-F(R ,k) by 

~ < t , 5 > =  <ql,. . . , qr-l, qr + (1-t)C, q;tS, <qrtl,. . .>. dence 

rr (arjr),  equals  ( - ~ . ) ~ + ' ( a ~ , ~ ) * .  

(4): r a .<5> = T <q 
r i j  l , .--  +lj , - - - , q i '  5+qj, q i f l~ . . ->  . So 

T a is  homotopic t o  a i f  j $: r ,  r + 1 and . i  $: r, r - 1. r i j  i j  

A t echn ica l  r e s u l t  u s e f u l  f o r  l a t e r  ca lcu la t ions  is 

Lenrma 7.3. Let  p E C be such t h a t  p (2i+l) = m, p (2i+2) = a ,  where 

n+l 
m $ : 2 i + l ,  2i+2. Then, f o r  F(lR ,k) ,  

Proof: Immediate from t h e  proofs  i n  proposi t ion 7.2 and t h e  d e f i n i t i o n  

of a 
i j  ' 

Let  a f j  be t h e  dua l  of a . with induced l e f t  Ek-action given by 
xi 

h a * )  (6) = aX(r-% ) f o r  r E Ek.  By inspect ion,  we have 

Corollary 7.4. For F ( R ~ + ' , ~ ) ,  

* * * * 
= a ( 1  r - j  r , j y  hence T a = a i f  j < r ,  r r , j  r-1,j 

a. a. * * 
(2) TraiYrtl = ail&, h e n c e r u .  = a .  i f  i > r ,  r l , r  l ,r i l  

* n+la* 
(3) rrarr = - 1  r r  and 

.' 

= aij otherwise. 

An extremely u s e f u l  r e s u l t  f o r  l a t e r  ca lcu la t ions  i s  t h e  ac t ion  of 

u = rl o...o rk-l, a permutation of o rder  k ,  on t h e  indecomposable-elements 

Corol lary 7.5. For F (R~", k) , 
.' * 

(1) oaij = ai+l,j+l i f  i<k-1, and 

Proof: 

(1): let  k - l > i l j l ;  then 

* * 
r1 o .. . o rk-laij = r1 0.. . o r 

i+laij 

* 
= Tl O.. .  O r. i i + l , j  

(2) : Let  k-1 = i>ill, then 

* * 
r1 o...o ~ ~ - ~ a ~ - ~ , ~  = r1 o ... o r k-2 a k-2, j 

* 
= T 1 ° . m .  O r  j+laj+l,  j 



F i n a l l y ,  we ob ta in  t h e  information about products  required t o  ca r ry  

ou t  t h e  d e t a i l s  of computation i n  t h e  next  sec t ion .  

Lemma 7.6. The following set is  a Z-basis f o r  $)nF(Rntl,k), where 

Proof: By a s l i g h t  modif icat ion of t h e  proof of Lemma 6.2, a b a s i s  f o r  

E2 rfs = &, is  given by 
r,s' 

By Lemma 7.1, B i Y j  = ai,j  f o r  j > 1 and 

Consequently {a* @ . . . @ a? . I l ~ i  < . . . < i <k-11 is  a b a s i s  
i1dl La,, i 1 II- 

f o r  E;", r + s = .&I. Since t h e  S e r r e  s p e c t r a l  sequence is  a s p e c t r a l  

sequence of a lgebras ,  t h e  r e s u l t  follows. 

Lemma 7.7. For F (Rn+l,k) 

* 2 
(1) (a.  .) = 0, and 

13 
* * * * 

(2) a a = - a - a )  f o r  j < k. 

* 2 - 'proof: By equivariance, it s u f f i c e s  t o  check t h a t  (1) (all) = 0,  and 

* * * *  * 
(2) aZ1az2 = -all(aZ1 - aZ2) .  

For ( l ) ,  no te  t h a t  t h e  following diagram i s  commutative 

A - 
where all<5> =<5+q1,q2,. . . ,qk-l> and all<C>= C+ql. Let  i* denote 

t h e  fundamental c l a s s  of IB nil-~l i n  cohomology. Further ,  l e t  

nJ 
a i j  ' Sn + F@~+'-Q 1' k 1 ) b e  given by t h e  formula 

'I, 

aij (5) = <q2,. . . , q j , .  . . ,qi,E + qj ,  q , . . . ,qk-l>. Evidently, 
if1 

* * n J  * 'I, 
1 i f  i = l  . 

Xk-, C \ 1 (aij ( 1) = 1 (nk-,*ai j ( 0 ) = 
0 i f  i o r  j # 1. 

* * 
Hence Tk-l(l ) = consequently, is zero. 

For (2) , consider  t h e  map "k-2: F ( R ~ + ~ - Q ~ , ~ - ~ )  + RT1-Q2- Le t  

A * 
A* 2 - n* (;*.)where y21 F H * ( R ~ + ~ - Q ~ )  is such t h a t  (yZi) = 0 and 'ii - k-2 21 

-* A *  

yZlyz2 = 0. Under t h e  inc lus ion  F ( R ~ + ~ - Q ~ , ~ - ~ )  c I?(Rni1,k), a:i 

r e s t r i c t s  t o  y;i i n  H * F ( R ~ + ~ - Q ~ , ~ - Z )  i n  view of t h e  c o m u t a t i v e  dia- 

gram 

where & 2 , i  <5> = <C+qi,q3,...,qk-l> and 



* * 
consequently , a 2 p Z 2  r e s t r i c t s  t o  zero i n  H * F ( R ~ + ' - Q ~ , ~ - ~ )  and must 

* * 
l i e  i n  t h e  p r i n c i p a l  i d e a l  generated by a .  So a* 21 a* 22 = i,l 1 X i j  a 11 a i j  

f o r  some constants  Xij by Lemma 7.6. Applying rl t o  both s i d e s  

and quoting Lemma 7.5, we f i n d  

I 
because xil = -xi2 and X.. = 0 i f  j > 2. 

ZJ 

Applying r2 t o  both s i d e s  and again quoting Lemma 7.5 and 7.6, we 

* * * * 
f i n d  Xij = 0 i f  i > 2 and Hzl = -1. So uZ1 aZ2 = -all[aZ1 - a;2] 

and the  r e s u l t  follows. 

Proposi t ion 7.8. The Steenrod operat ions a r e  t r i v i a l  on E * ( F ( x ~ + ~ ,  j )  ; E d .  

* 
Proof: By t h e  proof of Lemma 7.7(1), x ~ - ~ ( ~ )  = Hence t h e  Steenrod 

I * 
operations a r e  t r i v i a l  on all. By equivariance and t h e  i n t e r n a l  Cartan 

I 

I 
formula, the  Steenrod operat ions a r e  t r i v i a l  on any monomial i n  t h e  a* i j  ' 

I 

8. The s p e c t r a l  sequence 

To ca lcu la te  H* (Ho? (C,F(R~+',~) ; Zp (4))  ) , we use t h e  s p e c t r a l  
P 

sequence f o r  a covering [7; p.3351: l e t  G be a group, M a Gmodule, 

and X a space on which G a c t s  properly. Then t h e r e  is  a s p e c t r a l  

** * * 
sequence such t h a t  E2 = H (G;H (X;M)) and CE~I  converges t o  

$.(H~~~(c,x;M)) .  Furthermore, i f  M@M1 + M" is  a pa i r ing  of G-modules, 

with M 8  M' given diagonal G o p e r a t o r s ,  the re  is a cup product pa i r ing  

E,@E; + El' of the  associated s p e c t r a l  sequences. I n  our ca lcu la t ion ,  

'G  = C X = F(Rn+l,p), and M = Z (q) a s  defined i n  s e c t i o n  5. The 
P' P 

C -module s t r u c t u r e  of H * F ( R ~ + ~ , ~ )  has been i d e n t i f i e d  i n  sec t ion  7. 
P 

** 
Instead of attempting t o  evaluate  E2 d i r e c t l y ,  where {E,) is t h e  

s p e c t r a l  sequence such t h a t  E;' = H*(Cp; H*(F(R~+',P): zp(q) ) )  and E~ 

I ** converges t o  H(Ho3 (c*F(Rn+l,p) ; Zp(q))),  we study 
I 

E2 , where E2 
P 

i s  the  s p e c t r a l  sequence obtained by replacing C by np, the  c y c l i c  
P 

group of order  p. Then the  r e s t r i c t i o n  i(K :C ): rr + .Z induces a 
P P P P 

morphism of s p e c t r a l  sequences, which, by the  following theorem, i s  a 

monomorphism on t h e  E2-level. 

Theorem 8.1 [7; p.2591 Let  A be a Gmodule and p a prime. Let  

G(F,A,p) denote t h e  p-primary component of G(G,A) and l e t  v be a 
P 

p-Sylow subgroup of G; then 

.' 
i"(a  :C ): G ( G ; A , ~ )  +fi(n ,A) is  amonomorphism. 

P P P 

Since Tate cohomology agrees with ordinary cohomology i n  p o s i t i v e  



degrees, Theorem 8.1 obviously app l ies  t o  t h e  map E;'*- Elry* f o r  

r > 0. The case r = 0 is  obvious. 

We can now immediately i d e n t i f y  a l m o s ~  a l l  of E2 and E; by t h e  

Vanishing Theorem: 

Theorem 8.2. [Vanishing Theorem ] I n  the  s p e c t r a l  sequences {E,] and 

I S y t  = E ~ ' ~  = o f o r  s > o and o < t < n(p-1). I f o r  F ( R ~ + ' - , ~ ) ,  E~ 2 

The proof of t h i s  theorem is  he ld  i n  abeyance u n t i l  sec t ion  10. 

Since HqF(Rnfl,p) = 0 f o r  q > n(p-1) , we obviously have 

EiSyt = ESyt= 0 i f  s > 0 and t > n(p-1). Combining t h i s  f a c t  with 
2 

t h e  Vanishing Theorem, we s e e  t h a t  t h e  only poss ib le  non- t r iv ia l  d i f -  

f e r e n t i a l s  i n  {E,} a r e  

E O , r - l ,  E r , O  
(1) dr: f o r  r 5 n(p-1) + 1, and r 

Comparing (1) and (2) ,  we see  t h a t  

(3) E ; ' ~  = S ¶ t  
En(p-l)+l 

unless  s = 0, t = 0, and s < n(p-l)+l; 

S , t  
(4) E ~ ( ~ - ~ ) + ~  = E:" f o r  a l l  s and t. 

But s ince  F ( R ~ + ' , ~ )  and F(Rn+"p) a r e  p (n+l)-dimensional manifolds , 
CP 

no c lasses  of t o t a l  degree grea te r  than p(n+l) can survirre t o  Em. 

Hence f o r  s + n(p-1) > p(n+l) t h e  d i f f e r e n t i a l s ,  (2) ,  must be vector  

space isomorphisms. Of course, these  formulas and remarks aFe a l s o  va l id  

with {E 1 replaced by {E:].. 

Recalling t h a t  HX(n . Zp) = E[u] @ P  [BU] , where u is a c l a s s  of 
P' 

degree 1, and r e c a l l i n g  Proposi t ion 5.1, we s e e  from (4) t h a t  

'syn(p-l) = z f o r  s + n(p-1) > p ( n t ~ . )  (5) E2 
P 

(6) = Z f o r  s + n(p-1) > p(n+l),  and 
2 P 

2 j  (p-1)-E q even, E = 0 , l  

s + n(p-1) + 1 = 

(2j+l) (p-1)-E q odd, E = 0 , l .  

To determine t h e  c lasses  f o r  s + (p-1) 5 p(ni-1) , define t h e  p-period 

of a group G t o  be q i f  k i ( ~ , A )  and i i + q ( ~ , ~ )  have isomorphic 

p-primary components f o r  a l l  i and f o r  a l l  A. It is  wel l  known t h a t  

n has period 2 and t h a t  t h e  p e r i o d i c i t y  isomorphism is given by cup 
P 

product with Bu; C has p-period 2(p-1) by Swan's theorem: 
P 

Theorem 8.3. [ 231 Suppose p is odd and t h e  p-Sylow subgroup 

of n i s  cycl ic .  Let n be  a p-Sylow subgroup and l e t  4 be t h e  
P P 

group of automorphisms of n induced by inner  automorphisms of n. 
P 

Then t h e  p-period of r is  twice t h e  order  of 4 
P' 

When spec ia l ized  t o  our  c y c l i c  group n and t o  C Theorem 8.3 
P P' 

can be expressed i n  t h e  following e x p l i c i t  form: 

Theorem 8.4. For any n -module M, l e t  Bu: HS (np; M) +- HSt2 (np;M) 
P 

2 
be given by cup product with Bu E H ( r  ; Z ). Then Bu i s  an isomorphism 

P P 

f o r  all s > 0. For any 1 -module N ,  l e t  Bv: HS(Cp; N) +- 

P 
(Cp ;N) 

be given by t h e  cup product with Bv E H ~ ( P - ~ ) ( C ~ ; Z ~ ) .  Then Bv i s  an 

: isomorphism f o r  all s > 0. 

I n  s h o r t ,  formulas (5) and (6) remain v a l i d  f o r  a l l  s > 0. 

* * 
Let d - * * 

I - '51 a33 . - a 2i+1,2i+l ' ' a 
and H denote t h e  

p-2,p-2 



subgroup of elements of C which f i x ,  up t o  s ign ,  t h e  c l a s s  
P 

a:. Let 

PIH ,..., PrH, r = [C : HI, be t h e  l e f t  cosets  of H i n  C W t h  t h i s  
P P' 

notat ion,  we s t a t e  t h e  following theoremiihich w i l l  be proven i n  sec t ion  

** 
9 and w i l l  complete t h e  add i t ive  determination of E2 : 

Theorem 8.5. I n  the  s p e c t r a l  sequence {Er} f o r  F(Itntl,p), E;'* i s  

given as  follows, a s  an algebra i f  q is even: 

E[a] n + 1 i s  even, q i s  even 

1 z P 5  n + .I is odd, q is odd, 

E [ ~ ] Q ~  
(62) n + a i s  even, q is even 

(a.61 

i f  p = 3, EO.* = { '3 n + 1 is odd, q is  even 
2 

l O 
n + 1 is even, q is  odd 

1 z 3 4  @ z3.6 n + 1 is  odd, q is odd, 

where u = 1 a* E H % ( R ~ + ' , ~ )  
p-l>i>i>l ij 

* * * * 
a n d i f  p = 3 ,  6 = a l l a 2 1 + a  11 a22. Furthermore, i f  6 i s  considered 

a s  a f ixed  point  of t h e  n -module H~%(IR~ ' ' ,~ ) ,  then (Bu)jS6 
3 

represents  t h e  non-zero c l a s s  i n  H2j (n3; HZn(F&l,3) ; 1 3 ) )  f o r  j > 0. 

** 
Having determined E2 addi t ive ly ,  we proceed t o  exh ib i t  t h e  d i f f e r e n t i a l s .  

* * 
Wehave E:" = H Q p ; Z p ( q ) )  and ~ ; * ' ~ = H ( l i ~ ;  zP) . I f  q i s e v e n ,  

t h e  c lasses  ( B V ) ~ B ~ V  form a Z -basis  f o r  E;JO i n  p o s i t i v e  degrees; 
P 

i f  q is odd, t h e  c lasses  ( B V ) ~ B ~ V '  form such a b a s i s  (deg v '  = p-2). 

The c lasses  ( @ U ) ~ B ~ U  form a b a s i s  f o r  E;*". We f i r s t  no te  t h a t  t h e  
- 

only poss ib le  non-tr ivial  d i f f e r e n t i a l  on a is  dn+l. But dnfla must 
- - 

' be zero s ince  6u.a = 6v.a = 0 by t h e  vanishing theorem. A s i m i l a r  

argument shows t h a t  d.5 = 0 f o r  a l l  i. To consider t h e  o ther  poss ib le  

non- t r iv ia l  d i f f e r e n t i a l s ,  l e t  G ambiguously denote n o r  C and 
P P 

l e t  xs denote t h e  b a s i s  element f o r  E ? ' ~ ( P - ~ )  o r  E~~~~~ deter-  2 

mined by (2) and per iod ic i ty .  E x p l i c i t l y  i f  m ' i s  t h e  p-period of G,  

then, i n  (2), s e t  s = imtj f o r  i 2 0, l 3 m .  The d i f f e r e n t i a l s ,  (2) ,  

a r e  isomorphisms f o r  s s u f f i c i e n t l y  large.  We read of f  t h e  answer f o r  

i = 0 from t h e  answer f o r  i large:  

For G = C 
pa 

f o r  q even and 

s = (2i-n+2) (p-I)+€-2 

The case s = 0 requi res  some comment. By Theorem 8.5, when p = 3 

and n + q + 1 is even, t h e r e  is  a poss ib le  non- t r iv ia l  d i f f e r e n t i a l  



The per iod ic i ty  theorem as  s t a t e d  cannot be d i r ec t l y  applied t o  Eiy". 

So we consider ~ 2 ' ~ ~ .  Here d2n+1((8u)j.6) = (8u)jin . u by (2), 

n 
hence d2n+16 = (f3u) u. By na tu r a l i t y ,  we s ee  t ha t ,  i n  t h i s  exceptional 

case, we have 

n-1 
( ~ v ) ~ * v  i f  n + 1 even, q even, i = - 

2 '  

d2n+16 = 
n 

(8v)i.v' i s  n + I. odd, q odd, i = - . 
2 

Recall t h a t  according t o  our notat ion,  x denotes the  c l a s s  i n  bidegree 
i 

(i,n(p-1)). For p = 3, 6 is  xO, and f o r  primes l a rge r  than 3, we 

have t ha t  xo i s  zero. 

Clearly t h i s  information determines E,, but  f o r  the sake of complete- 

ness ,  we determine E2 as  a H*(C - 2  )-module. For q even, 
P' P 

- X Clearly we have  
dn (p-l)+lv'xs - -V' dn (p-l)+l s . 

For q odd, the  obvious modification is 

These r e s u l t s  a r e  smnar ized  i n  the  following theorems: 

* 
meorem 8.7. Consider E;* = H ap; H * ( F ( X ~ + ~ , ~ ) ; % ( ~ ) ) ) .  I f  q 

even, 

Ey = An+lTBn+l as a connected algebra where 

Ela] i f  n + l  i s e v e n  

= { 
i f  n + 1 is odd, 

P 

and 

here I is  the  i d e a l  generated by t he  s e t  

[ ( p - 1 )  i f  n + 1 is even 

where s = 

2 - - 1  i f  n + 1 i s  odd. I 
I f  q is  odd, 

** 
E2 = Mn+l@Bn+l a s  an H*(P -2  )-module, where 

P' P 

\ 0 i f  n + 1 is even 

and Bn+l i s  generated by v ' ,  BV', x ~ - ~  and x with r e l a t i ons  

v.vt = 0, vex = 0, and ( B V ) - X ~ - ~  + v'xs = 0. 
s-1 



C 2(p-1)-1 i f  n + 1 is even 
where s = 

(p-1)-1 i f  n + 1 is  odd. 

Let x and x denote t h e  c lasses  i n  'E? of bidegree (s,n(q-1)) 
s-1 

** 
analogous t o  t h e  c l a s s  Ti and 5f i n  E2 which a r e  required by s-1 

per iod ic i ty .  By t h e  previous methods, we have 

?Iheorem 8.8. Consider 'E: = a*(%; H * ( F C I R ~ + ~ , P ) ;  z P ) ) .  

'E? = lAn+lx 'Bnfl a s  a connected algebra,  where An+l 

is  a subalgebra of c lasses  which r e s t r i c t  t o  f ixed  po in t s  i n  

H * ( P ( I R ~ + ~ , ~ ) ;  Z ) under t h e  a c t i o n  of n and where 
P P 

here I is  t h e  two sided i d e a l  generated by t h e  s e t  
- - - -so ' XI' U XO, U .  XI+ @u) . Go}. 

Remark: We a r e  d e l i b e r a t e l y  incomplete i n  our descr ip t ion  of 
'An+l 

because yo c e r t a i n l y  r e s t r i c t s  t o  a f ixed  po in t  in H * ( P ( I R ~ + ~ , ~ )  ; Z p )  , 

and % is  a f ixed  point  which does not p e r s i s t  t o  Em. (See t h e  

previous ca lcu la t ion  of 2n 
d2n+l : 2n+l 2n-1y0 f o r  example. ) - E ~ n + l  

Theorem 8.9. The d i f f e r e n t i a l s  in t h e  s p e c t r a l  sequence {E,) a r e  

given by 

- 
(1) d j a  = 0 f o r  a l l  j, 

(2) d.K = 0 f o r  a l l  j, 
3 

(3). djxs = 0 f o r  j 5 n(p-11, and 

k E 
(Bv) B v i f  q is even and 

s = (2k-n+2) (p-I)+€-2 

(4) 'dn(p-l)+lxs = 
( k E  1 

(Bv) 6 v i f  q is  odd and 

s = (2k-n+l) (p-I)+€-2 

Theo~em 8.10. The d i f f e r e n t i a l s  i n  t h e  s p e c t r a l  sequence IIEr)  a r e  

given by 

(1) d.y 3 = 0 f o r  a l l  j and y E 'An+1 provided y has no summands of Ti: 0' 

- 
(2) djxs = 0 f o r  j 5 n(p-11, and 

- 
(3) dn(p-l)+lxs = ( B U ) ~ B ~ U  f o r  s = 2k + E - n(p-1) + 1. 

Remark: The addi t ive  r e s u l t s  s t a t e d  i n  Theorems 5.2, 5.3 and 5.4 a r e  

immediate from t h e  form of Em implied by Theorems 8.7 through 8.10. 



We i d e n t i f y  EO'* = HO(E ;H*(F(R~+',~) ; Zp(q))) a s  those c lasses  i n  
2 P 

t h e  E -module H * ( F ( R ~ ~ , ~ ) ;  Zp(q)) which a r e  f ixed  under t h e  ac t ion  of 
P 

Cp.  
We must prove Theorem 8.5. 

To study HO@ H * ( F ( R ~ + ~ , ~ ) ;  Zp(q)),  we decompose H*F(R~+' ,~)  
P' 

i n t o  a d i r e c t  sum of Z -modules and consider t h e  f ixed  po in t s  which have 
P 

s m d s  i n  each submodule. This method is  ~ a r r e d  out  f o r  p > 3 ,  bu t  

requires  modification f o r  t h e  case p = 3. 

Let I be  a sequence of in tegers ,  I = ( i  , j , . . . ,%,jk).  I is  1 1  * 
allowable i f  lzi <i < . . .<p-l and 13 < i  126-k. a I  denotes 

1 2  r- r' * * 
t h e  c l a s s  a . . . .a . We define the  length of I by & ( I )  = k il,sl i k y j k  

* 
and, by convention, a = 1 i f  R(1) = 0. I 

Define F t o  be t h e  graded Z -module whose generators  a r e  a* 
P I' 

I allowable, where 

and f o r  each m 2 k, 

(2) jm'# + 1 f o r  a l l  x, 1~&~-1 and 

(3) jm # jnrx f o r  a l l  x ,  l<x~m-1. 

* 
Let  T be t h e  graded Z -module whose generators  a r e  a I 

P I' 

allowable, where 

(1) I = ( i l , j l , .  . . ,%,jk) and 

(2) jm = im-x + 1 o r  jm = jnrx f o r  some m and x. 

* 
Proof of Theorem 8.5: Clearly H F(R*',~) = F @ T a s  a Z -module. Since 

P 

a check of t h e  four  obvious cases revea l s  t h a t  a t ranspos i t ion ,  up t o  s ign ,  

* n+l 
permutes t h e  monomials of F, F i s  a C -submodule of H FQR ,p) . 

P 

The ca lcu la f ion  is  now divided i n t o  two sec t ions :  

(1) we show t h a t  no monomial i n  T can be  summand of a f ixed  point  under 

t h e  E -action (with e i t h e r  twisted or  u n t ~ i s t e d  ac t ion  on Z ). 
P P 

(2) We c a l c u l a t e  t h e  f ixed  po in t s  contained i n  t h e  submodule F. 

* * *  
(1) :. We show f i r s t '  t h a t  no allowable monomial of t h e  form a a 

1 j , j  j + l , j  
* * 

o r  a a . .  a 1 33 j+ l , j+ l  
can b e  a non-zero summand of a f ixed  point  f o r  %(I)>O. 

Using t h i s  information, we show t h a t  no monomial s a t i s f y i n g  t h e  axioms f o r  

T can be non-tr ivial  summand of a f ixed  point .  

* *  * 
Let V denote t h e  Z -vector space spanned by a a 

I jjaj+l,j 
and 

j ,I P * * 
'xaj j a j + l  , j+l 

f o r  f ixed  I and j. (These monomials a r e  assumed allowable.) 

Then r (V. ) 5 V j y I .  Let  be  t h e  Z -space spanned by 
j+ l  3 , I  j ,I' P 

* * 
a ' (a 6 * a* 

E = 0, 1 and 6 = 0 , l ;  
I j - l , r )  'j,r j+l,j*, 

* * 
a I r (a j-1,r) '  a i j a i + l , j + E ,  E = 0, 1 and 6 = 0 , l  

- 
f o r  f ixed  1 and r. A . I ) C _  v j y I f  . 3 j,I 

Now suppose t h a t  a*a 
I j jaj+l, j 

i s  a summand of a f ixed  point .  Then 

by appl ica t ion  of rjfl t o  V we must have t h a t  
j ,I' 

i s  a l s o  a summand of t h e  same f ixed  point  where C = (-l)n [C + D l .  

Application of r t o  7 fo rces  (- l )n+l~ = D. So 
j j ,I 

c = ~ - 1 ) ~  [C + (-I)~+'C]; thus i f  p + 3, c = 0. 



* * *  * * 
Let  a = a la . ..a ... a be  a summand of a f ixed  

1 1 irJr i s'js +jk 

poin t ,  where j = i + 1 o r  js = jr ( tha t  is, an ins tance  of axiom 2 s r 

f o r  T .) We may ssume t h a t  j*, + i f o r  a > 0. Let  T denote r t a  
and l e t  V * and V * be t h e  one-dimensional subspaces spanned 

a, ~ a ,  * * 
by aI and =aI respectively: Since T' = 1, we may decompose H*P@?+~,~) 

a s  a d i r e c t  sum i n  two ways : 

where 

and 

We suppose t h a t  j jS and remark t h a t  t h e  case js = i r + l  is  checked 

i n  e s s e n t i a l l y  t h e  same manner. I t e r a t i n g  t h e  above procedure f o r  t h e  

permutation ( T ~ - ~  o .. . o ri +1) o ( T ~ - ~  0.. . 0 T~ appl ied t o  a 
r 

I' 
S * 4; * 

we s e e  t h a t  a manomial of t h e  form a a is  a non-zero summand 
J P-2,jrap-l,js 

of a f ixed  point.  Applying t h e  permutation T t o  

* * * T ~ - 3 °  - - . O  is 

a a and quoting t h e  argument f o r  T~ above., we s e e  t h a t  
J P-2,jrap-l,js s 

* * * 
a monomial of t h e  form aJt a must be a non-zero summand 

p-2,p-2ap-l,p-2 

of a f ixed  point .  Therefore, by t h e  previous remarks, an element f ixed  

by Cp can have no non-zero monomial summands s a t i s f y i n g  t h e  axioms f o r  T. 

The modifications necessary f o r  t h e  case of twisted Z -coef f ic ien t s  a r e  
P 

obvious. 

(2): Application of appropriate  permutations ind ica tes  t h a t  any allowable 

monomiai, a *  of F, k(1) = k+l, can be  permuted, up t o  s ign ,  t o  I' 

~ e n c e  t h e  subspace of elements of degree n(k+l) in F is  generated a s  a 

* * * 
C -module by alla33 ... a 
P 2k+l, 2k+l' 

We f i r s t  c a l c u l a t e  t h e  f ixed  po in t  s e t  i n  F f o r  n+l even. Suppose 

* 
t h a t  q is  even. Here, E j u s t  permutes t h e  indecomposables a . .  and 

P 1-2 

c l e a r l y  

is a f ixed  point .  We claim t h a t  t h e r e  a r e  no non-zero f ixed po in t s  i n  

F concentrated in degree n(k+l) i f  k>O. Suppose t h e r e  is  such a f ixed  

point ,  y. Then by t h e  above paragraph, y i s  i n  the  C -module generated 
P 

by 

* * *  * 
By applying T 2  t o  Y, we s e e  t h a t  a 2 1 ~ 3 2 ~ 5 5  ". a 2k+1, 2k+l must be 

a summand of y. We apply rlor3 t o  s e e  t h a t  y must have 

a s  a summand. There a r e  c l e a r l y  no non-zero f ixed  po in t s  which have t h i s  

property. We now suppose t h a t  q is  odd. Here, we s e e  t h a t  

* * * * * * 
~ ~ ( a ~ ~ a ~ ~  -. a 2k+1, 2k+11 = -alla33 . ' ' a 2k+l, 2k+l f o r  k LO. 

Consequently 



i f  n + 1 is  even. 

We next study t h e  case n + 1 is  odd. For t h e  moment we assume t h a t  

* 
q i s  even. Since T 1 a 11 = (-l)n+la;l, we have 

* * * * *  
= a f o r  a I  = alla33.. . a* 2k+l, 2k+l' 

Consequently t h e r e  a r e  no f ixed  po in t s  i n  I? f o r  n + 1 and q even. 

We now consider t h e  case when q is  odd. Again, any f ixed  point  must 

* 
be in t h e  C -module generated by a I f  2k + 1 < p - 2, then 

P I' * 
Tp-l'a~ 

= a .  Hence t h e r e  a r e  no non-zero f ixed  po in t s  i n  F concentrated 

i n  degree jn ,  13<&. However, we claim t h a t  
2 

This f a c t  is  e s s e n t i a l l y  immediate from t h e  previous observation. The 

pecu l ia r  permutation T 2j+zT ~ j + 3 ~ 2 j + l ~  2j+2 j u s t  interchanges 

C( 
2j+1,2j+l 

and a 
2j+3,2j+3' 

~f g E H, we can c l e a r l y  choose a product of t h e  permutations, n ,  which 

interchanges prec i se ly  t h e  same c lasses  which g interchanges. Denote 

. t h i s  product by h. Then gh-l _must f i x ,  up t o  s ign,  each indecompos~ble 

* 
"2i+1,2i+l' Hence, by t h e  previous observation, gh-l must be t h e  i d e n t i t y  

o r  a mul t ip le  of T ~ ~ + ~ ,  0 5 j 5 9 .  We use these  generators  f o r  H t o  

f i n i s h  ca lcu la t ing  t h e  f ixed  po in t s  f o r  n + 1 and q odd. Here 

where 

does i n  f a c t  generate a C -fixed point  f o r  n + 1 and q both odd. By 
P * 

d e f i n t t i o n  of t h e  a we s e e  t h a t  i f  p E E and p f i x e s ,  up t o  s ign,  
i j P 

each element of t h e  s e t  

then P is  e i t h e r  t h e  i d e n t i t y  of o r  a product of t h e  t ranspos i t ions  
P 

Now, l e t  H denote t h e  subgroup of E which is generated by t h e  
P * 

elements t h a t  f i x  aI up t o  s ign.  We claim t h a t  H is  generated by t h e  

s e t  

* 
Ti (a1> 

is  determined by t h e  C -act ion defined on H*F(R~+' ,~) .  Since 
P 

i 
T .oa = (-I)(-1) n+la* = a* 
r ii ii ii 

* * 
f o r  n + 1 and q odd, it follows t h a t  g '  aI = a f o r  611 g E H. Let I 

plH,. . . ,p H, r = [C  : H I ,  
P 

be  t h e  l e f t  cosets  of H in C and l e t  
P 

- A = E (sign ui)pi(a,) d; E $( ~ - l  2 ) ~ ( e + ' , ~ ) .  

i=l 



- 
I f  we show 1 is  independent of the choice of coset representatives 

- - 
{uil i = 1,. , . ,r),  then it w i l l  be obvious tha t  r . h = 1 fo r  all 

* * 
T E C . SO we suppose tha t  p.p? = g E H. Since g'aI = aI by the 

P 3 J 

above remarks, it follows immediately tha t  

* * * * 
21- + yallaZ2 be a C -fixed point. For the case p = 3,  l e t  6 = xrr a 3 

Then 
* * n+l * * 

6 = 6 = (-1)4[(-1)n+1 x allaZ2 + (-1) Y ~ ~ ~ ~ ~ ~ I  
1 

q+n+l 
forces y = (-1) x and 

Since 

we have that  6 i s  fixed i f  and only i f  n + q + 1 is  even. To check 

the fixed points concentrated in degree n, we notice tha t  

- * '* * 
a = a  11+ aZl + aZ2 is  fixed i f  and only i f  q and n + 1 are  both even, 

and A = a  ll-a21+ a22 is  fixed i f  and only i f  q and n 4- 1 are  both 

odd. 

To check that  ( B U ) ~ . ~  represents the non-zero class i n  

we note that  

since ( 6 ~ ) '  .6 

conclusion. 
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2 * *  2 * * 
(1- )a11a21 = (1-W-a )alluZ2 = 0. 

must be a non-zero, non-cobounded cocyle, we have the  



** 
10. Vanishinp, of E2 

We must prove Theorem 8.1, which s t a t e s  t h a t  E;'~ = 0 i f  

s > 0 and t # 0, n(p-1). 

* 
Sroof: A l l  monomials, aI, a r e  assumed t o  be  "allowable" i n  t h e  sense 

of s e c t i o n  9. I n  addi t ion,  we define an admissible sequence, I, t o  

have t h e  proper t i es  

(1) I = (il , j l , . . . , ik,jk),  I allowable and 

(2) f o r  every m, 1 5 m ( k ,  

jm = i + 1 f o r  some x, 1 c x  c m  - 1. 
m-x 

o r  

jm = jl- 

Define t h e  height  of I, h ( I ) ,  t o  be  jl. By convention, l e t  

Lemma 10.1. Every allowable monomial i n  H*F is,  up t o  s ign ,  a product 

of admissible monomials. 

c l e a r l y  t h e  "factor izat ion" of Lemma 10.1 is  not  unique; we can 

c e r t a i n l y  w r i t e  t h e  monomial a;la;l, f o r  instance,  i n  two ways a s  

products of  admissibles. The following d e f i n i t i o n  s t rengthens t h e  not ion 

of an admissible monomial t o  t h e  point  where we can Compute. Let  

* 
a , . . . ,a* be  admissible monomials such t h a t  
I1 Ir 

* 
(1) a . . . a *  =%: f o r  I allowable, 

'1 Ir 

(2) lSh(Il)<h(12) < . . . < h(Ir)lp-1, and 

* 
(3) a I  

cannot be w r i t t e n  as a product of fewer admissible 

monomials. 

* * 
Then we say t h a t  a . . . a i s  a maximal admissible decomposition 

'I. Ir * 
f o r  aI. The following lemma i s  obvious: 

Lemma 10.2. Every allowable monomial has ,  up t o  s ign,  a unique maximal 

admissible decomposition. 

The key t o  our  proof of t h e  vanishing theorem is  t h a t  t h e  not ion 

of a maximal admissible decomposition enables us t o  p a r t i t i o n  t h e  set 

of allowable monomials i n t o  very n i c e  equivalence c lasses ,  which, when 

"enlarged" t o  Z -modules a r e  s t a b l e  under ff of Corollary 7.4. This 
P 

s t a b i l i t y  condit ion gives a simple method of ca lcu la t ing  t h e  kerne l  of 

* 
(0-1)* where (a-1) is t h e  "even dimensional" d i f f e r e n t i a l  f o r  t h e  

minimal reso lu t ion  of s So t h e  next s t a g e  is  t o  def ine  the  appropriate  
P' 

equivalence r e l a t i o n :  

Let  J1 and J2 be  allowable. We say Q a* i f  
J .T2 

* 
(1) aTr has a maximal admissible decomposition 

1 2  (3) i, = i, f o r  a l l  R and lzXLnR. 

I 2 
(4) h ( IR)  = h ( I R )  f o r  a l l  9.. 

The following lemma i s  obvious. 



Lennna 10.3. 'b" is  an equivalence r e l a t i o n .  

* 
Let  SumI, qS_m<p, be t h e  Z -module spanned by those aJ such 

P 
* 

t h a t  aJ  is  equivalent  ( in  t h e  sense of %) t o  some non- t r iv ia l  

m * 
summand of o (aI). 

Proposi t ion 10.4. Write SI 
= S o O ( l )  .Then f o r  F ( R ~ + ' , ~ )  

(1) om(sI) G S ,my, and 

(2) SI " S = (0) i f  2(1)<p-1 and l~m-<p-1. 
05 

Proof. 

(1): We may w r i t e  a: uniquely, up t o  s ign ,  a s  a maximal 

* 
decomposition * 

"' a\ 
. By Corollary 7.4, 

and 

* 
ua P - ~ J  = - l n  a; , and so  it is  enough t o  check 

* * 
t h a t  u(SI) _C SuI where a occurs i n  some admissible a . 

p-l,x I, 

But then 

Furthermore, 

and so  

n+la ua* =( - I )  i l + l , j l + l : * . a i + ~ , j + ~ a ~ , l  
I, q q 

where x = jl o r  i+1, t by t h e  d e f i n i t i o n  of an admissible monomial. 

Applying t h e  formula 

(see Lemma 7.7), we have 

f o r  X = 1, j +l o r  ir+2 f o r  r < q .  F i x  some monomial appearing i 1 * 
a s  a summand of act , say a* , J, = ( j l , l ,  i +I, X I  ,..., i +l,x ). 

. 'a Jg. 
1 9 9 

* 
Note t h a t  a l l  such summands of ua a r e  equivalent ,  under %, so  

I& 
it does no t  matter  which we choose. Then by t h e  d e f i n i t i o n  of a maximal 

admissible decomposition, 

is  a maximal admissible decomposition f o r  any allowable monomial sumnand 

of a f o r  J; % J,. Hence 0 SI SOT., 

* 
(2): We check t h e  case when aI is  a product of one admissible 

* 
monomial. The case t h a t  a has a maximal admissible decomposition I \ 

with more than one admissible monomial occurr ing i s  e s s e n t i a l l y  t h e  

same. 

It is  enough t o  check t h a t  a; i s  not  a summand of SomI f o r  

lzmg-1 and I = ( i  , 1 , i2, j 2, . . . , 1 
\ , jk ) ,  R(I><p-1, s ince ,  f o r  some t ,  

we have 



where 

The idea  of t h e  following proof is t h a t  i f  l ( I )<p-1,  then t h e  

s t r i n g  of indecomposables, a:, has too many "gaps" t o  appear a s  a 

summand of S a y  f o r  1%~-1. 

* 
Let a I  be  admissible, l (I)<p-1, I = ( i l , l , i2 ,  j2,. . . ,%, jk)  and 

* 
suppose t h a t  f o r  some m, lcpl<p-1, we have t h a t  

a I  
is ,  i n  f a c t ,  a sum- 

mand of SumI. By induct ion,  t h e  only time a "1" can occur i n  t h e  

j coordinate of a summand f o r  Scrm1 i s  when m = p-& f o r  
1- 

Ozr~k-1; a l s o ,  i f  m = p-' \-r, then I must have t h e  form 

where 

iA = $-rtA-i,-r f o r  lLAZr, 
1 

irtl = p-%-,, and 

it ~+I.+x = iyfp-%-r f o r  12~3-r-1. 

Since 

we have 

ih = %-rfA-$-r f o r  1LAzr, . 

irtl = P-%-,, and 

i rfl+y = iy+p-\-, f o r  lzy~k-r-1.  

Rearranging, we f i n d  

%-r = %-rG-iA f o r  lLAzr, 

i,-r = p-irtl, and 

\-r = i f p - i  
Y *1+Y 

f o r  1.yzk-r-1. 

s d n g ,  we have 

Hence (k+l) (ik-,) = (k-r)p . Since k+l, \-r # 0 ,  and F-9-1, %-r 2 p-1, 

we must have k+l=p. But then l ( 1 )  = k = p-1. This is a contradict ion 

because we assumed t h a t  l ( I )<p-1.  Hence a: cannot l i e  i n  %y 

f o r  12*~-1 and t h e  propos i t ion  is proved. 

Remark: By Proposi t ion 10.4, 

S +S +...+ Sop-lI = SI@ SOI& ... @ Sop-lI a s  a 
I U I  

Z -module. Since "%It is an equivalence r e l a t i o n  on maximal admissible 
P 

decompositions, we may decompose H ~ ~ ( F ( R  ;Z p) i n t o  

V1 a.. . 8 V as  Z -module f o r  l z k 3 - 2  such t h a t  U (Vi) 5 Vi+l 
P P 

i f  i < p  and o(V ) z V i .  
P 

Recal l  t h a t  t h e  minimal reso lu t ion  of Z considered a s  a 
P 

t r i v i a l  y -module, where a is generated by U ,  has  t h e  form 
P P . 

Let  M denote H'~(F(R n+l,p) q) , 1 2 l 2 p-2. Then f o r  t h e  

cochain complex 



we use t h e  decomposition of t h e  previous paragraph t o  show t h a t  

~ e r ( u - 1 ) "  = I ~ N * .  Since 

* 
Horna (Z a ,M) = Ker(U-1) 9 Im(cr-1)* = Ker N* @ ImN* 

P 
P P 

a s  Z -modules, we have t h a t  Ker(u-1)* = ImN* implies  Ker N* = Im(o-1)* 
P 

by t h e  obvious vector  space dimension considerations. This information 

c l e a r l y  implies Theorem 8.2. 

To show Ker(0-1)* = ImN*, we appeal t o  t h e  following lemma: 

Lemma 10.5. Let V be a f i n i t e  dimensional vector  space over a f i e l d .  

Suppose 0: V -t V is a l i n e a r  transformation such t h a t  

(1) up = 1, 

(2) V = V 1 @  ... f E V  and 
P' 

(3) (Vi) C Vifl i f  i < p ,  and 0 (V ) G V 
p 1: 

Then i f  uv = v fo; v E V, we have v = (li-uf . .. +up-l)v7 f o r  

some v' E V. 

P 
Proof: Let v = E x v f o r  v .  E Vi. I f  uv = V, then 

i i  

11. Steenrod operations and product s t r u c t u r e  

We show t h a t  t h e r e  e x i s t s  an element a E Hn(B(Rn+',p) ;Z P ) f o r  

n + 1 even such t h a t  a r e s t r i c t s  t o  u E H ~ ( F ( ~ ? + ~ , ~ )  ;Z p)  spec i f ied  

i n  Theorem 8.5, and- such t h a t  

H * ( B ( R ~ + ~ , ~ ) ; Z  P ) = ~ ~ + ~ a ~ m f "  

as a connected Z -algebra, where 
P 

I B [a] i f  n + 1 is  even 

Moreover, t h e  Steenrod operat ions a r e  t r i v i a l  on a. 

Secondly, we show t h a t  t h e r e  e x i s t s  an element 

p-l 
A E H ~ (  2 ) (B (B n+l,p) ;. z (2q+1) f o r  n + I. odd 

P 

such t h a t  X r e s t r i c t s  t o  t h e  element 

spec i f ied  i n  Theorem 8.5 and such t h a t  

as a H*(C - Z )-module, where 
P,  P 

0 i f  n + 1 is  even 

Z - A  i f  n + 1 is  odd. 
P 

Rn+l , Rn+l 
Define a map S: by 

S ( x ~ , . . . , x ~ + ~ )  = (xl, - x2, X ~ , . . . , X ~ + ~ ) .  Since B(-,p) i s  a functor  

defined on t h e  category of top log ica l  spaces with morphisms 1-1 continuous 



maps, we have t h e  obvious induced morphisms B (S ,p) : B (Rnfl ,p) -+ B (Rnfl,p) . 
For convenience, we denote B(S,p) by S. Let nS denote t h e  group of 

order  2 generated by S. There is  an evident n -action induced on 
S 

B(Rm,p). Note t h a t  t h i s  ac t ion  i s  c e r t a i n l y  n e i t h e r  f r e e  nor t r i v i a l .  

However, we can c a l c u l a t e  t h e  ac t ion  of ns on H*(B(Rm,p) ;Zp) . 

Proposition 11.1. For p odd, nS a c t s  t r i v i a l l y  on H*(B(Rm,p);Zp). 

Proof: Let n a c t  on F ( R ~ + ~ , ~ )  by 
P 

0.<x1, ..., X > = <X 
P 

'XI 3 . . ' 'xp-l' ' 

Obviously S commutes with t h e  n -action. Now we consider t h e  inc lus ion  

of RninRn" given by x -+ (O,O,x). Give F(Rn;p) a t r i v i a l  n -action. 
S 

Then t h e  induced inc lus ion  F(Rtyp)  c F(Rn:Z is n -equivariant.  By our 
S 

P P - 
(R- previous ca lcu la t ions ,  n must a c t  t r i v i a l l y  on H*(F+;Zp). Since t h e  

S 
P 

evident map F(iyp) -+ F'R;'~) is  T~ -equivariant ,  t h e  r e s u l t  follows. 
P P 

We use t h e  above information t o  ca lcu la te  t h e  product s t r u c t u r e  

and Steenrod operat ions i n  H*(B(R~",~)  ;Zp). TO do these  ca lcu la t ions  

e f f i c i e n t l y ,  we need one f a c t  about F(Rnfl,p). 

Define y : sn * F(R~'',~) by y<S> = <0,5, 2S , . . . , (p-1)S> 

Clearly Y i s  nS-equivariant where t h e  ?is-action on sn is  
n 

t h a t  on RnC1. Let denote t h e  fundamental c l a s s  of S . 

 emm ma 11.4. The dual  of t h e  c l a s s  y*(() is  t h e  c l a s s  

* ' 

I ai j  E gn (F(R~+ ' ,~) ;z  ) f o r  n + 1 even. 
p - l ~ i ~ j  21 P 

proof: Define : sn * F (Rnfl-0 ,p-1) and 5 sn -t X n+l - 0 - 

induced 

by 

and 

The following diagram commutes on t h e  nose: 

.. A 

B U ~  c l e a r l y  ( ~ ~ - ~ ) * [ y * -  (all)*l = 0. Since Y* = Y, ( r e c a l l  that  

F ( I R ~ ' ~ - o , ~ - ~ )  F ( I R ~ , P )  is  a homotopy equivalence), we have t h a t  

ye([) = all+x where x i s  a l i n e a r  combination of p r imi t ives  i n  

from 



which all does not  occur. I f  r r  is  a t ranspos i t ion ,  then 

r oy is  c l e a r l y  homotopic t o  Y i f  n + 1 is even. Consequently 

C f i x e s  a*(() .  But s ince  C j u s t  permutes t h e  p r imi t ives  a 
P P i j  ' 

it follows d i r e c t l y  t h a t  Y,(() = 1 a and thus that 
p-l>i>i3 'j 

(Y*(C))*= 1 a* i n  t h e  dual basis .  
~-1~i321 . 

- 
Recal l  t h a t  >&>l i s  denoted by a .  

P-1- - 

Theorem 11.6. For p odd, and n + 1 even, t h e r e  e x i s t s  a c l a s s  

uniquely spec i f ied  by the  following two conditions: 

- 
(1) a r e s t r i c t s  t o  a E H ~ ( F (  xn+',p) ; z p ) ,  and 

(2) Sa = -a. 

The proof of Theorem 11.6 i s  held in abeyance u n t i l  a f t e r  t h e  

statement of Theorem 11.7. 

Theorem 11.7. For p an odd prime, 

a s  an algebra where 

[ E[a] i f  n + 1 is  even 

A d =  I z~ i f  n + 1 is odd . 
a i s  the  c l a s s  spec i f ied  in Theorem 11.6, and t h e  Steenrod operat ions 

a r e  t r i v i a l  on a. 
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proof of Theorem'll.6: By Theorems 8.7 and 8.8, t h e r e  is  a c l a s s  

a '  E H ~ ( B ( R ~ + ' , P )  ; Zp) which r e s t r i c t s  t o  n E H*(F(R~+' ,~)  ; Zp) . 
n+l n+l 

Since t h e  maps y (of Lemma 11.4) and F(R ,p) -t B(R ,p) a r e  

?is-equivariant, and S( = -( f o r  t h e  fundamental c l a s s  of sn, 
V B 

w e  have Sa' = a '  + v B  f o r  v E Imf* .  Let a = a '  - -  B 2 - BY 

Proposition 11.1, S f i x e s  vB. Hence Sa = 4. 

To check uniqueness, we suppose t h a t  t h e r e  e x i s t s  another c lass  

n+l 
a, E Hn(B(IRntl,p); 5) such t h a t  a1 r e s t r i c t s  to; E ~ ( F ( P  ,p ) ;  Lp)  

and Sal = -a1. Then a -a = vC f o r  vC E M*. By applying S t o  1 

both 'sides of t h i s  equation, we s e e  t h a t  vC = 0. 

Proof of Theorem 11.7: Define a by Theorem 11.6. We f i r s t  prove 

t h e  ind ica ted  product s t r u c t u r e .  By t h e  form of Em required by 

Theorems 8.7 and 8.9, i t  i s  c l e a r l y  enough t o  show aSvB = 0 f o r  

VB E hf*. 

* n+l 
Since vB r e s t r i c t s  t o  zero i n  H (F(R ,p) ;Zp), we have 

aSvg = v f o r  vC E 1m£*. We apply S t o  both s i d e s  of t h i s  
C 

equation, and conclude t h a t  -vC = vC, hence vC = 0. 

To show t h a t  t h e  Steenrod operat ions a r e  t r i v i a l  on a ,  we 

no te  t h a t  pXa = vB f o r  vB E M*. We apply S t o  both s i d e s  of 

t h i s  equation and again conclude t h a t  vB = 0. 

To ca lcu la te  t h e  module s t r u c t u r e  of 

H*~B(R~+',P); zp(2q+1)) 

A 

over H" (Cp; Z ) f o r  n + 1 odd, we n o t e  t h a t  by degree considerat ions,  
P 



H*(B (Rnfl,p) ; Z  (2q+l)) = Z .A @ WE* a s  an H*(C ;Z )-module 
P P P P 

p-l i f  w # (2t+l) (p-1) , where m = 

- 
and A i s  t h e  c l a s s ,  necessar i ly  unique, which r e s t r i c t s  t o  X of 

Theorem 8.5. I f  nm = (2t+l)  (p-1) , we explo i t  t h e  map 

which i s  a monomorphism by previous remacks. I n  t h i s  case l e t  
- 

A '  E H ~ ( B ( I R ~ + ' , ~ )  ; Z (2q+l)) be an element which r e s t r i c t s  t o  A .  
P 

I f  Bu-i*(A') # 0, then c l e a r l y  Bu*i*(A') = Bu-ug f o r  some "B 

i n  t h e  image of 

Obviously, we may choose a c l a s s  

- 
such t h a t  i * A  = i*A'-uB. Clearly (1) h r e s t r i c t s  t o  A ,  and 

(2) BuSi*(X) = 0. We claim t h a t  these  two condit ions uniquely deter-  

- * 
mine A .  For suppose t h a t  X1 r e s t r i c t s  t o  A and Bu-i (A1) = 0; 

then 1-1 = uC E I&!* and Bu.i*(h-A ) = 0. However, i f  uC # 0, 
1 1 * 

then s ince  t h e  degree of Bu-i (u ) i s  2 + nm 5 n(p-1) , Buai*(ui) # 0. C 

Consequently, uC = 0 and t h e  uniqueness property is proved. 

Furthermore, u must ann ih i la te  i * X  f o r  i f  u.i*A = % # 0, then, 

again by degree considerat ions,  we have Bu-u,, # 0. This i s  a contra- 

* 
d i c t i o n  and s o  % = 0. Since i i s  a monomorphism and t h e  r e s t r i c t i o n  

i s  a map of r ings ,  we have t h a t  a l l  elements of p o s i t i v e  degree in 

H* (C ;Z ) annih i la te  A .  I n  summary, we have 
P P 

Theorem 11.8. For q and n + 1 odd, there  e x i s t s  an element 

E H ~ ( B ( X ~ + ' , ~ ) ;  Zp(q))  

uniquely spec i f ied  by t h e  following two conditions: 

(1) X r e s t r i c t s  t o  E H ~ ( F ( I R ~ + ~ , ~ ) ;  Zp) and 

Furthermore. d(B(Rn+',p) ; Zp(q)) = Mn+l @ I&!* as an 

* 
H (C ; Z  )-module, where 

P P 

l O 
i f  n + 1 is  even 

We c lose  t h i s  s e c t i o n  with a proof of t h e  product s t r u c t u r e  described 

i n  Theorem 5.4. 

By abuse of no ta t ion ,  we l e t  a denote i * ( r  .C  ) ( a )  and A denote 
P,  P * F ( I R ~ + ' , ~ )  

i*(r .E )(A). To show t h a t  asI&!* = AnIm£* = 0 i n  H ( 
7f P' P 

;zp>, 
P 

it s u f f i c e s  t o  show t h a t  a - u  = a . 8 ~  = 0 f o r  n + 1 even and 

A.u = A-Bu = 0 f o r  n + 1 odd, where u i s  t h e  one dimensional c l a s s  

* 
i n  t h e  image of H (Brp; Z p ) .  Since u and Bu go t o  zero under 

* F ( I R ~ + ~ ,  * n+l 
t h e  map H ( P) ;  Zp)  --r H (F(IR ,p) ;  & ) and a is  an odd 

P 
P 

n+l dimensional. c l a s s ,  it follows immediately t h a t  a - u  = k(8u) j  f o r  j = - 
2 
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and some k. Since Ba = 0 ,  we have Bi*(* ;I: ) ( a )  = 0. This information . 
P P 12. Auxiliary c a l c u l a t i o n s  

together  with the  equation a.u = k(Bu)j implies t h a t  a . 8 ~  = 0. To show 

We present  some auxi l i a ry  ca lcu la t ions  t o  t h e  previous 7 sec t ions .  
t h a t  k = 0 ,  we f i r s t  observe t h a t  i*(n .C  ) (v) = u(Bu)P'~. Hence 

P' P a e s e  ca lcu la t ions  provide a n a t u r a l  s e t t i n g  i n  which t o  proceed t o  t h e  

der iva t ion  of many of t h e  formulas of s e c t i o n  1. Our main geometric o = i*(* .I: )(a .v)  = a . u - ( ~ u ) p - ~ ,  and 
P' P. 

'1- [12.1] allows us  t o  c a l c u l a t e  t h e  map 

0 = k ( B u ) j + ~ - 2  
Y, : (k) H*F~+~ (i l l  8 . . . QD (\I + fi*Fn+l ( j  , 

n+l j = i l +  ... +%, 
I f  n > 2,  then -F + p - 2 = j + p - 2 < n ( 9  and consequently - 

u 2  is  no-zero  i n  H * ;  z and li = O. The case n = 1 
P on primit ives .  Dual izat ion of t h i s  information y i e l d s  a proof of Lemma 

P 
is  e a s i l y  disposed of by use of the  map S; t h e  d e t a i l s  a r e  l e f t  t o  t h e  12.4 which we t r a n s l a t e  i n t o  conceptually usefu l  r e s u l t s  i n  terms of 

reader .  Browder operat ions and Pontr jagin products [Theorem 12.31. The f i n a l  

Since X E H ~ ( B @ R ~ + ~ , ~ )  $Zp(2q+1)), n + 1 odd, p > 2,  and t h e  r e s u l t  of t h i s  sec t ion  is  t h e  calcuat ion of H* [' n + ; r ) ]  and t h e  map 

Steenrod operations a r e  t r i v i a l  i n  H*F&',~) [Prop. 7.81 i t  follows 

e 
t h a t  u.A = ru(Bu)' and BA = tu(6u) , L > 0. But Y*: H* (&n+1(2) Tnfl(p) Fnfl(l) -+ ~ * k + ~ ( ~ t l )  . This info-tion 

2 
0 = 6 1 = B(tu(6u)) = t ( ~ u ) ~ + ' .  Hence t = 0 and B X  = 0. The conclusion 1~ 71 

P P 

t h a t  r = 0 i s  i n  Theorem 11.8. Thus u X = 0, and Bu X = 0 fellows. allows us  t o  determine t h e  formulas f o r  X ~ ( B ~ Q ~ X , ~ )  and X,(&X,Y) in 

I t h e  next sect ion.  

To begin, we l e t  a denote t h e  element i n  n+l(l) given by 
a r,s 

t h e  map sn -r'S F(]R n+l ,L)-tfl(e). f~ (fL is  t h e  equivariant  

embedding of P (R n+l ,~)  in n+l (L) defined i n  [G; 4.81. ) We now def ine  

a map 

+r: &n+l(it) -+E+l(k) x fin+l(il) x . .  . x Fn+l(\) 1 ~ t z k  
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We define 

s imi la r ly .  Denote $t* by ar,s,it and J I x ' ~ ~ , ~ )  'r,s,k' 

t-1 
Lemma 12.1. (1) ~ * ( a ~ , ~ , ~  ) = a  r+x,s+x where x = 1 i (where, by 

t j=l j 

convention, we s e t  x = 0 i f  t = 1.)  

Proof: (1) : Consider the composite 

n+l 
where 

g j  
is  the  equivariant r e t r ac t i on  of ( j )  onto F ( E  , j )  n+l 

[ G ; 4 . 8 ] .  A pic ture  of the  composite i s  instruct ive:  

Figure 5. 

BY def in i t ion  of the  c lass  a E H*F(II?'~,~), we v i s ib ly  have the  
r,s 

formula 

where x = i +. . .+i and 1 is a f ixed fundamental c lass  of sn. 
1 t-1 

Since g is  an equivariant homotopy equivalence, (1) i s  ver i f ied .  
j 

(2): As above, we consider the  composite 

We again appeal t o  a picture:  

I 

Figure 6 .  

Visibly, (gjoyo$o f oa ) ( = Fo + . . . + F where 
k r,s * i*l-l 



We a r e  done. 

Remark 12.2. The homology of ( i  ), 15 t k ,  embeds very n i c e l y  
n+l t 

i n  ~ * y ~ + ~ ( j )  v i a  t r a n s l a t i o n s  of t h e  c lasses  a E ~ * $ ~ + ~ ( i ~ ) .  
r,s 

By Lemma 12.1, the  c lasses  in y*~*.~+~(k) represent  an a lgebra ic  

"amalgamation" of t h e  pieces H* n+l(it) Ghich corresponds t o  t h e  

geometric amalgamation given by y .  It i s  because of t h i s  amalgamation 

t h a t  t h e  Browder operations behave so  well.  

Theorem 12.3. Let  q E Hsnz n+l (k) . Then . . .@%) is an 

operation i n  k var iab les  which is n a t u r a l  with respec t  t o  maps of 

$+l-spaces and is given by a sum of c lasses ,  each. of which is  given by 

s Browder operat ions and k-s-1 Pontr jagin products i n  some order  on 

t h e  var iab les  xl, . . . ,%. I n  p a r t i c u l a r ,  f o r  each Y E H(k-l)ncn+l(k) , 

where c a r e  constants  and u runs over some f ixed  subset  of E 
V ,a k' 

(Compare Theorem 12.3 t o  Lemma 4.3.)  

Theorem 12.3 w i l l  follow d i r e c t l y  from the  following lemma. 

Lemma 12.4: Let y1 and y2 denote the  following s t r u c t u r e  maps 

of operads: 

12: gn+1(2)X rn+l(k-2)x &n+1(2) -&n+l(k). 

I f  aI E Hsncn+l (k) , 1 5 s 5 k-1, is the  dual  b a s i s  element t o  

t h e  admissible monomial a;. then a I = 1 oJaJ f o r  some co l lec t ion  of 

i 
elements 3 E Image &, i = 1, 2, and S E  =k.  

We prove 12.4 by use of Lemma 12.1 and a sequence of a lgebra ic  

lemmas, a f t e r  which we prove 12.3. We must f i r s t  recover information 

concerning t h e  ac t ion  of E k  on t h e  dual  b a s i s  elements a I  dual  t o  

* 
the 'admissible  monomials a I' Given an admissible sequence 

I = ( i  1 1  , j . . . . ,im, jn) , we may read o f f  t h e  ac t ion  on t h e  c lasses  a* I- 

by Lemma 7.5 and t h e  product s t r u c t u r e  spec i f ied  i n  Lemma 7.7. Dualization 

v i a  t h e  Kronecker pa i r ing  <raI,x*> = <a1,;lx*> y i e l d s  t h e  des i red  r e s u l t .  

Lemma 12.5. Let  T denote t h e  t ranspos i t ion  T . 

(-l)na,, where J = (il ,  j l ,  . . . , iL-l~jt,iL,jL-l,i~+l~Tj~+l~ sim,Tjm) 

i f  j, + j,-,, i,-I 4-1 = it and jl < iL 

(-~)~(ok+a , )  where K = ( i l , .  . . ,iL-ly jL-l~iL~j.eil~i~+l~Tj~+l~. - yim,Ti ) m 

and L = ( i l , .  . . , i ~ l , j , ~ l y i a . , i L y i e + l ~ ~ j L + l ~ ~ ~  1 m 

i f  i, 1+1 = i,, and j,-l = jL, - 

where M =  ( i  l..... i,~l.~,~l.iL,iLyi,+l.T~~y~~~~imy~,) 

i f  i, = j, and i,-l + 1 5 iLy 

q, where N = (i l y . . .  ,i,-l,j,-lIieeL~jL~iL+l~~jL+l~~~~~im~~ ) 

I 
m 

otherwise 

k-1 
Lemma 12.6. Let B = 1 aI where Ix = (1,2,2, j2,. . . ,k-2, jk-l,k-l,x) 

x=l x 
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f o r  f ixed  j 2 ( i ( k  - 2. Fix i n t e g e r s  r and i such t h a t  proof of 12.3: We r e c a l l  t h a t  t h e  diagram below commutes [GI: 
i' 

l c k - r ( i - 1 .  Let X = T  k-r O T  k-*l O . . ' O Tk-l and 

k-r-1 a k n+l (2) x &n+l(k-j XC n+l(j $ cn+l(k) $ 
X = Tker 0 ... 0 T 
i i-1 ' 

Then X B  = (-l)nr 1 Jx where 
x = l  L x  

X'-+E+~(~) x 2 / '  

The proof of 12.6 is  immediate from 12.5 and induct ion on r. 

By t h e  d e f i n i t i o n  of t h e  operat ions A n ,  
Lemma 12.4, and t h e  obvious 

Proof of 12.4: W e  break up our proof i n t o  two cases .  F i r s t  suppose t h a t  induct ion,  Theorem 12.3 is  demonstrated. 
1 2 s < k - 1. By 12.1, ~ * ( e ~ & ~ ~ @ s ~ )  = aijy ~ * ( e ~ @ ~ ~ @ e ~ )  = ai j ,  and 

2 
11 k-l,k-l. By t h e  obvious double dua l iza t ion  argument, y*(eO@eO@a ) = a 

1 
a E Im y* provided ' I = ( i l ,  jl, . . . ,is, j s) f o r  i < k - 1. Again by 
I 

2 
double dua l iza t ion ,  it follows t h a t  y*(eO@aI@all) = aJ f o r  

J = (1,k-1,k-1). Let V denote t h e  Z -subspace spanned by elements 
I,r P 

a K = (1,k-1 , r )  , K admissible. By Lemma 12.5, II (VI ,k-l) C VI , K' 
f o r  

n =  T o ... o T k-2. Since rl i s  an isomorphism of vec to r  spaces ,  t h e  
j 

lemma is proved provided 1 ( s < k - 1. 

W e  proceed t o  t h e  case s = k - 1. By double dua l iza t ion  arguments, 

2 
we s e e  t h a t  y (a @aI@all) = +aJ f o r  appropr ia te  I where J has t h e  * 11 

form (1,1,2, j2,. . . ,k-2, jk-2 ,k-1 ,k-1) . The r e s u l t  follows from previous 

remarks. 

We now c a l c u l a t e  H* (cn+l(ptl) Z p  ) . Give %n+l(p+l) t h e  2 P -act ion 

defined by t h e  inc lus ion  C = I: x 111 5 C and t h e  evident  ac t ion  of 
P P P+l 

C 
p+1 

on Fn+l(p+l). Le t  u = T 
l 0  ' . . O T  

By Proposi t ion 7.2 
p-1' 

By dual iz ing,  we observe t h a t  ~ 2 ~ + ~ ( ~ )  = A 63 B as  a Z P n P -module where 

n is  generated by u, A has an a d d i t i v e  b a s i s  given by 
P 

b; I J admissible, J = ( i l , j l , .  . . .\.jk).\ < P} 

and B has  an a d d i t i v e  b a s i s  given by 

{a; I I admissible, 1 = ( i 1 j l . .  . i k.  j k ), = p}. 
3 



It is  t r i v i a l  t o  s e e  t h a t  t h e  c y c l i c  group n generated by a 

* P 

a c t s  f r e e l y  on B. Hence H (n ;B) = cp, t h e  c lasses  i n  B f ixed  under 
P * 

the  ac t ion  of  n-. H (n_;A) has been calculated i n  s e c t i o n  8. Using 
Y Y 

F I R ~ + ~ , ~ )  
t h e  s p e c t r a l  sequence f o r  a covering, t h e  f a c t  t h a t  ( i s  a 

p(ni-1)-manifold, and t h e  r e q u i s i t e  per iod ic i ty  of t h e  d i f f e r e n t i a l s  in 

t h e  s p e c t r a l  sequence (see s e c t i o n  8 f o r  d e t a i l s ) ,  we t r i v i a l l y  have 

Lemma 12.7. I f  n 2 1, 

H* @n+l (pi-1) . zp) = Imf*n C, add i t ive ly  , 
3 

71 e 
where Imf* is  a subalgebra over thes teenrod  algebra and is given by t h e  

image of t h e  c lass i fy ing  map f* : H * ( B ~  . B ) +- ~ * ( < + ~ ( p + l )  ;ZZp) spec i f ied  
P )  P 

n 
P 

i n  sec t ion  5,Kerf* is  t h e  i d e a l  of H*(Bn .2L ) which cons i s t s  of a l l  
P' P 

elements of degree grea te r  than n(p-1), and C is  a subalgebra of c lasses  

* 
i n  H &n+l,(P) f ixed  under n . Furthermore, an addi t ive  b a s i s  may be  

P 

chosen which extends t h e  s tandard b a s i s  f o r  Imf* and is  such t h a t  Bx = 0 

f o r  x a b a s i s  element which is  n o t  in M*. 

A s  i n  sec t ion  5, we a r e  d e l i b e r a t e l y  incomplete i n  our descr ip t ion  of 

b. 

Note t h a t  t h e  second statement of Lemma 12.7 follows d i r e c t l y  from t h e  

ac t ion  of t h e  Bockstein on H * ( B ~  . Z ) and t h e  f a c t  t h a t  t h e  Steenrod 
P' P 

operations a r e  t r i v i a l  i n  H* c,fl(pi-l) [Prop. 7.81. We remark t h a t  with 

some added work, t h e  p r e c i s e  algebra extension over t h e  Steenrod algebra 

can be calculated,  but  t h i s  e x t r a  information is  i r r e l e v a n t  t o  our work. 

By t h e  equivariance conditions [G;l.l]  s a t i s f i e d  by Y ,  we s e e  t h a t  

y induces a map of quot ien t  spaces 

We obta in  information about Y* here. 

E = 0 , l .  (2) y*(all @ en(p-13 €3 e d  is  i n  t h e  image of t h e  map 

Proof. We break up t h e  proof of (1) i n t o  t h r e e  cases. I f  n = l , . i t  i s  

enough t o  show t h a t  y*(crll @ ei CSf eo) when i = 0 o r ,  i f  p > 2, when 

i = p - 2. I f  a E HP-'(c 2(p+l) . Zp) ,  p > 2, then Bx = 0 by Lemma 
Y 

T 
P 

12.7. Since B(a e b e  @ e o ) * f  0 f o r  p oddwhere 
11 p-2 

is  t h e  c l a s s  in 3ip-l(c  (2) 5 r2 (p) ) dua l  t o  a @ e @ e O y  we have - 11 p-2 

y*(crll @ e @ eo) = 0. Let  i = 0; we ca lcu la te  y*(all (3 eo @ eo)  by 
P-2 

t h e  commutative diagzam 
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y*(all @ eo @ eo) = Y,II:(~,, @ eo @ eo) = " * ~ * ( a ~ ~  @ e 0 @ e 0 = "*(apyl+. . -* Remarks 12.9. Observe t h a t  we may use C ins tead  of II i n  our arguments 
P P 

(with troublesome modifications necessary i n  t h e  case of twisted coef f ic ien t s ) .  
by Lemma 12.1. Recal l  [ t ab le  (#) o r  Lemma 7.6 1 t h a t  

By degree considerat ions,  it i s  immediate t h a t  y*(a 8 e .  @ e O )  = 0 i f  
11 1 

i f  i < p  
n + i f O(n) o r  (p-1-E) , E = 0 , l .  Hence our ca lcu la t ions  a r e  a t  l e a s t  

p s i  = I i f  i = p .  
P Y ~  plausible .  

It follows e a s i l y  t h a t  - "*apri - I I * ~ ~  ,1, i 2 1 [This f a c t  i s  checked by 

r e c a l l i n g  the  E' -term of t h e  s p e c t r a l  sequence f o r  a covering and t h e  o,* 
def in i t ion  of H (11 ;M) .] Consequently y*(all 8 e,, t3 e ) = 0. 

0 P 0 

I f  n > 2, suppose t h a t  y*(x) = c(all @ ei @ eo)* + other  terms f o r  

x s ~ * < ~ + ~ ( ~ + l ) .  By L e m  12.7 and t h e  algebra s t r u c t u r e  of  Theorem 5.4, 

n 
P 

the re  e x i s t  E = 0.1 and s 2 0 such t h a t  (e;lE - (B (e:))' a = 0, 

* E  * 
(el) ( ~ ( e ~ ) ) ~  . (allX ei %;eO)* # 0, and n(p-1) < E.+ 2s + n + i < up f o r  

i < n(p-1). It follows t h a t  c = 0, and consequently y*(allQei@ eo) = 0 

f o r  i < n(p-1). 

. I f  n = 2, i t  is  easy t o  s e e  t h a t  y*(a l l@e.  @ e  ) = 0 when i = 0, 
1 0  

p - 2 o r  2p-3 by s i m i l a r  arguments t o  those used i n  case n = 1. I f  

i = p - 1, we use arguments s i m i l a r  t o  those used i n  cases n > 2. 

(2): By lemma 12.7, t h e  only c lasses  i n  HnPt n+l (el) a r e  i n  t h e  image 

II 
P 



13. Geometry of Browder operations 

Let g: Z 2  -+ C be a non- t r iv ia l  homomorphism such t h a t  g(generator) 
P 

interchanges j and k .  Further suppose t h a t  h: J ~ + ~ z ~ + ~ ~ + ~ ( ~ )  is 

C -equivariant where J~+'G denotes Milnor's (n+l)-st j o i n  of  t h e  group 
P Jn+l h 

G. Transparently t h e  composite J n + t 2  2 Jn+t P -pn+l(~)  4&n+1(2) 

i s  C equivariant  where IT< cl , . . . , c > = < c 
2- ,ck>. It is  t r i v i a l  t o  show, 

P 

by use of t h e  s p e c t r a l  sequence f o r  a covering, t h a t  i f  X and Y a r e  

Z -hbmology spheres equipped with f r e e  IT -actions and f :  X+ Y is 
P P 

r -equivariant,  then f *  f 0. Since and & n+l(2) a r e  honology 
P 

spheres (see section, 5) , r* o g* o f * is  non-zero. Consequently h 

cannot be equivariant ly extended t o  a map from J ~ + ~ E  i n t o  gn+l(p). 
P 

This observation ind ica tes  t h a t  t h e  operat ions described i n  Theorems 

1.1 and 1 .3  cannot be defined i n  t h e  e n t i r e  range by t h e  method of 

Dyer and Lashof (for  odd l rimes). I n  f a c t ,  s ince  t h e  following diagram 

commutes, (where ui i s  defined i n  [G; 2.31) 

$ (p) X x2 x * P - ~  
n+l 

0 o...ou x 1 
3 P 'k 1 /YX 

En+l(2) x2 

we observe t h a t  it is  prec i se ly  t h e  presence of Broeder operat ions which 

prevents a l l  of t h e  ~ € 9 ~  and fiEF,, t o  be defined by use of  t h e  join.  

We inves t iga te  f u r t h e r  t h e  p roper t i es  of Browder operat ions using 

methods n a t u r a l l y  suggested by t h e  s t r u c t u r e  map of t h e  l i t t l e  cubes operad. 

I f  we wish t o  ca lcu la te  a p a r t i c u l a r  formula, we need only s u b s t i t u t e  ap- 

p ropr ia te  numbers i n  t h e  composite map ek, o(6 *@...@6 ) o  (10c*@1) 
il ik* 

f o r  the  diagram 

DIAGRAM 13.1 

We use c o m u t a t i v i t y  of t h i s  diagram [G; 1.41 and our homological 

calculat ions [§5-121 t o  achieve t h e  desired r e s u l t s .  It should be observed 

t h a t  t h e  s t r u c t u r e  map, y ,  of t h e  l i t t l e  cubes operad c a r r i e s  a l l  t h e  

information, q u i t e  e legan t ly  and b e a u t i f u l l y ,  s u f f i c i e n t  f o r  a complete 

theory of homology operat ions on pn+l-spaces. Observe f i r s t  of a l l ,  

t h a t  the  p roper t i es  i n  Theorem 1.2(1)-(6) except t h e  i n t e r n a l  Cartan 

formula have already been demonstrated in [A; 561. (Recall t h a t  1.2(6) 

is  commutation with homology suspension). 

We already know t h e  map y* on t h e  pr imi t ives  [12.1]. We use t h i s  

information t o  p rec i se ly  i d e n t i f y ,  i n  terms of Browder operat ions and 

Pontr jagin products, t h e  operat ions determined by t h e  c lasses  a and 

X i n  t h e  cohomology of b ra id  spaces. The method of proof here  is  re- 

p resen ta t ive  of t h e  s p i r i t  of our proofs throughout t h i s  sect ion.  Let  



a* and A x  denote t he  bas i s  elements which a r e  dual  t o  t he  bas i s  elements 

a and A specif ied i n  Theorems 5.2 and 5.3. 

Corollary 13.2. 

(1) 6,(a,@xp) = -An(x,x) * xp-2 i f  degree (a) is  even and n is  odd. 

p-l p-l 
(2) t3*(A*@xp) = (-1) (A,(x,x)) 2 * x  i f  degree (x) is  odd and n is  even. 

Remark 13.3. Visibly,  the  operations i n  Corollary 13.2 (1) and (2) a r e  

non-tr ivial ;  up t o  constant mult iples ,  these a r e  t he  only operations i n  

one var iab le  o ther  than t he  eEqS and ~ € 6 ~  which can occur in the  

p-th f i l t r a t i o n  of H*Cn+lX[see sec t ion  41. It i s  amusing t o  observe t h a t  

the  somewhat a r t i f i c i a l  looking c lasses  a and A a re ,  f o r  the  above 

reasons, p rec i se ly  the c lasses  i n  the  cohomology of bra id  spaces which 

* 
cannot be i n  the  image of H (BEp; Zp (q) ) . 

Corollary 13.2 w i l l  follow d i r ec t l y  from the  following coro l la ry  of 

the geometric calculat ions i n  12.1. 

Corollary 13.4. 

(1) Consider Y*: ~ * 7 ~ + ~ ( 2 )  @ ~ ~ i r g ~ ~ ~ ( k - 1 )  o H$~+~(I . )  -+ H * F ~ + ~ ( ~ ) .  

y*(e @all@ eO) = all where e0 is  t he  evident zero dimensional c lass .  
0 

(2) Consider Y : ~ & + ~ ( k )  €3 H * & ~ , + ~ ( Z ) ~  @ ~ , & ~ ( k - ~ j )  + H L l ( k ) .  

y*(eo 8 (a11)3639e0) = a=, I = (1,1,3,3,5,5 ,... 2j-1Jj-1) where aI is  

the  bas i s  element i n  ~ $ ~ + ~ ( k )  dual  t o  t h e  admissible monomial a: in 

Proof of 13.4: (1) is  immediate from Lemma 12.1 f o r  statement (2), we 

note t ha t  y * (eO 0 e: @ a @ el-'-' 
11 0 ) = a  2s-1,2s-1 by Lemma 12.1. Dualizing, * 

we observe t h a t  -y?aJ) = c (eo @al1 0 . . . 3 all @ eo)* + other  terms, f o r  2 J 
* * *  

an admissible monomial where E = 0 i f  a # a 
* 

J 1.1~33'" a2j-1,2j-1 and 

proof of 13.2: Recall t h a t  the  c l a s s  a E H ~ ( B ( $ + ~ ~ ~ ) ;  Z p )  r e s t r i c t s  t o  

1 a* i n  H T ~ + ~ ( ~ )  and t he  c l a s s  A E Hnm(B(JRn+l,p) ; iZp(2&.l)) 
p - l i y i j l  i j  

* * 
r e s t r i c t s  t o  ig(alP33.. . a:-2,p-2 ), m = d ,  2 and g runs over a complete 

s e t  of d i s t i n c t  coset  representat ives f o r  H i n  C [See sec t ion  8 f o r  
P' 

de ta i l s . ]  Consequently, t h e  dual  c l a s s  a* i s  the  image of all under 

the  map H ~ ~ ~ + ~ ( P )  + H ~ B ( R ~ + ~ ~ ~ ) ;  s imi la r ly  t he  dual  c l a s s  A, i s  the  

image of aI -it H % (p) where I = (1,1,3,3,. . . ,2j+1,2j+l,. . . , ILA,EL). nrn n+l 2 2 

By 13.4(1), and commutativity of diagram 13.1, we have t h a t  

By the  de f i n i t i on  of )h, we have the  formula 

I 1  ( i i )  e2*(1@ B2*@ 6:i2) (1. t*@l) (eO @all@ eOO xp) = f1fJ2*(e00 An(xyx@ xp-5 

= (-1) 
n lx l+ l  ~ ( x , x ) *  P" 

together, ( i )  and ( i i )  y i e ld  13.2(1). Similar ly,  by 13.4(2) and commutativity 

of 13.1 we have t h a t  

( i i i )  e (h*@xp) = ep* y*(eo@ aY1w e0@ 2) 
P* 



By definit ion of A n  we have the formula 

together, ( i i i )  and (iv) p ie ld  13.2(2). 

Proof of Theorem 1.2(7), the Jacobi identi ty:  

Specializing diagram 13.1 t o  

we observe tha t  

( i )  e2*(w62*@91*) ( 1 8 4 . ~  1) ( a l l ~ a l l @ e O ~ x ~  y ~ d z )  = (- l)nl~lbin[in(x,y) ,,I. 

To take advantage of commutativity, we calculate y*(a 11 @ a  l16'eO)- BY 

Lemma 12.1, Y* (all @eO @eO) = aZ1 + aZ2 and y* (eo @ ql Q eO) = a 11' 

Dualizing t h i s  information, we use the cup product s t ruc ture  t o  re t r ieve  

the formula 

Direct dualization of formula ( i i )  y2elds the desired resul t :  

n * *  * * 
( i i i )  y*(all 8 all@ eo) = (-1) [(allaZ1)* + (allaz2)*1 

* * * * 
where (allaZi)* is the element dual to  a lla2i. Let a I  denote 

* * * * 
(allail)* and a denote (allaZ2)*. We combine formulas ( i )  - ( i i i )  

and observe tha t  

We l e t  U = T ~ T ~  E C 3  and r e c a l l  tha t  the action of U on the dual basis  

is  given by the Kroneckei- pair ing 

<uaK, x*> =<k,u-lx*> for  a arbitrary:  

Combining t h i s  information with commbtativity of 13.1 and the requis i te  

equivariance, we have 



Combining formulas ( iv)-  (v i )  together  with t h e  formula 

)h(x,Y) = (-1) I x  l+l+n(lxl+iy ' + l ) ~ ~ ( ~ , ~ ) ,  we get  t h e  Jacobi  i d e n t i t y .  

Proof of Theorem 1.2(5). The i n t e r n a l  Cartan formula f o r  
An: 

We s p e c i a l i z e  diagram 13.1 t o  

By Lemma 12.1, y*(e00al1@ eo) = all and consequently 

e ,,(all x E3 y @ u @ v)  = (-l)nlxl+lh n (x,y)uv. We a l s o  observe t h a t  

Y ,(all@ eo @ eo) = aZ1 + a Z 2  + a31 + a32 by Lemma 13.1 and 

(i-1 e4,y,(all~ e o @  e 0 ~ x ~ y ( i 3 u ~ v >  = (-1) n(IxI+I Y I  )+Ih n (xy,uv). 

We r e c a l l  t h e  C -action on t h e  c lasses  ai j  [Prop. 7.21 and use commutativity 
4 

of t h e  diagram 

t o  ca lcu la te  

Combining formulas ( i )  - (v) , we have 

An(xy,uv) = (-1) I y 1  (n+14)A ( x , u ) y ~  + (-1) I x l  ( n f l ~ I + l u l  (y ,,), n n 

+ (-I) 1'1 (n+Ivl)+luIvIAn(x,v)p + (-1) 1 . ~ 1  (n +lvl+lyl)+lullvlhn(y,vXu. 

The formula i n  1.2(5) follows. 

We note t h a t  t h e  i n t e r n a l  Cartan formula does not  follow from t h e  

ex te rna l  Cartan formula because t h e  mul t ip l ica t ion  X x X - t  X is  no t  

a morphism of &n+l-spaces. 

Proof of Theorem 1.2(7), t h e  Nishida r e l a t i o n  f o r  ln: 
2 

Since A, i s  defined i n  terms of E J ~ : F ~ + ~ ( ~ )  x X -t X, t h e  Steenrod 

operat ions on A n (x,y) a r e  completely determined by t h e  ex te rna l  (dual) 

Cartan formula: 

Proof of Theorem 1.2(8) ,  t h e  r e l a t i o n s  X ~ ( Q ~ X , Y )  = 0 = A , ~ , Z , Y )  : 



lie s p e c i a l i z e  diagram 13.1 t o  

commutativity of 13.1, we have hn(QsxYy) = 0 = Xn(Snz,y) f o r  X, y ,  

z E H*X. 

Remark 13.5: We note t h a t  t h e  i n t e r n a l  Cartan formula implies  t h a t  

0 = Xn(xPYy) = hn(QSxYy) f o r  n > 0 and degree (x) = 2s [degree (x) = s] 

as  required f o r  consistency. 

We presen t , f ina l ly ,  an a lgebra ic  proof of t h e  commutativity of t h e  

diagram i n  sec t ion  1. Recal l  t h a t  t h e  Whitehead product [ lpfn+lr lqfn+ll 

i n  n 
p+q+2n+l 

sPfnfl V sqfnfl may be  described a s  t h e  generator of t h e  

kerne l  of 

k 
where lk denotes t h e  fundamental c l a s s  of S [13]. It is  easy t o  s e e  

t h a t  %(S phi-' v sqfnfl) + r k ( s  *" x sqfn+') i s  an epimorphism and 

that [lptn+ly lq+nfl 1 is  g i ~ e n  i n  t h e  obvious way by t h e  shor t  exact 

sequence 

o + nr(sS x st,sS v s t )  + nrel(sS Y s t )  + nr- l(~S x s t )  + o 

&ere r = pw+2n+2, s = p f n f l  and t = q+n+-1. We can a l s o  regard 

[ lpfn+l , lq.fn+l] a s  given by t h e  kerne l  of 

which is  *p+q+n+l (anfl(ss x s t ) ,  anfl(ss v s t ) )  = Z. Clearly 

0 i f  i < p+q+2n+2 
a. (sS x -st, sS V s t )  = . We observe t h a t  

Z i f  i = p+q+2n+2 

n 21 
@* ('*I lP+n+l3 lqfn+l ] = +,a (1) [ where u* :T*X--=--+ T*-~QX 1 s ince  

+* : *ptqfnfl 
(nn+l(ss x s t ) ,  nn+l(ss v s t )  

is  an isomorphism, n 
p+qfnfl 

( ~ ~ + ~ ( s ~ x s ~ ) ,  Q ~ + ~ ( S ~ V S ~ ) )  %?z, and t h e  

following diagram commutes: 

To c a l c u l a t e  +*a(l), i t  s u f f i c e s  t o  c a l c u l a t e  t h e  kerne l  of t h e  map 

n+l s t n f l  n+l p 
Clearly (S v S ) = Q 2 (S v sq)  and 

t n+l n+lsp n+l q 
an+'(ss x s  = a c c S . Under t h e  inc lus ion  of 

n+l s t 
(n+l)-fold loop spaces i : Q ~ " ( s ~  v s t )  + a (S x S ) , i t  is  



c l e a r  t h a t  i *lp = b and i*l = lq. By our ca lcu la t ions  mod p, Ker f *  
9 

is  generated by An([,, lq),  It is easy t o  s e e  t h a t  Ker f*, r a t i o n a l l y ,  

i s  generated by An(lp, iq).  It is  c l e a r  t h a t  An( b, lq) must generate 

Ker f* i n t e g r a l l y .  Hence $,a (1) = %An( $, , iq).  

To check t h e  cor rec t  s ign ,  we r e c a l l  t h a t  Samelson [21] has shown t h a t  

Since t h e  Hurewicz map ommutes with U*, it must follow t h a t  

cp*a(l) = )h($' tq).  

The diagram r e l a t i n g  t h e  Whitehead product and An in s e c t i o n  1 

follows d i r e c t l y ,  by n a t u r a l i t y .  

Remark. Our arguments f o r  an (n+l)-fold loop space.should be  compared 

t o  Samelson's [21] f o r  a f i r s t  loop space. Of course we a r e  using 

Samelson's s ign  convention f o r  t h e  Whitehead product here. 

14. An a lgebra ic  lemma and a sketch of methods 

Before proceeding t o  d e t a i l s ,  we sketch t h e  methods used i n  t h e  following 

t h r e e  sect ions.  Since t h e  diagram 

equivariant ly homotopy commutes [G; 1.41, a l l  p roper t i es  of operat ions 

derived from the$n-actioq must hold a f o r t i o r i  f o r  t h e  evident induced 

operations associated t o  t h e  cn+l-action. However, s ince  X is  a 

-space, all terms involving An-l vanish; new operat ions a r e  born 
n+l 

from t h e  gn+l-action which a r e  not  present  from t h e  n -action, namely, 

An, en, and, i f  p > 2, Cn. Clearly t h e  l i o n ' s  share of our work con- 

sists of analyzing t h e  proper t i es  of these new operations. 

Most of t h e  p roper t i es  of t h e  An have already been determined. 

The proper t i es  of S-X and 5-X follow, up t o  e r r o r  terms involving 
U u 

2% z?$.!i 
t h e  An, from t h e  s t a b l e  r e s u l t s  f o r  Q x[Qn+qxl and 8Q r, 

x E H X. We then apply severa l  ad hoc t r i c k s  t o  c a l c u l a t e  t h e  e r r o r  
q 

terms prec i se ly .  

To determine our formulas, it s u f f i c e s ,  by Lemmas 3.4 and 3 .5 ,  t o  

check them f o r  H*Cn+lX and H*Q~+'X"%. By Theorems 3.1 and 3.2, 

an+l*: H*C*lX + 8*Qn+'Tn+lx is  a monomorphism of allowable 

AR n A n -Hopf algebras. Hence we need only v e r i f y  our formulas f o r  



H Q~"E~'$. Here we show t h a t  t h e  unstable  e r r o r  terms l i e  in a sub- * 
module, M., of GWnHKX i f  n > 0 and of W H X otherwise. i?e construct  

0 * 
a simple "external" operat ion which de tec t s  t h e  elements of Mx. 

We begin with a def in i t ion .  Let  % be t h e  Z -subspace of 
P 

GWnH*X, n > 0 o r  of W H X spanned by elements of  t h e  form 
0 * 

where (1) AI i s  a b a s i c  A -product f o r  some f ixed  I, (2) ~ l m  a n d .  
n 

( 3 )  A has no addi t iona l  f a c t o r s  XI. We consider t h e  maps 

induced by t h e  inclusion j : X f X V Se, > 0. Clearly T ( j * )  

and W ( j  ) a r e  monomorphisms. By abuse of notat ion,  we i d e n t i f y  
0 * 

% with GWn(j,) (Mx) o r  Wo (j*) (MX). Let ( denote the  image of  the 

fundamental c l a s s  of SL v i a  t h e  s tandard inclusion 

Our main a lgebra ic  r e s u l t  i s  

Lemma 14.1. The homomorphism defined by 

a(-, I) 1,: M .  -f WnH* (X v S L ) i f  n > 0 o r  

II 
AO(-yi)12: W0H*(X v S 

is  a monomorphism. 

proof: We f i r s t  consider t h e  case n > 0. Let  {%*XI - 
1 

a r b i t r a r y  f i n i t e  s e t  of l i n e a r l y  independent elements i n  %. It 

s u f f i c e s  t o  show t h a t  An(-, C) is  a monomorphism when r e s t r i c t e d  t o  

the  subspace generated by these elements. F ix  one of t h e  
l1s 

= A. Then 

me 
by d e f i n i t i o n  of %, we may w r i t e  each term A *A , L = 1 ,... ,k 

"L 

a s  iL*Te where has no f a c t o r s  of A ,  qe 2 0. Clearly 
n 

* A%) is  a s e t  of l i n e a r l y  independent vec tors  which- 

m 
1 "k span t h e  same subspace a s  {%*AI- ,. . . , \*AI, 3 .  
.L k n 

Suppose An@, ,) = 0 where V = i=l I aiii*A i. By t h e  i n t e r n a l  

ca r tan  formula f o r  \ [~hedrem 1.21. we have 

terms which have no f a c t o r  of t h e  form A (A,(). By d e f i n i t i o n  of 
n 

GW H,X, it i s  c l e a r  t h a t  n .a  = 0, j = 1,. ..,k. But f o r  our f ixed  
n J j 

choice of A = A , we have n = m and plms. Hence a - 0 mod p. 
Is s s 

It follows e a s i l y  t h a t  a = 0,  j = 1, ..., k by a s i m i l a r  argument. 
j 

The case n = 0 is  trivial. 



15. The formula Xn(x,Eny) = ad:(y) (x) and commutation with homology 

suspension 

We present  an amusing proof of t h e  formulas O*En = En-P*, and 

O*cn = -cn-l(T* i f  n > 1. Our proof does not  requ i re  construct ion of 

chain l e v e l  operat ions and t h e  r e q u i s i t e  e x p l i c i t  equivariant  chain 

approximation f o r  c * % + ~ ( ~ ) .  The ingred ien ts  a r e  t h a t  (1) O*En " 5 n-l" * 
modulo e r r o r  terms generated by Browder operat ions,  (2) U*5, E -5,-,u* 

-* -- - 

a s  i n  (1) i f  n > 1, (3) t h e  e r r o r s  a r e  approximated by an appl ica t ion  

of [G; Theorem 6.11, and (4) the  formula An(x,Cny) = ad:(y) (x) de tec t s  

t h e  poss ib le  e r r o r  terms. Of course, t h i s  method requi res  a der iva t ion  

of t h e  formula f o r  A (x,Eny) which is  l o g i c a l l y  independent of t h e  
n 

f a c t  t h a t  t h e  top operat ion commutes with suspension on t h e  nose. 

Recal l  t h a t  t h e  a d j o i n t  of t h e  identity.map on nn+'x y i e l d s  

Cn+l n+ 
C l %  + X and a map of f ib ra t ions :  

nn+l 
an+lCn+lan+l 

X 
n + l l  > 

I i'l n 
panCn+l n+lx PQ LPrrtl(l) 

In 
1- pa% 1° n 

s i n c n + l a n + ~  a LPn+l(l) nnx 

$+l Since 
$n+l(l)j, 

i s  an epimorphism, i t  s u f f i c e s  t o  v e r i f y  our r e s u l t s  

i n  t h e  left-hand f i b r a t i o n .  

! operations of weight g rea te r  than one and t h e  i t e r a t i o n s  of t h e  operat ions 

B E ~ S  and on these  Browder operat ions.  

Lemma15.1. (1) o*S,- Sn- l~* ( I  n-1 ) i f  1121, 

(2) O,Cn 5 -Cn-l~*(In-l) i f  n 2 2, and 

.(3) U*i1' 0 (Io) . 

Proof: Let jn(X) : a%% + QX be t h e  s tandard inc lus ion  of anz% i n  - 
QX = a%%. We now r e c a l l  t h a t  t h e  following commutative diagram 

n 

y i e l d s  a map of f ib ra t ions :  

Since the  operat ions commute wi th  suspeision in. t h e  r i g h t  hand f i b r a t i o n  

[A; 531, we know t h a t  our  formulas i n  15.1 a r e  cor rec t  modulo t h e  k e r n e l  

n+l~n+$ in sec t ion  3 of jn(C~n+%)*. But then our ca lcu la t ions  of H*a 

a r e  cor rec t  a t  l e a s t  a s  a lgebras  and v i s i b l y  In-l = ker  jn(C~n+k), .  

By 15.1, u*E n x = En-l~xx + A ,  u,< n x = - c n - l ~ * ~  +I' i f  n > 1, 

and cr * 5 1 x = @. We es t imate  A ,  r ,  and @; t h e  c r u c i a l  po in t  being t h a t  



these  terms have no non- t r iv ia l  summands of Dyer-Lashof operations (and 

i n  p a r t i c u l a r ,  no p th  powers). 

Lemma 15.2. For t h e  f i b r a t i o n  .QnflEn+b + p.QnEn+'~ + ClnEnC1~, A ,  l', 

and Q a r e  given by 1 X * . . . * X I 9 w(X > 0, 
I1 j I k  

w(X ) + .. . + v(hI ) ( p, 1 is a 1 -product on c lasses  i n  
I1 j I k  n-1 

m: By construct ions 2.4 and 6 . 6 .  [GI, t h e  spaces Cn+lX, En+l(TX,X), 

and C EX a r e  f i l t e r e d .  We observe t h a t  t h e  inc lus ion  n Cn+lX - (TX. XI 
a n d t h e p r o j e c t i o n  n n+l . . En+l(TX,X) + C EX r e s t r i c t  t o  maps of 

n 

f i l t e r e d  spaces. Now consider t h e  following diagram whose lower l e f t  

hand rectangle commutes by t h e  above observation, 



The top rectangle commutes by d e f i n i t i o n  of t h e  ac t ion  On+l; t h e  r e s t  of 

commutativity follows from [G; 6.9 and 6.111. By d e f i n i t i o n  
n+n 

- .  

n+q 
<,(XI = (-1) v(q>e*(en(p-l)-l @ xP) which, by commutativity of t h e  

diagram i s  j u s t  @ x p ) ,  E = 0,1. 

Let  DE E C*FpCn+lX be such t h a t  DE represents  t h e  cycle  

en(p-l)-E @ xp. Because FpEn+l (TX,X) , is  conf rac t ib le  [G; 7.11, 

i,D = a C E  f o r  some CE E C*FpEn+l(TX,X). Obviously 'i'n+l*CE is  a 

cycle  such t h a t  ( - 1 1 9  v (q)O,(Cnnn) *(nn+l,CE) represents  

By sec t ion  4, we s e e  t h a t  Bn,(Cdn),(H,FpCnEX) i s  spanned by 

S s c lasses  of t h e  form 8 Q y,  Sn-ly, ~ , ~ y ,  and A * ... * A 
I1 I.. ' 

3 

w(A ) + . . . + w(XI ) ( p,  y E H*EX and X is  an i t e r a t e d  Browder 
I1 j I k  

operat ion on c lasses  from H*CX. - 

Since is*€,$ and u 5 x a r e  i n  t h e  image of H,F C EX, the  * n P n 

l e m a  follows [see [A; 531 1. 

We assume f o r  t h e  moment t h a t  An(x,Sny) = adz(y) (x) . 

Proof of Theorem 1.4. (Commutation with suspension): 

e 
Let j denote t h e  s tandard inc lus ion  of EX i n  E(X V S ), e fixed. 

Let denote t h e  image of t h e  fundamental c l a s s  of St i n  

pa n+l L * E (X v S ). 

With these pre l iminar ies ,  we prove Theorem 1.4 by induct ion on n. 

I f  n = 0, there  is nothing t o  prove. Hence we begin with t h e  case n = 1. 

Then 

( i )  u,Al( l,S1x) = AO(u*~,~*S1x), 

( i i )  A (U ~ ,u ,Ex)  = A O ( ~ S t ~ t S O ~ * ~ )  + AO("*l~A)* a d  o *  1 

Together, ( i ) - ( i i i )  y i e l d  X0(u, (,A) = 0. By t h e  d e f i n i t i o n  of % 
[see s e c t i o n  151 and Lemma 15.2, we have A E %. By L e m a  14.1 and 

the  f a c t  t h a t  XO(uj;(,A) = 0, we have A = 0. Since ? L ~ ( ~ , ? ~ ~ X )  = 0 by 

Theorem1.3 ( the  proof being i n  sec t ion  1 3 ) , i t  follows from 14.1 and 15.2 

t h a t  u < x =  0. * 1 

To check t h e  a s s e r t i o n s  (1)-(3) of Theorem 1 .4 ,  we observe t h a t  

Obviously j induces a map of f i b r a t i o n s  



Together, ( iv)-(vi)  and ( v i i ) - ( v i i i )  y i e l d  An-l(a,(,A) = An-,(a,l,I'j = 0. 

By d e f i n i t i o n  of MX, Lemmas 14.1 and 15.2, we have A = I' = 0. 

Now l e t  y be a c l a s s  i n  H*Q'X represented by t h e  cycle  b 

2 and l e t  a be a chain i n  C*mX whose boundary is i*(b). (i: Q X + mX) 

Let 
C1 be  t h e  chain previously constructed whose boundary is  t h e  cycle  

i*8*(ep-2 @ bP). It is  not  hard t o  s e e  t h a t  our previous construct ion 

together  with t h e  r e s u l t s  of [A; p 1711 imply t h a t  

Cl = B*(keo @ aPml@ b) + terms of lower f i l t r a t i o n  where 

k E Zp , eo i s  a zero dimensional chain i n  c;, G2(P),  and a 

and b a r e  a s  given above. By t h e  hypotheses i n  [A; 3.41 we 

have t h a t  C1 represents  k{p2*i*aP-l) @ y i n  E' of t h e  Ser re  s p e c t r a l  

sequence f o r  t h e  path f i b r a t i o n .  Theorem 1.4(4) follows d i r e c t l y .  

F ina l ly ,  we derive t h e  formula 1 (y ,5 x) = ad:(x) (y) using only n n 

t h e  approximate information of Lemma 15.1. 

Theorem 1.3 (4).  Xn (y , Fnx) = ad: (x) (y) . 

Proof: To take advantage of ca lcu la t ions  i n  s e c t i o n  12, we ca lcu la te  

X n (5 n x,y) and use t h e  formula An(x,y) = (-1) 1x1 I Y  l + ~ ~ ( l x l ~ I ~ l + ~ ) ~ ~ ~ , ~ ) ~  

The d e f i n i t i o n s  of A n  and E n  give t h a t  

2 
[or e Z r  (a2* (en Q x ) 8 eo 63 y) i f  p=2] 

' 

Hence we ca lcu la te  An(SnxYy) v i a  t h e  commutative diagram 

By Lemma 12.8(2) we have t h a t  y*(( 63 e n(p-l) 0 eo) is  i n  t h e  image of 

the 'n&+l . By Theorem 12.3 and t h e  f a c t  t h a t  

t h e  diagram 

commutes, we have t h a t  8p+l*(y* @ 1 )  ( @ @ eo O xP @ y) i s  given 

by p-fold i t e r a t e s  of t h e  An on p occurrences of x and orie occurrence 

of y. Since X (x,x) = 0 i f  Snx i s  defined, it follows t h a t  n 



f o r  some f ixed  constant k' . Hence An(y ,Snx) = k adp (x) (y) . f o r  some 
n 

f ixed  constant k. 

To c a l c u l a t e  k ,  we consider t h e  path-space f i b r a t i o n  

n+l  m 
fin+$ * 2Qnx * Q"x f o r  appropriate  X. Let X = I; S f o r  n + m 

even and m large.  Let L, denote t h e  image of t h e  fundamental c l a s s  

nn+l n+l m 
of sm i n  * C S . By Lemma 15.1(1), uxSn L, = 5n-1U* L, + A .  

n 114-1 m Since t h e  Browder operat ions in H*Q C S a r e  a l l  t r i v i a l  when 

n + m is  even, it follows t h a t  u*Sn lm = 5n-1u, L,. NOW l e t  

n+l r 
X = (S V sm) , r > 0. By n a t u r a l i t y ,  we have t h e  formkla 

C I * A ~ ( ~ ~ , S , L , )  = An-l(u* ir,S,lua~). That k = 1 follows immediately 

by inductiion on n and t h e  formula Ao(y,EOx) = adi(x)  (y) f o r  a f i r s t  

loop space. [see Jacobson [14] f o r  t h e  ca lcu la t ions  i n  t h e  case n = 0.1 

I n  t h i s  sec t ion ,  we determine t h e  remaining proper t i es  of Theorems 

1.1 and 1.3 except f o r  t h e  Nishida r e l a t i o n s .  Proper t i es  (1)-(3) of 

Theorem 1.1 and (1) of Theorem 1.3 follow immediately from t h e  d e f i n i t i o n s  

of t h e  operations. Additional p roper t i es  a r e  proved in the  following 

order: (1) deviat ion from l i n e a r i t y  of Sn and t h e  l i n e a r i t y  of QS, 

, (2) Cartan formulas, (3) Adem r e l a t i o n s ,  and (4) commutation wi th-  

conjugation. 

We requi re  an observation due t o  Steenrod. 

Observation 16.1. Let H*X have homogeneous b a s i s  {xi]. Then 

H* ( C * ~ ~ + ~ ( P )  @ 1T (c.pp) u H * ( C * ~ ~ + ~ ( P )  @ ( H P ) ~ )  and 
P P 

where A has b a s i s  {x 63 . . .@ x 1 x E {xi]} and B has a bas i s  

{K. @ . .. @ xi 1 i i  . i ,  i i u E K] and K 
(1) 0 (PI P 

is  a complete s e t  of d i s t i n c t  l e f t  cose t  represen ta t ives  f o r  1~ i n  
P 

We next  show 

Proof of Theorem 1.3(5) ,  and t h e  l i n e a r i t y  of f3'QS, t h e  formula f o r  

i 
By Jacobson [12], we know t h a t  t;O(x+y) = Sox + Soy + ldO(Y)  (x) . 

To ca lcu la te  Sn(xfy), we observe t h a t  
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N = I + 0 + . . . + ape' and F(x,y) i s  a funct ion of x and y. Since where x ,  y ,  x '  and y '  a r e  never mul t ip les  of t h e  c lasses  a* or  A*, 

ei i s  a chain i n  c*! n+l(p) which p r o j e c t s  t o  a cycle  i n  C*Fn+l(p), t h e  c lassas  in t h e  image of H , & + ~ ( P )  ; Zp)  + H * ~ + ~ ( P )  ; a (q)) . 1f 

P 
P 

C 
P 

t h e  t r a n s f e r  homomorphism shows t h a t  Nei i s  a cycle  in c*g n+l (PI - X and Y a r e  cn+l-spaces, we c a l c u l a t e  t h e  ex te rna l  Cartan formula 

I f  i = n(p-l),  then ei @(x-!-y)P = ei @ 2 + ei @ yp + u 8 F(x,y) with t h e  above information and t h e  method of [A; 2.63. That is, t h e  

where y is a cycle  i n  c ~ + ( )  of degree n(p-1). By Theorem map. B ~ : ~ ~ ~ ( P )  xP xP + X, f a c t o r s  t h o u g h  &,,(P) x xP and t h e  
P P 

12.3, O,(iy}@f(x,y)) = C ~ ~ , ~ a d ~ ( x ~ ( , ) )  ... ad n (x F L . ( ~ - ~ ) ) ( ~ P  (p))  ' 
P diagram below commutes by d e f i n i t i o n  of t h e  ac t ion  on X x Y: 

and xi = x or  y. Since t h i s  c l a s s  suspends non- t r iv ia l ly  t o  

n+ F,(p) x (X x Y ) p L  
H*Q% 5, the  obvious induct ion argument y i e l d s  the  formula 

P-1 
E n  = x + Y + 1 dt (x) (y) .  

1. ' b y x e '  p p ' 

i=l 

The l i n e a r i t y  of f 3 E ~ S  follows d i r e c t l y  s ince  A. (x,y) = 0 i f  
3 

j c n.  

Proof of Theorems 1.1(4) and 1.3(2); t h e  Cartan fomulas :  

We f i r s t  determine t h e  e x t e r n a l  and diagonal Cartan formulas and 

then d e r i v e  t h e  i n t e r n a l  Cartan formula which, l i k e  i ts  analogue f o r  

An( xy,zw), has "extra" terms not  predicted by t h e  ex te rna l  formula. 

These e x t r a  terms a r i s e  because t h e  mul t ip l ica t ion  i n  X is  not  a morphism 

of &,,-spaces, bu t  only of cn-spaces and, 03 course, fhese t e i s  

a r e  unstable .  

By Theorem 5.4, we read off  t h e  coproduct i n  H * P ~ + ~ ( P )  ; Z on 

t h e  c lasses  ei. I f  p = 2, $ei = 1 e .  @ \. I f  p > 2, then 
j+k=i 

e .  Q, ek + 1 x @ y and +(eZi) = e .@ e2k+C @ Y '  
j+k=Zi+l j+k=i '3 

The ex te rna l  Cartan formula follows. S imi la r i ly ,  t h e  diagonal Cartan 

formula i s  immediate. 

We ca lcu la te  4,(x * y) in p + l  n+ * C 5. By the  ca lcu la t ion  of 

HpnelCn+%, i t  is  immediate t h a t  En(x * y) = 1 srx  * sSY + X( 
I "" 

where X 
(X,Y) 

is  a sum of uns tab le  e r r o r  terms. We r e c a l l  t h a t  t h e  

diagram 



.+I XI +I yl 
commutes and t h a t  E x  = - 1  2 Y (1 XI +I yI ) e p f l  *(encp-l)@ei@(91)P) 

fEn(x%) = 0 ,*y,(en @I (x@ Y ) ~ ) ] .  It follows t h a t  X i s  a sum of 
(x,Y> 

unstable  operat ions on p occurrences of x and p occurrences of y. 

By t h e  d e f i n i t i o n  of our operat ions,  it follows t h a t  X i s  a sum of 
( ~ 2 ~ 1  

elements in MX (of 14.1) and possibly k B E ~ S ~ n ( ~ , y )  k E . But 
P 

. ~ ~ Q ~ h ~ ( x , y )  has degree higher  than En(x*y). Hence X 
(x,y) 5. If 

- i j n > 0, we w r i t e  X - 1 H y rij. c 

(x,') Bi, j<p 
O < i + j  <p 

We c a l c u l a t e  some of t h e  r . .  by t h e  formulas 
1 3  

( i i i )  t h e  i n t e r n a l  Cartan formula f o r  An, and 

( i v )  Lemma14.1. 

We l is t  some values f o r  rij. I f  p = 2, r = rlY0 = 1'0,1 = 0 ,  
030 

and = adn (x) (y) ; i f  p > 2, and 1x1 , I 1 a r e  both even, then 

P-1 i r,,, = [adn(x) (711 , I.i,p-i = dn(x) (Y), i # O,P,  where di(x)  (Y) 

have already been defined. 

We a l s o  have t h e  following addi t iona l  formulas 

and t h e  r e s u l t i n g  s impl i f i ca t ion  in GiinH*X, 

This l a s t  formula allows an induct ive ca lcu la t ion  of t h e  
r i j  

in terms 

Other c o e f f i c i e n t s  may be ca lcu la ted  f o r  d i f f e r e n t  values of 

i and j ,  and i n  case some of n, x , and y a r e  odd. It does no t  

appear f r u i t f u l  t o  spec i fy  t h e  F more d i r e c t l y .  
i j 

The case n = 0 is  d e l i b e r a t e l y  omitted; t h e  reader  may wish t o  

observe t h e  amusing complications here.  

proof of Theorems 1.1(5) and 1.3(2), t h e  Adem re la t ions :  

We i n i t i a l l y  consider t h e  following commutative diagram: 

where o i s  t h e  equivariant  inc lus ion  of Fntl(p) i n  q m ( p ) .  

Assume, f o r  t h e  moment, t h a t  p > 2. Le t  

and 



f o r  r, s ,  q f ixed in tegers  and where our no ta t ion  is  t ha t  of [A; p.1761. 

(Recall t h a t  m = F.) Then by the s t a b l e  r e s u l t s  [A; 4.4 and 4.61, we 
2 

have Y*(U* @ U:) (F-A) = 0. Let x E H 1L Then 0 y ((r-A) @ xP ) = 1xE 
9 p2* * 

where 

XE = , (Q1lx) "l*. . . * ( e x ) n k *  (QJ4n  (.,XI ) I * .  . . * (QJQx,x)  1"". (A,(x,x) ) 'hs 

fo r  some choice of It, Jt and some mi > 0,  s > 0 o r  r > 0, CE E ;e 
p' 2 

p 1. r o r  p 1 s with R ( I ~ ) =  (J t)=l ,  and [(nl+...%+2m +"+2mg)p+2*sI = P . 
1 

To ca lcu la te  S ~ Q ~ X ,  we observe t h a t  i f  p > 2, n + 1x1 is  even, 

and hence An(x,x) = 0. Hence we may assume t h a t  Xu = 0. The calculat ion 

of cnQsx follows d i r ec t l y  from the  proof of [A: Theorem 4.71. 

To ca lcu la te  5 6QSx, we f i r s t  observe t ha t  n 

A n ( t . 5 ~ ~ S ~ )  = ad:(6Qsx) (0 = 0. Hence no terms, Xu, can be i n  Mx . 
It follows t ha t  we may assume t h a t  r = s = 0. Assume t h a t  x is  

primit ive.  It is  an easy exercise i n  t he  de f i n i t i on  of GW H*X t o  ve r i f y  
n 

t ha t  XE = 0. We proceed a s  hefore. 

The case p = 2 follows from the  above remarks. Here we l e t  

2 r = 1 (k, s-2k) ert2k-s @ es-k and 
k 

of Proposi t ion 1.5, comuta t ion  with coniugation: 

By IG; 5.81 and sec t ion  14, it su f f i c e s  t o  show tha t  XSn = Snx and 

xAn(y ,z) = -An(Xy, xz) . We requi re  some preliminary information. 

In+l, p+l 
Define c: by the  formula c (tl ,  . . . , tn+,) = (1-t t 2 ,am.y tn+l ) -  

- 
Note t ha t  c is  not  a " l i t t l e  cube". Further  define y: yn+l(j) +gn+l(j) 

- - - -- - 
by s e t t i n g  x<cl,. . . ,c.> = <cdoc  oc, . . . , c  loc.oc>. It i s  t r i v i a l  t o  - 

3 1 - 3 

ver i fy  t h a t  X<cl, ..., c.> is  i n  f a c t  i n  
3 L + l ( j ) .  [See G; P. 301. 

p+l 
Let c denote t he  standard inverse i n  X. 

Lemma 16.2. The following diagram equivariant ly comutes: 

e: ~ e t  c 1  . . c . ,  y . . . Y n + l j  x Q ~ + X   hen 
3 

i f  cr (u) = cv 

c 0 On+l(<cl'. . . ,C'>'Y1,. . . 'Y.) (v) = 
J J i f  cv & Imci, and 



Hence the  diagram commutes. Equivariance is  evident.  

Proof of Proposi t ion 1.5: 

By t h e  defining fromula ( r i ~  = ( P ( ~ @ x ) $ J )  f o r  t h e  conjugation i n  

a Hopf algebra,  it is  easy t o  ca lcu la te  t h a t  (1) xSOy = ~ ( y p )  = EO(xy), 

and (2) xA0(y, z)  = x [y*z- (-1) I ~ I ' ~ z * y ]  = -AO(xy ,xz). TO ca lcu la te  

XS,Y and x~,(Y,z) ,  n > 0, we observe t h a t  

- 
(3) Xe P* (en (p-l) @ yP) = sp*(x*en(p-l) @ ( X Y ) ~ )  and 

- 
( 4 )  x e p x ( ( G ~  @ 2) = ep*(<( @ xy @ XZ) by 16.2. Since x i s  an 

order  2 equivariant  automorphism of cn+l(j) , i t  follows t h a t  

- - 
= k e  2 

X*en (p-1) n(P-1) and x , ( = L (  where k 2 = L  = I .  

Combining t h e  formulas ~*xF;,Y = X S ~ - ~ U * Y  and o*xA,(y, z)  = XA,-~(U*Y ,(J,z 

with (1) and (2) above and an evident induct ion,  we observe t h a t  k = 1 

and ' L = -1. The r e s u l t  follows. 

17. The Nishida r e l a t i o n s  

We prove Theorems 1.1(7) and 1.3(3) by ca lcu la t ing  t h e  A-action on 

t h e  operation 5, and, i f  p > 2, on t h e  operation Sn by induction on 

n. Evidently, t h i s  information s u f f i c e s  t o  ca lcu la te  induct ively t h e  

A-action on B ~ Q ' .  

I f  n = 0, t h e  c l a s s  eo @ xP E HSl(p) QX P (H*x)~ is  in t h e  image 

of t h e  map H&(p) @ (H*x)~ + H&(p) Qv P (H*x)'. We ca lcu la te  t h e  - 

A-action on e n  @ xP by using t h e  dual of t h e  ex te rna l  Cartan formula " 
il 

and n a t u r a l i t y  : p:(e0 @ xP) = I eo P* x o . . . o p>x. 
i,+. . .+i-=r 
I P 

-)x @ . . . @ p: (PIx ['/p'xf' + Ieo  6) P* Evidently p:(e0 @ xP) = eO @ (P* 

[r/plx = P=/PX i f  1 r, and t h e  sum runs where p f d p l x  = 0 i f  p 1 r, P, 

over sequences ( i l ,  ... . ip )  such t h a t  il + ... + i P = r, il = ... = i 
n l '  

and u runs over a complete s e t  of d i s t i n c t  l e f t  coset represen ta t ive  

x ... in Ip. Consider 
I%-%-1 

el: t l ( p )  x XP + X. Since e1*p:(e0 CB xP) = P:%~*(~o@ xP) and 

Bln(e&xl EJ ... @ x  ) = x1 * ... * x we observe t h a t  
P PY 

* O  0 *  ia(p)x) where t h e  sum runs 
pra x = 5 P ~ ~ P I X  + I(P:(')X) * . . . * (P* 

over sequences (il, ..., i p )  described above. By Lemma 17.1 which i s  

s t a t e d  and proved d i r e c t l y  a f t e r  t h i s  proof , t h i s  sum is  g i v e n  by 



(p-1)-fold commutators a s  

ado ( P P  ("x) . . . kl ad, (P? 'p-"x) (P$) 

where t h e  sum runs over sequences (il, ..., i ) described in Theorem 1.3(5). 
P 

To ca lcu la te  P ~ E ~ X ,  n > 0, observe t h a t  it . suf f ices  t o  do t h e  

cglculat ions i n  H*Q~+%~+$. For convenience, we l e t  

n+ n+ By our calculat ions of H*Q 5 5 and t h e  Nishida r e l a t i o n s  f o r  t h e  

s t a b l e  case [A; 5 101, it follows t h a t  P;cnx - SX E Ker jn+l(X)* where 

jn+1 (X) denotes t h e  inc lus ion  of Q.n+l~n+l~ in QX. We w i l l  show t h a t  

P ~ S  x - Sx = r where I' is  given by t h e  sum of (p-1)-fold i t e r a t e d  n 

Browder operat ions spec i f ied  i n  Theorem 1.3(5). 

To ob ta in  an i n i t a l  es t imate  of P;gnx - S,, we use t h e  following 

commutative diagram: 

ny t h e  def in t ion  of 6 2  and n a t u r a l i t y  of P: 

P ~ S ~ X  - Sx E e n + *  0 (Cn+l\+l)r o h * ( ~ *  $n+l(p)~2p~P) 1. Observe t h a t  no 

Dyer-Lashof operations may occur a s  summands of P:E n X-Sx. Consequently 

'where  w(AI)+ ... + w ( A I ) I p  and i f  X = ... = X I  then j < p. 
1 .i I1 j 

L 
We r e c a l l  t h e  d e f i n i t i o n  of t h e  submodule % of GNnH*(X V S ) [sect ion 

141. Clearly P;cnx - Sx E %. We claim t h a t  P%> - Sx has no 

r 
decomposable summands. Let P*S x - Sx = I'. Col lect ing t h i s  information, 

n 

we have t h e  formulas 

r 
( i )  P;x~([ ,E;~x)  = An([,P,Snx> = Xn({3Sx+f>s 

( i i )  An([,S ) = 0 i f  pjr (Observe t h a t  no top operat ions occur in Sx.), 
X 

P i Ci i i )  hn([,Sx) = adn(P,x) ([) i f  r = i p ,  and 

Hence An(I,P) has no decomposable summands. A glance a t  t h e  proof of 

Lemma 14.1, revea l s  t h a t  i f  I' # 0, n > 0, and I' has decompasable summands 

(with respec t  t o  t h e  Pontr jagin product),  then hn([,r) has  non-tr ivial  

decomposable summands. Consequently I' i s  a sum of i t e r a t e d  Browder 

operations which must suspend aontrivia;ly t o  H*Q~E~+'.. The formula 

f o r  Pf Snx follows from t h e  formula f o r  PfSOx, induct ion on n ,  and 

r 
t h e  formula oiP*Enx = ~ i e ~ - ~ a ~ x .  



To c a l c u l a t e  t h e  A-action on Cnx, we use t h e  above technique: any 

unstable  e r r o r  term, T ,  must l i e  in t h e  image of t h e  map - 

It follows t h a t  r E MX. Since no top operat ions (5,) can occur f n  t h e  

s t a b l e  summand in t h e  Nishida r e l a t i o n  f o r  p;gnx, it follows t h a t  

E S 
An(i,r) = 0. (Recall here t h e  equations An(x,Cny) = 0 = An(x,B Q 2)).  

An appl ica t ion  of Lemma 14.1 ind ica tes  t h a t  t h e r e  a r e  no unstable  e r r o r  

terms. 

We next  show t h a t  t h e  d e f i n i t i o n s  of C X given i n  Theorem 1.3 and 
n 

i n  sec t ion  5.7 a r e  consis tent .  Let  Snx and Cnx be defined a s  in 

sec t ion  5.7. It s u f f i c e s  t o  show t h a t  8 ( 5 2 )  = Sn(x) + ad: (x) (kx) 

where B is the  mod p homology Bockstein. Again by t h e  above technique, 

we have t h a t  B(Fnx) = Snx + A where A E o ( 1  x n z + l ) l ) " ( ~ ~ + l ( ~ )  X g  xP). 
P 

Clearly 13 E M.. 

Combining t h e  formulas 
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ps0x = B (xP) = 1 xi*f3x k 
p-i-1 = 

ad;-'(x) (Bx) (see Jacobson I121 ) . 
. p-lLi20 

with t h e  proof of Lemma 14.1, we s e e  t h a t  A has no decomposable summands 

i f  n 21. Hence A is  a sum of i t e r a t e d  Browder operat ions which must 

suspend non- t r iv ia l ly  t o  H*Q~c~+$ .  Obviously, 

Since 0 ~ 8 5 ~ ~  = -B5n-1u*~ and = -Bu,, t h e  r e s u l t  follows by induct ion 

on n and t h e  r e s u l t  f o r  n = 0. 

F ina l ly ,  we must demonstrate t h e  i d e n t i t y  f o r  a r e s t r i c t e d  Lie  algebra 

required f o r  t h e  ca lcu la t ion  of P'S * 0 x. Consider t h e  tensor  algebra, TV, 

of t h e  graded Z vec tor  space space V,  where V is  generated by 
P 

var iab les  xl, . . . ,%, a l l  of even degree. F ix  non-negative in tegers  - 

nly...,% such t h a t  nl +...+ % = p. We consider t h e  polynomial 

P(xly. . .,\) = 1 y1 k . .. * yp where t h e  sum is  taken over a l l  monomials 

y1 * ... * yp with ni f a c t o r s  of xi. We express P(xl, ...,%) i n  

terms of commutators. 

1 
Lemma 17 .1. P (xl, . . . ,\) = - 1 ad(y 1.. . ad(yi (xl) where 

nl (P-1) 'l(l) 

summation is  over sequences (yl,. . . such t h a t  

... = y +k-2 = %, and 5 runs over 
Y"k_l+. . .+nl+k-2 = %+%-l+ 1 

a complete s e t  of d i s t i n c t  l e f t  coset  represen ta t ives  f o r  

Proof: Let z = x + ... 2 + xk., Observe t h a t  P(xl,. . . ,%) is  a 

summand of ( X ~ + Z ) ~  = x; + 2 + ldi(xl)  ( r ) .  From t h e  d e f i n i t i o n  of t h e  

='l 
d i ,  we observe t h a t  P(xly.. . ,x,) is a summand of dd (al) (2).  Expanding 



dL(x.) (z)  using b i l i n e a r i t y  of Xo(- ,-) , we have 
0 r 

j l  k l  j r kr 
n l n x 1  z = 1 ado (xl)adO (z) . . . ado (xl)ado (2) (x1) 

f o r  yi E {x2,. . . ,xk). BY inspec t ion  
, j  

where y = - - ... - - 
1 " ' -  - Yn 1 - I =  X1y yn l  - Yn2+nl - X2a.." 

a complete s e t  of d i s t i n c t  l e f t  cose t  represen ta t ives  f o r  

~ppendix:  Homology of t h e  c l a s s i c a l  b ra id  groups 

Our descript ion of %c2s0 yie lds  a ca lcu la t ion  of the homology of t h e  braid 

groups, Br, on r s t r ings .  Here we descr ibe  these  r e s u l t s  with c o e f f i c i e n t s  i n  

~1 Z, and Q ( a l l  with t r i v i a l  ac t ion) .  When homology i s  taken with Z - 
P' P 

coef f ic ien t s ,  the ac t ion  of the  Steenrod algebra, A, is  a l s o  completely des- 

cribed. In  case coef f ic ien t s  a r e  taken i n  5, the  add i t ive  r e s u l t s  here 

have been described by E'uks [29]. 

TheoremA.l. (a)  Let  p = 2. Then %(Br;Z$) is  isomorphic a s  a module 

over A t o  the  algebra over A 

where ( i )  15.1 3 = 2'-1, and 

( i i )  I i s  the two sided idea l  generated by 

t j .  
where C ki2 > r. 

i=l 

Furthermore, the A a c t i o n  is  completely described by requir ing t h a t  

.1 $ a c t  t r i v i a l l y  i f  r > 1 and t h a t  +*(Sj+l) = c ~ ) 2  i f  j > 1 and 
3 

P; S1 = 0; 

(b) Let  p > 2. Then Q(BT;Z1 P ) is isomorphic a s  a module over A t o  

the algebra over A 



where ( i )  111 = 1  

( i i )  [fJE5. 1 = 2pJ - 1 - E, and 
J 

( i i i )  I is  the two-sided i d e a l  generated by 

where 

Furthermore the  A-action is  described by requi r ing  t h a t  P: a c t  t r i v i -  

a l l y  and t h a t  $ 1  = 0 and $(S .) = $5 
J j' 

Remark A.2. The c lasses  Sj  i n  case p = 2 correspond t o  the elements 

j 
,--'--- 0 
5, ... 5, ( [ I ] )  i n  the homology of CIS ; the c lasses  $'Sj i n  case p > 2 

correspond t o  the elements 
E A  

$ . .. S1 ( [ I ] ,  [ I ] )  while 1 corresponds 

t o  X1 ([1],  [ I ] )  i n  the homology of C2S 0 . 
We may read o f f  s ( B r ; Z )  and (Hj; (Br;@ from the  a c t i o n  of the 

Bocksteins and the r e s u l t s  i n  sec t ions  3 and 4. 

1 
Corollary A.3. I f  r 2 2, Hj;(Br;Q) = H*(S ;Q) and H (B ;Z) = 2. 

1 r 

To compute H*(Br;Z) we have 

Corollary A.4. The p-torsion i n  $,(B ' Z )  i s  a l l  of order p. I n  par- 
r' 

t i c u l a r  the p- torsion subgroup of Q(Br ;Z)  i n  degrees g rea te r  than one i s  

add i t ive ly  isomorphic t o  the  following: 

( i )  I f  p = 2, the f r e e  s t r i c t l y  commutative algebra and (sj)', 

j > 1, subject  t o  the condit ions of Theorem A.1, and 

( i i )  I f  p > 2, the f r e e  commutative algebra on and the  $Sj sub- 

j e c t  t o  the condit ions of Theorem A.1. 

These c o r o l l a r i e s  follow immediately from Theorems 3.12 and A.1. To 

prove A.1,  it suf f ices  only t o  r e c a l l  the r e s u l t s  i n  sec t ion  4 and t h a t  

0 
i s  shor t  exact. Here we s e t  n + 1 = 2 and X = S . The computation of the  

Steenrod operations is  a l s o  immediate from the A-action spec i f ied  by Theorems 

1.2, 1.3, and Lemma 3.10. . 
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THE HOMOLOGY OF SF(nt1) 

F r e d  Cohen 

This paper contains a computation of the Hopf algebra structure of 

n t l  H, (SF(nt1); Z ) where SF(nt1) i s  the space of based degree one self -maps of S . P 

The point of this computation i s  that i t  provides the essential f i r s t  step necessary 

to  obtain information about the homology of certain other monoids, such a s  G(ntZ), 

"v 
PL(ntZ), Top(nt2) and of their classifying spaces. 

Much information i s  already known in  this direction due to May 11, Milgram 

[2], and Tsuchiya [5]. However their methods fa i l  to give the requisite information 

in case p > 2 and n i s  odd. Consequently much of the work in this paper i s  

devoted to this case. 

Section 1 contains the basic results concerning the composition pairing in  

homology together with the characterization of the Pontrjagin ring H* (SF(nt1);Z ) 
P 

for  a l l  n and p. 

The geometric diagrams required for  our computations a r e  described in 

e 
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To car ry  out the technical details of the proof of commutativity and other 

n t l  n t l  
statements, it i s  f i r s t  necessary to describe a certain sub-algebra of H*I;2 S 

together with some' of i ts  properties. This i s  done in  section 7; a s  a f i r s t  

application of these properties we give the proof of the expansion of 

(Qtml+[l-ap']) 0 Q ~ A ~ ( [ ~ ] ,  [I]) stated in section 5. 

Since SF(nt1) i s  not homotopy commutative and we don't know how to 

embed H* SF(nt1) a s  a sub-algebra of an  algebra which we know a pr ior i  i s  

commutative (if n i s  odd), we must resor t  to computing commutators in H*SF(ntl). 

This step i s  carr ied out in  section 8 using the results of the previous six sections 

together with III 1.1-1.5. 

I wish to thank Pe te r  May and Kathleen Whalen for their constant encourage- 

ment during the preparation of this paper. 

Finally, I owe Neurosurgeon J i m  Beggs an ineffable sense of gratitude; 

without his skill and compassion, this paper would probably not have appeared. 

section 2. These diagrams a r e  described in  t e r m s  of the little cubes operads [GI The author was partially supported by NSF grant MPS 72-05055 . 
and suffice to give complete formulas for the composition pairing in  the homology 

of finite loop spaces. 

The homological corollaries of se'ction 2 a r e  described, and a r e  for the 

most part  proven,in section 3; the formulas for  x o QSy and x o 5 y a r e  more 
n 

delicate and a r e  proven in section 4. e 
Section 5 contains a catalogue of special formulas for  the homology of 

SF(n+l) along with the application of these formulas to the study of the associated 1 
graded algebra for H* SF(nt1). k 

-i 

n t l  n t l  In section 6 ,  we show that H,Q S i s  not universal for Dyer-Lashof 

operations defined via the composition pairing if n < m. This i s  not merely an 

intere'sting exercise, which contrasts with the case n = m, but provides the key 

to the proof that the Pontrjagin ring H*SF(ntl) i s  commutative. 
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$ 1. THE HOMOLOGY OF SF(n+l), n > 0 
n+l . 

As usual, SF(n4-1) i s  the space of based degree one self-maps of S , 

~ ~ ( n t l )  is an associative H-space with identity, where multiplication is given by 

co~pos i t ion  of maps. We give a complete description of the Hopf algebra structure 

of H*sF(~+~) ,  where all homology i s  taken with X P -coefficients for p an odd 

n+l n+l 
prime. Recall f rom III that 4 S 

denotes the component of the base point in 

n+l n+l .a S . 

Theorem 1.1. The Pontrjagin ring H* SF(n3-1) i s  isomorphic a s  an algebra to 

H* s~:"s~~~ for all  n > 0 and all odd primes. 

Remark 1.2. The coproduct on the algebra generators for H*SF(ntl) is determined 

from the list of generators given in Lemma 1.7 here and the diagonal Cartan 

formulas given in III. 1.1, 1.2, and 1.3. 

We observe that the algebra isomorphism in Theorem 1.1 cannot be 

realized by an H-map if n G a~ because SF(nS1) i s  not homotopy commutative 

n+l n+l . 
[4], while S2 S is  evidently homotopy commutative. 4 

Remark 1.3. The structure of the Pontrjagin ring i s  studied to determine the 

unstable analogues of the stable spherical characteristic classes,II and [2, 51. 

Furthermore there a re  well-known maps (where any successive two form a 

f ibration) 

Hence the cohomology of BSG(n+2) follows from that of BSF(ni-1). Consequently, 

we do not require an explicit computation of the Pontrjagin ring H* SG(n4-2). How- 

ever the passage from H*SF(n+l) to H*BsF(~+~) .  i s  not yet understood and will 

not be discussed here. 

The crux of, all these problems lies in showing 
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Theorem 1.4. The Pontrjagin ring H* SF(n+l) i s  commutative for  a l l  n and monoids into N F(n+l) a r e  homomorphisms. We le t  0 denote the composition 

a l l  pr imes p. in homology. 

n+l n f i  
Remark 1.5. In case p = 2, Theorem 1.4 was f i r s t  proven by Milgram [2] and The homology of Q S has been studied in III , where it i s  shown that 

follows directly f r o m  the facts that the natural map there i s  a non-zero homology class  given by A ([I], [I]) (if n i s  odd and p > 2), n 

i n+l* : H* SF(n+l) -+ H* SF which we abbreviate in this paper by A n ' Furthermore there  a r e  additional opera- 

0 ,  QS and In, generalizing those of Dyer and Lashof, defined in  the homology 

i s  an algebra monomorphism and that SF  i s  an infinite loop space (and obviously I 
of S 2 n f 1 ~ n + 1 ~ .  As in III, we denote iterations of these operations by Q- and 

homotopy commutative). In case p > 2, i i s  again a monomorphism provided 
n+1* 

n i s  even; if n i s  odd, the kernel of i consists of the ideal generated by the 
n+l* 

Browder operation, An([l], [I])* [-I] and certain sequences of Dyer -Lashof operations 

I applied to the Browder operation, Q An([l], [l])r [l-2p'(1)], IIC. $3. Consequently, the 

structure of H* SF(n+l) follows directly f rom the work of May II and Tsuchiya [5] 

provided n i s  even. 

I 

Much of the work of this paper i s  directed toward the case  in  which p > 2 

and n i s  odd. However the results to be proven on the composition pairing in 

sections 2 through 4 and 6 apply to the homology .of any (n+l)-fold loop space and 

any pr ime p. Homological modifications required fo r  the case p = 2 a r e  stated in  

brackets in these sections. When specialized to H*SF(n+l) with n odd and p > 2, 

they yield the formulas which a r e  the heart  of the calculation of the Pontrjagin 

algebra. 

Theorem 1.1 results f rom a statement most conveniently given in a slightly more 

n+l general setting. Consider the space of a l l  based self-maps of S , denoted by 

ca r ry  over to this paper the associated notations co cerning sequences of operations 
n+bl - 

and degrees of elements. Notice that we write Q 2 x [Qnt ' x] for 6 n x. - 
We define a weight function on H*F(n+l) by the formulas 

I 
(i) w(Q [l]* [m]) = pe(l) if Q1[1] i s  defined, 

(ii) w(X *[m]) = 2, 
n 
I I 

(iii) w(Q An* [m]) = 2;") if Q A i s  defined, 
n 

(iv) w(x* y) = w(x) + w(y), and 

(v) w(x+y) = minimum{~(x) ,  w(y)) . 
We fi l ter  ~ * F . ( n + l )  by defining F .~*%.(n+l)  to be the vector space spanned by 

J 1 

those elements of weight a t  leas t  j and prove 

- 
Theorem 1.6. Composition in  H* F(n+l) i s  filtration preserving and, modulo 

higher filtration, i s  given by the formula 

(x* Dl) O (Y* [I]) = x* Y* [I1 

fo r  x,  y E ~ , % ~ ( n + l ) .  

- - 
F(n+l). Clearly F(n-4-1) i s  an  associative H-space when given the multiplication Proof of Theorem 1.1: Define a morphism of algebras 

- n+l n+l n+l n+l defined by composition of maps, and, a s  a space, F(n+l) i s  Q S . Let Fi(n+l) a : H* Qdi S -*H*SF(n+l) 

I\, \ 

denote the component of F(n+l) consisting of those maps of degree i. Then 
by a(x) = x* [1] on elements of the generating se t  specified by III. $3 and by the 

SF(n+l) = Fl(n+l) and F(n+l) = $ (ntl)  U % (nil) ,  and the inclusions of these 
1 -1 requirement that . a be a morphism of (commutative!) algebras. This makes sense 



n t l  n t l  
because H*SF(n+l) i s  commutative by Theorem 1.4 and because H S i s  * 45 
f ree  commutative. The previous theorem implies that a i s  filtration preserving 

0 
and induces an isomorphism on E , the associated graded algebra. Thus Theorem 

1.1 will be proven once Theorems 1.4 and 1.6 a r e  proven. 

The structure of the associated graded algebra i s  proven without use of the 

commutativity of H, SF(nt1) and i s  already sufficient to prove the f ollowing lemma, 

which provides a l i s t  of the algebra generators fop H*SF(ntl). 

Lemma 1.7. Assume that p > 2 and n i s  odd. Then the following se t  generates 

H, SF(nt1) a s  an algebra (under the composition pairing) 

(i) Xn*[-l], 

(ii) QLX * l l - 2 ~  
n 

'(I)], and 

J 
(iii) Q [l]* [1-p J)] 

where I and J a r e  specified by III. $3. 

- 
Proof of Lemma 1.7: Let x,  y e H*FO(ntl) .  Then by Theorem 1.6, we have 

the formula (x* [1]) o (y* [I]) = x* y* [1] modulo t e rms  of higher filtration. Using - 
this formula together with the additive structure of H F (nt l )  given in III. $3, * 1 

we see that the projections of the elements specified in Lemma 1.7 generate the 

associated graded algebra for  H* SF(nt1). Lemma 1.7 now follows directly 

f rom the following lemma which we state without proof. 

Lemma 1.8. Let A be a positively graded connected fi l tered algebra. Let 
I 

{x I a E 1) L A  be such that the projections of the x fo rm a collection of algebra 
a a 

I generators for  the associated graded algebra. Then the x generate A a s  an 
a 

$2. THE COMPOSITION PAIRING AND THE LITTLE CUBES 

It  i s  convenient to work in  a more general setting than that obtained by 

restricting attention to SF(nt1). As preliminaries to this section (and the others), 

we assume that all  spaces in sight a r e  compactly generated Hausdorff with non- 

degenerate base points. Hence the results of I, III, and [GI apply and we take 

'them for 'granted. - 
We consider the (right) composition of F(nt1) on ant&, 

sz"+l 
c n t l  - * x x F(n t l )  +nn"x 

where c n t l  i s  given on points by cntl(f, g) = f g. We record in  this section the 

requisite commutative diagrams which re la te  the composition pairing, c ntl '  
to 

the action of the little cubes, On+l' The geometric setting provided by the little 

cubes i s  especially convenient for several reasons. The relevant diagrams equi- 

variantly commute on the nose (not just up to equivariant homotopies) and consequently 

our proofs a r e  simple and easy to visualize. Most importantly, complete results 

on the composition pairing for  finite loop spaces a r e  obtained. 

Recall that nntlx i s  identified a s  the space of continu,ous based maps f rom 

sntl 
to X, sntl = I~''/~I~". It i s  convenient to recall  here  several of the maps 

By definition, a i s  the composite , 
n t l  

'ntl' n t l  'nil. n t l  n t l  
'ntlX - z X-n z x 

n t l  nt1 
where q i s  the evident inclusion of X into n Z X. Furthermore, the map 



otherwise. 

Since Cnfl 
= lL &ntl(j) , the map 

8. 
jrP J 

n t l  n t l  - 
a -  
n + l .  

s O + n  s = ~ ( n t l )  

yields a particularly simple description: 

[* otherwise. 

The following picture provides a visualization of this map: 

Combining these descriptions with the definition of the composition pairing 

\ 

\ 

yields 

"identity" , 

"identity" .-). 

Lemma 2.1. The following 8. -equivariant diagram commutes 
J 

nnilx x gntl(j) x (F(nt1))' nntlx x Z(n+l) 
I I 
J A X ' X '  

n t l  j 
X) x Gntl(.i) x (Z(ni-1))' 

Ishuff . 1 X c J  
n t l  I en+lnt &,,(j) x (nnt1xx5n+l))' * L t l ( j )  x (a h' 

I 

I 
I 

j-times 
P A \  

where a x )  = (x, . . . , x). 

This diagram allows us, in principle, to compute the composition pairing - 
locally; that is ,  one operation in  H*F(ntl) a t  a time. Evidently, i t  would be 

convenient to have an  analogous diagram which would facilitate the computation 

(in ho-mology) of the composite 

'ntl Fntl( j) x (ant1x)j x F (ntl)  ---- nn"x x Z(nt1) Q ~ ~ ~ &  

in t e rms  of 0 ntl '  c nt l '  and diagonal maps. It seems unlikely that an easily 

visualized diagram of this i lk exists. However, we do have analogues in case 

- 0 
F(nt1) i s  replaced by C n t l  S and nntlx by CntlX. 

We recall  the map 

C . X X C so +cntlx 
n t l '  'n+1 ni-1 

defined in  [GI and the following proposition which i s  proved there. 

Proposition 2. 2. The following diagram commutes : 

C 
n t l  

' n P  cntlsO , Cn+lx 

a X a  
n t l  n t l  1 

C 

Q~~'Z""X x Z(n+-1) 
n t l  . ,n+l$i- lx 

0 .  
Corollary 2.3. CntlS 1s an  associative monoid with multiplication given by 

c The map a i s  a homomorphism of monoids. 
n t l '  n t1  

0 
The following few observations indicate that CntlS has even more 

structure. 

Set 



j 
= ,Fn+lrr 

FrCn+l 22 .  if r > 1, and 
2 0  .J 

Then we have the following obvious corollary to Proposition 2.2, which will be 

useful in  the study of H*BSF(n+l) . 

0 .  Corollary 2.4. F C S IS an associative H-space with identity and the inclusions 
r n+l 

F k ~ n + l ~ O  + F ~ C ~ + ~ S O  4cntl~O 
r 

a r e  a l l  homomorphisms. 

0 Proof: It i s  easy to check that F C S i s  closed under the pairing defined by 
r n+l 

n+l ' 

Proposition2.5.  Thefollowing 2 . X . Z  - equivariantdiagramcommutes, 
J k 

where i i s  the natural map of 0 
Fn+:(k) into C S : 

n+l 

Proof: This follows from an obvious check of definitions. 

* 
Remark 2.6. Together with an obvious modification of Lemma 2.1, 

Proposition 2 .5  shows that a two sided distributivity law i s  satisfied by the 

products; * and c 
0 

in C S . This contrasts with the case  of F(n+l). 
n t l*  n+l 

$3. FORMULAS FOR THE COMPOSITION P.AIRING 

We consider the composition pairing, c which was defined in  section 2. 
n+l' 

 his section i s  a catalogue of homological information concerning c which i s  
n+l* 

required in  the following sections. 

Remark 3.1. If n = m , the composition pairing has been studied by Madsen [l), - 
May U., Milgram. [2], and Tsuchiya [5]. Their results give insufficient information 

in case n < m f o r  our purposes. In particular, their methods give no &formation 

I 
a t  all about the c lasses  Q A . 

n 

Theorem 3.2. c n+l* 
gives H*nn+lx the structure of Hopf algebra over the 

n t l  
Hopf algebra H* ?(nfl). Furthermore fo r  x e H*Q X and y, e e H*F(n+l) the 

following formulas hold: 

(i) x o  (y*e)=  Z(-1) x l l y ( x y ) ( x c e )  where +ox = Zx' Ox" ,  

(ii) x o Q Sy = Z Q ~ + ~ ( P : X O ~ )  if QSy i s  defined, 
t i  

(iii) x o Sny = F Q  2 ( P*xcy) + A if Sny i s  defined, 
1 

where A i s  given by a t  leas t  two fold iterations of the operation A (-, -) on 
n 

n t l  n+lYl+i i 
elements of H*Q X [x o Sny = Z Q (P,xo y) + A where A i s  given in  t e r m s  

of the (non-iterated) operation A n (-, -) on elements of H*S'~~+%], and 

(iv) x o A  n = Z ( - l ) l x l ' / h  n (xl,x") where t = Z x l O x l ' .  

Remark 3.3. The e r r o r  A in 3. ~ ( i i i )  can be determined precisely with some 

additional work; the result  stated here  has the advantage that i t  i s  both sufficient 

fo r  our purposes and follows directly f rom the methods in III. 

Using the results of Theorem 3.2, we prove the following two resul ts  i n  

section 6. 

n+l n+l 
Theorem 3.4. Let y be a spherical homology class in  H*Q Z X such that 

l y l  L n  if n i s .oddor  l y l  > n  if n i s  even [lyl>n].  Let e e  ~ * ? ( n + l )  be such 



1 
that 1 z 1 > 0 and le t  Q y be defined. Then 

y o z =  0 and Q ' ~  o z = 0. 

I J K 
Proposition 3.5. Let Q An, Q \, and Q [I] be defined in ~ * F ( n + l )  and 

le t  m = 1 - apS. Then 

I K 
(i) ([m]* Q An) O Q [l] = 0, and 

I J 
(ii) ([m]*Q a) 0 Q An = 0 . 

Remark 3.6. This las t  theorem and proposition indicate an  interesting contrast 

between the composition pairings in  homology for finite and infinite loop spaces. 

This contrast provides the key to Theorem 1.4 and i s  discussed more thoroughly 

in section 6. 

We require some additional information for  which we recall  that E denotes - 
the counit f o r  H*F(n+l). The following proposition i s  an  evident modification of the 

analogous result  in I. $1,  and the details of proof a r e  left to the reader.  

n+l - 
Proposition3.7.  Let x @ y  a H*Q X@H*F(n+l ) .  Then: 

n+l 
(i) $I c y = E(Y)$I where $I i s  the c lass  of the base point in  H*(n X, 

k i k-i 
(ii) P * ( x a  y) = Z P , x  8 P* y, and 

(iii) p(xo y) = px c y + (-1)lxlx u py 

Remark 3.8. Some of the formulas in  Theorem 3.2 a r e  similar to those given 

in  the stable case  in  I. $1 and II. $2. Observe, however, that the formulas there 

a r e  transposed f rom ours: we compute x o (y* z) and x o Q~~ rather than 

(y* z) o x and asy 0 x. Stably there i s  no rea l  difference; unstably the distinction 

i s  vital since only one distributive law holds geometrically. 

that the following lemma i s  trivially true if n = m , and i s  false in case n < m , 
r 

without the additional hypothesis that pE P, y = 0, r > 0. 

n+l E r 
Lemma 3.9. Let  y E H*Q X be such that /3 P*y = 0 for  all r > 0 and assume - 

I .  s I I' 
that Q y 1s defined. Then P*Q y = X c I ,Q y fo r  some c 1' a Z P and I1 such 

that P(1) = P(I1). 

I Ek sk El S1 
' - Proof: Write Q y = p Q . . . p Q y. If none of the QSj i s  the " top operation", 

69 then the lemma follows directly f rom III. 1. I. If some of the QSj a r e  equal to 

Gn, there a r e  unstable e r r o r s  given in  t e rms  of A (-, -) for the Nishida relations. n 

In this case, we present an  inductive proof of 3.9. 

If P(1) = 1, the formula follows directly because the unstable e r r o r s  a r e  

given in  t e rms  of the Steenrod operations on y. We assume the result  for  those 

I of length k and show that the result  i s  t rue  for  those I of length k + 1. Here 

the result  i s  easily checked using the formulas \(x, Q ~ Z )  = 0 = An(x,5 n Z) and 

hn(x, 6 nz) = adK(z)(x) of EL. 1.2 and 1.3. 

We now derive the homological properties of the composition pairing implicit 

in  section 2. The formulas concerning x G 6 y and x 0 Q~~ require some special 
n 

attention and their proofs a r e  postponed until section 4. 

Proof of Theorem 3.2(i), xo(y*z) = Z (-1) I x " I  I Y I ( ~ ~ O ~ ) * ( X ~ ~ C  z): 

We specialize the diagram of Lemma 2.1 to  

ishuff  
Before proceeding to the proofs of the results in  this section, we require an 1 X  c 

2 ('n+l 

&,+,(2) x sn+'x x F(n t l ) )  2 
n+l \- n+lX) 2 

)0?+~(2) x (Q 



Evidently, we have the equation 

where the right hand side may be computed by the above commutative diagram to 

obtain 

(ii) 2 
%n+l*(l@c n4-1 * )(Shuff)(J!QP1@l)(x@eo@y@Ql't)= C n + l ~ ( ~ Q b % n + l , ' " O ~ y @ ~ )  

Combining (i) and (ii) together yields the desired result x 0 (y* z) = D (-1) I X " /  I Y I 
(x' C y)* (XI1 0 2). 

Proof of Theorem 3.2(iv), x e A = D(-l)Ix'IIA (x',xlt): 
n n 

For this computation, we appeal to the commutative diagram used in the 

preceding proof and replace e by L , the fundamental class of $ (2) described 
0 n t l  

in III. $ 5. Here we have A = A ([I], [I]) and by the definition of A (-, -), the 
n n n 

following formula holds; 

(i) 
n 

x 0 A = (-1) c ( x @  6 ( L C 9  [I]@ [l])). 
n n+l* n+l* 

Taking advantage of commutativity of the above diagram, we have the additional 

formula 

(ii) ( -Qn c ~ + ~ +  (X @ 0 ( L @ [I] @ [I])) = n+l * 
2 

( -l)n%n+l* ( L @ cn+l* (Shuif)(J! @ 1 @ l)(x 69 @ [112). 

Evidently 

(iii) 
n 2 

(-1) ( c  @ cn+l* )(Shu£f)(J!@l@l)(~@L@ [112) = (-l)n'1x1D6n+l* ( L  @ X ~ @ X ~ ~ )  

where & = Dxl &r xtt.  Since A (x, y) = (-1) nlxl+l 
n ( L  8 x 63 y), we may combine 

formulas (i), (ii), and (iii) to obtain the result. 

$4. THE FORMULAS FOR x 0 6 y AND x 0 asy: 
n - 

Consider the following commutative diagram where j i s  the natural 
n+l 

inclusion: 

By remarks similar to those of III. $14, and the above commutative diagram, the 

s 
formulas for x 0 Q y follow from those for  x 0 6n-i, i > 0. TO compute x 0 6 n y, 

we appeal to Lemma 2.1 and a homological computation depending on the methods 

in III. We remark here that the results we obtain for x 0 gny are  only approximate; 

we have more accurate results, but the ones here a re  both sufficient for our purposes 

and are  much easier to prove. 

The requisite homological data concerns the map 

where n i s  the cyclic group of order p acting in the natural diagonal fashion 
P 

and d i s  given on points by the formula 
n+l 

We begin by stating 

P Lemma 4.1. Let x €4 y r H X O Ht Y and x @ er  O yP C H ~ + ~ + ~ ~ ( X X ~ ~ ( ~ ) X ~  Y ). 
P 

Then 

(i) if p = 2, dm,(x. eraY') = 

v(s4-t) k+ s r  
(ii) if p > 2, dm*(x@ erC3P) = - D(-1) e 

k 

v(t) rf(2pk-s)(p-1) 
@ (P*X @ ylP 

v(s+t-1) kfs r  k P 
- 6(r) - u(t 1) a - 1 )  er+p+(2pk-s)(p-1) @ (P*Px@y) , 
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where 6(-) and v(-) a re  a s  given in [A; $91. 
om the definition of the map S, and the replacement of 

by F(IRnil, p) together with the evident modification of the map 
Proof: This result follows directly from the commutative diagram dn+l' 

Shuff 
we have the following lemma. 

x x QP) xn y 

1 P ~ ~ - a  4.3. Let a S denote the group which acts by S a s  in III. $11. Then the 
1 X l X A  

x x (PI x* yP 

P : x x F (Ifkn+', p) xn yp + F(IRn", p) xn (X XY)' 

P P 
where n acts trivially on the right hand factors of the spaces on the top 

P 

line and by induction on the degree of x using the methods in [A] or [3]. 

Recalling the description of the homology of 
&n+l(~) X 

yP given in rom the definition of S and d n+l' 

P 
III. $16 and combining this information with Lemma 4.1, we obviously have Le-a 4.4. Let I? be a s  in Lemma 4.2 and assume that p > 2. Then r i s  - 
Lemma4.2. Let x @ y  E H XQDHY and x @ e r  @ y  in the image of the natural map 

t 

Then @ H,(x x VP + H* ( &n+l(~) Xn (X x y)P) . 
2 k 2 P 

(i) if p = 2, dnS1* (x@er@y = Z: er+2k-t (8 (P*xQ)y) + r, and 
k .  Proof: We write S for  S* throughout the remainder of this section. 

v(s+t) k+r s 
(ii) if p > 2, dn+l* (x@er@yP) = - 22 ( -1) e 44  k As remarked above, we replace &n+l(p) by F(IRn", p). Consider the 

v(s+t-1) element x 63 er @ yp E H, (X x F ( f l l ,  p) x n yP). By III.ll.1, x @ er @ $ i s  - 
v(t-1) P 

fixed by nS (acting on homology). Similarly, the elements ei 69 ( X ~ O ~ ) ~  E 

f r  
H, (F(IRn", p) X (X XY)' and x1 E H* X and i 2 0, must be fixed by is. By 

'IT 

where I? is in the image of the natural map induced by the covering projection P 
Lemma 4.4, dn+l is n -equivariant and consequently I? must be fixed by the 

S 

H* , (&~+~(P)  x (xxy lP )  - H* ( &n+l(~) X n  (X x ylP) . 
P 

We shall show in Lemma 4.5 that those elements concentrated in 

TO compute I?, we recall that we may replace = 0,1, . . . , are  precisely those elements fixed by nS. ,Further- 

in Lemma 4.2 [G, $41. In III. $11, there is a n -action (generated by an element 
S more, we show that if z E H F(Ifknfl, p), then S(z) = -2. Since I? must 

. 

(2j+l)n 
S of order 2) defined on F(IR~", p) which commutes w be fixed by the i action on homology we see that the form of I? required by 

S 

Lemma 4.2 forces I? to be a s  asserted in Lemma 4.4. 
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n+l Lemma4.5. Let zc: Hkn(F(IR ,p);Z).  Then by Lemmas 4.2 and 4.4, that these terms.are all in the image of 

C z if  k i s  even and G (p) @ H* (S2n"~)p -+ H, nnt&. 
',+I,* : H ~ r ( n )  n+l 

S(z) = 

-z if k i s  odd. B~ m. 12.1, the elements in the image here a re  given by 2r -fold, iterates of the 

. . The result follows. 
Proof: Let a.. be a s  in III. $6. Observe that the map S defined in III. $U. 

1J Ff p = 2, the result follows by similar (but easier) considerations. 

restricts to an automorphism of degree -1 on the sn standardly embedded in 

IRn". It i s  obvious that the map 

a.. : sn + F(IR~+'  P) 
1J 

n 
i s  nS-equivariant when S i s  given the previous ns-action. Hence S(a. .) = -a. .. 

1J 1J 
* 

We obtain a similar formula upon dualization: S(a. .) = - a?.. The lemma 
1J 1J 

n+l follows directly from the structure of the cohomology algebra H*F(R ,p)  

given in III. $6, and dualization arguments. 

Proof of Theorem 3.2(ii) (iii): 

As remarked a t  the beginning of this section, i t  suffices to compute 

x 0 Sny. Here we specialize the commutative diagram given by Lemma 2.1 to 

nn+l 
x x rn+,(p) x F ( ~ + u ~  lX'ntl  nni1xx7(n+l) 

1 A X l X 1  

n+l p 
J 

(a XI x &n+l(~) x ?(n+qp an+l x 

Shuff 
1X cp 

n+l T o n i l  
&,+,(p) x (an+lx xF(n+l))P - Gn,(p) x (nn+lxlp 

The formula for x 0 kny, except for the er rors  involving hn, now follows 

directly from Lemma 4.2 and the definition of the operations Q'Z. We leave this 

part a s  an exercise for the reader. 

:We compute the unstable e r ror  terms involving the h if p > 2. Observe, 
n 



$5. SPECLAL FORMULAS IN ~ , F ( n + l )  AND TKE PROOF OF TKEOREM 1.6. 

n+l 
We specialize the results of section 3 to the case X = S and obtain 

certain corollaries; the proof of Theorem 1.6, which depends heavily on these 

corollaries, i s  also given in this section. 

N 

Theorem 5.1. F o r  x, y, z e H*F(n+l) the following formulas hold: 

(i) x 0 (y *z) = Z(-1) I x ' ' ~ I Y I ( ~ ~ c  y)*(x1'uz) where +x = Zxl @ x l ' ,  

(ii) x 0 QSy = i f  QSy i s  defined; 

(iii) x 0 Eny = ZQ y) if 5 y i s  defined, 
n 

[ = DQ 
n+lyl+i i 

(P* x 0 Y)] 

(iv) x Q n = 2 - 1  x n ( x , x )  where +x = E x 1  O xu  . 

Proof: Formulas (i), (ii), and (iv) follow directly by specializing Theorem 

n f l  
3.2 to the case  X = S . Formula (iii) also follows f.rom Theorem 3.2 

together with the observation that two-fold iterations of Browder operations a r e  

N 

zero in H*F(nfl) in  case p > 2. If p = 2, the result  i s  obvious since A = 0 
n 

here.  

We state the following lemma without proof since the results a r e  evident 

specializations of those given in 111.1.1, 1.2, and 1.3 together with the observation 

N 
that a l l  2-fold iterations of the operation An(-, -) in H* F(nS1) a r e  zero. 

Lemma 5.2. Le t  x and y in ~*F(n-f-1) be such that gnx and gny or,for 

(iii), 5 (x*y) aredefined. Then 
n 

[ =  Z Qix*Qjy], and 
i t j=n+lxI+IyI  

E r 
(iv) the unstable e r r o r s  in  the Nishida relations for  P P*& x involving A (-, -) 

n n 

where $X = Ex' @ XI1 and u ( Q ~  x', Q~ x") = + 1. We require the notation IT(-, -) 

f o r  future referencing of signs. 

In order to obtain more precise formulas, we record the following trivial  

specialization of the internal Cartan formulas given in  III. 1.1 and 1.3, and - n-!-l$+lX 
Lemma 5.2 to H*F(n+l). (Note that this formula i s  generally false in  H* S2 

if n < m and X i s  not a homology sphere). 

Lemma 5.3. Let x E ~ * F ( n + l )  be such that +x = x @ [m] + [m] @ x. Then - 

fo r  any r E Z. 

We will complete this section by obtaining more precise formulas in  

~ * F ( n f l )  by coupling Theorem 5.1 with the re iu l t s  given in  III, and using these 

formulas to prove Theorem 1.6. 

- 
Theorem 5.4. Let x e H*F(n+l) and write the m-fold i terated coproduct on x a s  

+mx = Dx(')@ ... @ x ( ~ ) .  Then 

(m) (i) if m > O ,  ~ o [ m ] = Z x ( ~ ) *  ... * x , 

(ii) x 0 tin] = X(X) 0 - [ - " 3  where x i s  the conjugation, 

I I I .  
(iii) if m l  0, Q x o [m] = Q (x o [m]) provided Q x i s  defined, 

(iv) (An*[k]) c [m] = m An* [(kt 2)(m-l)+k] for  a l l  m and k E Z, 

I 
(v) (Q1x* [l-apr]) 0 An = D Q1(x(l)r x ( ~ ) )  * A n * [-2apr] provided Q x i s  defined, 
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J J J 
(vi) (Q An* [l-aPr]) 0 [I-bps] = Q (h * [-2bpS])r [(1-apr)(l-bps)] provided Q ), the internal Cartan formula for A (-, -) given in III. 1.2. We obtain the n n n 

i s  defined, formula x (A,) = (-l)An*[-41. Consequently we have 

I 
(vii) ([m]* An) 0 Q'X = 0 for  any m r Z provided Q x i s  defined, (iii) ()h*[k]) 0 [d = (-l)(An*[-4-k]) o [-ml = m L n *[(2+k)(m-l)tk], and 

J I I I 
(viii) ([m]* Q An) Q x = 0 for any m E Z provided Q x and Q A a r e  defined, n 

and I 
5. qv), the formula fo r  (Q x* [l-apr]) 0 A n : 

J 
(k) (aim* [ l -apr j  0 Q An = B ,, ~i (Q~ ' [2 ] ,  Q J t L )  Q1[2m] 0 QJ'[l] * Q (\* [-Zap C 1 "" I .  

Assume that Q x IS defined. We derive this formula by induction on 1(I). 
Jt+J = J  

I J f o r  any m E Z provided Q [ml and Q A a r e  defined. Firs t  a s s m e  that 1(1) = 1 and consider Q1x = QSx. Then by Theorem 5.liiv) 
n 

(which gives the formula for  x o h ) we have 
Proof of Theorem 5.4: n 

i 
(i) P-apr]) o An = B(-l)IX"I \(Q X I *  [1-apr], Q'-~x"* [l-apr]). 

5.4(i) (ii), the formula fo r  x Q [m] : 

Expanding the right side of this equation by the internal Cartan formula for  
If m > 0, the formula x 0 [m] = Z x(l)*. . . * x ( ~ )  follows immediately 

i 
( -) given in III. I. 2, observing that [pr] i s  a p-th power, and that An(Q x t ,  -) 

f r o m  Theorem 5.l(i)  and induction on m. If m < 0, we apply the formula 
s -i 

x") by LII. 1.2 and 1.3; and using Lemma 5.2(ii), we obtain the 
Y 0 [-I1 = x(Y). 

I 5.4(iii), the formula f o r  Q x o [m]: 
ii) An(Qixt* [I-apr], QS 'ixll* [ ~ - ~ p ~ ] )  = (-1)lQ i t  A r Q'XS* Q ~ - ~ ~ ~ ~ *  [-zapr]. - n 

Notice that the result  here i s  generally false if F(nf1) i s  replaced by an  
ombining (i) and (ii) together yields 

arbi t rary (n+l)-fold loop space. However, the result  obtained here  by specializing 
iii) (QSxr[l-apr]) o \ = Z(-l)lx It 1 + I x '  [ A  r ~ ~ x l r Q ~ - ~ x " * [ - 2 a p ~ ] .  - n 

to F(n+l) follows by an  evident induction on m together with the diagonal and 
ombining (iii) with the internal Cartan formulas for QS and 5,. we have 

internal Cartan formulas of m. 1.1 and 1.3, and Le-a 5.3. 
iv) (QSxx [l-apr] 0 An = 2 QS(x'* xu)*  A n r [-2apr] 

5.4(iv), the formula fo r  (An*p]) o [rn]: I 
The details in  case  Q x = p ~ S x  a r e  similar and the case  l(1) > i 

If m > 0, the formula follows by an  obvious inductioa 

(i)  (An* [k]) 0 [m] = [i(2+k)] * A n +  [(m-i-1)(2+k)] I 
5.4(vi), the formula fo r  (Q A *[l-apr]) o [1-bps]: 

1 n 
fo l~ows  by inspection of the coproduct for  A given in  III. 1.2. Hence we have 

n The proof of this formula follows immediately f rom Theorem 5.4(i)-(iv). 

( i s  (kn* [k]) 0 [m] = m An* [(2+k)(m-l)+k]. I J I 
5.4(vii) -(viii) the formulas ([m]*An) o Q x = 0 and ([m]*Q An) 0 Q x = 0: 

In case m < 0, then (An* [k]) 0 [m] = x (An*[k]) o [-m] by Lemma 5.4(ii). 
By III. $1, Xn and [rn]* An a r e  spherical homology classes of degree n. 

BY 1.5, we have ~ ( h  ) = - A,([-11, [-11). It i s  easy to  compute A ([-I], 1-11) n n Since n i s  odd, the result  follows f rom Theorem 3.4 and Proposition 3.5. 
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Remark 5. 5. The proof of Theorem 5.4(ix) i s  more  delicate and depends on L1 K1 K 
~ . ~ t  y = Q [I]*. . .*aLt[l]*Q h n * .  ..*Q"hn*h~*[y], where 6 = 0 , l  

some additional machinery; consequently, we have postponed this proof until 

and 6 Z. Recall that the m-fold i terated coproduct for  x i s  given a s  
section 7. 

$3 = 0 . . . O x ( ~ ) .  We expand x 0 y by Theorem 5.1 and compute the , 

. Throughout the remainder of this section, we assume that n and p a r e  
weight ,of x o Y via formulas (i)-(iii) above: 

both oda. We show e(Kj) 
( 1  ( y 2 m i  (w(x(i)) 1 + 2p (w(x(t+j)*l) + i l (w(x 

(t+u+ 6) 
)+I) - J 

Theorem 1.6. composition in  H*F(n+l) i s  filtration preserving and modulo 
++$t+u+ 64-114 

filtration i s  given by the formula 
where the minimum i s  taken over a l l  t e rms  in the (t+u+6+l)-fold coproduct for  x. 

(x* [I]) 0 (Y* [l]) = x* y* [1] Consequently, we see that - 
f o r  x, y E H*FO(n+l). 

I1 'r J s  Proof: Let  x = Q [I].. . . * Q [I]* Q An*. . . * Q A * A'* [a] where E = 0 , l  , 
n n 

i s  defined to be 4,  a E Z, and I. = ( E  
n 1 n . a s k i > . * * ? E ~ ( s ~ i  ) f o r  s > 0 .  

li - 
By the definition of the weight function, w, defined on H*F(n+l) (given in section 1) 

and the internal Cartan formula, it i s  obvious that 

(i) w(aLx) L p  w(x).. 

We next compute the weight of x o A - 
n' 

F i r s t  observe that if E = 1, then x o A = 0. So we assume that E = 0. By a n  
n 

inspection of the diagonal Cartan formulas in III. 1.1, 1.2, and 1.3, the formula 

for  x 0 A given in Theorem 5.l(iv), the internal Cartan formula for A (-, -) n n k 
F 

given in  T[I. 1.2, and the definition of w, we see that 

(ii) w(x G An) 2 Z(w(x)+l). s P 

L K F We observe that lower bounds fo r  w(xo Q [I]) and w(xc Q A ) for  any sequences 
n I 

L and K may be computed f rom (i) and (ii) above. Furthermore since 

and the f i r s t  par t  of the theorem i s  demonstrated. - 
To finish the proof of 1.6, we le t  a and y be such that x, y 6 H * F 0 (ni-1) 

and compute (x* [I]) 0 (y* [I]) using the formula in  (iv) above. By Theorem 5.l(i) 

we have the formula 

(vi) (x* [I]) 0 (y* [I]) = a - + {(x''), 111) 0 yI * x(')* [I]. 

By formula (iv) above, i t  i s  apparent that the summand of least  weight in the 

right hand side of (vi) i s  given by + {[I] o y) *x*[l]. Checking the sign dictated by 

Theorem 5.l(i) f o r  this las t  summand, we see that,modulo t e rms  of higher filtration, 

we have 

(vii) (x* [l]) 0 (y * [1]) = x* y* [I]. 

w(x) = w(x0 [-I]), i t  i s  obvious that 

(iii) w(x) = w(x o [k]) fo r  k E Z. 



56. TKE NON-UNIVERSALITY OF THE COMPOSITION PAIRING, n < m 

An alternative method for  the definition of natural homology operations 

defined on the homology of an iterated loop space i s  provided by the composition - 
pairing. In particular, each element x in H*F(ntl) can be used to define a 

homology operation on any element y c H* Q~"x, namely the operation given by 

Yo& In case n =  a, al l  Dyer-Lashof operations on infinite loop spaces can in  

fact be defined in t e rms  of the operations- given by the composition pairing . - 
In this sense, H* F i s  universal for all homology operations defined for  the 

homology of any infinite loop space. It  i s  natural to expect that similar results 

should hold in  case n < m .  The fact that ~ * % ( n t l )  fa i ls  to be universal fo r  

homology operations, n < m, occupies much of this section and i s  in direct - 
contrast to the stable case, H*F. This las t  fact i s  crucial  in the proof of 

Theorem 1.4 (commutativity of H* SF(nt1)). 

Throughout this section we assume that n < m. In addition, a l l  proofs 

a r e  carr ied out for odd primes. There a r e  analogous results in  case p = 2; 

the details of proof a r e  obvious modifications of those already presented and a r e  

left to the reader.  Our main result  here  i s  

ni-1 n t  Theorem 3.4. Let  y be a spherical homology class in  H*Q 2 k such that 

- 
I y l ) n  if n i s o d d o r  l y l  > n  if n i s e v e n  [ lyl>n] .  Let  z c H * F ( n t l )  be 

I 
such that 1 z 1 > 0 and le t  Q y be defined. Then 

I 
y o z = O  and Q y o z = O .  

Remark 6.1. One i s  tempted to construct a slick (but fallacious) proof 

by writing 

s t i  i 
Q ~ ~ ~ P ~  = Q P , X O ~ ] )  = x G a S [ l ] .  
i i 

+. 

formula evidently 
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- 
correct  i n  H*F (and explains 

- 
why H,F i s  universal 

for homology operations). Furthermore, Theorem 3.2 guarantees that this formula - 
is provided QS[l] i s  defined in H*F(&l). Since the left hand expression 

makes sense fo r  large s and large 1x1, we see f rom III.l.1 and 1.3, that QS[l] - 
may not be defined and that this formula i s  wildly false in H*F(ntl). Indeed, the 

fact that the Pontrjagin ring i s  commutative follows (eventually) f rom the fact 

that the above equation i s  generally false. 

We present a simple, but interesting,test case of this type of phenomena 

before proceeding to the technical details of this section in  

Remark 6.2. By Steer 's  results [4], we know that the Samelson product in - 
x* SF(2n) defined fo r  the adjoint of the element a c ?r 

1 2nt2p-3 sZn and the 

Whitehead product [ l ,  I ]  c ? r 4 n - l ~ Z n  i s  non-zero (where L i s  the fundamental 

2 
class of S n). Since the adjoints of the elements a 1 and [L, L ]  have non-zero 

image under the Hurewicz homomorphism for SF(2n), this suggests that the 

f i rs t  interesting place to check commutativity of the Pontrjagin ring H*SF(Zn) 

is  on the elements X n * [-I] and QS[l]* [I-p]. 

By the formulas given in  III.l.l, 1.2, and 1.3, and Theorem 5.1 it i s  easy 

to check that (Qs[l]* [1-p]) 0 (An* [-I]) = QS[1]* Xn* and (An* [-XI) 0 

(QS[l]* [ I - ~ ] )  = QS[1]* Xn* [-1-p] t {($* [-I]) 0 Qs[l]} r [l-p]. Consequently, for  

commutativity to be satisfied in this case,  i t  i s  both necessary and sufficient that 

(hn* [-I]) O QS[1] = 0. It i s  worthwhile to point out that the vaniihing of 

( A *  - 1  O 1 i s  particularly easy to check: By the definition of QSx, 

0 ( 2 s  - 1x1 c n ;  hence, if QS[l] i s  defined and non-zero, then 0 ( s ~ n / 2 .  

Furthermore, (\* [-11) 0 QS[l] = Qs(hn* [-I]) (by Theorem 5.1). If Qs(Xn* [-I]) 

i s  defined and non-zero then 0 ( 2s - n (n. Note that 2s - n # 0 because n 



i s  odd. The restrictions on s a r e  obviously inconsistent and hence QS(h * [-11) = 0 
n 

Note also that this result  follows from Theorem 3.4 because X *[-l] i s  a 
n 

spherical homology class. 

Another example which may be easily checked without recourse to lengthy 

computations i s  

Observation 6.3. The composition pairing 

4- 
i s  zero when p and k- a r e  odd, where H*F(2) i s  the subspace of positive - 
degree elements in H* F(2). 

- 
Proof: By III. $3, H*F(2) i s  defined in  t e rms  of products of elements given by 

translates of the elements h and pE El. . . Glhl. . If k i s  odd, then H* n22?sk 
1 

has  only trivial  Browder operations by III. $3, and the result  follows directly f rom 

Theorem 3.2. 

The following lemma, which keeps t rack of the domain of definition of the 

I 
Q , i s  useful. 

I 
Lemma6.4.  Write I =  (ek,sk ,..., cl,sl), E = 0,1, andassumetha t  Q x  

i 

i s  definedin H,&"x. Then 

Furthermore if 1x1 i s  odd, then 

Proof: We check the case  where 1x1 i s  odd and show that 

381 

by ?duction on k.   he other case i s  left  to the reader.  

If k = 1, the result  follows directly f rom the definition of the operations 

Q' and gn in III. $ 1, and the fact that 1x1 i s  odd. 

We assume the result  for  k and check it for k + 1: By definition of 

Sk+l € k  Sk 1 
Q p Q . . . Q x, we have the inequality 

(i) 0 5 2 ~ ~ + ~  - I p E k ~ ' ~ . .  . Q~~~~ 5 n . 
E S k 

~ u t  Ip k~ k...QS1xl = 2 X s.(p-1) - b + 1x1 where b i s  the number of non- 
i=l 

trivialBocksteins. Applying the induction hypothesis to (i), we have the additional 

inequality 

(ii) 

Clearly k - b 2 0; (ii) reduces to 

k k 
(iii) IxIp < 2sk+1 5 ( n f I x I ) ~  3 

and we a r e  done. 

We use the las t  lemma to prove the following result, which direct$ly implies 

Theorem 3 .4 .  

n f l  n+l 
Lemma 6.5. Let y be a spherical homology class in H P  B X. Assume 

that either 1 1 2 n if n i s  odd or  1 1 > n if n i s  even [ I  1 > n]. Further  

I 
assume that Q y i s  defined and QS[l] and a rkn  a r e  defined and non-zero. Then 

(i) y 0 QS[1] = 0, 

(ii) y o  A n =  0, 

(iii) y 0 Qr\ = 0 

I 
(iv) Q y @ QS[l] = 0 

I 
(v) Q y 0 An = 0 



Using similar methods a s  those occurring in the proof of the previous 

lemma, we obtain 

Ii Lemma 6.6. Let  L be the fundamental class of sk and le t  k > n. If Q L i s  

nfl9-i-1 k any monomial defined in H* Q S , i = 1,. . . , m, then 

provided QS[l] i s  defined. 

Remark 6.7. Since we do not have a left distributive law for  the composition 

pairing associated to finite loop spaces, Lemma 6.6 does not follow f rom Lemma 

6.5 a s  one would hope. The composition products here  must be computed "bare 

hands". 

Proof of Theorem 3.4: 

f l  We shall show that if y i s  a spherical homology class  in  H*Q~+ '~?  X, 

I l y l  I n  if n i s  odd, and z E ~ * F ( n + l ) ,  lzl  > 0, then Q y o z = 0. The other 

cases  a r e  similar (and easier) and a r e  left to the reader. 

nfl  n f l  
Let  f : sk -Q I: X be such that f * ( ~ )  = y where L i s  the fundamental 

k I n f l  n f l  k 
c lass  of S . Evidently, it suffices to show that Q L 0 z i s  zero in  H*Q Z S . 

I J I I J' Our f i r s t  step i s  to show that Q L Q [l] = 0, Q L A = 0 and Q L Q A = 0 
n n 

J J '  
for  any Q [l] and Q A which a r e  defined. The second step i s  to show that 

n 

Q'L C z = 0. This follows directly f rom the f i r s t  step and the distributivity law 

given in Theorem 3.2(i). 

I J I I J '  
TO showthat Q i Q [ I ] =  0, Q L O X  = 0, and Q L O  Q A = 0 ,  we 

n n 

f i r s t  observe that the result  i s  correct  by Lemma 6. S(iv)-(vi) if  P(J) = P(J1) = 1. 

Ass-e that the result  i s  t rue  for  all  J and J1 of length k ;  we shall prove the 

result  fo r  those J and J1 of length k + 1. 

I J I 
We expand the elements Q L 0 Q [I] and Q r 0 QJIAn by Theorem 3.2(ii)- 

n t l  n f l  k 
(iii) and observe that since A i s  zero in  H* Q I: S , our result  follows 

immediately via the inductive hypothesis together with Lemma 3.9. 

proof of Lemma 6.5: We prove the lemma for  the case where 1 1 2 n and n 

i s  odd; the other case i s  similar and i s  left to the reader.  

n+l nf 
Since y i s  spherical, l e t  f : sk - + Q  I: k be such that f*(L) = y where 

k 
L i s  the fundamental class of S . As in  the proof of 3.4, it suffices to prove 

6.5 for the case Qnf12?t1~k and where y i s  replaced by i . 
In case  (i), observe that 0 ( 2s z n .  By Theorem 3.2 i t  follows 

L 0 QS[l] = QSL . If Q'L i s  non-zero, then 0 < 2s - k l n  because k i s  odd and 

n k  n 
by assumption n 5 k. Hence we have the inequality - 2 - 2  < - < s < - 2 which contradicts 

the non-vanishing of L a QS[l]. 

In case  (ii), we have the formula y o A. n = A n (y, 4) + A  n (4, y) by Theorem 3.2. 

But by 111.1.2, this sum i s  zero. Since L 0 QrA n = Qr(r o A n ) = 0, the result  

follows. 

Case (iii) i s  an evident corollary of case (ii). 

I 
In case (iv), we assume that Q L 0 Qs[l] $ 0. We have the formula 

I s f r  r I 
(i) Q L o Q'[I]. = z Q P*Q L ,  

by Theorem 3.2(ii)-(iii) and the fact that A = 0 here.  Set I = (E , s , . .. , E ~ ,  sl). m m 

Then by Lemma 3.9 and 111.1.1 and 1.3, we have 

c E Z where ZP. = r ,  Combining (i) and (ii) together with Lemma 6.4, we 
1' P ,J 

obtain the inequalities 
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k j-1 n+k j -1 
(iii) ~ p .  < s  -P.(,p and proof of Proposition 3.5: Let m = 1 - apS. In order to show that 

j~ 

k m 
' K 

n+k m 0 Q x = 0, x = [I] o r  X we claim that it suffices to prove the 
(iv) ~p < s + r z - p  . 

2 
n' 

I 
result for the case in which P(K) = 1. This claim follows f rom an  obvious appli- 

Furthermore, by applying Lemma 6.4 to Q 1,  we have the additional inequdity 
,,tion of Theorem 5.1 together with an induction on the length of K. (See the 

k j-1 nfk j-1 
(v) Z P  <sjz ,p  . proof of Theorem 3.4.) Furthermore, the identical argument used in  the proof 

(iii) and (iv) together yield of Lemma 6.5(iv) can be used to prove the result  in case x = [l]. Consequently 

k j-1 n j-1 
(vi) P j < s j - z p  i y p  . include the requisite modifications fo r  the case x = X n ' 

I 
Assume that ([m]*Q X ) 0 QrX # 0 and consider the expansion 

Combining (iv) and (vi) together, we have n n 

m m 
k m k j - l < k  m k m 

(vii) --p 2 p  - I : P . = t P  - r < s.  Z P  - 
j= 1 j=l J 

k 
Hence - {pm-L 

2 m-' 1 < s .  But by definition of QS[1], we see that 0 5 s (n/2. 
P -1 

Since n ( k, we have the additional inequality 

n m 
(viii) - {pm- e) < n 

2 which i s  of course a contradiction to the assumption 
P -1 

that Q'L 0 QS[l] # 0. 

I s tk  k I In case (v) ,  we see that Q L 0 QSX = C Q  (P*Q i o X  ). n n 
r I I 

Clearly (P*Q L )  0 kn = P;(Q L 0 hn) by III. 1.2. Since L i s  primitive of positive 

I I I degree, we see that Q 1 i s  a lso primitive. Evidently Q L 0 h = \(Q L,r$)iAn(r$,Q1~) 
n 

by Theorem 3.2. This element i s  zero by III. 1.2. 

Case (vi) follows immediately f rom case (v) together with Theorem 3.2(i)-(iii) 

f l  k and the observation that A = 0 in ~* i2~"2?  S . 

Proof of Lemma 6.6: The proof i s  very similar to  that used in case (iv) above. 

The details a r e  purely mechanical and a r e  left to the reader.  

which follows by an application of Theorems 5.l(ii-iii) and 5.4(v). Let P(1) = m. 

By applying the internal Cartan formula together with Lemma 6.4, we see that 

By arguments almost identical to those used in the proof of Lemma 6.5(iv) together 

with formula (ii) above, we see that 

(iii) 

This i s  an  obvious contradiction and we a r e  done. 



$7. THE ALGEBRA 
.Jn AND THE FORMULA FOR (~'[ml* [I-apr]) oaJ$  

A certain sub-algebra, 4, of ~*?'(nfl) occurs ubiquitiously in  our 

remaining work on H* SF(nf1). We define An in this section and observe some 

of i ts  properties. Our f i r s t  application i s  the derivation of the formula given in  

I J 
Theorem 5.4(ix) for  expanding (Q Em]* [l-apr]) 0 Q A . Throughout the remain- 

n 

ing sections, we write [ ? ]  fo r  [m] whenever [m] i s  determined by the context. 

- 
Definition 7.1. Jn i s  the subspace of ~ * F ( n f l ]  spanned by al l  monomials in 

I 
the *-product of Q [I], I a s  defined in 111. $3, and [m], m E Z. 

We note f i r s t  that the formulas in  Theorem 5.1 and Lemma 5.2 demonstrate 

that 4 i s  closed under the composition product. Since 4 maps monomorphically - 
into H* F via the natural map 

we have 

Lemma 7.2. With the composition product, .x i s  a commutative subalgebra - 
of H* F(nf1) and the natural map - - An -+ H, F(nf1) - H* F 

i s  a monomorphism. 

Proof of Theorem 5.4(ix); the formula 

1 J 
We assume that Q [m] and Q A a r e  defined; our proof follows by 

n 

induction on the length of J. 

J s F i r s t  assume that J = (s),  Q = Q . Then 

I s f r  r I 
(i) *,(a [m] * [l-apr]) 0 askn = I: Q (P, Q [m]* [l-apr]) 0 An 

by Theorem 5.1. Expanding the right side of (i) using the fact that the Steenrod 

Operations act  trivially on An, and quoting Theorem 5.4(v) we have 

r I r I 
(ii) (P*Q [m]*[l-apr]) An = ~ ~ ( ( Q ~ [ m ] * [ l - a ~ ~ ] )  An) = P,Q [2m]*hn*[-2apr] . 

combining (ii) together with the internal Cartan formula for  QS given in 

 ernma ma 5:2 and LU. 1.1, 1.3, we have 

(iii) [l-apr]) 0 ashn = I: { Q ~ ~ ~ - ~ P :  Q ~ [ Z ~ ] } *  Qi(kn* [-zapr]) 
i>O 

I & k S k  & l S 1  
We write Q [Zm] a s  p Q . . . p Q [Zm] and quote Lemma 3.9 to see  

that 

6 s -t +t 6 s -t f t  6 s -t 
s f r - i  r I s f  r -i k k k k - 1  2 2 2 1  1 1 1  

(iv) Q - P,Q [Zm] = Q (ZcIlp Q . . .P Q 6 Q [2ml) 

where t = r and c E Z . By inspecting the coefficients appearing in the 
k 1' P 

Nishida relations, we-see that -. 

(4 0 ( s.(p-1) - pt. + pt. - 6., j = 1, ..., k .  
J J J f l  J 

Summing over j, we have the additional inequality 

(vi) 0 5  2 {s.(p-1) - pt .  + ptjil - 6j} . 
j2l 

J J 

Letting b equal the number of non-zero Bocksteins in I and checking the 

s f r - i  r I 
definition of Q P*Q [Zm], we find the additional inequality 

r .I 
(vii) 0 - < Z(s+r-i) - IP,Q [2m]l . 

Consequently, we have 

(viii) 2 z ~ . ( ~ - l )  - 2r(p-1) - b - 2 r  ( 2(s-i) 

. , 
which evidently yields 





Ji J;I j+r r I Ji J? 
= p u(Q [2], Q An){Q (p,Q [2m] O Q  [ l ] )k  {QS-jQ (An*[-zapr])} 

'20 
'>O J- 

and 

J' 
1 

J '; J' J'; 
= [z], Q A ~ ) { Q ~ + ~ ( P ~ ~ Q ~ [ ~ ~ ] o Q  '[l])}* Qs-jQ ( A  * [-Zaprj) 
r20 n 

j+r r E I Ji Since the t e r m s  Q (P*p Q [2m]oQ [l]) a r e  all in yn, we may apply Lemma 

7.2 to obtain 

Combining (xxi) together with (a i i ) - (xxi i i )  and the action of the Bockstein 

given in  Lemma 5.2 and Proposition 3.7, we obtain 

J' Ji J? [1]1 r p a i - j a  J" '(A *[-2apr]) . 
~ ( - 1 )  l Q  [l1'U (Q [z], Q An){Q1[2m]oQjQ 

n 

Visibly this formula i s  that given in Corollary 5.3(ix) and we a r e  done 

Remark 7.3. We were careful to keep t rack of the indices of summation here  in  

- order  to make certain tliat a l l  operations used here  a r e  defined in  H*F(n+l). 

Compare this remark to  remark 6.1. 

0 
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$8. COMMUTATIVITY OF THE PONTR JAGIN RING H,SF(n+l) 

Throughout this section, we assume that n and p a r e  both odd, A 

brief outline of our method follows. Because we have no analogue of a "maximal 

t o r u s ' ' , f ~ r  SF(n+l) and no algebra monomorphism of H*SF(n+l) into an algebra 

which we know a pr i0r i  i s  commutative, we resor t  to the inelegant method of 

actually computing commutators in  H* SF(n+l) . The work i s  simplified greatly 

, by finding algebra generators f o r  H* SF(n+l) (given in Lemma 1.7) and then 

that the algebra generators commute. (Indeed, our original proof of 

involved the computation of an  arbi t rary commutator !) 

proof of Theorem 1.4; the commutativity of H* SF(n+l): 

A collection of algebra generators- f o r  H* SF(nt1)- has been specified in  

Lemma 1.7. There a r e  three  types of generators listed. That they commute i s  

checked by the six evident cases.  All sequences of Dyer-Lashof operations 

a r e  assumed to be defined in  H* F(n+l); the indices of summation a r e  evident 

and a r e  consequently deleted. 

I m(1) 
Case I: Q [I]* [1-p ] & A n * [-I]. 

Applying Theorem 5.l(i) together with the definition of o(-, -), we obtain 

i (SIP]* [~-p""]) 0 (A,* [-I]) 

I l l  

= B o(Q1'[l], Q1"[l])(-1) [']I {(Q1'[l1* [l-p'(l)]) 0 h .;{ (Q1"[l]* ([l-p Q(1) 
n 

I' '(I)]) 
Expanding (Q [l]*[l-p o h n  byTheorem5.4(v) ,weobta in  

(ii) (Q1' [l]r [l-pm(l)]) I \ = Q1' [2]* A~*[-z$(~)] . 

I" 
Expanding (Q [I]* [l-p'(')]) o [-I] by Theorem 5.4(ii), we obtain 

I" I" 
(Q [I]* [l-pe(l)]) o [-l] = Q [-l]* [-l+pP(l)] . 



Combining (i), (ii), and (iii) together with the fact that / -A I i s  odd we find 
n 

that 

(iv) (Q1[1]* [1-p'(I)]) 0 ($* [-11) 

An application of Lemma 5.3 (the internal Cartan formula) to the right hand 

side of this equation yields 

I I Q  An* Q1[1]* [-l-p'(l)l . 

I 
We now compute ( A  * [-11) o (Q [I]* [l-p"I)). Since the coproduct for A 

n n 

i s  given by $An = An 8 [2] + [2] 8 An, we may apply Theorem 5.l(i)  to see  that 

I 
By Theorem 5.4(vii), we have (A * [-11) 0 Q [l] = 0. We expand the second n 

summand in  this equation by Theorem 5.4(iv) to obtain 

I 1 

(vii) (An* [-I]) 0 (Q [I]* [~-p'(~)]) = (-1) ['I Q1[l]r A * [-l-p'(')] . 
n 

I Comparing (v) and (vii), we observe that A * [-I] and Q [l]* [1-p '(I)] 
n 

c ornrnute. 

I 
Case  IT.: Q A * [1-2p'(1)] and A * 1-11 

n - n 

We use the distributivity law in  Theorem 5.l(i) together with the definition 

of o(-, -) to see that 
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I 
(i) (Q hn+ [ly2d(I)]) [-I]) 

I" 
= ~o($ ' [2] ,  Q1"An)(-1) {(~"[2]*[1-2~'(~)])oh n }*{(Q1"hn* [l-2p'(1)l)o[-11~ 

I' I" 
I" 

+ Z ~ ( Q  hn, Q [2])(-I) I Q  [ 2 ] 1  {(QI'A n r [ l - 2 d ( I ) 1 ) ~ ~  n {(Q'"[z]* [l-2/(1)l)o[-l]} . 
I' 

kqanding (Q [2]* [1-2$(')]) a A by Theorem 5. 4(v), we find that 
n 

I' '(I)] 
(Q1'[2]* [1-2p'(1)]) 0 A = Q [4]* An* [-4p . 

n 

I" 
A similar expansion of (Q A n * [ l -~p"~)])  c [-I] by Theorem 5. 4(ii) and (iv) 

yields 

I" 
(iii) 

'(I)] 
(*'"A * [1-2p'(I)]) 0 1-11 = ( - 1 ) ~  (hn* [-41)*[-1+2p . 

n 

I' I" '(I)]) 
We also.expand the t e rms  (Q A n * [ 1 - ~ 2 ( ~ ) ] )  0 A n and (Q [Z]* [l-zp o [-11 

by Theorem 5.4(ii) and (v): 

(iv) ( Q 1  n * 1 - 2 p 1 ] )  0 A n = 2Q1'($r [2])* An* [-4p '(I)], and 

I" '(I)] 
( 4  (Q1'I"[2]* [1-2/(I)]) o [-l] = Q [-2]* [-l+Zp . 

In the following, we combine formulas (i)-(v) together. 

A check of signs together with Lemma 5.3 (the internal Cartan formula) and the 

formula in (vi) above yields 

(vii) 



I 
We now compute (A r [-I]) 0 (Q An* [1-2$(I)] a s  in the above case by 

n 

applying Theorem 5.l(i), and Theorem 5.4(iv) and (vii) to obtaih 
I 

I IQ knI 
(viii) ( A ~ *  [-I]) 0 (Q A,* [I-Z~(')])  = (-1) olkn* xn* [ -1 -~p ' '~ '~  

Commutativity of the elements in this case i s  checked by a comparison 

of formulas (vii) and (viii). 

2 
Case 111: (An* [-11) 

It  i s  easy to check that ( A  *[-I]) o ( A  * [-I]) = 0 . b y  Theorem 5.1, 
n n 

Theorem 5.4, and 111.1. Z(6). 

I J Case IV: Q [l]* [l-p'(l)] - and Q A * [1-2p'(~)] 
n 

I J 
We compute (Q [l]* [l-p'(l)]) Q (Q A * [1-2p'(J)]) by Theorem 5.l(i). 

n 

(i) (Q1[l]* [1-$(I)]) 0 (QJAn* [l-p '(J)] ) 

Applying Theorem 5.4(ix), we find that 

J" '(I)]) 
(ii) ( d l [ l ] r  [1-p'(I)]) 0 QJg = Zu(QJ'[2], Q ~ " A ~ ) { Q ' ~ [ ~ ] O Q ~ ~ [ ~ ] } *  Q (An* [-Zap . 

I" Combining (i) and (ii) together with the expansion of (Q [l]* [l-p'(l)]) o [ 1-2p J)] 

implied by Theorem 5 .4  we obtain 

I" We coAmute QJ'i(An* [-2a1!(')]) and Q [l-2$(J)] in the * -product to  obtain the 

formula 

{ ~ " [ 2 ]  0 QJ'[l]}* Q ~ " [ ~ - ~ ~ ( ~ ) ] * Q " ~ A ~ *  [-Z$(')])* [?I .  

J I 
We compute (Q A * [L-z$(~)]) 0 (Q [I]* [I-$(I)]) in a similar fashion: 

n 

The second s u m  vanishes by Theorem 5.4(viii). Furthermore, the element 

I 
(QJ'[2]r [ l - ~ p " ~ ) ] )  e Q [1] i s  in 4 by Definition 7.1. By Lemma 7. 2, we 

may write 

J' I 
I J '  

(vi) (Q [2]* [1-2/'J'l) 0 Q [l] = (-1) l Q  [']I l Q  [2]1~1[11 0 ( ~ ~ ' [ 2 ] *  [1-2$(~)]) 

which may be expanded by Theorem 5.l(i) to obtain 

I' J' 
3 '  I 

(vii) (Q [2]* [I-z$(I)]) 0 Q [I] = ZU(Q"[I], Q'"[I])(-9 l Q  ['I1 I Q  

{Q1'[1] o QJ'[2]}* { ~ ~ " [ 1 - 2 $ ( ~ ) ] }  . 

The element (QJ"$+ [1-2/(~)]) 0 [l-p'")] may be expanded by use of Theorem 

5.4(vi) to obtain 

'(1) (viii) ( Q ~ " A  n * [I-z$(~)I) 0 [1-p'(I)] = QJ"(\* [-2$(1)1)* [(I.-z$(~))(I,-~ 11 . 



Using formulas (vii) and (viii) to substitute in  formula (v), we find that 

I '  J' I' J '  
Since Q [1] 0 Q [2] i s  in 4, it i s  obvious that Q [1] 0 Q [2] = 

Q1'[l] QJ'[l] 0 [2] = Q1'[2] 0 aJ'[lj . Substituting this result  in (ix) 

together with the obvious commutation formulas for * -products and the fact 

J" J' 
that IQ \ l t l Q  [2]I = 1QJ\ l ,  wehave 

Visibly, the formulas in (iv) and (x) agree modulo the appropriate 

commutation sign and we a r e  done. 

I J 
c a s e  V: Q An* [l-2P"1)] - and Q A * [1-2$(J)] 

n 

We appeal to Theorem 5.l(i) again. 

The secpnd sum vanishes by Theorem 5.4(ix) to get 

J I " 
{ ( ~ ~ ~ [ 2 ] * [ 1 - 2 ~ ' ( ~ ) ] )  o Q  A ~ * { ( Q  An*[l-2$(I)]) 0 [I-2p 

'(J)]} 

I' I" 
W. expand (Q [2]* [l-2$(')]) 0 QJA n and (Q A n * [l-2pQ(1)]) 0 [1-2p'(J)l by 

Theorem 5.4(ix) and (vi) to see  that 

J" 
(iii) (Q1'[2]* [l-~p' '~)]) CJ QJAn = ZV (QJ'[2], QJ"An){Q1~4]. QJ1[ll}*Q (An*[-4p'(IJ]), 

and 

(iv) ($"A n * [ l - ~ ~ ~ ( ~ ) 1 ) o [ l - 2 ~ ' ( ~ ) ~  = Q I " ( A ~ *  [-4p'(J)l)* [ ( I . - z ~ ' ~ ) ) ( ~ - z ~ ' ( ~ ) I  . 

Substituting these las t  two results in  (ii) above we see that 

{Q1i4] 0 ~ ~ ' [ l ] b ~ ~ " ( h ~ * [ - 4 p  ' " ' ] ) * ~ ~ " ( ~ ~ * [ - 4 p " ~ ~ ] ) * [ ? ]  . 

J '  
Observe that Q1'[4] 0 Q [l] i s  in Jn and by Lemma 7.2, we have 

J '  
I '  J' 

I '  
(vi) Q [ 4 ] 0 Q  [I]= (-1) 1 f41 1 1 1'1 1 QJ'[ll o 

Now by interchanging I and J in formulas (v) and (vi) and checking 

degrees, we see that the two generators in case V commute. 

I J 
c a s e  VI: Q ill* [I-~'(I)] and Q [I]* [I-p '(J)] - 

Since both of these elements l ie  in  Jn, they commute by Lemma 7.2. 
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STRONG HOMOTOPY ALGEBRAS OW3R MONADS 

Thomas J. Lada 

Introduction: A topological space X will be called a loop space 

if there exists a space Y and a weak homotopy equivalence 

x + nY; such a space Y is called a classifying space for X. 

Here the symbol ilY denotes the set of continuous hase-pointed 

functions from sl, the 1-sphere, into X topologized with the 

compact open topology. There is a history of theorems that 

identify certain H-spaces as loop spaces. Milnor [9] showed 

that a topological group is a loop space. Sugawara [12], Dold 

and Lashoff [4] and Stasheff [ll] extended this result to 

associative H-spaces and to strong homotopy associative (or Am) 

H-spaces. The fundamental point in each proof is the 

construction of a classifying space for the given space. 

One is then confronted with the problem of whether a given 

space X is an n-fold loop space, i.e., whether there is a space 

Y and a weak homotopy equivalence X -t any. In this ease Y is 

called an nth classifying space for X. While it was essentially 

the strong homotopy associativity of the multiplication on X that 

enabled one to construct its classifying space in the 1-fold 



loop case, higher homotopy commutativity of the multiplication 

proved to be the key to n-fold loop spaces. As a special 

example, Dold and Thom [51 proved that a strictly associative, 

commutative H-space has the weak homotopy type of a product of 

Eilenberg-MacLane spaces. (It has been pointed out to the 

author that J. C. Moore also has an unpublished proof of this 

fact.) In general one must develop some method of keeping 

track of all the requisite higher associativity and commutativity 

homotopies on X. 

Boardman and Vogt [2] showed that if a certain type of 

functor acted appropriately on a space X, they could then 

conclude that X was homotopy equivalent to an associative 

H-space Y and thus build BY and further, that another functor 

acted similarly on BY and they could then iterate their 

argument. Segal [lo] was able to accomplish the same thing by 

using only one functor. He has his functor act not only on X 

but also on spaces of the homotopy type of xn. 

In category theory there is a concept of a functor being 

a monad or triple. Beck Ill had shown that if the monad nnzn 

acts on a space X in a certain manner, then an n-fold classifying 

space could be constructed. Although this theorem gives a 

procedure for identifying an iterated loop space, there are 

few spaces on which nnzn acts properly. 

May [GI generalized this result to monads that look like 

nnzn. He has two theorems along these lines. The first 

theorem makes precise the idea of "looks like" nn~n. His second 
theorem tells how to construct the nth classifying space of X 

when one of these monads acts on X. One point that is missing 

in this theorem is homotopy invariance; if X is an n-fold loop 

space and Y is homotopy equivalent to X, this functor need not 

act on Y. 

In this work we introduce the idea of a monad D acting 

on a space up to homotopy and study the theory of such spaces 

and maps between them. In this context May's recognition 

theorem is generalized up to homotopy. In addition a h o m o t ~ ~ ~  

invariance theorem in the sense of Boardman and Vogt 13, p. 11 

for this theory is proved. 

Section 1 contains some motivation for and the definition 

of a strong homotopy D-space; it is this strong homotopy action 

of the monad that encodes the homotopies required for an n-fold 

loop space. The monad action in May's theorem is a special case 

of this strong homotopy action. 

Given an s.h.D-space X, we construct a D-space UX in 

Section 2. UX contains X as a deformation retract. At this 

point May's recognition theorem can be generalized to an 

s.h.b-space X by applying his theorem to the D-space UX. 

In Section 3 we introduce a conceptual definition of a 

strong homotopy D-map between s.h.D-spaces (called an SHD-map); 

such a map from X to Y will be essentially a D-map from UX to 

UY. SHD-maps form the collection of morphisms for a category 
\ 

whose objects are s.h.D-spaces. This section concludes with 

definitions of geometric strong homotopy D-maps from X to Y 

where one space is a D-space and the other is an s.h.D-space 

(these maps are called s.h.D-maps), These are the maps that 



frequently occur in nature; e,g., a homotopy equivalence 

between an arbitrary space and a D-space. Sections 4 and 5 

provide some machinery required to link together our conceptual 

and geometric definitions of strong homotopy D-maps. 

The following conceptual homotopy invariance theorem is 

proved in Section 6: 

1) If Y is an s.h.b-space, f: X -+ Y a homotopy equivalence, 

then X is an s,h.D-space and f is an SHB-map. 

2) If f: X -+ Y is an SHD-map between s.h.D-spaces and if 

g = f, then g is an SHD-map and g = f as SHD-maps. 

3 )  If f: X + Y is an SHD-map between s.h.D-spaces and is 

a homotopy equivalence with homotopy inverse g, then 

g is an SHD-map and fog = 1 and gof = 1 as SHD-maps. 

This theorem is deduced from our geometric homotopy invariance 

theorem which consists of the above three statements restricted 

to D-spaces with SHD-maps replaced by s.h,D-paps. The proof 

of this geometric homotopy invariance theorem occupies Sections 

7, 8 and 9. 

In a concluding appendix, a gaometric definition of a 

strong homotopy D-map between s.h.D-spaces is discussed. These 

details should convince the reader that the conceptual definition 

of such a map is both reasonable and desirable, 

Throughout this work whenever mention is made of a category 

of topological spaces, it should be taken to mean the category 

of compactly generated weak Hausdorff spaces with non-degenerate 

base points. It will be denoted by the symbol T, 
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as part of my doctoral thesis for the University of Notre Dame 

and to D. Kraines who offered many valuable suggestions. I 
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Temple University, Duke University, and North Carolina State 
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that was contained in my thesis (Sections 1, 2 and 7). The 
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Now let X be a topological space and let (DIvIq) be a monad 

in 3, our category of topological spaces. Suppose also that 

h : DX + X is a continuous map in J . 
0 

Definition 1.2: The pair (X,h ) is a D-space (or Walgebra) if 

the diagrams 

rl F! 
X----+ DX and DDX+ DX 

\ihQ . .  1 D X ~  DhO ho 1 x h0 
commute. If (X , g ) is another D-space, then f : X -+ Xs is a map 

of D-spaces if 



commutes. It should be emphasized that f is required to 

preserve all of the D-structure of both X and X' in the sense 

that if we apply D to the diagram it'will still commute; the 

same must be true if we apply higher iterates of D. This one 

commutative diagram will guarantee all of this since D is a 

functor and X and Xs are D-spaces. Discussion and examples of 

manads and algebras over monads may be found in [G, Section 21 

and in [I]. 

Since the definitions of monad and D-space involve 

commutative diagrams of maps between topological spaces, it 

appears that one might be able to generalize these definitions 

Itup to homotopy". This generalization for a monad will not be 

pursued here; however, it will be shown that generalization of 

D-spaces does merit some attention. In all that follows, let 

us agree to write D" for D iterated n times whenever n is so 

lar-ge as to render the previous notation unwieldy. 

To begin our up-to-hom~topy generalization, it seems a 

straightforward requirement that the diagram 

IJ (XI 
DBX ,-------> DX 

=ommute up to homotopy; i.e., that we have a homotopy 

hl: I x D'x + X such that hl ( 0 . y )  = h0op(y) and hl (1.y) = hoo~ho (y) 

2 where y E D X. At first glance this appears to be a natural 

generalization of D-space, but we have ilot yet taken into 

account all of the D-structure on X. Implicit in the definition 

of D-space is the commutative diagram 

v (XI I D o  Y (XI 

DX 
I I Dh. 

ho \4 /s 
In other words, all possible ways of mapping D ~ X  -+ X via p and ho 

are equal. The homotopy problem now becomes more subtle. We have 

the six maps from D ~ X  -+ X given by 

and the relations 

hoopo~p '= hooDhooDp via the homotopy hloDl' 

hoO~OpD = h o cDh c OvD via the homotopy hlopD 

hoo~h0~~'ho = h o o ~ 0 ~ 2 h o  via the homotopy hl0~'ho. 



We also have that hoopoDp = hoop~pD since (D,p,n) is a monad 

and that hooDhoopD = hoop0~'h0 since p is a natural transformation 

of functors. In addition there is a homotopy between hoODhooDp 

and ho~~hoo~'ho which is denoted by hooDhl. The homotopy Dhl 

may be defined by (Dhl) (t) = D(hl (t) ) : D3x -+ DX for all 0 5 t 5 1. 

It is a special property of D which enables us to piece together 

the Dhl (t) 's to define the map Dhl: I x D3x + DX. This property 

will be discussed later. The essential fact about Dhl is that 

it is a homotopy between Oho oDp and Dh0 O D ' ~ ~  : in applications we 

may want to choose different homotopies between these two maps 

and denote them all by the symbol Dhl. 

Thus we have four copies of I x D3x and because of the above 

equalities we may join them together at their matching endpoints 

to obtain the space a12 x D3x where 21' is the boundary of 12. 

TO have an appropriate generalization of D-space up to 

homotopy, we would like the above homotopies to be homotopic; 

i.e., we want to assume that the above 2-cube may be filled in 

by a map h2: I2 x D3x -+ X such that 

It is apparent that for arbitrary n > 0, we would like to 

consider all of the homotopies between all of the maps D"X -+ X 

and consider compatibility relations among them, 

This discussion should motivate 

Definition 1.3: Let h,: DX + X be a map in J and (Dlp,n) be a 

monad in J; then the pair (XI (h 3 )  is a strons homotopy D-space 
4 

(s.h.D-space or s.h.D-algebra) if the homotopies h Iq x Dq+'x + 
9: 

satisfy the compatibility relations 

if t = O  
j 

and 

- hj-lo(l * hq(tl, ... It IY) - 
9 

~ ~ h ~ - ~ 1  (ti I.. . Itj l a . e  ltql~) 

rn - hj-= Itl, 0 - 0 I ~ ~ - ~ I D  j hqmj (tj+l~ - tt IY) 
q 

if t = 1. 
j 

Here, j = 1, , . . ,q, q 2 0, y c Dq+lx, and 6 .  means delete the 
3 
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coordinate t We also require the commutative diagram 
jo 

The symbol p is used to denote the map p (gq-jx) : D'-~+~x -+ D q- j+l 
9-j 

in order to facilitate the notation, It is easy to see that a 

strict D-space may be regarded as an s.h,D-space by taking all 

of the higher'homotopies to be constant. It is also not difficult 

to see by a counting argument, the properties of p arising from 

the monad structure of D, and the fact that p is a natural 

transformation of functors that all of the .maps D ~ + ~ X  -+ X involving 

h.'s and pss are taken into account by this definition. 
3 

To justify the homotopies ~'h , and for later use, we s- j 
discuss the notion of continuity of a functor F: 7 -t 7. This 

means that F: Moh (X,Y) -+ Moa (FX,FY) is a continuous map for all 

spaces X and Y, where MOR(X,Y) is the function space of based 

maps X -+ Y. Given a homotopy h: I x X + Y and a continuous 

functor F, application of F to the collection of maps 

ht: X -+ Y, 0 5 t 2 1, yields a family of maps Fint: FX -+ FY which 

"fit together" continuously to yield a map I x FX -+ FY, From 

an adjoint point of view we can think of our original homotopy 

X h as a continuous map I + Y . The continuity of F by definition 

means that F: yX -+ FyFX is continuous. Thus the composite 

Foh: I -t yX -+ FyFX is continuous. We will use the symbol Fh for 

the homotopy I x FX + FY as well as for the usual map 

~ ( 1  x X) 4 FY and hope that the context will be clear enough 

to avoid confusion. In practice the homotopy will factor 

through the usual map via a canonical map I x FX -+ F(I x X), 

Thus, to validate the discussion above, we assume that D 

is a continuous functor. This holds, for example, if D is 

derived from an operad V = {V(j)) [G, p. 11. Here a canonical 

map 6: I x DX -+ D(I x X) is induced by passage to quotients from 

the maps 

specified by 

and Dh: I x DX a DY is the composite of 6 and Dh: D(1 x X) + DY. 



e. 

41 2 

2. & Generalized _Bar Construction. D-functor (F, A) by 

A generalized bar construction for strong homotopy D-spaces 
~%(F,D,x) = A I q  x FD'X/Q 

is presented here and is used in the proof of a recognition q 

theorem for these spaces; Let (Dl p ,  q) be a monad and (F, A) a where the equivalence relation Q is defined by 

D-functor [GI p. 361. Assume that D and F are continuous 

functors. 

Before proceeding to our constructions, a few comments are 

needed concerning an appropriate category for which our main 

theorem is valid. A reasonable setting is the category of 

NDR pairs of the homotopy type of CW complexes. In this 

category a pair (Y,A) is said to be retractile if the homology 

exact sequence reduces to 0 + H (A) + H (Y) + H (Y ,A) + 0 [71. 

It is not required that this sequence split. Retractile pairs where x E FD~X. 

have not only the homotopy extension property, but also in some The primary example of such a space is given by taking the 

sense a relative homotopy extension property. Stasheff [lo, p. 2911 D-functor to be (D",D~-'~) . 
has shown The key technical deta.il needed for our generalization of 

.the recognition theorem and our hamotopy invariance theorem is 
Proposition 2 .l: Let (X,m) be an H-space. If (Y ,A) is a 

presented here as 
retractile pair, then given homotopic maps fo,fl: Y -t X and a 

homotopy gt: A + X such that gi = filA for i = 0,1, then gt Theorem 2.3: Let (DY,Y) be retractile, D come from an operad, 

extends to a homotopy ft: Y + X. and consider the D-functor (Dl 11) . Then ~8 (DID, X) = 8 ( D ~  ,Dl X) . 
We will make use of this proposition in Theorem 2.3. Proof: We need the existence of a C.-equivariant, 1-1, onto map - 7 
Construction 9.6 [GI p. 881 may now be generalized for 

strong homotopy D-spaces to 

Construction 2.2: Define a topological space that depends upon for all j. May has proven such a theorem and has exhibited such 

a monad (D,U~T~), a strong homotopy D-space (X,Ih I ) ,  and a 
q 

a map for the strict D case [G, Theorem 12.2, p. 113, and also 



of simplicia1 subdivision. The only difference between our 

required map and May's map is that his is defined on simplexes 

whereas ours must be defined on cubes, However, if one looks 

closely at the definition of B(D,D,x) and thinks of cubes as 

"thickened" simplexes, the identifications in B(D,D,x) collapse 

these extra faces, Although these faces are not collapsed to 

points in general, they have lost their parameters from the 

cube. We thus describe the required map as follows: to map 

first calculate the map for simplexes. Here, it simplifies 

n calculations if we define An C R~ to be I (t, , . . . , t ) e R such n 
that 0 5 t < 1 and tl ( ... 2 tnl. It is necessary to subdivide i - 
the product Aql x . . . x Aqj to define the map. Then "thicken" 

mi 
the appropriate faces of each Aqi and obtain the cube I which 

Wi 
contains Aql 

Aqjo 
Now subdivide the cube I in exactly 

the same manner that Aq. x ... x Aq, was subdivided and use 
- 1  -7 q .+l xqi+l 

exactly the same degeneracy maps on D qlC1~ x o e o  x D X + (D X) j 

that are used in the simplicia1 case, The equivalence relation 

in g (D2 ,D,x) will guarantee that our map is well-defined and 

continuous if we require our higher homotopies be relative 

homotopies with respect to the subspaces of DqX given by the 

various n 's: Dq-lX -+ DqX. Noting that each DqX is an H-space 

and recalling the earlier comments about our category, we 

utilize Proposition 2.1 to guarantee that our higher homotopies 

behave properly on subspaces. 

8 ( D ~ ,  D , X) -+ (D , D , X) induced by the natural transformation 
p: D~ + D. We also denote this structure map by 11. BI%PBlI 

It is perhaps instructive to examine a few examples of the 

procedure in 2.3: 

~xample 1: Let us map 

8 ( 2 )  x I x D2X x I x D2x -+ x D(2) x D3X x D ~ X  

by 

t-s 
(st 1-s , d , ~ ~ n  (XI ,D~D (Y) 1 if s 5 t 

(drstxtt~y) + 

s-t 
(tl - 1-t ,~,D~D(x) , ~ ~ n  (Y) if s 2 t 

~t is clear that the coordinates of the cube in the range are 

just those of the thickened simplex; but for this thickening, 

the map is the same as in the strict D case, The image of the 

0 
point (d,l,x,l,y) is (1, ij. ,d,D2n (x) ,DnD(y) 1. Since this point 

0 0 0 
is equivalent to (d,Dhl (B ,D2n ( x )  ) , Dh, (-d- ,DnD (y) ) ) , 8 may be 
taken to be any 0 2 t ( 1 if 

Dh, 1 D2n (D2X) = Dh, I D ~ D  (D2x) = D2h0 

for all t; this last equality always holds for t = 0,l and the 

assumption that (DY,Y) is retractile allows us to alter Dh, for 

0 < t < 1 so that the equality holds for all t. This guarantees 

Corollary 2,4 : 6 (D,D,X) is a D-space. 



Example 2: Define the map 

S-t2-t, (1-t2) 
( 5  9t2'l-t2-tl (1-t2) ,d,D2nDoI3n~ (x) ,D3n (y) ) 

In this case our subdivision of consists of the three regions 

that look like 

where the surface thst the second and third regions have in 

common is defined by s = t2 + tl(l - t2)" This is again the 

generalization of the problem of subdividing A 1  x A2. Let us 

examine what occurs at the edge (1 ,x) , (1, t2 , y) ; we will ignore 
the factor V(2) for the moment since it remains unchanged in 

0 t2-1 these calculations. If we define ~j = 0 and - 0 = tat we have 

= Dhl (t2 ,Dho (x) IY) 

and 

0 2 (11~) 1 (llt21y) 4 (lrt2rTjrD nDoDnD(x) tD3n (Y) ) 

I Dh2 (t2~8t~2n130Dn~(~) rD3n (Y) 

= Dh, (t2 IDh,, (XI IY) 



and 

Again, this will be true under our restriction that Dh2 be a 

homotopy relative to the subspace ~~q (D3x) union DnD2 (D3x) ; the 

assumption that (DX ,X) be retractile guarantees this. 

Notation: Throughout the remainder of this work, the strict 

D-space %(D,D,X) will be denoted by the sym!~ol UX. 

Proposition 2.5: Let (X,{h 1) be a strong homotopy D-space. 
9 

Then X is a deformation retract of UX. 

Proof: Define a map i: X -+ UX by i(x) = n(x) E 1' x DX ~ U X .  - 
Now define a map r: UX -+ X by 

To see that r is well-defined, suppose that t = 0.  Then 
j 

by the properties of h 
4' 

But 

To show that ior is homotopic to the identity of UX, define 

a homotopy 

F(sItl t 0 0 0 rtary) = (stti P 0 0 ~ t ~ ~ n ~ + ~  (y) ) E x.  D'+~x 



where (s.t lI....t ,y) r I x xDq+lxandn = ,Dq+10 To 
9 q+l 

see that F is well-defined, first let t = 0 .  Then 
j 

(sIt1 .... ~t ty) % (sItlI. ..tfjI ... ,t ,D 
9 9 

j-Ill (y)) 
s-j 

and 

*I F(sttlr 0 - 0 tt IY) = (sttlta. * ,tqtnq+1 (Y) 1 
9 

Also , 

= s t . .  f j  0 . 0 ,  t ,o~--P~-~ (y)). 
9 q 

The equality of the two points on the right hand side of *) 

and **) follows from the equality ~ j ~ ~ - ~ + ~ o n ~ + ~  = n Dj-lv 
q q-j 

which is a consequence of the naturality of n. On the other 

hand, if t = 1, 
j 

(s~t, I .  . ~t IY) Q (stt1 I . .  . ~ t ~ - ~ ~ ~ ~ h ~ - ~  (tjC1t tt IY) 9 9 

and we have 

and 

Again, equality of the right hand sides of *) and **) follows 

from the naturality of n o  Thus F is well-defined. 

When s = 8, we have 

F(0ttlt 0 0 a ,tqty) = (OItlr e a ttqt~q+l(~)) 

* (tlIa..ItqIvq+lnq+l (Y)? 

= (tl,o*oIt '3 ty). 

~hus Fl {O) x UX = identity on UX. When s = 1, we have 

F(lttI,o*ottq~Y) = ( l ~ t ~ ~ . ~ ~  I ~ ~ I ~ ~ + ~ ( Y ) )  

.-" Dh (tl,. 0 0 ,tqInq+l 
9 

(Y) 

= ll,ehq(t1 I . .  . It IY) q 

= ier (tl , a ,t ,y). 
9 

Thus F I { ~ )  x UX = ior and we are done. 

Proposition 2.6: Let (XIS) be a D-space. Then r: (UX,v) 4 (X,E) 

is a B-map. 

Proof: r: 1" x Dn+lx + X is the constant homotopy which we may 

take to be the map SODS". . . o~nS. To show that r is a D-map, it 



suffices to show that the diagram 

n+l commutes. This is clear since roDr = SoDSO,.,OD 5 

n 
= SODSo...OD Sopn = rep, since (XIS) is a D-space. 

Remarks: 1) We denote the category of D-spaces and D-maps by 

D[Tlb We then have that U is a functor from D[T] to itself. If 

f: X -t Y is a D-map we define U(f): UX + UY by 

where 2: E D ~ + ~ X .  That U ( f )  is well-defined follows from the 

facts that f is a D-map and that p is a natural' transformation. 

The naturality of p is also used to see that U(f) is a D-map. 

That U respects composition and the identity map is obvious. 

2) The retraction r: UX + X is a natural. transformation U -+ 1 

in D[T]. This is easily verified by utilizing the fact that 

morphisms in D [TI are D-maps. 

The recognition principles for n-fold and infinite loop 

spaces developed in [G,GS, and R] now generalize directly to 

s.h.D-spaces X over appropriate monads D. We need only apply - 
the D-space recognition principles to UX = B(D,D,X). When X is 

a D-space, r: UX + X is a D-map and a homotopy equivalence, hence 

the uniqueness results in [GI and [ G I ]  for the de-loopings of 

D-spaces apply to show that the de-loopings of X regarded as a 

D-space and of X regarded as an s.h.D-space are equivalent. In 

particular this remark applies to show that the de-loopings of 

UX and of UUX are equivalent for an s,h.D-space X. We also 

note that for the relevant monads, H,DY is known as a functor 

of H,Y and the pair (DY,Y) is always retractile. 



3.  Strong Homotopy Maps of Algebras over Monads 

It is quite difficult to construct a category with 

s.h.D-spaces as objects. One would certainly expect a morphism 

in such a category to preserve the higher Pomotopy structures 

of both the domain and range spaces at least up to compatible 

higher homotopies. There are thus three types of homotopies to 

be remembered for such a map, Moreover, even after such maps 

are defined, composition of them is awkward since one must glue 

together the structure homotopies of each to define .the higher 

homotopies of the composite; such a procedure is of course 

well-defined only up to homotopy. Associativity of such a 

composition presents even more difficulties, 

We are able to bypass the above problems with the following 

definition, 

Definition 3.1: Let X and Y be s,h,D-spaces. An SHD-map X + Y 

is a D-map g: UX + UY. (Such a map may be thought of as the 

underlying map g = rogoq: X 4 Y, where r: UY + Y is the 

retraction and s r  X + UX is the inclusion as defined in 

Proposition 2.5 together with the additional information that 

g is a D-map.) We say that g represents g as an SHD-map. 

Composition of SHD-maps is just composition of the 

representing D-maps and we have a category SHD[Tl whose objects 

are s.h.D-spaces and morphisms are SHD-maps. We say that two 

SHD-maps are homotopic if the corresponding D-maps UX + UY are 

homotopic through D-maps. Thus we may define 

where [ ] means homotopy classes of maps and the subscript 

refers to the approprizte category. It is obvious that with 

these definitions U is a fully faithful functor hSHD[T] + hD[T] 

where h prsceding a symbol denoting a category means take as 

morphi~ms honotopy classes of the morphiams in that category. 

Hence hSHD[T] is equivalent to the full subcategory of hD[T] 

with objects all UX, 

Of course, with this definition, appropriate de-loopability 

of SHD-maps between s.h.D-spaces is automatic from the 

naturality on D-maps of the constructions of [GI and [Gv]. It 

is also clear that the de-loopings of strict D-maps and of 

strict D-maps regarded via U as SHD-maps are consistent, Thus 

with Definition 3.1 the generalization of the recognition 

principles for iterated loop spaces is compfete. 

At this point the analysis of homotopy invariance in SHD[T] 

begins. We are confronted with the problem of constructing 

SHD-maps from data that arise in nature, such as a homotopy 

equivalence X -3 Y when Y is an s.h,D-space. As Definition 3,l 

is impractical for such a prscedure,, we cori~plete this section 

with a direct homotopieal definition of s,h,D-maps X + Y when 

either X or Y is a D-space and of a homotopy between two such 

maps when the range space is a strict D-space, In the next 

two sections we prove that certain maps in and out of the 

D-spaces UX are s.h.D-maps and analyze the relationship between 

the notions of s,h,D-maps and of SHD-maps. This analysis will 

allow us to reduce the proof of the homotopy invariance theorems 

on the SHD-map level to certain gesrnetrical homotopy invariance 



theorems concerning s.h.D-maps between D-spaces. The latter 

results occupy the last three sections of this work. A 

geometrical alternative to Definition 3.1 is presented in the 

appendix, 

Definition 3.2: Let (XI {En)) be an s.h.D-space and (Y,@) a 

D-space. Then f: X + Y is said to be an s.h.D-map if there 

exists a collection of homotopies {f ) with 
n 

satisfying 

As it frequently occurs, if the domain space X happens to be a 

strict D-space, we use this as the definition of an s.h.D-map 

between two D-spaces where the En are constant homotopies. 

The notion of a homotopy between such maps may also be 

defined . 

Definition 3.3: Let {£,I and {gn) be s.h.D-maps from an s.h.D-space 

(XI 15,) to a D-space (Y, + )  . Then a homotopy between {f,) and 

ignl is a collection of maps 

satisfying 

Note that {hnltl = c) is an s.h.D-map from (X1{5,)) to (Y,$) in 

the sense of Definition 3.2 for each 0 5 c 5 I. Moreover, with 

this definition, it is clear that homotopy is an equivplence 

relation between s .h.~-ma~'s X + Yo Again, if the domain space 

X is a strict D-space, we use the above as the definition of a 

homotopy between s.h.D-maps from one D-space to another by 

taking the structure homotopies En to be constant. 

We shall also utilize one more type of s,h,D-map. 

Definition 3.4: Let (XIS) be a D-space and (Y,{@nl) an s.h.D-space. 

Then f: X + Y is said to be an s.h.D-map if there exists a 

collection of homotopies Ifn) with 



satisfying 

We do not require the definition of a homotopy between such maps. 

It is profitable to discuss the motivation for the above 

definitions to see exactly what these higher homotopies are 

doing. Let us examine Definition 3.4. Here, we have (XIS) a 

D-space, (Y,{@ 1 )  an s.h.D-space, and f: X + Y a map. For f to n 
preserve the monad structure on the spaces, we require at a 

minimum that the diagram 

commute up to homotopy; i.e,, we want a homotopy fl: I x DX + Y 

such that fl10 = £0. and fill = @*Df. In addition we want to 

require that the diagram 

commute up to homotopy, This diagram provides us with a map 

which says that the maps determined by the endpoints of @l and 

El are homotopic. For f2 to be compatible with fl and f, we 

need to examine the diagrams 

D2f .D2f 
D~x-> D ~ Y  and D~X' D ~ Y  

1-1 

DE 1 1, 1 D4 Df 

They imply that f2 is not naturally defined on but rather is 

defined on a pentagonal subset of the plane: 



Since the edge £ 0 5 ~  is a constant map, we may collapse it to a 

point to parametrize f2 by 1, as in Definition 3.4. By 

examining each desired homotopy commutative diagram 

studying compatibility conditions, and collapsing constant . 

faces, we arrive at Definition 3.4, 

4. Examples of Strong Homotopy Maps 

Various maps associated with Construction 2.2 are shown 

to be s.h.D-maps and a technical reparametrization lemma is 

proven. 

Explicitly we have 

0 

Theorem 4.1: If (XI{En)) is an s.h.D-space, then the inclusion 

n: X -+ UX and the retraction r: UX -+ X are s.h.D-maps. 

Proof: An s.h.D-structure is defined for the inclusion n: X + UX 
-. 

by 

where 

Recall that qDn is the natural transformation TI: Dn -+ DD". We 

verify the conditions set out in Definition 3.2: 

n 
nn(tlt - * .  ,tntz) = (Oft2,. ftn,nD (2)) 

(t,, . . . ftn,p~n-log~n(~) ) by 2.2 

= (t,, . . . , t n , ~D"-~oD~D"-~ (z) 1 since D is a monad 



I.f t = 0 ,  
j 

nn(tlr. .. ,tn,z) = (tlr. .. ,t n ,nDn(z)) 
j-1 n-j 

tlI.,jI..., t VD on~"(z)) 

- - nn-l~D j-2 &ID n-j (tlI. . . ,fjI.. . ,tnIz) 
since n is natural. 

since n is natural. 

% orn-, (t,, . . . ,tn,non(z) 1 

- - nOSn-l(t21...Itn,z) 

Finally, if t = 1, 
j 

n 
nn(tl,. . ,tn,Z) = (tl,. - 0  ,tn,nD (2)) 

n 
% (tl,. . . Itj-lI~'~n-j (tj+l,. . . Itn,nD (2) 1 )  

j -1 ,1-1 = nD (tl, 0 a. Sn-$(tj+l, ,tn,z) 1 

again since n is natural. 

To see that the retraction r: UX + X is an s.h.D-map we 

define 

where 

z = (s, ,..., s q .y) L I~ x D~+"+~X. 

In this definition, we utilize the fa@ that D ~ U X  = B (D"" ,D,x) . 
We now verify the compatibility requirements of Definition 3.4. 

First suppose that tn = 0. Then 

If t j = 0, we have 

- - Sq+n-l (t, I.. . Zj,. . . ,tn,sl 1,. . . ,Sq, ,j -1 . (Y)) 
"q+n-3 

A - j -1 - Sq+n-l(tl,e. e,tjIe. I ~ ~ , s ~ ~ - .  . IS 9 ,D v ~ - ~ - ~  Dq+l (Y 

On the other hand, if tn = 1, we have 
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rn(tl, - ,tn,z) = 5q+n(tl,. . . ,l,sl,. . . ,s ,Y) 
q 

- - n 
(tl, 0 0 .  ttn-ltD 5 (sl , 0 - rS r ~ ) )  

q 9 

- - n 
Sn,l (tit - . ,tn-l,D r (2) 1. 

fA(tl,. . . ,tn,z) =( 
Finally, if t = 1, we have 

j 

rn(tl,..-,tn,z) = 5 (tl,.-Q'tn,~l,e.e,s ,y) 
q+n 9 

- 

'i0an-,ct2,. . . ,tn,z) if t, = 1 

j-1 (tl,. . . ,t j -1 .D~-'E~-~ (tj+l,. . . ,tntz) if t j = 1 

fn-l(tl,o- tfj,.oq ,tntD j-2 (2)) if t = 0 'n- j j 

i {$i-l~D f;-i(2t,,-vQ,2ti,2ti+1 - l,ti+2 ,-.. ,tntz)l 
1 1 
2 2 where t,, ..., ti ( - ti+l 

, i = 1, ..., n 
if t, = 0. 

- ~ ~ - ~ ( t ~ ~  . . . ftj-ll~J~q-j+n(tj+lr. . ,tntslr . q ,Y) 

- We do not give an explicit formula for f; on the interior of 1" 
- 5j-l(tl, -. . ,tj-l,~Jrn-j (tj+lt.. . ,t n , z )  1. 

since we have merely deformed the boundary fomulas for fn; the 

One must also check that each rn is well-defined; however, this existence of fn thus implies that of f;. Examination of the 

is a straightforward consequence of the fact. that D"UX is case n = 2 may clarify this. Here, depending on whether X or Y 

constructed by means of the identities in the definition of an is a D-space, f2 is given by 

s.h.D-space and its proof is similar to that of Proposition 2.5.118111 
f1 ODE 

Another useful s.h.D-map is given in 

Theorem 4.2: Let {fnl: (X,{enl) + (Y,{$,)) be an s.h.D-map $ODf1 

where either (X, {Cnl) or (Y,C$nl) is a D-space (so that the 5, 

c£ogl ' flov 

or $n are constant homotopies). Then the composition no£: X + UY 4, o ~ ~ f  £0 5, 
f10' f, OD5 

is an s.h.D-map. 

and f; is given by 
Proof : By reparametrizing f , we define a map f ' : x D"X + Y n n 
such that 

fl ODE 

$OD£, .rl f?S1 

flow 
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Now define a collection of homotopies 

g,: 1" x Dnx + UY 

1 1 
where tl, ..., ti 5 T , ti+l T , i = Or.oeIn., This amounts to 

taking the cube defined by fn and glueing to its reparametrized 

tl = 0 face n other n-cubes. Note that we evaluate gn by 

i applying ni to the first i coordinates and D £Ami to the others. 

The coordinate D ~ X  is omitted in these calculations. 

I To see that it makes sense to do this glueing, if tl - - Z 
we have 

with i 2 1 

by the definition of the first coordinate equal to 1 face of ni. 

On the other hand if i = 0, we have 

n = {,-,ofn, (Oft2, 0 "  0 ft ) 1 n 

i = I ~ O @ ~ - ~ O D  £Ami (2t2,. 0 .  ,tn) I" 

We thus have agreement when t - 1 
1 - T o  

To see that it makes sense to glue together the n-cubes 
1 

that are defined when tl - < T, we have to consider the case 
. 1  

when t = -where j 2 i + 1, If j < i 9 1, we have 
j 2 

bv the definition of the s.h.D-relation on n. If j = i + 1, 

with k = O,...,n - j - 1. We re-index by letting i = j + k + 1 
and get 

. - 
gn - fnj-l 00j-l~ i-j OO'~;-~I 

and thus have agreement. 

It remains to show that {gnI as defined satisfies 

Defin&tion 3,2. If tl = 0, 

K 
= {*OD (ilkOD £A,, - ,k) 1 

if we re-index by k = i - 1, k = O,...,n-1 



If t = 0, we have two cases: 
j 

Case 1: j 5 i. Then 

- oDj-2 i o - {'Iis1 uiej0~ fn-i(a0.2Cj0 ..)I 

- QDi-lfs - ''Ii-l n-i o ~ j - ~ ~ ~ - ~  (Oae~fj...)} 

by the naturality of v 

k 0 

= {'Ik"D fn-pk 

if we re-index via k = i - 1, k = O,...,n - 1 

- - j -2 
gn,lOD 'In- j 

Case 2: j > i. Let j = i + k where k = l,.,.,n - i, Then 

i P k- 2 
gn =: hi0D (fn-i-l~D 'n-i-k )I by the s.h.D-property of f 

i I 0Di+k-2 
= {siOD fn-i-l 'n-i-k 1 

- i I - { n i 0 ~  fn-i-l . D ~ - ~ ~ ~ - ~ I ~  i = o,....n - 1 

'= gn-1 oDj-2 'n- j 

 ina ally, if t = 1, we have that j 2 i + 1 and 
j 

i gn = {qioD fi-loD i+k-7. En-i-kl where j = i + k, k = l,...,n 

= {nio~iq-lo~j-lm-j I 

We complete this section with the following technical 

reparametrization lemma, 

Lemma 4.3: Let {£,I: (X,{En)) + (YI{+ 1) be an s.h,D-map where n 

(Y,C+nl) is a D-space.   hen there is an s.h.D-map 

{?,I: (X,ICnl) -+ (Y,{+nl) which is homotopic to Efn3 via an 

s.h.D-homotopy and satisfies Zo = fo and 

Proof: First construct {f*) as specified in the beginning of n 
the previous proof, Let us define 



A 

1 
f;(2tl - 1,tale..,t 1 if tl > - n - 2 

fn(tl,. . . ,tn,z) = 

fA(0,t2,. . . ,tn) 1 if tl < - - 2 

To see that {En) is an s.h.D-map, we first assume that tl = 0: 

in(o,t2 ,..., t ) = f;(o,t2 ,..., t n n 

= {4i-10~1f~-i (2t2,. . . ,2t. 1 , 2ti+l - 1,. . . ,tn) I 
with tl ,... ,ti : f, titl 1. i = l,...,ni 

but this last map is equal to 

and 

i = {4i-l~D f;-i (0,2t,, . . . ,2t. ,2ti+l - 1,. . . ,tn) I 
1 

since is a constant homotopy 

)I 

if we re-index via j = i - 1, j = l,...,n - 1. 

Thus 

gn(0,t, ,..., t )  n = + o D ~ ~ - ~ .  

1 
NOW let t = 0. If tl ,2. , 

j 

gn(tl,. . .,t n ) = y 2 t l  - 1,. .. ,B,. . . ,tn) 
A 

= f;-lo~j-2pn-j (2tl - l,t2,. . .,tj,. .. ,t n 1 

by the construction in 4.2. 

I 
If tl 2 T, we have two cases to consider: 

Case 1: j 2 i. Here, - 

A 
= o ~ j - ~ p  i- j (2t2,. . . ,2t j ' . . . ,2ti,. . .) I 

by the definition of the s.h.D-structure on Y 

- - '+i-2 ODi-'£; - ioDj-2 pn- j (- ) I 

by the naturality of IJ 

k '-2 
( = {+k-lOD fn-k-10~3 IJn-j - )I 

by letting k = i - 1, k = l,...,n - 1 

Note that as before we may take the first coordinate of fA-l to 

be 0 since is a constant homotopy. 



Case 2: j > i. Here 

i 
= {4i-1 OD fA-i(2t2, ..., 2t.,2ti+l-l,...,0,...,tn) 1 1 

which by letting j = i + k, k = l,...,n - i 

k- 2 
= {#'i-lO~i (fi-i-l OD (- f .  7- 11 

i t = {"ill"D fn-i-i"~j-2'n-j (0,2t3 1 . .  . ,cj,. . .) 1 

- o,j-2 - Un- j . 

We now suppose that t, = 1. Then 

- - fo (t2,. - ,tn) 

Finally, if t = 1, we note that j > i and 
j 

1 fn(t ,,..., t = £;(at1 - l,t2 ,..., t if t, 2 n n 

and 

which by letting j = i + k, k = l,...,n - i 

i i+k-1 - - {4i-10D Sn-i-k(2t2,. . . ,;kt. . . ,tn) 1 
i I = OD fj-i-l 0llj-l 'n- j (0,2t3,. ..,fkt.. .,tn) 1 

TO complete the proof of Proposition 4.3 we construct the 

requisite s.h.D-homotopy. Define hn: I"+~ . D"X + Y by 

1 
t2 - ~ ( 1  - tl) 

where Tn ( ,t3,...,tn+l) is the reparametrization in 
1 1 - $1 - tl) 

Theorem 4.2 using the constant $(1 - tl) in the place of the 
1 constant 2 . From Theorem 4.2 we have an explicit formula 

for the boundary of each zn and we must assume that their 
interiors piece together in a contiquous fashion as tl varies. 

To complete our inductive definition of hn, we define 



Thus each hn is the appropriate homotopy from in 

an-easy induction argument shows that Ihn3 is an 

to fn. Finally, 

s.h.b-homotopy. 

5.. Lifting s.h.D-Maps to D-Maps. 

When (X,{E 3) is an s.h.D-space and (Y,$) is a strict n 
D-space, we show that an s.h.D-map f: X + Y may be thought of 

as a strict D-map UX + Y. This theorem will enable us to tie 

together the concepts of SHD-maps and s.h.D-maps. This section 

concludes with several examples of this theorem that are required 

in the proof of the conceptual homotopy invariance theorem. 

Theorem 5.1: Let (XlCEn3) be an s.h.D-space, (Y,$) a strict 

D-space, and {fn3: X + Y an s.h.D-map. Then there exists a 

unique D-map 2: UX + Y such that f 011 = f as s. h.D-maps from X 

to Y. Moreover, if f r f' as s.h.D-maps from X to Y, then 

2 = 3' as D-maps. 

Corollary 5.2: Let (X,{E 3 )  be an s.h.D-space, (Y,$) a strict n 

D-space, and {£,I: X + Y an s.h.D-map. Then there exists a 

unique D-map Uf: UX -+ UY such that the diagram 

Uf 
ux- UY 

commutes as a diagram of s.h.D-maps. 

Proof: By Theorem 4.2, no,£: X + UY is an s.h.D-map. Define - 
rJ 

Uf = rlof and apply Theorem 5.1, 



Remarks : 

1) As the notation in Corollary 5.2 suggests, it can be shown 

that U is in fact a functor from, for example, the category 

of D-spaces and homotopy classes of s.h.D-maps to the 

category of D-spaces and homotopy classes of D-maps. As 

this fact is not required in this work, these details are 

omitted. 

2) It will frequently be useful to know that the composition 

of an s.h.D-map with a strict D-map is an s.h.D-map. If X 

is an s.h.D-space, Y and Z strict D-spaces, f: X -+ Y an 

s.h.D-map, and g: Y -+ Z a D-map, we define an s.h.D-structure 

for the composition go£ by {go£,). The conditions set out 

in Definition 3.2 are easily verified. . 

Proof of Theorem 5.1: Define a map 1: UX -+ Y by the collection 

{(0Dfn) where (oDfn: 1" x D"+'x -+ Y. It is easy to see that 

this map respects the relation used in defining UX. To see 

that f is in fact a D-map, we have to show that P o p  = (OD;. 

This follows from the commutativity of 

for all n since (Y,() is a strict D-space, and u is a natural 

transformation. Note that 1 0 ~  = (oDfoq = +o,nof = f; the last 

equality follows from the definition of an algebra over a monad. 

Moreover, by Remark 2 above, has for its s.h.D-structure 

the collection {(oDfn0qn1. Again, rosn = $oDfnOnn = QOqofn = fne 

It is clear that 3 is the unique map having this property. 

To complete the proof it remains to show that this lifting 

of s.h:D-maps preserves homotopy. To this end we let Ifn) and 

Ignl be s.h.D-maps from (X,{C,,}) to (Y,() and Ih,) a homotopy 

between them. We claim that the {hn) induce a homotopy 

through D-maps between the D-maps {(~Df~l and {(0Dgnl; define 

by Gn = ( o ~ h ~ :  I x xn * D~+'x + Y. Since {hnltl=cl is an 

s.h.D-map from X to Y for each c E I, {(oDhnltl=cl is a D-map 

from UX to Y. The continuity of D allows us to piece together 

these maps to obtain the desired homotopy. 

Three useful examples of Theorem 5.1 are contained in 

Lemma 5.3: a) Let f: (X,C,) + iY,$) be a D-map. Then 2 = forx. 

b) Let (X,{cn)) be an s.h.D-space, (Y,() and (z,$) D-spaces, 

f: X -+ Y an s.h.D-mapp and g: Y + Z a D-map. Then 
h/ 

go1 = go£: UX + 2, 

c) Let (X, { 6,) be an s. h.D-space. Then the maps lux and 

UroUn are homotopic as D-maps from UX to UX, 

Proof: a) Since X is a D-space and f is a D-map, we may take the - 
collection of constant homotopies {f*cnl as the s.h.D-structure 

for f. Thus 
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2 = {$ODFOD~,~ = 3 & {TI,) by Lemma 4.3. 
S.h.D 

= {f0EoDEnl _ since f is a D-map In this proof, we take . p i = "0 -. o ~ ~ ~ o p ~  where p j - ' D'D" + D D ~  

for each n. 

= {fog,) = forx. 

b) go2 is given by the collection {go+oDfn3. On the other 
h.) 

hand, go£ is given by'the collection {$OD (gofn) 3. But 

$oDgoDfn = go$oDfn since g is a D-map. 

C) We show that the s.h.D-maps from X to UX induced by the 

given D-maps are homotopic as s.h.D-maps. Theorem 5.1 will then 

apply to show that the D-maps themselves are homotopic in D[Tl. 
PJ - 

Since norx = lux, 6.1 (ii) and 5.1 yield Ur = nor = as 
- 

D-maps. Thus UroUq = fUxoUn as D-maps. Since = r= by 

5.3a, it suffices to show that rUXOUnOn = luxen = n as 

s. h.D-maps from X to UX. Let (tl , . . . , t,, z) s xn x D"X. Then 

ru~Unonn(tl '.. . rtnlz) 
i+l n = {piopoDn.oD, 1 nAmiOnD (2t11...r2t.r2ti+l 1 - ~I...~~,IZ)~ 

i = O,...,n 

i+l 
= {pioD n~_~on~"(2t ,,..., 2ti,2ti+l - l,...,t n I Z ) ~  

- - {piOnn+lOD i nA-i(2ti+l - lr...,t 1 ~ 1 1  
n 

by the naturality of n and the definition of pi 

- - {pi-lOD i nA-i(2ti+l - 1, - .,t,~z)) 
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6. Homotopy Invariance Theorems 

We begin with 

Theorem 6.1 (Geometrical Homotopy Invariance Theorem) : 

(i) Let (Y,$) be a D-space and f: X * Y a homotopy 

equivalence; then X is an s.h.D-space and f is an 

(ii) Let f: (XI & )  * (Y, $ )  be a D-map and suppose that g is 

homotopic to f; then g is an s.h.D-map and g is 

homotopic to f as an s.h.D-map, 

(iii) Let f: (XI 6 )  * (Y,$) be a D-map and a homotopy 

equivalence with homotopy inverse g; then g is an 

s.h.D-map and fog is homotopic to ly as an s.h.D-map. 

The proof of this theorem is deferred until Sections 7, 8 

and 9. We may, however, use this theorem to deduce 

Theorem 6.2 (Conceptual Homotopy Invariance Theorem) 

(i) Let (Y, { $ 1 ) be an s . h. D-space and f : X * Y a homotopy n 
equivalence; then X is an s.h.D-space and f is an 

SHD-map , 

(ii) Let f: (XI (5,)) + (Y,{$ n 1) be an SHD-map between 

s.h.D-spaces and suppose that g is homotopic to f; 

then g is an SHD-map and g is homotopic to f as an 

SHD-map . 
(iii) Let f: (X,{S~~) + (Y,{$nl) be an SHD-map between 

s.h.D-spaces and a homotopy equivalence with homotopy 

proof : - 
(i) 

(ii) 

inverse g; then g is an SHD-map and both fog is 

homotopic to 1 and go£ is homotopic to 1 as 
Y X 

SHD-maps . 

Apply 6.1 (i) to the homotopy equivalence no£: X -+ UY. 

Thus X is an s.h.D-space and no£ is an s.h.D-map. By 

5.1, there exists a D-map 5: UX -+ UY such that 

nOf = 20n. Then f = roqof = rogon and 2 represents 

f as an SHD-map by Definition 3.1. 

Let F: UX -+ UY be a D-map representing f as an 

SHD-map. Thus f = roFon. But then 

nogor = nofor = norOFonOr = F, By 6.l(ii), 

nogor: UX -+ UY is an s.h.D-map and nogor = F as 

s.h.D-maps. By 5.3 (a) we have = For: UUX + UY. 
d 

By 5.1, we have qogor - 3: UUX -+ UY. By 5.3(c) 
D 

d 
UroUn cD lux. We also have that rUx = lux =D nor = Ur 

by 5.3(a), 5.1 and 6.l(ii); i.e., 

Ur =D rux: UUX + UX. Thus 

w 
hence nOgoroUn represents g as an SHD-map. The 

equality n o n  = Uqoq comes from the commutative diagram 

un 
UX - uux 



guaranteed by 5.1. In addition we have 

= O U ~  zD F O U ~  = FeroUn rD FoUroUn ZD F. 

(iii) Again, let F: UX + UY represent f as an SHD-map, 

f = roFon. Then nogor is a homotopy inverse to F 

since 

nogoro~ = nogoroFonor = nogofor = nor 

and 

BY 6.l(iii), qOgor: UY + UX is an s.h.D-map and 

Fonogor = 1 as s.h,D-maps. Exactly as in the previous - 
argument, n0goroUn: UY + UX represents g as an 

SHD-map. To see that the composition of these 

SHD-maps are homotopic to the respective identity 

maps, we have 

=D UroUn as above =D 1 by 5.3(c). 

In the other direction, to show that gof = 1 as 

SHD-maps, since we now know that g: Y + X is an 

SHD-map between s.h.D-spaces as well as a homotopy 

equivalence with homotopy inverse f, we need only 

reverse the roles of f and g in the argument above 

and apply standard uniqueness of inverse arguments 

to conclude that the constructed representative - 
nofOroUn of f as an SHD-map is homotopic as a D-map 

to the given representative F. 



7. Proof of Theorem 6.1 (i) 

In this section we prove Theorem 6.l(i): Let (Y,$) be a 

D-space and f: X + Y a homotopy equivalence; then X is an 

s.h.D-space and f is an s.h.D-map. 

Proof: Since f is a homotopy equivalence, there exists a - 
homotopy inverse g: Y + X and a homotopy k: I :: Y + Y such that 

k = identity on Y and kl = fog. Also,-as explained in 

[G, pp. 159-1601, by slightly altering the underlying operad D ,  

we can replace f by its mapping cylinder and thus assume that 

gof is the identity map on X. 

Define a map 5: DX + X by the composition 5 = go$o~(f). 

By the naturality of q, we have 50q = go$oD(f)oq = go4oqof = gof = 1 

on X. 

We now need to construct a homotopy E l :  I :: D'X + X which 

will render the diagram 

homotopy commutative. It is the failure of this diagram to be 

strictly commutative in general that causes X to fail to be a 

strict D-space. Define 

where D(k): I x DY i. DY is defined in the manner described in 

Section 1. To see that El is the correct homotopy, note that 

= ~ o ~ o D ( $ )  OD' (f) since D (k) 1 = id 

= go$oVo~'(f) since Y is a D-space 

= go~+oD(f)~p since 1-1 is natural 

and that 

= g04.D (f) OD (g) OD ( 4 )  O D ~  (f) 

This motivation for the s.h.D-structure on X leads us to 

define the requisite higher homotopies 6 x D~'~X + X by 
9 : 

We have omitted the symbol "1 x u  which should preface each 

D' (k) . Note also that we have a composition of q one-dimensional 

homotopies; we use each in succession on each of the q 

coordinates of I ~ .  
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For the 5 to determine a valid s.h,D-structure on X, we 
9 To see that f: X + Y is an s,h,D-map we define 

have to verify the usual compatibility csnditions. If, for 

example, t = 0, we have fn: x D ~ X  -t. Y 
j 

i -1 
cq 

= go(oD(k) OD(() 0 . .  .OD- ( ( )  OD' (k] I O D ~  ( ( )  0.. . 0Dq(k) OD" ( ( )  0Dq+l (£) by 

= g 0 ~ o . . e o ~ j - 1 ( ~ ) o ~ j ( ~ ) a ~ j + 1 ( k ) o O . O ~ ~ ~ ( k ) o ~ ~ ( ~ ~ o ~ ~ + 1 ~ ~ ~  
- - ~o(oD(~) OD(() 0 .. .oD~-'(~) O D ~ - ~ ( O  OD"(£) 

= g040.. .OD~-~(+OD@) O~j+l(k) 0.. .o~q(kjo~q(+) o~q+'(f) 
To verify the compatibility conditions of Definition 3 . 2 1  

that if tl = 01 

= go(". . .OD~-~((O~) oDj+l(k) 0.. .oDq (k) oDq ( $1  oDq+l(f) 
= koo(OD (k) OD ($1 0.. .OD~-'(~) OD~-'(O OD"(£) 

n 
= g040.. .oDj-l(() O D ~  (k) o oDq-l (k) oDq91(() oDq (f) o~j-lp 

9- j 
= ,OD (k) OD (1) 0.. .ODn-' (k) (4) OD" (£1 

- - cq-1 0 

= 

The next to last equality follows from repeated application of the 

naturality of p. If tl = 1, 

If, on the other hand, t = 1, then 
j 

n 
= kIo+o6(k) OD(() 0.. . o D ~ - ~ ( ~ ) o D ~ - ~ ( ~ )  OD"(~) 

cq = g 0 4 0 ~ ( k ) 0 ~ ( ~ ) o ~ ~ ~ o ~ j - ~ ( ~ ) o ~ j ( k )  ~ l o ~ j ( ~ ) ~ ~ ~ o o ~ q ( k )  
oDq (() oDq" (f) 

= ~ O ~ ~ ( O D ( ~ ) O D ( O ~  . . . O D ~ - ~ ( ~ ) O D ~ - ~ ( O O D " ( ~ )  

= (go$oD(k)oD(4)0.~,0Dj-~{()~Dj(f))o 
= 

(Dj (g) O D ~  (4) 0 0 * 0 ,DS(k) OD~(() oDq+l(f) ) 

= cjo~jcs-j. 

Thus the 15 1 as defined do indeed define an s.h.D-structure for 
9 

X. 



When t = 0, 
j 

= ko$oD (k) OD ( 4 )  0.. . o ~ j - ~  (k) O D ~ - ~  ($ )  ODj-' ( $1  OD' (k) O.. . O D ~  (f) 

= ko$oD (k) OD ( 4 )  0.. . o D ~ - ~  (k) o D ~ - ~  ( $1  OD'-~ ( v )  OD' (k) . . .oDn (£1 

(Dj-1 (g) o~j-l(4) 0.. . ODn (f) ) 
- - fjq oDj-l Sn- • 

8. Proof of Theorem 6.1 (ii) 

In this section we prove Theorem 6.l(ii): Let f: (X,c) a (Y,$) 

be a D-map and suppose that g is homotopic to f; then g is an 

s.h.D-map and g is homotopic to f as an s.h.D-map. 

Proof: We will define an s.h.D-structure for g by glueing - 
together various homotopies gotten from the maps $nr cn, and 

the functor Di applied to the given homotopy between f and 6 

The procedure will be clear to the reader if he sketches the 

appropriate pictures for low values of n. To begin let 

h: I x X -t Y be a homotopy such that ho = f and hl = g. 

We define an s.h.D-structure for g, 

1 1 .  with tl, ..., t. 1 2 71 ti+l - > -I 1 = l,...,n where 
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r 1 1 t. in order to of the simplex opposite the faca ti+l = T + 
if ti+l F 2 + 1 t j<i+l 2 

jci+l j 
i 

evaluate the map (-$i-l~~lh"~ En-i-l )r; it is easy to check that 
1 

if ti+l 5 - + 2 t the point (0, ..., 0,1,0,...,0) with 1 in the i + 1 st coordinate 
j<i+l j 

if i(n-1 satisfies the requirements. 
i 

We now show that each (-$i-lo~lh~~ ) I  is well-defined. 

1 1 i 
o ~ ~ h ) ~  if tn 5 - - I ti ' suppose that tn = 2. - I ti. Then (-$i-lo~lho~ En-i-l 1 

icn i<n 

= O D " ~ ) ~  = (n-l~~nf since the vertex opposite the face- 
1 

$n-l~~nf) if tn - - I t  if i = n  
icn i tn - - 2 1 - 1 ti is (0,. . . ,0) and -h[ = g; we thus have agreement 

i<n 
1 

A minus sign preceding a homotopy indicates that it should be in this case. Now suppose that ti+l = 2 + I tjo Then 
j <i+l 

evaluated in reverse direction on its first coordinate. i 
( - i l i h i E n i l  = (-$i-lO~lhO~ En-i-1 ) is defined on 

The following construction is used in the definition of n-i-1 s 
Ai+l x I and thus equals (-$i-lO~lh~~lC.n-i-l) (t, r ~ t ~ + ~ )  

gn: let h: I x X -+ Y be any homotopy, An an n-simplex, and - i - $i-l OD'~OD E ~ - ~ - ~  since the vertex (O,...,O,l,O,...rO) with 
vo a particular vertex of An. We may then construct a new 

i + 1 coordinate equal to 1 is opposite the face in question, 
homotopy hs: An x X + Y with hs (vo ,x) = ho (x) and hS (v,x) = h, (x) i and -$i-lo~lho~ En-i-l evaluated on this vertex is 
for all v on the face opposite to vo by defining hs to be h on 

~i-lo~igo~i~n-i-l. Thus this map is well-defined on each cube 
each line segment connecting vo to the face opposite vo. It is 

tl1".,ti ( 1 1 clear that we may also extend hS to a map hr: An x x X + Y by 2.1 ti+1 ?. 
defining Next we show that it makes sense to glue together all the 

1 cubes that occur when t, 5 T . Suppose that ti+l = i 2 1, 
r s 
h (sol* ..rsnttlIe. .ltm'~) = h (sol. ..Is 1 ~ ) -  1 

n and ti+2 > - . Then 
2 

In our definition of g , note that the homotopy 1 1 
n 1) gn = (-$i-lO~ih~~i~n-i-l! ' where t,,.. . .ti 5 21 ti+l 1 1 

(-$i-lO~iho~i~n-i-l Ir is defined on Ai+l x C In where 
- i 1 1  

Ai+l is determined by the intersection of the plane - $i-leC f"D En-i-l since ti+l=-< - +  1 tj 
2 - 2  jci+l 

1 t. with thecube t,, ... ,t. 2 1 1 
7, ti+l 2 and 

j<i+l J 
and 

1 the inequality ti+l)- + 1 tj. We need to know the vertex 
j<i+l 
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oDiflhoDi+l 
2) 9, = (-+i 

1 
where tl,...rti+l 5 -2, ti+2 

1 > - - 2 

- oDi+lfoDi+~ 1 1  - +i %-i-2 since ti+2 = - 2 - 2  < - + 1 t 
j<i.+2 J' 

But 

oDi+lfoDi+l - - @i-lOl'i-l %-i-2 since Y is a D-space 

by the naturality of p 

- - $i-lO~lf O~l~n-i-l since X is a D-space, 

and we have agreement between 1) and 21, 
1 

The final glueing process occurs when tl = 7 I we think of 

the parameter t, as running from left to right. The right hand 

1 face of the cube t, 5 7 is given by 

1 1 
{ (-+i-lo~iho~lgn-i-l) I where t, , ... , ti 5 7' ti+l 2 T I  i = 2 I . .  . ,n 

i 
= I+i-l OD'~ OD s ~ - ~ - ~  I by previous calculations 

= {+oD+o,. . o ~ ~ - ~ + o ~ ~ f o ~ ~ ~  n-i-1 I 

oDi-240Di-lfoDi-l i = {40D$o... SOD Sn-i-l ) since f is a D-map 

= {+oD+o... 0Di-2 +,Di-lfoDi-l S ~ ~ l g ~ .  * . . OD"-~CI 

= {f~g,-~I by repeated application of the above pr~cedure. 

1 
On the other hand, the left hand edge of the cube t, 2 7 is 

given by h~~~-~(O,t~,...,t = f ~ c ~ - ~  and we have agreement. n 

The verification of the fact that gn is well-defined is now 

complete. 

That {gnl is an s.h.D-map will now be demonstrated. 

Suppose t, = 0; then gn (0 ,t,, . . . ,tn) = { (-+i-l~~ih~~i~n-i-l 1 
1 1 .  1 where t2,~.olti 5 7, titl 2 7, 1 = ll.Q.ln. If t2 2 7, 

since the vertex (0,1,0,...,0) is opposite the face on which 

(-tj~DhoDS,-~) has value cp~DfoDE~-~, and thus when t2 = 1, 

(-+~DhoD~~-~)(O,l,t~...,t ) has value + O D ~ O D S ~ - ~ -  This has the 
n 

effect of negating the negative sign above. Now if t2 5 1 T' 

gn (0 ,t, , . . . ,tn) = { (-+i-l~~lho~l~n-i-l 1 I I  

with t,, ..., ti 5 1 1 
7, ti+l 2 7, i = 210..1n; 

letting k = i - 1, we have 

k+lh0 Dk+l gn(01t21'D"lt ) = I-+k~D Sn-k-21~ k = 110-01n - 1 n 

**) 
k k  

= { (-+OD (+k-lOD hoD 5 (n-l) -k-l 1 'I. 

~ h u s  *)  and **) yield 



$Jn(ltt2t 0 0 e ltn) = ho5n-l (lrt2t 0 e 0 ttn) = 905n-10 

1 Now suppose that t = 0; if tl 2 T, j 

gn(tlIa.e,O~~~~rtn) = h05,,~(2t~ - lrt2ra~~rOiv..rtn) 

- - ho En-, = ho &n-2~~j-2yn- 

1 since X is a D-space; if, however, tl 2 

9, (tl I..., 0,. . . ,tn) = { (-(i-lo~iho~i~ n-i-1 1 I 1  

1 
where tl, ... ,t. 2 2.1 and we have two cases to consider: the 

1 

first is j < i + 1; then 

oDi'lholl = , 
i 

i-lOD En-i-l ) } by the naturality of 

i-lhoDi-1 
= { (-(i-20D 6n-i-10'n-2) ' 1 

opi-lhoDi-l 
= I Wim2 'n-i-1 0 ~ ~ ' ~  'n- j ) I )  since X is a D-space 

- oDj-2 - %-l vn- j 

On the other hand, if j i + 1, let j = i + k, k = l,...,n - i, 
and then 

i i k-2 
E { (-$i-l*D hoD (En4-20D pn-i-k) a 1 when 5 = 01 k > 

by the definition of an s.h.D-structure 

1 
It remains to check the situation when t = 1. If tl TI j 

finally, if tl 2 f and t = 1, we have j 2 i + 1 by the definition 
j 

of gn. Thus if we let j = i + k, k = l,...,n - i - 1, we have 



The final element of the proof is the verification of the 

fact that f is homotopic to g as an s.h.D-map. For this, we 

will define an s.h.D-homotopy 

The case n = 1 will serve as a good illustration of our 

construction. We define hl on I2 x DX as follows: 

ho 5 

Note that, for example, ($oDh)' is defined on a simplex 

determined by the original simplex in the definition of g, and 

the additional vertex (1,O) . 
In general, we define 

( otherwise 

Here, the domain of (-$i-20~i-1ho~i-1 En-i)r is the simplex obtained 

from the simplex defined by tl = 0 (in the definition of gn) 

together with the vertex (1,0,...,1,0,...,0) where the second 1 

is in the i + 1 coordinate. The proof that hn is well-defined 

and is in fact an s.h.D-homotopy is similar to the proof that 

g is well-defined and is an s.h.D-map and is omitted. n 



9. Proof of Theorem 6.l(iii) 

In order to complete the proof of the gaometrical homotopy 

invariance theorem, we shall utilize the following lemma due 

to Fuchs [7, Po 3371 2 

Lemma 9.1: Let f: X + Y be a homotopy equivalence, g a hbmOt0py 

inverse of f, k: I x X 4 X the homotopy such that ko = idxl 

kl = go£; then a homotopy h: I,x Y -+ Y such that ho = id 
Y' 

hl = fog may be chosen so that fok = hof as homotopies between 

f and fogof. 

Proof: Consider the diagram of path spaces - 

where f* and g* are induced by the maps f, g and I#I is induced by 

any path from id to fogofog (such a path exists since there is 
Y 

certainly a path a from id to feg under the assumption that f 
Y 

is a homotopy equivalence and thus the claimed path may be taken 

to be g*[fokl * a ) .  Since f and g are homotopy equivalences, so 

are f* and g*; moreover, $ is a homotopy equivalence; thus each 

map in the diagram induces a one to one correspondence between 

path components. We may now choose h to be any path in the 

class @cg* [fekl . We then have that f* [h] = [hof] = [fok] . Thus 

f ok and ho f lie in the same path component of Q (Y', f , f ego f) and 
are thus homotopic as pathso 111111 

We proceed now with the proof of Theorem 6,l(iii): Let 

f: (XIS) 4 (Y,$) be a D-map and a homotopy equivalence with 

homotopy inverse g; then g is an s.h.D-map and feg is homotopic 

to ly as an s.h.D-map. 

Proof: Let k: I x X + X be a homotopy such that ko = idx and 

kl = go£, and let h: I x Y 4 Y be chosen as in Lemma 9.1 so that 

ho = id and hl = fog. We define an s.h.D-structure for gr 
Y 

gn: 1" x D ~ Y  4 X, by 

We evaluate such a composition of homotopies by evaluating the 

ith homotopy on the ith coordinate. 

Notation (i) : Let pn and qn: 1" x Z 4 X be homtopies. Define 

pn Y qn: 1" x Z -+ Y to be the homotopy. 

Of course, for this to make sense, pnltl=l 

so that we may glue these faces together. Actually, one only 

needs pn 1 tl=l homotopie to qnltl=O relative to {0,13 x Z ; If 

this possibility occurs as it will in the following considerations, 

we assume that the resulting homotopy is properly reparametrized. 

(ii) Let pnr 1" x Z -+ X be any homotopy, We wish to 

reparametrize pn inductively to obfain a new homotopy 



pk: 1" x Z + X in the following manner: if n = 2, define 

pi: 1' x Z + X by 

Now assuming that we have pn-l reparametrized in this fashion, 

we define 

- - 
pkltl=0 pnl (0,. ,o) 

- - 
phIti=0 (pnl ~ t l , ~ ~ ~ l t i ~ l I ~ l ~ ~ ~ I ~ ~ ~  

- PA 1 tiC1=l - (pn 1 tiDO) I 

- PA I tl=l - pn I ti=l i = l,.eoln 

where # pnl .=I means fit together the n homotopies in a manner 
1 

consistent with the edges of this face already defined; e.g., 

n = 3: 

(iii) contrary to our use of the minus sign in the previous 

section a - preceding a homotopy indicates that the homotopy 
should be evaluated in reverse direction on each coordinate. 

We proceed with the proof by first showing that each gn is 

well-defined. First let n = 2; then 

g2 = ~ O E O D ~ ,  # - [ (g~+o~ho~+o~2h) ' I  . 

To see that this is well-defined, consider first 

koE0Dg1 I t  =1 = k0~0DLk~E~D9 t -g*+.Dhl I 
1 

= g o f o g o ~ k o ~ S ~ ~ 2 g  # - gofoSo~g3~+ 0 ~ ~ i - 1  

= ge$~Dfo~ko~g0~2g # - go$eDfaDgeD+oD2h 
since f is a D-map 

= g ~ + ~ ~ h ~ ~ f o ~ S ~ ~ 2 g  # - g ~ + ~ ~ f ~ ~ g ~ ~ + ~ ~ 2 h  by Lemma 9.1 

= g ~ + ~ ~ h o ~ + e ~ 2 f o ~ 2 g  # - g o + o D f o ~ ~ 0 ~ $ o ~ ~ h  



Now let us assume that gn-l is well-defined; to define gn we have 

to fit together k ~ E o D g ~ - ~ l ~ ~ = ~  and - [(gm$oDhQD(. . .oD"-~(oD~~) ' 1  ltl=O. 
But 

and the homotopy on the left fits together with 

go(0DhoD (- [ (go(oDhq,.. oDn-lh) * ] ) by induction and the homotopy 

on the right is the remaining piece. 

We now verify that the g satisfy the equalities needed for 
n 

an s.h.D-map: If tl = 0, 

= koc~Dg,-~I -O # - [ ( g o ( o ~ h ~ ~ + ~  3 - 0 ' 1  I t  .=O 
j- 3 

= ko coDgn-l 1 # - [ (g~(oDhoD(o 0 . 0  OD"-'+ 'Dnh) ' I t  
3 3 

= k"~o~3n-llt =O # -[(g o(oDhoD(o...o~~-~(o~~hl t -1=0 'I 
j 

= k o ~ o ~ ~ ~ - ~ l  =O # - [ (go(oDhoD(o.. . O D ~ - ~ ( O D ~ - ~ ~ ~ ~ D ~ ' ~ ~ ~ ~  * - 1  ' I  
j 

= .=O # - [  (go(~DhoD(o.. . O D ~ - ~ ( O D ~ - ~ ( ~ =  moDnh) ' 1  
3 

= ko50r)gn-l 1 =O # - [ (go(oDhoD(0.. . oD"-lho~j-~ ) '1 'n- j 
j 

= kocoDgn 20~j-2pn-j # - [ (go(oDhoD(0.. . ) ' I  - 'n- j 

The next to last equality follows from the fact that (Y,g) is a 

D-space and that p is a natural transformation. Finally, if 

t. = 1 
3 



We conclude this proof by showing that fog is homotopic to 

ly as an s.h.D-map. Define an s.h.D-homotopy pn: x ~ " y  -t Y 

by 

If tl = 1, we have 

which is the canonical s.h.D-structure for the identity map. 

If tl = 0, we have 

= . #  -[(hoi$o..,o Di-2hoDi-2foDi-1EoDi-1go0 O .  o ~ ~ h )  I]+-[ (fog040.. -0~'h) 'I 

since f is a D-map 

= # - [ (  hO(O... o D ~ ~ ~ ~ o D i ~ 2 ~ o D i ~ 2 k o D i ' 1 5 0 ~ ~  a 0Dnh) '1 #- [  (fOgo$~ ... .oD"~) 'I 
by Lemma 9=1 

# -[fokocoDkoDco.. . O D ~ ' ~ ~ ~ D ~ ~ ~ ~ O D ~ - ~ ~ ~  ...oD~~) 8] #- [ (fog040 * .  O D ~ ~ )  I ]  

by iteration of the two previous steps 

= fog, 

which is our canonical s.h.D-structure for a composition of a 

D-map with an s.h.D-map. 

The other equalities may be checked by a similar argument 

and thus our proof is completed. 



Appendix 

We present here a geometrical alternative to Definition 3.1 

and discuss some of its consequences, 

Definition Al: Let (x,I~~l) and (Y,{4nl) be s.h.b-spaces and 

let f: X + Y be a map. Then f is an s.h.D-map if there exists 

a collection of homotopies 

such that 

The concept of a homotopy between two such maps is a direct 

generalization of Definition 3.3. 

We may also generalize Corollary 5.2 to conclude that there 

is a one to one correspondence between homotopy classes of 

s.h.D-maps from X to Y and homotopy classes of D-maps from UX to 

UY where X and Y are s,h,D-spaces. It can further be shown that 

there is a well-defined category whose objects are s.h.D-spaces 

and whose morphisms are homotopy classes of 8.h.D-maps; in 

addition, U is a fully faithful functor from this category to 

hD[T]. This machinery may be used to provide an alternate 

proof of the homotopy invariance Theorem 6.2. 

Throughout this work, we utilized geometrical complexes 

'whose vertices indexed homotopic maps in various s . h, D-structures . 
We present here a typical counting argument used in formulating 

an s.h,D-structure, We analyze Definition Al, that of an 

s.h,D-map between s.h.D-spaces. Recall that the parameter space 

in the definition is a cube with one face subdivided. The reason 

for this is that a one-to-one correspondence between the vertices 

of the complex and the distinct maps D"X + Y is needed. The 

argument that follows should be considered as joint work with 

Bob Ramsay. 

Let us first count the distinct maps D"X -+ Y inductively. 

Let #(n) denote this number and assume that we know #(n - 1). 
Now compose each of the # (n - 1) maps with first D~-'S; then 

compose each of the original #(n - 1) maps with This 

gives us 2#(n - 1) distinct maps D"X + Y, This, however, does 

not account for all possible such maps. To obtain the 

remaining ones, consider all compositions of the form 

'$QD'$* - - e , , , "  - nDnf 

i-1 
where in the ith blank we may use either ~~''4 or D yn-i-31 

i = 1 .  n - 2 We thus have 2n'2 additional maps which are 

all distinct. We claim that # (n) = 2# (n - 1) + 2n-2a The 



verificatfcn that all of the above maps are distinct and form 

the complete set of such is tedious but straightforward; one 

utilizes the properties of u in the definition of a mcnad and 

the fact that there are n distinct maps D"X + D"-'x given by 

i 
on-li and D pn-2-i with i = O,..,,n - 2. 

We now turn our attention to the subdivided cubes, Recall 

that we subdivided the tl = 0 face of into n cubes of dimension 

n - 1 according rc the relation 

1 1 
{ t l r ~ ~ 4 i  1.2 $ti+.1 .L. T is arbitrary) 

where i = l,...,n and k = 2,...,n - i, We want to count the 
number of vertices of this new complex. First, there are the 

2n vertices from 1" where each of the n coordinates is either 
1 

0 or 1. To count the others, fix i as above and let ti+l = . 
Since tl = 0, the coordinates of a vertex are given by 

1 (0, ...,z,.. ,) where there are i - 1 blank coordinates to the 
1 l left of and n - i - 1 to the right of 5 . To the left, we 

1 may fill in either 0 or 7 ; to the right we may fill in either 

0 or 1. At any rate, we get 2n"2 vertices this way, But i may 

vary over n - 1 positions. Thus we have (n - 1)2n-2 vertices 
of this type and thus have a total of 2n + (n - l)2n-2 vertices. 

To see that the number of vertices agrees with the number 

of distinct maps D% .s Y, it is easy to check that the number 

2" + (n - 1)2nP2 satisfies the equality # (n) = 2# (n - 1) + 2n-2a 
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E r r a t a  and Addenda to [A], [GI, and [GI] 

The cited papers contain a number of misprints,  mistakes,  and 

results  since generalized. We indicate where changes should be  made in 

the following l ist .  Minor e r r o r s  a r e  indicated by line, with the mater ia l  

to be changed underlined (but mathematically irrelevant typographical 

e r r o r s  have generally been ignored). The l i s t  a lso  includes references to 

work by other authors which adds to  the results  of [GI and [G']. 

1. [A, P. 158, line 111: - e m  @...ax . / Y E G ,  jig ... C j p 2  j l<jpl . . . .  
Y(J,) 

2. In view of the geometric construction of the homology operations analyzed 

by Cohen in  III, t h e r e  i s  no longer any rea l  reason to use  the categories &(p, n) 

f o r  n < m in [A, $ 2  and $31. Restrict ion to the case  n =  m would allow some 

simplification of notations. 

3. [A, p. 161, line -41: . . . Di(x) = 8 (e. @xp), . . . 
* 1 -  

4. In the cohomology of spaces,  [A, 6.8 (p. 188)] was f i r s t  proven in  

T. Yamanoshita. On certain cohomological operations. J. Math. 

Soc. Japan 8(1956), 300-344. 

6. [ ~ , 1 0 . 2 ( ~ . 2 1 4 ) ]  i s c l e a r l y f a l s e i n t h e c a s e p = Z  and t > l ,  where 

* 
H (ZZt, 1 ,  ZZ) = ~ ( i ~ )  @ p(ptil) just a s  in  the pase p > 2.  Therefore,  when 

n = 1 and p = 2, [A, 10.31 only holds for  t = 1. 

7. The le t ter  S was used fo r  suspension in [GI. This standard notation 

i s  ve ry  awkward, and Z has  been used in  [GI], [R], and the present volume. 

8. The weak Hausdorff ra ther  than the Hausdorff property should be  r e -  

quired of spaces in 3 and (U [G, p. 11 in order  to validate some of the 

l imi t  arguments used in [GI. 

9. . [G, p. 4, line - 21 : . . . highly - . . 
10. An elaboration of the proof of [G, 1 .9  (p. 8)] should show that if is 

an E operad, then the product on a $ -space i s  an  s. h. G-map (in the 
03 

' sense defined by Lada i n  V). 

11. [G, 3 . 4  (p. 22)] is improved i n  [GI, A. 21. 

12. The proof of [G, 4.8 (p. 35)] i s  not quite correct  since the specified 

homotopy h: 1 = fg i s  not a homotopy through points of rn( j ) :  the disjoint 

image requirement can be  violated. The remedy i s  to f i r s t  l inearly shrink 

points c r r n ( j )  to thei r  maximal inscribed equidiameter points and then 

l inearly expand the resulting points to the maximal equidiameter points fg(c). 

13. The category xm specified on [G, p. 401 is obviously appropriate to 

infinite loop space theory. It is now known that this category (or better,  its 

coordinate-free equivalent) is also the appropriate start ing point for the con- 

struction of a good stable homotopy category. See [R, ch.II] foy a summary. 
2- ' 

Ful l  details will appear i n  

J. P. May. The stable homotopy category and i t s  applications. 

(Pa r t  of a forthcoming Monograph of the London Math. Soc. ) 
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1, 
jpa J~ 

~ a t i o n t h e o r e m  i n  [G, 56-71 is not particularly 

j2> j2, jjl >gether with the  appropriate generaliza- 

;s, has  been given in  

J& 
:es and i terated loop spaces.  4, . 3 ) ,  213-221. 

J: 
ase r t s  that o . CnX * G%% is a group completion 

J n ' 

.3], and this statement is also an immediate consequence 

,eresting generalization of the approximation theor e m  (from a 

n 
dnt about the configuration spaces of R to a statement about the 

,kiguration spaces of smooth manifolds) has been given in 

D. McDuff. Configuration spaces of positive and negative particles. 

Topology 14(1975), p. 91-107. 

,/ 
16. A basic application of the approximation theorem has been given in  

V. P. Snaith. A stable decomposation of Gnsnx. J. London Math. 

SOC. 7(1974), 577-583. 

Snaith shows tha t ,  for  a connected space X, the suspension spectrum of 

CnX - aria% splits a s  the wedge of the suspension spectra  of 

F.C X/F~-~C,X = e[ (j), B x]. (See [G, p. 141 f o r  the notation. ) In his 
3 n n j' 

thesis (Northwestern Univ. 1975), P. 0. Kirley proves that, fo r  n 2 2, there  

is no finite r such that arG%% splits a s  V a re [  cn ( j ) ,  XI. 
j j ' 

17. As explained in  [GI, A. 51, the notion of s t r i c t  propriety introduced in  

[G, 11.2 (p. 102)] i s  unnecessary. 

18. [ ~ , p . l 0 3 ,  line-31: ... X,Y E ~ U  ,... - 
19. [G,p. 104, line 31: . . . v = (tb,. . . ,tb_)s A . - 9 

20. [G, 11.13 (p, 109)] i s  improved in [GI, A. 41. 

21. As will be discussed i n  30, when n ) 2 ,  [G, 13.l(ii) (p. 129)] generalizes 

in  the non-connected case  to the assertion that B(a n, 1,l)  i s  a group com- 
n 

pletion. It follows that [G, 13.l( i i i)]  remains t rue  when Y i s  (n-1)-connected, 

that [G, 13.2 (p. 132, misnumbered a s  13.3)] remains t rue  when g i s  a group 

completion ra ther  than a weak equivalence, and that [G, 13.41 remains t rue  

when X i s  grouplike. 

22. In [G, 13. 5(ii) (p. 134)], the connectivity hypothesis on X i s  unnecessary. 

To see  this,  mere ly  use [G, 3.71 and [GI, A. 2(ii) and A. 41 in place of [G, 3.4 

and 11.131 i n  the proof. 

I 23. [G, p. 136, line -51: The reference should be to [GI], not [21]. 

24. As was proven i n  [GI, 2.31, [G, 14.4(ii) (p. 144)] generalizes in  the non- 

connected case  to the asser t ion that B(oana, 1 , l )  i s  a group completion. It 

follows that [G, 14.4(vi)] remains  t rue  when each Y i is (i-1)-connected, that 

[G, 14.51 remains t rue  when g i s  a group completion, and that [G, 14.61 

j remains t r u e  when G? Y is connective and (in its second part) when X is 

a rb i t r a ry  . Again, by [GI, 3.11, X need not be connected in  [G, 14.81, and 

[G, 14.7 and 14.91 remain t rue  when X i s  (i-1)-connected. 



25. The discussion of connectivity hypotheses and homotopy invariance 

i n  [GI p. 156-1601 a r e  of course obsolete. 

26. [G, p. 166, line -81: I 4su(x) if O( s 2 1/4 

27. In [GI, 5 11, i t  is asse r t ed  that l;: G -, QBG i s  a group completion if 

the monoid G and the H-space QBG a r e  both admissible in the sense  of 

[GI, 1.31. This restrict ion ailows the simple proof given in  

J. P. May. Classifying spaces and fibrations. Memoirs Amer. Math. 

SOC. 155 (1975). 

A convincing, and not v e r y  much m o r e  difficult, proof assuming only that 

s G i s  central  in  H*G has  since been given i n  
0 

D. McDuff and G. Segal. Homology fibrations and the "group completiont1 

Theorem. Preprint .  

(Both proofs were  suggested by unpublished arguments of Quillen. ) 

28. The proof of [GI, 2.11 is incomplete, since the asser t ion that X o r  

B(M, C X MIX) i s  strongly homotopy commutative i s  not obvious. The ver i -  

fication i s  unnecessary if one is willing to use the strengthened version of the 

group completion theorem cited in 27. Alternatively, a simple rigorous proof 

of [Gt , 2.11 i s  given in  [R, VI 2.7(iv)]. 

30. By 1 4  and a comparison of the proofs of [G, 13.11 and [Gt, 2.31, the 

generalization of the fo rmer  resul t  cited in 21 requires only the appropriate 

analog of [Gt, 2.11. Here I know of no construction to which the weaker 

f o r m  of the group completion theorem applies. F o r  a local  equivalence 

B -  Cn of Z-free operads with n 2 2, we require a functor G and natural  

I group c6mpletion g:X 4 GX for  -spaces X. We assume that 

19 = X Cn where k i s  locally contractible (since all known examples-are 

of this form).  We define 

and le t  g: X + GX be the following composite: 

Then ~ ( q )  and B(E, 1, l)  a r e  equivalences of H-spaces by [G,9.8] and 

[GI 3.7 and Gt A. 2(ii) and A. 4(ii)], while -5 i s  a group completion by 27. 

Here X i s  regarded a s  a X q - s p a c e  by pullback along the inclusion 

31. [GI, 3.7 (p. 76-the second resul t  labeled 3.7)] is incorrect .  The 

e r r o r  occurs on line -7, f rom which a factor u(j . . . , j ) has been omitted 1' k 

on the right side of the equation. With this factor, v on line -5 depends on u 

and the argument collapses. (See also [R, VI. 2.7(v) and (vi)]. ) 

32. A more  structured version of [Gt, 4. 21 is given i n  [R, VI. 3. 21. 



34. ~ G I ,  p. 82, line 51: ';(u; T . , T ~ )  = T Q . . .  @ T  -u( j l ,  ..., jk) 
u - l ( l )  u- ' (k) 

35. The consistency with Bott periodicity asser ted  in  the next to l a s t  para- 

graph of [GI, p. 851 i s  proven rigorously in  [.R, VIII 511. 

36. A quick proof of [GI, A .  11 will appear in 

J. P. May. On duality and completions'in homotopy theory. 

(Pa r t  of a forthcoming Monograph of the London Math. Soc. ) 

37. [GI, p. 90 line 3 (of top diagram)]: X X A + F 1x1 . qt1 q i l  q i l  - 
38. [GI, p. 90 line 41: where g(s.x, u) = Ix, uiu] and g(x, biv) = pixI vl 

- - 
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