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Preface

This volume is a collection of five papers (to be referred to as

-I—-V). The first four together give a thorough treatment of homology

opérations and of their application to the calculation of, and analysis

of internal structure in, the homologies of various spaces of interést.

The last studies an up to homotopy notion of an algebra over a monad

and the role of this notion in the theory of iterated loop spaces. I have

established the algebraic preliminaries necessary to the first four

papers and the geometric preliminariesnecessary for all of the papers

in the following references, which shall be referred to by the specified

letters throughout the volume.

[A]l. A general algebraic approach to Steenrod operations. Springer
Lecture Notes in Mathematics Vol, 168, 1970, 153-231.

[G]l. The Geometry of Iterated Loop Spaces. Springer Lecture Notes
in Mathematics Vol. 271, 1972.

[G']. E00 spaces, group completions, and permutative categories.
London Math. Soc. Lecture Note Series Vol. 11, 1974, 61-93.

In addition, the paper II here .is a companion piece to my book (con-

tributed to by F. Quiﬁn, N. Ray, and J. Tornehave)

[R] E_, Ring Spaces and E_, Ring Spectra.
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With these papers, this volume co‘mpletes the developmeni: of a ‘ .
comprehensive theéi'y of the. geometry and homology of iterated loop
spaces. There are no known results in or applications. of this area of
topology which do not fit naturally into the framework thus established.
However, there are several papers by other authors which seem to me
to add significantly to the theory developed in [G]. The relevant
references will be incorporated in the list of errata and addenda to [A],
[G], and [G'] which concludes this volume.

The geometric theory of [G] was incomplete in two essential
respects. First, it; worked well only for connegted spaces (see [G, p. 156-
158]). It was the primary purpose of [G'] to generalize the theory to
non-connected spaces. In particular, this allowed it to be applied to
the classifying spaces of permutative categories and thus to algebraic

' K-theory. More profoundly, the ring theory of [R] and IT was thereby
made possible.

Second, the theory of [G] circumvented analysis of homotopy
invariance (see [G, p. 158-160]). It is the purpose of Lada's paper V
%:o generalize the theory of [G] to one based on homotopy invariant
structures on topological spaces in the sense of Boardman and Vogt

[Springer Lecture Notes in Mathematics, Vol. 347] 1. In Boardman and

1Incidenta11y; the claim there (p. VII) that [G] failed to apply to non
Z-free operads is based on a misreading; see [G, p.22]

\'

Vogt's work , an action up to homotopy by an operad (or PROP) on a
space was essentially an action by a larger, but equivalent, operad
on the same space. In Lada's work, an action up to homotopy is

essentially an action by the given operad on a larger, but equivalent,

space. In both cases, the expansion makes room for higher homotopies.

Wh‘ile these need not be made explicit in the first approach, it seems to
me that the second approach is nevertheless technically and conce;;tually-
simpler (although still quite complicated in detail) s-ince the expansion
constructi;on is much less intricate and since the problem of composing
higher homotopies largely evaporates.

We have attempted to make the homological results of this volume
accessible to the reader unfamiliar with the geometric theory in the
papers cited above. In I, I.set up the theory of homology operations on
infinite loop spaces. This is based on actions by Eoo operads { on spaces
and is used to compute H*(CX; Zp) and H*(QX; Zp), as Hopf algebras
over the Dyer-Lashof and Steenrod algebras, where CX and QX are
the free C -space and free infinite loop space generated by a space X.
The structure of the Dyer-Lashof algebra is also analyzed. InlI, I set
up the theory of homology ope?ations on Eoo ring spaces, which are spaces
with two suitably interrelated Eoo space structures. In particular, the

mixed Cartan formula and mixed Adem relations are proven and are
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shown to determine the multiplicative homology operations of the free ' )
Eoo rian space C(X+) and the free E00 ring infinite loop space Q(X+)
generated by an’Eoo space X. In the second haif of I, homology
operations on Em ring spaces associated to matrix groups are analyzed
and an exhaustive study is made of the homology of BSF and of such
related classifying spacés as BTop (at p>2) and BCoker J. Perhaps
the most interesting feature of these caleulations is the precise homo-
logical analysis of the infinite loop splitting BSF = BCoker J X BJ at
odd primes and of the infinite loop fibration BCoker J - BSF = BJ®
at p = 2.

Iﬁ III, Cohen sets up the theory of homology operations on n-fold
loop spaces for n < . This is based on actions by the little cubes
operad Cn and is used to compute H*(CnX; Zp) and H*(QnEnX; Zp)
as Hopf algebras over the Steenrod algebra with three types of homology
operations. While the first four sections of III are precisely parallel to
sections 1,2,4, and 5 of I, t_he construction of the unstable operations
(for odd p) and the proofs of all requisite commutation formulas between
them (Which occupies the rest of III) is several’ orders of magnitude more
difficult than the analogous work of I (most of which is already contained
in [A]). The basic ingredient is a homological analysis of configuration

spaces, which should be of independent interest. In IV, Cohen computes

Vil

H*(SF(n);Zé) as an algebra for p odd and n even, the remaining
cases Eeing determined by the stable calculations of II. Again, the
cal&;\ilation is considerably more difficult than in the stable case, the
key fact being that H *(SF (n); Zp) is commutative even though SF(n)
is not homotopy commutative. Due to the lack of internal structure
on BSF(n), the calculation .o:E H,(BSF(n); Zp) is not yet complete.

In addition to their original material, I and III properly contain
all work related to homology operations which antedates 1970, while
I coﬁtains either complete information on or at least an introduction
to most subsequent work in this area, the one major exception being
that nothing will be said about BTop and BPIL at the prime 2. Up to
minor variants, all work since 1970 has been exp:ressed in the language
and notations established inI§1-§2 and II §1.

Our tharks.to Malja May for preparing the index.

J.P. May
August 20,1975
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The Homology of Eoo Spaces

J.P. May

Homology operations on iterated loop spaces were first introduced,

‘mod 2, by Araki and Kudo [4] in 1956 ; their work was clarified and ex-

Ve

tended by Browder [2] in 1960. Homology operations mod p, p > 2, were
first introduced by Dyer and Lashof [6] in 1962. Thework of Araki and
Kudo proceeded in analogy with Steenrod's construction of the Sqn in
terms’ of Ui~products, whereas that of Browder and of Dyer and Lashof

n
proceeded in analogy with Steenrod's later construction of the P in

terms of the cohomology of the symmetric group EP. The analogy was

closest in the case of infinite loop spaces and, in [A], I reformulated the
algebra behind Steenrod's work in a sufficiently general context that it
could be applied eqgually well to the homology of infinite loop spaces and
to the cohomology of spaces. Later, in [G], I int?:oduced the notions of
Eoo operad and Eoo space. Their use greatly simplifies the geometry
required for the construction and analysis of the homology oper ations and,
in the non-connected case, yieldé operations on a wider class of spaces
than infinite loop spaces. These operations, and further operations on
the ilomology of infinite loop spaces given by the elements of H*“Fl, will

be analyzed in section 1.

Historically, the obvious next step after introduction of the homology
operations should have been the introduction of the Hopf algebra of all

homology operations and the analysis of geometrically allowable modules



(and more complicated structrues) over this algebra, in analogy withthe
definitions in cohomology given by Steenrod [22] in 19641. However, this
step seems not to have been taken until lectures of mine in 4968-69. The
requisite definitions will be given in section 2. Since the idea that homology
operations should satisfy Adem relations first appears in [6] (although
these relations were not formulated or proven there)', we call the resulting
algebra of operations the Dyer-Lashof algebra; we denote it by R. The
main point of section 2 is the explicit construction of free allowable struc-
tures over R.

During my 1968-69 lectures, Madsen raised and solved at the prime 2
the prpblem of carrying out for R the analog of Milnor's calcula.ti_on‘of the
dual of the Steenrod algebra A. His solution appears in [8]. Shortly
after, I solved the problem at odd primes, where the structure of R*
turned out to be surprisingly complicated. The details of this computation
(p = 2 included) will be given in section 3.

In section 4, we reformulate (and extend to general non-connected
spaces X) the calculation of H,QX, 0OX = lim QnZDX, given by Dyer
and Lashof [6]. Indeed, the definitions in section 2 allow us to describe
H*QX as the free allowable Hopf algebra with conjugation over R and A.
With the passage of time, it has become possible to give considerably
simpler details of proof than were available in 1962. We also compute
the Bockstein spectral sequence of QX (for each prime) in terms of that
of X.

Just as QX is the free infinite loop space generated by a space X,
so CX, as constructed in [G,§2], is the free § -space generated by X

(\;vhere £ isan E(Jo operad). In section 5, we prove that H*CX is the

freé,allowablé Hopf algebra (without conjugation) over R and A. The
proofAis éluité simple, especially .since the geometry of the situation makes
h.alf of thé calculation an immediate consequence of the calculation of H* QX.
Although the result here seems to be new, in this generality, special cases
ha;re long been known. When X is connected, CX is weakly equivalent to

90X by [G,6.3]. When X =50, CX = J_J_K(Ej, 1) and the result thus

‘ contains Nakaoka's calculations [16,17,18] of the homology of symmefzric

groups. We end section 5 with a generalization (from s to arbitrary

spaces X) of Priddy's homology equivalence BEOO - QOSO [z0].

In section 6, we describe how the iterated homology operations of
an infinite loop space appear successively in the stages of its Postnikov
decomposition.

In section 7, we construct and analyze homology operatigns analo-
goﬁs to the Pontryagin pth powers. in the cohomology of spaces. When -~ "
p = 2, these operations were first introduced by Madsen [9].

Most of the material of sections 1-4 dates from my 1968-69 lectures
at Chicago and was summarized in [12]. The material of section 5 dates
from my 1971-72 lectures at Cambridge. The long delay in publication,
for which I must apologize, was 'caused by problems with the sequel II

(to be explained in its introduction).
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§l;, Homoloéy operations

Wleir"st define and develop the properties of homology
6perations on E_ spaces. We then specialize to obtain further
properties of the .resulting operations on infinite loop spaces.

In fact, the requisite geometry has been developed in [G, §1,4,5,

" and 8] and the requisite algebra has been developed in [A, §1-4

and 9]. The proofs in this section merely describe the transition

from the geometry to the algebra.

All spaces are to be compactly generated and weakly Hausdorff;
ﬁrdez.lotes the category of spaces with nén—degenerate base-point
[G, p.1]. All homology is to be taken with coefficients in 2%
for an arbitréry prime p; the modifications of statements required
in the case p=2 are indicated inside square brackets.

We require some recollections from [G] in order to make sense
of the following theorem. Recall that an E_ space (X,0) is a '
‘Cg—space over any E_ operad ﬁ [G, Defihitions 1.1, 1.2, and 3.5]:
6 determines an H-space structure on X with the base-point %€ X
as identity element and with @2 (c): XxX = X as product for any
c €-’Q(2) [G, p.4]. Recall too that the category G LT of
ﬁ—spaces is closed under formation of loop and path spaces
[G, Lemma 1.5] and has products and fibred products [G, Lemma 1.7].
Theorem 1.l. Let ?,g be an E, operad and let (X,8) be a ﬂ-space.
Then there exist homomorphisms Q%: HeX > H.X, s > o, which satisfy

the following properties:

(1) The Q° are natural with respect to maps of @-spaces.
(2) Qs raises degrees by 2s{p-l) [by si.
(3) st = 0 if 2s < degree (x) [if s < degree (x)], xeH.X

(4) xP if 2s = degree (x) [if s = degree (x)], xeHX

Lo]
b
[}

0
'6"
]

(5) 0 if s > 0, where d)eHO (X) is the identity element.



(6)

(7}

(8)

(9)

The external, internal, and diagonal Cartan formulas hold:

°(x®y) = I 0o'xeQly if xeyeH, (XxY), (Y,09e ©ITI;
itj=s
s i i .
Q" (xy) = X (07x) (Q'y) if %, ye H,X; and
i+i=s
v = 3 zotxteolxt if vx = Ix'ex", xemX.
i+j=s '

The Q° are stable and the Kudo transgression theorem holds:

Qso* = O*QS, where 0,: ﬁ* QX » H.X is the homology suspen-
sion; if X is simply connected and if xequX transgresses
to yequ~lQX in the Serre spectral sequence of the path
space fibration 7w: PX =+ X, then QSX and BQSX transgress

p-1

to st and -Bst and, if p > 2 and g = 28, X Y

"transgresses" to -80°y, dq(pﬁl)(xpuléby) = -g0%y.

The Adem relations hold: If p > 2 and r > ps, then

r s r+i

0" = I (-1)
1

(pi-r, r-(p-1)s-i-1)Q" 57 g%;

if p>2, r>ps, and B denotes the mod p Bockstein, then

0%80° = & (-1)"* (pi-r, r-(p-1)s-1)8Q" 5 M0"
i
-5 (-1 (pier-1, r-(p-1)s-i)Q" 57 1g0t
i

; : r
The Nishida relations hold: Let Pi: H,X -~ H,X be dual to P

ES * P
where PT =8q" if p=2 (thus P' = (Pi) on H X = (H,X)"). Then

r+i s-r+i_i

p30°% = 1(-1)"" (r-pi, s(p-1)-pr+pi)Q Py

” s ‘ s-1 . \
in particular, BQ~ = (s-1)Q if p=2; if p > 2,

. b
PEe0® = 2 (-1)"* (z-pi, s(p-1)-pr+pi-1)pQ® " P,
1
+ Z(—l)r+i(r—pi—l, s(p—l)—pr+pi)Qs"r+;PiB.
i

(In (8) and (9), (i,3J) = (i+j)1/4itj! if 1 > 0 and § > 0, (i,0)=1=(0,1i)

if i > 0, and (i,j) = 0 if i < 0 or j < 0; the sums run over the
integeré.)
Proof: The symmetric group Zp acts freely on the contractible

space YQ(p), hence the normalized singular chain complex C;ﬁ(p)

" is a Zp*free resolution of zp [7, IV 11]. Let W be the standard

m-free resolution of Zp [a, Definition 1.2], where 7 is cyclic of

" order p, and let j: W - C*‘ﬁ(p) be a morphism of W-compleﬁes over

Zp' Let (C*X)p denote the p~fold tensor product. We are given a

Zp—eqﬁivariant map Op; if(p)xxp + X, and we define 0,: W ®(C*X)p+C*X

to be the following composite morphism of n-complexes:
p_j®n p n > €49
WweE,x)P 4205 ¢, Bp)ec, (x¥) —15 ¢, (€ (p)xxP) —By c,x.

Here n is the shuffle map; for diagram chases, it should be re-
called that n: CX®C,Y » C, (XX¥) is a commutative and associa-
tive natural transformation which is chain homotopy inverse to the
Alexander-Whitney map &. In view of tG, Lemmas 1.6 and 1.9 (i)],
(CxX,0,) is a unital and mod p reducéd object of the category
Iﬁ(p,w) defined in [A, Definitions 2.1]. Moreover, (X,G) > (CiX,0,)
is clearly the object map of a functor from YS[aTa to the subcate-
gory §(p,») of “G(p,») defined in [A, Definitions 2.1]. Let

xequx. As in [A, Definitions 2.2], we define

(1) 0, ) =o0,(e;@xP), o,: HWe (MXP)2HwWe (Cx)P7) » X,

and we define the desired operations Qs by the formulas

(i) p = 2: 0% =0 if s < q and Q°x = Qs_q(x) if s > g; and

(ii1)  p > 2: 0% = 0 if 2s < g and 0°x=(-1)5v(q)0 (x)
(2s5-q) (p-1)

if 25 > q, where v(q) = (-DIEIV2nT Gienn= L -1,



" The Qs are homomorphisms which satisfy (1) through (5) by [A,
Proposition 2.3 and Corollary 2.4]. Note that [A, Proposition 2.3]
also implies that if p > 2, then 80%x = (~1)5v(q) Q(2s~q)(p—l)-l(x)
and the 0° and ﬁQS account for all non-trivial operations Q,. For
(6), recall that the product of 1:—spaces (X,0) and (¥,0') is
(XXY,B), where 8p is the composite

8 X 8!

CEIX (XXTPAEL S o oyx i (p) x xP 22X s 2 (0)xxP X (p)x Y P—BBoxxy

(Here A,u, and t are the diagonal and the evident shuffle and interchange maps.)

Similarly, the tensor product of objects (K,6,) and (L,0}) in Elp, o) is

(K X L,"é'*), where B, is the composite

£

8. Q8!
W EQL)P—OLs wowerP @ LP18I®! L ywexP @ WQLP ——> K@L.

(Here (,U, and T are the coproduct on W and the evident shuffle and inter-

change homomorphisms.) Since (j® j) is w-homotopic to (§°C*A)j, an easy

diagram chase demonstrates that n:C_ X® C,Y - C_(XXY) is a morphism in the

ca,tegory’ C(P: ©). The external Cartan formula now follows from [A, Corollary

2.7]. By[G, Lemmas 1.7 and 1.9 (ii)], A:X =X X X is a map of (= -spaces
and (C*X, 6*) is a Cartan object of g(p, w); the diagonal and internal
Cartan formulas follow by naturality. Part (7) is an immediate consequence of
[G, Lemma 1.5] and [A, Theorems 3.3 and 3.4]; the simple connectivity of X
serves to ensure that E2 = H*X®H*QX in the Serre spectral sequence of

s PX - X, For (8), note that the following diagram is commutative by

[G, Lemma 1. 4]:

2 2
EE@*EEPxxP —XX1 5 =phxxP | X
p
1 Xu , ih'e
1x(0_)P 0
£ (e) X [ £(p) x xPIP B s 2(p) x %P

An easy diagram chase demonstrates that (C,X,0,) is an Adem object,

. in the sense of (A, Definition 4,11, and (8) follows by [A, Theorem

4.71. Part (9) follows by the naturality of the Steenrod operations
from -[A, Theorem 9.4], which computes the Steenrod operations in
H*(ﬁ(p)xﬂxp) . As explained in [A, p.209], our formula differs
by a sign from that obtained by Nishida [19].

Let,jem be the category of infinite loop sequences. Recall
that an object Y = {Y;} in jﬁw is a sequence of spaces with
¥, = QYi—f-l and a morphism g = {gi} in fm is a sequence of maps
with g; = Qgi-l-l' YO is said to be an infinite loop space, g, an
infinite loop map. By the results of [10], these notions are equi-
valent for the purposes of homotopy theory to the more usual ones
in which equalities are replaced by homotopies. By [G, Theorem
5.11, there is a functor Wm: ;Cm + T 0T1, with WwY = (¥,0,)

and W g =g where ‘@m is the infinite little cubes operad of

0 14
[G, Definition 4.1]. The previous theorem therefore applies to
H*YO; the resulting operations 0° will be referred to as the
loop operations. The relevant Pontryagin product is that in-

duced by the loop product on Y. = QY Note that there are two

0 1
different actions of {G_ on @Yy, one coming from [G, Lemma 1.5]

and the other from the fact that QYO

space; by [G, Lemma 5.6], these two actions are equivariantly

is again an infinite loop

homotopic, hence part (7) of the theorem does apply to the loop

operations. ., Similarly, part (6) applies to the loop operations
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since, by [G, Lemma 5.7], the two evident actioné of ﬂfm on the'
product of two infinite loop spaces are in fact the same.

The recognition theorem [G, Theorem 14.4;G'] gives a weak
homotopy equivalence between any given grouplike Ea)space X and

an infinite loop space B.X; moreover, as explained in [G, p.l53-

0
1551, the homology operations on H,X coming via Theorem 1.1 from thé
given E_ space structure agree uﬁder the equivalence with the loop
operations on H*BOX. Thus, in principle, it is only fo; non
grouplike E_ spaces that the operations of Theorem 1.1 are more
general than loop operations. In practice, the theorem gives
considerable geometric freedom in the construction of the opera-
tions, and this freedom is often essential to the calculations.

The following additional property of the loop operations, which
is implied by [G, Remarks 5.8], will be important in the study
of non-connected infinite loop spaces. Recall that the conjugation
X on a Hopf’algebra, if present, is related to the unit n,
augmentation €, product ¢, and coproduct ¢ by the formula
ne = ¢{Ixx)v.

Lemma l1.2. For YG?(:m, st = XQS on H,Y , where the conjugation

0
is induced from the inverse map on Y5 = QYI'

In the next two sections, we will define and study the global
algebraic structures which are naturally suggested by the results

above. We make a preliminary definition here.

Definition 1.3. Let A be a Hopf algebra. Let A act on Zp through

its augmentation, a.l = e(a), and let A act on the tensor product

M@®N of two left A-modules through its coproduct,
: " . )
amaen) = T (_1)deg a"deg m_ ipgatn if Ya = La'®a".

A-.left or right structure (algebra, coalgebra, Hopf algebra,

Hopf algebra with conjugation, etc.) over A is a left or right

11

A;module and a structure of the specified type such that all of
the structure maps are morphisms of A-modules. '
We shall define a Hopf algebra R of homology operations in the

next section and, if Ye'éim, H*Yo will be a left Hopf algebra

with conjugation over R. For any space X, H.X is a left coalgebra over

the opposite algebra 20 of the Steenrod algebra; here the oppo-

site algebra enters because dualization is contravariant. Hence~-

forward, although we shall continue to write the Steenrod Bpera-
tions Pi on the left, we shali speak of right A-modules rather
than of left Al-modules. Thus H*YO is a right Hopf algebra with
conjugation over A, and the Nishida relations give commutation
formulas between the A and R operations on H,Yj.

There is yet another Hopf algebra which acts naturally and

Ay
stably on H,Y namely H,F where % is the monoid (under compo-

0
sition) of based maps of spheres. The precise definition of ¥
is given in [G, p.74], and it i1s shown there that compbsition
of maps defines a natural‘actionicw: Yox% + ¥, of ¥ on infinite
loop spaces. The following theorem gives the basic prpperties
of the induced action of H*% on H,Y¥,.

Theorem 1.4. For Ye)ﬁ;, Cxt H*Y03>H*§ + H,Y, gives H,Y; a
structure of right Hopf algebra with conjugation over H*ﬁ.

Moreover, c_, satisfies the following properties, where

xf:

1]

c x(x&f)

(1) ¢_, is natural with respect to maps in wa.

(2) o, (xf) = (0,x)f, where o,: ﬁ*QYO + H,Y( is the suspension.

(3) PExf) = 1 (elx) (ele) and pixe) = () e+ (-1)9%9 * x(a).
Ci4g=r

(4) (©%0)f = £ 0" (xp}f) and, if p > 2,

1

(8% £ = 180 T xple) - 3 (-1)9%9 XSt (x pief).
i i
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Proof: Part (1) is trivial. The maps %~ Y, and Y, ** are

0
" infinite loop maps, hence the unit-and augmentation of H,Y, are
morphisms of H*%—modules. The loop product is a morphism of
H*%—modules by a simple diagram chase from [G, Lemma 8.8], and a
similar lemma for the inverse map implies that the conjugation
is a morphism of H*%~modules. The coproduct on H, Yy is a
morphism of H*%~modules and formula (3) holds because c_, is
induced by a map. Formula (2) is‘an immediate consequeﬁce of
[G, Lemmas 8.4 and 8.5]. For (4), consider the following dia-

(p)

gram, in which we have abbreviated ‘zﬁ for ‘Qw(p) and X, X , and

xP for C.X, (C*X)p, and C, (xPy

13

= A - = E o — o 8
® E ® @ B ©® & ©
= © =0 T X = .0
- ® V;>4° z > VVO
= = SR ® ES ®
o ® N @/ s = 5
[=R = ? " ®
=) 5 - 8 o :
g — G _ z% e & é zg? cno8
c T8 Qéo LTI BT
> ® 3 @ ®
q ?l g/ ey e i
E s /4 4 1 ., :J
® \Z 2
S S ERC I ® £ % = X -
g —— TS Q"}‘o p"‘»},o > :>_‘c D;}(o
® 4 ® 4 X X X X
5 ® 40 [8 o % L
S fe} ® g N
Bl /8w Uy
Z% @, Qi@o ?‘ QSO & D-‘Xo
G ® x % 8
> L 5 L @
22 ﬁm, ;;a
8 8
@D [e>]
; Uy
2
®° = Xo 08 o
@ gl gl =

Here ¢: W C, xP) > we (C,‘X)p is given by [A, Lemma 7.1], and
(1en) & is m-homotopic to the identity by [A, Remarks 7.2].
The bottom left square is Zp—homotopy commutétive by [G, Propo~
sition 8.9], é.nd the remaining parts of the diagram commute
trivially. The shuffle and interchange homomorphisms U and T

merely involve signs, the composite L C*YOG? C*E‘ -+ C*YO' in-
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duces c_,, and the map induced on w-equivariant homology by
d = (1@ A) is explicitly computed in [A, Proposition 9.1].
Of course , it is the presence of d in the diagram which leads
to the appearance of Steenrod operations in formula (4).

The verification of this formula is now an easy direct cal-
culation from the definition of the operations o°.

The essential part of the previous diagram is of course
the geometric bottom left square. Henceforward, we shall
omit the pedantic details in the péssage.from geometric dia~
grams to algebraic formulas.

We evaluatebone obvious example of the operations on
He Y, given by right multiplication by elements of H*§.

Lemma 1.5. Let [i]EIHO% be the class represented by a map

of degree i. Then x [-1] =xx for all xeH,Y,, ¥€ Iw.

Proof: Define f: st » g" by f(sl,...,sn) = (l-sl,sz,...,sn),
where s" = In/aln. For any X, the inverse map on "X is given

by g = gef, g: st

+ X, and similarly on Y3 by passage to
limits via [G, p.74]. The result follows.

Recall that QX = Llim ™% and ox

|

=X [G, p.42].

As we shall see in 1II § 5, application of the results
above to YO = QSO, where €0 reduces to the product on F, completely

s
determines the composition product on H*F.

Remarks 1.6. A functorial definition of a smash product between objects
of £ o is given in [13], in which a new construction of the stable homotopy
category is given. (In the language of [13], Ioo is a category of
coordinatized spectra; the smash product is constructed by passing to the
category Ag: of coordinate-free spectra, applying the smash product there,

a:ﬁd then returning to Zoo .} . For objects Y,Z e xm and elements
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x, y_e H*YO and z e H.Z,, [G, Lemma 8.1] and a similar lemma for the

inverse map imply the formulas
d 4 . i
xxy)az = 2 (-1) cgycegz (xnzt) % (ynz") if Yz = zz'®z"
and xylaz = xlyaz),

where * and A denote the loop and smash products respectively. Via a

_ diagram chase precisely analogous to that in the proof of Theorem 1.4,

[G, Proposition 8.2] implies the formulas

(D)az = = & Hyap2)
1

and, if p> 2,
s+i

(Byrz = 3 B yarln) - 30 (-1)%8 0 iy A Blpa).
i i

In particular, these results apply to A : QX X QX' -~ QXAX!') for any
spaces X and X'. By [G, Lemma 8.7], the smash and composition pro-

~o

ducts coincide and are commutative on H*QS0 = I—I*F .
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§2. Allowable structures over the Dyer-Lashof algebra

We here describe the ﬁopf algebra of homology operations
on E_ spaces generated by the QS and BQS and develop analogs
of the notions of unstable modules and algebras over the Steenrod
algebra. The following definition determines the appropriate
"admissible monoﬁials".

Definition 2.1. (i) p = 2: Consider sequences I = (sl,...,sk)

such that sj > 0. Define the degree, iéngth,and excess of I

by
k
d(r) = ¢ s.:; (1) = k; and

'k
(2s; = s._4) = 85 - E S..

e (I) = s, -
k 2 3 3 3

The sequence I determines the homology operétion QI =Q T...0 .

I is said to be admissible if 25j Z.sj—l for 2 < j < k.

(ii) p_> 2: Consider sequences I = (el, Sqreesr€pr sk) such

- that Ej = 0 or 1 and s. > Ej' Define the degree, length, and

]
excess of I by

k
a(r)y = I [2s,(p-1)-e.l; 2(I) = k; and
oy 3 3
j_
k k
e(I) = 25, -g; - jiz [2psj—sj—25j_l] = 2s;-€;- jiz[Zsj(p—l)—ej].

€
The sequence I determines the homology operation QI =8 lQ ... 70

I is said to be admissible if Psy = Ey 2550 for 2 < j < k.

(iii) Conventions: b(I) = €q if p > 2 and b(I) = 0 if p = 2.

The empty sequence I is admissible and satisfies d4(I} = 0,

2(I) = 0, e(I) = =, and b(I) = 0; it determines the identity
homoiogy operation QI = 1,

De%inition 2.2. Let F denote the free associative algebra

R will be called the Dyer-Lashof algebra.
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generated by {0%|s > 0} if p = 2 or by {0°]|s > 0}U{8Q%|s > 0}
if p > 2 (not B itself). For g > 0; define J(g) to be the
two~sided ideal of F generated by the Adem relations (and,
if p > 2, the relations obtained by applying B to the Adem
relations, with 82 = 0) and by the relations QI = 0 if e(I)<gqg.
Defige R(g) to be the quotient algebra F/J(g), and observe that
there are successive quotient mapé R{(g) =+ R(g+l). Let R = R(0);
To avoid circularity, we have defined the R(q) purely
algebfaically. The following theorem implies that this defini-
tion agreeé with that naturally suggested by the geometry.
Theorem 2.3. (i) Let iq€.Hqu(:HqQSq be the fundamental class
if g > 0 and the class of the point other than the base-point
if g = 0; then

{Qqu]I is admissible and e(I) > g}

is a linearly independent subset of H*qu.
(ii) J(g) coincides with the set K(q) of all elements of F
which annihilate every homology class of degree > g of every

E_ space (equivalently, of every infinite loop space).

(1i1) {QI[I is admissible and e(I) > g} is a Z_-basis foxr R(q).

P
(iv) R{qg) admits a unique structure of right A-module such,

that the Nishida relations are satisfied.

(&) R = R(0) admits a stfucture of Hopf algebra and of un-
stable right coalgebra over A with coproduct defined on gene-
rators by

i

v o= 3 o'eql ana yett 5 (80

itj=s i+i=s

*laol + olerodth)

and with augmentation defined on R = P{Q0} by e =1, x > o.

Proof: We shall prove (i) in §4. It is obvious from the Adem
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relations that R(qg) is generated as a ZP—-space by the set speci-
"fied in (iii), and J(g) is contained in K{g) by (3) and (8) of

Theorem 1.1. Therefore (i) implies (ii) and (iii). For (iv),

the A operations on lERO(q) are determined by 92 1 and Ri(q)=0
for i < 0 and the A operations on all elements QI = QI-l with
¢(I) > 0 are determined from the Nishida relations by induction
on &{I). This action does give an A-module structure since

“Af £(g): RI(Q) ~ Hy (0s%) is defined by 'f(q) QI = Qqu, then

f(g) is a monomorphism which commutes with the Steenrod opera-
tions. Let £(0) = f; since Y(l) = 1® 1 and LP(iO) = io®i0 and
since s.(i}g.) = 1, f commutes with the coproduct and augmentation.
Here ¢ is well~-defined on R and R is a Hopf algebra since

J = J(0) is a Hopf ideal, Y(JNCF&J + J®F, by commutativity

of the following diagram (where m is the ‘quotient map) :

£

F_ T 5 R Ty 1,08 °

¥ l v

ror — 87 Srern —et—3 #,05%®@H,08°
Observe that this argument fails for g > 0 since wiq = iq&l-i—l@iq.
Since H,kQSo is an unstable right coalgebra over A, so is R.

Of course, we understand unstable right structures over

A in the sense of homology: the dual object (if of finite
type) is an unstable A-structure of the dual type, as defined
by Steenrod [22,23]. We shall study the structure of R it~ .
self in the next section. The remainder of this section will
be devoted to the study of structures over R. In order to
deal with non-connected structures, we need some preliminaries.

Definition 2.4. A component coalgebra is a unital (and aug-

mented) coalgebra C such that C is a direct sum of connected
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coalgebras. Given such a C, define

wC

{glgec, yg = gog and g # 0}.

Clearly 7C 1is a basis for Cy- For gewC, define Cg to be the
connected sub-coalgebra of C such that g€ Cg and the set of

positive degree elements of Cg is

'C'fg = {x|vx = x®g + Ix'ax" + gex, deg x'>0 and deg x">0}.

Then C is the direct sum of its components Cg for genC . Note

that eg=1 for gewC, wC contains the distinguished element ¢ = n(1), and

JC = Coker 7 may be identified with C & ( @ cg) ccC.
g7 ¢

If X is a based space, then H*X is a component coalgebra; the base-point
determines 1 and the components determine the direct sum decomposition. Indeed,
there is an obvious identification of -n-OX with TTH#X. As another example, we
have the following observations on the structure of R.

Lemma 2,5, R is a component coalgebra. wR is the free monoid generated by

0 k
Q" and the component R[k] of (QO) , k>0, is the sub unstable A-coalgebra of

R spanned by I
{Q"| 1 is admissible, e(I) > 0, and £(I) = k}.

The product on R sends R[k] ®R[f] to R[k+f] for all k and £, and the ele~
ments Qs and ﬁQs are all indecomposable,

Definition 2. 6. A component Ho‘pf algebra B is said to be monoidal (resp. , group-
like) if 7B is a momnoid (resp., group) under the product of B. Egquivalently, B is
monoidal if all pairwise products of elements of wB are non-zero,

The proof of the following lemma requires only the defining formula

.ne = ¢{1 @¥) for a conjugation,

Lemma 2.7. A component Hopf algebra B admits a conjugation if and only if

B is grouplike, and then xg = gm1 if ge B and
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-1 -1 -1
xx = -g xg - > g x'(xx")

if degx>0 and Ix=xQRg+Zx'Qx" +g®x with degx'> 0 and degx"> 0,
We can now define allowable structures over R, by which

we simply mean those kinds of R-structures which satisfy the

algebraic constraints dictated by the geometry.

Definition 2.8. A left R-module D is allowable if J(g) D_ = 0

q
for all g= 0. The category of allowable R-modules is the full

subcategory of that of R-modules whose objects are allowable;

it is an Abelian subcategory which is closed under the tensor
product. An allowable R-algebra is an allowable R-module and
a commutative algebra over R such that st = xP if 2s = deg x
[st = x2 if s = deg x]. An allowable R-coalgebra is an al-
lowable R-module and a cocommutative component coalgebra over
R. An allowable R-Hopf algebra (with conjugation) is a monoidal Hopf
algebra (with conjugation) over R which is allowable both as
an R—aigebra and as an R-coalgebra. For any of these struc-
tures, an allowable AR-structure is an allowablé R-structure
and an unstable fight A-structure of the same type such that
the A and R operations satisfy the NishidaArelations.

Theorem 1.1 implies that the homology of an E_ space is

an allowable AR-Hopf algebra. Lemma 1.2 implies that the

homology of an infinite loop space is an allowable AR-Hopf al- R

gebra with conjugation. Observe that a connected allowable

AR-Hopf algebra is automatically an allowable AR-Hopf algebra with

conjugation,
In order to take advantage of these definitions, we require five basic

free functors, D,E,V,W, and G, of which E

and W are essentially elaborations of D and V in the presence

of coproducts. In addition, each of these functors has a
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mofe elaborate counter—-part, to be defined parenthetically, in
the preéence of Steenrod operations. The composite functors
WE and GWE will describe H,C_X and H,QX, with all structure in
sight, as functors of H,X.

We shall describe our functors on objects and shall show

that,the given internal structures uniquely determine the re-~

quired internal structures. The verifications (not all of

which are trivial) that these structures are in fact well-defined
and satisfy all of the requisite algebraic indentities will be
left ﬁo the reader, since thesé consistency statements dbviously
hold for those structures which can be realized geometrically.

It is trivial to verify that our functors are indeed free, in

the sense that they are adjoint to the forgetful functors

going the other way. The functor V, which is a special case

of the universal eﬁveloping algebra functor on Abelian restricted
Lie algebras, and the functor W occur in many other contexts

in algebraic topology; they are discussed in detail in {[11].

D: Zp—modules (resp., unstable A-modules) to allowable R-modules

(resp., AR-modules): Given M, define

DM = & R(Q)®M_.
a0 4
R acts on DM via the guotient maps R + R{g); thus DM is just
the obvious quotient of the free R-module R@M. The inclusion
of M in DM is given by m =+ 1®m. If A acts on M, then this
action and the Nishida relations determine the action of A on

DM by induction on the length of admissible monomials.

E: Cocommutative component coalgebras (resp., unstable A-coalgebras)

to allowable R-coalgebras (resp., AR-coalgebras): Given C, de-

fine EC as an R-module, and as an A-module if A acts on C, by
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EC = DC/IR«Imn = ZPGBDJC, IR = Ker ¢ and‘JC = Coker 1.
The inclusion of C in EC is induced by that of C in DC. The
coproduct on C and the diagonal Cartan formula determine the
coproduct on EC. The unit of C and the augméntations of R and
C determine the unit and augmentation of EC. Equivalentiy,

EC is the obvious quotient component coalgebra of R®C; thus

1EC = { (09X @g|k>0 and ge nC, k=0 if g=¢p=n(1)},

and the component of (Qo)kebg is the image of R[k] ®Cg in EC
if g # ¢ while the component of 1@ ¢ is the image of R®C¢.

V: Allowable R-modules (resp., AR-modules) to allowable R-algebras

(resp., AR-algebras): Given D, define

VD = AD/K

where AD is the free commutative algebra generated by D and K

is the ideal of AD generated by

{xP - 0°«|2s = deg x if p>2 or s = deg x if p=2}.
The R-action, and the A-action if A acts on D, are determined
from the actions on DCVD by the internal Cartan formulas (for
R and A) and the properties required of the unit. '

W: Allowable R-coalgebras (resp;, AR-coalgebras) to allowable

R-Hopf algebras (resp., AR-Hopf algebras): Given E, define

WE as an R-algebra, and as an A-algebra if A acts on E, by

» WE = VJE, JE = Coker n.
The inclusion of E in WE is given by E = ZPGBJE and JECVJE.
The coproduct and augmentation of WE are determined by those of
E and the requirement that WE be a Hopf algebra (it is a well-
defined Hopf algebra by [1l, Proposition 12]). The components
of: WE are easily read off from the definition of VOJE.

G: Allowable R-Hopf algebras (resp., AR-Hopf algebras) to

A
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’alldwable R-Hopf algebras (resp., AR-Hopf algebras) with conju-
gation: '

Given W, define GW as follows. W is a commutative monoid under
the product in W and W, is its monoid ring. Let wGW be the
commutative group generated by wW and let GyW be its group ring.
Let ¢ = n{l), let W be the set of positive degree elements of

— .
W, and let W be the connected subalgebra Zp¢<9W of W. Define

= +
GW = o~
W e GOW W®1\‘WGOW

as an augmented algebra, Embed W in GW as the subalgebra

(W@zp $) & (zp¢ ®WO)

The coproduct on GW is determined by the requirements that

" W and GyW be subcoalgebras and that GW be a Hopf algebra.

The conjugation is given by Lemma 2.7. The R-action, and the
A-action i1f A acts on W, are determined from the actions on
WCGW by commutation with X and the Cartan formulas. If the
product in WG is denoted by %, then the positive degree ele-
ments of the component of £f& TGW are given by

e &= -1 = =1

@m, = B T eg «£f) = @ W g «f.

geg W g ge W

Observe that GW = W if W is connected and that, as a ring, GW is just

the localization of the ring W at the monoid =W,
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§3, The dual of the Dyer-Lashof algebra

Sinée EH, SO is the allowable AR-coalgebra ZpS)R (which
should be thought of as Zp;[O]eaR-[l]), a firm grasp on the
structure of R is important.to the understanding of H*CmSo and
of H*QSO. The coproduct and A-action on R are determined by
the diagonal Cartan formula and the Nishida relations, but these
merely give recursion formulas with respect to length, the ex-
plicit evaluation of which requires usé of the Adem relations.

To obtain precise information, we proceed by analogy with
Milnor's computation of the dual of the Steenrod algebra [14].

In the case p = 2, the analogy is quite close; in the case p > 2,
the Bocksteins introduce amusing complications. The structure
of R*, in the case p = 2, was first determined by Madsen [8 ];
his proofs are closer to the spirit of Milnor's work, but do

not generalize readily to the case of odd primes,-

By Lemma 2.5, R = € R[k] as an A-coalgebra. Of course,
R[0] = Zp. We ﬁust firggodetermine the primitive elements PR[kj
of the connected coalgebras R[k], k > 1. To this end, define
Plk] = {I L is admissible, e(I) > 0, £(I) = k, and I ends with 1}.
We shall see that {Q'|IE€P[k]} is a basis for PR[k]. Define
(inductively and explicitly) certain elements of P[k] as follows:
k k-3

l1<isk, p=2: I3 = (1), Iy 0 = (22

k-3

(1) T r Ty iF 3k

_ sk . _ok_ JEP . .
and Ik+l,k+l'(2 , Ikk)’ then d(Ijk)~2 2 ’ e(Ijk)~0 if j<k,

Sl k-1-§ k=2 k-2-] i it
oliy) = i Iy= (@S TH2MTHI RTEE L 2T L,

(ID) I 123k, p>2: 1., =(0,1), Ijlk+l=(0,pk—pk"3. Io) if 3<k,

_ k . _ k__k-j h ose
and Ik+l,k+l_(0'p 'Ikk)’ then d(Ijk)—Z(p -p ), e(Ijk)—O if <k,

1 j-2

k-1 k~1-1 j j-
-p 3:---,0er“1r0rPJ 0,p reeer0,1).

e (‘Ikk)=2; Ijk= (0 P
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L . . _ k__k~j :
(I11) 34, 1<isk, p>2: Jq,=(1,1), 34 ke1= (00 R 9, Iy if <k,

1k k_ k-3
and Jk+1,k+1"(l'p ,Ikk); then d(ij) =A2(p -p A3)~l, e(ij)=l;

2

~ k-1 k-1-4 ' - -
T = (0,00 =p* 7, L0,07-1,1, p37Y,0,0972, ... ,0,1).

jk

k-i k-j

o . _ k Ve s
(IV) Kijk' I1<i<j<k, p>2: Ki,j,k+l—(0'p -p -p 'Kijk) if j<k,

ek k-i k kei k-3
and Ky ka1 = (LB B 505 then d(Kyy,) = 2(pF-p*ipR ),

e (Ky5) =07 Kjop
_ k-1. k=l-i k-1-3 I 3 3 i
=(0 - - J i R N J=-1_ j-1-i
P P P ,-f-,olp P 1,1,p "P:J 'Ji,j"l)‘
If we look back at the definition of the Qs in terms of
the Q; in the proof of Theorem 1.l, we see that, when acting

on a zero-dimensional class, our four classes of sequences

correspond to sequences of operations of the respective forms

(I)A Qo"‘QdQl"‘Ql
(ID) Qy---Qy9, (p-1)" "% (p-1)

(II1) Qp1+++0p-18% (p1) * *+ 9 (p-1)

(Iv) QO...QOﬁQp_l...Qp_lﬁQz(p_l)...Qz(p_l).

’

Many arguments in this section and the next can be illuminated

by translation to lower indices.

Lemma 3.1. P[k] = {Ijk]ljjik} if p=2; P[k]={Ijk,ij,Kijk]ljjjk,l§;<j}
if p > 2. If 1£P[k], then QI is primitive, wQI=QI®(Q0)k+(QO)k® QI-
Proof: Proceed by induction on k, the case k = 1 being trivial.

Consider I = (e,s,J)€P[k], k>2. Then, since I is admissible and

e(I) > 0, JEP[k~-1], pr-8>s if J = (8,r,K), and 2s-¢ > d(J). The

first part follows inductively from these inequalities by a
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trivial examination of cases. The second part is an easy calcu-
lation based on the facts that SYQiQJ=0 if 2i-y<d(J) and that
-BYQ1Q0=O by the first Adem relation.

The computation of R[k]* as an algebra is based on a cor-
respondence between addition of admiésible sequences and multi-
plication of duals of admissible monomials. We first set up
the required calculus of admissible sequences.

Definitions 3.2. The sum I+J and difference I-J of two sequences

{as in Definition 2.1) of length k is defined termwise, under
the conventions that I+J is undefined if p>2 and the iEE "Bockstein
entry" €; is one in both I and J and that I-J is undefined if
any entry is less than zero. Observe that e(qu) = e(I)ig(J)
and d(I+J) = d(I)+d(J3). If I and J are admissible, then I+J

is admissible but I-J need not be admissible. In order to

enumerate the admissible monomials when p>2, consider all sequences
e = {el,...,ej} with 1 < el<...<ej§k and define
1 [k]={I |t is admissible, e(I)>0, 2(I)=k, and Exr1_g—LEF2€ ).

Write Ie[k] = I[k] when e is empty. When j>1, define Ly kE.Ie[k] by

14

+K e .k

K Faa if j is even
elezk ej__l 3

K. o k+..+K . k+Jejk if j is odd

€1%2 €5-2%4-1
If p=2, write I[k] = {I|I is admissible, e(I)>0, and 2(I)=k}.
With these notations, we have the following two counting
lemmas.
Lemma 3.3. Let N denote the set of non-negative integers. For
k
B2 and k>1, define £: NS > I[k] by £(ny,...omy) = I nglg.

j=1
Then £ is an isomorphism of sets.
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Proof: For p>2, omit the irrelevant zeroes corresponding to’

absence of Bocksteins. Then £ is given explicitly by

A 5-1 , . k .
= N -1__j-1- -
f(nl,...,nk) (sl,...,sk), where sk+l—j" E nq(pJ —p:l q)+‘2‘nqp3 1
g=1 q=]
The required inverse to £ is given by
. pSk-H-j_ Sk—j if 1<j<k
£ (Sl""'sk)=(nl""’nk) where nj= ]
k
s, -~ I (ps_-s__.) if j=k
k q=2 g “g-1

Lemma 3.4. For p>2, k>1,and each non-empty e,define fe: I{k] -~ I_[k]
— e
by £,(I) = I+L,x- Then £  is an isomorphism of sets.

. ; -1 . -1
Proof: Obviously £, must be given by fe (J) = J—Lek, J'EIe[k],
and it suffices to show that J--Lek is defined, admissible, and

has non-negative excess. Write Lek = (Sl,rl,...,dk,rk) and

J = (sl,sl;...,ak,sk). Observe that

. k k
e(J) =28, - L g_-2 L s_=-€ -8 >0 4a - .
kg1 @ a2 ® %3 % q-1720 and PSgmegSg
Lek is the unique element of Ie[k] such that, if e has j=2i-¢
elements, then e(Lek)=s and Lok ends with 1. Explicitly, cqu-fS,q

is determined by e, r, =i, and rq_l=prq*6q for g<k. The result
follows from the inequalities satisfied by the entries of J.

As a final preliminary, we require an ordering of sequences.

Definition 3.5. For a sequence I=(el,sl,...,ek,sk), define
Ij= (ej,sj,...,ek,sk), 1<j<k, and similarly when p=2, Note
that e(Ij)=e(Jj) for all j implies I=J, and define a total or-
dering of the sequences of length k by I<J if e(Ij)<e(Jj) for
the smallest j such that e(Ij)#e(Jj). Cbserve that I<I' and
J<J' implies I+J<I'+J'.

An easy inspection demonstrates the following lemma.
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Lemma 3.6. If I is inadmissible and QI=ZXJQJ where the J are
admissible, then AJ#O implies J<I. If P:QI=ZAJQJ, where r>0
and the J are admissible, then AJ#O implies J<I.

R* = @I R[k]* as an A-algebra. In the dual basis to that

k>0
of admissible monomials, define elements of R[k]* by

_ a0k, .
Eok = (Q ), if 0 < k
Ijk
= * i < 4 0<
Ejk (@ -°™) if 1 <3<k
ij
= * i < 4 < k
Tjk (0 ) ifl1<3z<
Kk
= * i < i < 4 < .
Uijk (Q ) if 1 < i j <k

To simplify statements of formulas, define Ejk=0 if j<0or

>k, Tjk=0 if <1l .or j>k, and oijk=0 if i<, j<i, or j>k.

is the identity element of R[k]* and I is the

£ £

0k k20 0k
identity element of R*., The augmentation of R* is given by
xkEOk) = A Of course, R* is not a coalgebra since R0

e( I .
k>0 0

is not finite dimensional (although Rq is finite dimensional for
g>0). Howevef, R* does have a well-defined coproduct on positive

degree elements and on finite linear combinations of the Eok;

the latter is evidently given by

Yok = T8y k-i® 80,1

n
Tt is perhaps worth observing that although 1 R[k]* is a
: k=0
quotient augmented A-algebra of R* and a coalgebra (dual to the

quotient algebra R/Z R[m] of R) such that the product is a
m>n

n

morphism of coalgebras, 1 R[kl* is nevertheless not a Hopf
k k=0

algebra because its unit fails to be a morphism of coalgebras
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(aually, (@)™ = 0 but e = 1).

We shall successively compute R[k]* as an algebra, compute
the Steenrod operations on generators, and compute the coproduct

on generators.

Theorem 3.7. If p=2, R[k]* = P{glk,...,gkk} as an algebra.

-, If p>2, let M[k] be the subspace of R[k]* spanned by the set

consisting of Eox together with the monomials

o AN , l<e.<...<e.<k and j even,
elezk ej—lejk 1 3

and g .0

o T ; l<e.<...<e.<k and j odd.
e,e,k ej—zej~lk ef< 1 3

This set is linearly independent, and the product defines an

isomorphism of Zp—spaces

p{g Y@ M[k] ~ R[k]*.

1k’ ok

R[k]* is determined as an algebra by commutativity and the

following relations:

(i) Tik Tjk = Ekkgijk if i<j (and TixTix = 0);
(11) 044y Tnk = (TixT5xTnk) /&g and

i } 2
(111) 03 5k%mnk = (Tik" 3k TmkTnk! /S

(In (ii) and (iii), the right sides are to be evaluated in terms
of the basis monomials by use of (i); the numerators, if non-zero,
are divisible by the non zero-divisor Ekk or Eik.)

Proof: By the counting lemmas, an admissible monomial I with

2(1)=k and e(I)>0 can be uniquely expressed in the form

I = nlllk+...+n I,,+L

el ek s “qio and e = {el,...,e 1,

J

where Loy 1s the sequence of all zeroes if j=0 (or if p=2).



30

Let j=2i-e, €=0 or 1, and define n(I)=i+ Ing . Let A, denote the

a
monomial in M[k] corresponding to the sequence e. Let <, >

be the Kronecker product (that is, the evaluation pairing

R[kI*@R[k] ~ Zp). We claim that

n I

1 k I,

(l) <E’lk e Ekk Ae; Q> = 1, and

oy oy J IoT

S 4 >
(2)  <Eqp --- By A, Q@ #0 and J # I imply .
Let ¥: R[k] - R[k]n(I) be the iterated coproduct. For any J,A
J J

3) ' =1+ Qle...e ), 15, =7,

Now (1) is immediate from the definition of the Lek' Given dJ

as in (2), we can obtain a summand

I I
2 te...ea "), 51 =T endan#o.

on the right side of (3) by applying Adem relations to put the

J .
Q 1 in admissible form, and J>I follows. If we express the

n n
monomials EI = gli"'gkﬁ Xe in the ordered basis dual to that

of admissible monomials,

E =

J
T aIJ(Q )*,

L
J
then (1) and (2) state that (aIJ) is an upper triangular matrix
with ones along the main diagonal. Therefore {EI} is a basis

for R[k]*. It remains only to prove (i), (ii), and (iii). By

inspection of the definitions, we have
I * Kijk = Jik + ij if i<j.

An easy dimensional argument shows that Ekkcijk is the only

possible summand of Tix Tjk, and this proves (i). Since

2 _
Bek%i9kTnk = TikT3k"nk 279 Sxk%i3k%mnk T Tik"ikTmkTnk’
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formulas (ii) and (iii) follow immediately from (i).

In order to determine the Steenrod operations on the
generators of R[k]l?*, we need to know all operations in R[kj
which hit any of the QI, 1€ P[k]l, from above; of course, we
may'reStrict attention to the generators Ppr and B of A, For.
ﬂimensional arguments, it should be observed that R can be
given ; second grading by the number of Bocksteins which occur
inAmonomials and that all structure (exqept, of course, action
by B8) preserves this grading.

Lemma 3.8. The following formulas are valid in R[k]l, k>1,
and these formulas specify all operations ﬁQJ and Pgr J, r>0,
on basis elements QJ, which have a summand of the form XQI

malo#AQQ)deQth

(1)  p>2: pQIkk - oKk g pQJik - oliKk o 1<i<k
(@) peas BB 0 QLR L UK ip1iq

(iii) p>2: Pfk—lnj N Lo NG LN

(iv) p>2: pfk—l‘i QKi+l’j’k’=—QKijk if 1<i<j-1<k
(v) p>2: ng—l—j QKi'j+l’k=—QKijk if 1<i<j<k
(vi) p>2: Rfk—l QIlk'+Ijk _ QIjk if 1<i<k

(vii) p>2: nga LI 2<4<k
(viii)p>2: 2t QIjk+Jlk - 2Qij if 1<j<k

(ix) p>2: ng : QIlk+Kijk = QKijk if 2<i<j<k
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k-1 I.,+K

x) p>2: P2 o *F

Bk _ g 13K 5p 1cicyex
Proof: Tﬁe statements about B are obvious. For the rest, we
first reduce the problem to manageable proportions by a search
of dimensions. Observe that

- k k-1 k
(a) 1€ Plk] implies Zpk z(pz-p—l)jd(l)§2(p -1) [2 <d(1)<2™-1].

since R[k]* is an unstable A-module, (a) implies that

r
PP (QL')= 0 if r>k and 1e¢P[k]. For r<k and IeP[k], we have

1

(b)  a(1) +2p¥(p-1) < 2(2p%-p" T~ 1) <6p™ A(p7- p-1)[a(T) + 27 < 32571,

r
Clearly (a) and (b) imply that if PP @’ has a summand XQI with N # 0 and
IeP[k], then either JeP[k] or J=J'+J" with both J' and J" in P[k].

Observe further that k-2 '2
a(1) + 2pT(p-1) < 4p (p"-p-1), IeP[k],

if either p>3 and r<k-2 or p=3 and r <k-3; thus the possibility J= J'+J"

is also ruled out in these cases. Simple dimensional arguments in the few re-

maining cases demonstrate that our list will be exhaustive provided that the

following formulas also hold:

k-1 I +K,.
(x1) p>2: PP ¥ MR i icicicx,
k-j I,, +K
(xii) - p=2: F, Qik 1k=0 if 2Lji<k.

To prove (ii) through (xii), observe that the Nishida relations can be described

as follows on admissible mopomials QJ.

T
J .
(4) Let J=(g,s,K); if r>0 and s<pr+5, then P;E Q =0:if r>1
r-1 r-i

r
T -
and s > pr—}- £, then PP QJ = ﬁe Q°P P P:{E) Q7 modulo linear

combinations of admissible monomials Q such that e(L) < e(J) - 2(p-¢)

[e(L) < e(7) - 2]
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Further, we ‘have the particular Nishida relations

K s-1

(5) PLo° = (s-1)Q t

° -Q°Tp if s> 1.

and PiﬁQ = spo®!

Formulas (4) and (5) clearly imply

k-1 J~I

(6) If e(d;)<2(p-e), 1<i<k, then PP 7 = (sp-1+e)Q ik

: k-1 J-T
[If e(J;)<2, 1<i<k, then 2§ o7 = (s,-1)o 1y,

where J = (sl,sl,...,sk,sk) and Jj = (Ej,sj,...,ek,sk).

In all cases (vi) through (xi), the hypothésis of (6) is satis-
fied, and this proves (vi), (vii), and (ix). 1In (viii), (x),
and (xi), the sequence I-Iqy obtained on the right side of

(6) is noi admissible. However, the only Adem relation re-
quired to reduce J—Ilk to admissible form is

(7)  0oP®Bo® = BPSQ® if s>1.

The proofs of (ii) through (v) and (xii) are similar applications
of (4) and (5); they are simplified by use of induction on k.
The following Adem relation is needed in the proof of (xii).

(8) oP5*1o® =0 if s>o.

Because of the change of basis involved in our description
of R[k]*, our formulas simplify slightly upon dualization.
Theorem 3.9. The following list of relations specifies all
non-trivial actions of the generators Ppr r ¥>0, and B of the

Steenrod algebra on the generators {Ejjk, Tk qijk} of R[k1*.

(i) p>2: BTyy = ik and BO pk = Tk if 1<i<k
k=13
(ii) p>2: P Ejk = “Ej+l,k if 1<j<k
: k-4-j
(i) p>2: PP T = if 1<j<k

sk MLk
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St
s . = i 1<i<ij-i<k
v) p>2: P Tk T TUiH,j,k t=d
RS
o = . i <i<i<
(v) p>2: P O-ijk vi,j+‘l,k if 41<i<j<k
Pl
i s = < i<
(vi) pxz2: P éjk €11 if 1<j<k
ok
s > 2: - ) if 1<i<
(vii) p>2: P Tjk giijk + ngTik if 1<j<k
k-1
. PP = . if 1<i<j<k, -
(viti) p>2: PP o = £t i T BT ik J25 0y = 0.

Proof. (i) is trivial since, as explained in [A, p. 207], the cohomology and
homology Bocksteins are related by

deg atl

<Ba,a> = (-1) <a,pa>.

Relations (ii) through (vi) are immediate from the corresponding numbered
relations of the lemma, since R[k]* is one-dimensidnal in the degrees in which

these relations occur. For (vii), we can certainly write

k-1
P = i = if j=41
P Tjk agiijk + bgjkTik (with a=20 j ).
J,. +I
Q 1k Jk> = 4, as can be seen

j > < d <
For j2 2, 11k+;rjk Jik+ij an £

T, +I,
by examination of $Q 1k Jk.

1K K’
By (vii) and (viii) of the lemma, and by

formulas (1) and (2), we find

k-1 I,.+J

1= <pP Tjk,Qik s =2 i 2<j<k
and
k-1 I, 41
2 =<pP Tjk,Q“‘ s amp if 1<j<k

This proves (vii). Similarly, for (viii), we can certainly write

k-1
P )
P = = = . P
Uijk agiklrijk + bgik(rijk + cgjkvﬁk (with 2a=0 andc=0 if i=1).
I +K
. et Bagi
I, HK . < K . < J =
ate T B S e By S L P By 2nd <800 Q > =0
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I, t+K I +K
: ik 4jk j
< > = < > =
gikdijk’,Q 1 and gik[rijk, Q 1.

by examinations of coproducts. Now (ix), (%), and (xi) of the lemma, to-

k-1
gether with (1) and (2), imply (viii) by evaluation of PP T OB
I, +X,.. I_+K, . J,+K,.
Q 1k 1Jk, Q ek , and Q Ik hk. Note that (viii) can be predicted
) 2pk1
_from (vi) and (vii) by application of P to the relation Tk = ‘g-kkdijk'

We have the following immediate corollary.

Corollary 3.40. If p= 2, R[k] " is generated as an A-algebra by
gik" if p> 2, R[i]* is generated as an A-algebra by T,, and RrR[k] ,
>2, i : -
k> 2, is generated as an A-algebra by gik and Ty okt
* *
In other words, R[k] is a quotient A-algebra of H K(ZP n) or of

2

kS ]
H K(Zp, m) @ H K(Zp,n) for appropriate integers m and n.

Remarks 3,14, In order to obtain an upper bound on the spherical classes
of H*QSO by determination of its A-anninilated primitive elements, it'would
be desirable to have complete information on the A-module (rather than the
A-algebra) generators of R[k]*l we can add classes not in R to elements
of R to obtain primitive classes of H*QSO; we cannot so obtain A-annihi-
lated classes of H*QS0 unless the given class in R was A-annihilated.

I have not carried out the necessary calculations. Madsen [ 81 has
obtained considerable information in the case p = 2 and has used this

information to retrieve Browder's results [ 4 ] on the Arf invariant.

It remains to compute the coproduct on generators of R[k] , and we
need information about the products in R which hit any of the QI,

Ile P[k]. Fortunately, we do not need complete information when 1= Kijk'
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Lemma 3.412, Let IOk denote the sequence of length k, k> 0,

with all entries zero. Suppose that J and K are admissible sequences
T K I . ;
such that @ @ has a summand \Q with \# 0 and Ie P[k], Then

for some i<k and, in the latter case,

either Ke P[i] or K= Io;

I= Ijk for some j. All possible choices for J and K when I= Ijk or
I= ij are specified in the following relations; in (i) and (ii), if h<i

and h< j, then the asserted relations merely hold modulo the subspace of

R[k] spanned by the admissible monomials which do not end with Qi.

i i-h i-h I,. 1
- . . . . ik
@) QPP MheikitP o Linkeig® o 03 | gcncick, 0<i-h<ked
' i i-h i-h '
(p-p” )L ., .+p I, N J.
(i) Q e, ke johykei Bl 3Ry ch<i<k, 0<j-h<kei.
(4L . . 4T, .. . L, I,
Gi) Q Ik~1, k-1 " j-ijk-i 0 o Q jk ) 0<i<j<k.

Proof, If (J,K) is admissible and in P[k], then K ¢ P[i] for

and ij account for the relations

with h=1i in (i) and with h=j in (i) and (ii) and for all relations in (ii).

some 1i; such decompositions of Ijk

If (J,K) is inadmissible, then Ke P[i] or K= IOi for some i since the

1 . .
only Adem relations which have Q appearing on the right side are

- 1 p 1
P’ = Plat ana Ppa’ = pdQ .

I
. t_hi
We claim that if (t, Ih1) is inadmissible, 0 £ h< i, then Q'Q has no

1 i .
non-zero summand ending with Q wunless t=p and h<i, when

I

o) htd, i+

is the only such summand. Indeed, QtQIii can have no such
summand because, in the Adem relation QrQs = % )»jQr.*'S-ij for r > ps,
A.=0 unless j>s. The claim now follows by upwards induction on i
and, for fixed i, downwards induction on h, via explicit calculation from

the Adem relations and the inductive definition of the Iy;. The essential
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v i i-—i_ i-41-h . i i-1-h i-1
fact is that QP Qp P has the summand Qp -P ol
I
0 £h<i, Note that, since BQ" =0 for h< i, it follows that if (J, Ihl)

B

is inadmissible, 0 £ h < i, and if any Bockstein entry Ej in J is non-zero,

Ls

J
then Q Q has no non-zero summand ending with Qi. We claim also

, I
that if (t, Jhi) is inadmissible, 1 < h < i, then QtQ bi has no non-zero

summand ending with Q1 unless t= pi, when QJh+i’ i+ is the only such
summand. The proof is again an easy double induction; the Adem relation
(7) is used to prove the claim when h =i, A straightforward bookkeeping
argument from our claims shows that the relations of (i) and (ii) with h< i
and h< j give all possibilities for QJ QK to have a non-éero summand

I J.
)\Q‘]k or AQ e when (J,K) is inadmissible.

In our formulas for the coproduct in R*, the sums are to range

over the integers; this makes sense in view of our convention that gjk’ .
Tjk’ and (Tijk are zero except where explicitly specified otherwise,

The formula for ¢ Tk announced in [12] is incorrect; the correct

fprrnula given here is in fact somewhat simpler,

Theorem 3.13. The following formulas specify the coproduct on

the generators of R¥,

o piopih ik
. - _
RN (%) gk-i,k—i gj-h,k—i ®

> piopih ih iy
(i)  gr, = gP - £ - Pt
I @d) kedked johk-i ® Thi 12 k-i,k-i j~i,k—i® S
b bef_ h-g h-g h-f h-f  h-g
W) woy = S0e7 P PR R T
% (£,g,h) k-h,k-h jeg,k-h i-f,keh j-f,k-h i-g,k-h fgh.

h h'..g h-g h-
PP P & : )@

+ . ) .
(g.h) k-h.k-h j-g,k-h i-h,k-h "i-g,k-h j-h,k-h

gh
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h
+ hz gi_:k_h % b, j-h,k-h © Shn
Proof. Observe first that if J = Znilik + Lek’ then e(J) = nk+ €,
where € = e(Lek) is zero or one. In view of the lemma, (i) and (ii) will
hold provided that the monomials to the left of the tensor signs are precisely
dual to the corresponding admissible monomials QJ. By (1) and (2) in the
proof of Theorem 3.7, this will certainly hold if the J are maximal argong

all admissible sequences of the requisite degrees. A dimensional argument

. i i-h .
shows that, due to the multiple p -p of Ik-i,k-i which appears,
the J actually have maximal excess among the admissible sequences of
the requisite degrees. We prove (iii) by a trick, By the lemma, we can
certainly write

, 4 + ®¢E
RAFTN 1gn® rgn * (g’zh) Pn® Ten %’ "0 “hh

= [24
(f,g,h)

(& h for g < h cannot appear on the right because, as noted i;(lfhe proof
of the lemma, QJQIgh cannot have a non-zero summand AQ ijk unless
(J,Igh) is admissible, when g=h.) We have Tiijk = gkko-ijk and
therefore (Lp'rik)(q;'rjk) = (Lpgkk)(Lp O—ijk)' After expanding both sides by
use of Theorem 3.7 and the fact that R[k]*- R[f ]* =0 for k# £, we find

that there is a unique solution for the unknowns af.gh’ ﬁgh’ and Yh’

namely that specified in (iii).
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§4 The Homology of QX
In this section and the next, we shall compute H,QX and H,CX
for any space X, where C is the monad associated to an Eoo operad

: [see G, Construction 2.4]. We shall also compute the mod p

Bockstein spectral sequences of QX and CX, hence our results will

de{:ermine the integral homology groups of these spaces,

X is the free infinite loop space generated by X in the sense
that. if Ye ‘xoo and fi: X — YO is any map in j, then there is a
unique map g: {QZiX} -~ Y in G?Doo such that g .7 = f, where
n:X > QX is the natural inclusion [see G, p.43]. Since, for all finite
n, the composite

n
paiie A ML o R SR
is the identity, where \ is the evaluation map, .t H*X - H*QX is a
monomorphism. It is therefore reasonable to expect H*QX to be an
appropriate free object generated by H*X.

Similarly, for any operad :, (CX,p) is the free g -space
generated by X in the sense that if (Y,8) is a C—space and f: X -Y
is a map in J‘ , then there is a unique map g:CX — Y of E—spaces
such that gn =1, ;:X - CX [see G, p.13,16,47). Again, it is reason-
able to expect H*CX to be an appropriate free object generated by H*X,

at least for nice operads é .

We have constructed certain free functors WE and GWE in
section 2 and, by freeness, there are unique morphisms 7, of allow-
able AR-Hopf algebras and '1‘{* of allowable AR-Hopf algebras with

conjugation such that the following diagrams are commutative?
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H..,X \ l 'ﬁ.-, and HJ‘X N;z‘,
Ty H, CX N H,OX

We have the following two theorems.
—
Theorem 4.1. For every space X e¢.J andevery Eoo operad {‘: y .

. WEH*X - H,CX is an isomorphism of AR-Hopf algebras,

Theorem 4.2. For every space X e J , m,: GWEHX ~ H, QX

is an isomorphism of AR-Hopf algebras with conjugation.

The second theorem is a reformulation (and generalization) of the

calculations of Dyer and Lashof [ 6 ].

By [G, Lemma 8.41], cs® = 11 é’(j)/zj for any operad C (where

iz0 .
J__L denotes disjoint union). If ¢ is an Eoo operad, the orbit space

ﬁ(j)/zj is just a K(Ej, 1). Thus, as a very special case, Theorem 4.1
contains a concise reformulation of Nakaoka's results [16,17, 18] on the
homology of symmetric groups. An Eco operad &" should be thought of
as a suitably coherent construction of universal bundles for symmetric
groups; the simple statement that CSO is a ;-—space contains a great
deal of information that is usually obtained by more cumbersome alge-

braic techniques.

The elements of H XCH,CX andof HX CH QX piay a
role in the homology of Eoo spaces and of infinite loop spaces which is
analogous to that played by the fundamental classes of K(w, n)'s in the
cohomology of spaces. In particular, the following corollaries are
analogs of the statement that the cohomology of any space can be repre-
s entled, via the morphism induced by a map, as a quotient of a free

unstable A-algebra.
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Corollary 4.3. If (X,0) is a E—space, where C is an
Eoo operad, then 9*:H*CX > HX represents H,X as a quotient AR-
Hopf algebra of the free allowable AR-Hopf algebra WEH X,

Proof. 6:CX — X is the unique map of C}-spaces such that
on=1.

Corollary 4.4, If Y is an infinite loop sequence, then
&m*:H*QYO - I-I*Y0 represents H*YO .as a quotient AR-Hopf algeiara
with conjugation of the free allowable AR-Hopf algebra with conjugation
GWEH, X,

Proof, gw: QYO - YO is the unique infinite loop map such

that 5001] = 1y Eoo is defined explicitly in [G, p. 43].
Of course, Theorems 4.1 and 4, 2 are not unrelated, By

[G, Theorem 4.2], there is a morphism of monads a :C - Q. Thus
o oo

ZoNE M Qoozcoox - QX isa map of Em—spaces for all X, and we

have the following commutative diagram:

My
WEH X H.,C X
% =0
L H X a
a¢ [e ek
3 'ﬁ* ¥
GWEH_X H, QX

Here . is the natural inclusion. Since . is the identity if X is con-
nected, Theorems 4.1 and 4. 2, coupled with the Whitehead theorem

for connected H-—spaces, imply the following result,

Corollary 4. 5. a CooX - QX is a weak homotopy

equivalence for all connected spaces X,
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The corollary was proven geometrically in [G, Theorem 6.1]
by use of the much deeper fact that a s CnX - " =Px is a weak homo-
topy equivalence for all n and all connected X, We shall prove
Theorem 4.1 and shall generalize the corollary by obtaining a homology
approximation to QX, for arbitrary X, in the next section. We prove
Theorem 4.2 and compute tl;xe Bockstein spectral sequence of CX and
QX here. -

For counting arguments, it will be useful to have explicit bases
for WEHX and GWEH_X. Let tX be a basis for JH*X which con-
tains the set of components of X, other than the component § of the
base-point, regarded as homology classes of degree zero. Thus |

tX U {f} isabasis for HX., Let Nv X and Nw X denote the

0
free commutative monoid and the free commutative group generated

by =

OX, each subject to the single relation ¢= 1; let ZpNn'OX and

Z &JHOX denote their monoid and group rings. Let ATX be the free
p

commutative algebra generated by the set

I
(1) TX= {QIX{ xetX, Iis admissible, e(I) +b(I) >deg x, deg Qx> 0}
(Recall the conventions, Definition 2,1(iii).) Then, as algebras,

(2) WEH_X = ATX ®ZPN1\' X and GWEH*X = ATXQ® ZpNv X .

0 0

Note that the s with e(l) = deg x, b(I) = 0, and deg QIX > 0 pre-
cisely account for all p—th‘powers of positive degree elements. Note
also that Theorems 4.1 and 4.2 are correct in degree zero by com-
parison of (2) ﬁth [G, Proposition 8.14].

We need some preliminaries in order to prove Theorem 4.2

for fion-connected spaces. The following well-known lemma clearly
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implies that Theorem 4.2 will hold provided that it correctly describes

the homology of the component Q¢X of the base-point of QX.

Lemma 4.6, Let X bea homotopy associative H-space such
that 1rOX is a group under the induced product. Choose a point aefa]
for each component [a] of X, write a‘l for the chosen point in [a]_l,

and let X¢ denote the component of the identity element. Define

fs X -~ X¢ X m X by f(x) = (x- a-l, [2]) if xe [a]l. Then f is a homo-
topy equivalence with homotopy inverse g given by g(y,[a]) = ya. If
left translation by any given element of X is homotopic to right transla-

tion by the same element, then f and g are H-maps.

To study Q¢X, which is the component S’lﬁQEX of the trivial
loop in QITX, observe that we may assume, without loss of generality,
that all connected spaces Y in sight are sufficiently well-behaved
locally to have universal covers w:UY - Y. Of course, QmQUY - Q¢Y

is then a weak homotopy equivalence. We require two simple lemmas

on universal covers.

Lemma4.7. Let X be a homotopy associative H~space such
that X is connected and TrlX is a free Abelian group. Then there
exists a map p:K('n-lx, 1) =X .such that p induces an isomorphism on
- The com;;osite of the product on X and w X p is therefore a weak
homotopy equivalence UX X K(Trlx, 1) =~ X,

Proof. K(le, 1) is the restricted Cartesian product of one

l .
copy of S for each generator of =, X, restricted in the sense that all

1

but finitely many coordinates of each point are at a chosen base-point in

S”. Now p can be constructed by (transfinite) induction and use of the
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product on X from any chosen representatives S1 - X for the generators

of 1r1X. Of course, if X is a monoid, we can use the product direétly

rather than inductively,

Lemma 4. 8. Let (X,6) be a connected :—space, where
{: is any operad, Then UX admits a structure of {f-space such
that w UX -+ X is a map of C -spaces,

Proof. bU'X = PX/(~ ), where two paths in X which start
at * are equivalent if they end at the same point and are homotopic
with end-points fixed, and w is induced by the end-point projection.
It is trivial to verify that the pointwise g ~space structure on PX of

[G, Lemma 1, 5] passes to the quotient space UX,

As a final preliminary, we have the following observation con-

cerning the homology suspension.

Lemma 4.9. Let X be a space. Let x e HOQX and ye HOX.
Then, if Syr; 0, the loop product x*y suspends to (£x)(o,y}.

Proof. Let a and b be representative cycles in C*QX for
% and y. Let ig QX - PX and 1w PX -+ X be the inclusion and end-
point projection. o4y is the homology class of w,c, where ¢ eC*PX
is a chain such that izb= dc. QX acts on the left of PX by composi-

tion of paths, and w(f#g) = wg for a loop f and path g. Now

d(i..ga*c) =i, (a%b) and 7 (i,axc)= (¢ a)(n*c). The result follows.

Proof of Theorem 4.2. If X is (g-l)-connected, q>1,

then 7@ H*X -~ H,QX is an isomorphism in degrees less than 2q,

i :
as can easily be verified by inductive calculation of H,Q =X for i<n

in low degrees (by use of the Serre spectral sequence). Indeed, this

s

is just the standard proof that n 7, X - 7, QX = wa is an isomorphism
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1n degrees less than 29-1 and an epimorphism in degree 2q-1, Thus

the theorem is trivially true in degrees less than 2q if X is (g-1)-

connected. We claim that if the theorem is true for IX in degrees

less than =n, then the theorem is true for X in degrees less than n-1.
‘This will complete the proof since it will follow that the theorem for

=% in degrees less than 2q impliesthe theorem for X in degrees

less than gq, for all integers q> 1. We shall prove our claim by con-

structing a model spectral sequence {'Er} , mapping it into the Serre
specfral sequence {Er} of the path space fibratiozj. over UQZX, and
invoking the comparison theorem [7 ,XI 11.1]. By [G, Proposition 8.14]
and Lemma 4.7, we may write

H,QZX = HUQIX® H*K(ﬁﬂox, 1).
Let x'= x—(&x)ﬁ for x e H*X. We take tZX = {Z*X' ! xetX} as our

basis for JH,ZX, = :H X

IR

ﬁ*ZX, We may then write
n .
H*K(NerX, 1) = E{E*x‘[ X e tOX} C H, QZX .

Of course, if p= 2, this is not a sub-algebra and the sguares

N2 1  1e s o~
(E*x Y =Q Zx! liein H UQZX. Define WEH,_ZX to be the sub-
algebra of WEH,2X generated by the elements of TZX of degree

greater than one and, if p = 2, the squares QlZ¢x', X € tOX. Define

2 ~
'E” = WEHZX ® (GWEH*X)¢ .

. 2
(If X is connected, 'E~ reduces to WEH,>XQWEH_,X.) The
differentials of {'E’} are specified by requiring {'E"} tobea
spectral sequence of differential algebras such that if QIx e TX,

then
TQIZ;,:X' = (—1)d(I)QIx*Ep2(I)a.x]

and, if p>2 and deg Q*x= 2s -1,
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da(1) +1

(( le*xl)p—l ® Qxx [—Pl(I)ax]) = (-1) Loy ol EPI(I)H ax].

Here ax e ’ITOX denotes the component in which the homology class

x lies (Ux =x Qax +ax®x plus other terms if degx > 0) and, for

ae TTOX and ne Z, [na] denotes the n~th power of a in the group

T
(I\\IJTrOX C GWEH_X. An easy counting argument demonstrates that {'E }

is isomorphic to a tensor product of elementary spectral sequences of
the forms E{y}@P{ry} and, if p> 2, ’
P{ Z}/(Zp) R [E{rz} @P{’r(zp—l ®+2z)}], where E and P denote exterior

and polynomial algebras. Here y runs through
I .
{QIZ_,:X' [ I admissible, e(I) >degx, deg QT x'>1 and odd if p> 2}
and, if p> 2, z runs through
I . : .
{Q= _x' | I admissible, e(I) > deg %, deg QT x' even}

(Note that, if p> 2, e(I)= d(I) mod 2, hence e(l) = degx+1 implies
that deg QIZ*X' is even.) Of course, to the eyes of {'E"}, the base
l'\VE,”EH*ZX looks like a tensor product of exterior and truncated poly-
nomial algebras rather than like a free commutative algebra. Clearly
'E™ = Z ., By construction, there is a unique morphism of algebras

P

f: 'EZ - EZ such that the following diagram is commutative:

2 o .
'E° = WEH,>X ®(GWEH*X)¢

>H&UQZX®H*QUQEX = E,

N ™, ®(aw),

WEH, X @ GWEH X ——> H_QZXQ® H, QX

Since QIx = QIX' if a(I) > 0, by Theorem 1.1 (5), Lemma 4.9 implies

that, «for U%:H*QX - H*QZX,
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' U‘*(QIX*[-pl(I)aX]) = (-l)d(I)QIZ*x'

(the sign comes from ¢B = ~f¢ ). By the naturality of o,, the same

*’
formula holds for o H*SZUQEX - H,UQZX, although here the ele-

5 . )
ments QX x', xe¢ tOX, are of course not operations because the ele-
. b .

ments Z _x' are not present in H, UQZX. By Theorem 1.1 (7) and the

definition of {'E"}, f induces a morphism of spectral sequences.

Since f = f(base) ®f(fibre), our claim and the theorem now follow

directly from the comparison theorem.

The f.ollowing observation on the structure of H*QX is some-
times useful, Note that H*Q¢X is the free commutative algebra
generated by {y*(ay)-1 I y ¢ TX}, where ay is the component
in which y lies. This description uses operations which occur in
various components of QX. We can instead use just those operations

which actually occur in the component Q¢X.

Lemma 4,10, HJ_Q¢X is the free commutative algebra

generated by the union of the following three sets:

{QIx[ Q% ¢ TX and ax = f}
{x#[-ax] | x¢tX, deg x>0, and ax # ¢ }
(" (& Q®x «[-p- ax]) | Q' °xe TX and ax# #} .
Proof. [-p-ax]=[-ax]* ... x[-ax], and we therefore have
(6" xxl-prax) = (6% Q%) #[-517) . ax]

modulo decomposable elements of H"‘Qﬁx’ by the Cartan formula.

When X = S, the first two sets above are clearly empty.

We complete this section by computing the Bockstein spectral
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sequen(ies of H*GX and of H*QX. Let {ErX} denote the mod p
Bockstein spectral sequence of a space X. A slight variant (when p > 2
and r = 2) of the proof of [A, Proposition 6.8] yields the following
lemma.

Lemma 4.11, If (X,0) isa § —Aspace, where C? is an Eoo

operad, then {ErX} is a spectral sequence of differential algebras

r-1

2q
2 2q :
and r> 2, and fszy =ypy+ Q Py if p=2 and r =2,

such that if ye E_ "X, then ﬂryp = yp—lﬁr_ly if p>2 orif p=2
Let ¥Y=CX or Y = QX, and let {E'ATX} denote the

restriction of {EIY} to ATX; in both cases, we clearly have

E'Y = ETATX ®H,Y forall r2 1. To describe ETATX explicitly,

we reqguire some notations,

Definition 4.12. Let Cr’ r > 1, be a basis for the positive
degree elements of ErX, and assume the Cr to be so chosen that

= |8
Cr Dr 5:rDrU Cr+1 !

where Dr’ ﬁrDr, and Cr are disjoint linearly independent subsets

+1

of E'X such that BD.= {ﬁry | ye Dr} and C_,; isasetof cycles

+1

¥, Define ATX,

under ﬁr which projects to the chosen basis for joul
T > 2, to be the free strictly commutative algebra generated by the

following set {strictness requires the squares of odd degree elements

to be zero): U
(s. Uups.)ucC_,
1<G<x jr rjr T
r-j
where Sjr = {yp | yeDj, deg v even} and
p 1
{y ﬁjy|yeDj, deg y even} if p>2 or j22
ﬁrsjr'f =

zr‘j.-z 2 . . .
{y (vBy + Q@ %y) | YED1,~degy=2q} if p=2 and j=1.
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The proof of the following theorem is precisely analogous to the

computation of the cohomology Bockstein spectral sequence of K(Z , n)
. t?

: . s ’ P
given in [A, Theorem 10. 4] and will therefore be omitted. It depends
1 1, 2s _ _2s-1 - R
only on Lemma 4.11, the fact that fQ~ = Q if p= 2, and counting

arguments,

Theorem 4.13., Define a subset SX of TX as follows:
. I I
() p=2:8X={Qx]|I=(2s17J), deg Qx is even, £(I) > 0}

(b) p>2:8X= {QIx I B(1) = 0, deg dx is even, {£(I)>0}

1 T

r
r+
Then E° ATX = P{yP | ye SX}@E{ﬁr+1yp [ yeSX}@Ar+1X for
all r 21, where
T
-1
) v* "By if p>2
Pt ,
ﬁr-}-ly - T

2%-2 2
y (vBy + Q°%y) if p=2 and degy=2q

leo}
Therefore ECATX = APX is the free strictly commutative algebra

gen_erated by the positive degree elements of E®X.
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§5. The homology of CX and the spaces CTX

We first prove ‘Theorem 4.1 and then construct a homology approxi-
- - 0
mation @ :C X - Q_X for arbitrary spaces X. The space C S

oo [} fee)
will be a K(EOO, 1), and this special case of our approximation theorem
was first obtained by Priddy [ 20],

Observe that the maps 7, of Theorem 4.1 are natural in ;’ as well

as in X. In particular, the following result holds.

Lemma 5.1. If Zf and f‘ are Eoo operads, then the following

is a commutative diagram of morphisms of AR-Hopf algebras:

H (CXCH)X
H,CX Ty H,C'X
WEH, X
Moreover, T % and T, 2T isomorphisms for all spaces X.

Proof. C X C' is an E_ operad by [G, Definitions 3.5 and 3. 8],

and w, and w,, are isomorphisms by [G, Proposition 3.10] and the

1x% 2%

proof of [G, Proposition 3.4].

By Theorem 4.2 and Figure I, we already know that
Nyt WEH X —~ H*COOX is a monomorphism (since am*ﬁ*u is a mono-
morphism); by the lemma, we know this for every Eco operad K . In
order to prove that 'ﬁ* is an epimorphism, we need the following stan-
dard consequence of the properties of the tra;xsfer in the (mod p)

homology of finite groups; a proof may be found in [ 5 , p. 255].

Lemma 5.2, I w is a subgroup of the finite group II and if

the index of = in. I 'is prime to p, then the restriction
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i H (s M) > H(T;M)
is an epimorphism for every ZpH-module M,

We shall also need the definition of wreath products.

Definition 5.3. Let 7 bea subgroup of Zn and let G be any

monoid, Then the wreath product -rrfG is the semi-~direct product of

n
.7 and G determined by the permutation action of © on Gn;’ explicitly

if 0 e v and T, € G, then, in 'rrfG,

(Tl, ey Tn)U' = G(Td(l)’ . Tu"(n)) .
1
Embed G* in G® as G® x{e} and embed Z_in Z_, | as the sub-
group fixing the last letter; this fixes an embedding of anG in

En+1fG, and ZoofG is defined to be the union of the EnfG for finite n.

Proof of Theorem 4.1. Consider the monad (C,p,n) associated to

an Eoo operad { . As in [G,p.47], we write p both for the éo-action
on CX and for the monad product p:CCX - CX. Recall that, by [G,p. 13

and 14], CX is a filtered space such that the product % and C-action n

restrict to give

CX - F,_CX
¥

#F CXXF
b} itk

k
and »

g C’(k)ij CXX...XF, CX = F.CX, j=j+...+4]

1 Y k

Indeed, * is p.z(c) for any fixed c ¢ C(Z) and, if vy denotes the

structural map of the operad [G, Definition 1.1], then
mldsle sy Looile, v, ) = [vldse,,.oise )ivysen iyl

s
for de & (k), e, ¢ ot (ji)’ and y, e X . We define a corresponding alge-

braic filtration of WEH_X by giving all elements of the image of
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k -
RkK]®IH X in WEHX filtration precisely p and by requiring WEH X
to be a filtered algebra. Then FOWEH*X is spanned by §, FiWEH*X =

H.X, and each F,WEH X is a sub A-coalgebra of WEH*X. Visibly,

k
the restriction of ;.L:WEH_EX -~ H,CX to FkWEHJ_X factors through

H,F, CX. HF,CX=HX since F ,CX= (1) XX and (1) is con-

K 1
tractible. Assume inductively that - 7,: FWEHX - HF,CX is an iso-

morphism for all j <k, Define Co-

0 0
= = EH,X/F, ,WEH/X.
E _CX=F CX/F,,CX and E WEHX=F WEHX/F A WEH,

Consider the following commutative diagram with exact rows and columns:

0 0 (?
| | ot
0 - Fk 1WEH,,_X-——> FkWEH*X -—--—>EkWI%H*X - 0
Ty l’ﬁ* o
i T 0 ]
—> HF ,CX——> HF CX —> HE CX—> -

Here L:Fk_:lCX - FkCX is the inclusion, which is a cofibration by
[G, Proposition 2.6], and w is the quotient map. The maps ﬁ* are
known to be monomorphisms and the left map _ﬁ* is assumed to be an
epimorphism. It follows that Ly is a monomorphism, hence that

9= 0 and 7, 1s an epimorphism. Define X\ by commutativity of the
right-hand square; then N\ is a monomorphism by the five lemma. If
we can prove that N is an epimorphism, it will follow that the middle
arrow ?1'* is an isomorphism, as required. By [G, p.14], EISCX is

the equivariant half-smash product

E:CX = & () szx[k]/ Cx) Xp, *

Y

where X[k:I denotes the k-fold smash product of X with itself. By
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" [A, Lemma 1.4(iii) and Remarks 7. 2], there is a composite chain homo-

topy equi;ralence
N k .
C, L8y (HX)" > C (L 1)xy X9,
k k

hence we may identify HJ,(C(R) X Xk) with H*(Ek; (HJ‘X)k) Let

p2

. X 0 k

' Cé(k) XZ‘ X" - Ek CX be the evident quotient map and let
k

v: f(k) XZ Xk ind FkCX -be the sub-quotient map given by the definition
k

of CX. Then, since  7(x) = [4,x], where 1e C(i) is the identity ele-

ment and since poCn =1 on CX, the following diagram is commutative:
K ix K
L) % X N Cx) x_ (F,CX)
pH z 1
k k
1 v
' l j/pk
E'CX < ul F CX
k k

Of course, ™ induces an epimorphism on homology. If k< p, then
0 [k] ' . 3 ; 5
H*Ek CX = H*(* XE X*) and X\ is an epimorphism since, by the
k
. 0 . : .
diagram, H E 'CX is spanned by images under w, of k-fold products.
Let k= p. Since i H*(H;(H*X)p) - H"(EP; (H*X)p) is an epimorphism,
where 7w is cyclic of order p, H.,:(Z)p,' (HJIX)p) is spanned by images
under i, of elements of the forms e0®xi®. .. ®xp and ei® xp, by

[A, Lemma 1.3]. By the diagram, H,E CX is therefore spanned by

0
P
images under w, of p-fold products x

*...%x_ and operations
1 p .

s
ﬁe Q'%, hence )\ is an epimorphism. We now have that

Myt FPWEH*X - H*FPCX is an isomorphism of A-coalgebras, Let
§: WEH,F CX ~ WEHX

be the unique moArphism of allowable AR-Hopf algebras such that £
; — =1
restricts to 7, ~ on H*FPCX; observe that the restriction of £ to

FJ.WEH*FPCX ‘has image in ijWEH*X. Suppose that k = pj, j > 1.
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The index of zjfzp in Ek is prime to p since

j p-1 - .
k= [] [T (pi-n) = p’(jl)a, where q is prime to p. Consider
i=in=20

the following commutative diagram:

R . J 1 R . 3
HACOXCEY x5 (5 X)) = B X5 (CE) x5 X))
T j P
(v X 1), v e(1 xv)),
s
H,( G (1) x5, XP) H.F.CF CX<— F WEH.F CX
* X i j * p
By ¢
L .
H,FCX - F WEH,X
Ty
0 N 0
HE, CX E, WEHX
Here ?{*g = p*‘ﬁ* since both maps restrict to the inclusion induced by

L :FPCX - FkCX on H*FPCX. The map vy is Ej I Ep-equivariant

by the very definition‘ of an operad, hence (vyX i)* may be identified
with the restriction i, and is therefore an epimorphism. ﬁ* on
FjWEH*FpCX is an epimoréhism since our induction hypothesis can be
applied to any space, and in particular to FPCX. Since TV = ‘n"* is
also an epimorphism, it follows from the diagram that A is an epimorph~
ism. Fin’allgr, suppose that k is prime to p. Let p{1): C(k-1) = (k)
be the Z, _4-equivariant map defined by p(4)}(d) = d%1 = y(c;d,1) and

consider the following commutative diagram:
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: L )
HAG () X, X9 = B(Ck-1)%, xHenx
% - % b2} #
k-1 P k-1
(p(1)%1),, v ®n,
k 1,87,
H,({ (%) X5, X7) HF, _CX@HF CX ¢——F A WEHXQ®F, WEH,X
S K & k- 4 k-1 # 1 *
v, * &
H,F. CX T F, WEH,X “
%k k *
T,
0 A 0
H,E, CX E, WEHX

(p(1) X 1), may be identified with the restriction i, and is therefore an
epimorphism, 'ﬁ*®'ﬁ* is an epimorphism by the induction hypothesis,
™

Vs is an epimorphism, and therefore N\ is an epimorphism. The proof

is complete.

Our homology approximation to Q¢X realizes geometrically the

obvious algebraic isomorp%xism from H*CX ®HOCX Zp to H*QX ®HOQXZP;
indeed, non-invariantly, each of these is just the connected free commutative

algebra ATX. Of course, via QIx ing QIX*[—pz(I)- ax] on generators,

ATX is isomorphi(; as an algebra to H*Q¢X.

Henceforward in this section, we restrict attention to the full sub-
category rV of J which consists of spaces of thg based homotopy type of
CW-complexes. By [G',Corollary A.3], CX eV if X eVYand £ isa
suitably nice operad (as we tacitly assume below).

Construction 5.4. Let (: be an operad and let X e{\/ . Construct a

space CX as follows. Choose a point a in each component [a] of X.
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Choose a point c,e C(l) for i>1, with N
(Thus, by abuse, a is identified with n{a) = [1;2].) Let (CX)ia denote the
component of CX in which ia lies. Define p(a):CX -~ CX to be right

translation by a, p(a)(x) = x*a. Define (CX)a to be the telescope of the

sequence of maps

. p(a) (CX)a p(a) (CX)Za — 0 ey (Cx)ia——p‘(ﬁ—.' e

Define CX to be the restricted Cartesian product (all but finitely many
coordinates of each point are % ) of the spaces (EX)a for [a]e m X The

homotopy type of {CX) 1is independent of the choice of a e [a], and C is
Py ty a P

the object function of a functor from the homotopy category of V to itself.

Remarks 5.5. (i) TX is a functor of & as well as of X.
(ii) I¥ X is connected, then CX is homotopy equivalent to CX.

2 - . i -
C(zii) ¥ [a] # 4, then (CX)ia ;(1) X 5 Xa , where Xa [2], and
i

p{a): (CX)ia - (CX)(i+l)a is given by the formula

p(a)[c;xl,...,xi] = [y(cz;c,l); xl,.,..,xi,a]

Lemma 5.6. Let & bean Eoo operad. Then H*EX is naturally
isomorphic to the connected algebra H,CX ®HOCX Zp'
Proof. Since (x#a)x(y=xa)=(xxy)*a*a for x,ye HCX, each .
HJ,(EX) , hence also H_,_‘C_J_X, is a well-defined algebra. The result is
kS a S

obvious from Theorem 4.1 and the construction.

Lemma 5,7. Let 2: be an Eco operéd. Let G be any discrete

group and let X = K(G, 1) +, the union of a K(G, 1) and a disjoint base~

— e 0
point, Then CX is a K(ZOOIG, 1), In particular, with G={e} , CS

*

is 1).
is a K(EOO, )

=1, and let ia = [ci;al] e CX. -
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Proof.  5(i) %, K(G,1)" is clearly a K(Ei_rG, 1), and CX is
. i L
the limit of the (i) XS, K(G,1)" under appropriate maps by Remarks
i

5.5 (i),

We now consider the functors En derived from the little cubes

operads,

Construction 5.8, Fix n, 1<n or n= o (when Q=% = 0)..
Withthe same notations as in Construction 5.4, let ia also denote the
. . n n
image of ia under a.: CnX - 2"X and let QiaZDX denote the com-

n
ponent of € %X in which ia lies. Define p(a): 272K ~ @"="x by
—=n._n
p(2)(x) = x*a and let @ T X denote the telescope of the sequence of

inclusions
Q;an LGN QZZ:DX &Qzaznx_» B s At G
- a8

The inclusion of °="X in _S—iZEDX is a homotopy equivalence (since

each p(a) is); choose an inverse homotopy equivalence

g

:—S_ZzEnX - @"="X. Observe that « p(a) = p(a) @ and let

[ n

a

z :(CX) - =X be the map obtained from «_ by passage to
na’' n’a . a n

limits. Either by (possibly transfinite) induction and use of the ordinary
loop product or by direct construction in terms of the monoid structure
n-1_n

on the Moore loop space of @ ~Z X, the maps ¢ao Tz’n a:(EnX)a - Q;ZDX

— 1
determine a map “&n: CnX - Qﬁan. Up to homotopy, @ is natural in X,

Lemma 5.9. Let :(CnX)ia *EnX be the inclusion. Then, for
XEH*(CnX)ia R En o o) = @ . (%) *[-ia], where [-ia] is the component
inverse to [ia] in the group WOQDEDX.

Proof. The restriction of ¢a to Qiaz is homotopic to right

translation by dany chosen point of [-ial.
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Our approximation theorem is now an immediate consequence of

Theorems 4.1 and 4.2 and Lemmas 5.6 and 5.9.

Theorem 5.10. For X ¢V , &

ot H*COOX - H*Q¢X is an iso-

morphism of algebras.

Since the result holds for all primes p, Eoo also induces an iso-

-1 —
morphism an integral homology. Via &004— , H ,CX 1is an allowable

=

AR-Hopf algebra, However, if X is not connected, then EOOX is not‘
an H-sgace, let alone an Eoo space, hence much of this structure is purely
algebraic. As illustrated in Lemma 5.7, EooX generally has a non-
Abelian fundamental group. Clearly LT Wl—é_wx - Qﬁx is the Abelian-
ization homomorphism.

As explained in [G', §2], Theorems 4.1,4.2, and 4.13 imply that
@ CooX -~ QX is a group completion in the sense of [G', Definition 1. 3].
Theorem 5.10 is a reflection of this fact (compare [G', Proposition 3.9]).
This fact also suggests that any natural group completion of CX for any
Eoo operad ¢ should yield a homotopy approximation to QX. QCZX is
one example [G, Corollary 4.6], and BDX is another (but the second re-
sult labeled Theorem 3.7 in [G'], about the monoid structure on DX, i;s
incorrect; see [R,VII.2.7]). Yet another example is BOCX, the infinite
loop space obtained by application of the recognition principle to the Eco
space CX [G', Theorem 2.3 (vii)]. As explained in [R, VII §4], this last
construction often admits a multiplicative elaboration and yields the most

0
structured version of the Barratt~ Quillen theorem to the effect that QS

is equivalent to the group completion of "I5LO K(Z‘j, 1).
jZ

Y In TOI, Cohen will prove that a: CnX - Q"= isa group completion
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for all spaces X by proving the analogs of Theorems 4.1, 4.2, and 4. 13.
Thus his calculations will imply the following unstable analog of Theorem 5.10

. _— e n
Theorem 5.11. For X eV , Ty X = Ho =X is an iso-

morphism of algebras.:
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§6. A remark on Postnikov systems

Infinite loop spaces can be approximated by stable Postnikov towers,
and it is natural to a..sk whether there is a relationship between the homology
operations and the Postnikov decomposition of such a space. We present
such a result here, and we begin with the following easy (and well-known)
lemma.

Lemma 6.1. Let X bea K(mn) for ;ome Abelian group w and
integer n > 1. Then the Nishida relations and diagonal Cartan formula
imply that the operations 0° {(no matter how constructed geometrically)
are all trivial on ﬁ*X. -

Proof. Assume the contrary and let i be minimal such that
O x #0 for some xe ﬁiX and some r andlet r be minimal such
that Q'x # 0. Then Q' x is primitive and is annihilated by all Steenrod

¥ r e
operations P* . It follows that Q7 x = 0, which is a contradiction.

It should be emphasized that this result fails far products of
K(m,n)'s. The loop operations on such a product are certainly trivial,
th -
but such a product can also be the zero space of a spectrum the higher
terms of which have non-trivial k-invariants. If we wish to analyze
infinite loop spaces in terms of Postnikov systems, then we must use the

Postnikov systems of all of the de-loopings (or pass to spectra).

The lemma admits the following generalization, which may also be

regarded as a generalization of [15, Theorem 6.2 ].

Proposition 6. 2. Let X be a stable k-stage Postnikov system,

as an infinite loop space. Then Q,Ix =0 if xe ﬁ*X and £(I) 2 k.

Proof. A l-stage stable Postnikov system is a‘product of K(w, n)'s
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@ Abelian and n>1. Inductively, a k-stage stable Postnikov system X

is the puliback from the path space fibration over a simply connected
l;stage Postnikov system Z of an infinite loop map £:Y = Z, where Y
is a (k-1)-stage stable Postnikov system. The natural map mX =Y
and the inclusion i: QZ = X of the fibre of w are infinite loop maps.

Direct calculation by Hopf algebra techniques (see [15, Theorem 6.1])

‘demonstrates that Ep = Eoo in the Eilenberg-Moore spectral sequené_e

of the fibre square and that the following is an exact sequence of Hopf
algebras:

. c T
z, = iH0Z —~HX — H Y\{, -~ z

Here H.Y \\f* is the kernel of the composite
f*® 1

] o~
H*Y~——-> H*Y®H*Y H*Z®H*Y

(H*Z = H*Z/HOZ) and is isomorphic to H*Z//i* by the displayed exact

sequence. If x e ﬁ*X, then —n*QJx= 0 for £(J) 2k-1 by induction.

. S
Thus consider Q x where TX =0, say x= E X.z, with
idi

L s . 8
z < iHQZ Qx-= Z 0 (Xizi) = 0 by the Cartan formula, since

T
all Q z, = 0 by the lemma, and the conclusion follows.
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§7. The analogs of the Pontryagin pt? powers

As was first exploited by Madsen [9] (at the prime 2), the homology
of Eoo spaces carries analogs of the Pontryagin pth powers defined and
analyzed by Thomas [25] on the cohomology of spaces. These operations
are of;en useful in the study of torsion. Indeed, in fgvorable cases, they
serve to replace the fuzzy description of torsion classes in Z(p)—hor_nology
derived by use of the Bockstein spectral sequence by precise i.nformat?.on
in terms: of primary homology operations, with no indeterminacy.

We revert to the general context of §1, except that the coefficient
groups in homology will vary, and we first list the various Bockstein

operations that will appear in this section in the following diagram:

fﬁv . 0 7 c 0 P N 7z > 0
) {p) pm
-1 .
P’ z A
o~ _~ > Z > Z >
=P, O (®) ®) oT
™ T
5 =q B 0 — > 7z _P_o 7 —f s Z2 —>0
pr - ﬂ*ﬁr T 2r pr
P P
T -11'
‘ p* LN —3> 0
=B : 0 ———> Z -, A
ﬁl‘ 'IT*BI P pI‘+1 Pr
pr-l T
8 =u,p, : 0—> Z P sz >z >0
T w
p ki3
% 0 > 2 S S > 7 > 0
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In each row, the notation at the left specifies the homology Bockstein
derived from the short exact sequence at the right. All of the homo-

morphisms labelled 7 are natural quotient maps. Z = lim Z

= lip and
p® p¥
ir: z .2 oo 18 the natural inclusion; p: Q= Z o 18 specified by
P p P
a b . : . o
p( -+ (—1) = 1r(a) for a,be Z, r>1, and q prime to p. Since B
p

.determines all of the remaining Bocksteins listed, it should be thought of

as the universal Bockstein operation. Clearly ﬁl =B= 81 and

r-1 . . .
(p )*ﬁr = 81_11* , Tl Zpr - Zp, if r>1. Atleast if H (X; Z(p)) is

of finite type over Z(p)A’ so that the natural homomorphism

i H (X;2 r) +~E'X isan epimorphism, P, determines the _ differ-
p .
ential d* (previously denoted ﬁr) of the mod p Bockstein spectral

sequence {E'X}. Explicitly, for x e H(X;Z ), Bxe H (X2 )= E'x
pr’’ T D

survives to drjr(x) € ErX; alternatively, drjr(x) = err(x).

Theorem 7.1. Let (o be an Eoo operad and let (X,8) bea & -Space.

Then there exist functions

pq” ' T w1

2 H (X2 ) - H (%2 )
P P

forall g20 and r>1 which satisfy the following properties:

(1) The & are natural with respect to maps of L& -spaces.
(2) I xeH (X;Z ), then dx=0 if p>2 and, if p= 2,
2q+1 pt

32Q2q+2x+ z*QZQ+Zg3x i r=1

dx =

2q+2
q'n'

i >
Br-HQ s if r>1

(3) The following diagram is commutative:



Py
. .
Hq(X,Z ) — Hq(X,Z 1)

P P

a p
"),
. > . )
Hpq(x’ Zpr+l) Hpq(X’ Zpr+2.)

(4) The following composites both coincide with pth power operations:

Mg g}
: — : Z > F] X Z
HKZ ) HGZ ) o2 o)
and 9
; g
*
HX;2 > H ; Z >H (X;2Z
Lz ) NCSEIY pa®iZ )

(5) If xe qu(X; Zpr), then
2q .
x (Bx)+ Q *(px). if p=2andr=

B 2,x=

r+l 1
xp—-(ﬁrx) if p>2o0rr>1

where the product H_(X; Z r)(EZ) H*(X; ZP) - H*(X; Zp) is understood;
- P

if xe¢ H2q+1(X;er)’ then
qtl

Py i r=1

0 if r>1

; R . dop-i
(6) 02_ (xty) = dx+dy+ E_} (i, p-i) X yP! for x,y e H (X5 Zpr) ,
. i=
where (i,p-i), is induced from (i,p-i): 2 s Zpr+1

(7) ¥ xeH (X;Z _) and ye H(X;Z ), then
s pr t pr
(xy) = (A= (Ay) if p>2
and

Aoy = @@y + @)l Sy s ypy 8w itp = 2.

Here s and t are not assumed to be even; when p=2, r> 1, and s andt

‘ . 29-1

2 r
are even, the error term vanishes (since = B0 9 and 2,p=0).
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A (8) v'a**g,‘xz-'(‘) if p>2 and U*g,x= (Zr)*[(Bw*x)(v*x)] if p= 2,

where o ﬁ*(QX, ?) = H,(X;?) is the homology suspension.

Proof. Precisely as in the proof of Theorem 1.1, except that W
is here taken as the standard w-free resolution of Z and C* is taken to

mean chains with integer coefficients, 8 induces 8, VR (C*X)p - C.X.

In the language of [A,Definition 2.1}, (CX,6,) is a unital Cartan object

of the category (:(w,oo, Z). The rest is elementary chain level algebra,

the details of which are the same for the present homology operations as

for the cohomology Pontryagin pth powers. Given X e Hq(X; Z r), let x
‘ p
be represented by a chain a ¢ C X such that da = prbi. Let o« generate
. =l
the cyclic group w, let M= < ico’, and define
i=1
_ P, T p-1 )
qAx {6*(e0®a +.p Me, ®a"""b)} e Hpq(x’ Zpr+l) .

-1
Here, e0® af + prMe1 ®aP" b is a cycle modulo pﬁ"1 by explicit
computation {see [25, p.32]). The salient facts are that TM = p-N = MT,
-1 -
where T =a-1 and N= S\ o, that daP= p"NaP™'b if p> 2, and that

i=0
+2
de. = Te_ . The same calculation carried out mod pr rather than

1 0
mod pr+l yields (5). ax is well-defined and oL is natural by the method
of proof of {21,3.1] or {4, Lemma 1. 1]. When p> 2, the fact that d.x = 0
if q is odd depends on the factorization of 8, through C*C (p) ®(C*X)P;
see [24, §9-10] for deta.i.ls. When p = 2, see [25, p.42] for the verification
of (2). Parts (3) and (4) are trivial to verify, and part (8) is straight-

forward. See [25,§9] for the verification of (6) and [25,§8] (or [9]

when p = 2) for the verification of (7).

. S
We have ‘chosen the notation o since it goes well with Q and
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. . th
since the Pontryagin p powers are often denoted by G) .

Remarks 7. 2. Let Q,l =L and 7= Q-\"g-rﬂl. For an Eoo space

X, define

. . I
X = i), H (X zp) + gl (i,p)s L H, (X zp) C H(X; zpm)

and consider

B ey "t . iy T - -
Bdx = BiH(X;2 )+ gl B & Hp (K62 )C H(G2 )

Madsen [9] suggested the term "Henselian at p" for Eoo spaces X such
that the torsion subgroup of the ring H*(X; Z(p)) coincides with the ideal
generated by BadX. Inview of (4) and (5) of the theorem, this will be
the case if H*(X; Z(p)) is of finite type over Z(p) and all non-trivial
differentials dr, T > 2, inthe mod p Bockstein spectral sequence of X
are determined by the general formulas for differentials on pth powers
specified in Lemma 4.11. In particular, by Theorem 4.13, QY is
Henselian at p for any space Y such that H*(Y; Z(p)) is of finite type

over Z(p) and has no pz-torsion.

Remarks 7.3. The operations d can already be defined on the homology

ofC

homology of second loop spaces.v All of the properties listed in Theorem

,~Spaces, where CZ is the little 2-cubes operad, and thus on the

7.1 are valid for C3—spaces, and most of the properties are valid for

Cz—spaces. The exceptions, (2) and (6), are those properties the proof
of which requires use of the element e, ¢ W, and they have more compli-

cated versions with error terms which involve the two variable operation

)\1 discussed in Theorem 1.2 of Cohen's paper III.

]

10.

11.

12.
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various Thom spectra MG, the classifying spaces of bipermutative

The Homology of Eoo Ring Spaces

J. P.May

The spaces Q(X+) for an E_, space X, the zerotl spaces of the

categories and the zeroth spaces of their associated spectra are all

examples of Eoo ring spaces. The last example includes models for

BOX Z and BUX Z as E00 ring spaces. A complete geometric theory

of such spaces and of their relationship to Eoo ring spectra is given in

[R], along with the examples above (among others) and various applications.

On the level of (mod p) homology, the important fact is that all of the

formulas developed by Milgram, Madsen, Tsuchiya, and myself for the

study of H*'f‘ (where F denotes QSO regarded as an Eoo space under

the smash product) are valid in H*X for an arbitrary Eoo ring space X,

Moreover, the general setting leads to very much simpler proofs than those

originally obtained from the geometry of F.

The first three sections are devoted to these formulas. Thus section {

establishes notations and gives formulas for the evaluation of the

"multiplicative™ Pontryagin product # on elements decomposable in terms

of the "additive” Pontryagin product * or of its homology operations

s
The formula for (x*y)#z is due to Milgram [22] and that for (Q x)#

Q5.

y

is due to me [20]; both date to 1968. Section 2 gives the mixed Cartan

o =8
formula for the evaluation of the multiplicative homology operations Q

on-elements xxy. A partial result and the basic geometric idea are due

to Tsuchiya [36], but the complete formula is due to Madsen [15] when
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p = 2 and to myself [20] when p> 2; it dates to 1970. Section 3 gives
the mixed Adem relations for the evaluation of B, Again, the basic
geometric I:'Ldea is due to Tsuchiya. These relations are incrédibly com-~
plicated when p > 2, and Tsuchiya and I arrived at the correct formulas,
for x = [1], by a sequence of successive approximations. I obtained the
complete formula, for arbitrary x, in 1973 but it is puElished here for the
first time. As we point out formally in section 4, the formulas we obtain
are exhaustive in the sense that # and the Q% are completely determined
in H*C(X+) and H*Q(X+) from # andthe O° on H*X, where X is a
(multiplicative) Eoo space. Indeed, H.C (X+) is the free AR-Hopf bialgebra
generated by H X and H*Q(X+) is the free AR-Hopf bialgebra with con~-
jugation generated by H*X. |

. Section 5, which is independent of sections 3 and 4 and makes mini-

mal use of section 2, is devoted to analysis of the sequence of Hopf algebras
H,80 - HSF - HF/O - H/BSO — H_BSF .

At the prime 2, this material is due to Milgram [22] and Madsen [15] and
has also appeared in [5]. At p > 2, this material is due to Tsuchiya [36, 38]
and myself [20], but the present proofs are much simpler (and the results
more precise) than those previously published.

I made a certain basic conjecture about the R~algebra structure of
H_ SF in 1968 (stated in [20]). It was the primary purpose of Madsen's
péper [15] to give a proof of this conjecture when p = 2. Similarly, it was
the primary purpose of Tsuchiya's paper [38] to give a proof of this con-
jecture when p > 2. TUnfortunately, Tsuchiya's published proof, like
several of my unpublished ones, contains a gap and the conjecture is at

present still open when p > 2. It was my belief that this paper would be

71

incomplete without a proof of the conjecture that has so long delayed its
publicatAion, Since the proof has been reduced to pure algebra, which I .
ém unlikely to carry out, and since more recent geometric results make
the conjecture inessential to our later calculations, further delay now
seems pointless. This reduction will be given in section 6. It consists
of a éequence of lemmas which analyze the decomposable elements of
ﬁ*SF. These results are generalizations to the case of odd primes gf
the lemmas used by Madsen to prove the conjecture when p = 2, and we
shall ;ee why these lemmas complete the proof when p = 2 but are on}y
the beginning of a proof when p>2. (To reversé a dictum of John

Thompson, the virtue of 2 is not that it is so even but that it is so small.)

The material described so far, while clarified and simplified by
the theory of E(JO ring spaces, entirely antedates the development of
that theory. In the last seven sections, which form a single unit wholly
independent of sections 3,4, and 6 and with minimal dependence on
section 2, we exploit the constructions of [R] to obtain a conceptual
series of calculations. Various familiar cai:egories of matrix groups
are bipermutative, hence give rise via [R] to Eoo ring spectra whose
zeroth spaces are Eoo ring spaces. In section 7,we give a general dis-
cussion of procedures for the computation of the two kinds of homology
operations on these spaces. For the additive operations Qs, the basic
idea and the mod 2 calculations are due to Priddy [27] while the mod p
calculations are due to Moore [24]. Examples for which the prc;cedures
discussed in principle give complete information are the categories (
and WU of classical orthogonal and unitary groups (section 8), the category

B kl_ of general linear groups of the field with r elements {section 9),
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and the category o kq of orthogonal groups of the field with g elements,
q odd (section 11). In the classical group case, we include a comparison
with the earlier results of Kochman [13] (which are by no means rendered
superflubus by the present procedures). The cases /Jo‘f kr anda O kq
are entirely based onthe calculations of Quillen [29] and Fiedorowicz
and Priddy [6], respectively.

In sections 10,12, and 13, we put everything tcl>gether to analyze
the homologies of BCoker J and the classifying space B(SF;kO) for
kO-oriented stable spheriéal fibrations. At odd primes,

B(SF;k0O) ~ BTop as an infinite loop space and our results therefore

include determination of the p-primary characteristic classes for stable
topological (or PL) bundles. The latter calculation was first oBtained by
Tsuchiya [37] and myself [20], independently, but the present proofs are
drastically simpler and yield much more precise information. .Ln particular,
we obtain a precise hold on the image of H*BCoker J in I—I*BSF. This
information rather trivially implies Peterson's conjecture [25] that the
kernel of the natural map A - H*MTop is the left ideal generated by QO
and Ql’ a result first p‘roven by Tsuchiya [37] by analysis of the p-adic
construction on certain 5-cell Thom complexes.

The essential geometry behind our odd primary calculations is the
splitting BSF = BJ X BCoker J of infinite loop spaces at p. The 2
primary analysis of sections 12 and 13 is more subtle because, at 2, we
only have a non-splittable fibration of infinite loop spaces
B Coker J -~ BSF —EE* BJ’® . Indeed, we shall see that, with the model
for J relevant to this fibration, it is a triviality that SF cannot split as

Jx Coker J as an H-space, Section 12 is primarily devoted to analysis of

e
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e*i HSF - H*.T® and the internal structure of H*J® ~ The main difficulty
is that, vuntil the calculation of e, is completed, we will not even know
éxplicit generators for the algebra H*J®. An incidental consequence

of our computations will be the determination of explicit polynomial
génerators for H*BSO®, In section 13, we give a thorough analysis

of the; homological beha—vior of the fibration cited above. On the level of
rﬁod 2 homology, complete information falls out of the calculation of ‘-e*,
and the bulk of the section is devoted to analysis of higher torsion via the
calculation of the Bockstein spectral sequences of all spaces in sight. The
key ingredients, beyond our mod 2 calculations, are a new calculation of
the torsion in BBSO, which was first computed by Stasheff [31], and
Madsen's determination [16] of the crucial differentials in the Bockstein
spectral sequence of BSF.. The results we obtain are surprisingly intri-
cate, one interesting new phenomenon uncovered being an exact sequence
of the form 0 - 2Z - Z2 ® Z, 6 ~Z, 6 0 contained in the integral homology

4 8 4

sequence H, BCoker J = H, BSF = H for i# 23, the Z_ in

1B 8

470

H4iBSF being in the image of H41BSO¢
Because of the long delay in publication of the first few sections,
various results and proofs originally due to myself have long since appeared

elsewhere. Conversely, in ordér to make this paper a useful summary of
the field, I have included proofs of various results originally due to Milgram,
Madsen, Tsuchiya, Kochman, Herrero, Stasheff, Peterson, Priddy, Moc;re,

and Fiedorowicz, to all of whom I am also greatly indebted for very helpful

discussions of this material.
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§1 Eoo ring spaces and the # product

Before proceeding to the analysis of their homological structure,
we must recall the definition of Eoo ring spaces. This notion is based on
the prior notion of an action A of an Eoo operad H onan Eoo operad ( .

Such. an action consists of maps
: . . F, . — S e el > . .
N HE)XEG) X xCG) = EGpecg) s k21 end jox1,

subject to certain axioms which state hovs}:;:he A relate to the internal
structure of ¢ and M. Only the equivariance formulas are relevant to
the homological calculations, and we shall not give the additional axioms
required for theoretical purposes here. We require some notations in

order to state the equivariance formulas.

Definition 1.1. For jr >1, let S(jl, ‘e ) denote the set of all

‘,Jk

sequences I= {11, e, 1k} such that 1 €3 <j and order S(Jl, ee ,Jk)

lexicographically. This fixes an action of Ej on S(jl’ - ,jk), where

J=Jl'-‘3k. For oe Ek, define

< sersd > SGyensni ) =~ SG  eensi
oo b Ty el
by

<T<j1, e ,jk>{'11, cees 51(} = {iufl(l), - ’io-‘l(k)

Via the given isomorphisms of S(jl’ .-.,3,) and S(j

] yeees]
k -1 -
o (1) o1k

with {1,2,...,j}, ¢< Jys--+s3 > maybe regarded as an element of Zj.

For 'rreEjr, define 'rl®...®-rke Ej by

(‘rl®...®’rk){i1,...,ik} = {-rlil,...,'rkik} .

Observe that these are "multiplicative” analogs of the permutations
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in 2, . which were used in the
+.o..1]

o-(Jl,...,_]k) and 1,0...0 7 i .

k

definition, [G,1.1], of an operad.

The equivariance formulas required of the maps \ ‘aie

Megose,,...,c;) = NMg;c yeeesC Yo<i, i >
1 k - -1 1 k
ot (1) (k)

and

£ (g; CTysees cka) = (g; Cprenns ck)('rl®. .. ®‘rk)
for ge}:j(k), c ¢ 2:(_]1.), oe Zk, and T.€ er
We require two other preliminary definitions.

J e

Definition 1.2. LetXeJ . For jrz 1, define 8:X ! X...XX"7 =

joeoli
kI Ik
&N by

B(y'l,...,yk)= . X Y
IeS(Jl,...,Jk)

where if v, = (xrl, .. "xrj ) and I= {11, . ,1k} , then vy = (xli y e "ink
T 1
Definition 1.3. A fjo—space (X,£) isa H -space with basepoint 1
together with a second basepoint 0 such that
gk(g,xl, e ,xk) =0
for all ge K (k) if any x = 0. Let K O[J] denote the category of

H—O«-spaces.

Definition 1.4. Let 4 acton C . A (¢, h)-space (X,£,0) isa
ﬁo-s'pace (X,£) anda -space (X,8) with basepoint 0 such that the

following distributivity diagram is commutative for all k> 1 and jr >1,

where j = jl- sl

).

e

'H(lé)x(:‘*(jl)x XJlx...xg(jk)XXJk ! e Hi x x5
\
B \\\
. - \\ gk
3 N
1) XEG)) X XEG,) XX e oxx BN
A X4 XS \\\
N\
N v . \\
B x EG))x. . x B x & N
\\
A
o N
. A xgj N .
BEXEG)) X. . XC G X (409 x XY < JOEES

Here the maps p are shuffle homeomorphisms and A is the iterated diagonal.

Let gk: /J(k) X C(ji) xxJi X... xC(jk)xXJk - €3) x % be defined
by commutativity of the left-hand side of the distributivity diagram. This
definition makes sense for any Ho—space (X,£), and the omitted parts of the
definition of an action of H on & serve to ensure that the ijk induce an action
of 4 on CX such that n:X =~ CX and p:CCX~—~ CX are morphisms of
/:Jo-spaces. In other words, if H acts on £, then C defines a2 monad in
H O[J] The distributivity diaéram states that 8:CX ~ X gives (X,§)

a structure of an algebra over this monad. It is this more conceptual
formulation of the previous definition which is central to the geometric
theory of [R]. We refer the reader to [R,VI§4 and VII§ 2 and 4] for
examples of suitabl;e pairs ({, A) andto [R,IV §1-2, VI§ 4-5, and
VIL§2] for examples of ({, /d)—spaces.»

We should perhaps mention one technical problem which arose in [R],
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if only to indicate its irrelevance to the calculations here, In practice, one; .
is given a pair (%', H') of locally contractible {e.g., Eoo) operads such
that A' acts on g' . In order to pass from (C" , /' )-spaces to ring
spectra with similar internal structure ontheir ze:roth spaces, one replaces
(c', 4y by (€, 4)=(5"% Koo’ H XX ), where ){m is the infinite
little convex bodies operad and ;( is the linear isomeﬁries operad, How-
ever, Xm and C are in fact only partial operads, in that their structural
maps y are only defined on appropriate subspaces of the relevant product
spaces. (See [R,VII§1 and §2] for details.) The results of I apply to
C -spaces since, when only the additive structure is at issue, (: may as well
be replaced by its sub operad C' X Eoo’ where C:'OO is the infinite little
cubes operad used in I. On the other hand, since the maps vy do not appear
in the distributivity diagram, they play little role in the study of multipli-
cative operations and their interrelationship with additive operations which
is our concern here. (In thefew places the y do appear, in the proofs of
2,2 and 3.3, we can agaﬁ replace { by &' X COO 3

Henceforward, throughout this and the following two sections, we
tacitly assume given a ;Eixeé} pair of Eoo operads  and /3,4, such that /,Z
acts on (- and a fixed (&, A4)-space (X,¢£,8). (This general hypothesis
remains in force even when results are motivated by a discussion of thei:
consequences for H*’f‘}) We refer to such spaces X as Eoo ring spaces.
It should be noted that .Eoo semi-ring would be a more accurate term: we
have built in all of the axioms for a ring, up to all possible higher coherence
homotopies, except for the existence of additive inverses.

We intend to analyze the interrelationships between the two R-algebra

strictures on H_X, and we must first fix notations. For ie X, we write
%*

0
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X'i for i éonsidered as a subspace of X and write [i] for i regarded as

an element of HOX. Of course, -nOX is a semi~ring, with addition and multi~
plicétion derived from 8 and §. Fix c.e £ (r) and define the r-fold

" additive " product on X to be Qr(cr):Xr - X. Write * for this product

both on the level of spaces and on homology. Note that * takes

Xi X Xj to Xi+j and that [i]=[j] = [iH]. Write 0 for the homology operations

determined by 8; Q° takes HX to H*Xpi and Qo[i] = [pi]. Fix g H(x)
and Flefine the r-fold "multiplicative" product on X to be ér(gr):Xr—* X.
Write §# for this product both on the level of spaces and on homology; however,
to abbreviate, we write # on elements by juxtaposition, x# y = xy. Note that
4 takes Xixij to Xij and that [i][j] = [ij]. Write & for the homology
operations determined by £ ; B takes H:.':Xi to H*X.p and 50[i]= [ip].

i

Let £:H X - Z be the augmentation and note that € [i] = 1,
- P

Let §:HX->HX®HX bethe coproduct and note that ¢ [i] = [11®[il.
For xe H*X, we shall write VYx= 2 x'®x", as usual; the iterated co-
product :H*X - (H*X)r will sometimes be written in the form

yx= 2 X(i)‘® coe ®x(r), with the index of summation understood.

It 'n'OX is a ring (additive inverses exist), then H,X admits the con-
jugation x ({for *) defined in Lemma I.2.7; of course, e = *(1 ®x)y ,
where 7 is the unit for %, n{1) = [0]. Moreover, st = sz by inductive
calculation or by Lemmal.1.2 and the fact that the operations o° agree with
the loop operations on the weaicly homotopy equivalent infinite loop space
BOX' In contrast, multiplicative inverses do not exist in 'rrOX in the interest-
ing examples, hence the product # does not admit a conjugation.

We complete this section by obtaining formulas for the evaluation of

~S
# in terms of * and the o°. Formulas for the evaluation of the Q in
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terms of #* and the Q° will be obtained in the following two sections. All

of our formulas will be derived by analysis of special cases of the dis-
tributivity diagram. The following result was first proven, for X =F, by

Milgram [ 22].

Proposition 1.5, Let x, V% € H*X and 1,je ‘rrOX. Then
() [0k= (£900] (and [1}x =)

(i) if mX isa ring, [-1]x = xx ; .

(151) (e¥y)a= SO (-4)7°8 T I8 Pigraygn,

. ol wFs d ' degx" . T o 1w ez
(1) Gexla]) (r#[]) = 5 (-0) 78 T8 eyt s ] ¢ yo[a] * [14] -
Proof. Since (X,£) is given to be a }jo—space, we have that

O#x =0 for x e X, and (i) follows, Formula (iii) holds since the

following diagram is homotopy commutative:

Kxxxx —X1 o xxx
A
1X1XA w
XXX XX XX X
1XtX4 l
.LLX_lL *
XXXXXXX —20 5 ¥ XX

Indeed, by the distributivity diagram applied to elements (gz, €51 %, Y, 1, z),
where 1 ¢ C (1) is the identity, the diagram would actually c;)mmute if
on the bottom right were replaced by the product Gz(c'z), ch = A (gz; cs 1),
and any path from c, to c'z in é’(z) determines a homotopy from

* = ez(cz) to Qz(c'z).. Formula (iv) follows formally from (iii) and the
commutativity of the product # on homology. Formula (ii) follows by in-
duction on the degree of x from (i), (iii), the fact that [0] = [4] * [-1], and

T

the equation n& = *(1 ® x), since these formulas give
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>3 [-alet = (A]#[-4Dx = [0)x = (ne)(x) = S w wy,

Proposition 1.6. Let x,ye H, X. Then

(Q®x)y = 12 Qs+i(xPiy) and , if p > 2,
By = S e Hply) - S (-0TE X Hmlgy) |
. i . i

Proof. The following diagram is Z}p-homotopy commutatives

8 X1
Clp) xxP xx P > XXX
#
1X1X A
Elp) x xP x xP X
e P ®
41X #
& (p) X (X x X)P . > Clp)xx°

Indeed, by the distributivity diagram applied to elements (gz, c,y,4,%x) for

(e,y) e £(p) xXP and x ¢ X, the diagram would actually commute if the

. identity of C(p) on the bottom arrow were replaced by the map

c=> X\ (gzg ¢,1), and these two maps [(p) ~ &G (p) are Ep-homotopic
since ( (p) is Ep-free and contractible. The rest of the argument is
identical to the proof of Theorem I.1.4.

Of course, in the case of QSO =,T:3‘/, the previous two results are con-
tained in Theorem I.1.4 and Lemmall5. Since, by Theorem ¥. 42, H*QS0 is
generated by [+1] as an R- algebra, the previous results completely determine
the smash product on H*,]}‘); all products QI[i]x can be computed by :‘mdﬁc-
tion on £(I). The following observation implies that H*% is generated

under the loop and smash products by [-1] and the elements BEQS[i] (ox

Q1] if p=2)
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Proposition 1.7. Every element Ql[i] of HX is decomposable

Ei sy Ek Sk
as a linear combination of products B “Q [41]---p “Q [1]

Stk
(for Q “[1]"**Q "[4] if p = 2), where k= L(I).
Proof. If 1= (s,J), then Q[1]= Q1111 - & (pLa’[1]).
i>0
On the right, QS‘Ll(Pl*QJ[i]) = el - S Qs+1+J(PJ*P;QJ[i]).
>0
Iterating, we reach terms where the error summation is zero after finitely

many steps. Since P;Qj[i] is a linear combination of monomials QK[i]

such that £(K) = £(J), the result follows by induction on the length of I,

When vOX is a ring, we can define a product * in H_,_X1 by

x %y = (ex[-A]) * (y*[-1]) * [1].

Thus * is just the translate of the product * from the zero component to
the one component, Since

£

modulo elements of H"‘Xi which are decomposable under the product *

)

~n
we have the following corollary when X = F,

Corollary 1.8. The elements B Q°[1] * [1-p] (or Q°[1] * [-1] if

p = 2) generate H SF under the products # and *.

The following explicit calculation is due to Milgram [22]; his proof

depended on use of the known structure of the cohomology algebras of the
groups ZJEZ and 24 .
S ] s S
Lemma 1.9. Iet p=2. Then Q[1]Q[1]= Q Q4] and, if
s>0 and m X isaring, (Q°[4]* [-A)(Q[1]*[-1]) = 0.

Proof, By Proposition 1.6 and the Nishida relations, we have

s € s €, s s
(6 18 Ml p 0 N[4T) * 105 = (8 M0 Y41 * [-p] -+ (p 50 K[4] * [1-p])

-
-
:

0
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! s s . N\ SH _s-i
Qs[i-] Qs[i] = 0°Q [1] + a_, where a_ = Z (3, s(p-1) -pi)Q o° 1.
’ i>0
Visibly a, = 0, Assume inductively that a. =0 for 0<k<(s, s 2»2.

1 k

Rather than use the Adem relations to compute a directly, we observe
that, by an easy calculation, the induction hypothesis implies that a is
primitive. Since ag is a linear combination of length two elements of R
acf:i.ng on [1], TheoremI.3.7 implies that a =0,a_ = Q1 Qi[i] , or

a = QZ Q}l[i]° Since deg ag 2 4, the first alternative must hold. For the

second formula,

(@UI-1D = S 10 a1 Qe 4] QJlah[-4] % [1]
1 J

1

(@7 0" ) (a1 * QT # 4]

]

#(1®x) $(Q°[1]* Q°[1]) 1] = 0.

Here the first equation follows from Proposition 1.5 (iv), the second from
our first formula and symmetry (the terms with i + j cancel in pairs), and

the last from the definition of ¥ .



§2. The mixed Cartan formula

We shall compute 'bs(x*y) in this section and b‘rﬂstx in the
next, x,ye¢ H _X. To do so, we shall have to decompose special cases
of the distributivity diagram. We need the following notations.

) and give S

Definition 2 .1. Let S be a subset of S(ji’ ves ’jk
the ordering induced by that of S(ji’ cees jk). Let n(S) denote the num-

ber of elements-in S. Define .

5(8): GG,---3) ~ Enls)

to be the iterated degeneracy (as in [G, Notations 2.3]) given by

o(S)c) = vy(e3s), ce C(ji...jk) .

Bpeeed .
where s is that element of [ $(0) || C(] k whose Ith coordinate

is %e (C(0) if I/ S andis 1e {:(1) if Te¢ S. For example, if 'é’z()(,
(e}
then ofS) deletes those little convex bodies of ¢ which are indexed on

i¢ S. Define i ;
Ms) = o (8)r t HRX CG) X0 X £G,) =~ Ens)

and define . .
I1 N

5(8): X "X... XX > x248)

by letting & (S){y,,...,Vy,) have B coordinate (x if
g 1 Yk

S |
1,11 k,lk

y. = (Xri""’xrjr) and I = {11,...,:1(} ¢ S. Then define a map

£(S) by commutativity of the following diagram:

|
.
. i

A e A s

B

. d
A x C6) XX XL x £

B
/d(k)x é(ji)x.., X g:?(jk)xx 1><... xxJk
AX1X,..X1X8(S)

n(S)+1 n(S)

A
X EG) X e X 20 X (K9
B

A x £, %o X B % () x k9O

n(S)
k

> £ (n(8)) xX

Define E()= 6 o« &(5): M) x £6,)xx b x...x £, x X kox,

Abbreviate S(jjk) = S(ji’ eee ,jk) when j'.l Seee =g = j. To com-~
pute 'és(x*y) and O ﬁerx, we must analyze ?_‘;'s(z; p) and gS(p; P).
The definition suggests the procedure to be followed: we break the relevant
set S(jsk) into an appropriate union of disjoint subsets in order to decom-
pose ES(j;k) into pieces we can analyze. The following result gives the
general pattern. Observe that the evident action of the wreath product
ijEj (defined in Definitionl.5.3) on the set S(j;k) fixes an inclusion of

J
when R T

Ekj Ej in E-k . The distributivity diagram is clearly Ekj Zj-equivariant

Proposition 2.2. Let G be a subgroup of zkfzj and let

S5C5(jsk) be the disjoint union of subsets S ,Sq such that each Si

EERE
is closed under the action of G. Then each ij(Si) is G-equivariant, and

£(S) is G-equivariantly homotopic to the composite

9
151 569

I x (E@xK) R (4w x(E ()xx)T x4 ey

Proof. Consider the following diagram:
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86
) Obviously the left-hand square commutes, Let 1(S):G ~ 2 be the
j s n(s) : n(s)
109 (2 6) x D —EE s Eae) xx*®) - x | .

J Y homomorphism (not necessarily an inclusion) determined by the action
| of G on S. Clearly o(S) is G-equivariant, where G acts on &{j )
]
| n(S
E G @(s)) XX (s) via the given inclusion of G in Zku‘j C =y and G acts on {5 (n(S))
| , ) . j
]

’ A * £ . . ~s -
3 %1 ' % vis u(S). If ¥ is defined by ¥(v) = v ‘tv, then .(S) coincides with the
l q E
p n(S ' .
i:ic(n(si)) XX © : composite q

i - X (S )

L o 3 o A q_is1t" g v ’

% q - X, 8 - —

| . X4 g(si) q n(S;) i=1 n(Si) q . G G %4 En(Si) Zn(S) Zn(s)

i . 1= e . S

| (Hrx(E@xx)® 22 Le X (Ch(s)) x XY x | i

ince Po® is the i i = i d ined by th

: since Vv is the inclusion of i>=<1 n(si) in Zn(S) etermined by the

Here p is a shuffle homeomorphism and 7 denotes right action by that inclusions of the Si in 5 as ordered subsets. Therefore the composite

. ) . N q
permutation v of n{S) letters which corresponds to changing the order- Dak °i§'1 (r(si)a A is also G-equivariant. Since gj(jk) is G-free and

ing ‘of the set S from that obtained by regarding S as the ordered union & (n(8)) is contractible, the right-hand square is G-equivariantly homo-

Siu ee. WS (where each S, is ordered as a subset of S(j;k)) to that topy commutative and the proof is complete.
q

. s s . 3o . Th * in the
obtained by restricting the ordering of S(J’k) to S ¢ map We give two lemmas which will aid in the homological evaluation
operad ¢ is defined by - of the composite appearing in the proposition. It will sometimes be the

(a

~ yle s q, 5.));
e d)d T egd, . nd), de ES))

case that all &,(Si) induce the same map on G-equivariant homology.

for our fixed c ¢ (&(q). By[G, Lemma 1. 4], the right-hand triangle L The following lemma will then be used to simplify formulas.
q

and trapezoid commute, In the Ieft-hand rectangle, the coordinates in

Lemma 2.3. Let ¢i: Y X, 1<i<q, be maps such that
<(S)

, in order, given by £(S) and by the specified composite are the ¢i~’— = ¢j*' Then the map on homology induced by the composite

same. To study the coordinate in ({(n(S)), consider the diagram

v A Yq i=1 i Xq * %
kA S is given by y —
B x CG) £y —E— Emes) o given by y = [allfy, y) for ye HY.
R .
1" Proof. Define iq:X-*X by iqx = (41 *...%x1) #x, qfactors
A A g =n(s)

of 1. The distributivity diagram (applied to (g,,c W%, 8,(0), ve )

q implies that ko ¢;1°A is homotopic to i o yfi, and the result follows.
q X, o(8.) q

. kg A kaq i=1°%3 4
¢ ——ye e X n(S, ~
(ﬁ ®xEGH) €G) 124 C (o 1)) When the g(si)* are distinct, the following observation will allow
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computation of A_ on G-equivariant homology.

Lemma 2.4. The following diagram is commutative:

1

. k .
B x (26 x xS —L1XA L kg x ((26) x xD)HE

A AX1

(B x (E6) x )l Hagix ((EG) x ) HE

(where p is the evident shuffle homeomorphism).

When k=p and G contains the cyclic group ;r= X 1jC,‘ Zngj,
the maps (1 X Ak)* and p.*(A X 1)* on G-equivariant homology can be
readily evaluated by the naturality of equivariant homology and by use of
the explicit coproduct on the standard w-free resolution of Z_ (compare
[A, Proposition 2,6]). '

The following theorem was first proven, for X = ‘f‘, by Madsen
[15] when p = 2 (using Kochman's calculations [ 13] of the operations in
H,O) and by myself [20] when p > 2; the present proof is a simplification

of that given by Tsuchiya in a later reformulation of my result [38 ].

Theorem 2.5 (The mixed Cartan formula). Let x,ye¢ H X .

Then

0 B >

SO+..,+sp= s

Z 50 O(X(O) ® Y(O))* e Sp P(X(P)®Y(P)),

where x@®@y — Zx(o) ® y(0)® veo ®x(p)® y(p) under the iterated co-
product of H&X®HJ=X :

. ~S ~g ~s ~S

(i) Q=x®y)=(ey)Qx and 9, x®y)=(ex)Qy; and

(ifi) ,éis(X® y) = [% (i, p—i)]Qs( z Z x(i). . .x(p-i)y(i). e y(i)) , 0<icp.

|
é
|

) Eop=2, Bcev) = >
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s s S
o~ 4 2
E: E: Q Oxx* Q (X"y‘)*a gy,
so+ Si+ s, =8

Proof. Formula (iv) is just the case p = 2 of (i) through (iii).
We use the distributivity diagram and Proposition 2.2 with k= p and
j_o=j=2; we fix c ¢ {£(2) and omit the coordinates (J(2) from the
T -

notation in these results. We must analyze the set S(2; p) of sequences
I= {ii, cee ,ip} , ir =4 or 2, Let tII denote the number of indices« T
such that ir = 2 and note that |I| i? invariant under permutations of the
entries of I. For> 0<igp, let §, = {1| |1} = i}. By the cited results,

with G = EPC EP'( 2“.2 in Proposition 2.2 , the following diagram is

Ep—equivariantly homotopy commutative:

- 3
o) x ®3P —2, HpyxxP —2 5 x
A %
P ~
(ij (p) % (XZ)p)p-}-i i?:(O E(Si) Xp-H.

~ ' .
Define ais(x®y), 0<i<p, by use of the map g(si) 'in precisely the
same way that the homology operations were defined for Eoo spaces

(X,8) by use of the map BP in the proof of Theorem I.1.1. Then formula

. (3) follows from the diagram by use of Lemma 2.4 and the Subsequent

remarks. The sets S0 and Sp each have a single element and, for these

o
i, E(S.) is the composite
: , (s, L8y
Hip) x x°)P ————— (1) XX —> X.

Since Cf(i) is contractible to the point 1, 61 is homotopic to the pro-
jection w onto the second factor. By Definition 2.1, wog(si) coincides

with the composite of gp with either 1 X 17? (when i=0) or 1X “7?
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(when i= p), where vj:XZ -~ X is the projection onto the j-th factor,
j=1or 2. Formula (ii) follows., It remains to prove (iii). Fix i,
0<i<p, and let T, = %(i, p-i). Let = be the cyclic group of order p
with generator v and let Tj, 1<j< T, run through a set of double coset

representatives for w and Zp-i x Ei in Zp (under the standard

inclusions).  Thus EP =\_J -n-—rj(Ep . X Zi)" Note that, for 7€ Eé,
] -

the group _r-i_“__r mn (Z‘p i X Ei) is trivial and'there are therefore

p= [—r—i-rr-r: {e}] complete right cosets of Zp i X Zi in the double

coset -rr-r(EP iX Zi); thus precisely E double cosets are indeed re-

quired. Let Ii ={4,...,4,2,...,2}, i twos, observe that Zp—i X Ei
k

acts trivially on Ii’ and define Sij = {o "'inl 12k p}., Clearly Si is

the disjoint union of the sets Sij and, by Proposition 2.2, the following

diagram is w-equivariantly homotopy commutative:

E(s.)
B(p) x (x)P > X
A &
T. 51 E(S) T,
(yp) x (x5 1323 x i

We claim that, on the w-equivariant homology classes relevant to (iii),

each E(Sij)* agrees with the map induced on homology by the composite

p 1x(axA)P p 1x#P

. . <]
Clo) x (%) E(p) x (P k)P E p () xxP B> x,

(The claim makes sense since C, H(p) and C_ £(p) are both w-free
resolutions of Zp.') Formula (iii) will follow by use of LLemma 2.3 .

To prove our claim, consider the following diagram:

S S T R S SRS
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xij XAXA - i 1xE
Yy xx—— Cp)xxP 7 xx € (p) XX
4‘ij)fA(AxM gxA Ixa
1x £P
IXAl 2 (p)x B (p)P x (xP)P—2Ex () x (Y (p) xXP)P——B> 2(p) x xP Ixa
1><&i_
, £(s,,) !
Be)x (x9P ‘ > Cp)xxP

The map #: < (p) =~ C(p) X }ﬂ(p)p is defined by f#{c)= (c, gg) and the upper
right trapezoid commutes because # = gp(gp):l}{p - X. The maps

Nyt ) = £() and g k(e) =~ E(p) X Y(p)F are defined by
p
hy® = ME)(E D) a4l = 006, X BeT)

If we could identify Sij with {1,..., p} by o-k'rin -k, then the homomorphism
L(Sij):-n' - Zp ‘given by the action of m on Sij would coincide with the standard
inclusion v: = Ep. Actually, the given ordering of Sij as a subset of

S(2;p) may differ from the standard ordering of {k}, hence I,(Sij) may differ
from v by an inner automorphism, given by aij say, of Z ., The map
Szij:Xp - %P is left action by aij’ and the right-hand triangle commutes
trivially., Of course, Qij is w-equivariant if « acts on the domain via
(that is, by cyclic permutations) ;amd on the range via L(Sij). If 7w acts on
M) via . andon C(p) via (Sij)’ then )\ij is w-equivariant, If w

acts on ?:i(p)p by cyclic permutations and acts diagonally on (Z(p) X ,U(p)p,
then tpij and @ are w-equivariant. Thus the upper left triangle is
Tr-e‘quivariantly homotopy commutative since /;j (p) is w-free and

{f(p) X b(p)p is contractible. The bottom part of the diagram commutes

since gp is Ep-equivariant and since, for ge }j(p) and (xl,xz) € XZ,
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§(Sij)(1 X A)(g, % Xz) = ( )‘ij(g)’ I>:S ép(g, xil, cees xip))
ij

while (g, % xz) - ()\ij(g), aij( k% . gp(go'k-rj,xliui, x;;' )} under the com-~

posite through the center of the diagram. If j: W — C*yi(p) and

JleW - C* E(p) are any two morphisms of w-complexes over Zp

{(as used in the proof of Theorem I.1L.1),then (C*)\ij) sj is w-homotopic

to j' by elemenfary homological algebra,. ';‘hus, when we pass to

—rr—équivariant homology, we may ignore )\ij'. By the diagram and by

[A, Proposition 9.1], which evaluates (1XA),: H*(‘rr;H*X) - H, (w3 H*Xp)

for any space X, we conclude (by induction on the degree of xQ®y) that
’g(sij)*(er® =®y)F) = e ® > (x(l). . .x(p’i)y(l). .. y(i))p .

By [A, Lemma 1.3], H*(-n";H*(XZ)p) is genlera.ted.as a Zp—space by

classes of the forms er® (g@y)p and o ®xl R 5 R.. .®xp®y‘p.

The latter classes are clearly irrelevant to our formulas. The proof

of our claim, and of the theorem, are now complete.

~J ~s
In H_¥, the computation of the operations Q" therefore reduces
to their computation on generators under the loop p'roduct and thus, by

the ordinary Cartan formula, to their computation on generators under
both products., We have the following lemma (as always, for any Eco
ring space X),
. ~S ~S
Lemma 2.6. (i) Q[0]=0 and Q[1]=0 forall p andall
s> 0.
X is a ring and p> 2, then B°[-1]= 0 for all s >0.

(ii) If un

(i) I mX isaringand p= 2, then B°[-11 = Q°[1]%[-1], s> 0.
. Proof. ©[l]=0 for s>0 by Theorem I1,1.1{5) and 68[0] =0

for 5> 0 since gp(g, (O)p) = 0 forallge H(p). Now assume that

S AR PO S
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: —n-OX is a ring.- Let p >2 and assume that Aék[-l] =0 for 0<k<s

(a vacuous assumption if s =1). Then, by the Cartan formula and
. ~0
the fact that Q [-1] = [—1]P = [~1], we have

~S

0= BN1= F(-11.0-1]) = (F[-1DI-1] + [-11(B°[-1]) = 2[-11&°[1].

'és[—l] = 0 follows. Finally, let p = 2, observe that '60[-1] = [1], and
~k k
assume that Q [-11= Q1]%[- 1] for 0< k< s. Then, by the mixed

Cartan formula, by Q][-l] = x d[l], and by the defining formula for ¥,

we have

0

I

B0l = B([11=N1]) = SO B[-110° [-1]5[1]
i=0

]

s-1 . .
r-11%[-11+ S QT1]xxQ° 1] = &[-11%[-1] + Q[1]x[-2] .
i=0 '

65[—1] = Qs[l]:::[—l] follows.

The following implication of Theorem 2.5 is due to Madsen [15 ].

Lemma 2.7. If 'n'OX is a ring and p = 2, then, for s> 0,

aZs+1(Qst[1]*[_3]) = 0.

2s+l s 2s+1
Proof. Q-7 0%=0 and B°T'%® = 0 by the Adem relations,

NN . 5.8
and Q Q[1]= Q" Q1] by Lemma 1.9 . An easy calculation from the

mixed Cartan formula and the lemma above shows that rél[-3] = 0.

~2s+l

Each summand of Q (Qs Qs[l] %[-3]), as evaluated by the mixed

Cartan formula, has a * factor of one of the forms 621+161Q1[1],

21+l i i

. ~]
Q Q 0f-3], or Q[-3] (or else is zero by (3) of Theorem 1.1.1

The result foilbws,

Finally, we record the following consequence of Theorem 2.5

for use in [R, VIII §4], where it plays a key role inthe proof that SF
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splits as an infinite loop space when localized at any odd prime .

Lemma 2.8. Forany r>0 and s> 0, as[r] lies in the sub-
algebra of H X generated under * by [1] and the Qt[l] and, modulo
elements decomposable as linear combination.s of *-products of positive
degree elements,

B[] = 2 PR D x L - Bl
Proof. The result holds trivially when r =1 and we proceed by

induction on r. The first part is evident and, inductively, Theorem 2.5

gives that
Q% ([z-1]%[1]) = -‘E;«r-l)p ~ (e-1))Q°[11%[zP - p]
-1 . .
5 01008 I 1 - (1) el
i=1

By Proposition 1.5(iii), the second term is congruent to

-1 .
(i %(i,p-i)(r—l)"“‘)msm*[:P_ ol

i=1

Since rF = i (i, p—i)(r-l)p-l, the coefficient here is equal to
i=0

ES (P - (r-l)P - 1) and the conclusion follows.
P :
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'§3. The mixed Adem relations

We shall first obtain precise (but incredibly complicated) formulas
which implicitly determine ’érﬂe st by induction onthe degree of x,
X € H*X. We shall then derive simpler expressions in the case x = [1].
Mo;iulo corrections arrived at in correspondence between us, the latter
formul.as are due to Tsuchiya [38].

The proofs will again be based on Proposition 2. 2, and the following

lemma will aid in the homological evaluation of certain of the maps E (s).

Lemma 3.1. The following diagram is commutative for any subset

S of S{jsk):

BaxEG)xx X222 o hgx £ g)xxd —228 L Hag x (E6) x xH)E
AX1XI1 E(S)
K% Bl x € (1) xx & (a(s)) x 52O
1XtX1 ' ‘ 1 XA

AMS)x ¢t

B9 CG)x Hagxx 2EAXIXDL b g% & () x M (k) XX —— Z(n(s))xx

Proof. For x e X, each coordinate of E(S)(xf]k) is just xk. The re
sult follows trivially by inspection of Definition 2. 1.

Let G be a subgroup of Z XZjC ijzj such that S is fixed

k
under the action of G. The lemma reduces the evaluation of E’(S)* on
classes coming from the G-equivariant homology of H(k) X C(j) XX to the
analysis of the map [A(S)(1X A)]* from the G-equivariant homology of

A (k) X E(j) to the Zn(s)-equivariant homology of ( (n(S)), and this map

clearly depends only on the homomop hism . (S): G —~ Zn(S) determined by
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the action of G on S.

In order to simplify the statement of the mixed Adem relations, we

introduce some notations.

~ k

Definition 3. 2. Define ,,’Z, x=Z Qr+ = for x e H*X and r > 0,

Observe that evaluation of the Q,rx is in principle equivalent to the evalua-~

~T
tion of the Q x in view of the equations

%= S S "Rl 6 =

n>0 j=0

> 270,
£>0

where x is the conjugation in the Steenrod algebra. Observe too that, by

k
Propositionl.6, the analogous operation Q,rx = z Qr+kP*x coincides

with the # product o [1]x.

Theorem 3.3 (The mixed Adem relations). Let xe H*X and fix

r>0, Ex0o0rl, and s >E . Then arﬁs Q% is implicitly determined by

the following formulas (p>2 in (1)-(v))

.8,

M 2= (1), "%0" %0 xx D, Lxn x [pP 2 1]02 "2%

where {x = 2 XX xU X x™, y= 81 deg x' + 82(degx' + deg x"), and the

m < 2, range over those triples with T 20,

(rm: g ) 0=<

g =0o0ri, and s > ¢& whose termwise sum is (r,e ,s).
m m— m

r,&,s

(Here each operation ‘5m has degree 2(r+s)(p-1)+E€.)

r,B,s+k_k

>r,E,s
Define ;Zm’ x = Px for 0<m<2.

ZQ

k>0

O it 1'51 (1) "p-1"Fp-1
(i) 1 x*ZZ(i) Q x\ . *Qi,p-i

where ¢x = 2x(1)®...®x(p-i), 6= 2 ejdeg x(i), and the
i<j

e s )

1 < n< p-1, range over those triples with T 20,

3 S
p-t_(p-1) ,

m
x 3

0
4
L
|
|
|
|
|
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€ =0ori, s_>€ , and r +s_= 0 mod (p-1) whose termwise sum
n n n’ - n n

is (z(p-1),€,s(p-1)). (Here each operation ° has degree

2(zts)+¢e.)

~r,E, s r,g,stk(p-1) k
Define l x = z '’ P*x for 1 <ng p-1.

i,n i,n

k=0
' ~r,0,s s o
(iii) lo x = Q1]+ 1"x  and
5 r,l,s *r,0,s ~
Ly == L7 R s

~r,0,s
(iv) 2 x

S 0¥ (z-i(p-1), 5) Q5 [1]- 2 ana

Lo i>0
erias “"1‘,0, t-i i
2 x =2 Bx + > ' (r-i(p-1),s-1)pR [1]2_
i,n t,n i> 0

where r+s = t(p-1).

&) 277 % - SRt QP[] 2y

2 i> 0

and

wr,1,s ~r,0,8 s ~
2% =) v 3 QT ey A

i>0

Z Z 6 X‘*a x!

(rox 50) +(r1: 51) = (x, s)

(vi) I p=2 L' Qx-=

AT, s
where, if l = > Qr’ s+kka for m = 0 or 4, then
m k>0

ir’sx = Qs[i]-irx and ir,sx 2 (r-i,s)Qr+S—i[1].jix
o - .

i>0

i

1

Proof. Since [ppnz- 1] = [0] if p= 2, (vi) can be viewed as the

special case p=2 and E=0of (i) through (iv). We shall use the distri-
butivity diagram and Proposition 2.2, with k= jr = j = p, and we must

analyze the set S(p;p) of sequences I= {ii""’ip}’ iSirS_p. Let U de-
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note the set of all sequences J = {ji’ - ,jp} such that 0 < jks p and
JpEe.- +jp = p. For Ie S(p;p), define J{I) ¢ U by letting the kth‘ entry of
J(I}, 1<k<p, be the number of entries of I whose value is k (that is,

the number of r such that ir = k), Let w and v be cyclic groups of order
p with generators ¢ and v. Embed v as the diagonal in vP and embed 1r

and v in (copies of) Zp in the standard way as cyclic permutations.

These embeddings fix inclusions

vxvCExvCEvaEjE
P P P P

of subgroups of Z P’ where Z acts as permutations of S(p;p). Thus o
acts on sequences pI ¢ S(p; p) b? cyclic permutation of the entries and 7 acts
diagonally, adding one to each entry. Let T act on sequences Je U by
cyclic permutation of the entries and observe that J(vI) = v+J(I). Let T bea
subset of U obtained by choosing one sequence in each orbit under the action
of v ; we insist that T contain the particular sequences

I,= {p,0,...,0} and I,= {1,...,1}.
For Je T, define SJ ={1]710) = —rk.]' for some k, 0 < k< p}. Since permu-
tations of the entries of I do not change J(I), each SJ is closed under the

action of prv . Obviously S(p;p) is the disjoint union of the S For

=
J= {ji,...,jp} ¢ T, define I(T) e 5, by

I ={4,...,4,2,...,2,...,p,...,p}, where k appears jktimes.

We next break the SJ_ into smaller subsets which are still closed under the

action of wxv. First, consider the possibility ¢l = "1 for
I= {ii’ - ,ip} ¢ S(p;p) and some n. Then

{1p'11'”"1p-1} = {11+n,...,1p+n}, hence itn=i_ .
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" Here n=0 ifand onlyif J(I)e v- J,5 we agree to write S = 5. . Thus

0 Jy

S, = {Tl&(Jo)j 1<k<p}.

If 1<n<p-1, then all entries of I are distinct and J(I) = J Define

4
Y, € Ep by y;i(i) = (pt+i-i)n. Then YnI(Ji) = {pn, (p~i)n,...,n}. Define

k
= <k< i<n<Lp-1
S  n= Ty 10 [ 12k<p} , t<ngpd,

‘and note that -

p-1
5, = Si,n={I]J‘(I)=J1 and wI= vI}
n=i
Each Si , hence also Si’ is closed under the action of wrxv since
,n

n . .
O-YnI_(Ji) = YnI(Ji)' Clearly the complement S] of S, in Sin is also
ciosed under the action of =rxv. Define

s, =5, U( U s) = S(p;p) - (8,uS,)-
Y JeT,Jf’JO,J#Ji J o1

Note that mwxv acts freelyon S Choose a subset {ﬁq(.]’i)} of Ep such

2
that {ﬁq(.]’i)-l(.]’i)} is a wxv -basis for S} (the ¢q(Ji) may be chosen
from among a set of left coset representatives for w in Ep). Similarly,
for Te T, J# J, and J ¥ Ty, let {ﬁq(‘]')} be a set of double coset repre-

sentatives for w and X, X...X X, in Z ; thus
i Jp
z =U1r¢ (I(=, X...XZ,). Note that, for any § e Z_, the group
P a7y j P
q P
¢_11r¢ N(E, X... X%, ) istrivial (since B <P for all k) and there are
3 iy
- i =, in the doubl
p=[g "wf:{e}] complete right cosets of Ej X... X ;  in the double
. . .
coset wf¥f(T, X...X =, ); thus precisely i (ji’ ...+j.) double cosets
o o P |3

are required, where (ji’ - ,jp) denotes the multinomial coefficient. Ob-

serve that =, X ... X Ej acts trivially on each 'rk‘[(J) and define
J
t P
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S;.q = (TP 10| 1<i<p, 1<k<p)

(3 =7, is allowed here). Clearly SJ_ (or s!

1 if J= J'i) is the disjoint

i

union of the sets S , and each S

is closed under the action of wxv.
J:q J’q -

By Proposition 2.2, we now have the following three wxv-equivariantly

homotopy commutative diagrams:

eP
(o) & X 5B ) ()3 B )P B
A ’ _ A i 4 *
E(s,)xE (5,)XE (S,)
(M )% C(p)xxp)“i_xg""’ (1 ()% ( £ (p)x xP)PY 9 L 2 x3
' £(s,)
Hp)x Cp)xxP —1X28 5 U (p)x (£ (p) x XP)P ! x
A A *
P)'('i
p-1 Es, ) )
(HE)xEExxP)P XA gy (p)x(ip)xxP)P)P T 2L Z s xP™
‘ E(s,)
BE)x E)xx® — B> H(e)x (El) %) 2 x
A A - *
. _ pp—Z 1 - % E(S ) B
T s GG M TR TR e A B R
(Here n(Sy = P p since n(SO) = p'and n(Si) = p(p-1); compare

In each case, the left-hand square is required in

z (Ji’ o :jp)-)

JeU

order to obtain explicit formulas since we only have mxv-equivariance in the

A rigﬁt.a hand square.

101

The left-hand vertical maps A g 0L TXV ~equivariant

homology are easily computed by use of Lemma 2.4. The map (i X A)* is’

explicitly computed in [A, Proposition 9.1]. For xe HqX, define classes

- rts P
) = (-1) v(q)le(p-1)®e(ZS-Q)(P’i)‘E®x

r’s)s

[, (W= ®e,  ®x if p=2]

and g e, M) = ®x" if x+s = tlp-1)

t
(-1) v(q)62r®825—q(p—1)-£

in H (7 Hv; (HX)P). Then define

Q

B 5 (x)

Etxa)s ) [0 = g(so)*(im)*f

éj,e ) = B xA)E ) (3 %6 = & (s L 1XA)E,
6::2!5() = E(Si,n)*(1XA)*gr,E,s(x) s and
r 6 s
) = E(sy Jultxa)f, ()

We claim that, for p>2 and y= e2i® ej®xp, 'g(SO)*(ixA)*(y) =0 and
g(SJ’q)*(ixA)*(y) = 0 unless y is a multiple of some fr,e , s(x) and
£, )

~ €
that the er ’

= 0 unless y is a multiple of some B, g s(x). We also claim
1 2

’ S(x) are indeed well-defined, in the sense that the same
operations are obtained as J and g vary, and that formulas (iii), (iv), and
(v) hold.

Formulas (i) and (ii) will follow by use of Lemma 2.3 and chases

of the three diagrams above. Thus it remains to evaluate the maps E(SO)*,

~

£ (Si’ n)*’ and g(sJ’ q)*. In each case, we shall rely on Lemma 3.1; we

shall ignore those classes of H*(ﬂ (p) Xm_( £p) XvXp)p) which are not in the
since these

image of H*(H(p)XW(C(p)XVX)) under (1XA) (1X1XA),

classes are clearly irrelevant to our formulas. First, consider SO; since

)

&)
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o acts trivially on I(.]'O) = {1,...,1}, the homomérphisrn "(SO): XY > Ep'
determined by the action of wxy on SO is just the composite of the projec-
tion wxVv = v and the inclusion of v in £ . Therefore

X(SO)(ixA)Z Hp) X E(p) = €(p) is wxv-equivariantly homotopic to the pro-
jection on the second factor. By Lemma 3.1, we conclude that the following

diagram is -rxv -equivariantly homotopy commutative:

, £ (s.)

HE)x Ep)xx 2222 5 1) x E(p)xxP XA 4 (0 x (g (p)xxP)P L5 x

tX1 ' 9;

A

Clp)x H(p) XX Clp) x xP _

IX1XA 1% A

v 1XE

¢ (p)X B (p)xxP B - C(p) X X

Formula (iii) follows by a chase of the resulting diagram on wxv-equivariant

homology, starti ith the el t .
gy, starting wi e elemen le(p—1)®625(p-—1)—a®x

(or er® es®x if p = 2) and applying [A, Proposition 9.1] to evaluate maps

(1XA)*. When p > 2, the vanishing of § (SO)*(ixA)* on classes

eZi® ej ®xp which are not multiples of some fr s(x) follows from the

€,
Ep X Ep—equivariance of all maps -other than § (SO) in the diagram. Next,
consider Si,n’ 1<n<p-1; ¢ (Si,n):‘n- Xy = Zp is the composite
X_ X1
X v 2 vXv ¢

v = ,
P

where xn(wl) =+™ and ¢ is the multiplication of v. Therefore
)»(S1 n)(1 X A):A Y ) xEp) = & (p) is wXv-equivariantly homotopic to the

composite
A
xnx 1

) X C (o) ~2> £ (p) X C (o) —— £(0),

®

¢ A
where )?n and @ are any Xg and § equivariant maps. By Lemma 3.1,

i
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we conclude that the following diagram is wXv-equivariantly homotopy

commutative:

£, )
Hlp) X Clp) x x XX A 5 ) B (p)xxP XA S Hip)x ([lp)xxP)P —22 5 x

(1xtX1){AX1X1) ep
y
Hp) % £ (p) X A(p)xx K= (p)xx%P
IX1X1XA 1XA
: 1X1XE ;3(an1)><1
Ae)x & (p)x H (p)xxP ———F> ¥ (p)x B(p)xx E(p) X X

Formula (iv) and our vanishing claim when p > 2 follow by chases of the result~

ing diagram on w Xv -equivariant homology. When p > 2, the key facts are’

that )?n*(e )= n'e for 1<n<p-1 (andall i>0, €= 0 or 1) by the

2i~€ 2i-g

proof of [A, Lemma 1.4], and that
A
Buleg;®egye) = (i-8)epiase
; - : . - a
since Hyv 1is the tensor product I’(ez)®E(ei),' with e, Yi(ez) an

A
= : = = = {i,1 , i 11 s
€rirt = ©2:%00 when p = 2, X1 4 1 and ﬁ*(ei® ej) (1’J)ei+j inally

consider any SJ', q; L (SJ q): Xy =% 5 is determined by the action of
3 3
w Xy on SJ q C S(p; p). If we could identify SJ q with {(j, %)} via

oJTkﬂq(J)I(J) - (j, k), then !.(SJ q) would coincide with the standard com-~

posite inclusion

vXVCvJVpCEZ
P

(see [A,p.172-173]). Actually, the given ordering of SJ q as a subset of
S(p; p) may differ from the lexicographic ordering of {{3, %)}, hence (SJ q)
3

m‘ay differ from the specified composite by an inner automorphisb, given by



i
i
G
|
Bl
[

iAo, . R . :
Xo =T, X is any x~-equivariant map, and a
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14 say, of =

1.9 It follows that )\(SJ,'q)(iX A): )fJ (p)x =L (pz) is

pZ
w Xv-equivariantly homotopic to the composite

R>

/J(p)xC(p) XX Coyx Elp) 224 C(o)x E (p)P Y><:(p) L9 £p?

where y is the operad structure map,y = X i is the isomorphism

i
is right action b a
J.q & Y %.q”

By L.emma 3.1, we conclude that the followiné diagram is w X v ~equivariantly

commutative:
1X1XA iXA PP Ag(scr q)
Fp)x (p)xx 222225 H(p)x & (p)xxP =225 M (p)x (¥ (p) xxF) — X
(1Xtx1)(AX1X1) ep2
y _ o, 2
Hlp) x &(p) X A(p) X X 5 Elp ) XXP
1X1X1XA - | ixaA
\ AXIXE (. y{ixa))xt
Hp)x € (o) % H(p)xX® ——— B> (p) x F (p)xx —122 L%y xx

Here, on the bottom right, we may pass to C(p )XZ X, where oy qX 1
2 3

P
is the identity, since 8 2(1XA) is T ,-equivalent. To evaluate the composite
P P

6 L1xA)yx)(Exax1): &) XElp) X X=X,
P

observe that, by the definition of an action of an operad on a space (see [G,
Lemma 1.4]) and by a trivial diagram chase, this composite coincides with

the composite

]
A> c (p)XXp B X.

1X8
xAXIXES 2y xE (p)xxP —E> ¢ (p)xX

Glp)X € p) X

o
|
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Now formula (v) and our vanishing claim follow by simple diagram chases. The

proof of the theorem is complete.

Remark 3.4. In [38,3.14], Tsuchiya stated without proof an explicit, rather

than implicit, formula for the evaluation of 51‘st when p = 2. The formula

appears to be incorrect, and Tsuchiya's unpublished proof contains an error

. stemming from a subtle difficulty with indices of summation.

While the full strength of the theorem is necessary (and, with the
mixed Cartan formula, sufficient) to determine the A" on H*Q(X+) for a
general Eoo space X, our results greatly overdetermine the operations ar
on H*QSO: all that was absolutely necessary was a knowledge of BIBEQS[i].
The Nishida relations, Theorem I.1.1(9), can be used to derive simpler

expressions for these operations.
Corollary 3.5. Let p=2 andfix r>s20. Then
~r .8 8 j r+s5-j
Q QR 1]= Z(‘) (r-s-1,s-5)Q[1]x Q° [1].
. i€
r+k R “rds-j
Proof. We have z (k, s-2k)Q 4= > (rs-j)Qt]xQ [1]

i

“”s[i]—o if >0, and Qr *[1] = (r,8)Q

since (3 *111= Q°[11, r+s[ i1,
By induction on s, it follows that if r > s > 0, then

(1) 0 1] = Z a_ Qj[il* Q™"
i=0

where the constants arsj satisfy the formulas

s-j
- = -7 i <
(2) ‘ 1;::0 (ks 2k)ar+k,s_k,j (r,s-5) , 0<j<s
Visibly ﬁrQo[i] = [2]* Q7[1], hence a =1 for r> 0. By induction on s,

r00

there is a unique solution of the eguations (2) for r > s which starts with
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200 = 1. By Adem's summation formula [3, Theorem 25. 3],

s-j
> (i, s-2k)(r-s-142k, s-j-k) = (r,s-j) for 0<j<s and r>0,
k=0

hence 2 s = (r-s-1,s-j) is this solution.

Remark 3.6. By the mixed Cartan formula and Lemma 2.6, we have
~ ~T{ 854 T s T
B7Q11*[-1) = 8 '@ '[t1*Q 20 A-11*Q [1]*[-1].

when w X is a ring. The BTQ°[1] are evaluated by the corollary and,;

when r =s, by Lemma 1.9.

For the case of odd primes, we need a lemma on binomial coefficients.

Lemma 3.7. The following identity holds for all a>1 and b2 0:

S (-0 (i, b-pk) (b-k(p-1), a-1-btpk) = (a(p-1),b) mod p.
k>0

Proof. Calculate in Zp' When a = 1, both sides are one if b=0 (p)
and are zero if b# 0 (p). When b < p, the identity reads
(-1)°(b, a-1-b) = (a(p-1),b),
and this is true- since if a = a' (p), 115_ a!' < p, then both sides are zero if
1<a'<b and are (-1)b(b, a'-1-b) = (p-a',b) if b<a'<p. For a>1 and
b > p, proceed by induction on a. By iterative use of (i~1,j) + {i,j-1) = (&,3),

we see that, for n> 0,
n
(a(p-1),b) = > (m,n-m)(a(p-1)-m, b-ntm).
m=0

Set n = p, where (m,p-m)=0 for 0<m<p. By another use of

(i-1,3) + (i, j-1) = (i,j) and by the induction hypothesis,

Y (a(p~1),b) = (a(P"i)rb"P) + (a(P'i)"P:b)
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= (a(P'i):b'P) - ((a-—i)(p—i),b—i) + ((a.-i)(p-i),b)

j+i+b,. . . .
= > (-1) (5, b-p-pi)(b-p-j(p-1), 2a-1-b+p +pj)
jz0

+ >, (—1)k+b(k,b—i—pk)(b—-i-k(p-i), a-1-b +pk)
k>0

+ > (—1)k+b(k, b-pk) (b-k(p-1), 2-2 - b +pk)
k>0

ktb
= > (1) (k,b-pk)(b-k{p-1),2-1 -b+pk) . -
k>0
Here the last equality is obtained by changing the durmnmy variable in the
first sum to k = j+i, so that this sum becomes
k
S (1P k-1, b-pk) (b-1-k(p-1), a-1-bt pk) ,
k>1

and then adding the first and second sums and adding the result to the third

sum.
Corollary 3.8. Let p>2andfix r>1,€=0o0r i, and s>¢&. Then
~T £ 8 k ~r+k_g _ s-k
2B QTlil= > (1) (kslp-1)-pk-€)3 p R [1]
r, r T
= 1,72, p-1
= z i 2 (p 1) (Ii’si-ei) (rp_ilsp_i—ep_i)

E s 1 t € t T £ s
0 1 -1 p-1 -2
o0 [1]xp fo [1]#--- xp P P e [pP % 110 Pl1]p P P1]
summed over all triples (0,€0,sn) and (rn, e Sn), 1<n<p, with

Tpts, = tn(p-i) for some t and with termwise sum

n
p-1

(o, EO’ so(?-i)) + gi (rp En, sn) + (rp(p-i), Ep’ s

p(p—i)) = (r{p-1), €, s(p-1)).

Moreover, modulo linear combinations of elements decomposable as * pro-

ducts between positive degree elements of H*X,
~r € .8 £ g ~Tts P
Q'p Q1] = -(-1) (s(p-1) -&, r-s(p-1)+& -1)p Q" " [1]x[p"- pl

- Q7 pS 1 ]1x[pP - 7.
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Proof. The first statement is a direct consequence of the theorem
and the Nishida relations. For the second statement, note that
n
[p -1k = -x*[(p"- 1)i] modulo *-decomposables if xe H,X., n>0, and

deg x> 0. Therefore inspection of our formulas gives

[l

2765 0°[1] = -(z(p-1), s(p-1) -#)8° & *°[1] #lpP- p] - Q7[1165 Q°[1]% [pP- p21.

In view of Proposition 1.6, it follows by induction on s that

(1) BRI = e B2 1x [P 0] - Q7F° D 11% [pP- b7,

i

where the constants 2 s satisfy the formula

El

@ X D% sl-1)-pk-tla,,

= r( -1),S -1)-¢€ ).
2, x = &b (p-1)-¢)

€,8

E
We claim that 3 g ® (-1) (s(p-1)-¢, r-s{p-1) +& ~1). Visibly

~ 0 0 24
D' [t] = -0 [1]1=[pP-p] - @' Q [11*[pP-p°],
hence a .00~ 1. Just as visibly, .
~ i +1 i 2
QB [1] = -(x(p-1), p-2)pQ" " [1]*[pP-p]l - @ BQ [1]*[pP-p“],

hence a4 = (r(p~1), p-2). Calculating in Zp’ we see that

1 fr=0 (p)
(z(p-1), p-2) =< -1 i r="-1 (p) ,

0 otherwise

which is in agreement with the claimed value -(p-2,r-p+i). By induction
on s, there is a unique solution for the 25 which agrees with the known

values for 2,00 and 2.1 By the lemma, with a =1 and b= s(p-1)-g ,

our claimed values for the a_ do give this solution.

€s

Remark 3.9. The mixed Cartan formula and the corollary imply that, when
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'n'OX is a ring,

BT (E° Q1] #[1-p]) = -(-1) (s(p-1) €, r-s(p-1) + & -1)g° @ " °[1]*[1-p]

modulo elements decomposable under the * product. The point is that, in

the mixed Cartan formula, the term involving

8 S 1-p] = (R IIM-p)" )

" gives rise to a summand Qrpe Qs[i]*[i-pz] which cancels with the negative

of the same summand which arises from 5rﬁ€ Qs[i]. (The terms which in-
volve the 5;(ﬁ€Q5[1]®[1~p]) for 1< i< p-1 are ¥ decomposable by

Proposition 6.5 (i) below.)
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§4. The homology of C(X+) and Q(X+)

Recall that we have assumed given a fixed pair of EOO operads G
and Xl svuch that /1 actson ¢ . Let X bea Y -space, with basepoint 1,
and let X-l; be the union of X and a disjoint basepoint 0. Clearly X+ is
then a 'ho—space (Definition 1.3) with X as a sub h—space. As pointed
out in [R, VI §2], C(X+) is the free (&, H )-space generated by the A 0
space X+. An obvious example is X = {1}, when C(X+) = CS0 is the dis-
joint union _Ll_ K(=.,1). This example generalizes to X =G, a discret;:

i>0 N
Abelian group, when G(x1)= L X(z, §G,1) byL5.7. Similarly, if H

120

maps to the linear isometries operad X (as can always be arranged [R,IV

oL th ¢ +
1.10]), then QX ') is the zero~ space of the free 7} -spectrum QOO(X )

0 R
[R,1V.1.8]. The example of greatest interest is QS , but the Kahn-Priddy
theorem [10,11] and its analog due to Segal [30] make it clear that Q(RPoo +)
o + . :

and Q(CP ") are also of considerable interest.

Define an allowable AR-Hopf bialgebra to be an allowable AR-Hopi
algebra under two R-algebra structures (%, QS) and (#, QS) such that the
formulas of Proposition 1.5 (i), (iii), (iv), Proposition 1.6, Lemma 2. 6(i), and
the mixed Cartan formula and mixed Adem relations are satisfied. Such an
object with {additive) conjugation ¥ is also required to satisfy Proposition
1.5(ii) (namely x{x) = [-1] #x), and the formulas of Lemmas 1.9, 2.6(ii) and
(iii), and 2.7 then follow.

Let K be an allowable AR-Hopf algebra with product #, unit [1],
and operations 9°. Construct WEK® ZP[O]) and GWE(K® ZP[O]) by
1§2 from the component A-coalgebra K@ ZP[O] with unit 7 (1) = [0]; the
constructed R-algebra structure (¥, QS) is thought of as additive. The

formulas cited above determine a unique extension of the product # and

G e R R PR R e
g i CiTES
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operations Bs from K to all of WE(K & ZP[O]) and GWE(X® Zp[O]).
Tedious %ormal verifications (omitted since they are automatic when K
éan be realized topologically) demonstrate that WE(K @ ZP[O]) is a well-
defined allowable AR-Hopf bialgebra and that GWE(K @ ZP[O]) is a well-
deﬁned a.llowa..ble AR-Hopf bialgebra with conjugation. Moreover, these are
the frée such structures generated by K.

Returﬁing to our }j—space X, we see that freeness gives mo;phisms
H* of ?,llowable AR-Hopf bialgebras and "Ff* of allowable AR-Hopf bialge-

bras with conjugation such that the following diagrams are commutative:

HX -—-————-—->WE(H*X$ZP[O]) and HX ——> GWE(H*Xaazp[o])

n n
+ * +
e S
H.X H, Q(X")

The following pair of theorems are immediate consequences of I.4.1 and
I.4.2. (In the second, we assume that 4 maps to X .)

Theorem 4.1. For every H -space X,ﬁ*:WE(H*X ® Zp[O]) - H*C(X+)

is an isomorphism of AR-Hopf bialgebras.

Theorem 4.2. For every # -space X, ?f*: GWE(H*XQ ZP[O]) - H*Q(X+)

is an isomorphism of AR-Hopf bialgebras with conjugation.

These results are simply conceptual reformulations of the observations
that Propositions 1.5 and 1.6 completely determine # on H*C(X+) and
H, Q(X+) from # on H X and that the mixed Cartan formula and mixed Adem
relations completely determine the B° on ‘H*C(X+) and H,Q (X+) from
the Q° on HX. Inother words, if we are given a basis for H X and if we

give H*C(X+) .and H*Q(X+) the evident derived bases of *-monomials in
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degree zero elements and operations QIx on the given basis elements

X € H*X, then, in principle, for any basis elements vy and z, our formulas

determine y# 2z and the 5Sy as linear combinations in the speciﬁed basis.
There are two obvious difficulties. The formulas for the computation

of y# z and the 5Sy are appallingly complicated, and the result they give

is not a global description of H, Q(X+) as an R-algebra under # and |

the 55. In practice, one wants to determine the l}omology of the component

Ql(X+) of the basepoint of vX as an R-algebra, wi@ minimal reference fo *

and the R°. We shall only study this problem for leo = SF, but it will be

clear that the methods genei’alize.

In view of these remarks, the term AR-Hopf bialgebra should be
regarded merely as a quick way of referring to the sort of algebraic
structure possessed by the homology of Eoo ring spaces. In the absence
of an illuminating description of the free objects, the concept is of limited
practical value. (The term Hopf ring has been used by other authors; this
would be reasonable only if one were willing to rename Hopf algebras

Hopf groups.)
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" §5. The homology of SF,F/O, and BSF

The results of §1 (or of I§1) completely determine H,SF asan
algebra. In this section, which is independent of §3 and §4, we shall
analyze the sequence of Hopf algebras obtained by passage tovmod p
hoz;nology' from the sequence of spaces

Bj

so-1s sr I> F/o 1> Bso > BSF

Here j:50 = SF is the natural inclusion, Bj is its classifying map, and 7
aﬁd q are the natural maps obtained by letting F/O be the fibre of Bj. As
explained in [R,I], these are all maps of X’-spaces, where X is the linear
isometries operad, and thus of infinite loop spaces. When p = 2, a variant
of this exposition has been presented in [5,§8]. We end with a detailed proof
of the evaluation of the suspensions of the Stiefel-Whitney and, if p'> 2, Wu
classes on ’I:IJ*SF.

Recall Definition I.2.1. For any admissible sequence with 4(I) > 0,

define
x| = e -t e H,SF .

In particular, x_= Q1] *# [1 -p] for s> 1.

For a graded set S, let AS,PS, and ES denote the free commutative,
polynomial, and exterior algebras over Zp generated by S. If p= 2,
AS=PS. If p>2, AS=ES ®PS' where 5™ and St are the odd and even
degree parts of S.

The following theorem is due to Milgram [22] (except that (ii) and the
algebra structure in (iii) are addenda due, respectively, to myself and

Madsen [ 15]).

Theorem 5.1. The following conclusions hold in mod 2 homology.
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1) H*SF =E {Xs }® AX as an algebra under # , where

X = {xI]1(1)>2 and e{I) >0 or £(I) =2 and e(I) > 0}.

(i)  Imj,=E{x_} and HF/O=HSF//j, = AX.

(iii) H_BSF = H*BSO®E {cr*x(s s)} @ ABX as a Hopf algebra, where

BX:{U*xljz(I)SZande(Ipl or £(I) = 2 and e(I) > 1} .

(iv) H,BF = HBO®E {ox s)} ® ABX as a Hopf algebra.

(s,

Part (i) of the following theorem is due to Tsuchiya [ 36] and myself,
independently, while (ii) is due to me and the first correct line of argument
for (iii) is due to Tsuchiya. Recall from [1,p. 91] that, when localized at an
odd prime p, BO splits as W X W'L as an infinite loop space, where the non-
zero homoto roups of W are w_, W=2Z and where H W is a

Py grotp 2i(p-1) (p) *

polynomial algebra on generators of degree 2i(p-1), i>1l.

Theorem 5.2. The following conclusions hold in mod p homology,

p> 2
(1) H.SF =E{px } @ P{x } @ AX has an algebra under #, where
* s s g
X = {xlj £(1)>2 and e{T) +b(I)>07} .
(ii) Im Aj* = E {bs} ,» where b_ is a primitive element of degree

2s(p-1) -1 to be specified below, and

1

HF/O = H,SF/j, ®H, BSO\ (Bj), = P{xs} ®AXQHW .
(iii) H, BSF = H BF = H*W®E{U*XS} Q@ ABX as a Hopf algebra, where
BX ={u~*xI] £(1) > 2 and e(T) +b(I) > 1 or £(I) = 2 and e(I) +b(T) > 1}.

. Of course, the elements LA H*BSF are primitive. The map Iy

will be computéd in Lemmas 5. 8,5.11, and 5. 12, and the maps T Do
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" and (Bj)* are as one would expect from the statements of the theorems. It

is instructive to compare these results with those obtained for the * pro-

: 0
duct on H*QS in 1§4. Recall that HSF = AX | as an algebra under ¥,

0

where
Xy = {xI] 2(1)>1 and e(l) +b(I)> o} .

and that

H*QS1 = A{o‘*(xl*[d]) | 2{) 21 and e(1) +b(1) > 1}. | -

The following remarks show how Bj dictates the difference between

1
H_BSF and H, DS

Remarks 5.3. ILet p= 2. Here X is obtained from X_ by deleting the

0

elements x and adjoining their squares, X(s 9’ under the * product.

Thus the appearance of the generators in H*SF is forced by the

X(Sns)

relations xzs = 0, which inturn are forced by the fact that H,50 is an

exterior algebra. Again, while
2
O'I(X( , )*[—1]) = g, (x_ *[-1])

in H*(Bl, the squares of the elements T in H*BSF lie in H*BSO and

the elements o,X

¥ (s 41, s) are exceptional generators. This behavior may

propagate. If, as could in principle be checked by use of the mixed Adem

~2s5+2i+l

relations and the lemmas of the next section, Q is decom-

. (s, s)

i
i SF
*x(s-!-i, 5) is an elernent of I—I*B

posable in H*SF, then, for all i>0, o
the suspension of which is an element of square zero in H*BiHSF. The
problem of calculating H*BiSF for i> 2 depends on the evaluation of
differentials on divided polynomial algebras, which arise as torsion products

of exterior algebras, in the Ez-terms of the relevant Eilenberg~Moore

spectral sequences.
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Remarks 5.4 Let p>2. Here X is obtained from X, by deleting the

€
elements B x = X(E s)’ and the two Pontryagin algebra structures on H_SF
3

are abstractly isomorphic. In H*QSI,

o, (x )*[-1]) = u-*(ﬁxs*[;-ll)p and a*(x(lb,ls—s,l,s)*[..l])': 0.

(0, ps-s,1,s
In H _BSF, the pth powers of the elements :r*(bs) lie in H W and the ex-

ceptional generators o,x  Wwith £(I) = 2 and ¢(I) +Db(I) = 1, namely those

with 1= (g,ps-s,1,s), appear. Calculation of H*BlsF for i> 2 is less
near here than in the case p = 2 because of the lesser precision in the

results of the next section.
The following remarks may help clarify the structure of H*BSF.

Remarks 5. 5. For n2 2, let X = {xI | 2(1) = n}_ C X. Obviously

AX =n®;2 AX ~asan algebra. When p=2, AX, isa sub Hopf algebra

of AX.“ When p>2or when p=2 and n23, AXn is not a sub Hopf
algebra of H*SF because the coproduct on x can have summands XJ® Xy

with e(K) = b(K)=0; x_ isthena pth power in the ¥ product and therefore,

K
by Proposition 6. 4 below, in the # product. (For this reason, [5,8.12 and
8.16 ] are incorrect as stated. ) Similarly, we can coﬁpute the Steenrod
operations on elements of X, modulo elements which are pth powers in
both products, by use of the Nishida and Adem ielations for the operations

QI[I] (compare I 3.8 and 1 3.9). It follows that these relations completely

determine the Steenrod operations in H*BSF. Moreover, if
= {O‘*XII () =n} C BX,
then, as a Hopf algebra over the Steenrod algebra,

H,BSF = H, BSO® (E{ U*X(S’S)} ®ABZX)®n@>)3 ABX if p=2

17

“and

H _BSF = H W i
« " ®1§-2lABnX if p>2,

the point being that, when p = 2, E{eox X and each AB X
*¥ (s, s) 2 n

with n> 3, or, when p> 2, each ABnX with n> 2 is a sub A-Hopf

}® AB

algebra of H,BSF.

To begin the proofs, we define a weight function w on H*AF) by

wli] = 0, WQI[I] = pl M if  4(1) > o,
and, if x#0 and vy ¥ 0,
w(x*y) = wx +wy and w(x+y)= min(wx, wy).

It is easy to verify that w is well-defined. Clearly wx is divisible by p

for all x, and we define a decreasing filtration on H*i‘l by

FHF = {=] wxz_ﬁpi} for i20.

: 0 __~ ~ ~
Define Eij H*F = (FiH*F/Fi+1H*F)i+j . Since the product * is homogeneous

R 0 o~ o~
with respectto w, E H*F may be identified with H*F as an algebra

under * Clearly & and yx are filtration preserving a.nd,reduceinEoHﬁE‘/

to

sony= oY) + ' W1® ol

and
x@1]= 2oy * [-2p? @] .

Lemma 5.6 . The product # is filtration preserving. In EOH*%‘J
. s I8
[y =[] = jixxy*[(kH)(24]) - (k+2)]

y I P Ip . 0. ~ Jy Ts 0, =
or x=Q7[1]*...%*0Q [1] e E'HF and y=10 [1]*...*%0Q [l]¢E H*Fﬂ,

where d(I))> 0, d(.]'n) >0, and, if p = 2, either (I )> 2 oz l(Jn) > 2 for all n.

£2(1) + 2(3)

Proof. By Proposition 1.6 , w(QI[l]QJ[l]) =p » which is



118

greater than pl(l) + pl(J) unless p= 2 and £(I) =¢(J) = 1. By Proposition

1.5 and the form of ¢ , we easily deduce that
x[(y*[D) = =[3] * yla]*[ij+ ke ]

. 0 ~ ~e

in E H*F. In H*F, we have

e, *3,)[5] = =, [3] * x,[i] and, for j> o,

()

1 .
QI[l][j] = Ql[l]([1]*,” 1) = > + ol ... *QI(J)[l]

and Q31 = x([11H])

It follows that, in EOH*§, QI[l][j] = jQI[l]*[(j—l)p‘e(I)] aﬁd therefore
x[j] = jrx*[(j-l)k] for any integer j.

With i=1-k and j=1-£, the lemma gives most of the multiplication
table for # on EOH*SF. If p>2, ¥ and # coincide on EOH*,E“J, and
Theorem 5.2(i) follows. If p= 2, let A(X; %) denote the subalgebra of
H,SF under * generated by‘the set X. Propositions 1.5 and 1.6 imply
that A(X; ®*) is closed under # and contains the subalgebra of H*SF
generated under # by X. By the lemma, # and % coincide on EOA(X;ﬂi).
Therefore X -generates a free comrutative éubalgebra of H*SF under #
and this subalgebra coincides {as a subset of H SF) with A(X; %). We know
by Lemma 1. 9 that {xs} generates an exterior subalgebra under #. Visibly
E{xs} and AX are sub coalgebras of H_SF, and it follows easily that
H,SF = E{xs} @ AX as a Hopf algebra. This proves Theorem 5. 1(i ).

In order to compute H*BSF as an algebra and to compute
Ig H*SO = H,SF when p> 2, we need information about '5er when p= 2
and r=d(I) +1 and when p>2 and 2r = d(I) +1. Together with Lemma

2.7, the following result more than suffices.
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Lemma 5.7. Let £ (I)=k>2 andlet r>0 be such that e(r,I) <k

modulo F Kk H*SF .

(= 0) Ky

Proof. e(r,I)=r-4(I) if p=2 and e(r,I)= 2r-d(l) if p> 2. By

Then BrXIE x

Proposition 1. 7, Ql[l] is a linear combination of monomials
€ 1' Sy e Sk
g [1]...p*Q [1] (where irrelevant Bocksteins are to be suppressed

when p = 2). The Cartan formula gives
€ s € s 1 € s L€ s
~ kK N 1 k. k
o7 (p Rl p R 1) = 3 8lela ] 2% fo Tl .
. ~ X Ei Si
If 2ri< Zsi(p—l) - € then Q *B *Q [1]=0. Thus Zriz_ZSi(p--].)-8i for

all i in each non-zero summand. and, since
- = - < i = - = - - < i >
r-a(I) Z(ri s)<k if p=2 and 2r-d(1) = > (2r,-2s.(p 1)+€)<k ifp>2,

) LI 8
Zri=ZSi(p-1) and Ei = 0 for at least one index i. Here D 'Q l[1] is the

# pth power of AQS[I], and it follows that each non-zero summand has weight’

k-1 +k-1
pP =P

at least p Now the mixed Cartan formula gives

'ér(xl) +"z’:rQ1[1]a=[1-pPk] mod F . H,SF,

(e, ey B
and the conclusion follows.

We first complete the proof of Theorem 5.1 and then that of
Theorem 5. 2.

Let p=2 Then HSO= ‘E{asl s> 1} where a_ is the image
of the non-zero element of H*RPoo under the standard map rRP® - so.
s

Clearly q;(as) = i—zo a.i® a__;» where a,=1. Define Stiefel-Whitney

* *
classes w_ = 2-15¢°3(1) inboth H BO and H BF, where & is the stable
* *
Thom isomorphism. Since (Bj) (Ws) =w, B = j*a'*, and

< a >=1
Wer1? T4 ?

E * * *
(85" £°BF - H*BO, (Bj)*: H BSF - H BSO, and j : H'SF -~ H'SO
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are certainly epimorphisms.

Lemma 5.8. Let p= 2. Then j*(as) =x .for all s>1."

Proof. Clearly j*(a.l) = x,. Assume j*(ai) =x for i< s. Then
j*(as) +xs is a primitive element of H*SF whose square is zero. Since
H*SF = E{ X‘c} ® AX as a Hopf algebra, its primitive elements split as
PE{xt} @® PAX. Therefore j*(as) +x_ must be in E{Xt} . Since j, isa
monomorphism, j*(as) + X must be decomposable,. Sincé the natural
homomorphism PE {Xt} - OF {Xt} is a monomorphism, it follows thét
j*(as) +x_=0.

Remark 5. 9. The lemma asserts that the two maps

. 6 ,
*f -
RP® - 50 - SF and RP™ =~ (‘,':00(2)/212 2 QZSO [-1]

SF
induce the same homomorphism on mod 2 homology, where Coo is the
infinite little cubes operad and 62 is given by the action map restricted to

COO(Z) x {1} X {1}. R.Schultz and J. Tornehave have unpublished proofs

that these two maps are actually homotopic.

Remark 5.10. Kochman [13, Theorem 56 ] has proven that, in H_SO,

Qras = Z

itjtk=r4s

(i,j,kZO and a_=1).

(Sai,r-s-j—l)aia_a 0

ik

In view of the lemma and the mixed Cartan formula, this formula implies
and is impliedvby Lemma 1.9 and Corollary 3. 5 (compare Remark 3.6). The
actual verification of either implication would entail a léngthy and unpleasant

algebraic calculation. A proof of Kochman's formula will be given in section 11.

Proof of Theorem 5.1. We have proven (i). For (ii), Lemma 5.8

shows that Im j_ = E{x } and H_SF is a free H_SO-module. Therefore
> Ix s * *

the Ez-term Tor (z,,H, SF) of the Eilenberg-Moore spectral sequence
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converging to H*F/O {e.g. [8,§3] or[21,13.10])reduces to
H*SF//j* = AX. For (iii), consider the Eilenberg-Moore spectral sequence
) B 2 HySF
which converges from E SF = Tor (ZZ’ ZZ) to H*BSF and the analogous
spectral sequence {E'SO }. Inview of (i) and (ii),

'E?‘SF = %0 R E{u-x(s s)} ® E{crxli LI)>22 and e(I)>1}.

The elements oy have homological degree 1, hence are permanent cycles,

and the homomozrphism o¢: ﬁiSF - Ef iSF induces the homology suspension
s

~ - 2 _ 9 _ 00 .
o, HSF ~H, A BSF (e.g. [8.3.12]). E"so= r{uas} =E SO and it

follows that E?SF = ECSF. It deg y = r-1, rr*ary = 5r0'*y = (U'*Y)Z. In par-
ticular, (O-*X(S,S))Z =0 by Lemma 2.7. Recall that if J = (z,I), then

e(J) = r - d(I). . Thus e(J) =1 implies r=d() +1. By Lemma 5.7, we may
as well replace Ox(r,I) by crarxI in our description of EZSF , and (iii)

follows by a trivial counting argument. In view of the obvious compatible

splittings BO =~ BO(1) X BSO and BF = BO(l) X BSF, (iv) follows from (iii).

In order to describe the image of H*SO in H*SF when p> 2, we
shall have to replace x and {st by the elements Vg and ﬁys specified

in the following result.

Lemma 5.11. Let p>2 andlet r = r(p) be a power of a prime q

2 .
such that r reduces mod p~ to a generator of the group of units of Z 2"

p
There exist unique elements BEYS H*SF such that

(ﬂe}’s)[l‘p] = Bsés[r] € H*'f‘pr

ﬁeys is an element of the subalgebra of H,SF under the * product generated
£ -

by {B xs}, and 5€XS - kﬁeys is * decomposable, where k= r p%( P_or).

Moreover, the subalgebra E{ﬁys}®P{ys} of H SF underthe # product

is a sub AR-Hopf algebra.
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Proof By [R,VIL 5. 3], the localization of SF at pr is the 1-
component of an infinite loop space in which the component =P is invertible
in LA This implies the existence and uniqueness of the ﬁays, a;nd the
second statement follows from Proposition 1. 5 and Lemma 2. 8. The proof
of the splitting of SF as an infinite loop space at p in [R, VIIL 4.1] gives
that E{ ﬁys} R P{ ys} is precisely the image of H*JZ in H*SF under a
certain ‘inﬁnite loop map as :\]':)S - SF, where J’g is an appropriate dis-
crete model for the fibre of q;r-l: BU - BU at p (see §10 below), and the
last statement follows. -

Let p>2. Then H,SO= E{aS] s>1}, where deg a‘s = 4s5-1. The

a  may be specified as the unique primitive elements such that

s+l

<Ps, L3 as> = (-1) , where Ps is the sth Pontryagin class reduced mod p.

*

(The sign is introduced in order to simplify constants below. ) Define Wu

1

- *
classes w_= © P°%(1) inboth H BO and H*BF. There seems to be no

generally accepted notation for these classes ; our choice emphasizes the
analogy with the Stiefel-Whitney classes mod 2. Let m = %2‘(;:—1). Since
(Bj)*(ws) =W, a'*(Bj)* = j*o-*, and w_ is indecomposable (indeed,

)m+1

WE(—I

s rn.Ps modulo decomposable elements), J*(ams) is certgmly a

non-zero primitive element of I—I*SF. Moreover, since SO has no p-torsion,

pRY,(2) =0 forall sandt.

Lemma 5.12. Let p> 2. Then j*(a.s)='0 if s# 0 modm and

s . . o sps
J*(ams) = (-1) cb_, where 0 #Fce Zp and b_ is the unique primitive element

of - E{ﬁys} @P{ys} such that b_ - Py_ is decomposable.

Proof. The Zp space of odd degree primitive elements of H,SF

has a basis consisting of the bs and of elements of the form pI = X

: + Yy
where £(I) > 2 aud y; isa linear combination of (decomposable) * mono-
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mials all of whose positive degree * factors can be written in the form

QJ[l] with £(T) = £(1). If d4{I) = 2t-1, then, by Lemma 5. 7 and the mixed

Cartan formula,

mod F H.SF .

£
BQp. = x
17 (L) oM T

. ot
On the other hand, BQ bS =0 forall s andt since P annihilates all odd

degree elements of E{ﬁys} ®P{ys} . Therefore scalar multiples of the b_
are the only odd degree primitives annihilated by all operations ﬂat. It
follows that j*(as) =0 if s# 0 mod m and that j*(ams) =c. b,

0# c e Zp' Let c= -y By the known values of the Steenrod operations

on the Ps and by the Nishida relations and the previous lemma,
Pla = (i,s(p-1)-pi-1)a and Pb_= (-1)'(4, s(p-1) - pi-1)b
* ms ’ m(s-i) s : g-i

Thus (—1)1cs =c_ . if (i,s(p-1)- pi-1) #0. Since (i, 5(p-1)-pi-1)# 0 for

all 1> 0 implies s = pk and since, if s = pk,

1
= = - >
Pyb_,, =b  and %Pbs+l bog1p Whem k22
and
p-1 - B - -
P* bs+p—1 «bs and %bs+p—1 = 2.bs_1 when k=1,

we see by induction on s that c = (-—l)sc for all s>1.

Remarks 5.13. In [20], I asserted the previous result with b; replaced by
the unique primitive element b; in E{ ﬁxs}®P{xs} such that b; - px
is decqmposable (and an argument for this was later published by Tsuchiya
[38]). This assertion would be true if and only if b_ were kb's , and this
would hold if B Qs(p—l)b,s were zero, In principle, this could be checked
by direct calculafion from the results of the next section, but the details are
forbidding. Looked at another way, tl;.e point is that ﬁys - kﬁxs is * de-

composable but‘possibly not # decomposable.
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Remarks 5.14. Kochman [13, p. 105] has proven that, in H,S0,

r T
Qa_ = (-1) (2s-1, r—25)as+mr .

It follows that 5Ibs = (s(p-1)-1, r—s’(p—l))br , as could also be deduced

+s
from Remarks 3. 9. Indeed, by use of the cited remarks, Lemma 5.11,

the mixed Cartan formula, and the filtration on H,SF, we easily deduce

that

arﬁ€ys = -(-1)8 (s(p-l)—e,r—s(p-l)+£~1)ﬁ?yr+s modulo HSF 4 fiSF.

Proof of Theorem 5. 2. Note first that (i) remains true with E{ﬁxs}

replaced by E{bs} . For (ii), observe that, in the Eilenberg-Moore spectral
sequence coﬁverging to H*F/O,
2 50 :
E® = Tor (zp, H,SF) = H*SF//J*®I‘{0'3.S |s# 0 modm},
where H*SF//j* = P{xs} ® AX. By[R,V§3 and §4], the Adams conjecture

yields a map of fibration sequences (localized at p)

g-1
so ) BO ~— > BO
P
H lap LYP ”
50 —2 SF — 5 F /O —2 BO

such that ap and Yp are equivalent to inclusions of direct factors with

common complementary factor Cp' It follows that EZ =E® and that

Y . maps H W"L onto a complementary tensor product factor to H,SF/j..
P

5
Warning: J = J , but it is not known that aa ~ o , where « is as
& p p p p

o ¥

- g

in Lemma 5.11 ; compare [R,p. 306 ].) For (iii), consider the Eilenberg-
Moore spectral sequences {E"SF} and {E"SO} converging to H, BSF

and H *BS O.

‘ElF = I‘{o‘bs}® E{u—xs}® E{o'xlil(l) > 2, e(t)+ b{) >0, 4(I) even}

® I‘{a'xIH(I)Z 2, e(I) +b{l) > 0, 4(I) odd} .
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Here .I'{crbs} is the image of EZSO and consists of permanent cycles.
Recall that if J = (g,s,I), then b(J) =€ and e(J) + b(J) = 25-d(I). Thus
e(T) +b(J) =1 implies 2s =d(I) +1. If £{I)> 2 and 2s = d(I) +1, then

chst survives to (o-*x:[)p and UBE)SXI survives to ﬁ(u-*xl)p= 0. By

o
by B B%x_ in our des-

Lemma 5.7, we may as well replace ox 1

i {e,s,1)
cription of EZSF. Then

p-1 =S :
d oX,.) = - Q' x ox
Yp+j( I) (op -I)Yj( I) 'for jzo.

This statement is just an application of the appropriate analog for the
Eilenberg-Moore spectral sequence of Kudo transgression for the Serre
spectral sequence and follows from Kochman's result [12] that -8 st is

the p-fold symmetric Massey product <y>p

if deg y = 2s~1 together with
either a direct calculation in the bar construction on the chains of SF or
gquotation ‘of [8, Theorem 5.6 ], which codifies the relatiénship between
Massey products and differentials inthe Eﬂenberg—Moore spectral sequence.
Clearly all generators of EFSF not in I‘{o*bs}‘ have homological degl;ee less
than p and are thus permanent cycles. Therefore EPSF = EOOSF, and
Theorem 5.2(iii) follows by a trivial counting argument.

It remains to give the promised evaluation of < u"*ws, x> for xe<H,SF.
This depends on the following folklore result, which is usually stated without
proof. Since I find the folklore arg;lment based on use of the Hopf construc-
tion somewhat misleading and since the precise unstable form of the result

: *
will be needed in the study of H BSF(2n) at odd primes (see IV), I will give

a somewhat different argument (which was known to Milgram).

Lemma 5.15. Let A be a connnected based CW-complex, let

@: A = SF(n) be a based map, let a: A - BSF(n) be the composite of °



i
|
‘ i
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¢ and the adjoint of the standard equivalence {:SF(n)—~ QBSF(n), and let.

n

. TA - 5" be a based map with adjoint A -~ SI,I homotopic to a*[-1].

0 0
Then the Thom complex of the spherical fibration classified by @ is homotopy
equivalent to the mapping cone of a, -

Proof. BSF(n) classifies integrally oriented spherical fibrations
with a canonical cross-section which is a fibrew‘ise cofibration, and the
Thom complex of such a fibration is defined to be the quotient of the total
Aspace by the base space (see [21,5. 2 and 9. 2] and [R,IIT]). With #otatio’ns

for the two-sided bar construction as in [21, §7], let v:D =~ ZA be the pull-

back in the following diagram:

D B(#, SF (n), §7)
i! 4
vilo pl;u- .
; _ :
=A “ BSF(n) = B(%, SF(n), *)

Here z(as t) = [[a(2)], (t,1~t)|. Via the correspondence

xe S <> (*,][ Ik (1)])eD

and

(aat,x) e CAX s <> (aat, |[a(2)]x, (t,1-t)]) e D,
D is homeomorphic to the quotient of the disjoint union of SIJL and CA X 5"
(where CA =AXI/AX{0} X {*} UI) obtained by identifying
(*,%) « CA X s with xe 5 and (anl,x) e CA X s" with ala)(x) e s™.
Moreover, V is specified by v(x) = ¥ for =xe s® and v(aat,x) = aat. By
the standard Dold-Thom argument (e. g. [G,7.1]), v is a guasi-fibration.
The section of p is determinea by the basepoint w ¢ s and pulls back to
the cofibration o TA =D specified by o(aat) = (ant, ). By comparison
with the diagram obtained by replacing p and v by fibrations with section

"[21,5.3], we conclude that the Thom complex of the fibration classified by
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@ is homotopy'equivalent to the Thom complex Tv = D/ZA. Clearly Ty
can be vie;aved as obtained from S~ _|] CylA X g™ by identifying (o, 1) X x

to‘ e(a)(x) e s and (2, 0) X x to =xe s” (where Cyl A = A X I/{*}X1 and
CylA K st = Gyl A X Sn/cylA X{w} ). Modulo neglect of the basepoint of

A (ax[-1]: A =~ Q;Sn not being basepoint preservir;g), Caz0 can be vieweci

as obtained from S"_|| C(AA Sn) by first using the pinch map s - s"v s”
to ;:ollapse the base AA S™ of the cone to (AASn)V(A /\Sn) and then identifying
the point (a,x) of the first wedge summand to a(2)(x) ¢ s and the point

(2, %) of the second wedge summand to [-1]x ¢ S* (where [-1]: s" -s" is
any fixed map of degree -1). The conclusion follows by an easy direct com-
parison of these constructions.

Remarks 5.16. For a spherical fibration £: E = X of the sort classified by
BSF(n), define w_= 8 p%8(1) e H'X, where &:H*X— T TE is the mod p
Thom isomorphism. For W€ H*BSF(n), o-*ws ¢ H*SF(n) is characterized
by Ea'*ws = Z*Ws € H*ESF(n), 7 :ZSF(n) - BSF(n). Thus, for the fibration

~

*
£ over TA classifiedby @ = Zael, w e H ZA is the suspension of
* 3k ~ ok
@ oW e H A. Interms of the cofibration

o ) )
="a 0 55 L 5mpg—J =2,

given by the lemma, the Thom class p(£) ¢ HnT§ is the unique element such
¥ . ' n.n ok

that i pg is the fundamental class in H S and, for xe¢ H ZA, the Thom

isomorphism &(x) = x U K(£) can equally well be specified as &(x) = j*Enx.

In particular,

Jk 1 % % K
j 22w = i =w = B(w )= Psp.(&).
s s s
Since TX = 0 if xe H*SF is # decomposable, <¢ ws,x> =0

unless x is indecomposable. Tsuchiya [36, 6.3] showed that < o-*ws,x1> =0
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~if £(I) > 2. By Corollary 4.8, this assertion is a consequence of the following

technically simpler result, which is due to Brumfiel, Madvsen, and Milgram

[5,3.5] and gives maximal unstable information.

Lemma 5.47. <a'*ﬁ'£ws,x3f_y> = 0 for s>1, € = 0ox 1, and all
X,y € ’I:IJ*SF(n)‘

Proof. Since G*ﬁ = —ﬁo**, <Bw,z>= +<w,Pz>, and
Blxxy)=(Bx)*y % xi (By), the result fo:;' € = 1 will follow immediately
from the result for € = 0. Let x= a*(a) for a: A = SF(n) and y= B*(b)
for B:B - SF(n), where A and B are connected CW-complexes. Then
xky = Y*(a ®b) where y= ¥ o{a XP):AX B ~SF(n). Let aozEnA - 8",
ﬁoz ="B - Sn, and Yo :En(A X B) - " have adjoints homotopic to
@*[-1], B *[-1], and y*[-1]. If p:5 —~5"vS -and £:5vS" »S" are

the pinch and fold maps and if N, =fe (aro anriv BOEn-n'Z), then standard

0

properties of cofibre sequences give dotted arrows such that the following

diagram, whose rows are cofibre sequences, is homotopy commutative:
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) g £
X  F
< T ]
@ ¥ 2 nooo.
f R >vi -+
X ] > E <]
< > m ¥ N
- o X g >
+ Q& X s W <
. A < -l <t
RN ~ + +
3 P A 8
. 5 R A
W
i -
" . FN —
=
NO
[N <
= o 0 =
e 2 o - — — ey memmy
6] 0 ‘;* >
A o] ao
]
o [®)
]
- - O
ol
ot
<) fa
[l <] s t;) — >
w — N e g g
\ \ 0 7]
~ t
E
&
[« No
(]
© ~ Q;’;‘ @
- % R
— F:N S
m (o]
¥
X —
N 2 M
— =} < <)
m [A] P W
X =7 > A} L:m >
N ) 2 A <
A X m A W
N X >
3z &
g =) =)
N N N



130

By Lemma 5.16, each of the displayed cofibres is a Thom complex. By the< .

. %
previous remarks, we can use the i to read off relationships between the

. ' *
various Thom classes and can then use the ] to read off relationships between

their Steenrod operations. We conclude that

F _ntl ¥ % G ndl, x ok
iz Yow =i32 (acrws®1+1®[3*a-*w). .
. ” s

Thus *G'*W oo ‘ T *
v S-ao*ws®1+1®ﬁo'ws, and <o WS,Y*(a®b)>=O

a and b both have positive degree.

whenever
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‘ §6. The R-algebra structure of H_SF

Theorems 5.1 and 5. 2 describe generators of H*SF in terms of the
0
loop operations o in H, QS . For the analysis of infinite loop maps in
and out of SF and for the understanding of characteristic classes for

spherical fibrations in terms of the infinite loop structure of BF, it would

be highly desirable to have a description of generators of H*SF primarily

. . ~T . .
in terms of the operations Q. The following conjecture of mine was proven

by Madsen [15] .

Theorem 6.1. When p= 2, H*SF = E{xs} ®A3(J as an algebra under #,

where

~s

X = {éJxK]Jz(K)=z and x ¢ X} .

(7, K)

Both E{xs} = H*SO and .AS(J are sub AR-Hopf algebras of H*SF.

The analogous result for p > 2 would read as follows

Conjecture 6. 2. When p> 2, H.SF = E{{iys} ®P{ys} ®AX as an

algebra under #, where

X = {aJyKu(K) = 2 and X(J’ K)E X}

and V™ *g is an appropriately chosen element of A{ﬁgys}. Both

A{BEYS} = H*Js and AX are sub AR-Hopf algebras of H,SF.

The change of generators from Xy O Y (K} = 2, serves to ensure

that AX is a sub AR-Hopf algebra of H*SF and will be specified in

section 10 below. Since we know that A{ﬁeys} is closed under the opera-
tions 5r’ the conjecture will be true as a statement about R-~algebra
generators if a:ad only if it is true with the Vg replaced by the *pe

Thus {XKII(K) =1 or {(K)=2} certainly generates H_SF asan

R-algebra when p = 2 and is conjectured to do so when p > 2. The opera-
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tions 6er with (r, X) inadmissible can be shown to decompose many of
the Xy with K admissible and £(K) = 2. Madsen proved the following

theorem; since use of the mixed Adem relations would not appreciably

simplify his argument, we refer the reader to [15] for the proof.

Theorem 6.3. Let p= 2. Then the following set is a basis for the
Zz—module of R-algebra indecomposable elements of H*SF:

{xzs] s>0} u {x s S}SZAO}U{X

s s s fn?__l and 52_0}._
(27,27) (2 n+27,2™n) ’

Observe that X contains precisely one element of this se!t in each
degree >2. Even if Conjecture 6. 2 is correct, the analog of the previous
result when p> 2 will have a considerably more complicated statement and
proof. Even when p = 2, determination of a defining set of R-algebra
relations in terms of the displayed minimal set of generators would probably
be prohibitively difficult.

We shall give a variant of Madsen's proof of Theorem 6.1. The argument

is based on analysis of the # decomposable elements of H*SF, and we shall

carry out this analysis simultaneously for all primes. In the process, we

shall see where the gap in Tsuchiya's proof of Conjecture 6. 2 occurs and
shall make clear what remains to be done in order to prove that statement.
The following three propositions generalize results of Madsen [15] to
the case of odd primes, and much of this material was stated without proof
by Tsuchiya [38]. The key to these results is our analysis of the dual of the

Dyer-Lashof algebra in I §3.

Proposition 6, 4. Let £ and E denote the pth power operations on

H*f‘ in the * and # products respectively and let ¥ denote the union of
% : p¥
the components -E‘PJ' for je Z. Then-
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(1 .1f x‘eH*Fp*, txe IméE .

() I ye H_SF, Ey e (Im £)*[1]; that is, any # pth power in H_SF is

) also a * pth power.

(iii) If p>2 andye HSF or p =2 and ye AX,. §(y*[—-l])*[]:] € Img;
. that is, any * pth power in H_SF (of an element of AX if p = 2)

is also a # pth power.

Proof. We first prove (i) when x= QI[l]. To this end, observe that

‘the evaluation map £:R - H*’f:, f(z) = z[1], is 2 monomoxrphism of coalgebras

with image closed under t (obviously) and E (by Proposition 1.6). We
may therefore regard £ and E as morphisms of coalgebras defined on R.
We must show that the image of E:R[k] - R[pk] is contained in the image of
£ :R[pk-1] = Rlpk]. Dually, it suffices to show that Ker g* C Ker z*

Now E* and ?;'*' are ‘morphisms of algebras (which annihilate all odd degree
elements if p > 2), and it is immediate from Theorem I.3.7 that E* is

given on generators (of even degree if p> 2 ) by

if i< pk
gi,pk-l P
*
EE )=
i, pk
0 if i= pk
and, if p> 2,
o if j< pk
1,3,pk-1
%
6" ) =
bl P 0 if j= pk
Since the degree;-of ng, ok and the o5 ok, pk are not divisible by p,

~

§* also annihilates these elements, as required. By the mixed Cartan
formula (together with the facts that operations below the pth power are

identically zero and that Im £ is a subalgebra of H*f under *),
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E(xl*xz) ¢ Im £ whenever g(xl) e Im £ and g(xz) ¢ Im E. This proves (i.),
and (ii) follows from (i) by the mixed Cartan formula applied to the calculation
of g(x* [1]), x = y*[-1]. Part (iii) follows by dimensional considerations
from (ii), part (i) of Theorems 5.1 and 5.2, and the fact that AX = A(X;3¥*)
when p= 2.

Part of the usefulness of the proposition lies in the fact that many
linear combinations that arise in the analysis of our basic formulas turn

out to be in the image of §.

P o - . e
Proposition6.5. Let x,ye HF, with ye HEFE . in (ii) and (iii).

pA

Then
B > (@Y emt

i=0
@3 (R @Y mt

i=0
@) > (@Y e me

i=0

Proof. We prove (iii); (i) and (ii) are similar but simpler. By
Proposition 1.6, Definition 3. 2, the Nishida relations, and the change of
dummy variables m = i-j, we find that
z -i oz 2« n-idj, jRi
> oAy = X X et e Ay
i=0 i=0 j
n

n-i+j itk _k
= > 3 et Helattely)
= ik

[y
(=
.

(-1 JH(J -pf, (i+k)(p-1)-pj +pL )N

>

LVJ

n-itj (Xf61+k-g +£Pipl>:3’)

i=0 j,k, £
= yitem Zhtotm
=2 2 (i-m-p2, k(p- 1)+pm+pl o RieYe Pl,:
kf,mi=0

Fix:'k,l, and m. Observe that P:y =0 if 2kp>degy (or 2k>degy if p=2).

-
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R R o n-m, A . )
It follows easily thaf: Q (Xd(+£+m £ ky) =0 unless mipf >0 and

k(p-1)+pm+pf <n. We may therefore let i run over mipf <i< k(p-1)+pm +pt

in the last sum. If we set q = i-m-pf, the constant becomes

(k+m)(p-1)
> (-1)Yaq, (ktm)(p-1) - @)
q...

which is zero unless kim = 0, We therefore have

LYYy = 5 QMR EEY.
=0 )

lPiz = 0 unless 2{p=degz=z

(or 2¢ = degz if p=2), when O Plz=E

For any z, an easy excess argument gives Q
% P

:z. By (i) of the previous

k
prop051t1c>n, each Q P P,y isin Im £. Since Im £ is an ideal under #
(by Proposition 1. 5) and is closed under the o (by the Cartan formula),

the result follows.

We can now show that a variety of combinations of the operations ¥,4#,
Qs, and 65 in H*“f‘ lead to elements which become decomposable under
# when translated to H_SF. It will often be convenient to write xx[?]
for translates of x ¢ H*f", in such expressions, the unspecified number in-

side square brackets will always be uniquely determined by the context.

Proposition 6. 6, Let Ij " denote the set of positive degree elements of

H FJ andlet I = > I; and 1= le. Define D,C I by

= %1 w] &
; {x]xe Ij and x*[1 J]ellnll}
and let D = Z Dj . Then D satisfies the following properties.

(i) xx£yeD if xe Ip’ yeI, and j is evenif p= 2.

i r . _ T
(ii) xl*---*xr+(—l) (r-—l)!x1 xr*[?]e D if x, =0 [1]e I for 1gk< .
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i
[1]eI for 1<£%<s, then

I
(iii) 1f x = Qk[l]e I forl<k<7r and y, = D
J 4
(xl*...*xr)(yl*...*ys)eD if 1<r<s and, if r=s,

r
(Xl*. .o *Xr)(yl*. “e *y’r) + (—1) ! (I—l)!Xl. .. Xry'l. . Yl‘*[?] € D,

(iv) 2 anlx*Ql’yeD if xel and ye L

=

T -3 R ~~
(v) 2 Q% Mk QlyeD if xel and yelp* ..
i=0

Proof. The weight function takes on only finitely many values in ahy
given degree, and the p;roofs of (i) and (ii) proceed by downwards induction

on weight. For (i), Proposition 1.5 gives
- . . 2.,
(x#[1-pi])(E y * [1-pj]) = %€ y*[1-pi-pj] +x§ y*[1-p7ij]

J4
p= 2, and wu + pwv > wx + pwy. Either xEy =0 or, if deg x = pq,

plus terms of the form u*Evx[l-pk-p2] with uel WAL I, £ evenif
P

xty = é(P}&{ y). When p = 2, Propositions 1.5 and 1.6 imply that
Plx y#[1-2ij] ¢ AX (since j is even). By Proposition 6.4(iii), xfy is
in D, and it follows that x%£y is also in D, For (ii) and (iii), note first

that [pklx eIm £ for any =xe HF and any k and that if x= QI[l] then
S =1 ()
> x'x" ¢ Im £ by (i) of the previous proposition. If pi = St p vk and
k=1

pI(Ir)

Pi = » then, modulo terms known to be #~decomposable by i),

N [1~Pi])(xr*[?'Pj])

(1) (x-1) ()
1
E ixlxr R *X;:—lxr *Xi‘* *x;_l*xr *[?].

By the induction hypothesis on weight and by (i), 21l terms which have a *

factor x'x (1)

. . i
= e I with either 0 s_degxi’< degxi or 0% deg x£)< deg X

add up to an element of D. Therefore the right side reduces modulo D to

" of Proposition 1.5, the previous two propositions, and (i).
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-1

i -pi - pj ) v e Xk 74
Xl*...*xr*[l pi-pj] + Z X X KX K *x kX *. *xr-l*[ ]

k-1 "k+l
k=1 *

By induction on ;yveight (and, when p = 2, by induction on r for fixed weight)
and by the commutativity of #, the sum reduces modulo D to
(~1)r(r—l)!x1' RE [?], as required. Part (iii) follows without difficulty

from Proposition 1.5 and (i) and (ii). Parts (iv) and (v) are easy consequences

Part (ii) implies that all (p+l)-fold * products in H,SF are decom-
posable under # and allows us to express any element decomposable under
% as a linear combination of elements of X plus terms decomposable under #.

. I n
134 iv) *® D d I  *1 D.
Parts (iii) and (iv) imply that 0 [l](Ip* Ip*) C and ©Q ( Pt p *) C

Note that D is obviously closed under the operations B and P: .

Remark 6.7. When p = 2, the ar‘guments above are essentially those of

Madsen [15], although his details depend on several assertions true only at 2
(and a few of his claims are marginally too strong; e.g. IZ *(IZ** I?_*) C D,
not I(I*I) C D). The key effective difference betweenthe cases p =2 and

p > 2 comes from the factorial coefficients in Proposition 6. 6.

Proposition. 6.8. The following congruences hold modulo D.

(i) ar(x*[l]) = arx*[?-] + QO xx[?] if xe Ip* .
(13) Q (x[pi]) = D7 x*[?] if xe 1, 2nd j = 0modp.

(i) QT x*[pj]) = QTx*[?] if xe L, ad p>2 or j=0mod2

(iv) 6-’(x1) =%, 1) + D Ql11%[?] i AM)> 0 and £() S 2.

Proof. Since x = QI[l]*[l-pl(I)] (where I is not assumed to be

admissible), (iv) will follow immediately from (i), (ii), and (iii). Part (i)

holds since Propositions 6. 5(i) and (ii) and 6. 6 (ii), (iv), and (v) imply
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that all * decomposable terms in the mixed Cartan formula for the evalua-
tion of QT (x%[1]) are in D, that [j]Q7y = jQ7y for any ye I, and
that Qr(x(l). .. x(i)) ¢ D for i=2 2. For (ii), note first that all terms of
the mixed Cartan formula for the evaluation of ar(x #[pj]) with a positive
degree * factor ﬂé:(y@ [pil)y 0< i< p, are in D because all such

‘éis(y® [pjl) involve products z.[pj] and are thus in Im £. We claim that
5r[pj]‘ is also in Im £, and this will imply (ii). Obviously [pj] = Qo{j],

and the mixed Adem relations reduce to give

r,~i

et O 0., =%0 1 i, .
BT 1= S o8 [lxe  [IB[] i p=2
and, if p> 2,

T T B xr
~r 0 1.72 -1
il So1 2 4 [p-1] P

Pugs e ot A - ve P PInIa P Elee’ i ® PnIB Pl

With j = 0 mod p, Propositions 6. 5(ii), 6. 4(iii), and 6. 6(i) imply that

o Qo[j] ¢Im £. Note that Proposition 6. 5(ii) would no longer apply with

j # 0 mod p, hence that (ii) may well fail then (2 point missed in [15] and [38],
both of which neglect to consider possible terms arising from the 5r[pj]).
Part (iii) holds bir the Cartan formula, the fact that O [pj] eIm £, and

Propositions 6. 4(iii) and 6. 6(i).

Unfortunately, the mixed Adem relations appear not to simplify so
pleasantly modulo D. We do have that one type of term drops out when p >2
however.

Lemma 6.9. If p> 2 and xe¢ Ip then

* 3
g degx'mro,SO,SO ~rl’El’Sl

Z(_l) 1 QO X'k QJ. x" mod D,

tirﬁe: st

Proof. Comparison of Proposition 6. 5(iii) to Theorem 3. 3(v) shows that
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r,E,S
22 ’ x e Im §. It follows by induction onthe degree of x that 5;’8 "®x e Imég

-2 ~7r,E
and thus that [pP “-1 ]er’ 5% e Im £. The conclusion follows from

" Proposition 6. 6(i).

Fortunately, we need only use a special case of the mixed Adem relations.
The following result, which is now merely an observation, is the core of the

proof of Theorem 6.1.

Proposition 6.10. Let p=2 andlet k= £(I) > 2. Then

~r 1

Q" Q1]

]

Z a JQj[l]*[?] modulo D.
(D =k

Proof. By Proposition 1.7, we may write QI[l} as a linear combina-
S1 Sk,
tion of elements Q [1].-- Q [1]. By the Cartan formula, Corollary 3. 5,

and Proposition 6. 6(iii),

r,+s

T, +s
17%1 k
(r,-5,-1,3))0 ;

ey S s k
Fe'nl--enp = X (x [1)-- @ Ml«l7),

1

. LTS,
the essential point being that the * decomposable summands of the Q e 1[1]

make no contribution modulo D since IZ*(IZ* IZ*) C D. The conclusion

follows by Proposition 1. 6.

Propositions 6. 8(iii) and 6. 10 imply the first of the following corollaries,

and the second follows from the first by induction on £(I). It should be noted

'

that neither of these corollaries requires restriction to admissible

sequences L

Corollary 6.11. Let p=2 andlet k=£(I) > 2. Then

~T T
Qx =x + a, x modulo I.# 1. .
1- ¥, 1) IL(J) e LT 1™ h
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Corollary 6.12. Let p=2 andlet I=(J, K), £(K) = 2. Then

aJxKE x_ + E : 1 ¥y, modulo Il # Il
2g(L)<L(1) 7 '

In view of Theorem 5.1, Corollary 6. 12 implies Theorem 6. 1.

We try to complete the proof of Conjecture 6. 2 in the same way.

Proposition 6.13. Let p > 2 andlet k=%(I)> 2. Then

Fadnl= S a @D+ 3 b @1]4(?] modulo D.
@ =x UR) 22k

Proof. By Proposition 1. 7, we may write QI[l] as a linear combina~
€. 5 € 5k
tion of elements B0 [1]... B ~Q [1]. We evaluate
&1 51 €x "k
O Q [il..p "Q [1]) by the Cartan formula and Coroliary 3.8. By
Proposition 6. 7(iii), the only possible contributions modulo D from
’ T, £, S,
*-decomposable summands of the B 1{3 ' 1[1] come from products of such
summands with each other (and not with * indecomposable summands); such
R K .
products lead to the sum written Z b, ) [11%[?] with ¢(K) > 2k. By
Propositions 6. 5(ii) and 6. 4(iii), all terms which involve the * indecomposable
’ ] =73 €3 53
summands -Q B "R [1]#[?] ofthe Q B "Q [l] add up to an element of
the image of £ and thus to an element of D. We are left with the products
of the * indecomposable summands which are multiples of the
By Fit? 3
B2 '[11%[?], and these lead to the sum written Z a; ;9 [1]1%x[?] with
2(J) = k.

Corollary 6.14. Let p > 2 andlet k= £(1) > 2. Then

o~ i
Ox =X + Z a + z bI KXK modulo I1 i+ 11.
T ) R T3 Kz &

. Unfortunately, we cannot go on to obtain an analog of Corollary 6.12

since, upon application of iterated operations, the higher length terms can give
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ris'e. to successively lower length terms which might cancel with the desired
dominant terms.

Tsuchiya [38, 4. 6(3)] asserts that the b are all zero, but the core of

I,K
his argument (namely the last two sentences on page 308 and the next to last

. 1
sentence on page 310) is stated without any indication of proof. He may con-

ceivably be right, but a proof will surely require many péges of very careful

' computation. In view of Proposition 6. 7(ii) and (iii) and Corollary 3. 8, it

would suffice (for example) to show that, for all k> 2,
T,

' ril Lo
i, LLLd (x. ,5. €. )... (x, ,s. -,
2 ! B 1R (1k k E‘k)
TN
B lQl[l]...ﬁ Q f1le Imé& ,

0<i, <...<i - = = i, =
where <4 <:k§p 1, T, 0 and 5, t0>0 when i ¢,

T, + 5, ~ 'ti (p-1) > 0 when i>0,and the sum ranges over all such terms

S T ! | '
with corresponding *-monomial a summand of :,Lrﬁe o’ [1].

Note that this is definitely not implied by the much simpler statements of

Proposition 6.5 (or by analogous proofs). Finally, it should be observed

that Conjecture 6.2 could well be true even if some of the bI were

, K

actually non-zero.

1 .
My letters to Tsuchiya pointing eut the difficulty went unanswered.
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§7. Homology operations for matrix groups

Let A be a topological ring and let G(n) be a topological subgroup
of GL(n,A) suchthat GE)®G(j)C G(i«l-j) and T C G{n). Let M de-
note the category with objects the non-negative integers and with morph-
isms from n to n the elements of G(n). Then H is a sub permutative
category of the category MAXA [R,VI§3 and 5.2]; its élassifying space
BH = L BG(n) isa JJ -space over a cer?ain—Eoo operad P [R,VI.4.1].

The homology operations Q0 on BY are induced from the action maps
Be ‘
@) B (o) X5, BG@)°= B(=_[G(n) —B» BG(pn),
P
where ¢ :EpSG(n) - G(pn) is the homomorphism specified by
|3

(2) Cp(o'; gl’ eeuy gp) = (gv‘l(l) ®... @‘gv_l(p))‘r(nr Y.

for ce Z_ and g ¢ G(n). (See I.5.3 for our conventions on wreath pro-
P
ducts and [G.1.1 or R.VI.1.1] for the notations on the right~hand side.)

th

Let I'BK denote the zerc"™ space of the spectrum derived from

BY in[G§l4or RVII§3]. = 'B% =2Z and I BY denotes the nth
component. There is a natural map :BYd -+ TBk which sends
BG(n) to I‘nB?:l and which preserves the E structure [ R, VII 3.1 and
Viii1.1]. Moreover, . is a "group completion®, so that

H*I"B?:l = GH*B}:J as an AR-Hopf algebra with conjugation, G being
the functor specified at the end of I §2. Less formally, H*I‘B,ﬁ is
generated as an algebra under * by [-1] and _I;Li_l L*H*BG(D), hence
the Qr in H*I‘Bh are entirely determined by those in H*B B via
Lemma 1.1, 2, which gives Qf[-1]= er[l ], and the Cartan formula.
Of course, the operations in H*B,ﬁ can be computed by purely group

(ox fepresentation) theoretic techniques in view of (1) and (2).
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Now suppose that A is commutative and that G(i)® G(j) C G(ij).
Then ﬁ is a sub bipermutative category of HXA [R,VI§3 and 5. 2].
’i‘he operad [J acts on itself [R,VI.2.6], and BH is a (D, /S)-space
[R,VI.4.4]. The operations 0% on BY  are induced from the action

maps

. BT
(3) p )%y BG@? = B(z (Gla) —E> BG@"),

P

where 'Ep: Z‘p S G{n) - G(np) is the homomorh ism specified by

(4 E(osg..-.8)=(g ®...Q¢ Yoe<n,...,n>
A o)

for ce Zp and g, e G(n). (See Definition 1.1 for the notations on the
right.) Moreover, I'Bf4 is an Eoo ring space and . :B¥ - TBY
respects both Eoo structures [R,VII,2.4,4.1, and 4.2]. The homology
operations 3% in H*I‘B}J .are entirely determined by those in H*Bﬁ’-
via Lemma 2.6, which specifies the operations 6r[-1], and the mixed
Cartan formula. Again, the operations 6r in H*B)’d can be computgd

by group theoretic techniques in view of (3) and (4).

We shall give a uniform general discussion of procedures for the
explicit calculation of the 0% and 9 in a number of special cases,
We assume that A is a (commuj:ative) field which contains a primitive
pi th root of unity v for some i21 and we assume that K is a sub
bipermutative category of HJYXA such that T e G{l). Let LA be the
cyclic group of order pi with generator o and let n:' ™, G(1) be
the injection specified by n(c) = v . Recall that H*B'rri ‘has a basis
consisting of standard elements e of degree s , s > 0, and define
£ = n*(es) € H*BG(l)., Here we agree to write {  for the map on

homology induced by the claséifying map BL{ of a homomorphism { .
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Define elements (some of which may be zero)
vo= vlf) e H*rlB}:l and v_=v_*[-1]¢ H*I‘OB?J .

In particular, v, = [1] and '\70 = [0]. In many interesting cases, H*I"Bﬂ
is generated as an-algebra under % by [-1] and the elements v,,oT,
equivalently, H*I‘OB?S is generated by the v_. Priddy [27] discovered

a remarkably simple way of exploiting (1) and (2) to compute the operations

Qrfs and thus the operations Qrvs . Indeed, consider the following dia-

gram of groups and homomorphisms, where w is cyclic of order p with

generator p , W 1is the evident shuffle isomorphism, xn: T is
i-1

specified by Xn(P )= pn, e -, is the injection {{(p )= oF ,

(p is the multiplication of ., and Yy denotes conjugation by a suitably
i :

chosen matrix (also denoted Y) inthe normalizer NG{p) of G{p) in

GL(p, A).
Trxﬂi—l—f-f-«% w{m.C zpfwi-—l——iﬂ—-azpfc(l) e, alp)
lA X A Y
(0 Tx@)F | (o
l” Bt p ®
() oK) (wXTri)p—E’—-é——l)i ()P L (r)? ——> G()°

Thinking of 7> ¢ # (1) C GL(1,A) as a scalar in A and thinking of
T . . r s R
¢ (,...,1) as a permutation matrix, we see that (p ,o ) mapsto

-1
Tsyo‘r(i_, ..,1)y  under ycp(‘lf nm(1x A) and to
i-1 i-1 : ,
'rsdiag(i,'rp r’ e ees 'rpl r(p',i)) under the lower path. The charac-
. p-1 i-1
é is xF P™y, 1t foll
téristic polynomial of o ({1,..,4) is x -1 = X x-7 ). It follows

n=0
!
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tha}: we can choose v e GL(p,A) such that the diagram commutes when
}j = 71:2"1\, and the diagram will rema.i;1 commutative for H C /:l,fA
vif Yy canbe chosen in NG(p). If v is actually in G(p), then
By = 1: BG(p) - BG(P) and vy, =1 on H*BG(p). The following result
is due to Priddy [27] when p = 2 and to Moore [24] when p> 2 and
i=d. |

Theorem 7.4. Assume that the matrix vy can be chosen in NG(p)

Then the following formulas evaluate the operations Q%f .
: s

i) let p=2 andi= 4. Then, for r>s > 0,

T W -1
Qi = ? (r-s-—1,s-_])y* (fj*fr-}-s—j?

(i) Let p=2 and i>4. Then er“fs =0 for r,5>0 and, for
r>s >0,
Q% = S (r-s-1, sy le, v £ )
28~ 4 P8I W25* Yarg2s-2j
and ’
QZr

1
£ = r-s-1,s-j £ .xf
2541 jz( My g%ty saesa-25 % T2501 *Earias.25)

(iii)) ILet p>2 and i>141. Then, for r>0, s>0, and £ = 0 or 1,

T
k, s-pk) Q"
kz (s, s-pk)Q fosre-2K(p-1)

( 1) E ,( n r ,8 Y ‘ £ *f ves ¥ ’
n=4 n n * ZSD;EC ZIIl'Zsli s—l 2r llzs lle i

where the right-hand sum ranges over all sets of triples {zr_,€_,s ),
n’ *n’n
0<n<p, with T, = 0, T >0, s, 20, En = 0 or 1, and with termwise sum

(r(p-1),e,s); moreover, if Yy = 1,

T r+s
Qf = -(-1 -5~ -
2ste (1) ssz-s 1)f2r(p~i)+25+€* [p-1]

modulo elements decomposable under 4 .
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Proof. Apply the classifying space functor to the diagram (%) and
pass to homology. As Hopf algebras, I—I*B-rri = P{ejf} if p=2 and i=1
and H*Bwi= P{p.e;}® E{e’:} if p>2 orif p=2 and i>1 (e.g., by
[8,p.85-86]); {es} is the evident dual basis, and we read off formulas for
the product ¢*, coproduct A*, and Steenrod operations 1:’*k on H*B-rri
by dualization. When p> 2, the resulting forﬁdas are clearly indepen-
dent of i. In (), (41XA), is evaluated in terms of the P:es in
[A, Proposition 9.1], and (15. n ), canbe readoff from 7, by [A, Lemma
1.3]. ¢('§,x0x 1) i X o is just the projection on the second factor,

T

Whilexn*( )=n'e

e
2r-¢

sp.g 0T 0<n<p by the proof of [A, Lemma 1.4].

For i=4, L =41 on w=m for i> 1, L*:H*Bwr->H*B1'ri is given by

i;
Y,*(ezr) =e,. {e.g., by direct comparison of the stgndard resolutions or by

a Chern class argument) and l_f,*(ezr_i) =0 (because ﬁezr = 0 in H*B-rri).
In particilar, comparison of the diagrams (%) for i>= 1 and i>1 shows
that our formulas for i= 4 and s even imply our formulas for i>1 and

s even. When p = 2, note for consistency that (r-s-1,s-j) = (2r-2s-1, 2s-2j)
mod 2. To prove (i), chase er® e, around the diagram. The resulting

formula is
rik 2 !
Ekl‘ (k,s-26)Q° T f_ | = JZ(I‘,S—J)Y* (fj*fr+s_j) .
This formula is precisely analogous to that obtained with x = [1] in the

mixed Adem relations, and the derivation of formula (i) is formally identical

to the proof of Corollary 3.5. (Priddy [27] reversed this observation, de-

riving our Corollary 3.5 from his proof of (i).) In (ii), er+if =0
s

holds by induction on s since, inductively, e2 +1®e maps to QZI"H{
T s : s

along the top of (%) and to zero along the bottom (because Y_.,*(ez +i) = 0).
: T
3 2
The formula for Q r£25 follows from (i) and that for erfz ) is
s

|
|
|
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proven by chaéing le® eoetd around the diagram to obtain the formula

2r+2k ” £

% (k, s-2k)Q zj+1*f2r+25-2j)

L
25#1-2k zj:(r's'J)Y* €t arssti-2i ¥

and again formally repeating the argument used to prove Corollary 3. 5
Fiﬁally, the first part of (iii) is proven by chasing (—1)re2r(p_1)® o ste
arounc.l the diagram and the s_econd part follows from the first by an applica-
.tic.m of Lemma 3.7 along precisely the same lines as the proof of
Corollary 3.8.

Moore [24] goes further and derives closed formulas for the Qrfzs+£,
keeping track of the ¥*-decomposable summands.

Determination of the operations 5rfs is much simpler. Since
noam o G(1) is a homomorphism of topological Abelian groups, it and
Bn : B, —~ BG(1) are infinite loop maps. By [R,VI.4.5], BG(1) is a sub
Eoo space of BHM with its tensor product Eoo structure. By Lemma 1.6.1,

we therefore have the following result.

Lemma 7. 2. ?jrfs = 0 unless both =0 and s =0 (when

8141 = [1)).

In summary, when H, rBR s generated as an algebra under *
by [~1] and’ the elements Vo= *(fs), its operations QF are determined
by Qr[—i] = XQr[i}, by Theorem 7.4, and by the Cartan formula while
its operations B’ are determined by 5r[—1] = Qr[ij*[-i] if p=2, by
50[-1]: [-1] and O7[-1]=0 when r>0 if p> 2, by Lemma 7.2, and by

the mixed Cartan formula.
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. §8. The orthogonal, unitary, and symplectic groups

We turn to examples to which the procedures of the preceding
section apply. Consider first the bipermutative categories O c LR -
and U C BLC  of orthogonal and unitary groups ‘and the additive per-
mutative category ,4{1@ of symplectic groups [R, VL 5.4]. Of course,
I‘OBG‘ =~ BO and I‘OBU =~ BU, but the essential fact is that the
machine-built spectra of [R,VII§3], which we éenote by KO and kU,
are equivalent to the connective ring spectra associated tothe periodic
Bott spectra and so represent real and complex connective K-theory
[R, VI, 2,1]. The weaker assertion that the maps (7. 1) are compat -
ible up to homotopy with the E00 actions on BOX Z and BUX Z re-
garded as the zeroth spaces of the Bott spectra is ad unpublished theorem
of Boardman.

To apply the theory of the previous section, we define n:w - U(1)
by means of a primitive complex pth root of unity for ecach prime p. For
p = 2, we define m :m — O(1) to be the obvious identification. It is trivial
to check that the matrix vy needed to make the diagram (¥) commute can
be chosen in U{p) in the former case and in O(2) in the latter case. We
will thus have vy, = 1 in the formulas of Theorem 7.1. Recall that
fs = n*(es), Vo= L*(fs), and w_fs =v [-1]. We recollect a few standard
facts about the homologies of BO, BU, and BSp in the following theorem. -
It will be clear from these facts that the result of the previous section in
principle determine all operations Qr for I‘BO'", Bl , and I‘Blp.
and all operations OF for 'BO and I'BW . Note that the standard

functors

prU~06, v: O-U, }.L:K{«’o -~ UL, and v:U*/‘{‘P

(i) Let p=2. In H_BO(1), {fs} is the standard basis;
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are all morphirsms of additive permutative categories, and complexifi-

cation v: (0 =~ isa morphism of bipermutative categories.

Theorem 8.41. The following statements hold in mod p homdlogy.
(3) | In H*BU(i), fg4q = 0 and {fZS} is the standard basis;

HBU = P{—‘;Zs | s 21} as an algebra under *,

H,BO = P{ ;sl s > 1} as an algebra under * . Moreover,
LLH, BO(1) -~ H _BU
v H (1) «BU(1) sends £, to £ and

tH_BU(1) - H_B
Byt H BU(1) +BO(2) sends f,, to fx fs .

: - s -
(iii) Let p'> 2. Define Uy = (-4) p.*(v43) e H BO. Then

— ey kry a— i— o
H, BO = P{ u4sl s> 1} and vl u4s) = iﬁz—zs (—1) in*VZj ¢ H_BU.

. . - s, —
(iv) Define B, = (-1) v*(v4s) ¢ H BSp. Then H,BSp = P{ -545’ s> 1}
d — - UL PP
an p*(zés) . 2 (-1) VZi*VZj € H*BU .
itj=12s
To illustrate the use of Theorem 7.4, we counsider H*BO when

p=2. We think of BO and rOBC" and we have

QIVS = Z ins*QJ[—i] by the Cartan formula. Q0[~1]=[-2] and ,
itj=r
for j> 0,
PN O T YO I
Q[-1]= xQ[1] = Q1]*[-4] + 27 Q]+x R’ [1]¥[-2].
- i=1

Clearly this formula can be solved recursively for QJ[-‘.[] in terms of
the Q'[1] for i< j. Finally, Theorem 7.1 gives

T R

Q'v_= z (x-s-1, S—J)Vj*vr+
J

In particular, QIVS

r .
oj? hence N [i]= vr*[i].

0

(r-s-1, s)'\'r'l__*_S modulo * decomposable elements.

Kochman [13, p.133] and Priddy [27, § 2] give tables of explicit low
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T
dimensional calculations of the Q vs

Remarks 8.2. The first calculations of the homology operations Q" of

the classifying spaces of classical groups were due to Kochman [13].
Actually, alfhough Theorem 7.1 is a considerable improvement on his
result [13, Theorem 6], there is otherwise very little overlap between the
material above and his work. His deepest results are most naturally ex-
pressed in terms of the dual operations QI; “in cohomology. In particular,
he proved that, on the Chern and Si'iiefel-Whi’cney classes,

+
Qe = (-1) s(s-r(p-‘i)-i:P’f"s)‘:s-r(p—i)

.and

Q:ws = (s~r-4, 2r-s)vvs__r
Due to the awkward change of basis required to relate the bases for
H*BO and H*BU given in Theorem 8.1 with those given by the duals

to monomials in the Chern and Stiefel-Whitney classes, it is quite
difficult to pass back and forth algebraically between the formulas of
Theorem 7.1 and those just stated. To illustrate the point, we note that
Theorem 7.4 gives

T r r
T T 1,72 p-1
Q1] =(-1) E 172 %o (p-1) Var ¥ * Vo *[1],

-1
+...+rp- = r{p~-1) P

t 1

1

T T (¥
whereas Kochman's result [413, Theorem 22] gives Q [1]= (cp—i) % [pl.

Remarks 8.3 (i) Well before the theo‘ry of Eoo ring spaces was invented,
Herrero [8] determined the operations 9% in H (BOX Z) and

H*(BU X Z) by‘proving all of the formulas of sections 1 and 2 relating the
products * and # and the operations QF and 8F and proving Lemma

*

7:2. She worked homotopically, using models for BOX Z and BUX Z
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defined in terms of Fredholm operators (and it does not seem likely that

any such models are acfually Eoo ring spaces).

(iij While the mixed Adem relations are not required for the evaluation
of the O on H, T'BO and H*I"B'LL , they are nevertheless available.
Tsuéhiya [38,4.47] asserted what amounts to a simplification of these
relatiox;s for 6rQs[1] in H*I'BU- , P > 2, but his argument appears to

be incorrect (as it appears.to require the composites wXw —> 5> U(p)
1 XE ' & . .

and wXw® ———> U{1) X U(p) = U(p) to be equivalent representations,
where E is the regular representation).

- Let BO® and BU® denote I’iBO' and I‘iBU_ régarded as E
spaces and thus infinite loop spaces under @ . By [R,IV.3.4],
BO, = BO(1) X BSO_, and BU_ = BU(1) X BSU_, as infinite loop spaces.

® (1) ® ® (1) ® P sp

We shall need to know H*BSO® as an algebra in section 10. Adams and
Priddy [2] have proven that the localizations of BSO and BSO® and of
BSU and BSU® at any given prime p are equivalent as infinite loop
spaces, and we could of course obtain the desired information from this
fact. However, to illustrate the present techniques, we prefer to give a

quick elementary calculation. We first recall some standard facts about

Hopf algebras,

Lemma 8.4. Let A be a connected commutative Hopf algebra of
finite type over Zp which is concentrated in even degrees if p> 2. If
all primitive elements of A have infinite height, then A is a polynomial
algebra.

Proof. By Borel's theorem, A = &® A, as an algebra, where A,

—_— . is4 L i
has a single generator a, and deg aig deg aj if i< j. By induction

on i, each a, has infinite height since either a, is primitive or tp(ai)
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has infinite height (by application of the induction hypothésis to the calcu-
lation of its pnm poweirs).'

Note that the hypothesis on primitives certainly holds if A isa sub
Hopf algebra of a polynomial Hopf algebra. We shall later want to use
this lemma in conjunction with the following result of Milnor and Moozre
[23,7.24].

Lemma 8.5. Let A be a connected tommutative and cocommutative
Hopf algebra of finite type over Z, p>2 Then A SEQ®B as a Hopf
algebra, where E is an exterior algebra and B is concentrated in even
degrees.

We also need the following useful general observations.

Lemma 8.6. Let ane an Eoo ring space and let x e ﬁ*XO be a
primitive element. Then Er(x*[i]) = O%x % [1] + Q x%[1] for all r.
In particular, g(x*[i]) = E(x)*[1] + & (x) %[1], where % and £ are the
p~ power operations in the # and * prqducts. Mozreover, the # pro-
duct of two primitive elements of H*XO ig again primitive, and the #
product of a p?imitive and a *-decomposable element of ﬁ*XO is zero.

Proof. For 0<i< p-1, the terms ﬁir(x® [1]) of the mixed

Cartan formula are zero since x.[0]= 0. The first part follows, and the

last part is also immediate from x-[0] = 0.

Proposition 8. 7. H*BSO

and H_BSU_ are polynomial algebras.
® * ® polyn g

Proof. For p> 2, V*t'H*BSO®“’ H*BSU® is a monomorphism of
Hopf 2lgebras (by translation of Theorem 8.4 (iii) to the i-components),
hence it suffices to congider BSU® for all p and BSO® for p= 2.
‘Since the two arguments are precisely the same, we consider only BSU®.
: n+i

s n-1 .
Let p = E ‘ (-1)'].“‘{; .%¥p » + (~1) nv. be the basic primitive
n i=1 2j "n-j 2n
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'eleme‘nt in HZn'BU . Wg shall prove that F_I-,(pn) =0 for n> 1. Since
{pn*[i]] n> 141} is a basis for PH*BSU® and since the p certainly have
infinite height under #*, the result will follow from Lemmas 8. 4 and 8.6.
Since p, = vi*[—i] and ﬁ(vi) =0, E(pi) = -§ (pi) by Lemma 8.6. Since

p,lpj' is primitive, pi = ¢,p, with ; #0 for 2<j<p. Since

3
p¥l _ p - 7 —

by Proposition 4.5 (iii), it follows that g(pj) =0 for 2L j<p. Again,

since pipj is primitive, we necessarily have E(Pn) = knppn = kng (pn)

for some k ¢ Z , and then
n P
Eelp )='E(p) =k PP (p ) = & £ (5]
*5n * n ntx ° P! T Fn *pn)'

i . . i ;

P*pn= (1, n-p1-1)pn_i(p_1) , and a standard calculation shows that for n > P
. i .

either P* 1 #0 for some i>0 orelse n= mpr with 41 <m<p-1 and

R . k
r > 1, in which cas = aP
f e p11 a *Pn+k(p-‘l) and P‘«ﬁpn+k(p-:l) # 0 for some

k<{ and a#0. It{follows by induction on n that all k_ = 0.
n
In the case p = 2, explicit algebra generators in terms of the
standard basis for H*BO® (obtained by translation to the 4-component

from Theorem 8. 1) will be given in Remarks 12.7.
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. 13 £ finj ield : - : ’ | : i . . .
§9. General linear groups of finite fields . ) group .of kr(pp) over kr is cyclic of order d with generator the
As explained in {R, VIO §1], when A is a discrete ring the zero com- ' Frobenius automorphism ﬁr, ﬁr(z) = zr’ and it is easy to see thé.t
t T BJ XA of the infinite 1 ace TBHLA is equivalent t ~ fiq = . . .
ponen 0 o e infinite loop space - is equu (o] o ﬁon @epomn, where a:GL(d, kr) ~ GL(d, kr) is a suitably chosen
i illen's pl structi BGLA d its homoto T ] there- 3 :
i, Quillen's plus construction on and i omotopy groups are v ? inner automorphism. It follows that p.*(fs) =0 unless s= 0 or s= -1
: fore Quillen's algebraic K-groups of A. . _ mod 2d. Finally, note that the inclusion of k in k (0 ) inducesa
r r p
. . a , : . )
Let kr be the field with r = q elements, q# p. We shall recall morphism of bipermutative categories
. . ' - 7 . - ‘ .
(and give an addendum to) Quillen's calculation of H*I‘Bﬂ qkr [29] and v ] v ﬁxkr - 'E‘fkr(”p)‘ -

shall show that the procedures of section 7 again suffice for the computation " .
With the_se notations we have the following theorem, all but the last state-

of both types of homology operations. We shall also compute H_I' B HLx .
* T ment of which is due to (Quillen [29].

as an'algebra under # .
Theorem 9.4. H I'BHIk =P{p.¥ s> 4 B =
Via Brauer lifting and the Frobenius automorphism, these calculations *0 x T P4V 2ds [ s24} ® {P‘*vzds-'l J s2 1}

. as an algebra under *. Moreover, for s> 41 and € =0 or 4
translate to give information about spaces of topological interest. We shall ’

Z sy 2s, (d_—'l)sd 1

utilize this translation to study the odd primary homology of Coker J, : v*”*(£2ds-e )= r ¥ S ¢ *fZS L e *fz .
sgt---Fsy  =2ds 0 0 1™ ®a-17%a-1
B(SF;kO), and BTop in the next section. Eot-- tEg =R :

d
Let d be the smallest positive number such that r =1 mod p and
Proof. We must analyze wp:GL(4,k (p)) > GL({d,k (1 ). We
|34 TP

d =z
let r -1 =pt with tprime to p. Let p_ be the group of pth roots of . .
p claim that the following diagram commutes, where § denotes conjugation

unity in the a¥gebra1c closure kq of k_ and let kr(pP) be the extension by a suitably chosen matzix:

over kr generated by p.p. Clearly kr(pp) has degree d over kr’ hence

GL(4, k() — & v
Co d : > GL(d,
its multi plicative group is cyclic of order r -1 and contains a primitive P ( kr) > GL(q, kr(Hp))
pl—-@- root of unity T. Define n:w, ~ GL(i,kr(p )} by n{e)=1. As A )
- s N °
in section 7, set f_ = n*(es), v =1 *(fs) ¢ H,T, B kr(p,p), and ] X

d b=0
GL(4,k (1)) d &)
— : > [ AN
v o= vs*[-i]. Define a morphism of additive permutative categories TP GL(1, kr(”p)) GL(q, kr(pp))

s

: - U ; ,

i f:l,;(’kr(pp) ,,Zkr Let kr(T) C kr(pp) be the subfield generated by T. Since 4 is minimal
. ‘ such that (,61")‘d =
by p(n) = dn on objects, with u:GL(n,kr(pp)) - GL(dn, kr) specified by () = 7, the degree of kr(’f) over k_ is d and thus
T

- . L. . . . d k (v) =k . W d-1
f:fncmg a basis for kr(pp) over kr, using it to identify kr(pp) with kr r( ) r(“p) € may theI'EfOl‘edChOC’se {4,7,...,7 7} as our basis

. ‘e n . dn dn . for k = J
as a kr-space, and then identifying kr(p.p) with kr = (kr) . The Galois r(P'p) over k . I g(x) = J=20 ij » €4 =1, is the minimal poly-
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nomial over k_ satisfied by +, then the matrix p{v) is obviously the
companion matrix of g(x). This remains true for vp(r), but here, as a

polynomial with entries in kr(p'p)’

d-1 b d-

T 1 b
B = X (e-rt) = X G807

. . T
Our claim follows. We may restrict § to T and we see that

¢i(eZs e) = rsezs ¢ Dy atrivial calculation with the standard resolutions

: r T r )
[8,p.86 ] when s =1 and by use of A*¢* = (¢* X p'*)A* for s> 1 and
€ = 0 and of 5i¢: = ¢:ﬁi for s>1 and € =4. The formula for
v*p*(des_a) follows by a diagram chase. In interpreting it, it is useful
to remember that

r£=1 mod p <> r° =1 mod p1<--->~d divides e

N d-1 .
(= ),
b=0

il

. dj
and that, since = " -1

d-

s

l'bJ

i

M

0 modp if j#0 mod d.
b=

o

Of course, when d = 1 (which holds automa.téncally if p= 2-), g and v
are the identity functors. In this case, the procedures of section 7, with
Yy = 4 in Theorem 7.1, apply directly to allow computation of the opera-
tions Q° and QO in H*I‘Bij Xk (compare the discussion following
Theorem 8.1). In the case d> 4, the operations QS are determined by
commutation with p " and the operations las are determined (not very
efficiently) by commutation with the monomorphism v % In the key case
d=p-1 and i=1, a more efficient procedure will be given in the next
section.

Rémark 9.2. The Bockstein spectral sequence of I“OBAH Ikr can be
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read off from Theorem 9.1 and Lemma I.4. 11 si V. =3
2 since PiVds = Vads-1

Explicitly, if P>2 orif p=2 and i> 1 we have

Ey

i - P T
E P U50%) ® BlF,)"

des-—i}
r

with B ,T0)° = (p*Vst)pr-1v2ds-i » while if p=2 andi=1
we have ’
' gt P{vzr} ® E{vzr"z(v v + 5% 3
2s 2s 2s 2s-1 2s-1
r y
WiFh Br+1722: = V;S -Z(VZSVZS—'l + stvzs_i). Here
2s : 25:-\1 —
| o) 725?1 = %6 vj*v4s—‘l—j by Theorem 7.1 and the Cartan formula.

We next consider the homology algebra of the multiplicative infinite
loop space l"iB.E) D.”kr. viI‘iBh Kk =2 ,, andwe write I‘iBf:Jx”kr
for the fibre of the infinite loop map PiB b .Z‘kr» K(zr-i’ 1) which

. . _ ot ,
represents the identity element of Hom(Zr_i, Zr-i) =H (I‘iB Elfkr ’Zr—i)'

As a space, 'f*iBB Xk _ is equivalent to (BSGLkl_)+ .

Lemma 9.3, I‘iBfi.;(kr is equivalent as an infinite loop space to
the product BGL(1,k ) X 'fiB}a Xk .

Proof. The inclusion of BGL(1,k ) in BRX k_isanE_ map with
respect to @ by [R,VI.4.5], hence the evident composite

i1
ki

BGL(i,kr)xriBbr: kr——>I‘1B.’:!;(’erl"i'Bﬂda( k. >I‘1B.¢4.Kkr

is an infinite loop map. It clearly induces an isomorphism on homotopy

groups, and the conclusion follows.

We have the following analog to Proposition 8.7.

Proposition 9. 4. H*}JiBﬂX kr is the tensor product of an exterior

algebra on primitive generators of degrees 2ds-1 and a polynomial algebra

on generators of 'degrees 2ds, where s> 2 if d=1 and s>1 if d> 1.
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Proof. If d=1 andp > 2, the result follows from Lemmas 8. 4—8.6_

and an argument precisely analogous to the proof of Proposition 8.7. If
d>1 (hence p> 2), then r-1 is prime to p and H*?iBﬂﬁkr =

~
I—]I*l"in1 Jﬁkr maps monomorphically to H,I',B ¥ kr(p.p) under v ,
hence the conclusion follows from Lemmas 8.4 and 8.5. Finally, let
p = 2. The following elements comprise a basis for the primitive elements

in H*I“OB?iXkr :

s~41
Pos-1~ Vas-1 +j=1 Vay*Pagozjer 5 EL
s-41
Pyg = sVZS*'{r'ZS + ) vZJ *’sz*~p4s_4j , s>1, when i=1,
and _ ‘5,1 j=1
Py = 5V, + & ij*p25~2j , 8>14, when i> 4.

~
Both g(pzs_i) = 0 and E(pzs 1) = 0, the latter being trivial wheni = 4 and
requiring a calculation from Proposition 1.5 and Lemma 8.6 when i> 4,

hence E(pZS_i*[i]) = 0. Thus

E{st_i*-[ius 2-2}®I‘{v1} ifi=1 or E{ézs_1*[i]js.>_'1}®r{v2} if i>14

is a sub Hopf algebra of H*I’iB?.l.‘( k_, where I"{vi} if i=1 or
E{yi} ® F{Vé} if i> 14 is the image of H*B'ﬂ'i. It follows easily from the
" last sentence of Lemma 8.6 that the primitive elements in the quotient of
H*I‘iBbY{' k_ by the Hopf ideal generated by this sub Hopf algebra have
infinite height. "The conclusion follows from Lemma 8.4 and an obvious
lifting of generators argument.

Quillen's'calculations in [28 and 29] yield an equivalence of fibra-
tion sequences completed away from q {where 'Eq is the algebraic

closure of kq): e
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A oy . r
S Qr BHL K —s j g £-1 =
> z . rOBkJr k —> rOB%a( kq > rOB.H;( kq

(&) | N SO i
r
@BU ——> F@'-1) —> By L1 5 3y

Here F(Lpr—l) denotes the homotopy theoretic fibre of lpr-l, ¢r is
in_duced from the Frobenius automorphism, and the maps ?\ are derived
from Brauer lifting, There is an analogous equivalence of fibration )
sequences completed away from d:
= 4 . K o — ¢r/1 -
szrls.fﬁf kq ——-—->r113h;£kr -—--—->r113!4>< kq td > T BHX K

®) |on By 2 \

QBUg —> o' /1) — BUg VAN BUg,

A detailed discussion of these diagrams may be found in [R, VIII§2 and § 3.
As explained there, results originally due to Tornehave [34, unpublished]
imply that both (A) and (B) are commutative diagrams of infinite loop spaces
and maps.

In Proposition 9.4, the exterior subalgebra of H*fBb e k; is the
image of H*ﬂrlBﬂxEq’ as can be verified by an easy spectral sequence
argument. There isa general conceptual statement which can be used to
obtain an alternative proof of part of that proposition and which will later
be used in an algebraically more complicated situation

For any Eoo ring space X, let p:X0 - X, denote the translation

1
map, p(x) = x*1.

g,y

Lemma 9.5. Let X —>Y ___"“":’,. Z be maps of Eoo ring spaces

such that §x = ¢k . Then there are infinite loop maps Fey :XO ~ F(f -4)



|
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¢
B
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and p®:X1 - F(4/4) such that the following triangles of infinite loop
spaces and maps homotopy commute
and
F(g-y) —— Y F(B/4) — = 3,

and there is a map P:F(f -0) - F(g#/y) such that the following diagram

homotopy commutes

o

QZO*L__,F(Q(-‘;,) ~—X,

Qp P e
L p-®

0z, ——— F(f/}) «—>— X,

Here the maps w and . are natural maps of fibration sequences,

Proof. f-y=#(f,xd)a ¥, ~Z,  and §/= #(f.xp)Aa:Y, ~2,.
Since p is not‘an H-map, (f/¥)p is not homotopic to p(ff -¢). Itis
therefore convenient to replace the fibres F(f-y) and F(§/y) by the
homotopy equalizers E0(¢,¢) and Ei(ﬁ, y) of @, YY) > Z, and
/IR Y'1 - Z1 . .To ju%ti_fy this, recall that the horn.otopy equalizer E(z,B)
of maps @, B :C =D of spaces or spectra is the pullback of the endpoints
fibration (po, pi):F(I +, D) > DXD along the map (¢,B):C ~DXD,
where F(I+, D) is the function space or spectra of unbased maps 1-=D,
and that, in the case of spectra, there is 2 map E(2,p) =~ F@-f) which

makes the following an equivalence of fibration sequences:

QD-—-—-——-—*E(a,E:)‘—'—"’C.
o 1 .
ap ——> Fla” p) —TC

This diagram yields a diagram of the same form on passage to zero

by pe(x) = (Kx,w¢wx) for x e X, ke =)= (Kx’wﬁxx) for xe X, and
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' spaces. (These statements are immediate verifications from the defini-

tions of épectra and function spectra in [R,1I].) Since § and ¢ are maps
of Eoo ring spectra, fp=p and Yp = pp (with no homotopies required),

and we are given that fx = k. We can therefore write down explicit maps

b X > Bolhb) s kg Xy ~E B0, wmd FiB (6, 4) = B, 64)

Py, @) = (py,pow) for ye Y, and we F(I, Z,) with (pg,p,)(e) = (fy,by),

where o, denotes the constant path at z. The requisite diagrams commute

trivially. Ee gnd p.®are infinite loop maps because the passage from
Eoo spaces to spectra is functorial and.the formulas for Fo and p.®
make perfect sense on the spectrum level (applied on the spaces which
make up the spectra determined by XO’Xi etc.) Where they yield maps
equivalent to the given p.e'and p.®, on the zeroth space level.

In diagrams (A) and (B) above, the identification of the top rows as
fibration sequences proceeds by construction of maps AP'GB and p® as in
the lemma, with (f,4) = (§%,1). (Completion away from q was only

needed to establish the equivalence with the bottom rows.) Here p_ and

e are equivalences, and the maps { of (A) and (B) are p.e:1t. and
-1
b v -
Corollary 9.6 The following diagram is homotopy commutative:

9
QrOB.U % ‘Eq —_— rOBkl % k_

SZp P
or B4XE ——2—» T BUX k
1 q 1 T
Therefore p{ is an H-map (since Qp and the { are) and

(= *[1])(y*[1]) = xxyx[l] for x,ye L*H*QI’OB%);' Eq
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§40. The homology of BCokerJ, B(SF;k0O), and BTopat p> 2

When E is a commutative ring spectrum, we have a fibration

sequence, natural in E:

(1) SF —%—> SFE ——» B(SF; E) —> BSF

Here SFE denotes the component of the identity element of the zeroth
space of E, e is obtained by restriction to the 1-components of zeroth
spaces from the unit e: QOOSO -~ E of E (where QODSO denotes the
sphere spectrum ), B(SF;E) is the classifying space for E-oriented
stable spherical fibrations, and g corresponds to neglect of orientation.
See [R,III §2] for details. When E is an Eco ring spactrum, (4) is
naturally a fibration sequence of infinite loop spaces, by [R,IV §3]. Thus
to calculate characteristic classes for E-oriented stable spherical :fibram
tions, we need only compute e*:H*SF - H*SFE and use the Eilenberg-

Moore spectral sequence converging from

2) E® = To H*SF(H SFE,Z ) to H, B(SF;E)
. ( = T * > P * ’ .

Explicitly, B(SF;E) is the two-sided bar construction B(SFE,SF, %),
and the spectral sequence is obtained from the obvious filtration of this

space (e.g. [G,14.44 and 24,13.40]). One way of analyzing e  is to

th

note that, if X denotes the zero " space of E (which is an Eco ring

space), then we have the homotopy commutative diagram

0 i

e e

X > X

0 1

Thus we can use the additive infinite loop structures to compute
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eyt H*QOSO - H*XO and can then translate to the 1~components. The

advantage of this procedure is that, as our earlier work makes amply

clear, analysis of the additive homology operations tends to be con-

siderably simpler than analysis of the multiplicative homology operations.
. As explained in [R,IV§6], results of Sullivan [32,33] give an

equivalence of fibration sequencés localized away from 2:

SF ——> F/Top ——> BTop ——>BSF,
(*) X f g
SF ——> BQg —T—> B(SF;kO0) —1—> BSF

where BO®= SFkO. By [R,VII §1], kO is an E_ ring spectrum and
the rows are fibration sequences of infinite loop spaces. Recent results
of Madsen, Shaith, and Tornehave [19], which build on earlier results

of Adams and Priddy [2], imply that (%) is a commutative diagram of
infinite loop spaces and maps. (See [R,V§7].) Thus analysis of
characteristic classes for stable topological (or PL) bundles away from 2
is equivalent to analysis of characteristic classes for kO-oriented stable

spherical fibrations.

Henceforward, complete all spaces and spectra at a fixed odd
prime p. Here analysis of B(SF";kO) in turn reduces to analysis of
another special case of (1). To see this, let r = r(p) be a power of a
prime q# p suchthat r reduces mod pz to a generator of the group
of units of Z 2.. Equivalently, p-1 is the smallest positive number d

P

such that rd =1 mod p and Ip-i

~4 = pt with t prime to p. Define
jp6 to be (the completion at p of) the Eoo ring spectrum derived from

the bipermutative category fjfkr. The superscript § stands for
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"discrete model", and j: is equivalent to the fibre jp of
Lpr-i :kO +bo (bo being the 0-connected cover of kO) by [R, VI, 3. 2].
As shown in [R, VIIL. 3. 4], we have a commutative diagram of infinite

loop spaces and maps (completed at p):

e & T ] 9
SE J, B(SF; s> BSE
20 ( ,Jp) B!
A Ao B
(*%) oK Bhe Bx
e T q
SF ———> Bo®—————-——->B(SF;ko)—-—————> BSF
where J°  =SFi® = TBHYk , x:J0 ~Bol= I, BOE issuch
Rp p 1 T ®p ® 1 T
that its composite with I‘iB @Er -~ I‘iBU £ Er is induced from the
8

inclusion of }J,fkr in i;I.Z’-lzr , and A :BO® - BO® is the equivalence
obtained by Brauer lifting. As explained in R, VIII §3 and V §4 and §5],
B(SF;j;) is equivalent to the infinite loop space usually called BCoker Jp,
abbreviated BCp and defined as the fibre of the universal cannibalistic

class c(¢ ):B(SF;k0) ~ BO_ .

®

By [1 and 2], any infinite loop space of the homotopy type of BO
1
(completed at p) splits as W X W as an infinite loop space, where
. A
T _, W=2z and w.W = 0 if j¥ 0 mod 2{p-1). By[R,V.4.8
2i(p-1) (p) i ’
and VIIL, 3. 4], the composite

(3) B(SF;j:)XW X wl‘» B(SF;jS) X BOX BQ® —

BABkXgXT . nsF;k0)° -——ﬁ———s»B(sF;ko)

is an equivalence, where g:BO - B(SF;kO) can be taken to be either
the Atiyah-Bott-Shapiro orientation or the restriction to BO of the

Sullivan orientation §. The cited results of Madsen, Snaith, and
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Tofr‘lehave [19] and of Adams and Priddy [2] imply that both choices are
infinite loop maps (here at an odd prime; see [R,V §7]). Thus the
specified composite is an equivalence of infinite loop spaces, and

analysis of B(SF;kO) reduces to analysis of B(SF;j 6) ~ BC
P P
. ) 5
Write J = = i i it = )
rite > I‘OB .ﬂ.)fkr (in conformity with J@p I‘iBfi £ kr)'

By diagrams (A) and (B) of the previous section, these are discrete

"models for the additive and multiplicative infinite loop spaces usually’

called ImJ and Im J , abbreviated J d
p ®p v p " J@P

We have reduced the computation of H,BTop and H*B(SF;kO)
]
to the study of e*:H*SF - H*J®p , and we have analyzed H*SF in
&
sections 5 and 6 and H*J®p in section 9. As explained in [R, VII §4],

there is a commutative diagram of infinite loop spaces and maps

116 e
o s’ SF
0
)
[+4
e P e
| >
36 - eap : 5
p ®p

such that ear};S :J'é5 - Jép is an (exponential) equivalence. The dia~

gram produces a splitting of SF as J'g X (SF;j;) as an infinite loop
6
space, where (SF;jp) = QB(SF;j;), Mozre over, the proof given in

[R,VIII§4] shows that
) = PRT4]#[-p]] 521} ® B(pa’[a]x[-pl| 521}

as an algebra under * . These generators are not the same as the

generators F*(.vz(p—i)s-E) of Theorem 9.41. Indeed, Theorem 7.1

implies that

P =
Si+ s s

@ Q%114 [-p] = (—1‘)s z ”*(;z(p-nsi* e *;Z(p-i)sp_i)’

p-1
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and the operations Qr(Qs[i]*[—p]) are now determined by that result.
The elements y_ = (a:g)*‘(Qs[i] x[-p]) in H.SF were discussed in

. o . . 5
Lemma 5.44. Their images e*(YS) in H*J®p give. explicit algebra

generators on which the operations ?21: are determined by commutation
with (eag )y - In particular, note that Theorem 7.1 implies

(5) 87y = (-1 (slp-1)-€ ,x-s(p-1) +& 1By,

modulo #-decomposable elements, in agreement with Remarks 5. 14.

Looking at diagram (¥¥), we see that {e*ys = ():o Ko e)*(ys)} is a set of
polynomial generators for H*W c Ker'r* C H*BO® .
Of course, the splitting of SF gives H*SF = H*J: ®H*(SF;j§)

8
H(8F;j )

and E” = Tor P (Zp’ Zp) in the spectral seguence (2) for

E= j:: . We require a set of generators for H*(SF;j: ) C H*SF.
Certainly ﬁ*(SF;jg ) is contained in the kernel of e :H, SF = H*J‘% o
and standard Hopf algebra arguments [23, § 4] show that H*(SF;jg ) is
in fact exactly the set of all elements x such that if ¢x= Z x'@xV,
then e _x'= 0 when degx'> 0. We shall content ourselves with the

#*

specification of generators in Ker e Their suspensions will be

%
primitive elements in Ker(Be)* and thus, by simpler Hopf algebra
&

arguments, will necessarily be elements of H*B“(SF;jp ) C H*BSF. For

A € _
K admissible of length 2, choose Zye € A{p ys} such that e*(xK+ zK) =0
and set Vg = ¥ + Zoe - These are the elements Vg referred to in
Conjecture 6.2 . If we knew that conjecture to be true, we could take the

set X of elements E)’yK specified there as our set of generators in

Ker e, - As we don't know this, we instead choose zI € A{ﬁsys} such

|
,§
|
|
:
L
|
|
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that ¥ = XI+ z is in the kernel of e, for each x € X and set

Y = {yIA] X e X}. It follows immmediately from Theorem 5.2 that
HSF = A{ﬁey‘s}® AY

as an algebra under # . We have the following complementary pair of

results.
Theorem 40.41. As a sub Hopf algebra of AH*BF (via q),

H*B(SF;jg )= ABY where

BY =‘{c*yI]£(1) >2 and e(l) +b(f) >4 or £(I) = 2 and e(I)+b(l) > 1}.

~

Proof. By (5), Qs(p—i)pys = ﬁyps modulo # -decomposable
elements. The requisite calculation of the spectral sequence (2) is

virtually identical to the proof of Theorem 5. 2(ii) (which follows 5. 14).
Theorem 10. 2. As a sub Hopf algebra of H BF (via Bag *),
& s
H*BJP = (BJ)*H*W®E{U'*YS}
Proof. This follows from Lermma 5.412 and Theorem 5. 2. Note
that Po,y_e (Bj)*H*W is indecomposable if s ¥ 0 mod p but that

I

= - = - . P
PoyYos = TP Y g «BYg = (o By ) .

As discussed in [R, V§7 and VIII§4], I conjecture that Bj: BO -~ BSF
actually factors through Barg . Of course, Bj coincides with the com-~

posite BO -—g-—>B(SF;kO)i-> BF, whereas gr ~#%:BO_ ~ BF . By

®
the splitting (3) and diagrams (¥) and (¥*), we obtain the following
corollary.
~ N 1 ]
Theorem 10.3. H,BTop = H,B(SF;kO) = H.W @ HW ®H,B(SF;]_ ).

Under the natural map to H*BF, H*W maps isomorphically onto

: L 8
(BJ)*H*W, H, W™ maps trivially, and H*B(SF;jp ) maps isomorphically
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to ABY.

The correction summands o,z by which T4 Yy differs from Ty ¥y

are significant. They explain Peterson's observation [25] that, while

k% * o
Pw_ maps to zero under (Bj) :H BF =~ H BTop for s<p (for

By
dimensional reasons, B(SF;JP) being 2p(p-1)-3 connected and
HZp(p—1)+1B(SF;j§ } being zero), [3Ws maps non-trivially for all s >p.

' : *
As pointed out by Peterson, yw_= > Wi®WS-i implies (Bj) (ﬁws) #0
for all s> p if (Bj)*(ﬁwp+i) # 0. The following result is considerably
stronger.
k-1 WK
Theorem 10.4. Let p(k)=4+p+...+p , k=2. Then (Bj) ([3wp(k))
* .6 *

is an indecomposable element of H B(SF;JP) C H BTop.

k-2

k-1 . R
Proof. Let L, = (0,9 ,0,p ,...,0,1), as in formula (I1) of

k ' P
5 3 d =2 w1} = deg w and e = 2. We claim that
1§3. (Ikk) (p ) g p(k) (ka)

<wp(k),}30'*ylkk> 7£ 0, hence < ﬁwp(k),o-*ylkk> # 0,

and the theorem will follow immediately from the claim. By Corollary 1.8

and Lemma 5. 17, <B£W R o-*x> =0 if x is * or #-decomposable or if
s =z

: S
x= % with £(I) > 2. By Lemma 5.44, it suffices to verify that, in H*Jp s
L o k P
Q alx[-pl= & [1]1%[-p]

modulo * decomposable elements, since then zLKk will differ from

by summands annihilated by w and we will have
) OV SR Y plk)

<wp(k),f3:r*y1kk> = <wp(k)’ﬁv*zﬁd<> = i<wp(k)’§txp(k)> # 0.

k-4
By Theorem 7.1, Q £ o1 =

i X , and this remains true
2(p " -1) 2(p*-1)

[}

with the f's replaced successively by v, pev's, and BV 's. By (4),
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s+l

P'*VZS(p-i) , and the conclusion follows.

8, -
Q1]*[-p] = (-1)
The following consequence of this theorem was first conjectured by

Peterson [25] and first proven by Tsuchiya [37, §4], who used quite

different techniques.

* %
Theorem 10.5. Let @®:H BSTop -~ H MStop be the Thom iso-

¥k
- morphism and define §:A =~ H MSTop by @(a)=a®(i). Then ¢(Ql)v7! 0

for i> 2, and Ker § is the left ideal A(QO, Qi) generated by Qo and Q.
’ i
Proof. QO is the cohomology Bockstein and Qi = [pp s Qi-1] for
i>1. As pointed out by Peterson and Toda [26,3.1], the definition

PPa(1) = @(WS) =8(1)u w_ and the Wu formulas

Prﬁtwss (-1)r(r, s(p-4)-zr+e -i)ﬁgwr+s mod decomposable elements
*
in H BSF formally imply the relation
& = V
Qi (1) ki@(i) U (ﬁwp(i) +decomposable terms), 0 # )\i € Zp s
. * N N %) *
in H MSF. Application of (Mj) and (Bj) =and use of the previous
theorem shows that Q.8(1) # 0 for i>2. Q,®(1) =0 in ’H*MSF,
" .
Q,2(1) = (1) U pw, in H MSF, and (Bj)*(pwi) = 0. Thus Ker §
contains A(QO, Qi) and § induces a morphism of coalgebras
F:a/a * P} s
. (QO’ Qi) - H MSTop. . {Qkf k>2} uxPj }  is a basis for
the primitive elements of A/A(QO, Qi)’ where Pg is the Milnor basis
element given by the sequence with 1 in the jth position and zero in all
L. 0 £
other positions, and Pj maps nontrivially to H MSO. Thus ﬁ' is a

monomorphism because it is a monomorphism on primitive elements.

Remarks 40.6 . Although I have made no attempt to do so, it should

not be unreasonably difficult to push on and obtain sufficient iﬁformation
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K
on the structure of H MSTop as an A-module to compute EZ of the
Adams spectral sequence converging to 'n'*MSTop. This requires cal-

. ’ *
culation of certain Steenrod operations in H BSTop, and these are

accessible from the Nishida relations and the theorems above (compare Remarks

5.5). Indeed, considerable relevant information on this dualization
problem has alre ady been tabulated in our calculation of the dual of the

Dyer-ILashof algebra in I §3. -
Remarks 10.7. It is straightforward to read 6if the mod p“ Bockstein
spectral sequences of BJS s B(SF;jps), BF, and BTop from Lemma

1.4.44 (and its analog in cohomology). For BJ; , it is most convenient

&

to work in cohomology where H‘PBJp = P{Ws}® E{ﬁws} as a quotient

*
of H BF and thus
T r

T r
- P p -1 : P o_ .
Er-l-i = P{WS 1® E{Ws ﬁws} with ﬁr-f-:lws W ﬁws

S8y L e
The homology Bockstein spectral sequence of B(SF;JP) is specified

T T

by T I"__'1 P p -1
" - p(y® 1@ (P ey} with B0 =y By,

where y. runs through {w*yl | (1) = 0,d(1) is odd} C BY. The
Bockstein spectral sequence of J; is specified in Remarks 9.2, and

that of (SF;jF?) can again be read off from Lemma I.4.11.

Remarks 10.8. In[4, §5], Brumfiel conjectured that the image of
* -
H*(BTop; Z[4/2]) in H (BTop; Q) was a polynomial algebra on classes

R, € H41(BTop; ) such that yR_= E R @R, and

i n L4 i J
itj=n

R = (ZZn

-1 1) num (B /411)Pn modulo decomposable elements, where
n n .

B_ is the nth Bernoulli number and num(Bn/4n) is the numerator of
n

1

th:e fraction B_/4n in lowest terms, As observed by Tsuchiya [37, §3],
n
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a
s n ’
up to an undetermined factor 2 in the congruence, the conjecture is

an easy consequence of the fact that the primitive elements of
H (BTop; Z[4/2])/ torsion are generated by the images of the basic
primitive elements elements in H, (BO; z[4/2]) andin H*(F/Top; z[4/2]).

Mad‘sgn and Milgram [18] have recently proven the conjecture in its

original form.
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§11. Orthogonal groups of finite fields

When A is a discrete commutative ring, the zero component I‘OB oA
is equivalent to Quillen's plus construction on BOA and its homotopy groups
can reasonably be called KO*A.

Let kq be the field with gq= pa elements, where p is an odd prime.

Fiedorowicz and Priddy [6 ] have made an exhaustive study of the homologieé

of the orthogonal groups and of various related families of matrix groups of kq'

We shall recall their calculations of H*I‘Bqu and shall show that a slight

elaboration of the procedures of section 7 suffices for the computation of both

types of homology operations. We shall also compute H*'I‘l'B O’kq as an

algebra under #.

Via Brauer lifting and the Frobenius automorplllism, these calcul‘ations
translate to give information about spaces of topological interest. We shall
utilize this translation to study the 2-primary homology of BCokerJ and
B(SF;k0O) in the following sections.

We repeat that the homological calculations in this section are due to

Fiedorowicz and Priddy [6]. All homology groups are to be taken with z,

coefficients.

O(l,kq) = Z_ and welet n:Z_— O(l;kq) be the identification. As

2 2

usual, this fixes elements f_ = LFCHN S *fs € H*I‘iBO‘kq, and

v, = vs*[~1] € H*I‘OBG kq

Let @'evkq be the full subcategory of (‘)’kq whose objects are the

even non-negative integers. Let

‘ -a b
_ 5 = e GL(2,k ),
. b a 4
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. where az + b2 is a2 non-square. Let Sn =6®...® 6 ¢ GL(2n, kq). Define

& Oevkq—' Oevkq by &(2n) = 2n on objects and &(A) = GnAﬁrzi on

matrices A e O(2n, kq). Then & is a morphism of (additive) permutative
categories such that @Z = 1.
With p= 2 and G{n) = Ofn, kq), the diagram (*) above Theorem 7.1

is made commutative by use of conjugation by the matrix

-1 1
Y = € GL(Z,kq).

If g = +1 mod8, then 2 is a square in kq and cpnjugation by v is equal to
conjugation by (1/N2)y ¢ O(2, kq). Thus vy, =1 in Theorem 7.1 in this case.
If g= % 3 mod 8, then 2 is a non-square and we may take & =y in the
definition of &. Thus \{;1 = &, in Theorem 7.1 in this case.

With these notations, we have the following theorem. |

Theorem 11.1. H,T B V] kq = P{vs | 521} @ E{Esi s> 1} Aas an
algebra under *, where (& - i)*(?r's) =U_. Therefore 3.V, = > w.xT.,

itj=s -

§*Es = '{IS, and the following formulas are satisfied.

T

. - . -3 ® i = s

(i) Qv jE (z-s-1,s J)Vj Vitsej if g= 41 mods8

.. ro et el - = i oan
(3 Q Vo= E (r-s-1,s J)Vi*vk*uj-i*ur+s—j~k if g= £3 mod 8,

ij.k ,
I — — -,

- liii = -Gt -3 * .

(iii) Q u_ izj (r-s-i-1,s-j) g, uj*ur+s-i—j for all g

3

Proof. We refer to [ 6] for the first sentence and show how the rest

follows. &-1 = ¥(®,Xx )A, hence

ug = (2-1),(v,) = > B Vot XV -
: min=s .

By induction on s, these formulas admit a unique solution for the Q*V

That solution is Q*vs = 'g Vi*u. since
: itj=s
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S5 (> iﬁ%”ﬂi1= > (v, *xV )+ T, = ¥_.

min=s itj=m itjin=s J

‘Since ®(2-1) = 1-% = x(®-1) and xW_=71_ (by induction on s), 2.8 =u

£ s

Now formulas (1) and (ii) are immediate consequences of Theorem 7. 1(i).
Formula (iii) is proven by writing ;s*[Z] = v, #[1], computing Qr(VS *[2])
by the Cartan formula, noting that (2-1), commutes with * and the Q°
and takes [2] to [0], and explicitly calculating Q T_ = (®-1), Q' (v_*[2])-
An essential point is that (Q-i)*(ﬁs) =0 for s >0, and it is this which
allows (i) and (ii) to yield the same formula (iii).

Of course, these formulas completely determine the operations Qr
in HI'B v} kq. The operations c”fvs are trivial, and we shall compute
the operations 6rus in Proposition 11.7 below, u_ = Tis*[i]. Formula (ii)
is extremnely illuminating, as our later work will make clear. For example,
it yields the following simple observation. {Compare Madsen [16, §2].)

Remarks 11.2. Comnsider the Bockstein spectral sequence of I‘OB O’kq .

9bv1_ously ﬁvzr =v hence ﬁuzr =4, - Thus

2r-1’

2 _2 — -
E” = p{ VZS} ® E{ u25»1* uzs}.

— — 2s5__
225 =VZS*VZS_I+Q v, Let q = 3 mod 8. Then

-1

25 28 25 _2
= ¥ = * [ - * IF
Qv Q (VZS—i [-1D) Q Vos-1 [-2] +V25-1 vy

s

- - - _2
* * * *
ViRV T Stk Y Vasa TV

i

i,j<2s-1,k !

Adding in v, *v

25 251 and reducing modulo Im B, we find that

e > S,
-2 2o s
PaVas Vai© Y23-17 Y23
i+j=s,j21

We conclude from Lemma I.4.11 that, for r> 2,

1

_can be computed the same way that of T’
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- T T r r
r+i 2 ~2t-2 2 2 2%-2
E = s 3 — = T . .
~ PIV, I BEly, | B, 7, ) with BV, = Vo By¥ps

2
When q =+ 1 mod8, ;32?725 = 0 and a rather complicated calculation of

Fiedorowicz and Priddy [ 6] shows that if r is maximal such that 2"

. i,2 2 ’
divides > (g"-1), then BVss #0 for all s.

The homology algebra of the multiplicative infinite loop space I‘iB O’kq

1B bs| .Z"kr was computed in

section 8. 'rfI‘B@'kq= ZZGBZ

5 and the non-zero elements of HiI‘ B qu

2 1
correspond to the families of homomorphisms O(n, kq) - Z2 given by the

determinant, the spinor norm, and their product. The first and last of these

restrict non-trivially to O(t,k ). Let FiBO k be the fibre of the
. ~ .
infinite loop map det: I‘iBﬁkq-’ K(ZZ’ 1). As a space, I‘iBO kq is
equivalent to (BSqu)+. The proof of the following result is the same as
that of Lemma 9. 3.
Lemma 11.3. I‘iB & kq is equivalent as an infinite loop space to

the product BO(1,kq) X 'fiBG’ kg

Proposition 11.4, H*fiB <& kq is the tensor product of the exterior

algebra on the generators u_ = U, %[1] and a polynomial algebra on one

generator in each degree 2 2.

While an elementary proof along the lines of thpse of Propositions 8.7
and 9. 4 is possible, we prefer to rely on application of the Serre spectral
sequence to diagram B below (together with Proposition 8. 7) for identifica-
tion of the polynomial algebra and on Corollary 11.5 below for identification
of the exterior algebra.

As explained in detail in [R, VIII §2 and §3], the calculations of

Fiedorowicz and Priddy [6] together with the machinery of [R] and, for
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diagram B, results of [2] and [19] imply that, when completed away from p,
both of the following are equivalences of fibration sequences and commutative

diagrams of infinite loop spaces and maps. Here the infinite loop spaces

'I"‘OBO' Kp and f‘iB O-f(.p are the fibres of the nontrivial maps from FOB [CEN
. ) P

and T BO & to K(Z,,1).

~ -t K - q_ —_~ -
OF BOE —>T B0k —> I BOE 2ls T BOR
0 P 0 q 0 P 0 P

(4) o l l’i J"X N
p1
2BsO —= Fwl1) > BO BSO

~ — - q ~ -
of BOK L r,BOk, —>r B ok, VAN B Ok

(B) o L& b bN
—_— sy > -—LEE/-}—» BSO
Q.BSO® > F (/1) BO® ®

A ~
\k:T . BO®k - BO,, lifts to an infinite loop map I, BO@ k_~- BSO
17 g ® 11 PmaR 5 a @

Ak
since (Mk) (Wl) = det. Since the Brauer lift of n:2Z_ - O(l,kq) is

2
n:2Z, = O(1,R), (&K)*(vi) =v, .

Since Ep contains a square root of az + bz, conjugation by Gn is
an inner automorrphism of Ofm, Ep) for all n. It follows that
k® = K:I‘OB (?kq"* I‘OBO’EP. Therefore &-1 facto?s as lw for some

map w:I‘oB @'kq* QI‘OB C"‘Ep. By Theorem 11.1, we see that E{'Es}

~t —
coincides with {_H QT B@'kp. Of course, the composite

)
L -1 @ gt
rRP® = Bz_ s BO{,k ) > 1 BOk £—> 1 BOk —>ar BOk —>
2 q 1 q 0 q 0 P

Al
25 9BSO ~ 50

is homologically non-trivial. There is only one non-trivial A= algebra homo-~

: * *
morphism H S5O -~H RPOO, hence this composite must coincide homologically
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. . . A
with the standard map RP® - SO. This proves that (Q\) «8) =a_eHSO.
. S

In particular, Theorem 11.1(iii) implies Kochman's calculation of Qa ;
s

éompafe Remarks 5.10. Now the following analog of Corollary 9.6, which
is again an immediate consequence of Lemma 9.5, implies the identification
of exterior algebra generators specified in Proposition 11.4.
‘Corollary 11.5. The following diagram is homotopy commutative
L

o' BOKk ——=———>T1 BOK
0 p 0 q

Qp P

of Bok —t o rmox
1 P 1 q

Therefore pf{ is an H-map and
Ex[1D(y=[1]) = x*y %[1] for x,yeé*H*ﬂI‘oB@kp.

In a rather roundabout way, quite explicit generators for the poly-

nomial part of H*f"llBekq will appear in the next section. It is also use-

ful to have, in addition to the global statement Proposition 11.4, particular '
formulas which determiné the # -product on H*l"lB ﬁkq in terms of its

basis in the *-product. Liemma 11.3 implies that vV T (z, S)Vr the

+s’
previous corollary gives u u =u * u_, and the remaining formula
r r

required is given in the following result.

Proposition 11.6. wv = E (i, £)u
itjtk=s

r+iiuj ﬁvk for all r and s.

Proof. By Proposition 1.5 (iv), the specified formula is equivalent to

TV = i, iu ey * g e
av, Z i, ) U g *u . Uy
i,j
We claim that the following diagram is homotopy commutative, where we

have abbreviated X = I‘OB @’kq :
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g XxX1 ' *X 1

Ax1 XXXXX —————>> XXX

XXKX=T>X XX XX

\ l(lmxl)(lxle)
X1IXxX1

(1xtX1)(1X1X4)

it XXXXXXX XXXXXXX #
J#x# # X #
. *
X A sxxx g xx XXX X

The crucial relation ®o# = #o (& X 1) follows from the corresponding
commutative diagram on the level of categories and functors, and the
analogous relation yo# =~#e{y X 1) follows from the fact that ¥ x = x # (-1)
(see 1.1.5). Chasing 'ir'r@'w'/'s around the di;agram, we obtain

'&rVS = (& - 1)*(vr)§?s = (2-1) (¥ 7).
By Proposition 1. 5(iii) and the formula vV = (x, s)vr , we have

+s

Ve = & vi+j * er—i * X;;s-j . Since (®-1), commutes with * and ¥
3
and since Xh—s = Es , the conclusion follows.

<

~

Finally, we prove the analog of Corollary 11.5 for the operations a*

and thus complete the theoretical determination of these operations in

13)'
H*I‘lBL kq

Proposition 11.7. 5r(x*[1]) = Qx* [1] for xe L*H*QFOBO'EP .

Proof. By the Adams-Priddy theorem [2], there exists an equivalence
of infinite loop spaces completed at 2, i:',:ﬁf‘OB@ Ep» le @Ep . Any two
H-equivalences QE‘JOB @EP - QleG ’1Zp necessarily induce the same homo-
morphism on homology since they necessarily restrict to the same homo-
morphism H_RP™ - H *1““'1}30‘1213 and since the image of H _RP”
generates H*QfOBO'.lzp as an algebra. Therefore, in the diagram éf
Corollary 11.5, £ p behaves homologically as if it were Q§ and, since

the® { are infinite loop maps, pl behaves homologically as if it were

t
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- an infinite loop map.
The reader is referred to [6, App. B] for alternative group theoretical
proofs of the pArevious results and for further details on the algorithm they

imply for the computation of the operations [e3 on H*I‘lBG‘kq.
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12. Orientation sequences at p = 2; analysis of e:SF - J®

We return to the study of orientation sequences of the form (10.1),
but here all homology groups are to be taken with Z2 coefficients and all
spaces and spectra are to be completed at 2.

Although apparently unrelated to BTop at 2, B(SF;kO) does play
a central role, explained in [R, V §3-5], in Adams' study of the groups J(X)
both at and awayfr;)m 2. Itis th,us also of interest to understand its mod 2
homology. We begin by using the spaces studied in the previous section,
with q= 3, to reduce the analysis of B(SF;kO) to that of B(SF;jZB) and .
then give a detailed analysis of the behavior of the relevant unit map
e:SF = J 8 |

®2

Define jO; to be the (completion at 2 of) the E. ring spectrum

on homology.

derived from the bipermutative category @'kB. As'explained in [R, VI.
5.7], (fjkB contains the bipermutative subcategory 'n_k3 whose morph-~
isms are those élements T ¢ Ofn, k3), nx Q, such that v(-r) det(r) =1,
where v is the spinor norm. Define j; to be the {completion at 2 of)
the E_  ring spectrum derived from 'ﬂ_ks. By [R, VIII. 3. 2], jOZ is

equivalent to the fibre jO2 of 413—1:1(0 -~ bso and jz6 is equivalent to

&

the fibre j2 of ¢3—1:k0-bspin. Let JO; ,.’.l"2 s

) &
JO® 2 and J®2 be
th s O ;0
the O0-components and 1-components of the zero spaces of JOZ and iy
and similarly without the superscript §. Diagrams (A) and (B) of the
previous section give infinite loop equivalences JO; ind .]'02 and
.]'Olé2 - JO®Z. By [R, VIIL. 3. 2 and 3.4], we have analogous equivalences

"of fibration sequences of infinite loop spaces

181

3
) .5 & ¢ -
. . Spin Jza al BO’S ——¢-———1——9 BSp:'u:JL8
(A" sz”x[ la [x la
3
. : -1
Spin .TZ BO L) BSpin
Spind, — S KR Yo\ —ﬁi———» BSpin®
. ® ®2 R Prg
(BI n ’ )
(B 28 N X X )
W
Spin h) BOQ, —1———> BSpi
Pltg ®2 ® Boping

&

. 5 _ . 5
Here BO =I‘0Bﬁk3, BO® = I‘lBﬁk3, and BSpin and BSpiné are

their 2-connected covers. JZ is our choice for the space Im J at 2.
Many authors instead use the fibre J'Z of 413-1: BSO - BSO, which has
the same homotopy type as JZ but a different H-space structure. Various
reasons for preferring J, were given in [R,V§4], and the calculations
below give further evidence that this is the correct choice.

By [R, VIII. 3. 4], we have a commutative diagram of infinite loop

spaces and maps

e 5 T 5 q .
SF I 5
— Ig, B(SF;j,) ——> BSF
N A
o e e |
sF —= ,Bo® T+ B(SF; kO) —=— BSF

6

As explained in [R, VIII §3 and V§4 and § 5], B(SIE‘;j2

) is equivalent to the
infinite loop space BCoker JZ’ abbreviated BCZ’ where the latter can and
should be defined as the fibre of the universal cannibalistic class

3 .
c( W ):B(SF;kO){-* BSpin® . By[R,V.4.8 and VIIL 3. 4], the composite

"
.8 . Ble Bk X
(1) B(SF;JZ) X BSpm—-————-——g——> B(SF; k0) X B(S¥; k0O) g > B(SF; kO)

is an equivalence, where g is the Atiyah-Bott-Shapiro orientation. Using
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’,

work of Madsen, Snaith, and Tornehave [19] and of Adams and Priddy [2], =
Iigaard recently proved that g is an infinite loop map (see [R,V§7]). Thus
the specified composite is an equivalence of infinite loop spaces, and
analysis of B(SF;kO) reduces to analysis of B(SF;jZG) Y BC2 .

As explained in [R, VII §4], there is a commutative diagram of infinite

loop spaces and maps : &
0 *2°
Qs ———— 5F
0 .
aﬁ

e 2 e

18 °% S 5
2 K2

Here 0126 is emphatically not an equivalence. In homology, the proof of

[R,VIIL. 4.1] gives the formula ‘
W
(@9, (@l x -2t Py 32 = Fpal.

On the other hand, the Adams conjecture yields a homotopy commutative

diagram

3
-1
J BO —2 BSpin

S

SF ———3> SF/Spin —=——> BSpin

Here SF/Spin= BO(l) X F/O as an infinite loop space by [R, V.3.4], and
the following composites are equivalences by [R,V.4.7 and VIII§ 3], where
(S¥;j 6) = QB(SF'ja) ~C
> 2 b 2 2 .
o
2 e )
(@) 73, SF T2

: a, XQ2(B\o Bk)
@) JZX(SF,jZB) 2 SF x SF —2—5 sF

5 VX T(BXe B

(3) BOX (SF;j,) —= SF /Spin X SF/Spin ¢>SF/Spin.
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With these facts in mind, we return to homology. Comparison of
diagram A' to diagram A of the previous section yields the following

addendum to Theorem 11.1. Let uy = v, = [0].

Proposition 12.1. H*.TZB = P{ > E.*:v'jlszl} ® E{T,| s # 24 CH*JOZ
itj=s
1

i
where 'ﬁ; € E{E;__'} and Es +¥_ is decomposable (under *).

Proof. The following evaluation formulas hold for J Og :

<det,v.>=1

1 , <V-det,Tr'1>=1, <V,¥.>=0

<det,u.>=0

1 , <Vv-det,u,>=1 , <V,El'>=1.

1
Indeed, for V., these hold by consideration of the composite
det

BO(l,kS) - JO®2 > K(Zz,l), while <det,; >=0 since det= (det)o ¥;

the remaining formulas are forced by the fact that det, v.det, and v are

distinct cohomology classes. Therefore El'+ Vl is the image of Hl.]'z5

. ) ) ~ 8 .
mHlJ"OZ. Since H*JZ consists of

{=x|yx= zx'®x", (v-det) (x') = 0 if degx'>0} C H*Jog

it follows by induction and the fact that HSK(ZZ’ 1) contains no non-zero

— &
primitive elements if s > 1 that Z ui*vj & H*Jz . The rest is clear.

3k % *
Recall that H SO = P{¢ w, | s21} and H Spin= H*SO/((T*WZ).

In the dual basis, with < rw ,al

> =
2s L,

2s-1

in = i ! =
HSpin=T{a,  |s22} C T, ,|s21} H,50.

The change of basis implicit in the proposition corresponds to that com-
paring this description of H*SO to that given by H*SO = E{as},
a_ e Im H _RPY .-

s *

The following corollary, a less obvious analog of which for J‘Z was

first proven by Madsen [15], explains why e o

2 could not possibly be an



184

equivalence and demonstrates that no choice of a,: .]'2 - SF can be an
He map.

Corollary 12.2. No H-map .]'2 -+ SF can induce a monomorphism

in (mod 2) homology in degree 2.

— 2 —_
Proof. {vz,vl = (‘ﬁ‘l+ vl)z} and {xz,x } are bases for

(1,1)

HZJZ = HZJZ and HZSF’ and v, maps to zero under any H-map.

We wish to study e:SF — J‘% 2 and it is ‘convenient to first use

Proposition 12,1 and Theorem 11.1 to study e: QOSO - J; .

o s . 0 _ 5
Theorem 12.3. The restriction of eyl H*QOS H*.TZ to the
*-subalgebra
s s
2nt2” 2 n
Q

P{O1]%[-2]| s 21} ® P{Q [1]%[-4]] s>0 and n>1}

of H*QOSO is an epimorphism.
Proof. By Theorem 11.1, the tollowing congruences hold modulo

*~decomposable elements of H*l"BOkBZ

Qs[l] = ka* LR

vs*[l] +u_* [1]

and

o' o’[1] = Qr(vs*[l]) + Q' (u +[1])

i

(r-s-1, s)vﬂ_S *[3].

Since (r-s-1,s)=0 forall r>s suchthat r+s =t if andonly if t is

a power of 2, the coefficient prevents decomposition of u q in terms of
2

* and the operations o (as is consistent with Im e C H*JZ6 C H*J'Oi ).

I t=2°(2n+l), then (2°-1,2°n) =1 and therefore

s s .S
QZ n+2 QZ n[l] = Vt*[?’]'

The conclusion follows immediately from Proposition 12.1.
Turning to multiplicative structures, we note first that comparison

of diagram B' to diagram B of the previous section yields the following
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‘addendum to Propositions 11.4 and 11.7and Corollary 11.5. Let J@Z
den.ote the universal cover of J’éz, namely the fibre of det: J'éz - K(ZZ’ 1)

and observe that we have the following commutative diagram of fibration

sequences of infinite loop spaces!

3
5 -5t 558 Ty~ BSOé AV SN BSpin%
pindy 5 5 o Jéz — BO ————L———> BSpln *
lA ldet ldet 1
* _— K(Zz,l) p—— K(Zz,l) —_— Ok

Proposition 12.4. H*El®2 is the tensor product of the exterior
algebra on the generators u‘s = E; #[1] and a polynomial algebra on one

generator in each degree > 2. For x,ye E{u's} = t H Spin
~T r
xy=xXy and Qx = Q (xx[-1])%[1].

Recall that % is the translate of the * product from the O0-component
to the 1-component.

‘\-'6
.]’®2 has been constructed by first taking the fibre of

v -det: JO - K(ZZ’ 1) and then that of det. Since we could equally well

®2

reverse the order, 3’%2 is also the universal cover of EIB O'k3. Since
v-det restricts non-trivially to O(l,k3), J’O®2 ~ BO(l,k )X J®2 as

an infinite loop space, this splitting being distinct from the splitting

5 . ~
o~ o
JO®2 BO(l,ks) XT;BUk, of %L:emma 11.3.

Theorem 12,5 The restriction of e*:H*SF - H*J

®2

to the

#-subalgeb ra
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E{x | r21} @ P{x |s>0} ® P{x |s>0andn>1}
* 2%, 2% (25n+2%,2%n)

of H*SF is an isomorphism.
Proof. Note fxrst that e 5 z Vi maps non-trivially to

! & . . R '
H*K(ZZ’ 1} under det: J®2 - K(ZZ’ 1) since this assertion holds for %,
by Theorem 12.3. Of course, we must not confuse
50 7 — S 5pi Lx g
& O H* 1 H*J®2 with H* pm® H*J®Z

Indeed, u; e Im E* and the inverse image of u'r in the #-subalgebra of

H*SF specified in the statement is most unobvious. Let

Pooy1 © st+1 Z X, X Zs+1 be thg non-zero primitive element of
s [ % p! -
degree 2s+1 in E{Xr} and let P = SX_ + Z Xj * ps—j be the non-zero

primitive element of degree s in P( {xr}; #*). Obviously Py = pi, and

Propositions 1.5 and 1.6 give

+x *x +x Ex Xx

*(2,1) y 2% £%, hence p, =

P3 ¥ X5, 1)
Therefore e*(pl) #0 and e*(p3) #0 by Theorem 12.3. Since
P;Qs[l] = (r, S—Zr)Qs_r[l], we have
PZ p (Zr 25+l -4r)p = (r,s-21)p
2s+1 2s-2r+l 2s~2r+l

In particular,

s

28 2
P p =p and P_p = p if s21 and t is odd.
* 1 1
4stl - Tast 2°(e41)41 2°t41

The second of these shows that p s can be hit by iterated Steenrod
2 t+l

operations acting on some p , and the first of these shows that p
2% 2%

hits Py under some iterated Steenrod operation. The same formulas also

hold for the Steenrod opérations on the odd degree primitive elements of
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P{ES_+ VS } and E{TI;} hence, by translation to the 1-component, on the

8
two basic families of odd degree primitive elements of H*J®2 . There~

fore e 74 0 for all s> 0, and the restriction of e

+P2e 41 to E{ xr} is a

*
monomorphism. Let f denote the composite

e K*

P{x VX }C H,SF

5
—E >, BO® —> H.BSO
* &
2%,2%) (2°n+2°,2°n) ®2 ®

where BO% - BSO% is induced by the evident splitting of infinite loop
spaces BO?® o BO(l,EB) X BSO?® . By an easy comparison of dimensions
argumeﬁt, it suffices to prove that f is an epimorphism and thus an iso-
morphism. By the Adams-Pﬁddy theorem [2], BSO; = BSO as an
infinite loop space. In particular, the known formulas for the Steenrod
operations on the indecomposable elements of H*BSO apply equally well to
H*BSO% . Explicitly, if Ve is the non-zero element of degree s in

QH*E»505 , then
] 2r
B ¥ye= Y, 208 By, = (ms-2n)y, oo

By the Nishida relations I,1.1(9), the analogous formulas

r+s
P

" X(Zr, 25) = X(r,s) and P Tx

(s+1, 5) = (r, s-21)x

(s-r+l,s-1)
hold in H_SF. By use of appropriate special cases (ex'acﬂy like those in
the first half of the proof), it follows that f ‘induces an epimorphism on
indecomposable elements since, by Theorem 12.3, fx and fx
(1,1) (2,1)
are Non-zero indeconiposable elements.
An obvious comparison of dimensions argument gives the following

corollary, which‘complements Proposition 12.4. For notational con-

venience, define t e H .]' for r> 2 by

T @2

®l
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s+l

. if r=

p-4
E3
(2%, 2%)

e X s s if r=2"(2n+l)
(2°n+2°, 2°n)

pis

Corollary 12.6 . As an algebra under # ,

5
H*J®2 = E{u:‘r] r#291@ E{e*xzq[ q2’0}® P{tr |r>2}.

Comparison of this result to Theorem 6.3 is illuminating: The R-
algebra generators of H,_SF map onto algebra generators for the com-

6. 5
plement of Q*H*Spm® in H*J®Z

>

J@Z BO®
Since x(r.’-s) = QrQs[l]*[*3]a

BO®

Remark 12.7. By (%), the composite SF

is the unit infinite loop map e:SF = BO

® "

e .x can be read off in terms of the basis for H_BO,, specified by
* (r,s) ¥R
H*BO® = P({vs}, *) by application of Theorem 7.1(i). Thus the results

-above yield explicit polynomial generators for H*BSO® C H*BO ; that
the images of the tr do actually lie in ]E—I*BSO® can be checked by veri-

fying that they come from H_BSO(2).

We require two further technical results in order to obtain complete
information about the various algebra structures on the classifying space
level. The following result was first noted by Fiedorowicz.

Lemma 12.8. For r# Zq‘, e*x(r r) is a # -decomposable element
§ ' ’

of H*J®2 .

Proof. Working in H,I'B O’k3, we find that

Q'e™li] = o' nlx Q] = (X vre, J# (3D veru )

= Z vj*vj* B F Uy T OVLE vr*[z]

T
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by Theorem 11.1, éymmetry, and the fact that u, *u, = 0. Thus

= * i = * :
e*x(r’r) v *v . Since ¢ (vrivr) z (v. iv_l)® (vj _vj), we can

¥ iH=r
lfcu'rn the (Newton) primitive elements
s-1
b, =s(v_xv )+ Z (vj ivj)bs__j
j=1
If s is odd, bs = v, _’E.vs modulo # -decomposable elements and bs has

: 6
even degree. In degrees > 2, all even degree primitive elements of H*J®2

are squares. Therefore v, ivr is # -decomposable if r > 3 is odd.

5
Since H*J®2 is a polynomial algebra, the squaring homomorphism on its

primitive elements is a monomorphism. Dually, the halving homomozrphism

n_ 6 5 . . . . .
P* : HZnJ®2 HnJ®2 induces an epimorphism, and thus an isomorphism

if n > 2, on indecomposable elements. Since Pzr(v kv, )=v_Xxv_,
* 2r 2r T T
the conclusion follows.
q ~r+l _
Lemma 12.9. For r#2% Q "t = t modulo

r f2ri TS Farn
. 5
ES
7 ~decomposable elements of H*.T®2 .
Proof. By the Nishida relations and the proof of Theorem 12.5,

2r~2r+1 ~pef] 2r 2r
Fe @t =R Tt Bt Tt a4 BriEg0 0T Ko

Thus, by the argument of the previous proof, it suffices to prove the resdt
when r is odd. Similarly, if 2q sr-i-l,

~2r-2q+2

4q~2r:§-2 _
P 7Q el = (g, r-2¢)Q

t2r—2q+1 ?

4 4
Py sy = (@ T2ty 4qes 224 By Sy = (@ T-29ty aq43

By the special cases cited in the proof of Theorem 12.5, it suffices to prove

the result when r = 3. Since t3 = e*x(z’ 1)

primitive and is therefore of the form aq, + br7 , where

w4
is primitive, Q t3 is also
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k-1 ' k
=kv. + > * d = * .
G Ty 2:1 ViZ G 2P Torn T Yk +3§:1 & o] -
Clearly, the coefficients a and b can be read off from a calculation of

o~

Q t3 modulo *¥-decomposable elements. Theorem 11.1 implies that

= = * * %
e*x(z’l) q3 v3+v2_v1+v1__v1__v1 .
The mixed Cartan formula, Proposition 1.5 (in particular x-[0] =0 if

deg x > 0), Theorem 11.1, and the fact that arvs =0 if x>0 and s>0

~4
imply that, modulo ¥-decomposable elements, Q (v1 ivl j‘_vl) = 0,

a4v3 = 0, and

~4 4 B 4
Q (Vz .’EVI) = Q (Vzvl) #[1] =Q Vo [-1] = AT

Therefore a=b=1 and 54t3 =q, + r_ . We must still calculate 9 +r

7 7

modulo # -decomposable elements. Recall from the proof of Theorem 12.5
= n! 3 P Mo
that P, = Py +x(2’ 1y Since Prsrl = *os4l modulo #-decomposable

elements, the formulas for Steenrod operations in the cited proof imply

that
1 = '
CePooil = ©x%ps41 + e*x(s+l’ s) modulo #-decomposable elements.
s-1
. ' % ol . .
Since Py = sX + J‘Z:l xj * ps-—j , Theorem 11.1 implies that
! = = * o
€ Pre 11 © ¥ g1l Vostl + LoV modulo *~decomposable elements
Therefore and

1 =
CxPhet1 = L1 T T2e41

+e.x modulo #-decomposable elements.

Ges1 T 2541 = %2641 T o4 (41, 5)

We shall also need the following consequence of the previous lemma.

q ~2ri2 -
Corollary 12.10. For r# 2 ’ Q tzr- t4r+2 + € X412 modulo
8
A
T —dec?mposable elements of H*J'® 2
I;r of. Certainl '*éZr-{-Zt = at +be x for some constants
TIpoL. Terainly 2r - ariz T O 4re2

a and b, and we see that a=b =1 by applying B to both sides.
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§13. The homology of BCokerJ, BSF, and Big at p= 2.

Until otherwise specified, all homology and cohomology groups are
to be taken with Z2 coefficients. Again, all spaces and spectra are to be
completed at 2.

P:i'ecisely as in Section 10, we can now exploit our understanding of
e*:H*SF - H*.T§®2 to compute H’PB(SF;js2 } as a sub Hopf algebra of ]
H*BSF. We first specify certain elements of H_SF which lie in the kernel
of €y Here there are two different choices available according to whether
we choose to use the description of H*SF given in Theorem 5.1 or in

Theorem 6.4. For each I= (J,K), £(K)= 2, suchthat x_ ¢ X (as in 5.1),

I

write ?EI = 6JXK for the corresponding element of X (as in 6.1). There

are unique elements

7,z ¢ E{x } ® P{x } ® P{x }
r T (2%, 2%) (2°n+2°,2%n)

such that e*zI = e*xI and e*ZI = e*xI , and we define
YI=XI+ZI and yI=x+

I 1
The following sequence of results gives a complete analysis of the behavior

on mod 2 homology of the diagram

' )
BSO BSp1n®
Bj
v
K] q Be )
(*) B(SF; _]2) —>BSF B.T®2
% o R(Z_,2) X BBSO5
B(/0) BBOg = K(Z,, ) ®
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Our first result is an immediate consequence of Theorems 5.4 and 6.1

2
and the observation that E” = E™ in the Eilenberg-Moore spectral sequence

H, (¥ /O) ,
converging from Tor _ (ZZ’ ZZ) to H*B(F/O). It is recorded in order

to clarify the counting arguments needed to prove the following two results,

which implicitly contain alternative, more geometrically based, descriptions

of H BSF and H*B(F/O).

Theorem 13.4. As Hopf algebras,

’ o~
H*BSF = H*BSO ®E{0’*X ) l s>1}1® ABX

(s,
and

H,_B(F/0) = H,BSF /H,BSO = E{sx s> 1} @ ABX,

(s,9) |
where BX ={o,¥ | (0>2 and e(D>1 or (=2 and eD)21}.
Theorem 13.2. The image of H*B(SF;J’Z) in H BSF (under q)
is the tensor product of the following three sub Hopf algebras:
~ q
>
E{O-*Y(r,r) ] >3 and r# 27}

~

P{e r>3 and r# 2%

Y (r 4, 1) I
Plo | 1022 and eMz2; I# (2°n+2° , 2°n)} .

and, if r= 2" (20+1),

M ~ L
oreover, o,¥.. .y T TF(r )
vLY = g, X% to,x + (o x 2
e, r) T TF (z+d,r) ¥ 2l *

2°n+2%, 2°n
(

The result remains true with O.*?I replaced by o

«I1 in the third algebra.

&

Q2 to the

Theorem 13.3. The restriction of (Be) :H _BSF -~ H _BJ

sub Hopf algebra
H*BSO®E{¢T*X s s | s20}® P{o,x | s>0}

&
2°%,2% (2%+1,2%)

| 521 and n>1}
s .S
n+2 ,2 n)

® P{cr*x

(2°

193

of H*BSF is an isomorphism.

- Corollary 13.4. (B {,)*: H*BSpin?@ - H*BJ%Z is a monomorphism and

5 .. 6
H*B.]'®2 = H*BSpm® ®P{o-*e*xzsl s > 0} ®E{o-*tzs | s>11® P{v*t . 1[ s> 1}

27+

®P{cr*t l s>1 and nx1}
)
27 (2n#1)

Corollary 13.5. The sub coalgebra I‘{u-*a sl s >0} of H,BSO ~
2

maps isomorphically onto H*K(ZZ’ 2) under the composite

(Bi)y ‘ (Be), 6 5 (Bdet)y
H*BSO e H*BSF —— H*BJ®——-> H*BBO® —— H*K(ZZ, 2).
Corollary 13.6. The sub Hopf algebra
E{u-*tsl,sz.i}® P{o-*ts ]sZi}@P{a-*ts | s>1 and nx1}
2 2741 2 (2n+1)

J . . &
of H*BJ®2 maps isomorphically onto H*BSO® under the natural map.

Proofs. Write {EIX} for the Eilenberg-Moore spectral sequence

H,X
converging from EZX = Tor - (Zz, ZZ) to H_BX. By Theorem 12.5, the

composite
2 2 2.6
E"SOQE{ox s} ® E{ox s s s }C E"SF - EJ®2
(27,27) (2"nt27,2"n) )
is an isomorphism. Thus E°SO® E{st_| r> 2} = %% - 5@
i phi . - Pl = Q2 = Q2 °

2 R s .
By Lemma 12.9, o,t, . = (o**tr) + (Be)*U*XZr+1 if r# 2°, and this
implies Theorem 13.3. Corollary 13.4 follows in view of Corollary 12.6.

Theorem 13.3 implies that E2 = E® in the Serre spectral sequence of

5
B(S}?‘;ja2 ) =~ BSF - BJ®2 and thus that 9 is a monomorphism. The sub
Hopf algebra of I—I*BSF specified in Theorem 13. 2 certainly lies in the

image of q_ andis all of this image by an obvious counting argument. The

formulas for O-*Y(r, r) and O_*Y(r-i‘i, r) are immediate from Lemmas 12.8
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2. :
and 12.9. Recall that E'SO=T {5,a } = E®S0 and E®so = H,S0 as

a coalgebra. This makes sense of Corollary 13.5, which now follows easily

from the first sentence in the proof of Theorem 12.5. Note that only the

odd degree generators of H,BSO are in the image of o, since

2 . R
TyPpgq = (:r*a.r) for r 2 2. Finally, Corollary 13.6 holds since the

& &
analogous assertion for EZJ@Z - EZ'BSO® holds by the proof of

Theorem 12.5. :

In the remainder of this section, we shall analyze the behavior of the ‘
diagram (*) with respect to higher torsion. Henceforward, {E™X} will
denote the mod 2 homology Bockstein spectral sequence of a space X. We
begin by identifying those parts of {ErBSF} which are already determined
by the formula ﬁQS+1 = st, the fact that o B = ﬁtr*, and the general
formulas for higher Bocksteins on squares given in I.4.11. We need a
lemma.

~ 2142

Lemma 13.7. Q *(,1) is # -decomposable in H SF for all i.
3

Proof. x; . = Q' Q1]#[-3], and Q' Q[1]= B Q1] by Lemma 1.9.
; - =1 W21+ i
As pointed out in the proof of Lemma 2.7, Q [-3]=0, Q Q =0, and

2 . 2
Q i+ Q' = 0. Inthe evaluation of O 1-!-zx(i ) by the mixed Cartan formula,
b
25 i i
all terms not zero by these facts or by I. 1. 1(iii) have either Q 1QlQl[i] or
QZlQlQl[—3] as a *¥-factor and are therefore #-decomposable by

Propositions 6.4 and 6. 6.

The following two propositions should be regarded as establishing

notation and identifying certain differentials in {E BSF}. From this point

of view, the proofs are immediate from 1.4.11 and the lemma. That the
spectral sequences {OEr} and {1Er} do actually embed as stated in the

. T . . .
various spectral sequences {E X} (with no relations and no interference

195
from other differentials) will emerge from later counting arguments.

Proposition 13.8. Define a spectral sequence { Er} by
. P 0

T T

E = @Ple Nt 1@ B (o0 } for 2 1,
y
. r
-2 ~
_with ﬂrH(cr*Y)Zr = (0',,=y)2 o ) (Boyy) + quﬁtr*vl if degy=2q-1,

where y runs through the union of the following two sets:
kv = > e i >
{F,] 1= (25,7),d(1) 0dd, e(1) 23} and o, 20-09 1 F 220

the error term 52(1[30'*5/' being zero for all y in the second set. Then

{OEI} is a sub spectral sequence of {E BSF} which is the image of an
5

isomorphic copy of {OEI} in {ErB(SF;jZ)} and which maps onto an iso-

morphic copy of {OEr} in {EIB(F/O)}.

Proposition 13.9. Define a spectral sequence {1Er} by

T T
1Fept = P{(U*X(Z’ 1))2>} ® E{ﬁr+1(o'*x(2, 1))‘?' } for » 21,
. 21‘ _ 21'_1 r )
with [3r+1(0'*x(2’ 1)) = (O-*X(Z, 1)) (D'*X(i’ 1)). Then {1E } is a sub-

spectral sequence of {EIBSF} which maps onto an isomorphic copy of

5 ]
®2° BBSO®2, and B(F/ Q).

To calculate the portions of the various Bockstein spectral sequences

{1Er} in {E'X} for X = BJ

not determined by the results above, we require information about the
first Bocksteins in H*BJéz and about the higher Bocksteins on the ele-

ments o x,.. ... in H BSF., Itis immediate from the definition of the
%7 (24, 2i) ¥

elements t, ¢ H B.Téz (above Corollary 12.6) that
i

Boyt j=0 and Bot . =0 for j2 2 and $t

2 Ay aiv2 ” taigz T taant

The remaining Bocksteins Po,t = oLl X . s for s 2 2
27 (20+1) (2" n+27-1, 27 n)

and n > 1 could'in principle be determined by direct calculation of

t,. for i>1.
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X s . modulo #-decomposable elements. We prefer to obtain
(2"n+2 -1,2™n)

partial information by means of the following theorem, the proof of which
gives a new derivation of Stasheff's results on the torsion in BBSO [31].

Write 'fr for the image of t in H*BBSO8

®

Theorem 13.10. If i# ZJ, then BO_EZ For 2<r< o,

Tutaiog

T & r - . i . - . . ]

= t = > >
E'BBSOg E ®E{¢*4i[1 2,3_0}®E{f4i+1]1_3,1;£2},
s
- 2°-1 . _ .5+l
where f45.+1 = *41-}-( if 4i=2  (2n+1), s>1

and n 2 1.

Tt 4n+2) (T4t gnpt)

Proof. By the Adams-Priddy theorem [2], BBSO% is homotopy
equivalent to BBSO. By Bott per\iodicity, there is a fibration sequence
{ *
BBSO —— BSpin LN BSU, where 7 is the natural map. Since = (Ci) = Wf,

* 2
a standard calculation shows that H BBSO = E{ei l i>3}, where ei = L*Wi
if i# 2’41 and where e , = Sqle
2l
an indecomposable element of H SU. This specification of the e, implies
that e, =e, . if i7 2’ and that pe . =e? =0 if j>1, while

2itt RNV P

3 I= (Zqu,ZJ—Z,...,Z), restricts to

e_=e smce o- = ¢_t. by Proposition 13.9. Therefore
3 %4 sty = Oyb, by Prop

E_BBSO=E{e. e, e . ,e.e.‘,e.
2 374 Z_]+Z 2i 2i#+1 ZJ+1

[1#2, i23, i>1).

s
. G - _ PN . _ o5+
Obviously oty is either 0 or Oulgig = (O-*t4n+1) if 4i=2"""(2n+1)

being indecomposable if n = 2% and being (o

We have just determined EZBBSO% = EZBBSO additively, and.an easy

' (0'*1:411_*_1 *th) otherwise).

counting argument shows that we must have {30;‘:41 #0 for i# 2). There-
2 *
fore E BBSOE@ has the stated form. Since H (BBSO; Q) is clearly an

exterior algebra on one generator in each degree 4i+l, i 21, the restis

immediate from the differentials in Proposition 13.9 and counting arguments.
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The determination of B o %, . ... is the central calcuk tion of
. r ¥ (21, 2i)
Madsen's paper [16], and we shall content ourselves with a sketch of his
: 2
proof. Recall that E BSO = E®BSO is a polynomial algebra on generators

(of degree 4i) such that ¢d4i = z d4j®d4i-4j . Let

=i th e 2
A ‘p4i = 1d45: + Z d4jp4i—4j be the i non-zero primitive element of E BSO

(which is dual to WZZi in EZBSO).

Theorem 13.11. 1In {EBSF}, =0 and

BT (21, 21)

b3*(2 2) (J)(P4)

Proof. Intuitively, the idea is that the differentials in {ETBSF}
are specified in Propositions 13.8 and 13.9, except for determination of
the Bro_*x(Zi, 21) * hence pru—*x(Zi, 24) must be (BJ)*(p4i) for some r
(perhaps depending on i) since there is no other way that EPBSF can be

s . 0
trivial. In H*QOS s
p,(%[11% QP11 = @Il x QP11+ @B,

Therefore ﬁZX(Zi 21) can be calculated directly (modulo #-decomposable
elements and the image of B). The resulting computation, which Madsen

carried out but did not publish, yields Madsen's

Boos®(21,21) = ©
published proof of this fact relies instead on analysis of tZZ*: HJ ~ H*SF,

for a suitable choice of «, , and use of {E"T} (see Remarks 11.2). Thus
r>3. Madsen proves that r = 3 by a direct chain level calculation.
Alternatively, an obvious dualization argument yields classes in H*(BSF; er)
which pull back to the mod 2" reductions of the Pontryagin classes, and the

equivalent claim (fo r = 3) that the Z,, Pontryagin classes of vector bundles

i6

are not fibre homotopy invariants can be verified by geometrical example.

The previous results, together withthe cohomological analog of 1.4. 11
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2 P, if degz=2q and Bz =zp, ;= if ¥ >2)andourmod2 , ! S _ o0 - 5 .
(pzz = zfz + Bz g -1 | ) Here f4i+-1 (Be)*(g4i+1) maps to f4,1+1 € H*BBSO® and is primitive in
calculatmns, suffice to determine the Bockstein spectral sequences of all EZBJ®2 . The dual spectral sequences {3E } and {4E1.} are specified by
spaces in sight and the natural maps between them. Certain of the rele- \ r 5T ZI 2 %
. E = -
i i “ 37T =8 P{W }®E{ﬁr+i 21} ﬁr+i 2i ¥ai f4i+1 (r21)
vant spectral sequences are most naturallly described in cohomology, and o + 2
and
we shall not introduce the extra notation necessary to state the results ok 5F 2T *
. E = t >
o L , , - o Fet 8 PO, }® 1,050 Prsaas = Vs (Outg)” (21)
obtained in homology by double dualization; appropriate formulations may : 1=
. . T c 2 *_ .6 . . R 5 -
be found in [16]. We collect results before proceeding to the proofs. i , where w,. ¢ H B@Z survives to (BeBJ)*(p4i) in EZBJ®Z .

Write q;iy € H*B(SF;jZ) for the inverse image of an element st
Proofs. Theorem 13.10 implies that if 41 = 2°  (2n+1), s 21 and
y e Im q C H _BSF.

kNS * n2>1, then

Theorem 13. 12. ErB(SF;jBZ) = OEr for all r >2, while

) ) . o u-*e*x(zs‘Hn_*.zs_x.1 . Zan) = [3(:;->kt41 = o-*t4.1_ + a4 ¢r*e*x41_1
E'B(SF:j,) = (E'Q®I i@ i Elay 0uY(a;, 25)) PR 9 0 (p;, 21 1
T

for some constants ay (whlch could be, but have not been, computed

-1, . . LBy o -1
wheze ﬁzq* or>1=Y(2,1, 2i) is represented in H*B(SF’JZ) by e F‘}gé_':i_-i-i for explicitly). By the general definition of the ?I’ it follows that
a certain element Baip1 © H*BSF. e cex o ta ox
. . . *Y(zs“m-f“-i Sy T (S Hasy potyy | X (@ 2in1) TR e
Theorem 13.13. {E'BSF} = {,E}® {,E}® {,E"}, where ’ :
2 3 5 Theorem 13. 2 and the fact that (U*XZi 1)2 =0 Xy imply that if 1< k<s,
LE = ,E" = E"BSO ®E{s, * (21, 2)} i>1} and p3¢*x(21 21) = (Bj)*(p4i). ;
? then, with m = 2n+i,
P - Zs—k s~k
The dual spectral sequence { E } is specified by : (cr*y ) = (o,x )2 b ox
(25m, 2%m-1 * 2K, 2K * 41
5T T 2F.2 m,2 m-1) (2"m,2 m-1)
2 -
- = = 1). :
22 (8;1 P{W }® E{p % 21} s Boptar TV (TF(p ) (F21) S5+ -k
‘ +
(U X(zk‘im 2! 1))
B ] m-
The elements o-*x(z 24) map to permanent cycles in H*B(F/O) and, for r 22,
E'B(F/0) = OEI ® 1Er® E{ " (21, 20 [ i>1} An obvious cancellation argument then shows that
{ } = (B ®LE)®E) | y > 2
Theorem 13.14. E*BIS = E B E where ‘ 0.y s+1 s + o,V
s , +1 y )
_ 2 1 3 4 | (2" a2ty 25t k=1 2m, 2%m-1)
2 j j ;
;B2 ® E° = EPBSO®E({n,t, | 1=2), i20 @Bl | 123, 14 2), | I
=X ) + (o, x +(s+
. j j : T (25ngaS g Rty T (2n, 2n)) (s+a oy, o
ﬁzféi-l-i = (BeBJ)*(p4i) if 12, and 630'*t4i= (BeBJ)*(p4i) if i=27 . !
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where 84511 is defined by

.1
+(o—*x

27
Eaitt = "*X( s+l st st (2n+2, 2n))("*x(2n+1, 2n)

2 +2° 7,27 'n)

+ (s + a4i)cr*x4i

It is now a simple matter to prove Theorem 13.14. We have

s -

~ S
£ -cr*t41+(cr s+ag)oex,.

giet = (Be)yleg ) W ani2) Ostangg)

Obviously Bf = 0 (as could also be verified directly, by use of Lemma

4i+l
12.9). Therefore EZBng is as specified. Since U*e*x(Zi, 24) =0 for
i Zj, by Lemma 12.8, (Bij)*(p4i) must be zero in EBBJ%Z by
Theorem 13.11. The only way this can happen is if ﬁ2f4i'+1 = (Bij)*(p4i).
On the other hand, B,o.t,. = (Bij)*(p4i) if i=2 since then

t4i = U'*S*X(Zi’ 21) ° In view of Proposition 13.9 (and the cohomological
formulas cited above), Theorem 13.14 follows by a counting argument.
Theorems 13.12 and 13.13 also follow by counting arguments, but the
details are considerably less obvious. We claim first that H*BSF can be
written as the tensor product of the following algebras, each of whichis a
sub differential algebra under p. Algebras written i_n'terms of elements

5 R .
S;I come from subalgebras of H*B(SF;jZ) and algebras written in terms of

elements % map isomorphically onto subalgebras of H*B.T&

®2 "
() Pl bo,d,, %03 | al) = 24-1,1= (25,3),e(1) > 3)
(ii) P{cr*?(Zi’ 2-1) |i22}® E{tr*'if(Zi”i’Zi_i) | i>2}

(1) Plogx, )@ Elogx 4}

(iv) H*:Bso CRICINES 2 ® ICE NS )
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k-1 k-1

: CH
=k k k
® P{z,p2,Q "z | k21,H = (27g+2,2 “q+2 ,..,2q+2)if deg z = 2q+1},
z

- where z ranges through the union of the following four sets:
(a) {0,7,]a() even, 1= (25,7),e() 24, 14 (2°n+2°, 2°n)}
®) {oF 1= "oy 2°+2,2°n42°%,2%n), s2 1 and nx1}
(c) {o, x l I= (25+2 ZS) s> 1}
A * I s I’ _
P I '
(@) {gy, lit2,i21}
In (ii), note that v = 0.V,
n (11)» note tha BO—*Y(Zi, 2i-1) U*Y(Zi—i, 2i-1) by Theorem 13.2.
Clearly (i) and (ii) together have homology OEZ under B, (iii) has homo-

2 . 2
logy 1E , (iv) has homology ZE , and (v) is acyclic (because

H H

At ~ -1 2

BQ "z = (Q z) ). In (v.b), with m = 2n+i,
o 'y\r' =g¢,% +0.%x +o0.x
* * *
R 1 (ZS +2, 2s ) 2s+1 2

by Corollary 12.10, hence B«r*?l = o'*';; s s by Theorem 13. 2.
(2"m+1, 2°m)

To check the claim, consider Hk as a generic notation (varying with q),
H

0 .
let H, be empty (so that Q "z = z) and observe that, modulo decomposable

elements and H*BS O,

~Hye ~Hye
Q 8, = Q 'x
4 .
it (Zs+1n+zs+1’ 2‘s~l-1 )
and
H " H .
<k ~ e =~
Q cr*yIEQ TX s s +QHku'*xs s
(2°n+27, 27n) (2"m+2, 2 m)
. s+1
where 4i= 2" (2n+1), 1= (2 n+2%+2,2%042°%, 2%), and m = 2041,
H
Together with the elernents Q ko' x s from (v.c) these elements
(27+2,27) -
account for all of the generators of the form Q kx in

(2°n+2°, 2%n)
Theorem 13.1 (by an amusing and, in the case s = {, unobvious counting

argument), The rest of the verification of the claim is straightforward



202

linear algebra based on Theorem 13.1 and the definition of the S;I' The
claim clearly implies that the image of H*B(SF;jg) in H*BSF is the

tensor product of the algebras listed in (i), (i), (v.2), and (v.b) with the

algebra
3 . EloyT (a1, 21y} @ PPy -

Theorems 13.12 and 13.13 now follow from the observation that, for r 22,
oEr and 1Er contain no non-zero primitive cycles in degrees 4i (by in-

spection of Propositions 3.8 and 3.9). Certainly ﬂzq;iw*'if(ﬁ 24) is a

5 -
non-zero primitive cycle in EZB(SF;jZ), since ﬁzq* t = 0 would

74 (24, 21)
be incompatible with Theorem 13.11, and qz;iﬁgﬁ_}_i is the only candidate.
This proves Theorem 13.12. The description of {ETBSF} given in
Theorem 13.13 is correct since the observation implies the required splitting
of spectral sequences (compare [16,p.72]). Finally, the description of
{ErB(F/O)} is correct since the observation implies that the W*X(Zi, 21)
map to permanent cycles in H*B(F/O).

The following consequence of the theorems explains what is going on

integrally in the crucial dimensions.

Corollary 13.15. For i¥ ZJ, the sequence H4iB(SF;jg) - H4iBSF -

&
H41BJ®2 of integral homology groups contains a short exact sequence

0*24*22628424»0,

. .0y . .
where the Z, in H4iB(SF, 32) is generated by an element r,. which

reduces mod 4 to ﬁzq;i'f(m %) * the Zg in H/ BSF is generated by

(Bj)=|= (p4_) (94' being the canonical generator of the group‘ of primitive
i i
elements of H“ﬁBSO/torsion), the Z2 in H4iBSF is generated by

[y
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. 5
q*(‘r4i) + Z(BJ)*(p4i), and the Z, in H4iBJ®Z is generated by

(BeBj),(py,)-

Proof. Choose an integral chain xe C B(SF;jZ) such that

4i+1

dx = 4y and the mod 2 reduction of x represents q*~1 The

7Y (24, 21)
mod 4 reduction of y represents ﬁzq;i’i(ﬁ 2i) (by an abuse of the
notation [32). Of course, dq.x = 4q,y. Since ‘33U*Y(2i, 21) = (Bj)*(?‘ﬁ),

there is an integral chain z e C BSE such that dz = -2q.y + 4p, so

4it+1
that d(q.x + 2z) = 8p, and the mod 2 reduction of p represents (Bj)*(p4i).

The conclusion follows.

Remark 13.16. In cohomology with 2.8 coefficients, there are classes

4

- .
in H'BSF which restrict in H 'BSO to the mod 8 reduction of the i >

Pontryagin class. Our results clearly imply that there exists such a class
) _ % 43 4 -
in the image of (Be) :H 113;%2 — H 'BSF if and only if i= 2, although

. *
there is such a class whose mod 4 reduction is in the image of (Be) for

all i. This fact makes explicit analysis (e.g., of the coproduct) of such Z

Pontryagin classes for spherical fibrations rather intractable.
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THE HOMOLOGY OF (& L+ -SPACES, n>0

Fred Cohen

The construction of homology operations defined for the homology of finite
loop spaces parallels the construction of homology operations defined for the
homology of infinite loop spaces, with some major differences. To recall,

the operations for infinite loop spaces are defined via classes in the homol-

.ogy of the symmetric group, Zj' Working at the prime 2, Browder [24], gen~

eralizing and extending the operations of Araki and Kudo [1], found that an
appropriate skeleton of BZZ may be used to describe natural operations

Qn+12n+1X;ZZ) as an algebra. Dyer and

which allow computation of H,(
Lashof [8], using similar methods, subsequently obtained partial amalogous
results at odd primes. However, comparison of -the results of Dyer and Lashof .

z:n-H.

to Milgram's computation [20] of H_k(ﬂn+1 X) as an algebra made it ap-

parent that the skeleton of BEP intrinsic to the geometry of the finite

Qtﬁ-lzn-l-lx; Z‘P) .

loop space failed to give sufficient operations to compute H,(
To be precise, only 1/p-1 times the requisite number of operations (defined
in this paper) may be described using' the u;et:hods of Dyer and Lashof,

In addition, there is a non-trivial ‘unstable operation in two variables,
)\.n, which was invented by Browder; thg method of using finite skeleta of BEP
does not lend itself to finding the relationships between )\n and the other
operations. These relationships are especially important in determination of
fine structure and our later wc;rk inVIV.

An alternative method for defining operations seemed to be provided by
the composition pairing and the possibility that H*(Q“*'ls““;zp) is univer-
sal for Dyer-Lashof operations. If n = do, this method works in principle,
but it fails almost completely if n < w: Tt is shown in IV §6 that there
are finite looé spaces with many non-trivial Dyer-Lashof operations for which

the composition pairing is trivial.
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The observation of Boardman and Vogt that the space of little (n+1)~cubés
acts on (m+l)-fold loop spaces, together with May's theory of iterated loop
spaces [G], led one to expect that the equivariant homology of the little
cubes ought to enable one to define all requisite homology operatioms in a
pnatural setting amalogous to that provided for an infinite loop spaces by BE%.
This is the case. In addition, one can describe easily understood constric-
rions with the little cubes which, when linked with May's theory of operads,
enable one to determine thé commutation relations betwéen all of the operationms,
and between the operations and the product, coproduct, and Steenrod operations
on the homology of iterated loop spaces.

Knowledge ;f this fine structure is essential, for example, in the analy-
sis of the composition pairing and the Pontrjagin ring B, (SF(n + 1);Z%) for
all n and p inm IV. Indeed, all of the formulas in III. 1.1-1,5 are ex-
plicitly used there. A further application of the fine structure is an improve-
ment [28] of Snaith's stable decomposition for Q“+12“+1x [257.

We have tried to parallel the format of T as closely as possible, pointing
out essential differences. Sections l-4, which are analogous to I. 1,2,4,
and 5, contain the computations of H*Qn+12n+1x and HC X, >0, together
with a catalogue of the relations amongst the operations,

In more detail, Séction 1 gives a list of the commutation relations be-
tween all of the operations, coproduct, product, and between them and the
Steenrod operations,vconjugation, and homology suspension. The relationship
between Whitehead products and the Xn is also described.

Section 2 contains the definition of certain algebraic structures naturally
suggested by the precéding section; the free versioms of these algebraic struc-

tures are constructed.
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We compute H*Qn+12n+lx in section 3, using the results of section 1 and
2. The associated Bockstein spectral sequences ar; also computed, and the in-
teresting corollary that H*(QZEZX;ED has p-torsion precisely of order p if
H,X has no p-torsion is proved. Using the results of section 3 together
with M%y's approximation theorem [G], we compute H*Cn+1X in section 4. We
use these computations to prove the group completion theorem in section‘B.

In sections 5-11, the equivariant cohomology of the space of little
(ot+l)~cubes as an algebra over the Steenrod algebra is computed in order to
set up~the‘theory of operations described in the previous sections. Here we
replace the little (mt+l)-cubes by the configuration space F(EP+1,p) which
has the same equivariant homotopy type of the little cubes [G]. The erux of

our method of computation lies in the analysis of the (non-trivial) local co-

efficient system in ;he Leray spectral sequence {E**} for the covering
i+l il :
rEH o) —s z@t__m .
P

After summarizing our results and giving the definitions of the operations
in section 5, we compute the unequivariant cohomology of F(E?+1,p) in sec-
tion 6,

We analyze the action of the symmetric group on the indecomposables in
cohomology in section 7. To obtain complete understanding of the local co-
efficient system, we also completely analyze the relations in the cohomology
algebra of F(BP+1,p) as an algebra over the Steenrod algebra.

- .
2 of the spectral sequence together with all

We completely describe E
of the differentials in sections 8 and 9. The "extra" classes present in
ale
2" 2
EZ are essentially the obstructions to the comstruction of all requisite

homology operations via the method of Dyer and Lashof. One of the main tools

. 3 r s :H )
for computation here is a vanishing theorem for E2 which is proven in sec~

tion 10.
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An automorphism of F(R#+l

,p) which commutes with the E%—action is
described in section 11 and is used to compute the precise algebra structure

% F:Rtr-l-l ) ]
of H ( 5 ;Z%). Of course, the spectral sequence only provides such
information up to filtration., The methods used here generalize: We shall
give a description of H.F(M,j) and H EL%*il for more general manifolds,
M, in [30].

The lagt 6 sections are occupied with the derivation of the fine struc-
ture., First we must obtain information concerning'fhe structure maps Y of
the little cubes [G] in unequivariant homology. Using the methods of section
7, we are able to compute Y* on primitives‘in section 12, This calculatién
is crucial to later sections.

In section 13, we prove our statements about the obstructiom to the com-
struction of the homology operations using the joins of the symmetric group.
The homological properties of the Browder operation, togéther with its rela-
‘tion to the Whitehead product, are also derived here.

Because of certain recalcitrant behavior of the space of little (m#l)-
cubes, n < oo, one must find slightly mwore geometric methods to compute the
rest of the fine structure described in Theorems 1.1, 1.2, and 1.3. Section
14 contains a sketch of the methods and the crucial algebraic lemma.

The commutation of the operations with homology suspension is derived in
section 15. The proof is non-standard in the sense that we do not conséruct
an equivariant chain approximation for the space of little (n+1)-cubeé, but
rather use the methods described in section 14.

The remaining properties of the operations, except for the unstable ana-
logues of the Nishida relations, are derived in section 16; the Nishida rela-

tions are derived in section 17.

the preface to this volume.
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WE also iﬁglude an appendix giving the description of the homology of
the classical braid groups, this information being implicit in sectioms 3-4.
Here, we describe the homology of these groups with Z%, Q, and Z%coeffic;ents
(with trivial action). In the case of Z%, the action of the Steenrod alge-
bra is also completely described.

Several crucial papers of Peter May are referred to as {A], [G], and I
in the text and bibliography. A discussion of these papers is contained in

The results announced in [26 and 27] are contained in sections 1 through

I am indebted to my mentors while at Chicago: Richard Lashof, Arunas
Liulevicius, Saunders MacLane, Robert Wells, and Michael Barratt. It is a
pleasure to extend warm thanks to my ext-tor-mentor Peter May; his patience,
interest, and enthusiasm were central to my introduction into a beautiful area
of mathematics.

I wish to thank Sara Clayton for typing the manuscript.

Special gratitude is due several close friends: Fred Flowers, Larry
Taylor (who should also appear in the above list) and Tim Zwerdling; even more

so to Kathleen Whalen, my father Harry Cohen, and my grandmother Bertha Malman.
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1. Homology operations on an+l—spaces, n>0

All spaces are assumed to be compactly generated and Hausdorff with
non—degenerate base point. All homology is taken with Zp—coefficients

unless otherwise stated. Modifications required for the case p = 2

" are stated in brackets.

Recall from [G] that a Fn+1—space (X,0) is a space X together

[l -

with an action of the little cubes operad, X .,, on Xj :Cn-t-]_

denotes the category of Eﬁ 1—spaces. In the following theorems, we

assume that all spaces are in & _.[t]. Proofs will be given in sections

o+l
12 through 17.

Theorem 1.1. There exist homomorphisms QS: HX~+H

X
q q+2s (p-1)-
[HqX > Hq+sX]’ s >0, for 28 - q <n [s-g<n] which are natural with

respect to maps of }fn+l—spaces and satisfy the following properties:

[

@ %
) °x

0 £f 2s < degree (x) [s < degree (x)], x £ HyX.

It

= if 2s = degree (x) [s = degree (x)], x € H.X.
3) QS¢ =0 if s > 0, where ¢ € HOX is the identity element.
(4) The external, internal, and diagonal Cartan formulas hold:

Cxey) = ) o'z @y, x®y e H (XxY)

i+i=s
ey = I @o@y, x yeBX ad
itj=s ‘
¥ =} Qix' @ij" if yx = Ix' ®@x", x e B.X.

iti=s
(5) The Adem relations hold: if p > 2 and r > ps, then

S i, . . +g-1 i
Q7Q° = ¥ (-1 (pirr, r-(p-D)s-i-1) QT ° Q;
if p>2, r>ps and B is the mod p Bockstein, then

Q%8Q° = Je1TH i-r,r-(-1)s-1)8 Tt
1
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-3 i1, -G-1)s-i) QT gt
kR

(6) The Nishida relations hold: Let Pi:H*X + H.X be dual to Pr

where PF = Sqr if p= 2. Then

r.s
?,Q

) D™ (eopt, sp-D-pripi) ¢
if p o> 2,
PreQ° = §<—1)”+i(r—pi, s (p-1)-pripi-1)Bg° *Fipl
+ 1 DT (pi-1,s (p-1)-prip1)Q® THipls.
i .

(The coefficients are (i,j) = I(::-jj%l' if i>0and j > 0,

(1,0) = 1= (0,i) if i > 0, and (i,j) =0 if 1< 0 or j < 0.)

Compare Theorem 1.1 with Theorem 1.1 of [I].

‘Remark 1.2. When X = Qn+lY, the st were defined, for p = 2, by
Araki and Kudo [1], and in the range 2s -~ q < n/p-1, x € HqX, for

P > 2, by Dyer and Lashof [8], Milgram's calculations [20] indicated
that there were operations defined in the range 2s - q<n for p> 2.
The "top" operation and its Bockstein, for 2s - q = n [s-q=n] has"
exceptional properties and will be discussed below.

We note that Dyer and Lashof used the (ntl)-fold join of zp’
Ly

nt . . .
denoted J o’ in their comstruction of the QS. However, any

. . o+l
Zp-—equlvarlant m}ap J ZP

- ﬁn_*_l(p) is essential (see section 13).

Consequently, there is an obstruction which prevents the construction
s

of all the Q of Theorem 1.1 by use of the iterated joins of Zp'

This obstruction.arises from the presence of Browder operations, )\n’

which are related by the following commutative diagram teo the Whitehead
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pfoAduct:
I, 1 PO
¥ Y
"ottt @ Tqintat pa+2ntl
0,80, %%
ot i o+ rQn+
i e "8 Ly T Ly
h,®h, b, |
n-}{l.Y n+1Y )‘n ' n+]_Y
H 1
_ HPQ ® Hqsz SR,

[ . 1 denotes the Whitehead product, O, the natural isomorphism and

h, the Hurewicz homomorphism. (We are using integral coefficients in

&

this diagram.) We hold the proof of commutativity in abeyance until

section 13.

Theorem 1.2. There exist homomorphisms ln: HqX®HrX -+ Hq+ r-i-nX which
are natural with respect to maps of ];n+l-spaces and satisfy the following
properties:

(1) 1If X is a ~space, An(x,y) =0 for x, y € HKX

n+2

Xy - (—l)qryx for x € HqX, y € HrX'
+

(TR, (5

It

2 A &,y
(3) A (xy)
)‘n (x,%x)

& (4,3

for xEHqX and y EHI_X;

0 if p = 2.

X is the identity element of

0= )\n(x,tb) where ¢ € HO

H*X and x € H.X.
(5) The analogues of the external, internal, and diagonal €artan formulas
hold:
1
)\n(x ®y, x' ®y') = (1) ]X I(IY]‘*'D)XX@ )Ln(y’y')

+ t'l) IYICIX' l+lyl l+ n)}\n(x’xt) ® yy'
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where |z| denotes the degree of zj
A Gxy,x'y') = x A (v,xN)y!
+ e PIEeD 5 oty

bl ot ][ +]y ]

D ]yl(n+|v]+lul) + Iui(nﬂx!)

+ (-1) x'x A (73"

4 (.__ X' )\n(X' ,Y')y

lpn (,X,Y) = 2(_1)‘3[}{' I+IX"I lyyl}‘n (X' ,yl) @ X"Y"

+. (_l)D*IY' 1+|an IY' txlyl @ )\n(xu,yn)
if Yx = Ix' ®@ x" and ¢y = Iy' ® y".

(6) The Jacobi Identity (whith is the analogue of the Adem Relations)
holds:
(gtn) (stn) 3 _1y (0 (atn)
-0 A A ,2)] + (1) ERNCON

(stn) (rtn)

+ (=1) Aplzsd (x,y)1 =0

for x € HqX, y e er, and z € HSX; kn[x,kn[x,x]_'l = @ for all
x if p = 3.
(7) The analogues of the Nishida relations hold:

o
PAA_G,y) = § A [Pux,Pyyl; and
iti=s

B Gy = A Gxy) + O Goey) where x, € mx.

(8) ;\n[x,st] =0 )\n[st,y] where x, y € HX.

We next discuss the "top" operation, En, and its Bockstein. The
operation )‘n is analogous to the bracket operation in a Lie Algebra;

£ is analogous to the restriction in a restricted Lie algebra.
n
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Theorem 1.3. There exists a function f;'u: HX~>

H X
q pgtn (p-1)

-l'-nX] defined when n + q is even [for all q] which is

HX~>H
[q 2q

- natural with respect to maps of ;n_‘_l—spaces, and satisfies the

following formulas, in which adn(x) (y) = An(y,x),

adi(x) @) = ad_(x) (adj—l(x') ©))s and ¢ (x) is defined, for p > 2,
by the formula ;n(x) ='-85n(x) - adf;l(x) Bx):
oiq

(1) If X is a Cn+2~space, then En(x) = Q 2(x) [En(X) = Qnﬂ(x)],

ntg
hence gn(x) =.8Q 2 x, for x € HqX.

o

(2) If we let Q “ x [Qn+q'x] denote En(x), then F,n(x) satisfies
formulas (1)~(3), (5) of Theorem 1.1, the external and diagonal
Cartan Formulas of Theorem 1.1(4), and the following analog of

the internal Cartan formula:

En(xy) = Ele.QJy + z xlyjl‘ij, n>0,
i+j = —“{Eﬂ 0<i,32p

[iHj =n+ |xy]] O ST FI 2P

where the T _ are functions of x and y specified in section
13

13; in particular, if p = 2,
£, = ] Q'x-Qy + = (x,y)y.
i+j=n+,xyl :
(The internal Cartan formula for 4 follows from those for En

and An.)
(3) The Nishida relations hold:
1 - PR o N
PiE ) = DT rpi, B(p-1)-pripi )™ THplx

i i i P
. %; 2a, " Viyas @, %Dy a1 0, Prye, b0
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where m = P‘%IEL s Im=n+ l:xl] and the second sum runs over

all sequences (ml,...,lp) such that iy + ... + :LP =T,

L, = ees =4y eeuy d = =1 =i,
1 l‘kl lk[__.l'*‘l lk‘e P

ik < lk < .. < ikz’ £ > 1, and o runs over a complete
1 2

set of distinct coset representatives for

D X LuuX I in I__..
kl 1 kz kl k!, k!i—l p-1
n+q

If p> 2, P:I;n(x) = P:BQ 2 (x) (which is-given by Theorem

1.1(70.

[ x|+n—l

If p= 2, Bgn(x) = (|x] +na - 1)q x + }\n(Bx,x).

%) )»n(x,gny) = adg(y) (x) and }\n(x,;ny) =0 for X, vE HX.
p-1 .
(&) E Gety) = E () +E )+ ] 4 (@) where

i=l

. . " . .
id* ) (@) = Xadjl(x)ad l(y)...adJr(x)adkr(y) (x) forl1<i<p-1
n n n n n

where the second sum runs over all sequences 1 (jl,kl,...,jr,kr)

such that j, >0, k, > 1, and j, > 1 if £> 1, and
1 L £ =

z jl’, =3i -1, Ekf.’, =p - i. (Compare Jacobson's Formula [12,p.187]

for restricted Lie Algebras.)

oy = 1P . .
6) gn(kx) k EI{(X) for ke ZP wheneyer Enx is defined.

If X = szn"'ly, we have the following theorem relating the pre-

viously described operations to the homology suspension

iy
ot
o, HE™Y > m0%.

Theorem 1.4, If X = QnHY, then

@) 0%

#

Q°0,(x), = e HX.

(2) 0,8 (®) =& _;(0.x), xeHX.
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(3). oA (x,y) = A1 (9x, 047), x, ¥ & BX.
(4) 1f Y is sim ly connected and x € H o'y transgresses to
P q

yeH Qn+lY in the Serre spectral sequence of the path fibration,

q-1
then st, BQSX, En_l(x), and _Cn_l(x) transgress to st,
-80°, £ (), and L (); if p>2,n =1, and q is
_even, then xp—l &y 'Ytransgresses' to —~;l(y) .

dq(P—l) (XP—l ®7) = _;l(y); and if p > 2, n > 1, and

q=25 » xp—l ® y "transgresses" to —-BQs(y) s

a¥eD 21 3y = _po%.

The Hopf algebras H*Qn+lY admit the conjugation x = C,, where

C dis the standard inverse map, and we have the following formulas.

Proposition 1.5. On H*Qn+lY, st = sz, E X =XB s T X=X, if

p>2, and XA (v,2) = -2 (xy,x2).

Remark 1.6. 1In the sequel, we shall often use the notation * to denote

the Pontrjagin product in homology.
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2. Allowable Rn~structures, n>0

We describe some algebraic structures which are naturaliy suggested
by the results above. We restrict attention to the cases n > 0 here.
We shall consider zp—modules and will usually assume that they are
unstable A-modules, in the sense of homology, where A 1is the Steenrod
algebra.

Recall the definition of admissible monomials in the Dyer-Lashof
algebra, k, [I, §82] and let Rn(q) be the Zp—subséace of R having

additive basis

{QIII admissible, e(I) > g, 25, <n+g [sk < n + qll.

k

We do not give Rn(q) any additional structure yet.

Definition 2.1. A Zp-module L. is a restricted ln*algebra if

. . : £ .-
there is a homomorphism An Lq C)Lr é'Lq+r+n and functions
. . 5 >
Byt Lq é.qu+n(p~1) [En. Lq ﬂ'L2q+n]’ and, if p > 2,
%a* Tq ” Ppgrae-1)-1°

(3) and (6) of Theorem 1.2 and the restriction analogues (4), (5), and

for n + q even such that the Lie analogs

(6) of Theorem 1.3 are satisfied.

Remark 2.2. A restricted An—algebra is a generalization of a restricted
Lie algebra in the presence of an additional operation Cn for odd

primes.

Definition 2.2. A izp—module M dis an allowable Rh—module if there
are homomorphisms

S- sv
Qs Mq +'Mq+25(p~l) [Q: Mq > Mq+S]
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for 0< 2s < q+n [s < q+ n], such that QS =0 for 2s < q[s < q]

and the composition of the Qs satisfies the Adem relations. M is an

'allowable ARh—module if M is an allowable Rh~module with an A~action
which satisfies the Nishida relations. M is an allowable ARn—algebra
if M is an allowable ARh—module and a commutative algebra which satisfies

the internal Cartan formula and (2) and (3) of Theorem 1.1. M is an

allowable ARnAn—quf algebra (with conjugation) if M dis a monoidal Hopf
algebra (with conjugation) which satisfies the properties of Theorems 1.1,
1.2, and 1.3. If M has the conjugation, X, them M is required to

satisfy Propostion 1.5.

Remark 2.3. Since the coproduct applied to An requires the presence of
producﬁs (formula 1.2 (5)), we have chosen not to define separate notions
of allowable ARhAn~algebras or coalgebras. Also, because of the mixing
of the En’ ;n, QS, and An in the presense of products and coproducts
(formulas 1.3(2) ), we must build the desired properties of our structures
in five separate stages.

To exploit the global structure suggested by our definitions, we
describe five free functors (left adjoints to the evident forgetful
functors) Ln’ D.s Vn’ Wn’ and G. Note thaﬁ G has been defined in
[r, 8§2]. The other functors are defined on objects; the morphisms
are evident.

L : Zp—modules Eg_restricted in~algebras: Given M, let LM denote

n 0

the free restricted Lie algebra generated by M. (Explicitly, LOM is

the sub-Lie algebra of T(M) generated by M where T(M) is the temsor

algebra of M.) If p > 2, define L M= s_lLosM @ (Ql)(s—lLOSBD where

1

sM is a copy of M with all elements raised one higher degree, s_lLosM
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is a copy of L

has Zp-—basis consisting of elements (gl) (x) of degree 2pg-2 for each x a

basis element of s—lLosM of degree 2q-~1. If p = 2, set Ll

Inductively, define LnM = s"an_‘lsM for n> 1 and make LnM into a

restricted An—algebra by setting )\n(x,y) = s-lln_l(sx,sy),

£ =sE (20, T (0 =-sTC (%) and A_(:2.y) = 0.

We further describe certain elements in LnM' xe M dis a

)\n—product of weight 1. Assume that ln—products of weight j have

been defined for j < k. Then a Xn—product_oj_weight k dis any
ln(a,b) where a and b are An—products such that

weight (a) + weight (b) = k. x e M is a basic )\n-product of weight 1.

~Assume that the basic ).n—-products of weight j have been defined and

totally ordered amongst themselves, j < k., Then define a basic

)\n~product of weight k to be any )\n(a,b) such that

@ An(a,b) is of weight k, and

(2) a<b where a and b are basic ln-products and if b = A, (c,d)
for ¢ and d basic then ¢ < a.

We include additional basic products not defined by the above inductive

procedure.

(2') a=b if p > 2 where a dis a basic An-product of weight one and

n + degree (a) is odd.

Remark 2.3. Compare the above notion of basic )\n-product to Hilton's
[12 ] orHall' s[11hotion of basic product. Note that (2') is not con-
tained in Hilton's list of criteria. 1In Hilton's calculations,

).O(a,a) = Za2 if degree (a) is odd is 'seen" as az up to non-zero

OsM with all elements lowered one degree, and (i;l) (s—lLosM)

M=s L oS-
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coefficient ~ (for p > 2). Since lo(a,a) transgresses to
)\l(ra, 1:Aa) in the Serre spectral sequence of the path-space fibration
(t denotes the transgression), we find it more convenient to count

Ao(a,a) rather than az. ( See [8; page 80]. )

D]'l: Zz.p-—modules to allowable Rn-—moclules: Given L, define

DL = qzo Rn(q)® Lq. Let (DnL)j be the subspace of D L spanned

by {Q‘T'@.Cl degree (I) + degree () = j}. Then DnL is an )
allowable Rn—module with the action of the Qs determined by the

! : s,
Adem relations and Q : (DnL)j - (DnL)j-l-?.s (p-1) [(DnL)j - (DnL)j+s]

given by QS(QI ®L) = QSQI®2_. If e(I) < q, set QI®£ =0 4if
the degree of £ is'1 q. The inclusion of L in DnL is given by
L — 1L

Vn: Allowable Rn—modules to allowable Rn——algebras: Given D, define

VnD = A—;{)— where AD is the free commutative algebra generated by D and
K 1is the two-sided ideal generated by & - st |’25 = degree (x)
[s = degree (x)]}. The R, ~action is determined by the Rn—action on

D, the internal Cartan formula and the formulas for QS¢.

Wn: Cocommutative component eoalgebras over A to allowable

ARnAn'”HOEf algebras: Given M, let 10 denote the composite
Z_ ->M->LM->D (L M. Define WM as an allowable AR -algebra by

P n non n n
Wn M = Vn(JDnLnM) where JDnLnM = cokernel n. The product is
determined by the product in Vn’ the internal Cartan formulas and the
formulas for @ din Theorems 1.2 and 1.3. The coproduct and augmentation

are determined by the diagonal Cartan formulas (for Q°, )‘n’ I;n, z;n),
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the augmentation of DnLnM = ZP @ cokern and the requirement that
WnM be a Hopf algebré (one must check that K is a Hopf ideal to
ensure that WnM is g,well—defined Hopf algebra.)

The action of Xn is given by the actioﬁ of ln on LnM and
the formula An[x, st] = 0. The actions of En and Cn are given
by the actions on LnM and the Adem relations. The A-action on M

together with the Nishida relations determine the A~action on WnM.

For convenience,we define WOH*XA to be TkH*X), the tensor algebra
of H,X. nge we restrict attention to spaces X which are connected.
By Hilton's calculations we may write T(H*X) additively as a temsor
product of polynomial and exterior algebras whose generators are basic
,Ko—products [12].

Remark 2.5. By section 1, H, C_ .Y is an allowable ARhAn~Hopf

ntl
otl, : : .
algebra and H*Q is an allowable ARhAh—Hopf algebra with

conjugation.

by X in the sense that if £: X~ Q

225
3. - The homology of 9n+lzn+lx, n > Q; the Bockstein spectral sequence
Recall that ontl Zn+lX

is the free (ntl)-fold loop space generated

n+lZ is any map, then there exists

Qn+1 En+l n+lz

a unique map of (ntl)-fold loop spaces, gt X+ Q such that

the following diagram is commutative:
ﬂn+lzn+lx

X g

N
Qn+lz

Here n is the standard inclusion of X in Qn+lzn+lx [G3p.43]. Since

+
n.: HX* H*Qn+12n+lx is a monomorphism, H*Qn lZn+lX ought to be an

appropriate free functor of HX. That is, the classes in HX should

play an analogous role to that of the fundamental classes in the calculation

of the cohomology of K(m,n)'s.

By the freeness of the functors Wn and GWn, there are unique
morphisms ﬁ; of allowable ARnAn—Hopf algebras and x* of allowable
ARnAn—Hopf algebras with con?ugation such that the following diagram is

commutative, where Cu+1X and @ 4 are as defined in [G; 82 and §5]:

WHX— GW HX

x2

f* \ / nm«

n* H* . n*
—— +lp ot
BC X —oiE HQ DX

Theorem 3.1. For every space X, ﬁ;: WnH*X + HC X 4dis an isomorphism

nt+1
of allowable ARnAn—Hopf algebras,
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Theorem 3.2. For every space X, ’r\{*: G H.X H*Qn+lzn+lx is an ; ) ) y a basic A -product, I admissible, e(I) + b(@) > |y|, |Qy|> 03 if .
isomorphism of allowable ARnAn-Hopf algebras with conjugation. TnX = QIy ‘y[ = q, then e(I) > q; and if p > 2,I = (sl sl,...,sk,sk), then
N N 3
. ntl.nt . ' . . -+
Corollary 3.3. @ ,.:C X~ o™ ntly s group completion. _éii 5, [If T = (Sl""’sk)’ then n + q < Sk]‘

Corollary 3.3 was first proven by Graeme Segal [22] but

: ot
n+l n+lX " Notice that in our definition of T X we denote £ x by Q—zghx[Qn"_qx]
without a calculation of the homology of Cn+lx or & L . o n

By [G; Lemma 8.11], ¢ s = AL ¥ (§). Since [G Theorem and z x by 8Q 2x for xe HZX.
. o+l i>0 nt+l n q
- L, : ; - -
-J i . Let ZPNWOX and Zpﬁncx be as defined in [G;p.80].
4.8] and [9] imply that ‘Fiz(j) is a K(Bj 1) where gj is Artin's
b
= ~ %
3 ; Lemma 38 WHX n AT X ® 7z PNT{ of and CGW HX X ATnX®ZPN‘ir0X as algebras.

braid group, Theorem 3.1 provides an amusing calculation of the homology

Preaof: By the definition of wn and GWn, it suffices to check that the
of all the braid groups. More complete descriptions of H(B.; M),
3 basic An~products of weight k span the subspace generated by all

M = Zp’ Z,and @ will appear in the appendix. A ~products of weight k. By Hilton's results [12], the basic i\O—products

We have two obvious corollaries of Theorems 3.1 -and 3.2.

of weight k span the subspace of LOH*X generated by all l0~products

of weighi: k. By the inductive definition of I H,X and the definition of
Corollary 3.4. If (X, 8) is a }:m_l—space, then 9*: H, Cn+lX+ H.X n ]

: basic A_-products, the result follows.
represents H.X as a quotient allowable ARnAn—Hopf algebra of the n :

free allowable AR A -~Hopf algebra W H " X. : For our final preliminary, we recall the calculatioﬁ of H*QEX for
n o n

connected X.
Corollary 3.5. If Y is an (mtl)-fold loop space, then |

1ok . 1 Lemma 3.9 [5]. If X is comnected, H*QZX is the free associative algebra
E : H*Rn lZnJ‘Y + H, Y represents H.Y as a quotient allowable

o+l* on the transgressive elements of H.X in the Serre spectral sequence of

ARnAn—Hopf algebra with conjugation of the free allowable ARnAn—Hopf the path fibration.

algebra with conjugation GW H.Y. Evidently, HQIX = WOH*X as an algebra.
Before proceeding to proofs, we exhibit bases for W H.X and GW H.X. | Alternatively, we may use [G; Proposition 2.6(a)] which states that

Let n: * -+ X be the inclusion of the base point im X and let @ ClX,F C.X) is an NDR pair for j > 1. Here the result
RS NEA TS A =

JiX = coker n,. Let tX be a totally ordered basis for JH X. We

define ATnX to be the free commutative algebra generated by the set
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H*QEX = H*C X =WHIX follows.

1 0

Proof of Theorem 3.2: By [I; Lemma 4.6] there is a homotopy equivalence

£: Qn+1£n+lx > Qn+l¢ Zn+lx % n09n+12n+lx where Qn+1¢ Zn+1X is the
component of the basepoint of Qn+12n+lx. Furthermore £ dis a map of

H~-spaces if =n > 0. By [ G38.14],

% N o+l nt+l o+l ntl
N N Y } i
N'ITOX & HOX &~ Hn+12 XN 1rn+12 X TrOQ L~ "X. Since
. ntl n+l ntl  ntl ntl.ntl, _ ol ntl v '
£.0 HQ lz X+ 50" ™ x @ ur 0™ x = ng § 5 X @z Y X,

it clearly suffices to show that H Qnﬂ“ Zn+lx & AT X, as an algebra.
& ¢ = "p

We show that H*ﬂn‘*‘lq> PRAES

XN ATuX by induction on n. To avoid re~
petition we state the general step and note the minor modifications

required in case n =

.

e

Obviously Z*: «% > H, XX is an isomorphism and we may choose

tiX ={Z*X'IX e tX} as a basis for HZEX where x' ='x —(ex)¢. Define

%n_lH*ZX, n > 1, to be the subalgebra of Wn_1H*EX generated by all

operations on the elements of tIX of degree greater than one and, in
addition, the elements derived from non~-trivial.applications of the
operations, BEQS,BEED, and }‘n on the elements of tIX of degree

Y]
greater than zero. (Compare our definition of Wn—-l to the definition

of % in [13 §4], especially in the case p = 2.). Observe that
[Iy 4.7 and 4.8] together with Lemma 3.9 shows that

"]
H*UQZZX N WOH*ZX as an algebra. Also observe that if our calculations

o+l

of H*ﬂnEnX are correct, then H*UQnE XN ﬁn H,IX.

We now describe a model spectral sequence {'E"}. Define 'Ez, as

an algebra, by the equation

152

(Observe that 'E2 =

1
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o
= Wn-— H*ZXQ (GWnH*X) 6’

W HEX@WnH*X if X 1is connected.) Specify

n~1 %

the differentials by requiring {'E"} tobe a spectral sequence of dif-

ferential algebras such that the transgression, T, is given by

tlad  Gux).ead G ) Cx)) = ad (x *[-ax ). ad (g *[-ax 1) G *l-ax, D),

tqlz,xt = (1@ T

x*[-p

is 2s-1, t(QZ,x"P ® Qlxr -t Dax) = -1

£(1)

ax], and if p > 2 and the degree of QIx -

A(DHlg ool 4 [_PL(I)

ax].

(Recall that [ax] denotes the component of the element x and that if

[ax] € HOQX, x & H0X, then the loop product x * [ax] suspends to

elax](o,x) by [I; Lemma 4.9].) It is easy to see that {'E"} is isomorphic

to a tensor product of elementary spectral sequences of the forms

E{y} ® P{ty} and, if p > 2,

P{z}/(zF) ® [Eltz} ® P{'r(zP"l ® 1t2)}], where E and P

denote exterior and polynomial algebras. The elements y run over

I admissible, e(I) > degree (x), degree (QIZ*x‘) > 1,

QI x'

2

case p > 2

5 < n—-l+]§3*x'[

[s, <no-1+ |z,x'|1, and of odd degree

and if p > 2, the elements 2z run through

{QIZ #<' | T admissible, e(L) > degree (x), degree QIZ*x' is even and

Sk___

o -l Zax' |

2

.

in
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Note that the Serre spectral sequence behaves as if the even degree generators

were generators of truncated polynomial algebras since dr(xp Yy =0 if

dr(x) =tx, Clearly 'E_ = ZP.
Evidently, there is a unique morphism of algebras f: 'E2 - E2

suéh that the following diagram is commutative:

A ot n nt
Y Ex @ @ ED, —F nu"T Ty @ new T X
i®i T, & Qu),
N 0y
n,8n,

® H*annﬂ.x ® H*Qn+12n+lx_

W BPE O G X
since A_(x,y) = A_(x',y') and Q' = %' if 4@ > 0, [, Lemna 4.9]
implies that

(Z*X', *Y') and

Of A (x * [~ax], y * [-ay]) =2 _;

d{1),.I
o @ -t Pax)y = (14 Bly xr.
By the naturality of o, the same formula holds for

+ n_nt
oyt Hue""x — 100" k.

Note that the classes Z'*x‘ are not present ;_i.n H*Usznzn+lx if x is a
zero dimensional basis element for H_X, but the transgressive classes
BEQSZ*X' and ln(z*x', z *y') are present in H*Uann+1X (although not as
operations).

By Theorem 1.4 (commutation with suspension), £ @ f induces a

231

morphism of spectral sequences. Since £ ® f is an isomorphism on Ew,
it suffices to show that £(base) is an isomorphism to show f(fibre)
is an isomorphism [15; chap. 12].

Now we show that our results are correct for the case n = 1. Recall

n
that by previous remarks H*UQZZX N WOH*EX as an algebra. By a slight

Ar
modification of [8; p.80], we may write W H, XX additively as a tenmsor

4]

product of polynomial and exterior algebras generated by basic Ao-products

of weight greater than one and basic )\O—products of weight one on the elements
of tIX of degree greater than 1. It follows from previous remarks that
our results are correct for the case n = 1.

The remaining details follow directly by induction on n and the

above methods. Compare our proof to that of [I; 4.2] and [8; p.80].
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- ntl.ntl
The Bockstein spectral sequences for H.C X and Hafd 12 X

ol

We require a preliminary lemma concerning the higher Bocksteins on
En(x) mod 2.
Lemma 3.10. Let X €;§n+l[T] and xE HqX, p = 2. Then

W 8g_ G = I

x + ln(x,Bx) if n+ q is even, and

(2) 4if Brx is defined, then Brgnx is defined if =n + q is odd and

BrEnx = lu(x,Brx) modulo indeterminacy.

r
Proof: Let a be a chain which represents x and 3(a) = 2'b. Then

) (en® a2) = [a + (--l)n]en___:L ® a2 + (-—:L)nen ®a®a+ (-—].)]:H_qe.r1 & a&da

where e, and o have been defined in [Aj section 1 and 6}. Clearly
fay
3(e, ® a) = (DD Ye,_ @a” + [ le, b & a.

Since -27 = 2 2 ), we observe that

1H

2 l@az + 2% [a + (—l)n+l]en®b®a (&)

n—-

@ 2, ®a)

if n+q is even and

o+l

i

®) de, ®aD) = 2o+ (D™e, @b ®a (271

if n + q is odd.

We recall the definition of kﬁ in [Aj section 6] and observe that
(a) implies (1) and (b) implies (2).

Let {Erx} denote the mod p Bockstein spectral sequence of a space

X. If A is an algebra equipped with higher Bocksteins, let {E"A} denote
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the obvious Bockstein spectral sequence associated to A. By Theorems 3.1,
3.2 and Lemma 3.8,

X, T . _ nt+l.nt+l
EY =E ATBX®HOY where Y = Cn+lX or Q0 "I °x

.

~ We decompose ATnX into a temsor product of algebras which are closed

under the Bocksteins. The anomaly for the mod 2 Bockstein implied by

Lemma 3.10 requires some additional attention.

Definition 3.11. Let the Bockstein spectral sequence of X be given by

Cr . and Dr as in [I3 section 4]. Further, let C_ be a set of basis
elements which projects to a generating set for EX. Let x, [ Dr or

) St
x; € C,. Define Ln(xl""’xk) to be the free commutative algebra generated
by all An—products of weight k which are constructed from YyseeesTy
= = i L.
where Yoi) = ¥; ©°F yc(i) Brixi for some fixed O € k- Observe ‘

that by [A; 6.7], the algebras L(Xl""’xk) are closed (modulo indeter-

‘ minacy) under the higher Bocksteins. If p = 2, further define Gn(x)

to be the free commutative algebra generated by En(x) and An(x,Brx)

for n + |x| odd and x & D, and define B (x) to be the free strictly

commutative algebra generated by Enx.
We observe that ATnX may be written as a tensor product of algebras
of the following forms:
A) 1f p =2,
. I I

(1) ' E[Qx] ® P[BQ x]

. 1 I

(i1) P[Qx] @ E[BQ x]

where in (i) and (ii), I is admissible, A£(I) > 1, or A£(I) = 1, and
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either QIx # Enx or in case QIx = Enx we then require =n + [x[ to : . all > 1 where
be even. (The complications here are introduced by the irregular higher 9T 9
J : : : y" TT(yy + Q 8y) if p = 2 and |y| = 2q,
Bockstein in Lemma 3.10; the case Q x = Enx and n + Ix] is odd is 5 8 P r
| w1 T el if p> 2, and
accounted for in (iii) below. Here note that n + Ignxl is even.) y P , an
(ii) G (x) if n + |%| is odd, and
. P { +
(iv) Ln(xl,...,xk) where {xl,...,xk} runs over distinct :, A . Br*_l}\n(x,y) = }‘n(sr-i—lx’Y) + (-1)" {xf }‘n(x’sri-l}r)
subsets of elements x; € I)r or G, k21 ) ‘
* . : if B 44x and B .y are defined. Therefore if p =2 )
(®) If p> 2, :
@) ElQ'x] ©F [8Q'x], | EATK = O Lz 5-.-»%) @B ()
i Xl n

Gi) PrQtx] ® E[BQ x], and

(iii) Ln(xl,...,xk) where {xl,.. .,xk} is described above. where {x/5--.5¥%} runs over distimct subsets, x, ¢ Cm {Xl:xz} # {x,x}

With the above preliminaries, we have the following Theorem. The for o+ |x| odd, and {x} rums over C_, where n+ [x| odd. If p> 2,

. . . . . eted. -
proof is similar to that of [Aj section 10] and is deleted B ATnX -® L(x]_"“’xk)

Theorem 3.12. Define a subset SnX of TnX as follows:
— where {Xl""’xk} runs over distinect subsets of elements X € C.

X = 1
S 2.2

(@ p = 2: {QIX QIx c TnX’ le 4 gnx if n + le odd, I = (25,.]’),} Since there are only 3 non~trivial operations, F’l’ Cl’ and A
defined in H, (2 I"X; Zp), where deg(E_;lx) is odd if p > 2, Theorem 3.12

IQIXI even, £(I) > 0
immediately implies the following corollary.

]

() p>2: 5% lo¥x | o¥x ¢ T X, b(I) =0, [Q*x| even, £(1) > 0}. _
’ Corollary 3.13. If X has no p-torsion p > 2, then EZAT X = EwAT X.

1 1
Then if p = 2‘, Hence the p-torsion of H*(QZZZX; Z) is all of order p.

r+l 2T 2t r+1[ r+l
= X (a X} (:) E - & .
E AT X Py” |ye Sa } E{Bri-ly ly e SnX} E n(xl’ ’xk) E Gn(x) Observe that 3.13 is obviously false for AT X, n > L.

Another immediate corellary of 3.12 is
and if p > 2,
’ k
r T Corollary 3.14. Let  be the fundamental class of §, k> 0.
r+1 _ P P Ny -
E" AT X = Ply | ve s X} @E{B ;¥ |y e s X} QE an(xl,...,xk), for o
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(a) }30!’.A‘1‘n5k is the free strictly commutative algebra generated by | and

if n+ k is odd, kn(k,k) when p > 2.

(b) EmATnSk is the free strictly commutative algebra generated by | and

if n+ k dis odd, ‘c’,nL when p = 2.

Remarks 3.15. It is amusing to observe how the complications in the Bockstein
spectral sequence introduced by Lemma 3.10 give rise to the infinite

cycles which must appear. It is, on the face of —it, surprising that Enx
when p = 2 accounts for the infinite cycle corresponding to the class
ln(x,x) when p > 2. Since An(x,x) =0 mod 2, En(x) is "trying" to

be half of the Browder operation.

o N nhl okl 0 n+l
A remark concerning 3.14 seems approrpiate: Tl’iQ ¢ % = Tri +n+ls
if i > 0. Clearly wiﬂn+l¢2n+lso has a 2 summand if n + 1 is even

and i = n. In this case, the obvious map

£ ™0 — k@, ny

is a rational homotopy equivalence with the fundamental class of K(Z,n)
' +

corresponding ‘to the Whitehead product [Ln+l’ kn-*-l] € "2n+lsn l Hence

our calculations (3.14) and the remarks in section 1 about Whitehead

products are at least reasonable.
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4. The homology of C . .X, n> 0

o+l

We outline the proof of Theorem 3.1. Consider the commutative
LY
diagram at the beginning of section 3. Since the composite N o0 G is

a mopomorphism, it is immediate that ;* is a ﬁonomorphism. The

crux of the proof of 3.1 is to show that H* is an epimorphism. To

do this, we require a technical lemma (4.3). Conceptually, this lemma
states that all homology operations on Fn+1—spaces derived from the
spaces ;n+l(k) can be expressed in terms of the operations of

Theorems 1.1, 1.2, and 1.3. Succinctly, the homology of C
o+l

1:1-&-].X 18
built up from H,X, H*Z:n+l(2), B (B(R sB) s Zp(q)), and homological
iterations of the structure map of operads, Y,.

Before proving Theorem 3.1, we require some preliminary information.

Observe that H*X@ . @H*X = (H*X)k hés»a basis given by A U B

where

A= {x‘® ...®x | x a homogeneous basis element for H.X},
and

B = {X;L@ @xk l x, a homogeneous basis element for H.X,

xi#xj if i # j for some i and j }.

(We do not assume that k is prime.) Clearly, the Zk—action on
(H*X)k induces a permutation action on the set A U B, Let C be
the subset of A U B which éonsists of one element from each
Zk—orbit in AUB. If x e C, we let Bx denote the Zp—submodule

of (H:,:X)k spanned by the Zk—orbit of x in A U B.

k ' '
Lemma 4.1. For any space X, H, (?;n_l_l(k)xZ X = @ H*(C*;n_}_l(k@t Bx)'
: k xeC k
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Let X [k}

denote the k-fold smash product of X.
i - 1, [k]
Lemma 4.2. The quotient map = ':Cn+l(k)x)3kxk +}:n+l(k)><.zkx

B oo (0% =
k

is an epimorphism in Zp—homology. Furthermore, the kernel of
1

T, has a Zp—basis consisting of all classes in H*(}:n+l (k)xzkxk)

of the form c& xl® @:ck, c e G (k) and x, = [0] for

ntl
some i where [0] denotes the class of the base-point.

The conclusions of the following lemma indicate that any operation
derived from ;n+l(k) on the variable xl® cee ®kk can be decomposed
into (a) a product or Browder operation on classes which involve
operations on fewer than k variables or (b) a Dyer-Lashof operation

(BEQS, Bsgn) on classes which involve operations on fewer than k

variables.

Lemma 4.3. Let AQ@®x e H'*(C*}‘:n-l-l(k@ﬁk}sx)’ k > 2. Then there exists

some I‘@x such that AQ®x = Y*(I‘ @x), where either

(@) T®x ¢ HIC (& () xF L E*E LGN @, x, B oF
1

®) @ x e BIC, (T @IXE . k/DPKB, rrg
P P

We prove Lemmas 4.1, 4.2, and 4.3 after the proof of 3.1.

Proof of 3.1:

Consider the monad ('c ) associated to the little

wHl? Mat1’ Tpia

cubes operad. We write u for the ;n+l—action on Cn+lx' By

[6; §13], Cn+1X is a filtered space such that the product * and
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the ;Ml—actlon lln+1 restrict to

*3 lXX F "F,..C X, and

" -
EiCas WX ™ Tyl

B ;nﬂ(k) x Fjlcn+lx X ... % ijcnﬂx > BC X

J=Jl+...+3k.

We define an algebraic filtration of WnH*X which corresponds to the

given filtration of Cn+ X by giving the image of an element

1
I . . £(1) .
QC°® A e R @® Lq filtration p w(A) [w(A) denotes the weight

of A] and requiring WnH*X to be a filtered algebra. Loosely
speaking, this filtration is given by the number of variables (not
necessarily disﬁinct) required to define the operation QIX.
Transparently FOWHH*X is spanned by the class of the base-point and

FanH*X = H.X. We observe that n, * FkWnH*X - H*Cn+lx factors

. . . . s
through H*chn+lX since every operation involving Q, En’ ‘An’

and Pontrjagin products in FkWnH*X has already occurred geometrically

in ‘H*chnﬂ_x' Clearly H*X = Fl

isomorphism. We assume, inductively, that ?]‘*: FjWnH*X -+ H*Fij_lX

WnH*X > H*Flcn+lx =HX is an

is an isomorphism for j < k. Define

0 -
Eloni® = Bilhn® ana ng.,ﬁ X = FWHX )
F e X 0 x k'n *®
k-1 n+l F_W HX
i T, .0 . . .
Note that ?k—lcn+lx —+FkCn+lX““* EkCn+lX is a cofibration by [G].
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We consider the following commutative diagram with exact Tows and

columns:

0
¥

0> F_,WHBX ———FUH

- O

0
&L EWHX —0

l
[e
+
0
fCopg X~ -

ut

’r\f* is a monomorphism since (1) the diagram below commutes, (2) ;1—*

is an isomorphism, and (3) WnM > GWuM is a monomorphism.

n % n o
- n
Ny Ay
HC X —BHE gLl
* ol

We define ¢ by commutativity of the right hand square and observe
that to show the middle '7_1_*. is an isomorphism it suffices, by the
five lemma, to show ¢ dis an epimorphism.

By lemma 4.2, TI'_L is an epimorphism. So we consider the arbitrary

class A(®x e H _(C,Y ..(k B_) and the following commutative diagrams:
* Rl x X
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N ) L ipti, W .
@ Lo ® x;n+l(ll) xT g Up) % X B Ol
Y
=1 £ i“
k ’ T’ 0
ISCES: B0C g%
for i +i,=k and
Pk - P
@i L w1 @) % F o &R x X > Filar® -
Y x1 T
k 0
E 100 x X Bl

for k such that p divides k.

By Lemma 4.3 AQ®x =v,C®x) for

@ r@®=xe H*(C*(c n+l(2)x;n+l(il)xtn+l(12) )ezix %, Bx) or
1 *2

() T®xe H*(C*(\/':n+1(1’)"3:n+1(k/?)p)®z ). In case (a), the

"B
Sz
v P “kfp ¥
diagram (i) shows that MZ*(A® x) is either X, %X, or )\n(Xl,Xz)v

where Xi are classes derived from operations on fewer than k wvariables.
In case (b), the diagram (ii) shows that up*(A ®x) is given by the

operations BEQS, Begn, An and #* on a class XB derived from operations

on fewer than k-~variables. (Observe that non~equivariant operations

from ;n-%'l(P) are giving products of iterated Browder operations
by Theorem 12.1.) By our induction hypothesis, Xi € Fk WUH*X for
i

Iil + kz =k or pkB = k. By definition of WnH*X and the filtration

e s €. 8,
of WnH*X, it is apparent that Xl * X2, An(Xl,Xz), B Q°X,, and
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BEEHX3 are present in EQWHH*X. Hence ® is an epimorphism and we are

done.

Proof of Lemma 4.1: By [15; Chap.XI] it is easy to see that

H*(;'nﬂ(k)xzkxk) = B, (C,F n+1(k)@2k(c*x)k))' Since we are working

over a field,‘ there is a chain homotopy equivalence i: BE X+ CX

given by mapping a basis element in HX to a cycle which represents

it. Obviously H*(M%:k(H*X)k) -+ H*u@k(c*x)k) is a homology isomorphism
where M is a Zk-module. If we let M= C*Z:n—l—l(k)’ an easy argumentl

using the spectral sequence of a covering [15] shows that
ky _ k
B, (C,F nﬂ(k)@%k (€D = B (L n+l(k)§<%k(ﬁ*x) ). We observe that

(H*X)k = @Bx as I -modules and we are done.
xeC

Proof of Lemma 4.2: By [G; §A.4] (Xk, F) dis an equivariant

NDR-pair where ¥ is the subspace of Xk given by '{<xl,.. .,xk> | x, = *
. . . >
for some i}. Consequently, the inclusion En_*_l(k)xsz ?m_l(k)xzk}{k

. . . . . 0
is a cofibration with cofibre Ekcn+lx' Clearly

H,( n+l(k)xEkF) = H'*(c*(,"wl(k)@ch*F) and

H*(c*)“;nﬂ(k@zkc*r) = H*(c*}'.’,nﬂ(k)@kﬁ*m. Visibly, HF is a

Zk—submodule of @ Bx where each basis element in H,F can be written

_xeC
as x; ®... ®Xk for some x, = [0]. We write f:::)c B as H*F-Q:; D
as Zk—module where D has additive basis given by xy &... @xk,

%, # [0]. The map

B (G (k)@zkﬁ L) > H(C *Fn+l(k)®zkﬂ 8 @ BCE +l(k)@kn)

=1, n+l®zk(H*X)k)
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is a monomorphism. Application of the long exact homology sequence for

a cofibration finishes the proof.

‘Proof of Lemma 4.3: Recall that o : C X+ Qn+12n+lx is a weak

ntl" Totl

homotopy equivaience if X is connected [G]. In this case
le*(A ® xl® @xk) is certainly given in terms of the operations
BEQS, )\n, and * on the classes X By the definition of these

operations (see section 5),

I I
uk*(A®Xl®~-° ®xk) = E Q )\Ii* e % Q )»Ir where the )xli are

r
Browder operations on the variables Kyseees X and z p['(lj)w()\l )=k

j=1 3
(W()\I ) is the weight of AI )+ In particular, we may express
3 3 '
I Iy
.. T .
Q )\Il * ... %Q lIr by uz*(I‘®xl®. @xk) or up*( ®x1® @xk),

where I‘®xl ®... @xr has been described in 4.3. By Lemma 4.2,
0 . . s
H*(C*E n_H_,(k@kD) - H*Ekcn+lx is a monomorphism. (D has a ZP basis
given by xl@ @xk, x; # [0]. See proof of 4.2). By letting
q
X= 8 v vl V qu, 9 > 0, for appropriate 9y it is clear that

Y*(I‘®xl®... @xk) = A®x1® @xk by the obv‘ious vector space

considerations.

A direct geometrical proof of Lemma 4.3, without reference to the
approximation theorem of [G], should be possible but would be formidably

complicated.
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5. The cohomology of braid spaces; the definitions of the operations

In the next 7 sections, we calculate

* nt+l . _
B (Hom, (C,F(R™ 7,p);3 le(q)), G~Trp or Zp

n+l,k) is the classical configuration space of k~tuples

nt+l

of distinct points in R~ 7,

(2) Zk is the permutation group on k letters,

3) T is the cyclic group of order k,

. +1
(4) C*F(IP+1, k) denotes the singular chains of ]5'(][%1 ,k),
(5) p is prime, and

(6) Zp (@) is Zp considered as a Zp—module with Zp—action

s(0)

defined by 0 *x = (—1)q5@)x, where (-1) is the sign of 0 € Zp.

Since the Zp—-action on F@®R n+l,p) is proper, we may identify

* * +1
B (Homy, (CFR™,p); z,(20))) with H @EE*,p); 2) vhere
P , .
ol
B(Rn+l,p) denotes F(RZ 2p) [15; Chap IV]. By an abuse of notation
P

we denote K (Hom (C,F®™L,0); 2 (@) as B BE; 2,(@).
P

-+l .,
Since ;n+l(j) has the equivariant homotopy type of F(]Rn 1,3)

[Gs §4], each class in H*(B(Rn+l,p); Zp(q)) determines 'a homology
operation on all classes of degree q in the homology of any (n+l)-folci
loop space. We summarize the calculations and define the operations
in this section.

o+l

The main tool used for calculating H*(B(R  —,p); Zp(q)) is the

map of fibrations
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z —— T
I !
nt+i %

FER™,p)  —E~  FE® L)

+ [++]
BR" l,p) s BR ,p)

N o«
@ . n+l o F(R ~
where F(R ,p) = L_J;m FR “,p), B(R ,p) = Lilp—)- and £ and f are
. 5 P
o
the evident inclusions. Since F(R ,p) is contractible with free

[--]
Zp-action, BQR ,p) is a K(Zp,l). The spectral sequence for a
cove;iug allows calculation of the desired cohomology classes. Since
*
H (Zp; Zp(q)) plays an important role in our calculations, we now

recall the following result.

Proposition 5.1 [A; p.158].

Let j: ]TP -+ EP be the inclusion given by a cyclic permutation

and consider j.: H*(ﬂ'p; Zp(q)) -+ H*(Zp; Zp(q)), p odd. Then

(i) if q is even, j*(ei) = 0 unless i = 2t(p-l)-g, ¢ = 0,1;
(ii) 4if q 1is odd, j*(ei) = 0 unless i = (2t+l) (p-1l)-e, € = 0,1;
(iii) if q is even, H*(zp; Z,(@) = E[v] ® P[gv] as an algebra,
where v is a class of degree 2(p-1)-1; and
(iv) if q .is odd, H*(EP; 2,(2)) has the additive basis { (8v)°a%v'}

where v' is a class of degree p~2, ¢ = 0,1 -and s > O.

To facilitate the statement of our results, we recall the definition
of "product" in the category of connected ZP-algebras. If A and B
are connected Zp—algebras ,» their product, denoted A ¢ B, is defined

by (A’H‘B)q = Aqu’Bq if g > 0 and (A T B)O = ZP’ with multiplication
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specified by Aj * B.=0 if q and 1> 0, and by requiring the o - ) 0 if n+ 1 is even

projections AnB +~ A and A%B + B - to be morphisms of connected -

Zp—algebras. Zp * A if n+ 1 is odd

The following two theorems summarize our results: for a certain element A of degree (E;l) which restricts to an

Theorem 5.2. For p an odd prime and n > 1, element X e HH(R—ZL')F(I{H&’P).
We remark that the statement implies that A is annihilated by

H*(B(Rn—*‘l,p); Zp) i An+lﬂ e as, @ comected Zp’ﬁlgEbIa, ’ © all elements of positive degree in H*(EP; Zp).
where Ker f*¥ is the ideal of H*(zp; Z ) which consists of all

Theorem 5.4. For p an odd prime and n > 1,
elements of degree greater than n(p-l) and, where -

o+l
& F .
‘Efa] if n+ 1 dis even e (Rw 2P} zp) = Imf* 1C  additively
P
An+l B ) .
ZP if m+l s od where Imf* is a subalgebra over the Steenrod algebra and is given
k - ntl
: . L . F(R '
for a certain element ¢ of degree n. Further, the Steenrod by the ]_]n?_ge of the classifying map £* : H*(BTrp, Zp) — ( HP ,92’21))’
operations are trivial on o and a restricts to an element »

Ker ¥* ig the ideal of H*(Bwp; ZP) which consists of all elements
o e HnF(]Rn+l,p) which is dual to a spherical element in the homology
+1
\; of PG 2 H*(F(mn‘l‘]'); Zp) which are fixzed under 1Tp.
‘ * . We remark that by propesition 5.1, Imf*  is completely known as

of degree greater than n(p-1l),and C is a subalgebra of classes in

Furthermore IEfﬂ'l
. . 7 ,
o+ Imf¥ = A « Imf% = 0 where o and A are the images in H*(——Lr——"p—-)—; Zp)

P
an algebra over the Steenrod algebra.

of the classes specified in Theorems 5.2 and 5.3.

] We are deliberately incomplete in our description of C because
Theorem 5.3. For p an odd prime and n > 1,

there are classes in H*(F(R n+l,p); Zp) which are fixed by 'np,

* .
B*BEM™,p); z,(2q+1)) = M, ® Inf* as a module over E*(Z ;%) bt are mot 10 C.

*(L : 2 nerated For the case p = 2, we shall prove the following result in
where Rer f% is the H*(EP;ZP)-submodule of H*( o} p(q)) ge ’

The next section
by all elements of degree greater than n(p~l) and where
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Proposition 5.5. F(Rn+1,2) has the 112-—equivariant homotopy type of
s™. Consequently B(Rn+l,2) has the homotopy type of re™,

In passing, we note that B(Rz,k) is a K(Bk,l) where Bk :%.s
the braid group on k strings as defined by Artin [lﬂ and considered
by Fox and Neuwirth [10].. This fact led Fadell and Neuwirth to
the name "braid space” for B(M,k).

We dualize the cohomology of the braid space and let e, be the

homology basis element dual to the i-dimensional generator in the

image of H*(BZP; zp (q)); ©, and A, are basis elements dual to « and A.

With this notation, we define the operations QS' in the homology
of ;:n+l—spaces precisely as in [A§2.2] (see [Ij 1.1]). 1In addition,

we have two more definitions.

Definition 5.6.

1. & @ = bye, ®x®x) if p =2, and
tq
2) ) = (17 ¥(@) Ouleyp ) ®=xP) and
1t
g (%) = (—l)‘zg v(q) 9*(en(p—-1)—-l®xp) if n + g is even

X € qu, and p > 2, where Y(2j + €) = (-—l)J(m!)E for j an
integer and e=0 or 1, m=3(p-1).
(The consistency of this definition of Z;n(x) with that given in

Theorem 1.3 will be proven in section 17).

We recall that Cn_l_l(Z) has the homotopy type of Sn[Prop. 5.5]1.
Definition 5.7.

.)‘n(x’Y) = (.3_)“‘1"'1 8,.(  ®x®y) for x € HqX and y € HX,

where | is the fundamental class of 7§R+1(2).
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' Compare 5.7 with [A; 6.2].

The reader interested in the properties of the operations and willing

‘to. accept the results of this section on faith may skip directly to

section 12.

We note that Arnold [ 2 and 3 ] has obtained information on

* 2 *
HFR,j) and H B(Rz,j).
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6. The homology of F(]Rn+l,k)

The definition and Theorem 6.1 of this section are due to Fadell
and Neuwirth [9]. Let M be a manifold and define F(M,k) to be
the subspace {<xl,..., > | x; € M, x; # Xj if i# 3} of Mk

There is a proper left action of Zk on F(M,k) given by

P <E ,...0%> = <x _ sevesX _ > for p € I, . Let B(M,k)
1 e o o K
denote -F—%M—)-
k

Theorem 6.1. [Fadell and Neuwirth]

Let M be an n-dimensional manifold, n > 2. Let QO = ¢ and

let Q= {ql,...,qr}, 1<r<j, be a fixed set of distinct points
in M. Define ﬂk: F(M—Qr,k) hd M—-Qr by T < xl,""Xk> =x. Then

T is a fibration with fibre F(M—Qr+l, k-1) over the point Qppy?

and, if k> 1, « admits a crogs—section Uk'

k
We now specialize by letting M = Rn+l and compute the integral
cohomology of F(IRn+l,k).
k-1 .
Lemma 6.2. Additively, H¥F(R n+l-Qr,k—r) = @ gx(Js™) where Js”
. j=r

denotes the wedge of j copies of Sn.

Proof: For the moment, assume that Tri has trivial local coefficients
for i > 1. Proceed by downward induction on r. If ¥ = k-1,
F(Rn+l—-Qk__l,l) = Rn+l—Qk__l; thus assume the result for r and consider

the fibration

~38-
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F@&q_ken)

7 (Rn+l

'

Q,_p>k-r+D)

In the Serre spectral sequence,

xR ntl
ETT = g¥ - . pEp el -
2 ®7-Q,_ps BFER™I-q k) = (TN @ mr @™ ker).

By the inducti i tl ® j
vy uction hypothesis, H*F(R —Qr,k—r) = ® H*(JSH), hence
j=r

all differential = p¥% s
S are zero and Ez* = Em . Since E2 is free

Abelian, the conclision follows.

Next, we check the triviality of the local coefficients. For

n > 1, the result is clear. For n = 1, we need the following lemma.

Lemma 6.3. The fibrati s PR 2 |
ibration 111_. F(R Qr,k—r) + R -Qr has trivial local

coefficients.

Proof: Again the proof is by downwards induction on r. The résult

is clear for r =k ~ 1 and, by Propositions 6.4 and 6.5, only the

cases r>2 require chec_king. Fix r, 2<r<k- 2, and assume
the result for T 1 Consider i i - -~ -
. T 2 >
+ the fx.bratlon F(R Q s k- r) R Q

. . 2
with fibre F(R —Qﬁ_ > k~r~1). Define a function p.: T X R2 -Q - RZ—Q
i T T
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in terms of the following picture where q; = A(i—l)el and ey is

the canonical unit vector (1,0):

Ball of radius 2

Figure 1. The function G

The function py ‘rotates the 2-disc with center 9 contained within

the shaded 2-annulus by an angle 2wt at time t, fixes the unbounded
. . 1"

region outside of the shaded 2-annulus, and appropriately ''twists

the shaded 2 amnulus, at time t, to insure the continuity of Py~
2 . .
H : - erator
Define hi(t) = pi(t,qr+l), then hi. I1-+R Qr is a typical gen
2 . e p,ett
- . D a "1ift
of ﬂl(R Qr’ qr+l) efine

k-r-1) + F(R2~Qr, k-r), of hi by

2
Hi:I x F(R —Qr+l’

Hi(t: <Zl,~--:zk__r_l>) = <pi(t:qr+l)s pi(t’zl)”"’pi(t’zk—r-l) .

Obviously the diagram

. verify that (Hi l)* = 1* by an argument involving the maps H
b
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o e ) 2
Ix FR™-Q,,, k-r-1) ———— FR~Q_, k-1)
HI Trk—-r
hi )
I P
R Qr
commutes on the nose.
Hi induces a map of fibrations, for j > O, -
' i
2 . i 2 .
FRR Qr!_j,k r-3) F(R —Qr{_j,k~r-3)
T3 Temr=3
2 i4 2
R™= -
Qr+j R Qr+j
where Hij <zl""’zk—r~j> = <pi(l’zl)"'"pi(l’zk-r—j)> and

Hij <z> = pi(laz)-

By definition, the local coefficient system for L is trivial

2

if (Hi,l)* =1, for all i or, equivalently, (Hi, * =1, We

1)

ij

and the existence of appropriate cross—sections. First, appealing to
the appropriate picture, we see that (ﬁ‘ij)_L =1,: Let a, B, v, ¢

be the depicted generators of ﬂl(Rz—Qr+l, *) for * outside of

the shaded 2~annulus; then the following picture



Figure 2. H,,
1]

- _ -1
represents Hij and shows that (1) (Hij) #(u.) = BoaB ",

@ @)y = 8 Bes 5 and @) (Ey)y00 =y. Hemee (= Iy

Next define cross—sections, Gk—-r—j’ such that the following

diagram commutes for j > 1:

~

2 By 2
- UL N E— - k-r~i
FR Qr+j’k i) FR Qﬁ‘j, -3)
Ok-'r:-‘j Ck-r-3
H,
2_ ij _
R0y ® iy

Commutativity of this diagram implies the validity of Lemma 6.3 via
iterated applications of Lemma 6.2 on the cohomology algebra of

PR

—Qr+j 3 1(."]:‘_‘_‘].) .
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CO1f i > 1, the cross—section defined by Fadell and Neuwirth suf~

fices. Indeed, let L ZEREEES S be k-r-l-j distinct points

r—j-1

on the boundary of a ball of radius % with center at the origin;

then Fadell and Neuwirth define

<@ llall ypeees Nzl v pyg> 38 Nzl 21

k-1-j
<z, yl:-' L] Yk_r_j_l> if ”Z" < 1. -

We check that . .o . a. H. . as follows: if =z < 1, then
ij k~r-j k-r-j ij b

Opmpoifi 1% = Opoy <03 (1o2)> = 0y _<2>

]

<z, “Z” yls---a “Z“ yk~r—j-—l>

~

<g>
Hijck.-r—j 4

and if ”z“ > 1, then

Omr-i455F T Omp-y P (12D

=<pi(la z), Y1, s ’yk~r—j-—l>

-~

= <z>.
Hijgk—-r—j z
To check the case i = 1, let P denote some deleted point out-

side of the shaded 2-annulus (which exists since r > 2). Then define

. ] - PR
a cross—section, Uk~r~j’ in a manner similar to the above. Let

Yy "’yk—r—j-l be k-r-j-1 distinct points on the ball of radius %
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center at Po» and define

<z, zmp | Gy tps e lapgl Oy po 1P ¥Ry

1 . . _ <1
Opmpey® = i lzp ]l <1,
i - > 1.
<z, yl,..., yk—r—j—l> if “z Pm“ >
o, H.. = f, .00 . is checked as above and the lemma is proved.
k~-r-j ij ij k-r~j ;

Next we demonstrate some interesting geometric properties of

' +1
Rn+l §at

F( ,p) and B(R T,p).

Proposition 5.5. F(R.n+l,2) has the nz—equivariant homotopy type of

o+l

n
g™, Consequently B(R ,2) has the homotopy type of RP.

Proof. Define
1 ¢: st+rF@,2) by ¢<E> = <E,-E>,

~

@ % Rp+l—{0}+~F(Rp+l,2) by ¢<z> = <z,~z>, and

@ oy FEL2) > B

-{0} by Y<x,y> = %Y.
Clearly ¢$<x> =2x so P v 1.
o+l nt+l

pefine a homotopy G6: I X F(R ,2) » F(R ,2) from ¢¢ to 1 by
the formula G(t, <x,y>) = <tx + (I-t) (x-y),ty + (1-t) G-x)>.

¢ dinduces a map of fibrations

257
with ¢ given by {g}= {<E,~E>}. By the long exact homotopy sequence
for a fibrationm, 65)# is an isomorphism.

Henceforth, we assume that p dis an odd prime in our homological

calculations. The following two results are parenthetical.

Proposition 6.4. If M is a topological group, F(M,k) is homeomorphic

to M X F(M~e, k~1), where e is the identity of M.

Proof. This situation is covered by Fadell and Neuwirth's notion of a

“suitable" space, but the proof is amusing:
-1 -1
<Zpsesesg> T (2, N L e
<Zl,}’221,---,5’k21> i (zl’ <y23-'~: yz:"-iyk>)

Proposition 6.5. F(RZ—Ql,k) has the homotopy type of Sl X F(RZ—QZ,k—l).

(This fact can be generalized to R® for n = 4,8, but seems to be

irrelevant.)

Proof. Define p: I x R.Z-Ql i RZ—Ql by rotating RZ-—Ql about qq

- through an angle 2wt at time t. p induces maps

R: SlXF(Rz—Qz,k—l) > F(Rz—Ql,k) and R: s* > R%-q, given by
R(E’<xl,."’x'k_l> = <p (E’QZ)’ p(g’xl)""!p (g’xk"l)) and

ﬁ(E) = p(g,qz). Hence R defines a fibre-wise homotopy equivalence:



§
i
i
I
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F(Rz—Qz,k—l) R F(RZ-Q;_, k-1)

s'xE (R%-0y, 1) ——F—s FR%-q, 1)

| L

1 R 2
s R™-Q;
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7. Action of Zk on H*F(Bkn+l,k)

The geometric action Zk % F(Rn+l,k)-+ F(Rp+l,k) induces a I -module

k
*
structure on the (integral) cohomology algebra H F(Rn+l,k). Evaluation

of this action allows explicit calculation of the spectral sequence men—

tioned in section 5.

To determine this action of Zk on H*(F(Rp+l,k)), we first calculate

’tﬁe action of a transposition Tr = (r,x+l) on a basis, {aijlk—lZiij21},

* *
for HnF(Rp+l,k). Since H = (H,)  here, one then passes to the induced

o+l

action on the dual basis {dijlk-lziszl} for HnF(ﬂR ,k). Since each

permutation is induced by a map of spaces the action of a permutation in-

duces an algebra morphism on cohomology and the action of a permutation,
T, on a product of indecomposables is given by the diagonal map,

T(* af )y = (ta¥ )(ra¥ is i i i i
( ij km) ( ‘ij) km). This information, together with a few technical

o+l

facts about the product structure in F(R k), is enough to carry out

the calculation of the cohomology of the "braid" space.

Fadell and Neuwirth's work allows us to define a Z-basis for

HnF(RF+l,k), but a "geometric" change of basis is needed to arrive at

the classes, aij’ for which the action is easily computed.
We first give the basis arising from Fadell and Neuwirth's work via

the cross—sections of Theorem 6.1. We have the map

o : R.n+l—-Qr'+ F(Rn+l-Qr,k~r)5; F(Rn+l,k) which induces an isomorphism of

T
Hn(Rp+l—Qr) onto a direct summand of HnF(Rp+l,k). Let
ntl .
st = {5[5 g R, ”E” = 1} and Qr = {ql,...,qr} where q = 4(1—1)&1,
with ey the canonical unit vector, and define Br T g™+ F(Rn+l,k) by

¥

Br’i<€> L CFEETTL e Gr<€+qi>>- Br,i<€> L FFEREFL S AT b (L

By an abuse of notation, label (Br,i)* () as Br,i where | dis the

fundamental class of S°. Clearly {Br ilkrlixijgj} is a Z-basis for
, :
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H_F ® K.

We next define the promised "geometric" change of basis., Let r> i 2> 1
P g

n o+l .
- < = < -
and let ur,i' ST+ FRR ,k) be given by ar,i £> ql,. . ,qr,

+

£+qi,qr+l,...,qk__l>. By further abuse of notation, let ar i denote

@, )0

Lemma 7.1. TFor F(Rn+l,k)=
(1) if 1> 1, then (B ), = (“r,i)*" -
. . - _.40FL
() if i=1, then (B ), = (e 1), +j=%+l( DY ) and
o+l

3) {a .lk—lz_r>i>l} is a Z-basis for H F(R ,k).
T,i — n

Proof: (3) £follows from (1) and (2).

. ol = =
(1): There are paths Yj' I+R such that Yj () yj ’Yj 1) qr_*_j,
“Yj (©)-qgll > 1 if 1<t<r and image v, N image Ty = ¢ if i # j.
Let H: 1xs® > F@®®L k) be given by H<t,E>= <D seesps EFD

Yl(t),...,Yk_r_l(t)>. H yields a homotopy between &r,i and Br . for

3

i>1l. (2): Define an ewbedding Ir: st - RHGHL whose image is given

Q-1
by the following picture:

LAl

%y / qa R a % e\ Rt

W ®

-

Figure 3. Embedding of S° in Rn+l—Qk_l
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) n n+1l .
Let vi:\ S +R _Qk—-l be given by v <E> = g+qi.

Subdividing the (ntl)-disc enclosed by the image of Ir’ we have

k-1
(T = (Gl T () -
/% 1/ % j=:§::+l 57 %

nt+l

Define G: Rn+l—Qk__l PR k) by

Gcx> = <Uyreeesds X, qr*-l""’qk-l>' Notice that
G'-Ir<€> = <ql’-'-aqr: IrE, qr_‘_ls---’qk_l>

and Br’l<g>= <GQgse-enls g+ql, LAREEREES S Using the paths of part
(1) and "stretching" the unit sphere centered at the origin, we obtain a

homotopy between Br 1 and G'Ir. But Gy T ooy g If j>rtl, define
2 3

a homotopy H: st x 1 F(Rn+l,k) by

HE, > = <q1""’qr’ qj+(1-j;)g, qr+l""’qj-tg’?j+l""’qk—l>' Then

_ ¢_1ybtl
clearly (G-vj)* = (=-1) (aj,r-i-l)*' Hence -

k-1 -
6 s = CTy = LG+ T 6 = Gpda® 3 €D

o+l
Gy, o) e

and the lemma is proved.

We can now easily determine the action of T, on {O‘i’jlk'li_iij?_l}-
3

Proposition 7.2. For F(Rp+l,k),
1) Tfur-l,j = ar,j’ hence Tfur,j =e 1.4 if j ﬁ r,
(2) Tels pil © %4,1° hence Tyoi p T 04 ral if i3> =,
_ o+l
3 Trar,r = (~1) at,r’ and
(4) T 0,. =a,, otherwise.
r ij ij
Proof:
: Trar_l’j<g>= rr<ql,...,qj,...,qr_l, g+qj,qr,...>

= <ql,. . ,qj,. .o ,qr__l,qr, g+qj,. . e>
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(@) T o g BT TSy @s GpggaeneaQys BRg Qe ey >

= <ql:'--sqr+l3 q]:,s‘"’qi’ F’+qr+l’ qi+1"°°aqk_l>'

So T_Q, is homotopic to a. _.
T 1 H

Ssrtl 1,

(3): Trdr’r<g>= Tr<ql, e 9qr: E+ql” qr*-l’ e ,qk_l>

= <qlx"sg + q.r’ qr, qr+13"‘> .

+
Define a homotopy H: I x st — F(Rn l,k) by

H<t,E>= <ql,..., 912 a. + (1-t)g, qr~tg, <qr*_l,...>. dence
o+l

T, (ar,r)* equals (-1) (ar,r)*'

(4): Trocij<'g”> = Tr<ql,...,qj,...,qi, g+qj, Qypqrere> - So

T 0 i i i i # + d i4r, - 1.
i3 is homotopic to(xij if j#4r,r+1 and "iF r,

A technical result useful for later calculatiomns is

Lemma 7.3. Letp € & be such that p (2i+l) = m, p (2i+2) = &, where

K
m # 2441, 2i42. Then, for F(R™,W),

("l)nﬂ“m—l , if m>2
3

POos+1, 2041

a!&.—l,m if L>m

Proof: Immediate from the proofs in proposition 7.2 and the definition

ofa,..
1]

Let a?_j be the dual of aij with induced left Ek-action given by

@e®) () =oa*c18) forte Z,- By inspection, we have

o+l

Corollary 7.4. For F(R 2K,
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* _* h * TR
(1‘) Trar-l,j = ar,j’ ence Trar,j = ar~l,j i j<x,
2 ) Y . oh o= if 1>
(2) Tr“i,r*l—l ai,rf ence Trai,r = ai,r+l i i>r,
* _ ntl %
(3) 0 = (~1) N and
* *
4) T o,. = 0, otherwise.
r ij i

" An extremely useful result for later calculations is the action of

o = Ty 0...0 Te1? @ permutation of order k, on the indecomposable-elements

¥,
ij

Gorollary 7.5. For F(Rn+l,k)s

* *
) chij = ai+l,j +1 if i<k~1l, and
* n+l %
2) o .= (-1 A
(2) uk—l,;] 1 a],l

Proof:
(1): let k-1>i>j>1; then
* *
TP O e 0T gBis =Ty 0eel 0T 0
*
1 Ty %341,1
*
T3 %541,3

%
3

1 Ti-1%141, §41

It
-
o]
N
.
.
[

%441, 341

(2): Let k-1 = i>j>1, then

& %
Tl 0...0 Tk“‘lak"l,j = Tl ‘O vaWO Tkj—Zuk-Z,j
3
Ti+1%441,5

L]
~
1
[
V;:)
4
i
A
*—l
o
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_ ¢_q,DFL *
( l) Tl o *** 0 'rj_locj ,j"l
o+l *
= (-1 Lo
-1 % g

Finally, we obtain the information about products required to carry

out the details of computation in the next section.

Lemma 7.6. The following set is a Z-basis for H }E(Rn+l,k), where

I<p<k-1:

* *
{a ee O, . Ilii

P < vee < i < k-1}.
1231 Tpody =

1

Proof: By a slight modification of the proof of Lemma 6.2, a basis for
2

E. , rts = fn, is given by
T,S
.. .. 1<i, < ... < i _<k-1}.
{Bll,.'ll ® 612,32 |1y ) =
By Lemma 7.1, Bi,'j = ai,j for §>1 »and
k-1
+1
.= 4t -1,
Bl,l 0‘1,1 j=§i‘+l( ) o‘3,1—!—1.
Consequently {cﬁ< 6O ... @a,.‘ . | Led; < ...< i <k-1} is a basis
11934 1pdg 1 =

for E;’S, r + s = fn. Since the Serre spectral sequence is a spectral

sequence of algebras, the result follows.

Lemma 7.7. For F(RYL,K)
1) (e)?=0, and
w (aij) = 0, an
* %k * * *
2) o,.0., = -ak—l,j (aij - aik) for j <k.

ij ik

%
Proof: By equivariance, it suffices to check that (1) (all)z = 0, and

* Kk o,k %
(2) @ggapy = uy; @y =~ ayy)-
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qu (1), note that the following diagram is commutative

+
@®: FER™LW > FR-q k1)
.
o o k-1
11 %
o
oo 11 Rn+l‘Q1

~ - %
~where © <E> =<E+ql,q2,...,qk_l> and C!ll<€>= €+ql. Let | denc?te

i1

the fundamental class of 1Rn+l-—Q

1
A
a, .. st~ F(IRn+l-Ql,kl) be given by the formula

in cohomology. Further, let

(€) = “qy5ee058ys0nvsqyob +445 4 5eeesGy 7. Evidently,
i+l _

0 if i or j # 1.

* B ok L 2
Hence "k__l(L ) = @, consequently, (ocll) is zero.
: + +
For (2), consider the map 'Irk__z: ‘E‘(Rn l—-QZ,k—Z) - R l—QZ. Let

* 5 ok % -y ) ok (2 _
YZi = ﬁk—z(YZi) where Yy € H R Q2) is such that (YZi) = 0 and
Ak oAk 3 . ] _ ‘ o+l *
Yy1¥99 = 0. Under the inclusion F(®R Qz,k 2)c FRR 2k, Ay
. * . E . .5 : . . . .

restricts to Y,y in H'FR ——Qz,k—?.) in view of the commutative dia-—
gram

FRT-q,,-2)

T2

n+l

+ R -Q,

where &2,i<E>‘ = <E¥Q,5q45-0459q 4> and
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<E> = .
%y,: ¢ Eta;
* % * -+ )
Consequently, ®p1%9y restricts to zero in H F(Rn l—-Qz,k-Z) and must
. o . . ‘ * * % * %
lie in the principal ideal generated by all' So 0‘21 a22 = Z Xijallaij

i>1l
for some constants Xij Ey‘ Lemma 7.6. Applying Ty to both sides

and quoting Lemma 7.5, we find

Ok £ % x %
= X —
1%y = L Xy o495 ,1 ~ %1%, 2]
i>1
because Xil = --Xi2 and Xij =0 4if j > 2.

Applying T, to both sides and again quoting Lemma 7.5 and 7.6, we

i i i > 2 d = -1 a*a*—a*[a* a*]
find Xij =0 4if 1 an XZl—- . S‘o 91 %22 = %110 22

and the result follows.

* +
Proposition 7.8. The Steenrod operations are trivial on H (F(IRn l,j); ZP).

Hence the Steenrod

’ % *
Proof: By the proof of Lemma 7.7(1), Trk_l(‘_) =0

*
operations are trivial on all'

*
formula, the Steenrod operations are trivial on any monomial in the uij'

By equivariance and the internal Cartan

267

'8. The spectral sequence

o+l

To calculate H* (Homz C.FR 7,p); Zp(q))), we use the spectral
o ’

sequence for a covering [7; p.335]: let G be a group, M a G-module,

and X a space on which G acts properly. Then there is a spectral

&

* *
sequence such that E, = H (G;HE (X;M)) and {Er} converges to

2
H*(HomG(C*X;M)). Furthermore, if M ® M' + M" is a pairing of G-modules,

with M® M' given diagonal G-operators, there is a cup product pairing

Er®E:: + E" of the associated spectral sequences. In our calculation,

G = ZP, X = F(Rn+l,p), and M = Zp(q) as defined in section 5. The

%
Zp-—module structure of H F(Rn+l,p) has been identified in section 7.

&k
Instead of attempting to evaluate E, directly, where {Er} is the
£ * * ntl
spectral sequence such that E2 =H (Zp; HFR ~,p); Zp(q))) and Er
n¥l e '
converges to H(Homz (CFR 7,p); Zp(q))), we study E2 , where E2

. P
is the spectral sequence cbtained by replacing Ep by ﬂp’ the cyclic

group of order p. Then the restriction i(ﬂp:zp): ﬂp > Zp induces a
morphism of spectral sequences, which, by the following theorem, is a

monomorphism on the Ez-level.

Theorem 8.1 [7; p.259] Let A be a G-module and p a prime. Let
ﬁ(F,A,p) denote the p-primary component of ﬁ(G,A) and let Trp be a

p-Sylow subgroup of G; then
in(npzzp): f(G;A,p) ~ ﬁ(-np,A) is a monomorphism.

Since Tate cohomology agrees with ordinary cohomology in positive
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% %
degrees, Theorem 8.1 obviously applies to the map EZ’ — E;r’ for

r> 0. The case r =0 is obvious.

We can now immediately identify almost all of E2 and E; by the

Vanishing Theorem:

Theorem 8.2. [Vanishing Theorem ] In the spectral sequences {Er} and

15, = Es,t

' n+l
{Er} for F®R T,p), E, 5

=0 for s> 0 and 0< t < n(p-l).

The proof of this theorem is held in abeyance until section 10.

Since HqF(Rn+l,p) =0 for q > n(p-l), we obviously have

E;S’t = Ez’t= 0 if s> 0 and t > a(p~l). Combining this fact with

the Vanishing Theorem, we see that the only possible non-trivial dif-

ferentials in {Er} are

O,r~1

- 0
@ d: E]

- Ei’ for r < n(p~1) + 1, and

. gS.n(p-1) s+n(p-1)+1,0
() 4 -1y’ Fae-+l T Fap-+l :

Comparing (1) and (2), weé see that

@ B Ei’(;_i)+l unless s =0, t =0, and s < n(p-1)+1;
(4 EZZ;~1)+2 = Ez’t for all s and t.
o+l
But since F(Rn+l,p) and ER .p) are p(otl)~dimensional manifolds,
. Ip

no classes of total degree greater than p(atl) can surviwve to E_.
Hence for s + n(p-l) > p(ntl) the differentials, (2), must be vector
space isomorphisms. Of course, these formulas and remarks are also valid
with {E_} replaced by {E;}.

Recalling that H*(ﬂp; Zp) = E[u] @P[Bu], where u is a class of

degree 1, and fecalling Proposition 5.1, we see from (4) that

it
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(5) E;s,n(p-l) = Zp for s + n(p-1l) > p(utl)

(6) E;’R(P_l) = ZP for s + n(p~1) > p(nt+l), and

-2j(p-l)—€ q even, € = 0,1

s + a(p-1) + 1

]

(25+1) (p~1)-€ q odd, € = 0,1.

To determine the classes for s + (p-1) < p(ntl), define the p-period
of a group G to be q if ﬁi(G,A) and éi+q(G,A) have isomorphic
p-primary components for all i and for all A. It is well known that
WP has period 2 and that the periodicity isomorphism is given by cup

product with Buj; Zp has p-period 2(p-1) by Swan's theorem:

Theorem 8.3. [23] Suppose p is odd and the p~Sylow subgroup

of m is ecyclic. Let ﬂp be a p-Sylow subgroup and let @p be the
group of automorphisms of ﬂp induced by inner automorphisms of 7.
Then the p-petriod of 7 is twice the order of @p.

When specialized to our cyeclic group ﬂp and to ZP, Theorem 8.3

can be expressed in the following explicit form:

Theorem 8.4. For any np—module M, let Bu: Hs(ﬁp; M) -+ HS+2(NP;M)

be given by cup product with Bu & Hz(ﬂp; Zp). Then Bu 1is an isomorphism
for all s > d. For any Zp;module N, let Bv: HS(ZP; N) + HS+2(p’l)(Zp;N)
be given by the cup product with Bv e HZ(P_l)(XP;ZP). Then Bv dis an
isomorphism for all s > 0.

In short, formulas (5) and (6) remain valid for all s > O.

* & * g * *

Let aI = ull a33 e a21+1,2i+l . aP_Z’P_z and H denote the
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T
IllH,..., ler, r = [ZP: H], be the left cosets of H in Zp' With this

subgroup of elements of Zp which fix, up to sign, the class a®, Let

notation, we state the following theorem which will be proven in section

£33
9 and will complete the additive determination of E2 :
Theorem 8.5. In the spectral sequence {Er} for F(Rn+l,p), Eg’* is
given as follows, as an algebra if q is even:
Efa] n+ 14s even, q is even
Z n -+ 1 is odd, q is even
if > 3 EO’* = ?
P > 72 0 n+ 1 is even, ¢ is odd
ZPJ n+ 1 is odd, q 1is odd,
G}
(a=8) n+ 1 is even, q is even
if p =3, Eg,* _ 23 n + 1 is odd, q is even
0 n+ 1 is even, q is odd
23-769 Z,8 n+ 1is odd, gq is odd,
—_ %
where a = X a., € HnF(R n+l,p)
p-12i>j21
T -1
— * EZ"
A o= ) (signopou, (o) € al )F(Iln+l,p),
i=1 i77itL
3 % & % %
and if p =3, § = all %1 + all a22‘ Furthermore, if 6§ is considered

o+l

as a fixed point of the w_~module Han(}R »3), then (Bu)j'5

3
represents the non-zero class in sz (1r3; Hzn(FGﬁT’_lﬁ); ZS)) for j > 0.

The classes (Bu)SBEu form a basis for E

27

&k :
. Having determined EZ additively, we proceed to exhibit the differentials.
%0 * vR,0 _ % )
> - . sV . .
We have E2 H (ZP, Zp(q)) and E2 H (’H‘P, ZP). If gq is even,
2

if q is odd, the classes (BV)SBEVl form such a basis (deg v' = p-2).

*
the classes (Bv)sBEv form a Zp—basis for E -0 in positive degrees;

15,0
2 .

only possible non-trivial differential on o is dn+l'

We first note that the

But dn+la must

“be zero since Bu*a = BV‘; =0 by the vanishing theorem. A similar

argument shows that d].:i = 0 for all i. To consider the other possible

non~trivial differentials, let G ambiguously denote np or ZP and

's,n(p-1) gS.n(e-1)
2

let X denote the basis element for E2 or deter—
mined by (2) and periodicity. Explicitly if m 'is the p-period of G,
then, in (2), set s = dimtj for i i 0, 1<i<m. The differentials, (2),
are isomorphisms for s sufficiently large. We read off the answer for
i =0 from the answer for i large:

For G = Ep,

(Bv)iﬂev for q even and
s = (2i~nt+2) (p~1)+e-2

dn(p~':L)+le = ien
(Bv)"Bv for q odd and

s = (2i~-n+l) (p-1)+e-2.

1]
w

The case s = 0 requires some comment. By Theorem 8.5, when p

and n + g + 1 is even, there is a possible non-trivial differential

E0 »2n E2n—-1, 0

d : m——
20+l 2n+1 2ot
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The periodicity theorem as stated camnot be directly applied to Eg’zn. Theorem 8.7. Consider E’z‘* = H*(ZP; H*(F(mn+l,p);zp(q))). If g
. 1 . . N
So we consider .EZO,Zn' Here d2n+l((8u)3'5) = (Bu):H‘n *u by (2), even,
§ = ., . . N . £33 -
hence d2n+l ®Bu) u. By naturality, we see that, in this exceptional E2 An+1“Bn+l as a connected algebra where
case, we have
. _ Efea] if n+ 1 is even
(Bv)l'v if n + 1 even, q even, i = 1_12_1’ A _
_ o+l . .
d2n+16 = ' Zp if n+ 1 dis odd,
@n%v' disn+ 1odd, q odd, i = % .
© and

Recall that according to our notation, X, denotes the class in bidegree B - Elv, Xs-l’xs] @ »[6v] s

ntl I

(i,n(p~1)). For p =3, 8 is Xg» and for primes larger than 3, we

have that % is zero.

Clearly this information determines E

o 2

here I is the ideal generated by the set

but for the sake of complete-
3

{xs-'l.xs’ ViE g VES T Brxg

ness, we determine E2 as a H*(ZP;ZP)—-module. For q even,

d, p-l)+lv‘xs = -y* dn(p—l)+le' Clearly we have-

(p-1)-1 d4if n+ 1 is even

(23-n) (p~1)~1,

e

h

L]
]

Fs+2 (p-1)-1 where s = )
1) . V'Xs - 2(p~1)-1 if n + 1 is odd.
‘ 0 if s = (2j-n) (p~-1)-2.
If q is odd,
For g odd, the obvious modification is s %
E2 = Mnﬂ@lanﬂ as an H (ZP;ZP)—module, where
_Xs+2(p-l)-l if s = (2j-n+l) (p~-1)-1
(8) vex o= 0 if n+ 1 is even
0 if s = (2§-n+l) (p-1)-2. ‘ . K= _
Zp')\ if n+ 1 dis odd,
These results are summarized in the following theorems: and Bn+l is generated by v', Bv', x_, e a x with relations

vey! = 0, vE g = 0, and (Bv)-xs_l tvx, = 0.
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(3) djxs =0 for j <n(p-1l), and

2(p~1)-1 if n+ 1 is even
where s =

(p-1)-1 if n+ 1 is odd.

. % [ v) 8  if q is even and
Let x4 and e denote the classes in 'E2 of bidegree (s,n(g-1))
k% s = (2k-nt2) (p-1)+e-2
analogous to the class gs—l and is in E2 which are required by
A ‘a x =
periodicity. By the previous methods, we have 4 n(p~1)+1"s (Bv)kBEv' if q is odd and
% ' = _ — -2
Theorem 8.8. Consider ‘E;* = H*(-;rp; H (F(IRn+l,p); Zp)). | s (2k-n+1) (p~1)+e-2
g*E o t : 8.10. ‘i‘he differentials in the spectral sequence {'E_} are
Ez An+l“ Bn+l as a connected algebra, where An+1 Theorem -
given by
is a subalgebra of classes which restrict to fixed points in (1) doy=0 for all 5 and y ¢ 'A o provided y has no summands of 3;0’
i fe3
+1 .
B*(F(RT )3 Z_ ) under the action of w_ and where _
@ P P P ) djxs =0 for j < n(p-l), and
E[u’z()’;l] ® plpul 3) d x = (ﬂu)kBEu‘ for s = 2k + € - n(p-1) + 1.
'Bn+l = T H n(p-1)+1"s

here I is the two sided ideal generated by the set

EO ;l’ u s ;0’ e ;‘_1 + Gu) - ;0}- Remark: The additive results stated in Theorems 5.2, 5.3 and 5.4 are
| - immediate from the form of E_  implied by Theorems 8.7 through 8.10.

Remark: We are deliberately incomplete in our description of 'A ey

because 3?50 certainly restricts to a fixed point in H*(F(IRn+l,p); 2zp),

and ;:-0 is a fixed point which does not persist to E_. (See the

. . . =0,2n 2n~1,0
previocus calculation of d2u+l' E2n+1 — E2n+l for example.)

Theorem 8.9. The differentials in the spectral sequence {Er} are

given by
1) d,o
@ 3

(2) dj}\

0 for all j,

it

0 for all j,
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0,
9. E,

* *
We identify EO’ = HO(ZZP;H (F(Rn+l,p); Zp(q))) as those classes in

2
* .
the Zp—-module H (F(Rn+l,p) H Zp (q)) which are fixed under the action of

% . We must prove Theorem 8.5.

* * -+ R
To study HO()IP; H (F(Rn+l,p); Zp(q)), we decompose H 13’(R":1 l,p)

into a direct sum of Zp-modules and consider the fixéd ‘points which have
summands in each submodule. This method is carred out for p > 3, but
requires modification for the case p = 3.

Let I be a sequence of integers, I = (il’jl’“"ik’jk)' 1 is
allowable if 1iil%i2<...<ilép—l and lf_jr<__ir, 1<r=<k. fx; denotes

%
. We define the length of I by A&(I) =k

*
the class o, . «..0, _.°
pd edk

*
and, by convention, o, = 11if &(I) = 0.
*

Define F to be the graded Zp—-module whose éenerators are aI,

I allowable, where
1)y 1= (il’jl""’ik’jk)
and for each m < k,

. i 3 <
(2) iy # i +1 for all x, 1%x<m-1 and

(3 iy #i,, forallx, lx<m-l.

%
Let T be the graded Zp—module whose generators are %rs I
allowable, where
(D) I = (qadqsenesiysdy) and

L .o . i =
@ jy=4i  +lorj =3 . forsome m and x

B ) .
Proof of Theorem 8.5: Clearly H F( ol

,p) =F@T as a Zp—module. Since

a check of the four obvious cases reveals that a transposition, up to sign,
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pémutes the monomials of F, F is a Ep-submodule of HAFQRn+l,p).

The calculation is now divided into two sections:
(1) we show that no monomial in T can be summand of a fixed point under
the Ep—action (with either twisted or untwisted action on Zp).
(2) We calculate the fixed points contained in the submodule F.

. . X Ok %
(1): We show first that no allowable monomial of the form c.o. . @, .
73,3 3+l.3
T, .
i itL, 5l

. & .
or aIa can be a non-zero summand of a fixed point for 2£(I)>0.

Using this information, we show that no monomial satisfying the axioms for

T can be non-trivial summand of a fixed point.

* % %
Let V., denote the Z -vector space spanned by a_ o .o, . and
3»I p L ocroT space sp MO E AR
* %
aIajjaj +1,54L for fixed I and j. ‘ (These monomials are assumed allowable.)
< . v -
Then Tj+l(vj,1) < Vj,I Let Vj,I' be the Zp space spanned by
& % s & %
1 = = -
uI (aj_l,r) aj,raj+l,j+€, 0,1 and § = 0,1;
e o H8aFoF 0,1 and =0
] = =
1’ %-1,0? %53%54L, 54, » 1 an »1
. — —
for fixed I and r. Again, 1.(V, ") V, .
gain, J( 3T = 3,1

Now suppose that o is a summand of a fixed point. Then

*
o, .0, N
173373+L,3

by application of T, to V, ., we must have that
j+l J:I .
Ca*a* * Dd*a* a*
L s O . s .
L33 3+1L,] 1733 31,341

is also a summand of the same fixed point where C = (-i-l)n [C + D].

Application of Tj to Vj I forces (—1)n+lC = D. So
b2

n+l C

c= 1" [c+ (-1) 1; thus if p # 3, C= 0.
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* EE * * .
Let aI = ulnu, L eedl, L .. O, be a summand of a fixed
lr’Jr 15,35 1‘1{’31(

point, where jS = ir + 1 or js = jr (that is, an instance of axiom 2

for T.) We may ssume that jr+z # ir+l for &> 0. Let t denote
T4 and let V and V % be the one-dimensional subspaces spanned
+ or Ty
* * » . 2 * +1
by o and T respectively. S8ince T = 1, we may decompose H E(HP . D)

as a direct sum in two ways:

Fr@R ) = v SOV, =V B
(Y.I aI TU,I TCY.I
where

W ye vV ,
To

= %
=~

and

DV, -

Ty %1

We suppose that jr = js and remark that the case jS = ir+l is checked
in essentially the same manner. Iterating the above procedure for the

*
applied to «

permutation. (T T

p-2 O ... O rir+1) o] (Tp_l 0... O Tis+l)

% % *
we see that a monomial of the form «_o ) .
. v Ip-2,3 Pp-L.ig
of a fixed point. Applying the permutation Tp~3° cee0 T, to

% % * 8
aJaP_Z’anP_l’js and quoting the argument for Tis above,, we see that

is a non-zero summand

X %  k *
a monomial of the form o t «

o must be a non-zero summand
3 Tp-2,p~2 p-1,p~2

of a fixed point. Therefore, by the previous remarks, an element fixed
by Zp can have no non-zero monomial summands satisfying the axioms for T.
The modifications necessary for the case of twisted Zp~coefficients are

obvious.
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(2): Application of appropriate permutations indicates that any allowable

. *
monomial, ey, of F, 2(I) = ktl, can be permuted, up to sign, to

* * *

%11 %33 orr gy, orpr 2KTL S P2

Hence the subspace of elements of degree n(k+l) in F is generated as a
% -module by o a. *

p mocuie by Qpq033 evr Coptl, 2kl”

We first calculate the fixed point set in ¥ for ntl even. Suppose

) > *
that q is even. Here, XP just permutes the indecomposables aij and

clearly

*

a, .
p-Lzizipl

ias a fixed point. We claim that there are no non-zero fixed points in
F concentrated in degree n(k+l) if k>0. Suppose there is such a fixed

point, Y. Then by the above paragraph, vy is in the Ep—module generated

by
* * & & *
®p T %11%3 00 %2i41, 2041777 %2kel, 2kl
B i T, t h PR x
y applying 9 o Y, we see that a21a32a55 oo a2k+l, Ikl must be
a summand of Y. We apply T,0T to see that <Y must have
* % & * x k % *

®32%21%5 *** %orti, 2kl %21%32%5 0t %oksl, 2kl

as a summand. There are clearly no non-zero fixed points which have this

pioperty. We now suppose that q is odd. Here, we see that

" (* * * _ * % * £ >
10%11%3 ot %, ki) T T%1%3 0 %ok, okkr 1T K20

Consequently
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e B F @R,y ; Z,(20+1))) = 0

if n + 1 is even.

We next study the case n + 1 is odd. For the moment we assume that

. . * ntl *
q 1s‘even. Since Tlall = (~1) ull’ we have
* * £ ® _ k * *
Ty T Tep FOT Op T %31%330er %ok, 2k’

Consequently there are no fixed points in F for n + 1 and gq even.
We now consider the case when q is odd. Again, any fixed point must

be in the Ep—module generated by a;. If 2k +1<p~ 2, then
*

: *
Tp—l.aI = —aI. Hence there are no non-zero fixed points in F concentrated

in degree jn, l§j<R§l; However, we claim that

% * * *

%1 7 %p1vcc %2i41,2i417 " %p-2,p-2

does in fact generate a Zp—fixed point for n + 1 and q both odd. By
*
definition of the aij we see that 1if p e ZP and p fixes, up to sign,

each element of the set

* * * *

fagys Oggeees®ying og4q00es ap-Z,p—Z}’

then P is either the identity of ZP or & product of the transpositions

0<i<B=3,

Toi+1° p)

Now, let H denote the subgroup of Zp which is generated by the

%
elements that £ix e up to sign. We claim that H is generated by the

set

= . -3
{n e Zpln T2j+l or n 0 <j < 22 3.

= Tog+2 T2443 T2i+1 T2ge2
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This fact is essentially immediate from the previous observation. The

peculiarApermutation T just interchanges

25+27 25437 2541° 2542

and

%2441, 2541 “25+3,2543"

if ge H, we can clearly choose a product of the permutations, 0, which

interchanges precisely the same classes which g interchanges. Denote

. this product by h. Then gh_l must f£ix, up to sign, each indecomposable

* . . -1 . .
a21+1,2i+1' Hence, by the previous observation, gh must be the identity

or a multiple of = 0<3j 5_233. We use these generators for H to

25+1°

finish calculating the fixed points for n + 1 and q odd. Here
* %
T,00, = (—1)Ti(uI )
where
%
G
is determined by the Zp—action defined on H*F(Rp+l,p). Since

* bl * %
7005y = (CDED ey, = ey,

* *
for n+ 1 and q odd, it follows that g-* e = ar for all g € H. Let

ulH,...,urH, T = [EP: Hi,
be the left cosets of H in Ep and let

I 1 p-1.
A=} (sign ui)ui(a;) e 2O r @™ p).

i=1
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1f we show A is independent of the choice of coset representatives

{uli=1,...,}, them it will be cbvious that T * X =% for all

-1 * * ws i,
T e Zp. So we suppose that wus=ge H. Since grop = o, by the Since (Bu)~ ¢
above remarks, it follows immediately that conclusion.
C w, @) = (sign W OH, @)
i H.ou . o = (sd H)u. G ).
SHER HyM B Lo i '
F h = 3, L [ o o b L ~fixed i
or the case p = 3, let = w0, + yuga,, bea X -fixed point.
Then
- PIIN  FIPR - 2 § L _ bl E
8§ rls = (~1)*[(-1) X a0y, + (-1) v211%1

forces y = (_1)q+n+lx and

I % %
~l>q+2n+2 o

Tt DT T 6l 1 - (1) %le, 0+ 1%l

§ =1 6=x12[alla21+ alluzzj

2 21711

Since

% % _ E3 * * by L 7.7
oqlyy = ~0ql5170y,l, by Lemma 7.7,

we have that 6§ is fixed if and only if n + q+ 1 is even. To check

the fixed points concentrated in degree n, we notice that
— ' % + *
R S R

and A

is fixed if and only if gq and n + 1 are both even,

= 017%g + Gy is fixed if and only if q and n + 1 4are both

odd.

To check that (Bu)J'ﬁ represents the non-zero class in

B (s B0 @@, 3)5 25@@)

we note that
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*

2, % % 92 *
- QtotaTyay ey, = (Ltoto Yoy 0, =

0.

must be a mon-zero, non-cobounded cocyle, we have the
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10. Vanishing of E;*

We must prove Theorem 8.1, which states that E;S’t =0 if

s>0 and t # 0, n(p-1).

Proof: All monomials, a*, are assumed to be "allowable" in the sense

I’
of section 9. In addition, we define an admissible sequence, I, to
have the properties

1) 1= (il’jl""’ik’jk)’ 1 allowable and

(2) for every m, 1 <m <k,

j_=1i + 1 for some x, 1 <x=<m-1l.
m WX

or

ip = dq-

Define the height of I, h(I), to be ige By convention, let

Ity = (hydhse oy, 34y)
if ik,+ y<p- 1.
Lemma 10.1, Every allowable monomial in H®F is, up to sign, a product
of admissible momomials.

Clearly the "factorization'" of Lemma 10.1 is not unique; we can

*
certainly write the monomial aila21, for instance, in two ways as

products of admissibles. The following definition strengthens the notion-

of an admissible monomial to the point where we can compute. Let

* %
ai ,...,aI be admissible monomials sach that

1 T
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* * %
(¢H)] Gp ee. Qg = ng for 1 allowable,
’ 1 T

(2) Lsh(Il)<h(IZ) <eew < h(Ir)ﬁp—l, and
*
(3) aI cannot be written as a product of fewer admissible
monomials.

% *
Then we say that Uy oo aI is a maximal admissible decomposition
- 1 T

« .
for o The following lemma is obvious:

Lemma 10.2. Every allowable monomial has, up to sign, a unique maximal

admissible decomposition.

The key to our proof of‘the vanishing theorem is that the notion
of a maximal admissible decomposition enables us to partition the set
of allowable monomials into very nice equivalence classes, which, when
Yenlarged" to Zp—modules are stable under 0 of Corollary 7.4. This
stability condition gives a simple method of calculating the kernel of
(G—l)* where (U—l)* is the "even dimensional" differential for the
minimal resolution of WP. So the next stage: is to define the appropriate

equivalence relation:

* #
Let Jl and J2 be allowable. We say o , v o if
. 1 2
J J
*
1)y o r has a maximal admissible decomposition
J
* *
o eee O

.r T I . T
= (11,31,---,1 3o ), 1<t <k

) 1
By "By

r
t
.1

3 i = ii for all % and 1<X<n,.

4 hap = h(Ii) for all %.

The following lemma is obvious.
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Lemma 10.3. 'W" is an equivalence relation.

*
Let %ij, Osm<p, be the Zp—module spanned by ‘those oy such

*
that o5 is equivalent (in the sense of ~) to some non-trivial

m, *
summand of o (aI).

Proposition 10.4. Write 8; =8 0., Then for F(Rp+l,p)

o (I)

(1) o"(s) € 8m, and

(2 s, NS _ = (0) if 2(I)<p-1 and I<mcp-l.

Lo
Proof.

*
(1): We may write o

1 uniquely, up to sign, as a maximal

3 3 *
decomposition «

1 see (4

1 N

. By Corollary 7.4,

* *
G“ij = ai+1,j+l if i< p-1
and
+1 *
Gap—l,j = (-1 1 %51 and so it is enough to check
that o(5,) S S . wh * i issi *
at o(8;) & 8 ; where @1, occurs in some admissible aIz.
But then
% +u* * 4
O = T cee O ess o an
I I, IZ I
% +u* % * *. *
O = e o s oo .
=5 +
I Il+l I£_1+l I£+1 1 Ik+l I,
Furthermore,
% * %
T R R e

and so
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ok ntl
ooy = -1 o, +l,jl+lf'. aiq+l,jq+l %1

%

‘where x = jl or i£+l, by the definition of an admissible monomial.

Applying the formula

x & % I % % D<o
S L PR R A
(see Lemma 7.7), we have
o * %+ * a* a* o* —
a_ = o e
+a, . % . % 41, x
I ]l,l ll+l’ 1 12+l, 9 1q 1, q

for X, = 1, j.+1 or ir+2 for r < q. Fix some monomial appearing

1
* *
as a summand of culg’ say an 5 JZ = (31,1, i +1, Xl,..., 1q+l,xq).
L .
Note that all such summands of caI are equivalent, under ", so
L

it does not matter which we choose. Then by the definition of a maximal

admissible decomposition,

* E3 *

o ree O

ot
JR Il +1 Ik+l

is a maximal admissible decomposition for any allowable monomial summand

£ oo for J. v J =
o caI or 1 I Hence o0 SI = Sgq--

*
(2): We check the case when aI is a product of one admissible
*
monomial. The case that aI has a maximal admissible decomposition
\
with more than one admissible monomial occurring is essentially the

same.

*
It is enough to check that o

¢ is not a summand of Sgnq for

l<m<p-1 and I = (il,l,iz,jz,...,ik,jk), 2(I)<p-1l, since, for some t,

we have
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Rearranging, we find

i = i -i for 1ZA<r
where lk—r 1‘k—-r—h\ A ’

[ - .t .t P . Lt . o e
1 (11’ 1, 12: 32"."11(’ Jk)' l'k—r =P lr-l-l’ and

. i = i -1, <y<k-r-1.
The idea of the following proof is that if & (I)<p~l, then the e 1Y+P Lol Y for Isy<k-r-1

string of indecomposables, ars has too many "“gaps" to appear as a

summand of Squ for I<m<p-1.

Summing, we have

k k
’ k() = (Szl i1 ~( 21 1)+ ()P ;

*
Let a; be admissible, £(I)<p=1, I = (i;,1,i,,35.+-,4;,3,) and 8=

% .
suppose that for some m, 1<m<p-l, we have that a_ is, in fact, a sum- ; ; = (lem : : 14 < e
I ? ? Hence (kt+1) (1k~r) = (k-r)p. Since k+l’lk-—r # 0, and Kkp l’lk—r < p~1,

mand of Sympe By induction, the only time a "1" can occur in the
we must have k+l=p. But then 2(I) = k = p-1. This is a contradiction

T

0<r<k~1; also, if m = p—ik_r, then I must have the form

jl—coordinate of a summand for Scm is when m = p-ik_ for . *
T because we assumed that & (I)<p~-l. Hence (XI cannot lie in Squ

for 1<m<p~l and the proposition is proved.

ot ot [ | ' . vt
(11’1’12’32’ shpad ot dpny ’lk’Jk) Remark: By Proposition 10.4,

- = & —
where SI+SGI+' - +8.p lI SI SO’I & ... 8 8.P ll’ as a
1
i. = i - - . WA, 1 . s " : . .
Lo 4 s for 1<A<r, Zp module, Since "' is an equivalence relation on maximal admissible
i = p-i d decompositions, we may decompose Hkn(F(]R ntl );Z ) into
1l P> 2an . p s y P »P)s P ‘
1 . . Vv, ... V_ as Z -module for 1<k<p-2 such that o(V.,) €V,
e = 1Y+p-1_k_r for 1<y<k-r-l. 1 P P i i+l
. . o .
if di<p and G(VP) [ Vi
Since
: Recall that the minimal resolution of 2 considered as a
I=(i,1,i,,j i,3,) . :
12+ 2,32:---:lk,3k s . o .
trivial er_module, where “P is generated by 0, has the form
we have o-1 N g1

e Z I > 7w g0k s Esg +0, N = Lo, . 40P L,
P P P P P P

i, = lk—-ri-}\—ik.—r for 1<A<r,
n+l

Let M denote Hg'n(F(]R ,p);Zp), 1< & < p-2. Then for the

Tryp T PR and .
cochain complex

by = Lyfoi for Ilzyder-l.

1% % g%
< Hom_ (Z_7_,M) PLCES i @ _w_,M) 2 pom (27 .M P (-t M
'"p PP FP PP ﬂp P'p
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we use the decomposition of the previous paragraph to show that
Ker(d—-l)* = ImN*, Since

Hom_ (ZP'ATP,M) = Ker(cf-l)* # Im(o-1)* = Ker N* @ ImN#*
P

as Zp—-modules, we have that Ker(o-1)* = ImN* dimplies Ker N* = Im(o-1)%
by the obvious vector space dimension considerations. This information
clearly implies Theorem 8.2.

To show Ker(o-1)* = ImN*, we appeal to the following lemma:

Lemma 10.5. Let V be a finite dimensional vector space over a field.
Suppose 0: V -+ V is a linear transformation such that
@ o =1,

2 v= Vle e & Vp’ and
3) cr(vi)c;-vi+ if i<p, and c(vp)g v

1 1

Then if ov =v for v & V, we have v = (Ito+ ... -l'cp—l)\ﬂ for

some v' e V.

Proof: Let v =1 X v, for vievi. If ov = v, then

i'i

= Mg

v = (Lot ... +oP7h ey

201

11. Steenrod operations and product Structure

‘ +
We show that there exists an element © € Hn(B(Rn l,p) ;Zp) for

‘ ' - +1 s
n + 1 even such that o 7restricts to o € HH(F(If1 D) 3Z P) specified

in Theorem 8.5, and-such that

% otl o - *
H'(BR™ 7,p) ’Zp) An+l1TImf

as a connected Zp-—algebra, where : .

Efe] if n + 1 is even

o+l

Zp if n+ 1 is odd;

Moreover, the Steenrod operations are trivial on .

Secondly, we show that there exists an element

Pl
re 2020 @™, Z,(2qt1) for n+ 1 odd

-1
- o= +
such that A restricts to the element X € Hn( )(F(]Rn l,P) ﬂp)

specified in Theorem 8.5 and such that

% o+l _ *
H(FR sP),Zp) = MnH.@ Imf

*
as a H (Zp; Zp)-—module, where

0 if n+ 1 is even
M ™
Zp‘}\ if n + 1 is odd.
+
Define a map St Rm-:L > RY 1 by
S (xl""’xn-!-l) = (xl, = Xy X3""’Xn+l)' Since B(~,p) is a functer

defined on the category of toplogical spaces with morphisms 1-1 continuous
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o+l o+l

maps, we have the obvious induced morphisms B(S,p): AB(RP+1,p) + B(R ,p). efficiently, we need one fact about F( »P)-

o+l

For convenience, we denote B(S,p) by S. Let 7, denote the group of Define -Y= g% » TR ,p) by y<E> = <0,&, 28,...,(p-1)E>.

S

order 2 generated by S. There is an evident ﬂs~action induced on cleariy v is ns—equivariant where the ﬂs_action on S% is induced from
- .
B(R ,p). Note that this action is certainly neither free nor trivial. that on Rg+1‘ Let | denote the fundamental class of g0,

However, we can calculate the action of Ty - on H*(B(Rw,p);zp).

Lemma 11.4. The dual of the class Y*(L) is the class

af e HY (F(RP+1,p);ZP) for n+ 1 even.

Proposition 11.1. For p odd, WS acts trivially on H*(B(Rm,p);zp).
ij

p-1>1i>j>1

n+2 o - o+l
Proof: Let np act on F(R  “,p) by t Proof: Define s g8 F(R?*l-o,p—l) and 7 PR -0 by

O*<x

120Xy T KXy g7 J<E> = <E,28,..., (@-1)E>

p~1

: .and
Obviously S commutes with the ﬂp—action. Now we consider the inclusion ’ -

’ Y<g>= E.
of R'in RF2 given by x -+ (0,0,x). Give F(R®;p) a trivial mg-action.

n+2

. i diagram commutes on the nose:
FR ,p) FR “,p) The following g
I

Then the induced inclusion

is 7 —equivariant. By our

T S
P P P 1 Y nt+l
e S O 23 )
previous calculations, Tg must act trivially on H*(Fg%—lzlgzp). Since the 8 ¢ P
p -
© © ‘Y
u
evident map F(Rw,p) hd F(Rz,p) is HS -equivariant, the result follows. -
‘ P P J F(®1-0,p-1)
We use the above information to calculate the product structure ) ’
and Steenrod operations in H*(B(Rp+l,p);zp). To do these calculations ﬂp—l
RP+1—0

But clearly (wp_l)*[y*—(all)*] = 0. Since 7Y, = Y, (recall that
F(]Rn*l—o,p-l) fgiF(ﬂln,p) is a homotopy equivalence), we have that

Yx(Q = a;;tx where x is a linear combination of primitives in
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which (!11 does not occur. If T is a transposition, then

Proof of Theorem 11.6: By Theorems 8.7 and 8.8, there is a class

o+l

0¥ is clearly homotopic to Y if n + 1 is even. Consequently a' € }in(B(Rn+l,p); Zp) which restricts to ¢ & H¥(F(R sP) 3 zzp).

Zp fizes o, ({). But since Zp just permutes the primitives uij’ Since the maps 7Y (of Lemma 11.4) and F(Rn+l,p) > B(Rn+l,p) are
it follows directly that Y. () = X a,. and thus that T_~equivariant, and S| = - for { the fundamental class of s%,
p-zizi>1 M 5
T v
x * B
* E . = it
@aM™= 1 o, in the dual basis. ‘we have Sa' = -a'+vy for vpe Imf. let o=oal-—. By

p~i>i>1 X
- [ Proposition 11.1, § fixes wv,. Hence S0 = -a.

* B

Recall that p-*l?_;.:?_jil aij

is denoted by .
To check uniqueness, we suppose that there exists another class

o+l

n o+l . el .
Theorem 11.6. For p odd, and n + 1 even, there exists a class a; e E@®R 7,p); Zp) such that o, restricts toa el (F(R™ 7,p); Zp)

: = - g = * .
and Sal—- - Then ay=0 = v for Ve € Imf®. By applying S to

both sides of this equation, we see that Ve = a.

o+l

e e BU@B@R™,p); z)

uniquely specified by the following two conditions: .
) Proof of Theorem 11.7: Define o by Theorem 11.6. We first prove

(1) o restricts to o€ Hn(F( ]Rn+l,p); Z ), and .
P the indicated product structure. By the form of E_  required by

(2) So = -o.
Theorems 8.7 and 8.9, it is clearly enough to show a-vB = ( for
The proof of Theorem 11.6 is held in abeyance until after the % »
va e Imf*,
statement of Theorem 11.7. 3 . . * o+l
Since vy Testricts to zero in HER “,p) ;Zp), we have
Theorem 11.7. For p an odd prime, asvy = V. for Vg B Inf”. We apply S to both sides of this
equation, and conclude that =V = Vg hence Ve = 0.

* n+l %
H BR 32 )= A v Im f
(B( ) P) ntl To show that the Steenrod operations are trivial on ¢, we

note that P a = v

. % .
as an algebra where B for vy E Imf”. We apply S8 to both sides of
E[a] if n+ 1 is even this equation and again conclude that vg = 0.
A = . To calculate the module structure of

i+l

Z_p if n+ 1 is odd . « el
H @GR ~,p); Zp(2q+l))
o is the class specified in Theorem 11.6, and the Steenrod operdtions

over H (£_; 2 ) for n + 1 odd, we note that by degree considerations,
are trivial on «. P P
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* : * * :
H (B(Rp+l,p);zp(2q+l)) = Zp'l @ Inf as an H (ZP;Z p)—module

-1

if mn # (2t+l) (p~1), where m = 5

and A is the class, necessarily unique, which restricts to A of

Theorem 8.5. ‘If nm = (2t+1) (p~1), we exploit the map

* . 4
1*: B (Bomy, (C,F3z_()) > B (Hom _ (C,F32.)), F = B(R™,p),
> P m P

which is a monomorphism by previous remarks. In this case let

At e Hnm(B(an+l,p); zp(2q+l)) be an element which restricts to x.
If Bu-i*(A') # 0, then clearly Bui¥*@") = Bu'uB for some up
in the image of

* o<
B 8Pz ) > B (om (C,F3z))).
'ITP P Tfp P

Obviously, we may choose a class

re EP@@™ ;2 @),

such that i A = i*l'~uB. Clearly (1) X restricts to A, and

(2) Bu-i*(A\) = 0. We claim that these two conditions uniquely deter-—
mine A. For suppose that Xl restricts to A and Bu‘i*(kl) = 03
then x-xl"= u, € Imf* and Bu'i*(k—xl) = 0. However, if ue 4+ 0,
then since the degree of Bu-i*(uc) is 2 + mm < n(p-1), Bu'i*(ui) # 0.
Consequently, u, = 0 and the uniqueness property is proved.
Furthermore, u must annihilate i%A for if usi¥a = up # 0, then,

again by degree considerations, we have Bu‘uD # 0. This is a contra—

*
diction and so uy = 0. since i 1is a monomorphism and the restriction
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@ 3Ty BE 32 )t H(r 3Z)
i (7 _; : 5 T3

P’ p p’p PP

is a map of rings, we have that all elements of positive degree in

*
H (Zp;zp) annihilate A. In summary, we have

Theorem 11.8. For q and n + 1 odd, there exists an element

ntl

re ERBERY,p); zZ,(2))

uniquely specified by the following two conditions:

(1) A restricts to re Hnm(F(]Rn+l,p); Zp) and

(2) Buwi () = 0.

*
Furthermore, H (B(Rp+l,p); Zp(q)) = Mn+l C) Imf% as an

*
H (¢_;Z )-module, where
PP
0 if n+ 1 is even

o+l
ZP'A if n + 1 is odd.

We close this section with a proof of the product structure described
in Theorem 5.4.

By abuse of notation, we let o denote i*(ﬁp;z Y(o) and A denote

n+1
5(r 35 ) (). To show that arInft = XInft = 0 in H”(F(mTr 3] i),
) p

it suffices to show that o°*u = o*Bu =0 for n + 1 even and

Aru=ABu=0 for n+ 1 odd, where u is the one dimensional class
. )

in the image of H (Bnp; Zz p). Since u and Bu go to zero under

n+l
* &
the map B (LE_sP) sZ) ~ u (F(IRn+l,p);ZZp) and o is an odd

ontl

dimensional class, it follows immediately that asu = k(Bu)J for j = 5
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*
and some k. Since B¢ = 0, we have Bi (ﬂp;Ep)(a) = 0. This information ~

together with the equation Q*u = k(Bu)j implies that a<*Bu = 0. To show

P -
that k = 0, we first observe that i (HP;EP)(V) = u(Bu)F 2. Hence

0= 1%(n 32 ) (@) = arur(BP 2, and
PP
0 = k(BuyItP~2
If n > 2, then E%l-+ p~-2=j+p-~-2 f_n(E%%- and consequently
. o+l
(Su):r*-p"2 is non-zero in H*(Eggg——iElﬁ Zp) and k = 0. The case n = 1

is easily disposed of by use of the map S; the details are left to the

reader.

Since A e HB@,p) Z (2qt)), n +1 odd, p>2, and the

Steenrod operations are trivial in H*FGRn+1,p) [Prop. 7.8] it follows

that u*A = ru(Bu)K and BA = tu(Bu)z, £ > 0. But

2

0 =B

It
1t

B(tu(Bu)) = t(Bu)£+l. Hence t 0 and BA = 0. The conclusion

that ¢

L]

0 is in Theorem 11.8. Thus u * A = 0, and Bu * A =0 fellows.
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12. Auxiliary calculations

We present some auxiliary calculations to the previous 7 sections.
These calculations provide a natural setting in which to proceed to the

derivation of many of the formulas of section 1. Our main geometric

“lemma [12.1] allows us to calculate the map

Yo B ORY L G)e...eB% () 8 nﬂ(j)_,

=dpF e+,

on primitives. Dualization of this information yields a proof of Lemma
12.4 which we translate into conceptually useful results in terms of
Browder operations and Pontrjagin products [Theorem 12.3]. The final

result of this section is the calcuation of H, }%+l(p+l) and the map

T
P
Y, H*(}:nﬂ(z)x Toaa® * L ) +H*En+l(p+1) . This information
m ki
P P

allows us to determine the formulas for An(BEQSx,y) and xn(cnx,y) in
the next section.
To begin, we let ar s denote the element in Hnﬁ n+l(£) given by

E

o : £
the map S° ~-'-'--'1—'-‘§—"‘F(IR n+l,£)——4§—+;i+l(£), (ﬁz is the equivariant
embedding of F(]Rnfl,ﬂ) in ;fn+l¢£) defined in [G34.8].) We now define

a map

bt T () ~Bag % B oyg () xeee xE (@), dstck

by fixing points R e§:n+l(k), ey € ;: n+l(im)’ m # t and setting
m
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¢t(x) = (ck,cl,..},cit_l,x, cit+ ,...,ck). We define

TR ORI Ol S I I R S CY

. b .
similarly. Denote ¢t*(ar,s) by ar,s,it and ¢*(ar,s) y ur,s,k
t-1 :
. - = i, h b
Lemma 12.1. (1) Y*<ar,s,ig st where x jzl 1J (where, by
convention, we set x =0 if t = 1.) -
3‘1:+1_l s
@ e Q2= ] L %y iisg 4a, i4 ki dm
1 T 1 s-1
2=0 m=1

Proof: (1): Consider the composite

£
[+ i 1] .
n ,8 otl L . t . x
s RS, 3 G () &%‘l(k)x £ pr () % e

g.
“C @) DL an @ ™)
nt+l

where gj is the equivariant retraction of ¢.n+l(j) onto F(R »1)

[G;4.8]. A picture of the composite is instructive:

\R“

¥

. Figure 5.

-
o
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By definition of the class a_ & HxF(E'L,§), we visibly have the

3

formula

(gjoyo ¢, 0 fitoa r,s)*(k) = % i, stx

where x = il+"'+it—1 and ( is a fixed fundamental class of s™.
Since gj is an equivariant homotopy equivalence, (1) is verified.

(2): As above, we consider the composite -

[+ 3
gt X8, (g

£
LT ___ls.,;nﬂ(k) E-»,}Znﬂ(k) x;ni‘l(il) X ...

8.
L @) 5L @) r@™ ).

We again appeal to a picture:

0o

Figure 6.

Visibly, (gjoyo¢o £ ao )*(L) = FO + ... + F, where

k™ T,s lr+l_l
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i 'ﬁhe admissible monomial u;, then (xI = ZUJOLJ for some collection of
] s .
1 o=l o e : V=0, 1,1, - 5
V. m=0 ll+“'+lr+v’ ll"’""*‘ls_l‘*‘m ’ ’ P il elements g€ Image %, 1 =1, 2, and qe Zk.

We are done. We prove 12.4 by use of Lemma 12,1 and a sequence of algebraic

i . ’ lemmas, after which we prove 12.3. We must first recover information
i Remark 12.2. The homology of {\; n+l(i’t)’ 1< t< k, embeds very nicely :
‘concerning the action of Zk on the dual basis elements «_ dual to

. - . ; . I
in H*?:n_*_l(;j) via translatlo-us of the classes ur,s € H*tn+l(lt)'

*
the admissible monomials aI. Given an admissible sequence

i ‘ By Lemma 12.1, the classes in v, H (k) represent an algebraic *
y B * *;n+l P 8 1= (il,jl,...,im,jm), we may read off the action on the classes L

"amalgamation" of the pieces H*g: (it) which corresponds to the

o+l

by Lemma 7.5 and the product structure specified in Lemma 7.7. Dualization

geometric amalgamation given by Y. It is because of this amalgamation

R -1 % . .
via the Kronecker pairing <to ™ = <a_,T X > yields the desired result.

I? I

that the Browder operations behave so well.
Lemma 12.5. Let T denote the transposition Ti .

: £
Theorem 12.3. Letn e Hsn\;n-l-l(k)' Then ekk(r@xl ...@xk) is an .

.
o

n . . . N . N - .
operation in k variables which is natural with respect to maps of -1 Gy where J = (11:313"fs1[__1’31’15’][_1:i,e_+1’T3£+l’""lm’ij)

S: 41" SPaces and is given by a sum of classes, each of which is given by

. if 3, # 3p gaip g HL =i, and jp < i,

s Browder operations and k-s~1 Pontrjagin products in some order on

(-1) o+, ) Where K = (Lo yesesip c5dp_qsipsdp_sip,qsTi eyl sTl)
the variables EERRRTE In particular, for each vV € H(k—l)nzznﬂ_(k)’ L 1’ i 2 RET 2 R AL 2O R 25 RS £ 5 m® T Tm

rux = and L = (il""’lﬂ—l’j'!i—l’lﬁ’lﬂ’l£+l’T]£+l’""1m"TJm)
.- = e i i = 5 =
ek* (\) ®X1® Xk) X c\),U adn (XC' (l)) adn (XU (k"’l)) (XU (k)) if lz_l+l iﬂ, and Jlﬁ"l jz,
where <, P are constants and O runs over some fixed subset of Zk. (-1) oy where M = (11, cenaip 1adp qaipaipsips 3 Legrreoip 'cjm)

(Compare Theorem 12.3 to Lemma 4.3.) (F i, = 4 . +1<1i
if 1, = Jp and ip 4 < ips

Theorem 12.3 will follow directly from the following lemma.
o where N = (il, oo ’i,e—l’j,&—l’il;—l’j,e,’i£+l’1j£+l’ “ew ’im’ij)

Lemma 12.4: Let Yl and Y2 denote the following structure maps
L otherwise
of operads:
1 k-1
v € @x L GDxE @) =L ), and Lemma 12.6. Let B = 21 o where I = (1,1,2,3yse005k"2,5, 1 sk-1,%)
: x= X ’

I 2
¥ B @F L G2x £ @) — L, (0.

1f ap € Hsngn_*_l(k), 1 <s < k-1, is the dual basis element to
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for fixed ji’ 2 <4i<k=-2. Fix integers r and i such that

1<k~-r=<i-1. Let )‘=Tk—r°Tk—r-i-lo"'°Tk-—l and
ar k-r-1 o .
A'i = Tk_r 0 ... 0 Ti_l. Then AB = (~1) le Jx where

I, = (L1,2,5,, 0o nker=2,5) o 0%,x-T,0y  akertl N Gy s k=1, 3 Gy o))

The proof of 12.6 is immediate from 12.5 and induction on r.

Proof of 12.4: We break up our proof into two cases. First suppose that
1 2
< - = =
s <k - 1. By 12.1, Y*(eo@ij&o) o Y*(e()@uij ®eo) o0 and
2
e ®e,Da = 0 . By the obvious double dualization argument
Tx(eg®eg®er ) =0y 1 1+ BY “ gument,
1 . N . . s . .
@ € Im Y, provided "I = (11,31,...,;8,35) for i < k - 1. Again by

double dualization, it follows that Yi(e()@a:[@a for

1) = %

J = (I,k-1,k~1). Let VI r denote the Zp—subspace spanned by elements
)

K = (I,k-1,7), K admissible. By Lemma 12.5, n(V yev for

T,k~1 1,j

n = Tj 0 et 0Ty 4. Since n is an isomorphism of vector spaces, the

lemma is proved provided 1 < s < k - 1.

(!K,

We proceed to the case s = k - 1. By double dualization arguments,

we see that Yz(cx ¢ ®a..) = ta_  for appropriate I where J has the
11T 1L

J
form (1,1,2 sdgsees ,k-2 ’jk-Z ,k-1,k-1). The result follows from previous

remarks.
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Proof of 12.3: We recall that the diagram below commutes [G]:

tn+l(2) * Cn+1(k_j) an+l(j) * Xk x ¢n+1(k) x Xk\
2/

X

R S D N O

By the definition of the operations )\n’ Lemma 12.4, and the obvious

induction, Theorem 12.3 is demonstrated.

‘ ®(, . % —acti
~We now calculate H (Cn+l(p+l) ) ZP ] . Give cn+l(ﬁl) the P action

T >
P

defined by the inclusion ):P = ZP x {1} < & and the evident action of

ptl

[

zp+l on gn+l(p+l) Let o© T, 0 0T By Proposition 7

p-1’
®i41,+1 if i<prl
(—,1)“’“103,l if i=p-1
#H oa,, =
H apj+l if j<i=p
E]
ap,l if j =41 =p.

By dualizing, we observe that th+l(p) =A®B as a Zp'trp-module where

'np is generated by o, A has an additive basis given by

*
{o] | 3 admissible, J = (GO PPPPIE MPS MO IS M p}
and B has an additive basis given by

.
fo; | I admissible, I = (i,33,---»%y 305 i =2k
3



306

It is trivial to see that the cyclic group TTP generated by o
* ki
acts freely on B. Hence H (FP;B) =B P, the classes in B fixed under
*
the action of 7rp. H (wp;A) has been calculated in section 8. Using

¥ ]Rn+l
the spectral sequence for a covering, the fact that __(.__.._LEL“ is a
P
p(ntl)~manifold, and the requisite periodicity of the differentials in

the spectral sequence (see section 8 for details), we -trivially have

Lemma 12.7. If n> 1, .

* *

H (s 1q (PHD) ;Zp) = Imf 7 C, additively,

P .
P

where Imf* is a subalgebra over the Steenrod algebra and is given by the

* * *
image of the classifyingmap £ : H (B'np; Zp) - H (/C; +l(p+l) ,zp) specified
3

Tl'
. P
in section 5, Kerf* is the ideal of H*(Bﬂp;zzp) which consists of all
elements of degree greater than n(p~1), and C 1is a subalgebra of classes
N .
in H ;n+l,(p) fixed under np. Furthermore, an additive basis may be
chosen which extends the standard basis for Imf#* and is such that Bx = 0

for x a basis element which is not in Imf#.

As in section 5, we are deliberately incomplete in our description of

Note that the second statement of Lemma 12.7 follows directly from the
action of the Bockstein on H*(BTFP; ZP) and the fact that the Steenrod
operations are trivial in H* €n+1(p+l) [Prop. 7.8]. We remark that with
some added work, the precise algebra extension over the Steenrod algebra

can be calculated, but this extra information is irrelevant to our work.

A s

Lemma 12.8. (1) vY.(¢
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By the equivariance conditions [G;l.'l] satisfied by Y, we see that

Yy induces a map of quotient spaces

Vil @ % £ @ x Can® +F gy @

L m
P P

We obtain information about Yy here.
11 ® e.i® eo) =0 if i< n(p~1), and i = k(p-1) -£,
e = 0,l. (2) Y*(uu@ (1) ® eo) is in the image of the mzp

anc n+l(P+l) - an; ntl @+ .

L
p

Proof. We break up the proof of (1) into three cases. If n = 1,-it is
enough to show that Y*(all ® ei® eo) vhen i =0 or, if p > 2, when

i=p~-2, If x¢€ Hp~l(C2(p+l) . Zp), p>2, then Bx =0 by Lemma
. '—'Tr"_'_" 3
P
*

12.7. Since B(all ® ep__2 ® eo) #0 for p odd where (all ® ep_z De)

0
: . p~1
is the class in H (¢2(2) .&Fz(p) ) dual to g ® ep_2®e0, we have
= )
P
Y*(ull ® ep_2 ® eo) = 0. Let i = 0; we calculate Y*(all ® e, ® eo) by

the commutative diagzam

Fon® * Lon® < 0 —— &, o)

\g o+l @ x; ntl ® ; o+l (l>—x—-+, ;: ntl (etl)
T . i
P P



308

1
® = = =
Y*(all e ® eo) Y*ﬂ*(all Q e o] eo) “*Y*(all ® ey ® eo) “*(ap,l

by Lemma 12.1. Recall [table (#) or Lemma 7.6] that

o .
e = pyitl
' Psd o if i = p.

Pyl

if i<p

It follows easily that ﬂ*ap i = ﬂ*up,l’ i > 1 [This fact is checked by '

recalling the E(Z) «—term of the spectral sequence for a covering and the
b

definition of HO(WP;M).] Consequently Y*(all ] e ® e.o) = Q.
If n > 2, suppose that Y*(x) = c(all® ei® eO)* + other terms for

* .
x € H Cn+l(p+l). By Lemma 12.7 and the algebra structure of Theorem 5.4,

T
P

% *
there exist € = 0,1 and s > 0 such that (el)s . (B(el))s cx =0,

% g * .8 : N x B . .
(el) (B(el)) (ull x e % eo) # 0, and n(p-1l) <e+ 2s +n+ i < ap for
i < n(p~-1l). It follows that c¢ = 0, and consequently Y*(all®ei® eO) =0

for 1 < n(p-1).
: = i i ® = { =
If n =2, it is easy to see that Y*(al]_@ e, eo) 0 when i = 0,
p - 2 or 2p~3 by similar arguments to those used in case n = 1. If
i= p - 1, we use arguments similar to those used in cases n > 2.
(2): By lemma 12.7, the only classes in anC n_*_:L(p—i-]) are in the image

T
P

of the map an ;:n_*_l(lﬂl) - an n+l(p+l) .
. T

P

ot

309

Remafrks 12.9. Observe that we may use EP instead of’ Trp in our arguments
(with troublesome modifications necessary in the case of twisted coefficients).
By degree considerations, it is immediate that Y*(all ® e ®e0) =0 if

n+ i $ O(n) or (p-l-€), € = 0,1. Hence our calculations are at least

pl_ausible.
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13. Teometry of Browder operations

2
interchanges j and k. PFurther suppose that h: Jn+lZP’*;f;+l(p) is
o+l

Let g: I, ZP be a non-trivial homomorphism such that g(generator)

Zp—equivariant where J ~G denotes Milnor's (n+l)-st join of the group

. JIH' h
. ot g nt s i
G. Transparently the composite J 122 —F J lZp -"-‘~*;;n+l(p).'———*;:n+l(2)

isﬂfmdmﬁmtw&e M%““¢;=<%,>.Itmtﬁﬁﬂtoww,
by use of the spectral sequence for a covering, that if X and Y are
Zp—hbmology spheres equipped with free wp—actions and £: X+ Y is

_ . . n . n+l, ’
“p equivariant, then £ ¥ 0. Since J 22 and \g;n+l(2) are homology
spheres (see section 5), w, o0 g, o £, is non-zero. Consequently h
cannot be equivariantly extended to a map from Jn+22 into ;: .

) o+l

This observation indicates that the operations described in Theorems
1.1 and 1.3 cannot be defined in the entire range by the method of
Dyer and Lashof (for odd primes). In fact, since the following diagram

commutes, (where oy is defined in [G} 2.3])

T (p) x X% x %272

nt+l 8
\

030...oop x 1 X
) .
R @ xx ’
nt+l

we observe that it is precisely the presence of Browder operations which
prevents all of the BEQS and BEEH to be defined by use of the join.
We investigate further the properties of Browder operations using

methods naturally suggested by the structure map of the little cubes operad.

o
E
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'If we yish to calculate a particular formula, we need only substitute ap-
propriate numbers in the composite map Gk* O(eil*cgi.-g}eiyf) o 1®t R 1)

for the diagram'

T . 3 yx1
/L:+l(k)x c;n'l-l ()x...x Eﬁl(lk)xx
1x£x1
)
1 ik lxei XeeaX B, k
. 1 , - b , k
Ewl(k)xfz’;ﬂ(ll)xx x...X;n_i_l(lk) X > (24 (OXE

DIAGRAM 13.1

We use commutativity of this diagram [Gj; 1.4] and our homological
calculations [§5-12] to achieve the desired results. It should be observed
that the structure map, Y, of the little cubes operad carries all the
information, quite elegantly and beautifully, sufficient for a complete
theory of homology operations on ;;n+l—spaces. Observe first of‘all,
that the properties in Theorem 1.2(1)-(6) except the internal Cartan
formula have already been demonstrated in [A} §6]. (Recall that 1.2(6)
is commutation with homology suspension).

We already know the map Y, on the primitives {12.1]. We use this
information to precisely identify, in terms of Browder operations and
Pontrjagin products, the operations determined by the classes o« and
A din the cohomology of braid spaces. The method of proof here is re-

presentative of the spirit of our proofs throughout this sectiom. Let
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o, and X* denote the basis elements which are dual to the basis elements .

o and A specified in Theorems 5.2 and 5.3.

Corollary 13.2.

@ 8*(a*®xp) = —Xn(x,x) * xp—2 if degree (x) is even and n is odd.
1 i

#

@ 08,0, ®x")

Remark 13.3. Visibly, the operations in Corollary 13.2 (1) and (2) are
non-trivial; up to constant multiples, these are the only operations in

one variable other than the BEQS and Begn which can occur in the

~th filtration of H_C  .X[see section 4]. It is amusing to observe that

* ekl

the somewhat artificial looking classes a and A are, for the above
reasons, precisely the classes in the cohomology of braid spaces which
cannot be in the 1mage of H (B)Zp' Z_(q)).

Corollary 13.2 will follow directly from the following corollary of

the geometric calculations in 12.1.
Corollary 13.4.
(1) Comsider v,: Hb (2 ®HL . G1 L 1 — BE, .

Y*(e0 %ull@) eo) = ull where eo is the evident zero dimensional class.

(2) Consider Yyl Hi;cn-i-l(k) & H*\gn—i-l(z)j ®H*€+l(k-2j) > H;n_‘_l(k).

Teley ® (all)3®eo) =eo;, I=(1,1,3,3,55,...25-1,2j-1) where o  is
- * .
the basis element in H;::m_l(k) dual to the admissible monomial op in

¥ k
H n+l( ).

1) 2 ()\n(x,x)) 2 *y if degree (x) is odd and n is even.

%
- : = vee R
we observe that y’{a‘]) € (eo @all (e R
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Proof of 13.4: (1) is immediate from Lemma 12.1 for statement (2), we

note that Y*‘(eo® e(S) ®ull® eg—s-l) =0 by Lemma 12.1. Dualizing,

2s~1,2s-1

* b p %
all® eo) .+ other terms, for @

ES

an admissible monomial where e = 0 if a # all 33... qu—l,Zj—l and
® % & %

g =1 if e = alla33 aZj—-l,Zj-—l'

Proof of 13.2: Recall that the class aeHn(B(}fl+l,p);ZZ ) restricts to

. 2 * . * ntl . -

p-12i>j>1 aij in H/E;H_l(p) and the class A & HY @ sP) 3 Zp(Zq*‘l))

restrlcts to Zg(a (x* ) m=2-——]; and g runs over a complete
11% 33 p-2,p-2"7 2

set of distinct coset representatives for H in Zp. [See section 8 for
details.] Consequently, the dual class «, is the image of all under

o+l .
. gimi A
the map H Il(p) + H B(R sP); similarly the dual class x 1is the

o -1 p-1
image of « ennm?:nﬂ(p) where I = (1,1,3,3,...,25+1,2541,..., 255,225,

1

By 13.4(1), and commutativity of diagram 13.1, we have that

(i) ep*(a*QxP) = ep*oy*(e ®a ®e ®xp)

6,, (180, @ep 2)(l®t B1) (e, @0, e OxF).

By the definitic;n of )‘n’ we have the formula

- +1 . -
(1) 0,,(166,,860.%) (18 £,81) () @ @ @) = el 8,5(e,®2 Go,x® x5

nlxl+l

S i WeRS L

together, (i) and (ii) yield 13.2(1). Similarly, by 13.4(2) and commutativity

of 13.1 we have that

Py _ m
(iii) ep*(}\*Qx ) = ep* Y*(e()@ all®eo®xp)

i T
010 (19 85, @0,,) 1@ £,81) (@ oy, B ey ex).
2
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By definition of An we have the formula
@iv)
8 Ei*u@e‘;@el*) (18t @iXe BoT. e @) = (1) (a] x| +1)my L (e @, (xx)Bx) .
2 2

together, (iii) and (iv) wield 13.2(2).

Proof of Theorem 1.2(7), the Jacobi identity:

Specializing diagram 13.1 to -

3 Y &L 3 '
BS (600 (Rl (DBEX)T — B (3OEX) &*\‘

189t ®1 H,X

\ YA
108,80, 2%

H*ﬁﬂ(n@a,}inﬂ(m(a*m%u*gﬂu)@a*x S LR O IRk

we observe that

(1) 0,,(180,,@9,,) 1OLE 1) (v ;Buy;Pe OxByBz) = 027 o eon,a

To take advantage of commutativity, we calculate Y*(au_@ otll@eo). By

. o3 1 =
Lemma 12.1, \%(ullg%,eo @eo) % + ety and Y*(eo ghﬁ_l & eO) e

Dualizing this information, we use the cup product structure to retrieve

the formula

. nk k & ' * * . *
(i) Ly (allaZl) = (ozllég eog eo) . (e0®all@eo) = (all®all®e0) .
Direct dualization of formula (ii) yields the desired result:

(i) (o ® @ ey) = (—1)“[(04:10;1)* + (a;‘_laZZ)*]

1 o |
.
b
.
|
%
§ :
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. % % A * %
whe.re (allGZi)* is the element dual to all“Zi' Let uI denote

% % . % % . .
(alla'ﬁl)* and 0‘3 denote (allaZZ)*' We combine formulas (i) (ii1)

and observe that
: . n
(Gv) 0l F o) ®x@y& 2] = (-1) lYIln[ln(x,y),ZJ-
We let o = TITZ € 23 and recall that the action of ¢ on the dual basis
is given by the Kronecketr pairing

<o x*>—< -1*s for o, arbitrary:
& = (IK,U X K Iy:

I I
0 it x =00
<(XI,0'“ x > =
. & % B
1 if x =oaj0),, an
P
xS 0%
- *
<a;,0 lx > =
1 if * % *
= 01%0

Combining this information with commutativity of 13.1 and the requisite

equivariance, we have
) 63*(&11. FxOPyQz) = 63*{02a1 ® q_z(x By 8 z)]
- nti=l (lYI+lz!)63*[(aI+aJ) By®z®x] and

(V1) 6,0 ®x Oy @z2) = 0,,l00, @ (xBy ®2)]

= (—1)1‘“""'“(1"1*'3")93*[(uI+aJ) ®z8x ®y].
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Combining formulas (iv)-(vi) together with the formula

< +1 +
?xn(x,y) = (~1) IXUYI -*'n(lxl ‘Yi+l)}\n(y,x), we get the Jacobi identity.
Proof of Theorem 1.2(5), The intermal Cartan formula for ln:

We specialize diagram 13.1 to

Y @1
2 * :
H*_ o+l @ H, il @) ®(H*X)4 r H$ n+l(4)®(ﬁ*x)4\\eé\)
*
- H X

18®1 /\*
b
0,480, 2%

' h1] (i
2 * 2
H*}'-;M(Z)@H;?;nﬂ(2)®(H*X)2®H,;3n+l(2)@(}:-1*;() —= 8L, 8@ED*
By Lemma 12.1, Y*(eo® all® eo) = and consequently
64*@111@ xRy uR v) = (—-:I.)nlxl H‘Aﬂ(x,y)uv. We also observe that
Y*(all® eo@ eo) =0y + @99 + gy + gy by Lemma 13.1 and

n(]x[+]y! )+

(i) 64*Y*(ull® eo@ eo® X@ Y® U® V) = (—l) An(XYsuv)'

We recall the =X 4—action on the classes %5 [Prop. 7.2] and use commutativity

of the diagram

Lo wxxt o

i

pxp‘—:L . p524

4/4’

ﬁ[ﬁl(&) x X

to calculate

It

(11) 8,4 (o), ® 2Qy®u@v) = (~1) byl ullel}* (au@ x@ u@f V)

it

(-1) lyuul"”nlxiﬂ)\n(x,u)yvs

e e
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(iid) 64%(a22\}$‘-xf&~‘y(8'u@’v) = (‘U*X”ﬂ%*(“u@ y® x®y Bv)

el el alyl v

]

@) 0,0y 8x@y @udw) = DMl @, exeyovewn

[l +]y v [+n]x|+1

= (-1) A (x,v)yu, and

() 8,40, @xByBuBv) = (—1)|“livleé*(a22®x®y®v’@ u)

ufv|+ |y [+|x|v[m]y] +1

(-1) l )\n(y,v);;u.

Combining formulas (i)-(v), we have

r Gy = DI Guye v (ol @D 6

¥ (_l)lyl (n+|vl)+|u|v|}\n(x’v)yu + (1) [=] @ +Ivl+!yl)+Iu]llen(y,V)xu.

The formula in 1.2(5) follows.
We note that the internal Cartan formula does not follow from the
external Cartan formula because the multiplication X x X -+ X is not

a morphism of ,Cn 41" SPaces.

?roof of Theorem 1.2(7), the Nishida relation for Ag’

. . . . ) 2
Since An is defined in terms of 92.;n+1(2) x X° » X, the Steenrod
operations on )\n(x,y) are completely determined by the external (dual)

Cartan formula:

n|x|+1

. L
P3Gy = (O RR (axe v = (D L oau(@er -
LA

Proof of Theorem 1.2(8), the relations kn(QSx,y) =0= xn(gnz,y):
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We specialize diagram 13.1 to
B,ICL . QRCE @B CE . (1B, oP 0 (o e (PH12, (8, 0P
P

18>t£3 1

120 20
. p¥ 1% 2
8, lc,L 5 (2B, n_*_l(p)@ﬂp(ﬂ*}()p@c*;ﬂ_l(l)®H*X] B, lC.L . (2RE,X)°]

i#

By Lemma 12.8, Y*(e()@ei& e0®xp®y) 0 if 0< i< n(p-1). By

commutativity of 13.1, we have ln(QSx,y) = ln(cnz,y) for x, vy,

z € H*X.

Remark 13.5: We note that the internal Cartan formula implies that

0= )\n(xp,y) A (Q x,y) for n > 0 and degree (x) = 2s [degree (x) = s]

as required for comsistency.
We present, finally, an algebraic proof of the commutativity of the

diagram in section 1. Recall that the Whitehead product ]

Dpim? gL

in 'ﬂ'p +qt2ntl ptotl v Sqﬂﬁ_l may be described as the generator of the
kernel of
piotl qtotl ptotl q+ntl
Torgronir & VS ) T groni1 x 8 )
where Y denotes the fundamental class of Sk' [13]. It is easy to see
that (Sphﬂ‘l v Sq+n+1) > 11*(51]‘*“[1-'-1 X Sq+n+l) is an epimorphism and
that [ oL’ Lq+n+l] is given in the obvious way by the short exact
sequence

0+ (% x858°v s 8%V st? > 6% x s 0

RS o e R e
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where T = pHq+2n+2, s = pintl and t = gintl. We can also regard

[&p+n+l’ q+n+l] as given by the kernel of

n+l(S VS)+1r +nn+l(S xst)+0

.
' pHg

ptqin

n+1 1

which is 7 @S x by, " v sH) =z. clearly

ptatntl
. 0 4if i < ptg+2oi2

7 % xs% s°v st = .
o %Z if i = ptqt2nt2

We observe that

N
n _ . = .
¢*(c*) [Lp+n+l’ \q-i'n-i-l] = cb*a‘(l) [ where Oy T X Tr*__lﬂx ] since
41 t nt+l, s t n+l t 1
4’*: 1Tp‘i-q—i~n.+l 2" (S x 8,8 (8" v sy~ Hp+q+n+l (S X8, 0
1

is an isomorphism, nH‘(S %8 ) Q (SSVSt)) ~ Z, and the

Totginil @

following diagram commutes:

3 n+l s atl, .8 t
0+Z——a—7rp+q+n (SVS)+1rP+q+nQ (8 x87) +0
n+l ontl s t
e +Z+Hp+q+n (S VS) +Hp+q+n9 (87 x87) =+ ...

To calculate ¢*a(l), it suffices to calculate the kernel of the map

. n+l otl, s t
f: Hp+q+n (S v 8 )—)'Hp*l‘q-i'nﬂ (87 x87).
Clearly o (s® v s%) = &P v 59 and
Qn+l (SS x St) = Qn+lzn+lsp x Qn+lzn+lsq, Under the inclusion of
(nt+l)~fold loop spaces i: nH’(S v S ) - n+1(SS x St), it is

@Sv sh
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clear that i*kp = Lp and i*kq = O By our calculatiouns mod p, Ker f*'

is generated by Xn(\p’ \q)’ It is easy to'see that Ker f*, rationally,

is generated by kn(kp, ). It is clear that ln(kp, \q) must generate

4
Ker f* integrally. Hence ¢*3(1) = j}n(LP,\q).

To check the correct sign, we recall that Samelson [21] has shown that
= * - 0P % =2 .
094l gl = * » -1 Y 0o

Since the Hurewicz map commutes with 0,, it must follow that
$20) = A, (o1
The diagram relating the Whitehead product and ln in section 1

follows directly, by naturality.

Remark. Our arguments for an (n+l)-fold loop space should be compared
to Samelson's [21] for a first loop space. Of course we are using

Samelson's sign convention for the Whitehead product here.

Cl O R e R e e S e e e
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.14. An algebraic lemma and a sketch of methods

Before proceeding to details, we sketch the methods used in the following

three sections. Since the diagram

IO
cnxljl \X
Frpn @ xj/

ntl,j -

equivariantly homotopy commutes [G; 1.4], all properties of operations
derived from the:cn~actiou must hold a fortiori for the evident induced
operations associated to the ;;*l—action. However, since X 1is a

;i+l—space, all terms involving An—l vanish; new operations are born

from the ;;+l—action which are not present from thelt;—action, namely,

An’ En’ and, if p > 2, En. Clearly the lion's share of our work con-
sists of analyzing the properties of these new operations.
Most of the properties of the Xp have already been determined.

The properties of £ X and ¢ X follow, up to error terms involving
n o ntg + ntq
the An’ from the stable results for Q 2 x[Qn qx] and BQ 2 X,

X € HqX. We then apply several ad hoc triCks to calculate the error

terms precisely.
To determine our formulas, it suffices, by Lemmas 3.4 and 3.5, to

check them for H*Cn+1X and H*ﬂn+12n+lx. By Theorems 3.1 and 3.2,

n+lzn+l

@ opiat B X 7 HE X is a monomorphism of allowable

ARhAh~Hopf algebras. Hence we need only verify our formulas for
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Qn+l)3n+lx .. my e
Hf . Here we show that the unstable error terms lie in a sub- Proof: We first consider the case n > 0. Let {Al*}‘l ""’Ak*)‘I 1 be
' S 1 k

module, MX, of GWBH*X if n> 0 and of WOH*X otherwise. We construct

an arbitrary finite set of linearly independent elements in MX It
a simple "external” operation which detects the elements of My '

guffices to show that An(-—, ) 1is a monomorphism when restricted to
We begin with a definition. Let MX be the Z -subspace of
P the subspace generated by these elements. Fix one of the A_ = A. Then

I

GWnE*X, n>0 or of WyH X spamned by elements of the form s

m
v
by definition of My, we may write each term Aﬂ*)“l‘e , 2 =1,...,k

A% A7 S A X, np > 0. Clearl
I as A!_ A where A£ has no factors of » op > 0. early »
- ~ n ~ 3 )
{A %A ],',..., Ak* A "1 is a set of linearly independent vectors which
where (1) )\I is a basic )\n—product for some fixed I, (2) p]m and 1
m
1 ok
(3) A has no additional factors A_. We consider the maps span the same subspace as {Al*k seens A RN 1.
. 5 o
n,
2 i . .
GWn(j*)';:. G H X ——* GWnH*(X v Sz) or Suppose )\n(Vs J =0 where V= ‘21 aiAi*}x . By the internal
q=

Cartan formula for )\n [Theo’rem 1.2], we have
R £
Wolp): WHEX — WH (X v s)

PO : Wi
i

n.a, A,*A

iiTi

1]
 ~1R

An(v’ v * An(A, Q) mcidu.l.o

£

' i=1
induced by the inclusion j: X+ XVv §, £>0. Clearly G (i)

and WO(j*) are monomorphisms. By abuse of notation, we identify terms which have no factor of the form kn()., . By definition of

i i j i it i . o= j = .ensk. But f r fixed
MX with GWn(J*) (Mx) or WO(J*) (MX). Let | denote the image of the GWHH*X, it is clear that njaj 0, j =1, B ut for ou

fundamental class of S£ via the standard inclusion choice of A = A_ , we have o= m and PIms- Hence a_ 20 mod p.

I

s
2 2 It follows easily that aj =0, j=1,...,k by a similar argument.

H,S + GW H, (X V §).

n The case n = 0 is trivial.

i Our main algebraic result is
Lemma 14.1. The homomorphism defined by

kn(nL)IMX: M, — G H, (X v sz) if n >0 or

AgCat )l'MX: M~ WoH (X v s

is a monomorphism.
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15. The formula }\n(x,gny) = adfl(y) (x) and commutation with homology .

suspension
We present an amusing proof .of the formulas G*En = En_lcf*, and

a*z;n = —Cn—lg* if n > 1. Our proof does not require construction of

chain level operations and the requisite explicit equivariant chain

. . . . ¢ =
approximation for C *fir*‘l(l))' The ingredients are that (1) *En £
modulo error terms generated by Browder operations, (2) © *Cn E _Cn—lg*

as in (1) if n > 1, (3) the errors are approximated by an application
of [G; Theorem 6.1], and (4) the formula ln(x,Eny) = ad};(y) (x) detects
the possible error terms. Of course, this method requires a derivétion
of the’formula for )xn(x,é'ny) which is logically independent of the
fact that the top operation commutes with suspension on the nose.

Recall that the adjoint of the identity.map on Qn+lx yields
¢n+1: Zn+lﬂn+lX + X and a map of fibratioms:

n+1

Q@ e (L
Qn—*—lzn—i-].gnﬂ.X ntl Qn'i-:l_X
l;’z jr‘\
e (1)
P o Zn+l Qn+lX o+l PQnX
P | }?n
n
Q% . @ ‘
ann+lQn+LX ntl an
Since Qn+l¢ +l(l)* is an epimorphism, it suffices to verify our results
n

in the left-hand fibration.

o
n-1 %

.
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Let In—-l denote the ideal of Gwn_lH*(Zﬂn+;X) generated by Browder
operations of weight greater than one and the iterations of the operations
BF;QS and BEEn_l on these Browder operations.

.1. = i >
Lemma 15.1. (1) o =& 0, (T _,) if n2 1,

(2) 0*i;n = —z;n_ld*(ln_l) if =n> 2, and
{3) 9451 =0 (Io) .
Proof: ILet jn(X) : 0"™X > QX be the standard inclusion of %% in
QX = lim 2":™X. We now recall that the following commutative diagram
n

yields a map of fibratioms:

. ot
Qn+l§:n+lﬂn+lx & (31:1(1:Q lx) ) Q Q29n+lx - QQnH'X
" A
¥ : -+
B (5 (20"x))
PQ1'1211'{-2LQn+ZLx T . p QEQn+lX
P P
n

4 . nt 4

QRprtlgntly w ety

Since the operations commute with suspeﬁsion in' the right hand fibration
[A; 8§3], we know that our formulas in 15.1 are correct modulo the kernel

ntl

of jn(EQnH‘X)*. But then our calculations of H.8 ZnHX in section 3

are correct at least as algebras and visibly In-—l = ker jn(29n+lx) %
By 15.1, O, x= £ _10x+ 4, O Lx=-C ,0x+T if n>1,

and 'cr*z;lx = &, We estimate A, T, and &; the crucial point being that
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these terms have no non-trivial summands of Dyer~Lashof operations (and

in particular, no pth powers).

Lemma 15.2. For the fibration 90 2%y - pls™lyx + @™y 4 7,

and @ are given by Z)\ ... %A, w(._)>0,
1 I, T
. 1 h] k
w. )+ ... +w@_ ) < p, A is a A —product on classes in
I I, I n-1
o1 k| k .
H,IX, and if )\Il = .. o= AI.’ then j < p.
J

Proof: By constructions 2.4 and 6.6. [G], the spaces Cn+lX’ En+l(TX,X),

and anX are filtered. We observe that the inclusion Cn+ X —r En+l(TX’X)

1
and the projection Tt En+l(TX’X) - CHZX restrict to maps of

filtered spaces. Now consider the following diagram whose lower left

hand rectangle commutes by the above observation,
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~ :‘;": 4 ol
. * ® C I o
" [ x| =] -9 +
i [~} i [y - =]
T — & o B
o =] [} [~]
X4 [>] [ [+]
:]'_‘l ! 4
g T
=} [~
X t L ©
~~ <D
p‘ ~~
\4;{ :i_jx
3L ;
HW
A
t
[
e R
I T
‘:v,a C ;:w QF‘ P
] o >
T o 3
N & %
i -l
& & G
&) =] Q
W N
v~ - .
3 E:
= - =] [~
=~
¢ & g o
el [$] = o
%) -
- +
L & *
~ i he]
& g P
[&] = o
U ‘
Q‘N Q,.
e =t
X E“/ 'E
E N‘_‘ ol = o]
-t 4 4 ©3
-t [=] -t ] =
+ &) = ©
=i [H (9 [N
,\9\‘ =21 124 =2
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The top rectangle commutes by definition of the action © ;5 the rest of

nt+l
commutat1v1ty follows from [G' 6.9 and 6.11]. By definition

£, = (1) Tv(@8,(e, ;) B0, (e, @ )] and

e

£, &) (-1) v(q)e*(en(p—-l)-—l ® xP) which, by commutativity of the

3 . . : P =
diagram is just (-1) < viq)® +l*( - n+l) (eu(p~l)—e @1‘? ), € = 0,1.

Let De e C *FPCn+1X be such that De represents the cycle

P . - . .
en(p—l)-s@x .  Because FpEn+l(TX’X)’ is conftractible [G3 7.11,

l*DE = BCE for some Ce £ C*FpE:r%-l(TX’X)' Obviously ﬂn'i-l*ca is a

cycle such that -1) v(q) en % (Cnnn) *(nn 1%
ot

U*(('Tl) v (Q) en+l* (E

Ce) represents

P
n(p-1)-e &F V-

By section 4, we see that Bn*(Cnnn)*(H*FanZX) is spanned by

5o & *
classes of the form B87°Qy, E_;n__ly, L-1Y> and )\I]_ el % AIj,

wA_ )+ ... +w@_)<p, ¥y eHIX and A is an iterated Browder
I I. * 1
1 i k
operation on classes from H*EX. -
Since G*F,I}l( and o, i;n'x are in the image of H*FPCHZX, the

lemma follows [see [A; §31].

We assume for the moment that )&n(x,ény) = adﬁ(y) (x).

Proof of Theorem 1.4. (Commutation with suspension):

Let j denote the standard 1nclu51on of IX din I(X VS ) £ fixed.

Obviously j induces a map of fibrations
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n+l n
n+l n+]_X L (1) qitipotl Xy S[‘)
In "
Y
n.n,.
PQnEnH“X PQY pols o+l (X v S )
P P
n n
non
ann-l-lx QF (1 ooy \:1+l(X v S Y.
" Let ' denote the image of the fundamental class of SL in .
H* n+l 1:).+].(X v S )

With these preliminaries, we prove Theorem 1.4 by induction om n.
1f n = 0, there is nothing to prove. Hence we begin with the case n =
Then

(1) G*Al(ﬁsglx) = AO(U*\,G*ElX)’
(ii) )\O(U*L,a*glx) = )\O(G*L,an*x) + lo(o*k,A), and
({11) o (LED) = o4adh (0 (0 = adl (0,2) (0,0 = Ag (0, LET) -

Together, (i)-(iii) yield ko(c* (»4) = 0. By the definition of MX
[see section 15] and Lemma 15.2, we have A € MX By Lemma 14.1 and
the fact that )\O(G*L,A) = 0, we have A = 0. Since )\l(L,glx) =0 by
Theorem 1.3 (the proof being in section 13),it follows from 14.1 and 15.2

x = 0.

that c*z;l

To check the assertions (1)-(3) of Theorem 1.4, we observe that

(1) oA (LEX = A (0, 0,6,

1.
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O A O E ) = A1 ORGE o) A @,00),

i) A (LE X =0,adb (@) () = adl_ 0,2 @,0) = _ O,E 0.3

(vii) 0= G*}‘H(L :Cnx) = )‘n__l(o-*\sa*gnx), and
(viii) )\u—-l(g*k’a*cnx) = }\n—-l(c*k’r)'

Together, (iv)—-(vi) and (vii)-(viii) yield ln_l(G*L,A) = Xn_l(U*L,I‘) = (.
By definition of MX’ Lemmas 14.1 and 15.2, we’have A=T=0.

Now let y be a class in H*QZX represented by the cycle b
and let a be a chain in C,PQX. whose boundary is i*(b). (i: 92X+ PQX)

Let Cl be the chain previously constructed whose boundary is the cycle

J'_*e‘_k(ep__2 @bp). It is not hard to see that our previous construction
together with the results of [A; p 171] imply that

(:l = 6*(keo ® ap—lé) b) + terms of lower filtration where

ke Zp » &g is a zero dimensional chain in C, Cz(p), and a

and b are as given above., By the hypotheses in [A; 3.4] we

have that C, represents k{pZ*i*aP—l} ®y in E? of the Serre spectral

sequence for the path fibration. Theorem 1.4(4) follows directly.
Finally, we derive the formula )\u(y,anx) = adg(x) (y) using only

the approximate information of Lemma 15.1.

Theorem 1.3(4). An(y,gux) = adi(x) ).

Proof: To take advantage of calculations in section 12, we calculate

)\u(gnx,y) and use the formula )\n(x,y) = (_l)lx]lyl+l+n(lxl+|y‘.+l))\n(y’x).
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T_he definitions of )\n and !En give that

nIEnxl +1in+ xl

A6 oY) = (1) V38,6 e 1y @)@ ).
[or 62*(62*(311@ xz) ® € ® y) if p=2]

Hence we calculate )\n (Enx,y) via the commutative diagram

1
Fan @ <Epy @ * Gy @ x 2 ﬂ*;nﬂ@ﬂ) 2 6

1 x tx1

1x8 x6 [:}
o1 2
;")nﬂ(z)~ x(:nﬂ(") x % x;tri‘l(l) * X ‘g:n-!-l(z) * X 2

By Lemma 12.8(2) we have that Y*(\ ®en(p-l) & eO) is in the image of
? ntl (P+l)
the map an n+l(p*-l) > HHP“T . By Theorem 12.3 and the fact that

the diagram

S:n+l (+1) I Xp+l \ﬁl} X

P+ /ﬁ
(C otl (1) XﬂpX

commutes, we have that eP+l* (Y,* BN Be @ ey ® < ®y) is given

n(p-1)
by p-fold iterates of the }‘n on p occurrences of x and ome occurrence

of y. Since An(x,x) =0 if F,nx. is defined, it follows that

8u1x (T @D (®e (1) @e @ By) = k'adt (=) (v)
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for some fixed constant k'. Hence ln(Y,Enx) =k adﬁ(x) (y) . for some

fixed constant k.

To calculate k, we consider the path-space fibration

+
o lX -+ 20"x + Q"X for appropriate X. Let X = Zn+13m for n+m

even and m large. Let i denote the image of the fundamental class

m o+lontl m _
of 8 din HS "I 7S . By Lemma 15.1(1), U*En\m = gn—lg*km + A.

Since the Browder operations in H*anr&lsm are all trivial when

n+m is even, it follows that U*En‘m = En__]_c* . Now let

zn+l T

X = 5" v Sm), r > 0. By naturality, we have the formila

Tud, (sBpty) = L CH Lr,gn—-lg*"m)' That k = 1 follows immediately

by induction on n and the formula lo(y,EOx) = adg(x) (y) for a first

loop space. [see Jacobson [14] for the calculations in the case n = 0.]
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"16. Additional properties of the 8%qs, En’ and T

In this section, we determine the remaining properties of Theorems

l.i and 1.3 except for the Nishida relations. Properties (1)~(3) of

Theorem 1.1 and (1) of Theorem 1.3 follow immediately from the definitions

of the operations. Additional properties are proved in the following
order: (1) deviation from linearity of En and the linearity of QS,
(2) Cartan formulas, (3) Adem relations, and (4) commutation with_
conjugation.

We require an observation due to Steenrod.

Observation 16.1. Let H,X have homogeneous basis {xi}. Then

Hy (G 4y ) © ﬂp«:*ml’) v ECE, @ @ . @D0P)  and

P i
B Cy +1(P)®T£)(H*X) ’,_"__H*pjj_}_(g)_® A ® H*Em_l(p) ® B, additively,

m
P

where A has basis {x® ...®x | x e {x,;}} and B has a basis

{x ®...80x !i

X, . < i
o (1) *o(p)

1 2

. cs g
< .. f‘lp’ll lp’ g e K} and K

is a complete set of distinct left coset representatives for 'ﬂ'p in
Zp. (See [8] or 4.2).
We next show

Proof of Theorem 1.3(5), and the linearity of BEQS, the formula for

E_(xty):

By Jacobson [12], we know that F,o(x-!-y) =g+ By + Xd;(y) ).
To calculate gn(x-l-fy), we observe that

ei® (x+y)P = e; R+ ei®yp +e, ® NF(x,y) by 16.1 where
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where x, y, x' and y' are never multiples of the classes o, or A,

the classes in the image of H*(Z:]+1(P); ?Zp) + H*({; +1 ()3 KP(CD)- if
z

p
X and Y are Cn_*_l—spaces, we calculate the external Cartan formula

N=1+4+0 + ... +crp~l and F(x,y) is a function of x and y. Since

e; isa chain in C*\C n+l<P) which projects to a cycle in C*En‘*‘l(p)’

1r
4

the transfer homomorphism shows that Nei is a cycle in 0*3: n+1(p~)'
If 1= n(p-1), then e @cm)p - ei@ <L & ei® yp +v ® F(x,y) with the above information and the method of [Aj 2.6]. That is, the

’ . P , P
where vy is a cycle in C*;n+l(p) of degree n(p—l).’ By Theorem map, ep'Cn+l(p) xTFP ¥+ X, factors through (C:n-i-l(P) x pr and the

12.3, 8, (v} ® £(x,¥)) = cY,uadn(x veo ad ( ), Hu ek

u(l)) n xl-l.(p-l))(xll ® P _diagram below commutes by definition of the action on X X ¥:

and X, =% or y. Since this class suspends non~trivially to

C @ x @x P B - Xx Y
H*Qn2n+]X, the obvious induction argument yields the formula okl
p~1 i Px1 6 x 8
EGy) =5 @)+ £+ | &@EG).
i=1 p__Ixu X P P
_ Casn @ * Ly @) % @x 0P L () x @ () % ¥

The linearity of B8%Q  follows directly since }‘j x,y) = 0 if

j < n,

Proof of Theorems 1.1(4) and 1.3(2)3 the Cartan formulas: The external Cartan formula follows. Similarily, the diagonal Cartan

We first determine the external and diagonal Cartan formulas and formula is immediate.

. ol nt .
then derive the internal Cartan formula which, like its analogue for We calculate g (x ¥y) in HQ 2 'x. By the calculation of

+
H*Qn+lzn lX, it is immediate that En(x *y) = X er * st + X

X_( xy,zw), has "extra" terms not predicted by the external formula. (=x,y)
n . s_n+ :;Zz|+lzl

¥
These extra terms arise because the multiplication in X is not a morphism

) [r.+s=n+|x!+!y’]
of ;n+l—spaces, but only of Cn-spaces and,. of course, these terms

are unstable. where X(x,y) is a sum of unstable error terms. We recall that the

By Theorem 5.4, we read off the coproduct in H*grn_*_l(p); Z p) on diagram

™ PoxP _xxi 2p
b L@ x5 @P xx® YL () xx

2]
\&*‘lf?
the classes e . if p = 2, z.pei = ] zm. ej @ek. If p > 2, then - - 1xex1 X
Jtk=i /
Totl,p

¢(e21+1) = e, ®ek +)x®y and w(ez.) = ¥ e2.® e2k+2 ' ®y! 1x6
s hi i ey 2 : 2,p otl,2 P
JHk=2141 =1 B ® * (B, @ x x5 G (@) x X
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o+ =] 4 vl : . and the resulting simplification in GW HX,
= (- 2 i 8 P, p :
commutes and that £ _(x*y) = (-1) v(| =+ ) p*Y*(encP_l)Qe()@(l@y) )

adn(l“i’j_l) ) +.adn(1‘i_l,j)(y) + (i—j)l‘i:.l ad (y) () = 0.

g G&*y) = ez*y*(en@) =® y)z)]. . It follows that X(x,y) is a sum of

unstable operations on p occurrences of x and p occurrences of y. This last formula allows an inductive calculation of the rij in terms

By the defimition of our operations, it follows that X is a sum of

of I', .. Other coefficients may be calculated for different values of

x,7) ‘ i,i

. : s
elements in MX (of 14.1) and possibly kB%Q )\n(x,y) ke Zp. But -, i and §, and in case some of n, x , and y are odd. It does not

‘Berkn(x,y) has degree higher than gn(x*y). Hence X(x,y) € MX If

appear fruitful to specify the Fij more directly.

. i .
n > 0, we write X( ) = 2 = yJ Tiye The case n = 0 is deliberately omitted; the reader may wish to
Y0 osi,jep H
Ositjsp e the amusing complications here.
We calculate some of the T , by the formulas obsery § comp
1 .
f ’ Proof of Theorems 1.1(5) and 1.3(2), the Adem relations:
i @) A (25 (x¥xy)) = ad’ (x#y) (2), , o
T n a o We initially consider the following commutative diagram:
T 8 i
(1) A (2,6 (x%y)) = A (z, [ = Qx*Qy+ [ xy T, 2
n n n A i P
s o] x|+]y] 0<i,j<p 4 Cn+l(P) xtc;_l(P) Y §n+l(p )
2 Ogi+js<p pray - I,
P P
[rts=nt|x|+|¥]] P
g x of g

(iii) the internal Cartan formula for }‘n’ and

(iv) Lemma 14.1.

C.o * L. oF y C.eh
i z

i = = = = . Jw
We list some values for rij' If p 2, I'O,O Pl,O rO,l 0, D P P2
and Ty, = ad (x)(y); if p > 2, and jx|, |y| are both even, then where o is the equivariant inclusion of l;ﬁl(p) in _(p)-
= p-l = at i for th ent, that p > 2. Let
I,p = [, &I 7, Ty ,p-i 4 (x)(y), 1+ 0,p, where d (x)(y) -Assume, for the moment, that p

r = z (_l)kv(s) (k, [S/ZJ“Pk)eﬁ(zpk__s) (p-1) ® els)—Zk(p-'l)

have already been defined.
k

We also have the following additional formulas k . s=1 ® 2
"5(1')6(3"1)1}(: D v(s-D (&, [ 2 ]-pk)el‘l‘p‘l'(zpk—s) (p-1) es—Zk(p-l)—l

Py 2 () @) + 17 2l @) )

i

0 =2, (x*y) g (x*y))

i+l L3 g and
Pk KT ) a0 0)
+ ] a-pEy I;52d, &) ()

0<d,j<p
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& = DFME DY 0 G, El-pie

.sincev'}\n(xax) =0 mod 2, we again appeal to [A3 4.7].
3 .

P
s+(2pi-1) (0-1) & ®2-25 (p-1)

Proof of Proposition 1.5, commutation with coniugation:

- ~ 03y (=1 (5. FEL - 4 P ,
-8 ()6 (z-1) § L (E-1) G, L > ] PJ)es'l'p+(2Pj—r) (p-1) ® e?:—Zj (p—l)-—]_) By [G3 5.8] and section 14,. it suffices to show that XEn = Enx and
x_(y,2z) = —)\n(xy, X2z). We require some preliminary informatiom.
n
for r, s, q fixed integers and where our notation is that of [A; p.176]. : _ k1 n+l
Define c¢: I + I by the formula C(tl,...,tn+l) = (l—tl,tz,...,tn+l).

(Recall that m = P:Zi') Then by the stable results [A} 4.4 and 4.6], we

2 PO 1. 1 defi X: PR )
have v, (0, ® o'g) (T-A) = 0, Let x ¢ HqX. Then © , v, ((T-4) ® =P = zXa Note that ¢ is not a "little cube Fg:ther efine X \gnﬂ.(l) ;n%'l J
p*

- by setting —)Z<cl, eee ,cj> = <-E%'oc 0Cy.n. ,z—locjoz> . It is trivial to

1
verify that §<cl,...,cj> is in fact in \Cn_l_l(j). [See G; p. 30].
' n+lX

where

I n I T J; J
%, = €@ 0 k(@) QT Gum) e s a0 O Ge00) T

Let c denote the standard inverse in &

for some choice of I, J  and some m, >0, s > 0 or r>0, C ez,
t t i o P

2 Lemma 16.2. The following diagram equivariantly commutes:
pJl r or p] s with R.(It)= (Jt)=l, and [(nl+"'+nk+2ml+"+2m2)p+2r+s] = p“. =

. 0 .
\(;n+l G) x (gn+1x)3 ntl,j e Qn+lX

;xgj [}

To calculate EnQSx, we observe that if p > 2, n + lx[ is even,
and hence )\n(x,x) = 0. Hence we may assume that on = 0. The calculation

of Eanx follows directly from the proof of [A3 Theorem 4.7]. nt+l,i Qn-H.X

£ @ x @ o]

To calculate EnBQSx, we first observe that

Sy _ _Prons a .
)‘n(L’EnBQ Xx) = adn(BQ x)(|) = 0. Hence no terms, X,, can be in My . Then

. ba’s o N |
Proof: Let (<cl,..-,cj>, yl,.--,yj) E\;‘n_}_l(.]) x (2 "X)

It follows that we may assume that r = s = 0. Assume that x is

if cr(u) = cv

A CY)
rimitive. It is an easy exercise in the definition of GW H,X to verif j < vessCL> vV )W) =
P y no y ' c o en+l( C19 ’C-J ,yl’ ’Yj)( ) { if v é Imci, and
that Xa = 0. We proceed as before.

—_ S =1 —
3 = ce o iE T0C,08%eY, .0 50Y, ) (V)
The case p = 2 follows from the above remarks. Here we let , 1 (xxe™) (<eg, .. ’Cj>’-y1" o ,yj)(v) 810 (<e “oe;0c, & 9e40 2 Tyttt
chr (u) if Lo ¢ ocu) =v

2 = - _
T = 1{: (k,s~2k) € i oles ®es—k and L* i viing 1, cjoF

) y_ (@) if €to c;@) = v
A= z (J’r—ZJ)es+2j-r ® er—j. = { -1

J % if vime o e,
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Hence the diagram commutes. Equivariance is evident.

17. . The Nishida relations

Proof of Proposition 1.5: We prove‘ Theorems 1.1(7) and 1.3(3) by calculating the A-action on

By the defining fromula (ne = ¢(1®x)¥) for the conjugation in the opération g, and, if p> 2, on the operation ¢ by induction on

a Hopf algebra, it is easy to calculate that (1) XByy = x(yP) = £ a. Evidently, this information suffices to calculate inductively the

and (2) x)\o(y,Z) = X[Y*Z"("l)IY| HZ*Y] = -2,(xy,xz). To calculate A-action on gEq°.

P oL .
T = he cl. e. ®x e B, (p) ® (H,X)" is in the image
XE )y and X}\n(y,z), n > 0, we observe that If n = 0, the class e, 2;1 " * '

— o » '
) X8 5o gy @ ) = 0x(Xuy ooy @ )Py and of the map H;l(p) ® @ExX°F > n;%(p) ®“p #X)P. We calculate the

* Xep*(t(g‘y ®2) = ep*(;*\ ® xy 8 xz) by 16.2. Since X is an A-action on e, ® x* by using the dual of the external Cartan formula

ig iP
and naturality: Pi(e()@xp) = ) e0®P* *x®...80 P x.
il+. . .+ip==r

ig ig
Evidently P:(e()@ =) = e0® (Pir/P]X)p,{. XeO@P* (l)x® ... Q8 (p)x

order 2 equivariant automorphism of Z:nﬂ_(j), it follows that

X, = v 2 _ .2
X*en(p-l) k en(p—l) and X, =4 where k“ =4£°=1,
where P,Erlp]x =0 if »p I T, P.Er/P]x = P:/px if p[r, and the sum runs

Combining the formulas U*X.Eny=x€n__lc*7 and  G.xA-(y,2) = x}\n‘_l(o*y,cr*z ) over sequences (il""’ip) such that i + ... + ip =, i = =i,

with (1) and (2) above and an evident induction, we observe that k = 1

in 31 = e i yeeey 1

i : +1 =4 n
and £ = -1, The result follows. 1 o, DT 1 By P 1 . o

and o runs over a complete set of distinct left coset representative

for x X aew XY in ) . Consider
En1 an’nl P M1 4

T P
0,:0, @) x ® > X. Since 0,,2f(e @) = P0;5(@ ) and

= * * e that
el*(e()@ x; ®... ®xp) X Ko Fx, we observe tl

) i K ig
PhE g = gonf/P]x + 1@ Wxy x x @ (®)y) where the sum runs

over sequences (il,. .o ,ip) described above. By Lemma 17.1 which is

stated and proved directly after this proof , this sum is given by
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(p~1)-fold commutators as By ‘tyhe defintion of Eﬁx and naturality of P:

@)

*

1 i5 (p- i £ x - : P
Xa.l ad, (P x) ... ado(PiG 162 Dx) (P*lx) PEXE-S €6 .,0(C n )0 h*(H*(ICn-!-l(p)XEPX )). Observe that no

Dyer-Lashof operations may occur as summands of Pi&nx—-sx. Consequently
where the sum runs over sequences (il,. ..,ip) described in Theorem 1.3(5).

r
To calculate P*Enx, n > 0, observe that it suffices to do the . Pig ®x - 8§ = z}\I * .. % }‘I
b} X .
. . , +1 at i . L 3
calculations in H*Qn ]Zn lX For convenience, we let

Eh R G e R o e e R e e

i = ... = A i < p.
s - nhe gy where w()\Il)+ + w()\Ij) <p and if lIl Ij then j < p
i . "
s, =1 1 (r-pl,%ﬂ(P—l)—pr*'pl)Q Px : 7
. We recall the definition of the submodule MX of GWHH*(X V §) [section
. IR, T T S , ’
[} (z-pi;(m -1)- 13Q% iy x - i t -
}if pi; (atq) (p-1)-pripilQ #=1 14]. Clearly P,E X - 8 e My. We claim that P.E x - S  has no

decomposable summands, Let P:Enx - Sx = I'. Collecting this information,

. +1 ot
By our ealculations of H*Qn lZn ]X and the Nishida relations for the we have the formulas

stable case [A; §10], it follows that P:Enx - SX e Ker jn+l(X)* where

. T xr =
I . (@) 2 (6B = A (GLREX) = A, (LS,
ips;®) denotes the inclusion of 9™"Z™'X in QX. We will show that

i) )\n(L,SX) =0 if p,l’r (Observe that no top operations occur in Sx')’
T
P *Enx - Sx =T where TI' is given by the sum of (p~1)~fold iterated

Browder operations specified in Theorem 1.3(5). Gii) Au(k’sx) = adg(P*X)(&) if r=ip, and

. o . T . i1 ip-1
To obtain an inital estimate of P,E x - § » we use the following Gv) ]?:)\n(k,i;nx) = P: adg(x)(o = N X+_ ad (2, x)...adn(P:P =) ().
it...+i _=r

commutative diagram: 1 p-1

S O B

1 P Hence }‘n(k’f) has no decomposable summands. A glance at the proof of
x n N

ntl n+l nt+l_ P
'z:‘n‘l'l(P) x (Q lZn ]X) Lemma 14.1, reveals that if T # 0, n > 0, and I has decompasable summands

Fag@ x 2

(with respect to the Pontrjagin product), then )un(L,I') has non~trivial

6
+
otl,p decomposable summands. Consequently T dis a sum of iterated Browder

operations which must suspend nontrivially to H*9n2n+lX. The formula

C n 3]
[y a+l ntl n+l_ nt ntl nt+l nt
chn+1X Cn+1X ? Cn.|.;|_Q l): lX - Q ]73 lX for P:Enx follows from the formula for P:EOX, induction on n, and

T r
the formula G*P*Enx = P*En_‘lc*x.
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bid - : . . - . . i "
o calculate the A-action 01'1 £ X, we use the above technique: any BEOX = 8P) = Z xiapy AP T 1 adg 1(x) (Bx) (see Jacobson [12]).
-1>1
unstable error term, I', must lie in the image of the map ’ ‘p 12420
: Since 0 BE X -BEn_lU #X and o8 = -Bo_, the result follows by induction

(]_xnp :2* . . : 8
‘}o P nt o o+l n+L5{ P, "ntl,p* nt+l.ntl
x e
H*( n+l(p) ZP %) H*(}"n—f-l(p) XEP(Q 2 )) H*Q z . on n and the result for n = 0.

- Finally, we must demonstrate the identity for a restricted Lie algebra

t £ T . i i
T ollows that & MX Since no top operations (gn) can occur in the required for the calculation of P:E OX' Consider the tensor algebra, TV,

tab . P . r . - ] _
stable summand in the Nishida relation for P *t;nx, it follows that of the graded ZP vector space space V, where V is generated by

§' A (D) = 0. ; =0 = €gS .
i n(L’ ) =20 (Recall here the equations An(x, CnY) 0 An(x,S Q'z)). variables L ERRRTE all of even degree. Fix non-negative integers
An application of Lemma 14.1 indicates that there are no unstable error

! terms Oysee "I_"k such that oy +..+ n = p. We consider the polynomial

R AT e

P(xl,...,xk) = zyl % ... * ¥y where the sum is taken over all monomials
We next show that the definitions of ;nX given in Theorem 1.3 and P

2 . * LI * i - - i
in section 5.7 are consistent. Let £ x and ¢ x be defined as in 71 Ip with n; factors of x;. We express P(x),...,x) in

terms of commutators.
section 5.7. It suffices to show that B(Enx) = z;n(x) + adP (x) (Bx)
n

where B is the mod p homology Bockstein. Again by the above technique, Temma 17.1. P(X,,... ,Xk) =L Y ad(y Y... ad(y, )(Xl) where
‘ . t % Yo Gp-1) Lo

i = 2
we have that B(E x) = ¢ x+ A where A O s © XM D EL (@) xsz ).

summation is over sequences (yl,.‘..,y )} such that

p-1

y’l = aew ynl_l =

Clearly A e MX
s ¥ F e =¥ = Xoysenas

1 oy n2+nl 2

Combining the formulas

v g T e =y 5 =%, and ¢ runs over
ny g tn k=2 ot _phecn e T Tk

L]

@ BA(LEX = #A (L,BEX) = +A ((,4) and

a complete set of distinct left coset representatives for

(11) B (s Epx) Badg(x)(\) =7+ adi(x) adn(Bx)adﬁni-l(x)(L), I X, Xe.ex I in £ .

1 L) o p-1

with the proof of Lemma 14.1, we see that A has no decomposable summands Proof: Let z = x, + + x Observe that P(x xk) is a
: =x, t .. . 1o

P

if n > 1. Hence A is a sum of iterated Browder operations which must s ) d of (x +Z)P = %P + ZP + Zdi(x Y (2) From the definition of the
mman 1 1 0¥l :

suspend non~trivially to H*annﬂ_x. Obviously, i 11
do, we observe that P(Xl""’xk) is a summand of dd (xl) (2). Expanding
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: dz(xi)(z) using bilinearity of XQ(—’")’ we have Appenqlx: Homology of the classical braid groups

Our description of H*CZS0 yields a calculation of the homology of the braid

It

n j k- j
nd T @ = ] ady (x)ad (@) .. adgr(xl)ad];r(z)(xl)_

goups, Br’ on r strings. Here we describe these results with coefficients in

Z, Z, and @ (all with trivial action). When homology is taken with Z%—
P

]

J1 Je- -
Jad “(x.)ad (v )...ad, (v dad " (x.)...ad (v Y(x,).
0 "0 Ly 0 kpsky” 0 L 07k sk, "L coefficients, the action of the Steenrod algebra, A, is also completely des-

for y. . € {x,,...,x }. By inspection cribed. In case coefficients are taken in Z,, the additive results here
i,i 2 e -

have been described by Fuks [29].

=
P(xl,...,xk) = n, ) ado(yic( -1)) ado(yi ) ‘2))...ad0(yi0(l))(xl) .
P alp Theorem A,1. (a) Let p = 2. Then H*(Br;Z&) is isomorphic as a module
where Yy T e T ynl—l = % ynl T e = yn2+nl = Hgarees _over A to the algebra over A
- A
v T e =Y o= and © runs over P[E.]
g teect g+ ko2 oy _pteecmptke2 T 'k i
T
! a complete set of distinct left coset representatives for
I . xL x..x L dn L. where (i) ]§.l=2j-l, and
ny 1 o, 0 p-1" . ]
(ii) I 1is the two sided ideal generated by
u k
1 Tt
(B.) "~ ... (E.)
iy T3

t i.
where ¥ k.2 " >r.
. i

i=1

Furthermore, the A action is completely described by requiring that

i g r o 1 e N2 L.

| ,%’ P, act trivially if r >1 and that P*(§j+l) = (gj) if j>1 and
i 1
% P8 =0;

1 . (b) Let p > 2. Then B*(BI;ZE) is isomorphic as a module over A to

the algebra over A

E[M] & E[EJ.] B P[ng]
I




i
i
|
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where (1) Al =1 ~ ~ -0 0
0 > BeF 0 X B G X Bl G ¥

) 8% =27 - 1-¢, and

0

(iii) I 1is the two-sided ideal generated by is short exact., Here we set n+ 1 =2 and X =8 ., The computation of the

4 E1 kl Et kt Steenrod operations is also immediate from the A-action specified by Theorems
AW - (B8, )" ... (BB )
e Tt 1.2, 1.3, and Lemma 3.10. .

t J;
where 204+ Zkp 7)) >r.
i=1 *
Furthermore the A-action is described by requiring that P; act trivi-

ally and that BX = 0 and B(Ej) = ng.

Remark A,2. The classes §j in case p = 2 correspond to the elements
J

PRI S
€1 e §1 ([1]1) in the homology of €

€
250; the classes B Ej in case p > 2

£
correspond to the elements 8 §1 vee §1 Xl ([11,[1]) while X corresponds '

to Xl ([11,[1]) 4in the homology of CZSO.

We may read off H*(BI;ZD and (H, (Br;QD from the action of the

Bocksteins and the results in sections 3 and 4.

Corollary A.3. If 1 > 2, H*(BI;Q) = H*(Sl;qp and HI(BI;Z) = Z.

To compute H*(BI;ZD we have

Corollary A.4. The p-torsiom in H*(BI;Z ) is all of order p. In par-
ticular the p-torsion subgroup of H*(Br;z ) in degrees greater than ome is

additively isomorphic to the following:

(i) If p = 2, the free strictly commutative algebra gl and (gj)z,
j > 1, subject to the conditions of Theorem A.l, and

(ii) If p > 2, the free commutative algebra on A and the ng sub~
ject to the conditions of Theorem A,1,

These corollaries follow immediately from Theorems 3.12 and A.1. To

prove A.1l, it suffices only to recall the results in section 4 and that
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THE HOMOLOGY OF SF(nti)
Fred Cohen

This paper contains a computation of the Hopf algebra structure of
H, (SF(n+1);ZP) where SF(ntl) is the space of based degree one self -maps of Snﬂ.
The point bf this computation is that it provides the essential first step necessary
to obtain information about the homology of certain other monoids, such as G{(n+2),
PNL(A+2), Top.(n+2) and of their classifying spaces.

Much information is already known in this direction due to May II, Milgram
[2], and Tsuchiya [5]. However their methods fail to give the requisite information
in case p>2 ana n is odd. Consequently much of the work in this paper is
devoted to this case.

Section 1 contains the basic results concerning the composition pairing in
homology together with the characterization of the Ponirjagin ring H, (SF(n+1);ZP)
for all n Aand P.

The geometric diagrams required for our computations are described in
section 2. These diagrams are described in terms of the little cubes operads [G]
and suffice to give complete formulas for the composition pairing inA the homology
of finite loop spaces.

The ho'rnological corollaries of section 2 are described, and are for the
most part proven,in section 3; the forrulas for x o st and x o gny are more
delicate and are proven in section 4.

Section 5 contains a catalogue of special formulas for ’Fhe homology of

SF(ntl) along with the application of these formulas to the study of the associated
graded algebra for H, SF(ntl).

In section 4, we show that H* Qn+lSn+1 is not universal for Dyer-Lashof
operations defined via the composition pairing if n <w. This is not merely an

intere'sting exercise, which contrasts with the case n = 0, but provides the key

to the proof that the Pontrjagin ring H_SF(n+l) is commutative.
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To carry out the technical details of the proof of commutativity and other

statements; it is first necessary to describe a certain sub-algebra of H*Qn+lsn+1
together-with some of its properties. This is done in section 7; as a first
application of these properties we give the proof of the expansion of
(QI[m]*[l—apj]) ° QJhn([l], [1]) stated in §ection 5.

Since SF(n+l) is not homotopy commutative and we don't know how to
embed H,SF(ntl) as a sub-algebra of an algebra which we know a priori is
commutative (if n is odd), we must resort to computing commutators in H, SF(n+l).
This Aste‘p is carried out in section 8 using the results of the previous six sections

together with IIri.1-1. 5.

I wish to thank Peter May and Kathleen Whalen for their constant encourage-

ment during the preparation of this paper.

Finally, I owe Neurosurgeon Jim Beggs an ineffable sense of gratitude;

without his skill and compassion, this paper would probably not have appeared.

The author was partially supported by NSF grant MPS 72-05055 .
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§1. THE HOMOLOGY OF SF(ntl), n>0

As usual, SF(nt+l) is the space of based degree one self-maps of Sn+l;
SF(n+l) is an associative H-space with identity, where multiplication is given by

composition of maps. We give a complete description of the Hopf algebra structure

. of H, SF(n+l), where all homology is taken with Zp-coefficients for p an odd

prime. Récall from III that Qn+lSn+1 denotes the component of the base point in

¢

Sn+1 . .

Theorem 1.1. The Pontrjagin ring H, SF(ntl) is isomorphic as an algebra to
LBERSTIC

H Qn+18n+l for all n >0 and all odd primes.

*¢
Remark 1. 2. The coproduct on the algebra generators for H, SEF(nt+l) is determined
from the list of generators given in Liemma 1.7 here and the diagonal Cartan
formulas given in IIT.1.1, 1.2, and 1.3.
We observe that the algebra isomorphiém in Theorem 1.1 cannot be
realized by an H-map if n <w because SF(n+l) is not homotopy commutative

. 1. R
4], while Qn+lSn+ is evidently homotopy commutative.
¢ by

Remark 1.3, The structure of the Pontrjagin ring is studied to determine the
unstable analogues of the stable spherical characteristic classes,II and [2, 5].
Furthermore there are well-known maps (where any successive two form a
fibration)

SF(ntl) - SG(n+2) »S*'F > BSF(ntl) - BSG(n+2) .

Hence the cohomology of BSG(n+2) follows from that of BSF(ntl). Consequently,
we do not require an explicit computation of the Pontrjagin ring H, SG(nt2). How-
ever the passage from H, SF(n+l) to H, L’BSF(n+1)A is not yet understood and will
not be discussed here.

The crux of all these problems lies in showing
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Theorem 1.4. The Pontrjagin ring H, SF(n+l) is commutative for all n and

all primes p.

Remark 1.5. Incase p = 2, Theorem l.4 was first proven by Milgram [2] and
follows directly from the facts that the natural map

s H, SF(ntl) - H, SF

is an algebra monomorphism and that SF is an infinite loop space (and obviously

homotopy commutative). In case p> 2, i is again a monomorphism provided

n+lx

n is even; if n is odd, the kernel of i

. consists of the ideal generated by the

Browder operation, )\n([l], [1D*[-1] and certain sequences of Dyer-Lashof operations
applied to the Browder operation, QI)\.n([l], [1])*[1—2131(1)], 1. §3. Consequently, the
structure of H, SF(nt+l) follows directly from the work of May II a.nd Tsuchiya [5]
provided n is even.

Much of the work of this paper is directed toward the case in which p > 2
and n is odd. However the results to be proven on the composition pairing in
sections 2 through 4 and 6 apply to the homology of any (n+l)-fold loop space and
any prime pv. Homological modifications required for the case p ;2 are stated in
brackets in these sections. When specialized to H, SF(nt+l) with n odd and p > 2,
they yield the formulas which are the heart of the calculation of the Pontrjagin

algebra.

Theorem 1.1 results from a statementmost conveniently givenina slightly more
general setting. Consider the space of all based self-maps of Sn+l, denoted by
F(nt+l). Clearly ﬁ(n+l) is an associative H-space when given the multiplication

defined by composition of maps, and, as a space, f‘(nﬂ) is Qn+1Sn+l.

Let i‘i(n+1)
denote the component of 'f‘(n+l) consisting of those maps of degree i, Then

SF(n+l} = f‘l(n+1) and F(nt+l) = 'f"l(n+l) U%_l(ni-l), and the inclusions of these
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mbnoids into ff‘(nﬂ) are homomorphisms. We let o denote the composition

' product in homology.

n+l _n+l

The homology of £ 'S has been studied in I, where it is shown that

_there is a non-zero homology class given by )\.n([l], [ (if n is odd and p > 2),

which we abbreviate in this paper by A - Furthermore there are additional opera~-

» lcions, 0° and £ , generalizing those of Dyer and Lashof, defined in the homology
n

. I
£ ‘QnHEnHX. As in III, we denote iterations of these operations by Q and
carry over to this paper the associated notations cirrcler‘ning sequences of operations
nt x|

x [Qn+ lx!

and deérees of elements. Notice that we write Q 2 x] for §nx.

» We define a weight function on H *‘f‘(n-l‘l) by the formulas

1) if QI[I] is defined,

@ wiQi«[m) = p
() wis[m]) = 2,
(i) w(QIxn* [m]) = 25" if Q"N is defined,
(iv) wix*xy) = w(x) + wly), and

(v) wixty) = minirnum{w(x),w(y)} .

We filter H*ﬁ.(n-l-l) by defining FjH*f‘i(nH) to be the vector space spanned by
i

_those elements of weight at least j and prove

Theorem 1. 6. Composition in H*'f‘(n—l-].) is filtration preserving and, modulo
higher filtration, is given by the formula

(x#[1]) © (y=[1]) = =xy*[1]

for x,y € H*FO(I&I).

Proof of Theorem 1.1: Define a morphism of algebras

0: H Qn+].Sn~l-1

% - H,SF(nH)

!

by a{x) = x+[l] on elements of the generating set specified by II.§3 and by the

requirement that . a be a2 morphism of {commutative!) algebras. This makes sense
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1
because H, SF(n+l) is commutative by Theorem 1.4 and because H Qn+1Sn+ is

* ¢
free commutative. The previous theorem implies that o is filtration preserving
and induces an isomorphism on EO, the associated graded algebra. Thus Theorem
1.1 will be proven once Theorems 1.4 and 1.6 are pr;)ven.
The structure of the associated graded algebra is ﬁroven without use of the

commutativity of H, SF(nt+l) and is already sufficient to prove the following lemma,

which provides a list of the algebra generators for H, SF(ntl).

Lemma 1.7. Assume that p>2 and n is odd. Then the following set generates
H, SF(ntl) as an algebra (under the composition pairing)

(i) )\n* [-1],
(ii) thn* [1-2;;2(1)

()

s and

]

where I and J are specified by IIL. §3.

(iii) QT[] [1-p

Proof of Lemma 1.7: Let x,y ¢ H*fo(nﬂ). Then by Theorem 1.6, we have
the formula (x%[1]) o (y#[1]) = x+y*[1] modulo terms of higher filtration. Using
this formula together with the additive structure of H*?E"l(n+1) given in III. §3,
we see that the projections of the elements specified in Lemma 1.7 generate the
associated graded algebra for H* SF(n+1). Liemma 1.7 now follows directly

from the following lemma which we state without proof.

Lemma 1.8. ILet A be a positively graded connected filtered algebra. Let
{xal ae I} C A be such that the projections of the %, form 2a collection of algebra

generators for the associated graded algebra. Then the X generate A as an

algebra.
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" §2. THE COMPOSITION PAIRING AND THE LITTLE CUBES

It is Eonvenient to work in a more general setting than that obtained by
restﬁcting attention to SF(n+l). As preliminaries to this section (and the others),
we assume that all spaces in sight are compactly generated Hausdorif with non-

degenerate base points. Hence the results of I, III, and [G] apply and we take

‘them for ‘granted.

~ + ‘
We consider the {right) composition of F(nt+l) on " lX, -

1

: "M% X Floy ~o=x

Cntl

ere cC
wh a

1 is given on points by Cn+1(f’ gl = f og, We record in this section the

requisite commutative diagrams which relate the composition pairing, c to

n+l’

the action of the little cubes, 9n+1. The geometric setting provided by the little

cubes is especially convenient for several reasons. The relevant diagrams equi-

variantly commute on the nose (not just up to equivariant homotopies) and consequently

our proofs are simple and easy to visualize. Most importantly, complete results
on the composition pairing for finite loop spaces are obtained.

Recall that Qn+lX is identified as the space of continuous based maps from

n+l

S to X, Sn+l - In+l / aIn—l-l-v

It is convenient to recall here several of the maps

defined in [G]. First we consider the map

n+l n+l

un+l: Cn+1X»Q Z X,
By definition, a is the composite
n+l c : 0
c x n+l c Q1.'):{-1211-1-1X ntl Qn-l-lz:n-i-lX
n+l n+l

: 1_n+l
where 1 is the evident inclusion of X into Qn+ En X. Furthermore, the map

P i
ntl is induced by

. o+l .J n+l
: X (@ -
B .1: ;jnﬂ(J) @ xy -2"x

where
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fj(v) if cj(u) = v,

ey e . ) =

x otherwise.

, the map

. E ()
. 0 +1
Since Cn +1S = ! l ;

20 7

0 - Qn+l o+l _

(1 : C .8 S = %(n—i‘l)

n+l n+l

yields a particularly simple description:
v if cj(v) = qu,
(o.n+1<cl, v cj>)(u) =

* otherwise.

The following picture provides a visualization of this map:

"jdentity"
N

"identity"
i

Combining these descriptions with the definition of the composition pairing

vields

Lemma 2.1. The following Ej—equivaria.nt diagram commutes

n+l . ~ j 1x 9n+1 nt+l ~
QKX G G) X (Fln) 2"% xF(nt)
AX1X1
il j ~ i R
@ KX E G X (Fnt) @""'x
Shuff j
l 1% Tan+1

Cnﬂ(j)x(ﬂnﬂxx’f‘(nﬂ))j — = e 6 x @]
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j~times
N

whetre Alx) = (x,...,%).

This diagram allows us, in principle, to compute the composition pairing
locally; that is, one operation in H*ﬁ(rﬁl) at a time. Evidently, it would be
convenient to have an analogous diagram which would facilitate the computation

(in homology) of the composite

X
01 XL gt Catl _nHl

il X X Flotl) —= @"7x

1;?n+l(j) x (@) x Flot)

in terms of en+l’ a1’ and diagonal maps. It seems unlikely that an easily

visualized diagram of this ilk exists. However, we do have analogues in case

F(ntl) is replaced by C_ +1s0 and MX by C_, X
We recall the map

c G xxG.8ec X

ntl " ntl ntl ntl

defined in [G] and the following proposition which is prox}ed there.

Proposition 2.2. The following diagram commutes:

c
0 ntl
Cn—l—lX X Cn-f-ls Cn-i-lX
lanﬂ X l “ntl
c
Qn+12n+lX N e (n+1) ntl - QnHZinHX

Corollary 2.3. C SO is an associative monoid with multiplication given by

n+l
c . . .
il The map a4 82 homomozrphism of monoids.
The following few observations indicate that Cn +1SO has even more
structure.

Set
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J
0 gn—i-l(r) . .
Felp® =L =5 i #>1 and
i>0 o
0 0 0
F.C = =
1 n+1S F0Cn+ls Cn—l-ls .

Then we have the following obvious corollary to Proposition 2.2, which will be

useful in the study of H, BSF(ntl).

0
Corollary 2.4. Frcn+ls is an associative H-space with identity and the inclusions

0 4] 0
i - -
rk C:n+ls F r c;n-l~1s Cn+ls

are all homomorphisms.

Proof: It is easy to check that FrCn+ S0 is closed under the pairing defined by

1

Cni’

Proposition 2.5. The following =, X Ek —~  equivariant diagram commutes,
J

where i is the natural map of ¢n+l(k) into Cn+1SO:

. 8 Xi
: J n+l 0
X N
B xic x) x £ € X XC_ 8
ax A x1 c
n+l
Ak ik ' A
Ga@ X (€ X 109 Can®
Shuff Toe
: n+l

Lk jk X1 . ik
Eaﬂ(k) x g;&l(']) X(C X ! - ¢n+1(3k) x (Cn+1x)J

Proof: This follows from an obvious check of definitions.

A
Remark 2.6. Together with an obvious modification of Lemma 2.1,

Proposition 2.5 shows that a two sided distributivity law is satisfied by the

products. * and c

1

: 0 . . ~
ntlx Cn+ S°. This controsts with the case of F(ntl).

1
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§3. FORMULAS FOR THE COMPOSITION PAIRING

We consider the composition pairing, ¢ which was defined in section 2.

nt+l’

This section is a catalogue of homological information concerning Coilx which is

required in the following sections.

Remark 3.1. If n=0o, the composition pairing has been studied by Madsen [f],

May I, Milgram [2], and Tsuchiya [5]. Their results give insufficient information

in case n<w for our purposes. In particular, their methods give no infor mation

at all about the classes len.

Theorem 3.2. gives H*Qn+1X the structure of Hopf algebra over the

Cntls
Hopf algebra H*f‘(n+1). Furthermore for X ¢ H*QnHX and y,z € H*F(n-l-l) the
following formulas hold:
1
(1) =xo (yxz) = Z(—l)‘X ”y;(x‘ay)*(x”cz) where Ux = Zx' @ x',

(i) x 0Q% = 0° T (Plxey) if Q% is defineq,

inlyll,

2

(i) x 0 £ y=2Q (Plxey) + A if £y is defined,
n i x XY o

where A is given by at least two fold iterations of the operation )\n(—, -} on

elements of H*Qn+lX [x o &‘ny = EQn+|Yl+1(P:=xo y) + A where A is given in terms
. . 11*!-1X

of the (non-iterated) operation kn(—, -} on elements of H*Q ], and

(V) xo)_ = z(-l)”‘”’xn(x',x") where Ux = Sx' @ x'.

Remark 3.3. The error A in 3. 2(iii) can be determined precisely with some
additional work; the result stated here has the advantage that it is both sufficient
for our purposes and follows directly from the methods in II.

Using the results of Theorem 3.2, we prove the following two results in
section 6.

1
Theorem 3.4. Let y be a spherical homology class in H*Qn+ Zn+1X such that

|yl >n if n isoddor |y| >n if n is even [|y|>n]. Let ze H*f(p+l) be such
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I ' tion concerning the Nishida relations for PIQS and Prg . Observe
that |z| >0 andlet Qy be defined. Then observa g * *°n

yoez=0 and QIY z=0 that the following lemma is trivially true if n =, andis false in case n<w,
= o = .

without the additional hypothesis that B*Pyy = 0, r > 0.

. 1 J K . . =~
Proposition 3.5. Let QA , QX , and Q [1] be defined in H, F(n+l) and Lemma 3.9. Let ye H*S‘ln+lX be such that pgp:yz 0 for all r >0 and assume

let m=1-ap . Then

: 1
that Qly, is defined. Then P:Qly = ECI,QIY for some c_, € Zp and I' such

1

(1) ([m]« len) °Q¥[1] = 0, ana that 2(I) = £(I").

1 & Sk & 5 s,
Proof: Write Qy=p"Q ... Q "y. If none of the Q ) is the " top operation',
. s,
£ , then the lemma follows directly from III.1.1. If some of the Q J are equal to
n

() (@) e’ = 0. :

Remark 3.6. This last theorem and proposition indicate an interesting contrast £ , there are unstable errors given in terms of )\n(-, -} for the Nishida relations.
nemarx ) n

between the composition pairings in homology for finite and infinite loop spé.ces. In this case, we present an inductive proof of 3.9.

This contrast provides the key to Theorem 1.4 and is discussed more thoroughly If 2(I) = 1, the formula follows directly because the unstable errors are

in section 6. . given in terms of the Steenrod operations on y. We assume the result for those

We require some additional inforrnation for which we recall that & denotes I of length k and show that the result is true for those I of length k+ 1. Here

the counit for H*ﬁ(n-i-l). The following proposition is an evident modification of the the result is easily checked using the formulas )\n(x, Qsz) = 0= )s.n(x,gnz) and

analogous result in I. §1, and the details of proof are left to the reader. )\n(x, gnz) = a.di(z)(x) of III.1.2 and 1. 3.

~ : . . it iring implicit
Proposition 3.7. Let x @y ¢ H*QnHX ® H, F(n+l). Then: We now derive the homological properties of the composition pairing implici

. s
X . : : : . : a R ial
(i) ¢ ey =c(y)p where ¢ is the class of the base point in H*Qn+1X, in section 2. The formulas concerning Xx © §ny and x © Q'y require some specia.
s k i -3 ; : . : .
(1) PS(xoy) = ZPix @ PI: ly, and attention and their proofs are pos@oned until section 4
- ayl=l 4 ' . Y C a1 b e g):
(iii) Blxoy) = Bx oy + (-1) x o Py Proof of Theorem 3.2{i), xo(y*z) = Z (-1) (x'oy)x(x''cz):
Remark 3.8. Some of the formulas in Theorem 3.2 are similar to those given We specialize the diagram of Le az.lto
in the stable case in 1. §1 and II. §2. Observe, however, that the formulas there 1 - 2 1X6 4 il ~
s 2 xx £ (2) x Flatl) = 2" K X F(ntl)
are transposed from ours: we compute x o {yxz) and x 0 Q y rather than o
s J/A X1X1 €l
(y#z) o x and Q y o x. Stably there is no real difference; unstably the distinction 1.2 - 2 n
@M x 12 % Flas) Q" Tx
is vital since only one distributive law holds geometrically. ’ o o0
Shuff 2 0 1
Beéfore proceeding to the proofs of the results in this section, we require an +1 5 1Xc 11 o 2
. s & ~ ko ™ T1
2y XX
g;’nH(Z) X Q@ X X F(n+l)) 3,41 (2) X ¢ )
k
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Evidently, we have the equation

(i) x O {y*z) = (x® (eo®y® z))

cn—i-l* en—.Ll*

where the right hand side may be computed by the above commutative diagram to

obtain

. 2
(ii) Bn+1* (l®cn+1*)(Shuf£)(L]l @ldl)(x & 50 ®y L) = Cn-i-l* (x ® 9n+1*(eo®y®z Y.

Combining (i) and (ii) together yields the desired result x o (y*z) = = (-1) =1yl

(x'ey)x(x"ez).

Proof of Theorem 3.2(iv), xe¢ A = 2(—1)|X”l)\. (x!, x"):
n n
For this computation, we appeal to the commutative diagram used in the

preceding proof and replace e

0 by t, the fundamental class of ?;’n+1(2) described

in 1. §5. Here we have )\n = Xn([l], [1]) and by the definition of A (-, -), the
n
following formula holds;
. n
(1) xeh =(-1)"c

a1, ®©0 L, (c@N]@[I]).

Taking advantage of commutativity of the above diagram, we have the additional

formula
(i) (D% ,;, =x®0_ (c@ o)) =
(-7 (L® ¢ )(Shuff)(y ® 1 ® 1)(x ® ¢ @ [1]9)
nt+lx ntl* : :
Evidently
@ ()%, (e ciﬂ*)(Shu_ff)(lp@l@l)(x@L e = (-1)n+1xlzen+l*(a @x'® x)

. 1
where Ux = Zx' ® x''. Since )xn(x, y) = (—l)nIXH 9n+l* (L®x®y), we may combine

formulas (i), (ii), and (iii) to obtain the result.
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§4. THE FORMULAS FOR x2 £ y AND x © Q5y:
Conéider the following commutative diagram where jn+1 is the natural

inclusion:

[od
Q"X X F(n) s Q=%
) . : x . H
‘ o1 * o lJnﬂ
A T C
~ 1 n+ 1
Q*5PX X F(n) ot . oPthRtly

By remarks similar to those of III. §14, and the above commutative diagram, ‘the
formulas for x © st follow from those for x © gn_i, i>0. To compute xo ijny,
we appeal to LLemma 2.1 and a homological computation depending on the methods

in III. We remark here that the results we obtain for x o gny are only approximate;
we have more accurate results, but the ones here are both sufficient for our purposes
and are much easier to prove. ‘

The requisite homological data concerns the map

. P P
Ao P XX Z;n+1(P) xwa - <\:nqu(P) XWP(XXY)

where 11'P is the cyclic group of order p acting in the natural diagonal fashion

and dn+ is given on points by the formula

1

ooy = 2 s ey X .
S COR yp) (e, x Xy, x YP)

We begin by stating

P
Lemma 4.1. Let x®ye HXO®H Y and x®e_O v eHI+s+Pt(X><C°°(p) X”PY ).
Then

o . B Py _ k 2
(i) i p=2, doo*(x®er®y ) —Z{(e ® (P x®y) ,

r+2k-t

v(st+t) ktsr

: k
() i p>2, 4 (x®c ®y) = e () ® (Poxey)F

®r+(2pk-s)(p-1)

- §(x) v(stt-1) E(_l)k+51'

X P
V(D) O (P, Bx®y),

r+p+(2pk-s)(p-1)
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where &(~) and v(-) are as given in [A; §9].

Proof: This result follows directly from the commutative diagram

Shuff

X X (:’w(p) X Y {Zw(p) X, (XXY)

P P
~l{lxle \l/lXA
d

xx & @) xwaP = o3 %, X )P

where TI'P acts trivially on the right hand factors of the spaces on the top
line and by induction on the degree of x using the methods in [A] or [3].
Recalling the description of the homology of Cn+1(P) X YP given in

III. §16 and combining this information with Lemma 4.1, we obviously have

p P
ol X .
Lemma 4.2 I_..et x®ye HSX ® HtY and x ® e ® y. € Hr+s+pt(x Fn-}-l(P)xw )

Then

: 2 k2

N e ) -

(i) if p= 2, dn+1* (x®er®y ) ier+2k-t ® (P*x®y) +I', and

() i p>2, 4, (x@e ®yF) = Ulstt) 5 p)ktrs
Kk

X _@v)P
b1k ® (P, x®y)

(%) ¢ r+(2pk-s)(p-1)

v(s+t-1) ktrs

k P
V(D) f‘f” e ®(P,pxOy)

- &) r+p+(2pk-s)(p-1)

+T

where I' is in the image of the natural map induced by the covering projection

P P
H, Q@ XXXY)) ~H (] . (p) X’rp(XXY) ).

To compute I, we recall that we may replace Cn—i-l(p) by F(IRn+1, p)
in Lemma 4.2 [G, §4]. In I, §11, there is a ns-action {generated by an element

S of order 2) defined on F(Rn+l, p) which commutes with the natural Ep—a.c’cion
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on F(IRI_l+l,p}. From the definition of the map S, and the replacement of
. n+l : : cps s
¢n+1(P) by F(IR ,p) together with the evident modification of the map dn 41

we have the following lemma.

Lemma 4.3, Let 7, denote the group which acts by S as in ITi, §11. Then the
Pt S

‘ " map

n+l P n+l P
T X X - ,p) X (X XY
G XXF@R  ,p) XﬂPY (R p) "p( )

is ns-equivariant.
Proof: Immediate from the definition of S and dn—l—l'

Lemma 4.4. Let I be as in Lemma 4.2 and assume that p >2. Then I is

in the image of the natural map

P , p
H @ H XY X_ (XXY .
jgo 2j ngn-!-l(P) ?‘(X ) H* ( (;n+1(P) TFP( "
Proof: We write S for S, throughout the remainder of this section.

+1 .
As remarked above, we replace ¢n+1(P) by F(IRI1 ,P). Consider the

clement x® ¢_® y¥ ¢ H, X xF@®R, p) x ¥P). By HLILL x®e @y° is
P

fixed by Tg (acting on homology). Similarly, the elements e; ® (x'@y)P €
H, (FR™,p) X (Xx¥)Pand x' ¢ H,X and 120, mustbe fixedby 7g. By
Lemma 4.4, dnfl is 'n's-equivaria.nt and consequently I' must be fixed by the
ws-action.

We shall show in Lemma 4.5 that those elements concentrated in
H 2 nF(IRn—Ikl, p); j=0,1,..., are precisely those elements fixed by 1rs. Further-

1 ‘ .
more, we show that if =z e H IRn+ ,p), then S(z) = -z. Since I' must

(2j+1)nF(

be fixed by the 7_ action on homology we see that the form of I' required by

S

L.emma 4.2 forces I' to be as asserted in Liemma 4.4.
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Lemma 4.5. Let ze I—Hm(F(IRn.H', p);Z). Then

z if k is even and
S(z) =
-z if k is odd.

Proof: Let aij be as in III. §6. Observe that the map S defined in ITI, §11
restricts to an automorphism of degree -1 on the s ‘standardly embedded in

IRn+1. It is obvious that the map

o, : S*~F@, )

EX)
is ﬂs—equiva.riant when S° is given the previous Ws-action. Hence S(u.ij) = —a.ij.
We obtain a similar formula upon dualization: S(a;j) = - u.;}. The lemma

follows directly from the structure of the cohomology a}gebra H*F(IRn+l, p)

given in II. §6, and dualization arguments.

Proof of Theorem 3.2(ii) and (iii):

As remarked at the beginning of this section, it suffices to compute

x © f_:',ny. Here we specialize the commutative diagram given by Lemma 2.1 to

1X6

n+l ~ P n+l n+l ~
Q" x sfn 1 (P) X Fnt)) Q"X X F(ntl)
l AX1X1 lc‘n+l
@ TP x & (p) x Fa)P ot tix
n+l
\L Shuff Lx P Bn—l—l
n+l n+l

XX F(at+1)P

Banle) x @ > Gt x @07 .

The formula for x e f_f,ny s except for the errors involving )\.n, now follows
directly from Lemma 4.2 and the definition of the operations 0%z, We leave this

part as an exercise for the reader.

We compute the unstable error terms involving the )\n if p>2. Observe,

3N

‘by Lemmas 4.2 and 4.4, that these terms-are all in the image of.

9 (p) ® H, (@ %P ~m, 2" x.

n+lk ; HZr(n) gn-*‘l

By [I.12.1, the elements in the image here are given by 2r-fold iterates of the

X .  The result follows.
n

If p= 2, the resultfollows by similar (but easier) considerations.
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§5. SPECIAL FORMULAS IN H, F(ntl) AND THE PROOF OF THEOREM 1. 6.

l .
+ and obtain

We specialize the results of section 3 to the case X = s™
certain corollaries; the proof of Theorem 1.6, which depends heavily on these

corollaries, is also given in this section.

Theorem 5.1. For x,y,z € H*'ﬁ(n}l) the following formulas hold:
@ xotyra) = 20T e ppairo z) where x = zxv @ x,
(i) xoQ% = EQs:i(Pixoy) if Q% is defined;
I .
(1) x o0 £ y= 20Q 2+ (Plxoy) if £y is defined,
[ =z Vel oy

() xon_ = m-n"‘"'xn(x',x") where x = Zx' ® x .

Proof: Formulas (i), (ii), and (iv) follow directly by specializing Theorem

3.2 to the case X = SnH. Formula (iii) also follows from Theorem 3.2
together with the observation that two-fold iterations of Browder operations are
zéro in H*ﬁ(n-l'l) in case p> 2. If p= 2, the result is obvious since )\n =0
here. b

We state the following lemma without proof since the results are evident

specializations of those given in II1.1.1, 1.2, and 1.3 together with the observation

that all 2-fold iterations of the operation )\n(-—, ~) in H, %(n‘i-l) are zero,

Lemma 5.2. Let x and vy in H*F(n+1) be such that §nx and E,ny or, for
(iii), §n(x*y) are defined. Then
@) & (xty) =€ x+£ vy,

G) A (o€ y) =0,
_ i
(iid) En(x*y) _i+in+l’;]+l f Q' x*Qly

[= = Qix*ij'], and
itj=n+|x|+|y|

£
, (iv) the unstable errors in the Nishida relations for B Pignx involving Xn(—, -)
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‘are ZETO.

Recail from I.3.2, the conventions on sums I+ J of sequences of the
samé length and observe that the diagonal Cartan formulas in III.1.1 and 1.3, imply

that

H i1} 1 Ill
W= = o@x, o xmalx @ ol %

I4IM=1

where dx = Zx' @ x'"' and O'(QIIX', QI”x”) = + 1. We require the notation o(-, -)
for future referencing of signs.
In order to obtain more precise formulas, we record the following trivial
specialization of the internal Cartan formulas given in I, 17 1 and 1.3, and
Lemma 5.2 to H*%(nﬂ). (Note that this formula is generally false in H, 9n+12n+1x

if n<w and X is nota homology sphere).

Lemma 5.3, Let x¢ H*F(nﬂ) be such that Yx = x ® [m]+ [m] ® x. Then

= |1

2 oFT oy = ol 12D

I4I=1

for any r e Z.
We will complete this section by obtaining more precise formulas in
H*f(n-i-l) by coupling Theorem 5.1 with the results given in III, and using these

formulas to prove Theorem 1.6.

Theorem 5.4. Let x ¢ H*E(n-l-l) and write the m-fold iterated coproduct on x as

(m)

¢mx=2x(1)® el ®x Then

@) # m>0, xof[m]=2x « ... & x™),

(ii) x© fm] = x(x) o [-nd where x is the conjugation,

(i) i m>0, Q% o[m]= Qlxe[m]) provided Q' is defined,
(i) O s[k] e [m]= m A *[(kt2)(m-14+k] for all m and ke Z,

(v) (le* [1—apr])v ° )\n = ZQI(x(l)*x(Z))* )\.n*[-Zapr] provided le is defined,




374

(vi) (Q‘Txn* [1-ap™]) © [1-bp°] = QJ(kn*[-prs])*)[(l—apr)(l—bps)] provided Q“Tx'n'
is defined,

(vii) ([m]* )\n) 0 le = 0 for any m e Z provided QIx is defined, ‘

(wviii) ([m]*QJ)\n) ° QIX = 0 for any m e Z provided QIX and QI)\n are defined,

and

0 (@Es0-pTorh = =, o’zLe™) QI[Zm]ooJ'm}*Q""(xn*[-zapr];

J4+J =3
for any m € Z provided QI[m] and QJ)»n are defined.

Proof of Theorem 5. 4:

5.4(i) and (ii), the formula for x o [m]:

I¥f m >0, theformula x o[m]= Zx(l)*. . .*x(m) follows immediately
from Theorem 5.1(i) and induction on m. ¥ m <0, we apply the formula

yo [-1] = x(y).
5. 4(iii), the formula for QIx ¢ [m]:

Notice that the result here is generally false if f‘(n+l) is replaced by an
arbitrary (ntl)-fold loop space. However, the result obtained here by specializing

to f(nﬂ) follows by an evident induction on m together with the diagonal and

internal Cartan formulas of I11.1.1 and 1.3, and Lemma 5. 3.

5. 4{iv), the formula for ()\n*[_k]) o [m]:

If m >0, the formula

@ O *[kD © [m] = 2 [3(249 )42 # [(m-i-1)(2+0)]
follows by inspection of the coproduct for A_ given in Il.1.2, Hence we have
(18 (A_x[kD e [m]=  m X *[(2+k)(m-1)+k].

Incase m <0, then (X *[k])o[m]= x(A_*[k]) o [-m] by Lemma 5. 4(ii).

By IiI.1.5, we have x()\n) = - )\n([-l], {-1]). 1t is easy to compute }s.n([-l],[-l])

' .‘byth
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e iﬁternal Cartan formula for )\n(-, -} given in I1.1.2. We obtain.the
formula X()\n) = (‘-l)hn*[—é]. Consequently we have
' : ; - 4 -m] = -1)+k], and
i) (kD © [ = (-D( #[-4-k]) o [-m] m A #[(24k)(m-1)+k], an

we are done,

. . . .
“'g.4(v), the formula for (Qx*[l-ap’]) © )\n :

Assume that le is defined. We derive this formula by nduction on £(I).

’ 5 .
‘First assume that #{i) = 1 and consider QIx = Q' x. Then by Theorem 5.1(1v)

(which gives the formmila for x e )\.n) we have .
' x' i r s-i r
(i) (st* [l—a.pr]) o )\n = Z)(--l)l l )\n(Q x'x[l-ap |, Q° x'"s[l-ap™ ]).
Expanding the right side of this equation by the intermal Cartan formula for
Ty o, i
A {-,~) given in II1.1.2, observing that [p"] is a p-th power, and that )\.n(Q %', ~)
n .

=0= M (-, Qs-ix"') by IiI.1. 2 and 1. 3; and using Lemma 5. 2(ii), we obtain the
n

yformula

i .
. s Q% i, s-i_,, r
(i) kn(le'*[l—apr], of 1:’c"=l=[l—a.1:’r]) = (-1)1 * l)nn*Q x'+Q° “x"s[-2ap ]

Combining (i) and (ii) together yields

) (@%xft-ap”D o = 200X T calena® o207,

: s
" Combining (iii) with the internal Cartan formulas for Q° and E,n, we have

(iv) (Q%x[l-ap’]o N = Q% x")_x [-2ap”]

The details in case QIx = ﬁst are similar and the case £(I) > 1

follows by an obvious ‘induction,

5.4(vi), the formula for (len*[l-apr]) bo [1—bps]:
‘I’he. proof of this formula follows immediately f{rom Theorem 5. 4(1)~(iv).
I J 1
5. 4(vii) -(viii) the formulas ([m]*)\n) o Qx = 0 and ([m]*Q )\n) o Qx = 0
By II. §1, hn and [m]* )\n are spherical homology classes of degree n.

Since n is odd, the result follows from Theorem 3.4 and Proposition 3. 5.
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oy : ‘ Ly L K
Remark 5.5. The proof of Theorem 5.4(ix) is more delicate and depends on . Let y= 0 [L]%...+Q t[l]*QKl}\n* .20 u)\n* )\2*[7], where &= 0,1

some additional machinery; consequently, we have postponed this proof until R Recall that the m-fold iterated coproduct for x is given as
tion 7. ' . '
section lpn:}li - Zx(l) ®...® X(m). We expand x ¢ y by Theorem 5.1 and compute the
Throughout the remainder of this section, we assume that n and p are ) o :
. weightof X0y via formulas (i)~(iii) above:

HL)) . 4K.) .

both odd. We sh ttu+td

oth o e show (v) wixe y) > mini =p i (w(x(l)) )+ Z2p 3 (W(x(t‘l'.])){-l) + 26(w(x( u ))+1)
’ I - i j .

Theorem 1.6. Composition in H*F(n-l-l) is filtration preserving and modulo +w(}ét+u+ 5+l))

filtrati i i by the £ ul
ration 1s given Dy the tormula where the minimum is taken over all terms in the (t+ut&+l)-fold coproduct for x.

Ge[1D) © (y*[1]) = x*y=[1] Consequently, we see that

for x,y € H*fo(nﬂ), v) wilxeoy) > wix) + wly)

11 Il‘ Jl Js € and the first part of the theorem is demonstrated.
Proof: Let x= Q [1}x...*Q [1]xQ A Fo o xQ A x )\.n*[a] where & = 0,1,

o] To finish the proof of 1.6, we let a and v be such that x,y € H*Fo(n-l-l)
)\n is defined to be ¢,a € Z, and Ii = (sn R

) .381', Sl,) for s
i i i

> 0.
i

: and compute (x*[l]) ®(y*[1]) using the formula in (iv) above. By Theorem 5.1(i)

By the definition of the weight function, defined on H, F(nt+l) (given in section 1
vy efinition o e weig unction, w, defined on H F(ntl) (given section 1) we have the formula

and the internal Cartan formula, it is obvious that ) 1 2

(i) Gxa]) © 0D = 24 (Mepp oy} #xPiqul.
t

i > . Py .

(i) w(Qx) >pwix) By formula (iv) above, it is apparent that the summand of least weight in the
We next compute the weight of x o Xn: right hand side of (vi) is given by + {[1] Oy}*x*[l]. Checking the sign dictated by

First observe tha,t #oe=1 them xo )\n = 0. Soweassume that ¢ = 0. Byan Theorem 5.1{i) for this last summand, we see that,modulo terms of higher filtration,

inspection of the diagonal Cartan formulas in I1I.1.1, 1.2, and 1.3, the formula
) we have

for x ol iven in Theorem 5. l{iv), the internal Cartan formula for M\ (-, -)
n & () n (vii) (x«[1]) o (y*[1]) = =xy=[1].
given in III.1. 2, and the definition of w, we see that
(1) w(xe X)) > 2(0()+H).
L K
We observe that lower bounds for w(xe Q [1]) and w(x:Q Kn) for any sequences

L and K may be computed from (i) and (ii) above. Furthermore since

w(x) = w(xo[-1]), it is obvious that

(iil) w(x) = w(xo[k]) for ke Z.
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§6. THE NON-UNIVERSALITY OF THE COMPOSITION PAIRING, n <

An alternative method for the definition of natural homology operétions
defined on the homology of an iterated loop space is provided by the composition
pairing. In particular, each element x in H*’f‘(nﬂ) can be used to define a
homology operation on any element y e H, Qn+1X » namely the operation given by
yoX In case n=ow, all Dyer-Lashof operations on infinite loop spaces can in
fact be defined in terms of the operations- given by the composition pairing .

In this sense, H*'I\T" is universal for all homology operations defined for the
homology of any infinite loop space. It is natural to expect that similar results
should hold in case n<w. The fact that H*'f‘(n-i-l) fails to be universal for
homology operations, n <w, occupies much of this section and is in direct
contrast to the stable case, H*f This last fa:ct is crucial in the proof of
Theorem 1. 4 {(commutativity of H* SF (n+l)).

Throughoﬁt this section we assume that n <. In addition, all proofs
are carried out for odd primes. There are analogous results in case p = 2;
the details of proof are obvious modifications of those already presented and are

left to the reader. Our main result here is

Theorem 3.4. Let y be a spherical homology class in H*Qn+12n+lX such that
ly] >n if n isoddor |y| >n if n iseven [|y|>n]. Let ze H*ﬁ(n-{-l) be

such that |z| >0 and let Qly be defined. Then

yeoez=0 and Qlyozr- 0.

Remark 6.1. One is tempted to construct a slick (but fallacious) proof
by writing

20" B = 2% @l 1) = x ¢ Q°[1).
1 1
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"I‘his fgrmula is evidently correct in H*ﬁ (and explains why H*']\:"‘ is universal

for homoloé‘y operations). Furthermore, Theorem 3.2 guarantees that this formula
is correct provided Q°[1] is defined in H,F(ntl). Since the left hand expression
m;kes sense for large s and large }x[ , we see from II1.1.1 and 1.3, that Qs[l]
mayAnot be defined and that this formula is wildly false in I—I*g(nﬂ). Indeed, the
fact that the Pontrjagin ring is commutative follows {eventually) from the fact

ti:at: the above equation is generally false. -

We present a simple, but interesting,test case of this type of phenomena

pefore proceeding to the technical details of this .section in

Remark 6.2. By Steer's results [4], we know that the Samelson product in

. . SZn d th
Ty SF(2n) defined for the adjoint of the element a € 7r2n+2p-3 an e
Whitehead product [{,L] € 7 SZn is non-zero (where (¢ is the fundamental

4n-1

class of Szn). Since the adjoints of the elements o, and [¢,t] bhave non-zero
image under the Hurewicz homomorphism for SF(2n), this suggests that the
first interesting place to check commutativity of the Pontrjagin ring H, SF(2n)
is on the elements )\n* [-1] and Qs[l]* [l'-p].

By the formulas given in I11.1.1, 1.2, and 1.3, and Theorem 5.1 it is easy
to check that (Q°[1]+[1-p]) o (\_*[-1]) = QL]+ A x[-1-p] and (\ *[-1]) ©
(Qs[l]*[l—p]) = Qs[l]* )\.n* [-1-p] + {()\.n*[-1]) O Qs[l]}*[l—p]. Consequently, for
commutativity to be satisfied in this case, it is both necessary and sufficient that
()\n* [-1]) » Qs[l] = 0. Itis worthwhile to point out that the vanishing of
(Xn* [-1]) = Qs[l] is particularly easy to check: By the definition of 0%,

0 <2s - |x| <n; hence, if Qs[l] is defined and non-zero, then 0<s <n/2.
Furthermore, (A *[-1]) Q°[1] = Q°(A_#[-1)} (by Theorem 5.1). I Q0 *[-1]

is defined and non-zero then 0<2s -n<m, Note that 2s -n # 0 because n
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is odd. The restrictions on s are obviously inconsistent and hence Qs(h *[-1]).= - by induction on k. The other case is left to the reader.
n : .

Note also that this result follows from Theorem 3.4 because A _x[-1] is a ¥ k= 1, the result follows directly from the definition of the operations
n .

spherical homology class. Qs and gn in IT1. §1, and the fact that ix{ is odd.

Another example which may be easily checked without recourse to lengthy We assume the result for k and check it for k + 1: By definition of

s

‘ computations is k+1p Q .Q lx, we have the inequality
| ' : T S |
Observation 6.3. The composition pairing (1) 0 f_Zsk_H -lp TR ... x| <n.
2 2.k o 4 2.2k ’ s K )
: HRQ ZZS ® H_F(2) ~HQ EZS
“2% * * (,) * But |B k k ..Q 1x| =2 Z s(p-l) -b+ |x| where b is the number of non-
i=1

is zero when p and k are odd, where H:%(Z) is the subspace of positive trivial Bocksteins. Applying the induction hypothesis to (i), we have the additional

degree elements in H, (2). inequality

. _
(i) (2k-1) + 2 zl?- (p-l)—b+|x{<2s <n+lx|+ 2——L—L 3-1

Proof: By III. §3, H*ﬁ(l) is defired in terms of products of elements given by
’ =1 i=

" translates of the elements’ )\l and ﬁs §l. - gl)\l' I k is odd, then H*QZEZSk

has only trivial Browder operations by III, §3, and the result follows directly from Clearly k - b2 0; (if) reduces to

Theorem 3.2. (iii) [xlp < Zs 1 2 (n+!x])p s

The following lemma, which keeps track of the domain of definition of the

I and we are done.
Q’, is useful.

We use the last lemma to prove the following result, which directly implies

I
Lemma 6.4. Write I= (ek, Sy eaEp sl), e, = 0,1, and assume that Q'x

is defined in H_'"'X. Then

_[%:__[_pj—l iSj < ‘n-f-zlx[ Pj—l _

Theorem 3.4.

+1_n+l
Lemma 6.5. Let y bea spherlcal homology class in H/ " Zn+ X. Assume

that either |y|>n if n is oddor ly] >n if n is even [|y| >n]. Further

I . . s r :
Furthermore if |x| is odd, then assume that Q'y is defined and Q[1] and Q )\n are defined and non-zero. Then

(i yoQ]= o,

(il) yo )\.nz 0,

Proof: We check the case where |[x| is odd and show that (i11) y o thn =0

iv) QyeqT=o0
5.

. ]x{ j-1 <n+x j-1
P > P < =72 P

I
(v) QYO)\n—O




k
i
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. I T
(vi) QyeQ )\n =0

Using similar methods as those occurring in the proof of the previous

lemma, we obtain

I.
Lemma 6.6. Let L be the fundamental class of Sk andlet k>n. If Q s

any monomial defined in H,2""ZSS, i=1,...,m, then

Il I s
Q7 tx...xQ ™) o Q7[1]1= 0

provided Q°[1] is defined.

Remark 6.7. Since we do not have a left distributive law for the composition
pairing associated to finite loop spaces, Lemma 6.6 does not follow from Lemma

6.5 as one would hope. The composition products here must be computed "bare

hands!''.

Proof of Theorem 3. 4:

We shall show that if y 1is a spherical homology class in H, Sln+12.p+1X,
ly] >n i n is odd, and z ¢ H*F(nﬂ), |z] >0, then Qly oz = 0. The other
cases are similar (and easier) and are left to the reader.

n+l 1
Let f: Sk«—>§l Zn+ X be such that f*(L) = y where ( is the fundamental

k
class of S°. Evidently, it suffices to show that Q'L ez is zero in H @ zHgk,
: R I J I I J

Our first step is to show that Q¢ < Q'[1]= 0, Q L")an 0 and QL°Q )\n= 0
1

for any QJ[l] and QJ )\n which are defined. The second step is to show that

I

Qv e z= 0. This follows directly f{rom the first step and the distributivity law

given in Theorem 3. 2(i).
I J I I I

To show that Q¢ = Q' [1] = 0, Qter =0, and QcoQ A =0, we
first observe that the result is correct by Lemma 6. 5(iv)-(vi) if £J) = £J') = 1.
Assume that the result is true for all J and J' of length k; we shall prove the

result for those J and J' of length k + 1.
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: 1 J I J! s
We expand the elements Q¢ ¢ Q [1] and Qi e Q }\.n by Theorem 3.2(ii)-
‘ : 1.ntl k
(iii) and observe that since A is zero in H*Qn+ =5 , our result follows

jmmediately via the ihductive hypothesis together with Lemma 3. 9.

Proof of Lemma 6.5: We prove the lemma for the case where ly‘l >n and n
is odd; the other case is similar and is left to the reader.

Since y is spherical, let f: Sk —*Qn+12n+lX be such that f.(¢) = y where
{ is the fundamental class of Sk. As in the proof of 3.4, it suffices to prove
6.5 for the case QnﬂZ}HlSk and where y is replaced by <.

In case (i), observe that 0<2s <n. By Theorem 3.2 it follows
L e Qs[l] = Q% . ¥ Q% is non-zero, then 0< 2s - k <n because k is odd and

) k n . .
by assumption n <k. Hence we have the inequality -<-T2- <s< > which contradicts

N B

the non-vanishing of ¢ © Qs[l].

In case (ii), we have the formula vy o )\'n = )\n(y, ¢) i)\n(d),y) by Theorem 3.2.
But by III.1.2, this sum is zero. Since ¢ @ Qr)»n = QI(L Okn) = 0, the result
follows.

Case (iii) is an evident corollary of case (ii).

In case (iv}, we assume that QIL o Qs[l] # 0. We have the formula
) Q' e ®py= = ¥R,
by Theorem 3.2(ii)-(iii) and the fact that A =0 here. Set I= (em, S ety sl).

Then by Lemma 3.9 and I11.1.1 and 1. 3, we have

8 s -4 6. s, -8, &6 s -£
1 517h
(id) P§Q1L=2:cl,p Mo mm g 2n 2 251y L,

Cp € ZP where zzj = r. Combining (i) and (ii) together with Lemma 6.4, we

obtain the inequalities
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..oy k-1 ntk _j-1

— < - &K e,
(iii) 2P Sj lj 5 P and
(iv) --l; P <s+1zr< ____n—;—k

Furthermore, by applying L.emma 6.4 to QIL, we have the additional inequality

J—1<Sj£n+k j-1

" 3P :

(iii) and (iv) together yield

. k _j-1 _n j-1
< - — . .
(vi) £j Sj 5 P

Combining (iv) and (vi) together, we have

(vii) lzc_Pm_ = - 248, = pm-r<s.

1 J:l‘]

N

. m . .
Hence > {p™- 1 }< s. But by definition of Qs[l], we see that 0< s <n/2.
Since n <k, we have the additional inequality

m
™ %—-11-} <§~ which is of course a contradiction to the assumption

(viii) %‘[p
I s
that Q¢ ¢ Q7[1] # 0.
In case (v), we see that QIL o QS)\n = ZQS+k(P1;QIL0)\n).
Clearly (P:QIL.) o )\n = P:(QIL o )\n) by III.1.2. Since ( is primitive of positive
degree, we see that QIL is also primitive. Evidently QIL e )\n = )\n(QIL,qS)i)\.n(qS,QIL),

by Theorem 3.2. This element is zero by III.1.2.

Case (vi) follows immediately from case {v) together with Theorem 3.2(i)-(iii)

and the observation that A= 0 in H *SZ n+1zp +1Sk.

Proof of Lemma 6. 6:

The proof is very similar to that used in case (iv) above.

The details are purely mechanical and are left to the reader.
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. i Pfoof of Proposition 3.5: Let m =1 - a.ps. In order to show that

([m]* QI)\n) °Q x=0, x=[1] or )\n, we claim that it suffices to prove the
result for the case in which f(K) = 1. This claim follows from an obvious appli-

cation of Theorem 5.1 together with an induction on the length of K. {See the

. proof of Theorem 3. 4.) Furthermore, the identical argument used in the proof

(;f Lemma' 6.5(iv) can be used to prove the result in case x = [1]. Consequently

. we ‘shé.ll only include the requisite modifications for the case x = )nn.

Assume that ([m]*QIX ) e Qr)\n# 0 and consider the expansion
n

(@) (-ap®+@ ) e @1 = 2507 Bf (@ x[2])xr *[-220°)

By applying the internal Cartan formula together with Lemma 6.4, we see that
(i) FZ—(pm-}-l) <r+t _<_npm .

By arguments almost identical to those used in the proof of Lemma 6. 5(iv) together
with formula (ii) above, we see that
m

(iid) %(pmﬂ) -z
j:

This is an obvious contradiction and we are done.
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§7. THE ALGEBRA f AND THE FORMULA FOR (Q'[m]+[L-ap™] ea”x

A certain sub-algebra, /fn, of H*f‘(nﬂ) occurs ubiquitiously in our
remaining work on H* SF(nt+l). We define /J;l in this section and observe some
of its properties. Our first application is the derivation of the formula given in
Theorem 5. 4(ix) for expanding (Ql[m]* [1~apr]) o QJ)\n. Throughout the remain-

ing sections, we write [?] for [m] whenever [m] is determined by the context.

Definition 7.1. ,Jil is the subspace of H*'f‘(nﬂ) spanned by all monomials in
the * -product of QI[l], I as defined in IT1. §3, and [m], m ¢ Z.

We note first that the formulas in Theorem 5.1 and Liemma 5. 2 demonstrate
that 4 is closed under the composition product. Since ,J; maps monomorphically

into H*'f‘ via the natural map
inclusion ~ ~.
,J; 1clusion oy Fat) ~H, F,
we have

Lemma 7.2, With the composition product, ,J; is a commutative subalgebra

of H*E(nﬂ) and the natural map

,4‘; ~H, F(ntl) ~H,F
is 2 monomorphism.,

Proof of Theorem 5. 4(ix); the formula

@Tmls[-as e’ = = G(QJ‘[Z],QJ"Kn)gQI[Zm]OQJ‘[l]}*QJ”()\n*[-Zapr]):
THIN=T

I
We assume that Q [m] and QJ)\n are defined; our proof follows by

induction on the length of J.

First assume that J = (s), QJ = Qs. Then

str

(i) - (Ql[m]* [l—apr]) 3 stn =30 (P: QI[m]* [l—a.pr]) o Xn
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by.Thedrem 5.1. Expanding the right side of (i) using the fact that the Steenrod

operations act trivially on )\n, and quoting Theorem 5.4(v) we have

(i) (P:QI[m]*[l_apr]) o = P:((Ql[m]*[l—a,pr]) oX )= P:QI[zm]*xn*[-?.apr] .

Combining (ii) together with the internal Cartan formula for QS given in

T,emma 5.2 and I1.1.1, 1.3, we have

.o 1 -1 I i
(i) (Q[mlx[t-ap’]) © stn = = {0l [Zm]}*Ql(kn*[—Zapr“])
>0
ST fr %k f11
We write Q[2m] as B Q ... Q [2m] and quote L.ermnma 3.9 to see
that
: 6, s ~t +t 5, s -t +t & s -t
+r-i I +r-i k. .k k k-1 2.2 2 1,1 .11
(iv) Q%P o 2m] = @7 (= p R ... “Q B Q" “[2m])
where tk = r and i € Zp. By inspecting the coefficients appearing in the
Nishida relations, we_see that
0<s(p-l) -pt, +pt., . - 6., i=1...,k.
{v) < ’J(p ) -pY Pt i

Summing over j, we have the additional inequality

{vi) 0< = {s (p-1) - pt, +pt, . -
>1 ] jtl

5.} .
J

Letting b equal the number of non-zero Bocksteins in I and checking the

definition of Qs+r-1PiQI[2m], we find the additional inequality

1
(vii) 0 < 2(str-i) - |P Q [2m]| .
Consequently, we have

(viii) , 2 Zs (p-1) - 2z(p-1) - b - 2r < 2(s-i)

I

which evidently yields
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’ . J . I J
(ix) 2(Zs (p-1)-rp-b) < 2 s (p-1) - 2zp - b < 2(s-i) . . 1 T 1, 1 T 1 a
Since the left hand is just twice the sum expressed in (vi), we also have J 1 J

V | ’ ' 2 1
i) (PEpQTmIs[l-ap™] c@ M = 24 (@ “mpeli-e’) 02 0y

(%) 0<s -i.

where € dI e Z . We now apply the inductive hypothesis to compute each of
Lok
.tixe sums in (xv) and (xvi):

Consequently, by the internal Cartan formulas given in L.emma 5.2 and

in I1.1.1 and 1. 3, (iii) reduces to

) 1 T Jl Ji J!]l. ){Qll[ ] QJi[ll} Q.J']'.()\ [-2 r])
S 3 . 1) Se. (Q #[l-ap NoQ A= Zc_ o (Q [2],Q "N 2m]e Moy [ -2ap” ),
- () (Q'fm]*[1-ap”]) o Q%= = {o"Bla'zm® o *[-22p")) (xvid) Cxl( [+l n Zor) o n
325% < and }
T

I J : g Ju o9

: 1 r
2 T Lo ! L\ yQTzmlen ‘i’ (A *f2ap"]).
(The crucial point above is the restriction on the indices of summation.) Since (xviii) EdIZ(Q [m][l-ap JoQ LN Zd‘lzo- Q z2.e n) ! 0 n

= Q3+r

Pi QI[Zm] € 'Xn’ we may use L.emmma 7.1 to rewrite this sum for
>0

J’l J'll
! ) that
But for fixed Q [1] and Q )\.n, we apply the formula of Lemma 3.9 to see tha
fixed j a ‘
T the sums in (xvii) and (xviii) are respectively equal to
J! J Jr I

iy ‘ I 1o
G Qlzm] e Q1] . i Ze@ 2o D ){Pia'zmleq ko ‘0 #[-2ap’)  and

Hence (xi) reduces to It Ju I I

(0 Zo(@ q2l,0 ) {PTpall2mleq MlbeQ T +[-2227D -
(Xiii) (QI[Zm]*[l_aPl‘]) ° Qs)‘n = ‘?{QI[ZIIL] ° QJ[I]}* QS-J()‘-n*.["ZaPr]) .
J Combining the results in (xix) and (xx) together we obtain
J
(o) (@ fm]el1-2p"] © p%Q M=
Jl J‘” Jl \]_”
21,2 1xn);sczs+r{(P:QI[zm]oQ e o s[-2ap7D}

The case where QI)\n = fBQSXn is checked similarly.

Now we assume the result for all J of length £ and prove the result

I
(__1)‘(2 [m”Eo’(Q
for those J of length £+ 1. For this step, we assume that J = (1, s, Jl) and :

. . 1 I gu J! J! .

leave the simpler case vghere J=(0,s, Jl) to the reader. First we expand + (~1)|Q [:m]|+120(Q 1[2], Q 1)\.n)QS+r{P:ﬁQI[2m] o) 1[1])*Q 1()\11* [_Zapr])}
‘(Ql[m]* [1-ap’]) o B Q% lxn by Theorem 5.1 and Liemma 3.7 to obtain

| 1 Jl IQI[m” + 1 Jl .We use an argument similar to that in the initial step of the induction together with
(xiv) (Q [m]*[l-ap”]) = pR°Q A= (D) Q% T (P, Q [m]x[l-ap” ))oQ )

the action of the Bockstein given by Lemma 5.2 and Proposition 3.7 to show that

1
)]Q [m]l+1EQs+

T r I T Jl :
+ (-1 (P, BQ [mlx[l-ap J)oQ )\n)'

We expand the right side of this equation by the Nishida relations and the

requi;éements of Llemmma 3.9 to obtain
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J'l JH J'l Jll

(acxcid) 2@ 210 e {(Pla'zm] o0 e 0 s[-2apT)}
r>0
Ji Jll' j+r, r,. I Ji s~j Jl]i T
=B Zo(@ 2], ) PiaT2m]eq Tipk (0% (\_*[-2ap™ )}
>0 .
>0
and
J]l. Jllx stry, v I J]'. J'l' T
(exill)  Zo(Q 2L,Q )R (PR [2m]eQ Ti])+Q (\_*[-2ap ]}
>0 .
I I , h I :
== o0 12, ") eIsol2mlen k0o "o *[-22p"]) .
>0 ’
20

. J!
Since the terms Q3+r(PiﬂEQI[2m]OQ l[l]) are all in J;, we may apply Lemma

7.2 to obtain
J! J!

(xxiv) = oI (P s QM 2m]e @ 1} = zm]o i ] .
r>0

Combining (xxi) together with {xxii)-(xxiii) and the action of the Bockstein

given in Lemma 5.2 and Proposition 3.7, we obtain

I T s J1
{xxv) (Q[ml#[l-ap ]) o pQ°Q A=

oo I I i 1 s-j"1 T
zo(Q 21,2 " Ha[2m]epa’e ko (. *[-2ap"))

it

Lo J! Ju . i
Q" 1l o1 ) {Qzmleolo Tt epal o o #[-2ap")) -

+ Z(-1) o(Q [2L,Q

Visibly this formula is that given in Corollary 5.3(ix) and we are done

Remark 7.3. We were careful to keep track of the indices of summation here in
order to make certain that all operations used here are defined in H* %(n—bl).

Compare this remark to remark 6.1.
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‘§_8. COMMUTATIVITY OF THE PONTRJAGIN RING H_SF(ntl)

Throvilgho'ut this section, we assume that n and p are both odd. A
brie£ outliﬁe of our method follows, Because we have no analogue of a ""maximal
1 for SF(ntl) and no algebra monomorphism of H, SF(n+l) into an algebra

torus

which.we know a priori is commutative, we resort to the inelegant method of

actually c:omputing commutators in H % SF(n+l). The work is simplified greatly
by’fiz.lding algebra generators for H, SF(ntl) (given in Lemma 1.7) and then
showing that the algebra generators commute. (Indeed, our original proof of

commutativity involved the computation of an arbitrary commutator!)

Proof of Theorem 1. 4; the commutativity of H_SF(nt+l):

A collection of algebra generators for H, SF(n+l) has been specified in
Lemma 1. 7. There are three types of generators listed. That they commute is
checked by the six evident cases. All sequences of Dyer-Lashof op___gra.tions
are assumed to be defined in H*F(n+1); the indices of summation are evident

and are consequently deleted.

Case I: QI[l]* [1'P£(I)] and A * [-1].

Applying Theorem 5.1(i) together with the definition of o(-,-), We obtain
@ @pen-p"™n e o s[-)
= zo(@™ 1], @ (- "1l (@ e i-p"D on_dal @ il (-p" o
Expanding (Q [1J#[1-p"]) © A by Theorem 5.4(v), we obtain
o, |

@ @ ue-s ™) o n_ = oM [2]en 528

Expanding (QI“[l]* [l-pz(I)]) o [~1] by Theorem 5. 4(ii), we obtain

(150 @ p-p" o (1] = Q- L1
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Combining (i), (ii), and (iii) together with the fact that ;-xn{ is odd we find
that

@) (@QIn-p"] o 0_s[-1)
I 113 I” I' 1 1t
= mo@ g oM (19 B [Z“xn*gl (1% Q" [-1]a [-1-p0] .

An application of Lemma 5.3 (the internal Cartan formula) to the right hand

side of this equation yields

I
@ @i o 0[] = (0T« o0y

We now compute ()\n* [-1]) o (Ql[l]* [l—pz(l)). Since the coproduct for )\n
is given by Llen = )Ln ®@[2]+[2]® )\n’ we may apply Theorem 5.1(i) to see that
(vi)  O_x[41] o @QIx0-p")

. 1
= LoD o Qe ™1+ (12 Mo o epape "y

By Theorem 5. 4(vii), we have ()\.n*["l]) o QI[I] = 0. We expand the second
summand in this equation by Theorem 5. 4(iv) to obtain

2(1) £(I)

I
(vii) (_x[-1]) o (@'ul+ 1" = (-yl®@ [1”911[1]*)\11*[-1-;, 1.

Comparing (v} and (vii), we observe that A% [-1] and QI[I]*[l-pI(I)

1

commute.

Case II: thn* [1-2P£(I)] and )\n*[‘l]

We use the distributivity law in Theorem 5.1(i) together with the definition

of o(-, -) to see that

Gy (@ 2l -2p"") o n_ = Q" [aler x[-4p
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- () (QI)\.;l* [172p£(1)]) ° (}\n*[-l])

/(1)

1 I” 1 11
- zo 2L et )\.n)(-l)‘Q Ml (! _[2]*[1-213’2(1)])axn}*{(czI A *[l-zp T De[-1}

2(1)

" I” 1 1t
+ze@n, " 2nn!® Pl «pap@pen Fe @ i 20" o1 -

T . I A1 .,
Expanding (Q [2]%[1-2p ( )]) o )\n by Theorem 5. 4(v), we find that

E(I)] )

" I is X
A similar expansion of (C)I )\n* [l—Zp‘e( )]) e [-1] by Theorem 5. 4(ii) and (iv)

yields
11 H z I
(1) @ _+1-20"Mp o (11 = (0@ 0w [-aDx[-1425" .
1 11 £ I
We also.expand the terms (QI )\.n* [l—Zp’q(I)]) o xn and (QI [2]x[1-2p ( )]) o [-1]
by Theorem 5.4(ii) and {v):
1 ) 1 I
(iv) @ - n-2s9) o N = 20t % 2] _* [-ap™,  and
i3] ’ Ill 2 I
) @123« 1-25"07) o [-1] = Q" [-23 [-1420" ] .
In the following, we combine formulas (i)-{v) together.
(i) (@ *[-2p""]) 0 O_*[-1])
I”
1 1 IQ ). |+1 1 1 i I
=ze@ 2L ) T e A +Q' O x[-4]*[-1-2p (1)

H 1" I” ‘ ¥ 1 1 I
+ 220 (" A ol [z])(-~1)IQ [Z]IQI (n_*[2])= xn*QI [-2]«[-1-2p ( )] .

A check of signs together with Lemma 5.3 (the internal Cartan formula) and the

formula in (vi) above yields

' (I
(vii) (len* [1-2p']) o a x[-1D) = Qlkn* A *[-1-Zp 0.
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We now compute ()\n* [-1]) = (Q,I)\n* [l—Zpﬂ(I)] as in the above case by

applying Theorem 5.1(i), and Theorem 5.4(iv) and (vii) to obtain
I

(vii) (A x[-1) o (Qlkn* p-zp'p= oy ? QM xn*[-l-zp“n] .

Commutativity of the elements in this case is checked by a comparison

of formulas (vii) and (viii).

Case Ii: (_*[-1])®
It is easy to check that ()\n*[—l]) o ()\n* [-1]) = 0 . by Theorem 5.1,
Theorem 5.4, and I1I.1. 2(6).

Case IV: Ql[l]*[l—pﬂ(l)] and QJ)\n*[l-Zp'q(J)]

We compute (QT1]%[1-p2"]) © @’ 1-2p""))) by Theorem 5.1(i).

2(1)

@ @np-pM o @ s s

ST (oo [ AT= 1 N
= 5o(@' 11, @' I (-n 2@ e -pr P00 1

L ety o o227

Applying Theorem 5. 4(ix), we find that

@ 10" 0 @N = me@” 21,07 Q" 2’ 1™ 0 [-226™ )

1
Combining (i) and (ii) together with the expansion of (QI [1]* [l-pz(l)])O[ l—sz(J)]
* implied by Theorem 5.4 we obtain

) @'plen-pp o (Qan* -2

C : " "1 |

- 2o(@" 1}, 0" 1w (@7 [21, @ IGH n
{QL[Z] . Q.]'l[l]} . QJ”()\_n* [—Zapl(l )])* QI”[]_-ZPI(J)]* [2].

. R 1 1 "
We coramute Q7 (A * [-Zapz( )]) and QI [l—Zp‘e(J)] in the * -product to obtain the

formula
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o @ nesD o @ «n-2" )

1 1 113 : I” Jl
- 3o, 0" e @ 21,7 (-2 Tl 2

(" [2100” npe " 120"V 1x " 0« [-26" D121,
We compute (QJ)\n* [1-2p£(J)]) o (Q,I[l]* [l—pﬂ(l)]) in a similar fashion:

@ @ 020" 0 @iy

J" I
= Zo(Q [21.R7 A )(-D)

£2(J)

(@ 21s-2o" M) 0 Qi lie” _sn1-2p"p 0 p®0p)

f " Jll I
+ 20 (@ N o’ [2])(-1)*Q [21] |l

2(7)

{(Q“T'xn*[l-zp 23)

aeli

De Ql[l]}*{(QJ“[Z]*[l-Zp Do [1-p

The second sum vanishes by Theorem 5. 4(viiil). Furthermore, the element
’ 1
(Q':r [2]= [l-Zp‘e(J)]) ° QI[l] is in ,Ji by Definition 7.1. By Lemma 7.2, we

may write

. 1 1! i
(vi) - @ 123+ 1-25") 0 oy = (- TR 0 (@7 2141260

which may be expanded by Theorem 5.1(i} to obtain

2(1)

" II J"
wi @ 22 o ol - Be@t @ ey WL

(al'ny e ¥ 2+ (@M -2t} .

J 2(J) A1)
The element (Q A * [1-2p"']) o [1-p"'] may be expanded by use of Theorem
5,4{vi) to obtain

iy @ e-2p80] o @ = o7 220 2(3)

D [(1-2p 2Oy,

)(1-p
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Using formulas (vii) and (viii) to substitute in formula (v), we find that
@ @ +-28"7) o (@ pe g™y
. J! I J! It

=Zo(Q 1L, Q [1De(Q” [2],Q )\.n)("l)

{a"p1e @72 o -2V 0 (26" e o]

I! 1 . t 1
Since Q [1]° QJ [2] is in ,<,;, it is obvious that Ql [1]° QJ [2] =
Il Jl Il Jl
Q 1le Q" 1] [2]=Q [2]e0Q" [1] . Substituting this result in (ix)-
together with the obvious commutation formulas for x -products and the fact

that [QJI')\nHIQJ‘[Z” = ‘QJ)\ni » we have

£2(J)

@@ 20" e @ p-p My

Il I J It
= Z¢ (QI [1], al [1])‘0‘(QJ [2], o’ A N-1) i '

{3121 o7 ol 1-2p8 s e’ s 2ot 12].

Visibly, the formulas in (iv) and (x) agree modulo the appropriate

commutation sign and we are done.

Case V: thn* [1-2p‘c,(1)] and QJ)\n*[l—Zpﬂ(J)] A

We appeal to Theorem 5.1(i) again.

) (thn* [1-2p""p @« [1-2p"")

. " ™ 1™ |
=zo@ [z, )y 2 "
{(@" T2} [1-291(1)])°Qan} * {(Ql”xn* -2 P yoi-2p"
1"
RPN

+ Z‘U‘(QI'}\.n, o r2ne-n

{(QI;‘n*[l~2P£(I)]) o QJ"n}* (e  fep1-26"0y) o [1-255703
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rfhe second sum vanishes by Theorem 5. 4(ix) to get

g @ s n-2e ) o @ en-2™)

Ill J‘
o w18 rle™
= Zo(Q [2],Q hn)(~l)

(@' [2]#[1-2p"M) © ijn}*{(gl “"n* -25"07) o p-2p™3}

) ' 1 I
| Wé expand (@ [2][1-25"]) @ Qan and (@ Ay¥ -25") o 1-20"7] vy

Theorem 5.4(ix) and (vi) to see that

‘ [ 1 1" 4 ! Ju I
@y @z o = 2@ 21 0™ )tk ke 0 -4,

and
11t " I £ J
(iv) (" )\,n*[l—Zpﬂ(I)])g[l-Zp—Q(J)] = of e 4P£(J)])*[(1__Zp£( y(1-2p2t )]‘
Substituting these last two results in (ii) above we see that
(v) (Qlkn* [-2p"] o (Q‘Txn* n-2pt)
I 11} J’
lo" 1o |

= 2o (@ [2], QI”xn)v @’ '[21, QJ”xn)(-l)
(aa1e o e 0_s[-4p el 0 _s[-" D pel2] .

Observe that QII[4] ° QJl[l] is in Jn and by LLemma 7.2, we have
It J!
1 ! . J'I Il
(vi) Q' [4=]c>czJ [1]= (—1)lQ (112 [I]IQ [1]eQ [4].

Now by interchanging I and J informulas (v) and (vi) and checking
degrees, we see that the two generators in case V commute.

2(3’)]

Since both of these elements lie in ’jn’ they commute by Lemma 7.2.

Case VI: Ql[l]*[l~p£(l)] and QJ[l]*[l—p
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STRONG HOMOTOPY ALGEBRAS OVER MONADS

Thomas J. Lada

Introauction: A topological space X will be called a loop space
if there exists a space Y and a weak homotopy eguivalence
X + Q¥; such a space Y is called‘a classifying space for X.
Here the symbol QY denotes the set of continuous hase-pointed
functions from Sl, the l-sphere, into X topologized with the .
compact open topology. There is a history ef theorems that
-idengify certain H-spaces as loop spaces. Milnor [9] showed
that a topological group is a loop space. Sugawara [12], Dold
and Lashoff [4] and Stasheff [11] extended this result to
associative H-spaces and to strong homotopy associative (or A )
H-spaces. The fundamental peint in each proof is the
construction of a classifying space for the given space.

One is then confronted with the problem of whether a given
space X is an n-fold leoop space, i.e., whether there is a space
Y and a weak homotopy equivalence X - oy, In this case. Y is

th classifying space for X. While it was essentially

called an n
the strong homotopy associativity of the multiplication on X that

enabled one to construct its classifying space in the l-fold -
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loop case, higher homotopy commutativity of the multiplication
proved to be the key to n-fold loop spaces. As a special
example, Dold and Thom [5] proved that a strictly associative,
commutative H-space has the weak homotopy type of a product of
Eilenberg-MacLane spaces. (It has been pointed out to the
author that J. C. Moore also has an unpublished proof of this
fact.) In general one must develop some method of keeping

track of all the requisite higher associativity and commutativity
homotopies on X.

‘ Boardman and Vogt [2] showed that if a certain'type of
functor acted appropriately on a space X, they could then
conclude that X was homotopy equivalent to an associative
H-space Y and thus build BY and further, that another functor
acted similarly on BY and they could then iterate their
argument. Segal [10] was able to accomplish the same thing by
usingtonly one functor. He has his functor act not only on X
but also on spaces of the homotopy type of X,

In category theory there is a concept of a functor being
a monad or triple. Beck [1] had shown that if the monad o g™
acts on a space X in a certain manner, then an n-fold classifying
space could be constructed. Although this theorem gives a
procedure for identifying an iterated loop space, there are
few spaces on which 2":® acts properly.

May [G] generalized this result to monads that look like

n.n

27L7. He has two theorems along these lines. The first

theorem makes precise the idea of "looks like" a"z®. His second

theorem tells how to construct the nth classifying space of X
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when one of these monads acts on X. One point that is missing

in this éheoiem is homoﬁopy invariance; if X is an n~fold looep
spéce and Y is homotopy equivalent to X, this functor need not
act on Y.

In this work we introduce the idea of a monad D acting
on a space up to homotopy and study the theory of such spaces
and maps between them. In this context May's recognition
ﬁhéorem is generalized up to homotopy. In additien a homotdby
invariance theorem in the sense of Boardman and Vogt [3, p. 1]
for this theory is proved.‘

Section 1 contains some motivation for and the definition
of a Strong homotopy D-space; it is this strong homotopy action
of the monad that encodes the homotopies required for an n-fold
loop space. The monad action in May's theorem is a special case
of this strong homotopy action.

Given an s.h.D-space X, we construct a D-space UX in
Section 2. UX contains X as a deformation retract. At this
point May's recognition theorem can be generalized to an
s.h.D-space X by applying his theorem te the D-space UX.

In Section 3 we introduce a conceptual definitien of a
strong'hemotopy D-map between s.h.D-spaces (called an SHD-map);
such a map froﬁ X to Y will be essentially a D-map from UX to
UY. SHD-maps form the collection of merphisms for a category
whose obj;cts are s.h.D-spaces. This section concludes with
definitions of geometric strong homotopy D-maps from X to ¥
where one space is a D-space and the other is an s.h.D-space

(these mapé are called s.h.D-maps). These are the maps that
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frequently occur‘in nature; e.g., a homotopy eguivalence
between an arbitrary space and a D-space. Sections 4 and 5
provide some machinery required to link together our conceptual
and geometric definitiens of strong homotopy D-maps.

The followiné conceptual homotopy invariance theorem is

proved in Section 6:

1) If Y is an s.h.D-space, £: X ~ Y a homotopy equivalence,

then X is an s.h.D~space and £ is an SHD-map.

2) If £: X + Y is an SHD-map between s.h.D~spaces and if

g = £, then g is an SHD~map and g = f as SHD-maps.

A3) If £f: X » ¥ is an SHD-map between s.h.D-spaces and is
a homotopy equivalence with homotopy inverse g,ithen
g is an SHD-map and feg = 1 and gof - 1l as SHD-maps.
This theorem is deduced from our geometric homotopy invariance
theorem which consists of the above three statements restricted
to b-spaces with SHD-maps replaced by s.h.D-maps. The proof
of this geometric homotopy invariance theorem occupies Sections
7, 8 and 9.

In a concluding appendix, a geometric definition of a
strong homotopy D-map between s.h.D-spaces is discussed. These
details should convince the reader that the conceptual definition
of such a map is both reasonablé and desirable.

Throughout this work whenever mention is made of a category
of topological spaces, it should be taken to mean the category
of compactly generated weak Hausdorff spaces with non~de§enerate

base points. It will be aenoted by the symbol T.
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1. 'Strong Homotopy Algebras over Monads.

We begin by recalling the definitions eof a menad and an

algebra over a monad.

pefinition 1.1l: A monad in any category C is a triple (D,u,n)

where D: C + C is a covariant functor, n: 15> DB and y: DD + D
are natural transformations of functeors such that if X is any

object in C, then the following diagrams commute:

DnX nDX pDX
DX ~——% DDX ¢———0 DX DDDX =3 DDX

u(X) DuX uX
uX
DX PDX 3 DX

Now let X be a topolegical space and let (D,u,n) be a monad
in J, our category of topological spaces. Suppose also that

ho: DX + X is a continueus map in J.

pefinition 1.2: The pair (x,ho) is a D-space (or bB-algebra) if

the diagrams

n iH
X ey DX and DDX =eerm———3 DX
h Dho h_
X DX ——ememeed X

commute., If (X',go) is another D-space, then f: X + X' is a map

of D-spaces if
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Df
DX =y DX

£
p SN 3

~cemmutes. It should be emphasized that f is required to
preserve all of the D~structure of both X and X' in the sense
that if we apply D to thé diagram it will still commute; the
same must be true if we apply higher iterates of D. This 6ne
commutative diagram will guarantee all of this since D is a
functor and X and X' are D-spaces. Discussion and examples of
menads and algebras over monads may be found in [G, Section 2]

and in {[1].

Since the definitiens of monad and D-space involve
commutative diagrams of maps between topological spaces, it
appears that one might be able to generalize these definitions
"up te hemotopy". This generalization for a monad will not be
pursued here; however, i£ will be shown that generalization of
D-spaces does merit some attention. In all that folleows, let
us agree to write p” for P iterated n times whenever n is se
légge as to render the previous notation unwieldy.

To begin our up-to-hemetepy generalizatien, it seems. a

straightforward requirement that the diagram

u (X)
DDX e DX
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commute up to homotopy; i.e., that we have a homotopy

’ 2
hlg I x DX + X such that hl(O,y) = hoou(y) and hl(l,y) = hoomho(y)
where y € p?X. At first glance this appears to be a natural
generalization of D-space, but we have not yet taken into

acceunt all of the D-structure on X. Implicit in the definition

of D-space is the commutative diagram

1 (DX) D2h°
o Du (X)
p%x p%x p%x
r (X) l l Dh 1 (X) l n(X) l l Dho
DX DX
l .
[¢]

X

In other words, all possible ways of mapping D%X > X via p and ho
are equal. The homotopy problem now becomes more subtle. We have

the six maps from D3X + X given by
hocuoDu hoobhoonzho ho°u°gD
. 2
ho°Dho°Du ho°u°D ho hOODhoouD
and the relations

hoouoDu'z hooDhooDu via the homotopy hloDu

14

ho°u°uD hooDhc°uD via the homotopy h,euD

2 - 2 N 2
hoomheon hO = h°°u°D ho via the homotopy h1°D ho.
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We also have that h°6u°Du = ho°u°uD since (D,u,n) is'a monéd h,(0,t,y) = hlauD(t,y)
and that h0°Dho°uD = ho°u°D?‘ho since p is a natural transformation
of functors. In addition there is a homotopy between h °Dh oDu h,(s,0,y) = h *Du(s,y)
and he°Dh°°D2h° which is denoted by h0°Dh1. The homotopy Dh1
h,(1,t,y) = h_ °bh, (t,y)

may be defined by (Dh,) (t) = D(h,(£)): D’X + DX for all 0 < t < 1.

It is a special property of D which enables us te piece together

[}

h, (s,1,y) h1°D2h°(s,y),

the Dhl(t)'s to define the map Dhl: I x px » DX. This property
will be discussed later. The essential fact about Dh1 is that It is apparent that for arbitrary n > 0, we would like %o
it is a homotopy between DhooDu and Dheéuzho; in applications we consider all of the homotopies between all of the maps pUx + X
may want to choose different homotopies between these two maps and‘conSider compatibility relations among them.

and denote them all by the symbol bBh,. This discussion should motivate

Thus we have four copies of I x p3X and because of the above L.
pefinition 1.3: Let h,: DX + X be a map in J and (D,u,n) be a

equalities we may join them together at their matching endpoints ]
monad in J; then the pair (X,{hq}) is a strong homotopy D-space

to obtain the space 312 x D3X where 312 is.the boundary of 12, +1
(s.h.D-space or s.h.D-algebra) if the homotopies hq: 19 x p97x 4 x

i

h <poD?h satisfy the compatibility relations
° ° h, °D?h h_oDh_°d’h ‘
= h oDh_euD ° e e e b j-1 '
_ q(tl,“.,tq,y) = hq_1°(1 * D uq_j)(tl,a,.,ﬁj,,..tq,y)
hlﬂuD hOODh1
if tj = 0
h0°]—‘°1lD
h1°Du h oDh eDyu .
= ho°u°Du 0 ° and
To have an appropriate generalization of D-space up to hq(t1:°°°'tq'Y) = hj_lo(l % Dth—j)(tl"'“’e"’°°'tq'y)

J
homotopy, we would like the above homotopies to be homotopic;

def
i.e., we want to assume that the above 2~cube may be filled in

2

5 .
By_q (Eysecerty g DR S(Es 0 0eearty)

by a map h2: 12 x p3% + X such that

if b, = 1.
Yy

g+l

Here, j = 1,...49, @ > 0, y ¢ D?"°X, and Ej means delete the
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coordinate tju We also require the commutative diagram

. n
X e DX

The symbol - is used to denote the map u(Dq—jx): pd~3*2y , p3-3ti
in order to facilitate the notation. It is easy to see that a
Qtrict D-space may be regarded as an s.h.D-space by taking all
of the higher' homotopies to be constant. It is also not difficult
to see by a counting argument, the properties of y arising from
the monad structure of D, and the fact that p is a natural
transformation of functors that all of the maps Dq+lx + X involving
hj's and n's are taken into account by this definition.

To justify the homotppies Dth—j’ and for later use, we
discuss the notion of continuity of a functor F: T + T. This
means that F: Mox(X,¥Y) + Mor(FX,FY) is a continuous map for all
spaces X and Y, where Moa(X,Y¥Y) is the function space of based
maps X + Y. 'Given a homotopy h: I *x X + Y and a centinuous
functor F, application of F to the collection of maps
ht= X+Y¥, 0<t<1l, yields a family of maps th: FX -+ FY which
"fit together" continuously to yield a map I % FX + FY. From
an adjoint point of view we can think of our original homotopy
h as a continuous map I + Yxn The continuity of F by definition

X, FYFX is continuous. Thus the composite

X

means that F: Y

Feh: I ~+ YX -+ FYF is continuous. We will use the symbol Fh for
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the homotopy I x FX + FY as well as for the usual map

. F(I x X) + FY and hope that the context will be clear enough

to avoid confusion. In practice the homotopy will factor

through the usual map via a canonical map I x FX » F(I x X).
Thus, te validate the discussion above, we assume that D

is aAcontinuous functor. This holds, for example, if D is

derived from an operad ¥ = {D(j)} [G, p. 1]. Here a canonical

mép.G: I x DX » D(I x X) is induced by passage to quotients from

the maps

%

s x \Lom xx3 s Lo x @ xxd
] ]

specified by

i

G(ti[dlxli°°°lxj]) [da; (tpxl)yenaf(tixj)]l

and Dh: I % DX + DY is the composite of § and Dh: D(I x X) -+ DY.
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2. A Generalized Bar Construction.

A generalized bar construction for strong homotopy D-spaces
is presented here and is used in the proof of a recognition
theorem for these spaces. Let (D,u,n) be a menad and (F,1) a
D-functor [G, p. 36]. Assume that D and F are continuous
functors.

Before proceeding to our constructions, a few comments are .
needed concerning an appropriate éétegory for which our main
theorem is valid. A reasonable setting is the category of
NDR pairs of the homotopy type of CW complexes. In this
category a pair (Y¥,A) is said to be retractile if the homology
exact sequence reduces to 0 » H(A) - H(Y) -~ H(Y,A) -~ 0 [7].

It is not required that this sequence split. Retractile pairs

have not only the homotopy extension property, but also in some

sense a relative homotopy extension property. Stasheff [10, p. 291]

has shown

Proposition 2.1: Let (X,m) be an H-space. If (¥Y,A) is a

retractile pair, then given hemotbpic maps fo,flz Y+ X and a
homotopy,gt: A -+ X such that g; = filA for i = 0,1, then 9

extends to a homotopy ft: Y +» X.

We will make use of this proposition in Theorem 2.3.
Construction 9.6 [G, p. 88] may now be generalized for

strong homotopy D-spaces to

Construction 2.2: Define a topological space that depends upon

a monad (D,u,n), a strong homotopy D-~space (X,{hq}), and a
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p-functor (F,A) by

8(F,0,%x) = ]| 19 x rp%/n
q

where the equivalence relation ~ is defined by

'(tz,n.,,tq,x(x)) e 1971 x ppIly if £, =0

‘ . j-2 -1 a-
(Eyranertgr®) n¢ (€renestyrenrt 020 L) e 137 xpDY x

if t, =
i i 9
j-1 3=l ppi-1
\(tl,“.,tj_l,FD ho_s (tj-]-l"’““'tq'x))EI xFp- X
N if t. =1
J

where x ¢ Fp9x.
- The primary example of such a space is given by taking the
p-functer to be (Dn,Dn‘lu).
The key technical detail needed for our generalization of

-the recognition theorem and our homotepy invariance theorem is

presented here as

Theorem 2.3: Let (DY,Y) be retractile, D come from an operad,

and consider the D-functor (D,u). Then DB(D,B,X) = B(p2,D,X).
Proof: We need the existence of a Ej~equivariant, 1-1, onto map
o3 x (JL1% x 0T ey o L1 x o) x 0™y
q n

for all j. May has proven such a theorem and has exhibited such
a map for the strict D case [G, Theorem 12.2, p. 113, and also

P. 126]. This map is essentially defined by using the concept
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of simplicial subdivision. The only difference between our
required map and May's map is that his is defined on simplexes
whereas ours must be defined on cubes. However, if one looks
closely at the definition of B(D,D,X) and thinks of cubes as
“thickened" simplexes, the identifications in B(D,D,X) collapse
these extra faces. Although these faces are not collapsed to
points in general, they have lost their parameters from the

cube. We thus describe the required map as follows: to map

q qg,+1 q. q.+1 £q. ‘Zq.+l .
P(3) xI ' xD ! Xx...xIJdxDJ x+1I Txp( x (@ + xJ,

first calculate the map for simplexes. Here, it simplifies
calculations if we define An C:Rn to be {(tl,aaa,tn) e R® such
that 0 < t; <l and t; 2 ... < t,}. It is necessary to subdivide
the product Ag, % .. X qu to define the n{ap° Then “tgé?ken"
the appropriate faces of each Aqi and obtain the cu?;iI 1 which
contains»Aq1 X Lo X quu Now subdivide the cube I * in exactly
the same manner that Aq1 X ... X Ag., was subdivided and use

q,+1 g.+1 Zqi+1
exactly the same degeneracy maps on D X% ... xDJ X (D

x)3
that are used in the simplicial case. The equivalence relation

in E(DZ,D,X) will guarantee that our map is well-defined and
continuous if we require our higher homotopies be relative

homotopies with respect to the subspaces of p9x given by the

various n's: Dq_lx + px. Noting that each p%X is an H-space

and recalling the earlier comments about our category, we

utilize Proposition 2.1 to guarantee that our higher homotopies

behave properly on subspaces. B

Corollary 2.4: B(D,D,X) is a D-space.
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"proof: We take for the D-structure map on B(D,D,X) the map
Proot !

ﬁ(Dz,D,X) + B(D,D,X) induced by the natural transformation

s p? + D. We also denote this structure map by . EE5

It is perhaps instructive to examine a few examples of the

procedure in 2,3:

Example 1: Let us map

D(2) x I x D2X x I x D2X + 1% x D(2) x p¥x x p°x
by
(s, =2 ,4,02n(x) ,DnD(y)) if s <t
(d,s,x,t,y) + .
(¢, =% ,4,0nD(x),D7nly)) if s>t

It is clear that the coordinates of the cube in the range are
just those of the thickened simplex; but for this thickening,
the map is the same as in the strict D case. The image of the
point (4,1,x,1,y) is (1, % ,d4,D%n (%) ,DaD(y)). Since this peoint
is equivalent to (d,Dh (3 ,0%n(x)), Dh (3 ,DaD(¥))), g may be

taken to be any 0 < t < 1 if
ph, |D?n (D?X) = Dh, |DnD(D?X) = D?h_

for all t; this last equality always holds for t = 0,1 and the
assumption that (DY,Y) is retractile allows us to alter bh, for
0 <t < 1 so that the equality holds for all t. This guarantees

that the map is well-~defined and continuous.
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Example 2: Define the map

D(2) x I x DX x 12 x p3x » 13 x P(2) x DX x D¥X
by
£, -s 3.2 2
l_sltzldlm neD"n(x) ,DnD (y)) if s <t

dr(slx)r(tlltZIY)+ (s, 1

s-t; t,-stt, (1-s)
Rl o e s L n*DTD ) 020D (1))

{

if t,oss <k, F tl(l -t,)
s-t,~t, (1~-t,)
(tl'tz'i'€':E“TT:E_T'd D*aDeDnb (x) ,D%n (¥))

\ if £, +£(1-¢t) <s <1,

In this case our subdivision of I° consists of the three regions

that look like

N (1,1,1)
! (1,1,1)
(0,0,1) 4 y(0,0,1) (1,0,1)
‘ (1}o,1)
~(1,1,0
( ) (1,1,0) = (1,1,0)
“d (0,0,0)4 il
(0,0,@) (OIOIO) (11010)
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where the surface that the second and third regions have in
commen is defined by s = t, + t,(1 - £,). This is again the
generalization of the problem of subdividing Al x A2. Let us
examine what occurs at the edge (1,x), (l,tz,y); we will ignore

the factor D(2) for the moment since it remalnslunchanged in

. 0
these calculations. If we define 7= 0 and = t2, we have

(L,%), (Lt,,¥) + (Li3t,,0%noD?n (x) ,BnD? () :
~ Dh, (3,t,,DneD?n (x) ,DnD? (¥))

= Dh, (t,,Bh_(x),¥)

t, -

1
(1,§s—2—DneDnd (x) ;021D (¥) )

+

(llx)l(lrtély)

t,-1

h, (3 ‘%T‘ D3noDnB (%) , 020D (y))

=4

It

Dhl(tZ,Dho(X),Y)

and
(Lx), (1,t,,9) » (L,t,,5,D%aDeDaD (x) ,D¥n (¥))
n th(tz,%,DanoDnD(x),Dan(y))
= Dhl(tZ,Dho(x),y)
if

Bh, (s,t,0%n(y)) = Dh, (s,y)
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bh, (s,t,Dnb? (y)) = Bh, (t,y)

and
bh, (0,t,0%nD(y)) = Dh, (t,y).

Again, this will be true under our restriction that th be a

homotopy relative to the subspace D3n(D3X) unien DnDz(DSX); the

assumption that (DX,X) be retractile guarantees this.

Notation: Threughout the remainder of this work, the strict

D-space B(D,D,X) will be denoted by the symbol UX.

Proposition 2.5: Let (X,{hq}) be a streng homotopy D=-space.

Then X is a deformation retract of UX.

Proof: Define a map i: X + UX by i(x) = n(x) ¢ I° x bx C UX.

Now define a map r: UX =+ X by

Ttyreeart ,¥) = hq(t1’°°“’tq’y)°

q

To see that r is well-defined, suppose that tj = 0. Then

r(tllonnltqu) = hq(tlleaa'tj'aan,tq’y)

= j-1
= hq_l(tl,.,ugﬁj,,.,,tq,n uq_j(y))

by the properties of hqu
But

. §-1
(tll""'lt y) v (tll°°-ltjlﬂ°°ltqlD uq_j(Y))

g
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) and

j-1 - P j-1
D7 Ty _j(y)) = hq_l(tl,,,,,tj,,,a,tq,n uq_j(y))

r(tl,.eu,Ej,oao,tq q

again. Now suppose that tj = 1. Then

y o ElEpreeartay) = holE et ,y)

q

3 -
hj_l(tl,aaa,tj_l,D hq-j(tj+l""'tq'(Y))'

On the other hand, since

- 3-1 , p
(£yrevertqe¥) & (B peuarty 1 Doh lEg et ) e T x DX,

3
r(tl,,,,,tj_l,D hq_j(tj+l,nna,tq,y))

- 3 ~
= hj—l(t1'°'°’tj—1’D hq-j(tj+l"'”'tq'y))

again. Thus r is indeed well-~defined. We also have that

roi = idx since
roi(x) = r(n(x)) = ho(n(X)) = X,

To show that ior is homotopic to the identity of UX, define

a homotopy
F: I x UX +~ UX

by

. +1 . a2
F(Srtyseeertyr¥) = (Si€yseeertomy () e 19 x DT
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q,y) e I x 19 x Dq+lx and “q+1 = an+lo To

see that F is well-defined, first let tj = 0, Then

where (s,€;, ...t #%)  Flsityse.erty g DI (s 0eeeity))

3
(s,tl,ono,tj_l,nj+lcn hq_j(tj+l,.°,,tq,y)).

2 j~1 \
(Srtpreeerto¥) v (Setyrearty et D) Hgog ()

Again, equality of the right hand sides of *) and **) follows
‘and - from ihe naturality of n. Thus F is well-defined.,

When s = 0, we have

*) F(Sltlleovrtqu) = (Sltll---rtqrﬂq+l(Y))

F(G,tl,noo,tq,y) (0't1'°°"tq'"q+l(y))

. i ,
v (sltllaaaltjl-enltqu uq_j+1°nq+l(y)).

-4

(Eyrevert_,u n (v)
Also, 1 g’ g+l g+l

It

(tl,on,,tq,y).

x%) F(s,tl,...,ﬁj,n.a,tq,D]-luq_j(y))

Thus F|{0} x UX = identity on UX. When s = 1, we have

a j=1
=‘(Sltll"°ltjl°¢nltqlanj Uq_j(Y))-

F(l,tl,eao,t 'Y)

q (Letyreeest

qlnq+l (Y))
The eguality of the two points en the right hand side of #*) .

on = Dj—lu
g-j+1 g+l q a-j
which is a conseguence of the naturality of n. On the other

é and x*) follows from the eguality Dju

4

Dho (tyreeertgeng,; (¥))

t
q

hand, if tj =1, “o°hq(t1"'“’tq’y)

(Ss€pseaerter¥) & (Setpreanrty 1DV (b5 yrenertsy) LeT(Ereaartys¥) e

and we have

Thus F|{1} x UX = iexr and we ate done., EEER

Proposition 2.6: Let (X,t£) be a D-space. Then r: (UX,u) + (X,E)

*) F(Sltll'°°ltqu) = (sltllﬂnﬂitqlnq+l(y)) .
is a D-map.

4

j+1 :
(Sstysecerts 1D h L (t. areeert_m o q(¥))
e '3 g-3 T3+l "Tq'lgrl Proof: r: IT x Dn+lx + X is the constant homotopy which we may

and take to be the map goDfe...°D"E, To show that r is a D-map, it
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suffices to show that the diagram

Dx
™ x p™*x s DX
1 x L l r
r
™ x Dn+lx~————————> %

. . +
commutes. This is clear since roDr = gongo...°Dn lg

= 5°D£°,.Q°Dnaoun = rou since (X,£) is a D-space. EEn

Remarks: 1) We denote the category of D-spaces and D-maps by
D[T]: We then have that U is a functor from D[T] to itself. If

£: X + ¥ is a D-map we define U(f): UX + UY by
+1
UE) (byreeertyez) = (E),enrt DT E(2))

where 2 ¢ Dq+lxe That U(£f) is well-defined follows from the
facts that f is a D-map and that p is a natural transformatien.
The naturality of u is also used to see that U(f) is a D-map.
That U respects composition and the identity map is obvious.
2) The retraction r: UX »+ X is a natural transformation U -+ 1
in D[T]. This is easily verified by utilizing the fact that
morphisms in D[T] are D-maps. |
The recegnition principles for n-fold and infinite loop
spaces developed in [G,G', and R] now generalize directly to
s.h.D~spaces X over appropriate monads D. We need only apply
the D-space recognition principles to UX = é(D,D,X)g When X is .
a D~-space, r: UX + X is a D-map and a homotopy equivalence, hence

the unigueness results in [G] and [G'] for the de-loopings of
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b-spaces apply to show that the de-loopings of X regarded as a
D—séacé and of X regarded as an s.h.D-space are equivalent. In
particular this remark applies to show that the de-loopings of
UX and of UUX are equivalent for an s.h.D-space X. We also
note that for the relevant monads, H,DY is known as a functor

of H.Y and the pair (DY,Y) is always retractile.
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3. Strong Homotopy Maps of Algebras over Monads

It is quite difficult to construct a categery with
s.h.D-spaces as objects. One would certainly expect a morphism
in such a category to preserve the higher pomotopy structures
of both the domain and range spaces at least up to compatible
higher homotopies. There are thus three types of homotopies to
be remembered for such a map. Moreover, even after such maps
are defined, composition of them is awk@ard since one must glue
together the structure homotopies of each to define .the hiéher
homotopies of the composite; such a procedure is of course
well-defined only up to homotopy. Associativity of such a
composition presents even more difficulties.

We are able to bypass the above problems with the follewing

definition.

Definition 3.1: Let X and Y be s.h.D-spaces. An SHD-map X + Y

is a D-map g: UX »+ UY. (Such a map may be thought of as the

underlying map g = regen: X + ¥, where r: UY + ¥ is the

retraction and n: X -+ UX is the inclusion as defined in
Propesition 2.5 together with the additional information that

g is a D-map.) We say that g represents g as an SHD-map.

Composition of SHD-maps is just composition of the
representing D-maps and we have a category SHD([T] whose objects
are s.h.Db-spaces and morphisms are SHD-maps. We say that two
SHb-maps are hemotopic if the corresponding D-maps UX + UY are

hometopic through D-maps. Thus we may define

[X,¥lg, = [UX,0¥]
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where [ , ] means homotopy classes of maps and the subscript
reférs +o the appropriate category. It is obvious that with
these definitions U is a fully faithful functor hSHD[T] = hDI[T]
where h preceding a symbol denoting a category means take as
morphizms homotopy classes of the morphisms in that category.
Hénce hSHD[T] is equivalent to the full subcategory of hD[T]
with'objects all UX.

A Of course, with this definition, appropriate de-loopability
of SHD-maps between s.h.D-spaces is automatic from the
naturality on D-maps of the constructions of [G] and {G']. It
is also clear that the de-loopings of strict D-maps and of
strict D-maps regarded via U as SHD-maps are consistent. Thus
with Definition 3.1 the generalization of the recognition
principles for iterated loop spaces is complete.

At this point the analysis of homotopy invariance in SHD[T]
begins. We are confronted with the problem of constructing
SHD-maps from data that arise in nature, such as a homotepy
equivalence X + ¥ when Y is an s.h.D-space. As Definition 3.1
is impractical for such a procedure, we complete this section
with a direct homotopical definition of s.h.D-maps X + Y when
either X or ¥ is a D-space and of a homotopy between two such
maps when the range space is a strict D-space. In the next
two sections we prove that certain maps in and out of the
D-spaces UX are s.h.D-maps and analyze the relationship between
the notions of s.h.D-maps and of SHD-maps. This analysis will
allow us to reduce the proof of the homotopy invariance theorems

on the SHD-map level te certain geometrical homotopy invariance
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theorems concerning s.h.D-maps between D-spaces. The latter
results occupy the last three sections of this werk. A
geometrical alternative to Definition 3.1 is presented in the

appendix.

Definition 3.2: Let (X,{gn}) be an s.h.D-space and (Y,4) a

D-space. Then £: X + Y is said to be an s.h.D-map if there

exists a collection of homotopies {fn} with

satisfying

(4oDE__ (t, .00 t ,2)  Af £ =0

n 322 . _
fn—l(tl"”°’tj""’tn’D un_j(z)) if tj =0

£t reeast ,2) =$ A
£o8 i (tyr.eert s2)  if £, =1
-1

3 ; =
\fj-l(tl”°"tj—l'D gn_j(tj+l,auo,tn,z) if tj—l.

As it frequently occurs, if the domain space X happens to be a
strict D-space, we use this ag the definition of an s.h.D-map

between two D-spaces where the gn are constant homotopies.

The notion of a homotopy between such maps may alsoc be

defined.

Definition 3.3: Let {fﬁ} and {gn} be s.h.D-maps from an s.h.D-space

(X,{En}) to a D-space (Y,¢). Then a homotopy between {fn} and

{gn} is a collection of maps
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h_: In+l x DX » Y
n
satisfying
% if £, =0
n(t2’°°°’tn+1’z) i 1 =
= 1

gn(tz,cao,tn+l,z) if t)

$°Bh _, (€y,tgseoert 1,2) Aif £, =0

n+1l
hn(tlf"°’tn+l’z) =< | '
h°°gn_l(t1't3'ceaptn+lpz) if t = 1

2 j=-2 ; =
hn_l(tl,ea,,tj,ana,tn+l,D un_j(z)) if tj+l 0

-1
fj_l(tl,uaa,tj,D gn—j(tj+2’°'°’tn+l'z))

if tj+l = 1.

Note that {hnlt1 = ¢} is an s.h.D-map from (X,{gn}) te (¥,4) in
the sense of Definition 3.2 for each 0 < ¢ < 1. Moreover, With
this definition, it is clear that homotopy is an equivglence
relation between sohuD—mapé X + ¥. Again, if the demain space
X is a strict D-space, we use the above as the definition of a
homotopy between s.h.D-maps from one D-space to another by

taking the structure homotopies gn to be constant.
We shall also utilize one more type of s.h.D-map.

Pefinition 3.4: Let (X,£) bé a D-space and (Y,{¢n}) an s.h.D-space.

Then f£: X - Y is said to be an s.h.D-map if there exists a

collection of homotopies {fn} with
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« p2
£:I" xDX + ¥ 2 1 = D°f 2
n I x DX ———oy» I % D°Y
satisfying £, 8,
( n-1 . _ £
£y (Ereeert D% E(z))  if £ =0

X

W

b4

~ j~1
fn-l(tlynnu,tjloueytn,Dj u

n_j__l(z)) if tj = 0
£ (E1reeort s2) =ﬁ

n ) . =
¢n_l(t1,uon,tn_l,D £(z)) if tn = 1

] ; =
k¢j_l(tlya-e,tj_lyD fn (tj+l,”o,tn,z)) if tj 1.

] which says that the maps determined by the endpoints of $, and

. . g, are homotopic. For f2 to be compatible with £, and £, we
We de not require the definition of a homotopy between such maps.

need to examine the diagrams

It is profitable to discuss the motivation for the above

. 2 2
definiti 1 t i homotopi r D°f : ‘Dfs
efinitioens to see exactly what these higher homotopies are p2x p2y and D2x b2y
doing. Let us examine Definition 3.4. Here, we have (X,£) a
b-space, (Y,{¢n}) an s.h.D-space, and £f: X + ¥ a map. For f to H 127 H Dg ~ D¢
: \ ok v Df
preserve the monad structure on the spaces, we require at a BX DY DX 3 DY
minimum that the diagram
13 ~ ¢ 13 ~/ ]
pf £ v £
DX~y DY X 3 ¥ X ey Y
£ ¢ ‘They imply that f2 is not naturally defined on 1?2 but rather is
f .
% 3 ¥ defined on a pentagonal subset of the plane:

commute up to homotopy; i.e., we want a homotopy f,: I x DX + Y
such that £,]0 = fof and £, [1 = ¢°Df. In addition we want to

require that the diagram
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¢oDEeDE

fogoDE poDpoD2E

fog, c ¢10D2f
. 2 :

fogoy poueD?f
£yom = ¢oDfoy

Since the edge fog1 is a constant map, we may collapse it to a
peint to parametrize £, by 12 as in Definition 3.4. By

examining each desired homotopy commutative diagram

+1

1 x pME
In N Dn+1X ),In
X

X

Dn+lY

1 i
£ /

Y

N
[

tn

studying compatibility conditionsg, and collapsing constant

faces, we arrive at Definition 3.4.

A A S S AT SR o

‘n: X + UX and the retractien r: UX - X are s.h.D-maps.
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" 4., Examples of Strong Hemotopy Maps

Various maps associated with Construction 2.2 are shown
té be s.h.D-maps and a technical reparametrization lemma is
proven.

Explicitly we have

-

Theorem 4,1: If (x,{gn}) is an s.h.D-space, then the inclusion

Proof: An s.h.D-structure is defined for the inclusien n: X + UX

by

Where
n (t PR 3 Z) = (t vaoyt nD (Z))-
n 1’ ' n' 1’ ! n,

Recall that nDn is the natural transformation n: p® > DD, We

verify the conditions set out in Definition 3.2:

If t, = 0,

n
nn(tl"°"tn'z) = (O,tzr---:tn:nD (z))

1

~ (tz,...,tn,unn" ond™(z)) by 2.2

1oDnDn_l(z)) since D is a monad

n-
(tzloou,tn,}lD

_ n-1
= ub °Dnn—l(t2"'°'tn'z)'
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If t. =20
3 '

T
nn(tl,...,tn,z) = (tI’.-u,tn’nD (z))
¢ j=1 n-j .n
n (tl,...,tj,...,tn,Dj b Jonp™ (2))

=n

oy pes )
pe1oD? DT T e 02

since n is natural.
If ¢, =1,
n
nn(tl,...,tn,z) = (l,tZ,--CItnlnD (Z))
n DE (t t_,nD" (2))
n-1'"27""*""n’
= nogn_l(tz,...,tn,z) since n is natural.
Finally, if tj =1,

n
nn(tl,...,tn,z) = (tl,...,tn,nD (z))

3 n
Y (tyreeerty g DIE S (Egyrreen st D" (2))

1

api L [CP ,tj_l,m3“ B (Eyppreeertpe2)).

again since n is natural.

To see that the retractien r: UX -+ X is an s.h.D-map we

define
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by
rn(tl,.o.,tn,z) = £q+n(t1,..,,tn,sl,...,sq,y)
where
z = (sl,...,squ) e 19 x patatly

In this definition, we utilize the fact that pPux = B(Dn+l,D,X).

We now verify the compatibility requirements of Definitien 3.4.

First suppose that tn = 0., Then

rn(tl,...,tn_l,o,z) = 6q+n(t1'.."tn—l'o'sll...’sq,y)

n-1
= Eqan-1(E1resrtp 1eSireee s D Tug (¥))

_ n-1
- rn-l(tll'..'tn-l,D uq(z))-
1f tj = 0, we have

rn(tl,...,tn,z) (tl,..,,tn,sl,..,,s 'Y)

= E‘q+n a

a el
= E 1(t1"'°’tj"'"tn'slﬂ°"'s ,DJ

q “q+n—j(y))

g+n-

= £ j-1 a+l
= €q+n_l(t1'a-e'tj'o-u,tnlsllo-.,SqID un“j‘lD

1

(y)!

j=-1
,D’

= rn—l(tl”"'tj"°"tn (z)).

¥n-j-1

On the other hand, if tn = 1, we have
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rn(tl,.u,,tn,z) +n(tl,...,l,sl,.“,s ' Y)

Eq q
= gn_l(tl,.,.,tn_l,Dngq(sl,...,sq,y))

Epoq (Eyreeert 1D T(2))0

[}

Finally, if tj 1, we have

I

rn(tl,...,tn,z) §q+n(tl,.,,;tn,sl,,,o,s 'Y)

9

= 3
= Ej—l(t1'°'°’tj—l'D gq—j+n(tj+l""'tn'sl""’Sq’y))

= j
= Ejj_l(tl roea 'tj"l’D rn_j (tj+l' s o ,tn, z) ) .

One must also check that each r, is well~defined; however, this
is_a straightforward consequence of the fact that pux is
constructed by means of the identities in the definition of an

s.h,D-space and its proof is similar to that of Proposition 2.5.EEEH
Another useful s.h.D-map is given in

Theorem 4.2: Let {fn}: (X,{En}) + (Y,{¢n}) be an s.h.D-map
where either (X,{En}) or (Y,{¢n}) is a D-space (so that the En
or ¢n are constant homotopies). Then the composition nef: X + UY

is an s.h.D-map.

Proof: By reparametrizing fn’ we define a map fﬁ: ™ x DX » ¥

such that
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£oE _y(t,,..ort ,2)  if £ =1

j_l i =
£y p (€ reerty 1D TRE L S(eg el tB)) S g

‘ j-2 . -
fn_l(tl,au.,ﬁj,,e.,tn,D Hp—y () if £y =0

f;(tllncn’tn’z) =

i -
{¢i_l°D fl'l__i(2t2,”,,2ti,2ti+l llti+21 . --,tnlz)}

1
where Blreeorty 25

, t sy i=1,...4n

> L
i+1 =2

\ if t, o= 0.

We do not give an explicit formula for fﬁ on the interior of I
since we have merely deformed the boundary formulas for fn; the
existence of fn thus implies that of fﬁ. Examination of the

case n = 2 may clarify this. Here, depending on whether X or ¥

is a D-space, f2 is given by

fl oDE ¢1°Df
¢0Df1 . f2 fogl flou f2 ¢on1
¢1Osz feog,
£ eu £,0DE

énd f; is given by

flaDE

$°DE,

1
4 f2 ngl
¢,°D%f

1



436
Now define a collection of homotopies

n

g : I x D% + UY

n

by
= i _ -
gn(t1’°°°'tn) = {n;°D Fhoq (2t ro0es2b;,28, 4 Lityigreert)]

maegnwmii%,ﬂﬂié,i=on“maTMsmmmsm
taking the cube defined by fn and glueing to its reparametrized
t1 = 0 face n other n-cubes. Note that we evaluate 9, by
applying ny to the first i coordinates and Diflll_i to the others.
The coordinate DX is omitted in these calculations.

To see that it makes sense to do this glueing, if t1 = %

we have

[{e]
]

i, _
(nyeDTE] L (1,2t,, 000,28, ,28 0 = Loty oreeert))]

with i > 1

i
{no¢, j oD E! . (2€,,0004t )]

by the definition of the first coordinate equal te 1 face of ny -

On the other hand if 1 = 0, we have

o]
]

{nafn'(o,tz,ueo,tn)}

_ i
= {ne¢; 5D £ . (2t,,..0,t )},

°

We thus have agreement when t1 =

Mo =

A -1
f = {nj;l°P ¢
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To see that it makes sense to glue together the n-cubes

that are defined when t, < l, we have to consider the case

-2

when €, = % where j < 1 + 1. If j < i+ 1, we have

n
=1
[}

1

9n

[

i-

oD F

3

i
{ngeD7¢y _,°D

i
{ng oD E! (2t seeeilioee 28,0 = Loty oreeert))

]
n-

i .
{ﬂiuD fé—i(Ztll°°°’2ti'0,ti+2’nua'tn)}

itk
f-i-k+1?

* py the definition of the s.h.D~-relation on n. If §j =1i + 1,

i(2t1p°=n,th_l,th+l,...,Zti,2ti+l-l,---tn)}

with X = 0,...,n - § - 1. We re~index by letting i = j + k + 1

and get

9n

j-1 igd
{ny_y°D7 "oy _4°DTE 5

}

and thus have agreement.

It remains to show that {gn} as defined satisfies

Pefinition 3.2.

gn(O,tz,gee,tn)

If

f

it

t

1= 0

= {ngeD £l . (0,0c0,28;,2t5 0 = 1yeeast)}

{ueDn; oDV E! L (28,000 02t;,28, 0 = Looaat)d

i-1

{ueD(ng ;oD TTEL L) (2t,,0.00t) )

k
{ueD(ny oD7E] 4 1)}

if we re-index by k = i - 1, k

ungn—l"

0,000,n~1
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if t, = 1, ‘Finally, if tj = 1, we have that j > i + 1 and
- i i+k-1 . _ .
g, (Lrtyreoert ) = nofi{lot, eoert)) g, = {ngeD7 g ;D Ep-j-x) Where j =i+ %k, k=1,...,n -1

N I
{ngoD £;_jeDI Vg L3

nefetn 1 n-j

i j-1 . .
= gﬁgn_lo {nieD f%_i_loD E _}’ i = Ol-aa,j 1

n-j

j-1 = ' }
gj"lOD gn-j“

If tj = 0, we have two cases:

Case 1: j < i. Then We complete this section with the following technical

reparametrization lemma,

gn(tll°-ololugg,ti[n.n,tn)

Lemma 4.3: Let {fn}: (X,{gn}) -+ (Y,{¢n}) be an s.h.D-map where

= {ni_IOD]_zu. .°leu

132D Ey s Gon2Egad

(Y,{¢n}) is a D-space. Then there is an s.h.D-map

i1 s 5-2 . {fn}: (x,{gn}) -+ (Y,{¢n}) which is homotopic to {fn} via an
= {n, lnD £ .eD o . (e..28....)2 L
i- n-i n=j J s.h.D-homotopy and satisfies fo = fO and

by the naturality of p

$oDE ift<s
_ K0 j-2 -
= InyeDE 107 Hpogd £, =
if we re-index viak =i -1, k= 0,...,n - 1 £t -1) ift>3
= gi 1°Dj—2u e Proef: PFirst construct {f;}Aas specified in the beginning of
; n- n-3j S .

the previous proof. Let us define
Case 2: j > i. Let j =i + kwhere k= 1,...,n — 1. Then

_ i, o0 k-2 _
g, = {ngeD7(f _; ;oD “w _. )} by the s.h.D-property oﬁ £

by

i i+k-2
{ngeD7fn 5-1°P Mn-i-k’

]

i -2 .
{ngoD £} _, _;oDI Mpogte i=0,.00m -1

= j=-2
¢ gn--l°D un—j“

j
}
i
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fﬁ(Ztl - l’tz'“"’tn) if £, > fn(O,té,...,tn) = ¢0Dfn_

(S

1
’E‘n(§1 reeert ,z) =

Now let tj = 0, If t,

[

>

f;l(oltzlunn,tn) if t _<_

[ )

It

Eo(t eeart)) = £1(2t) = 1,000,0,0..,t)

To see that {fn} is an s.h.D-map, we first assume that t, = 0:

£1 _opI~2 (2t, - 1,t A t)
n-1 Un_j 1 1Coreeny jr---l n

E(0,t,,veunt) = £100,t,,.000t)
' by the coenstructien in 4.2.
- ige : -

= {¢i_loD fn_i(2t2,.,.,2ti,2ti+l l,...,tn)}

If t, 2 %, we have two cases to consider:

with €,...08; < %, 41 2 %, i=1,...,n; -
Case 1l: j < i. Here,
but this last map is equal to
1 E ey reeant) = £2(0,t,,..0,t)
¢°Dfﬁ-l(2t2 - l’ta"'°'tn) if £, > 3
. i
= {¢i_1°D fI{l_i(th,...,0,...,2ti,2ti+l - l,...,tn)}

and

. A = {¢i_2°D3-2ui_j°leﬁ_i(2t2,...,2%;,.;.,2ti,...)}
{6 _qoD €L . (2t,,2t,,...,26,,26, 0 = 1,000t )} '
1 by the definition of the s.h.D-structure on Y
: i=2,,..,n, if t, 2 5
I i-1 j-2
l = {¢, oD £ .opITéy ¢ )}
X i-2 n-i n-j
= {4y q°D£! L (0,2t5,...,28,,2t; 4 = Lyeaa,t)} e . .
y the naturality of u
since b4 is a constant homotopy
k §=-2
: = D °D N
= {$oD (. 2oni"lf' ) ( )} -1 Fpked un_J( "’
l—- —— an—————————
' n=d by letting k =i -1, k = 1,...,n - 1
= 3
{¢oD(¢j_l°D fﬁ-j—l)( )} )
= £' .op] u .
n-1 n-j

if we re-index via j =i -1, j=1,...,n - 1.,

Note that as before we may take the first coordinate of fﬁ—l to
Thus . R ‘
be 0 since ¢1 is a constant homotopy.
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Case 2: 3j > i. Here

Eo(eireeait) = £1(0,t),000,0,000,t))

: i
{6y gD €l (2,50 00,265,281 =1y 00, 0p0nat )]

which by letting j =i+ %k, k=1,...,n~1

L, k-2
(o5 oD (£ 5 1°D" "

~

) ( i )1

n-i-k

{4, _1°D £]

opi-2 :
n‘—i-—leD }ln__j (O,Ztalnnultj['---)}

v j=2
fh-1°P Yn-j°

We now suppose that t;, = 1. Then

I

fn(tl,...,tn) £1(Lit,reeerty)

[]

for . (t,s.-ert ).
n-1""2 n

Finally, if tj = 1, we note that j > i and

Bo(t i) = 51028 - Lk, ..,t)  if ) 23

-1

Il

' - 3
fj__l(Zt1 l’tz""'tj—l’D En—j(tj+1""'tn))

and

£100,t, 0000l .0 k) Af E

N

1 =

{o51

i
oD fﬁ—i(ZtZ""'Zti'2t1+l - l,,..,l,...,tn)}
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 4hich by letting j =i +k, k=1,...,n - i

i, itk-1 :
{4, oD £, _;°D E ik (2tpreeertyprecast )}

#

i -1

(o5 1°P 8y 510

1]

D Bamg (002850 eeesyrennit))

2. .epi™lg

j-1 n-j°

. 7o complete the proof of Proposition 4.3 we construct the

n+l

requisite s.h.D-homotopy. Define hn: I x DX » ¥ by

1
/_ 'l:2 - 5(1 - tl)

. 1
fﬁ( " 'ta""’tn+l) if t? >3
1l - 5(1 - ty)
hn(tll"'ltn+1) =§
oDh_ ., (&, ,t € .2) if e, < =(1-t))
¢eDh (s Bgraeartyg 2 23 1
-t - %(l - ty) . . . .
where fn( - ’t3'°'°’tn+l) is the reparametrization in

1-201 -t
Theorem 4.2 using the constant %(l - ;) in the place of the
constant % . From Theorem 4.2 we have an explicit formula
for the boundary of each fn and we must assume that their
interiors piece together in a continuous fashion as t, varies,
To complete our inductive definition of hn’ we define
( fl(tz - %(l - %) if &

1
1 - 5(1 - %))

roj =

(1 -t))

>
2 -

$oDE if £, < (1 - &),

N =

\

(l - tl)



(
E(2t, = Litgreoerty )

[ 4D,y (OrEgreeert )

n+l

fﬁ(th - l}ts,...,t )

n+l

f;(O,tB,,Ou,tn+l)

\

£ .

hn = fn(tzlu-a,t

n+l)°

if

if

if

if

Thus each hn is the appropriate homotopy from En to fn. Finally,

an- easy induction argument shows that {hn} is an s.h.D-homotopy. &R

rof

v 1A A
o=

|-

A

=
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5, Lifting s.h.D-Maps to D-Maps.

When (X,{gn}) is an s.h.D-space and (Y,¢) is a strict
p-space, we show that an s.h.D-map £: X »+ Y may be thought of
as a strict D-map UX + Y. This theorem will enable us to tie
together the concepts of SHD-maps and s.h.D-ﬁaps. This section
concludes with several examples of this theorem that are required

in the proof of the cenceptual homotopy invariance theorem.

Theorem 5.1: Let (x,{sn}) be an s.h.D-space, (¥,¢) a strict
D—spacé, and {fn}: X + Y an s.h.D-map. Then there exists a
uniqug D~map f: UX + Y such that fon = £ as s.h.D-maps from X
to Y. Moreover, if £ = £' as s.h.D-maps from X to ¥, then

f = ¥' as D-maps.

Corellary 5.2: Let (X,{gn}) be an s.h.D-space, (¥,¢) a strict
D-space, and {fn}: X - Y an s.h.D-map. Then there exists a

unigue D-map Uf: UX » UY such that the diagram

Ut
UX ey UY

n n
£
X e Y

'

commutes as a diagram of s.h.D-maps.

Proof: By Theorem 4.2, nof: X » UY is an s.h.D-map. Define

P
Uf = n°f and apply Theorem 5.1.
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Remarks:

1) As the notatien in Corollary 5.2 suggests, it . can be shewn
that U is in fact a functer from, for example, the category
of D~spaces and homqtopy classes of s.h.D-maps to the
category of D-spaces and homotopy classes of D-maps. AsS

this fact is not required in this work, these details are

omitted.

2) It will freguently be useful to know that the composition
of an s.h.D-map with a strict D-map is an s.h.D-map. If X
is an s.h.b-space, Y and Z strict D-spaces, f: X » ¥ an
s.h.D-map, and g: ¥ + Z a D-map, we define an s.h.D-structure

for the composition geof by {g°fn}. The conditions set out

in Definition 3.2 are easily verified.

Preof of Theorem 5.1: Define a map f: UX + Y by the collection

{¢°Dfn} where ¢°Dfn: I® x pPHly o Y. It is easy to see that
this map respects the relation used in defining UX. To see
that £ is in fact a D-map, we have to show that foy = ¢°DE.

This follews frem the commutativity of

2
D2f
n D¢
™ x p™y > D2y > DY
1 xy J/ \[u ¢
Df
. n ®
I x ptly $ DY > Y

for all n since (Y,¢) is a strict D-space, and p is a natural

transformation. Note that Ffon = ¢obDfen = gonof = £; the last
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.equaiity follows from the definition of an algebra over a monad.

Moieover, by Remark 2 above, fen has for its s.h.D-structure
the collection {¢eDf en }. Again, Een = ¢eDf on, = ¢°n°f, = L.
Tt is clear that £ is the unigue map having this property.

To complete the proof it remains to show that this lifting
of s.h.D-maps preserves homotopy. To this end we let {fn} and
{gn} be s.h.D-maps from (X,{En}) to (¥,4) and {hn} a homotopy
between them. We claim that the {hn} induce a homotopy

through D-maps between the D-maps {¢°Dfn} and {¢°Dgn}; define

h: I xUX+ Y

- + . .
by B = poDh_: I x M p*ly 4, v, since {hnlt1=c} is an

s.h.D-map from X to Y for each c ¢ I, {¢°Dhn|t1=c} is a D-map
from UX to Y. The continuity of D allows us to piece together

these maps to obtain the desired homotopy. EE
Three useful examples of Theorem 5.1 are contained in

Lemma 5.3: a) Let f£f: (X,£) + (¥,¢) be a D-map. Then I = forx.
b) Let (X,{En}) be an s.h.D-space, (¥,¢) and (Z,¢) D-spaces,
£f: X >+ Y an s.h.D-map, and g: Y + % a D-map. Then
- Ll
gef = gef: UX =+ Z.
c) Let'(x,{gn}) be an s.h.D-space. Then the maps Loy and

UreUn are homotopic as D-maps from UX to UX.

Proof: a) Since X is a D-space and £ is a D-map, we may take the
collection of constant homotopies {f°§n} as the s.h.D-structure

for £. Thus
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i
i

{¢°Df°DEn}

]

{fogobgn}_ since £ is a D-map

]

{fogn} = f°rx=

b) gef is given by the collection {g°¢°Dfn}. On the other
hand, E?E is given by the collection {yeD(gef )}. But
¢°Dg°Dfn = g°¢°Dfn since g is a D—map.’. ‘

c) We show that the s.h.D-maps from X to UX induced by the
given D-maps are homotopic as s.h.D-maps. Theorem 5.1 will éhen

apply to show that the D-maps themselves are homotopic in D[T].
s . . e
Since ner, = lux' 6.1 (ii) and 5.1 yield Ur = nor = lux as

D-maps., Thus UreUn = 1ux°U" as D-maps. S1§ce lix = Tux DY

5.3a, it suffices to show that ruX°Un°n = lux°n =17 as

s.h.D-maps from X to UX. Let (tl,...,tn,z) e IP x DnX. Then

rux°Un°nn(t1,...,tn,z)

1.
nn

° i+ n - . .
{ui u°Dni°D \ _i°nD (2t1,...,2ti,2ti+ l,...,tn,z)}

1

i=0,00.,n

i+l ,
{ui°D n,

_ioDT (2 e, 28,26, 0 = Loaeat )}

1

]

i -
{ui°nn+l°D nn—i(Zti+l l[oee,tnlz)}

by the naturality of n and the definition of vy

oDMn! . (2t

TugoqoDimp 5 (2854, = Lreeesty )}

In this proof, we take By

for each n.

by Lemma 4.3.

where uj: p2p

n

-+ DD

n
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6. Homotopy Invariance Theorems

We

begin with

Theorem 6.1

(1)

(ii)

(iii)

6.1 (Geometrical Homotopy Invariance Theorem) :
Let (Y,¢) be a D-space and £: X + ¥ a homotopy
equivalence; then X is an s.h.D-space and £ is an

s.h.D-map.

Let f: (X,£) + (¥,4) be a D-map and suppose that g is
homotopic to f£; then g is an s.h.D-map and g is

homotopic to £ as an s.h.D-map-.

Let f: (X,g) =+ (¥,¢) be a D-map and a homotopy
equivalence with homotopy inverse g; then g is an

s.h.D-map and fog is homotopic to ly as an s.h.D-map.

The proof of this theorem is deferred until Sections 7, 8

and 9.

We may, however, use this theorem to deduce

Theorem

(1)

(ii)

(iii)

6.2 (Conceptual Homotopy Invariance Theorem)

Let (Y,{¢n}) be an s.h.D~space and f£: X » Y a homotopy

equivalence; then X is an s.h.D-space and f is an

SHD~map.

Let £: (X,{gn}) > (Y,{¢n}) be an SHD-map between
s.h.D-spaces and suppose that g is homotopic to f;
then g is an SHD-map and g is homotopic to f as an

SHD~map.

Let f: (X,{En}) - (Y,{¢n}) be an SHD-map between

s.h.D-spaces and a homotopy equivalence with homotopy

proof:

(1)

(11)

A UreUn =_ 1
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inverse g; then g is an SHD-map and both fog is
homotopic to ly and gof is homotopic to lx as

SHD-maps .

Apply 6.1 (i) to the homotopy equivalence nef: X =+ UY.
Thus X is an s.h.D-space and n°f is an s.h.P-map. By
5.1, there exists a D-map £: UX + UY such that

nef = fon., Then f = ronof = rofen and f represents

- £ as an SHD-map by Definition 3.1.

Let F: UX » UY be a D-map represeﬂting f as an
SHD-map. Thus £ = roFon. But then

neger = nefer = peroFeper = F, By 6.1(ii),
neger: UX + UY is an s.h.D-map and neger = F as
s.h.D-maps. By 5.3(a) we have F = For: UUX - UY.
By 5.1, we have EFEK; = PF: UUX » UY. By 5.3(c)

D

We also have that T, >y

D Tux” = lux =p n°r = Ur

by 5.3(a), 5.1 and 6.1(ii); i.e.,

>3

Ur b rux‘ UUX -+ UX. Thus

ro (neger)en = repegerenen

[Te]
1]

]

P 4
ro (negereUn)en,

e
hence n°gereUn represents g as an SHD-map. The

equality nen = Unen comes from the commutative diagram

Un
UX sy JUX

n
X ey JX
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guaranteed by 5.1, 1In addition we have

fegereln = FeUn = FeroUn =  FeUreUn = F,

Again, let F: UX » UY represent £ as an SHD-map,
f = roFen. Then noger is a hemotopy»inverse to F

since

n
-

nogoroF = nogorcFonor = nogofor = por

and

Fonogor = pereFoneger = nofogor = por = 1.

By 6.1(iii), n°ger: UY + UX is an s.h.D-map and

Foneger = 1 as s.h.D-maps. Exactly as in the previous

argument, negeroUn: UY <+ UX represents § as an
SHD-map. To see that the composition of these
SHD-maps are homotopic to the respective identity

maps, we have

~
Fo (neger) oln = FensgereUn by 5.3(b)

il

= Ioun by 5.1 roln by 5.3(a)

=5 UreUn as above =1 by 5.3(c).

In the other direction, to show that gof = 1 as
SHD-maps, since we now know that g: Y + X is an
SHp-map between s.h.D-spaces as well as a homotopy

equivalence with homotopy inverse £, we need only

453

reverse the roles of f and g in the argument above
and apply standard uniqueness of inverse arguments

to conclude that the constructed representative

-~ w o r
nefereln of £ as an SHD-map is homotopic as a D-map

to the given representative F. &
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7. Proof of Theorem 6.1(i)

In this section we prove Theorem 6.1(i): ZLet (Y,¢) be a
D-space and f£f: X + Y a homotopy equivalence; then X is an

s.h.D-space and f is an s.h.D-map.

Proof: Since f is a homotoéy equivalence, there exists a
homotopy inverse g: ¥ + X and a homotopy k: I x ¥ + Y such that
ko = jidentity on Y and k1 = fog. Also, as explained in

[G, pp. 159-160], by slightly altering the underlying operad 7,
we can replace f by its mapping cylinder and thus assume that
gof is the identity ﬁap on X.

Define a map £: DX + X by the composition £

ge¢oD(£).,

By the naturality of n, we have £°n = gogpoD(£f)on gogonof = gof
on X.

We now need to construct a hometopy £, I x 2% + X which

will render the diagram

u
p%X ———3 X

Dg g
£
homotepy commutative. It is the failure of this diagram to be

strictly commutative in general that causes X to fail to be a

strict D-spacde. Define

£, = go¢eD(k)eD(4)°D? (£)

1
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-where D(k): I x DY + DY is defined in the manner described in

Section 1. To see that £, is the correct homotopy, note that

gl = ge¢on(k)loo§(¢)enz<f)
= go¢oD(¢)°D? (£) since D(k) | = id
= gegoueD? (£) since Y is a D-space
= gogoD(f)°y since p is natural L
= g%,
and that

g,], = ge¢oD (k) |, oD (¢)°D*(£)

ge¢eD (£) oD (g) oD () °D? (£)

E°DE .

This motivation for the s.h.D-structure on X leads us to

. +
define the requisite higher homotopies gq: 19 x p% 1X + X by

By = godoD (k) oD (4) .. .oD7 (k) oDI (§) o...oD% (k) oD% (4) DT (£)

We have omitted the symbol "1 x" which should preface each

DI (k). Note alse that we have a composition of g ene-dimensional

homotopies; we use each in succession on each of the g

coerdinates of Iq.
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For the Eq to determine a valid s.h.D-structure on X, we 'Té see that £: X + ¥ is an s.h.D-map we define

have to verify the usual compatibility cenditions. If, for

example, tj = 0, we have

Wy
1]

gedeD (k) oD (¢)o...oDI 2 (9) oD (k) | oD (93 o .. oDT (k) 0¥ (43 0T L (£) by

goge...opd "L (4003 () sDIF L (k) 0. . oD% (k) 01T (¢) oD (£

£, = kegoD (k) oD (4] 0+ -oD" L () D" H () D" () -

= 9°¢°='=°Dj-1(¢°D¢)°Dj+l(k)°--=°Dq(k?°Dq(¢)°Dq+l(f) To verify the compatibility conditions of Definition 3.2, note

that if t, = o,

i

goge...onI L (ge)opI L (i) o..Lop¥ (k) oD% (4) DT () |
£ = koo¢om(k)om(¢)o...oan‘l(k)onn’l(¢)°nn(f)

. . . n
= goser..ond gy end (myo. . opT () T 0y DT (£) 00T Hu
= ¢on(k)on(¢)o...omn‘l(k)omn’l(¢)°nn(f)
- i-1
= D v o
2q-1°P7 THg-j
= ¢°Dfn_l.
The next to last equality follows from repeated application of the
naturality of u. If t, = 1,

If, on the other hand, t. = 1, then - -
’ "3 ’ £ = klo¢oﬁ(k)on(¢)e...omn L x)oD™ L (4)oD" (£)

oy
[

g°¢°D(k)°D(¢)°=-o°Dj“1(¢)°Dj(k)llonj(¢)o,.,ooq(k)onq(¢>onq+l(f)

— fogogeD (k) oD ($) 0. ..oD" L (k) D™ T (¢)oD" (£)

1l

(go$oD (k) oD (¢)o...oDI "L {g)end (£))0

- foEn--l'
| (07 (g) oD (9) 2. .. oD% (k) eD¥ (9) DTHL (£))

I

, 3
H 2 D 'l
| 550 g3

Thus the {gq} as defined do indeed define an s.h.D-structure for

X.
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When tj = 0,

‘8. Proof of Theorem 6.1 (ii)

In thisAsection we prove Theorem 6.1(ii): Let f£f: (X,£) » (¥,¢)

h
it

ko¢oD(k)°D(¢)°q..°Dj-l(k)lo°Dj~l(¢)°Dj(k)°Dj(¢)°°-v°Dn(f)

be a D-map and suppose that g is homotopic to £; then g is an
ke 4oD (k) °D (¢) 0. ..oDI "2 (k) oDI ™2 (4) o031 () DT (k) ... oD" (£)

Il

s.h.D-map and g is homotopic to £ as an s.h.D-map.

Ko $eD (k) °D (4) @ ..oDI "2 (k) oDI "2 (4) o0I"2 () obd (k) 0. . .oDR (£) Proof: We will define an s.h.D-structure for g by glueing

together various homotopies gotten from the maps ¢n' En' and
°DJ—2u ie - the functor D applied to the given homotopy between £ and g.

fn—l n-j

The procedure will be clear to the reader if he sketches the
Finally, if tj =1, appropriate pictures for low values of n. To Begin let

h: I x X + ¥ be a homotopy such that ho = f and h1 = g.

Hh
[}

ko¢oD(k)on(¢)°...°Dj“2(k)onj’2(¢)°D3"l(k)ll°D3'1(¢)°---°Dn(f)
. We define an s.h.b-structure for g,

1

(koD (k) oD (4)o...oDI "2 (k) oDI "2 () oD L (£))0

n n
g : I xDX-~»Y,
n
(032 (g) oD L (p) oL oDR (£))
_ by
j-1
= £y 07y . 1
h°5n_1(2t1 - l'tz'°"'tn) if &, > 5
ERCPRRERE
i i . 1
H=¢y goDThedTe 5 )"} iy 23
mmtﬂuugié,ﬁﬂi%,i=L“”nmue
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[ i oi r, 1
(=¢j_3D"heDTe, ; g)" A 54y 2 3+ ]

i i .
(=#5.1°D7£eD7E, 5 ) 3F &y,

ifi<n-=-1

i 4 ~
(=¢;_1°D7heD7E _,_4)'=

n..r . 1 _
(-¢,1°D'h)" if t <3 E t
n P PE i o=
(¢p-1°D £) if £ > 5 - ) E.. if i =n
A minus sign preceding a homotopy indicates that it should be

evaluated in reverse direction on its first coordinate.
The following construction is used in the definition of
9n¢ let h: T x X + Y be any homotopy, An an n~simplex, and

v, @ particular vertex of An. We may then construct a new

homotopy h%: An x X + Y with hs(vo,x) = ho(x) and hs(v,x)

h, (x)
for all v on the face opposite to v, by defining h° to be h on
each line segment connecting v, to the face opposite Ve It is
clear that we may also extend % to a map h?: in x I x X + ¥ by

h> (S rees S It]I=-'It IX) h (S roeerS lx)°
o n m o n

In our definition of 9, note that the homotopy
i i r . ; R -1
(=¢;_4°D"heD Eh—j-1) is defined on i+l x mitt C 1™ where
Ai+l is determined by the intersection of the plane

_ 1 . 1 1

B, = 5 + t, = =

41 = 3 j<§+l with the cube t,,...,t; < 5, t;,; > 5 and

the ineguality ti+l > % + Z t.. We need to know the vertex
J<i+l

of the simplex opposite the face ti+l =
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N

+ § t. in order to
j<i+l

evaluate the map (—¢i_1°DlhaDlgn_i_l)r; it is easy to check that
the point (0,...,0,1,0,...,0) with 1 in the i + 1 st coordinate
satisfies the requirements.
i i . s - .
We now show that each (—¢i_loD-hoD Enui-l) is well-defined.

. i, i
- _Z t;- Then (=¢;_1°D"heD7g
i<n

nof

Suppese that t = n—i—l)'

= (-qbn_loDnh)s = ¢n_l°an since the vertex opposite the face

t = % -1 t; is (0,...,0) and --hl0 g; we thus have agreement

n i<n

|

in this case. Now suppose that t., . = L4 ] t.. Then
i+l 2 j<i+l

(—¢i_loDih0Dig (—¢i_l°DihoDig is defined on

n~-i-1

xr
n-i-1"' n-i-1)

A+l x I and thus equals (—¢i_i°Dlh°Dlgn_i_l)s(tl,...,ti+l)
= ¢i_l°leoDlgn_i_l since the vertex (0,¢:-,0,1,0,...,0) with

i + 1 coordinate equal to 1 is opposite the face in questien,

. evaluated on this vertex is
n-i-1

and -¢i_loDih°Dl€
¢i_loDigoDign_i_l. Thus this map is well-defined on each cube

1 1
tlln-o'ti _<__'§, ti‘“t‘l _?_'2— °

Next we show that it makes sense to glue together all the

1 : ’
cubes that occur when t, < % . Suppose that t, ., =35 , 12 1,
1 ,
and t; ., > 3 - Then
; i .ni : 1 1
1) 9, = (=¢;_1°D"heD En—i—l)‘ where t ,...0t; < 5 5, 25
& fopt . 1.1
= &7 . = o o= + t.
5170 EeDTE, ;g SINCE B4y T T 23 j<§+1 j
and



462 463
. < ‘ : 1.
= (e i+l i+l ' -1 1 On the other hand, the left hand edge of the cube t, > = is
2) g, = (=¢;°D" "heD" g . )" where t,,...ot; 0 S50t 2 5 - : 123
. . given by hogn_l(o,tz,”.,tn)==fc5n_l and we have agreement.
i+l i+l . . ‘s R . .
= ¢$,°D feD . s t. = = < &=+ t.. £ £ - i
93 o gn_l_z ince t; . 555 yedea j The verification of the fact that g, is well-defined is now
complete.
But That {gn} is an s.h.D-map will now be demonstrated.
— n. - _ i i '
$ oDl+lfoDi+1g . Suppose t, = 0; then In(0st,reeort)) {(=¢;_,°D"heD En—i-l) }
i n-i=-2 1 o1 .o 1
.where tz'“"'ti < 5 ti+l > 7 1= l,s0e,n. If t2 > 5 ]
= ¢i_l°ui_l°Di+lf°Di+lEn_i_2 " since Y is a D-space
. *) gn(oltzl' --ltn) = ("'¢°Dh°D€n_2) ' (Olt21° -=ltn)
= ¢._1oDifoDlg —i-2C%H by the naturality of u
i n-i n = ¢oDh°Dgn_2 = ¢°D(h°€n_2)
= ¢i_leleODlgn since X is a D=-space,

—l—;_ since the vertex (0,1,0,...,0) is opposite the face on which

- ' ; -
and we have agreement between 1) and 2). ( ¢°Dh°DEn—2) has value ¢onngn_2, and thus when t, 1

(—¢°Dh°Dgn_2)(O,l,ta,...,tn) has value ¢°Dg°Dgn_2, This has the

1
5!

% ; we think of

the parameter t, as running from left to right. The right hand

~e§ The final glueing process occurs when t, =

effect of negating the negative sign above. Now if t, 2

face of the cube t, < % is given by i i
- - 1
9,008y s0eust)) = {(=¢;_4°D"hoD7E . ,)'}

i, i 1 1 . . 1 .
{(~¢;_5°D"heD gn_i_l)'} where t,,...,t; <5 ;40 25 1= 2,...4n with t,,...,t; < %, tipp 23 i = ?,e--,n;
= {¢i_l°le°Dlgn_i_l} by previous calculations letting k = i - 1, we have
-1 ; ; k+1 +
= {¢°D¢°...°D" ¢eD EeDTE . .} 9, (0styreeest ) = {9, 0D hoD® 1gn_k_2}, k=1,...,n -1
_ i-2, o i-1_. _di-1___1 : ; _ _ X, .~k
= {¢$0D¢%...°D éeD foD EeD En—i—l} since £ is a D-map k%) = {(~¢0D(¢k_leD heD ;(n—l)—k*l)i}'
i-2 i-1 n-1

[}

{¢°Dpo...®D” “¢eD f°Dl_150Dlg°.ap°D £} Thus *) and **) yield

{fogn_l} by repeated application of the above pracedure. gn(o,tz,u,,,tn) = ¢°Dgn_lo
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' on the other hand, if j > i +1, let J =i +k, k=1,...,n - i,

and then
g (letyreoa, b)) = hog  (Lityreeort)) = gog ;o

P i i - vy
. 9 = Ll-¢;_goDheD7e, ;5 40"}
Now suppose that tj = 0; if t,;

>

L

’

i k-2

heD™ (£ ,°D" “u

b}

{(~44_y°D )’} when £, =0, k >1

n-i=- n-i-k
gn(tlleoulolouo'tn) = h°gn_l(2t1 - l'tzluunvyep‘p.o'tn)

by the definition of an s.h.D-structure

= hog

= j=-2
n-1 "~ hog,_5°D Bneg

= {(=¢;_;°DhoD'g__, oD ') i=1,...m -1

n-j
since X is a D-space; if, however, t, < % 52
= 9p-1°P7 ¥poye
i, i
gp(tyreeasO0reanst)) = {(=¢; ;0D heD7E _. ,)"} ) . . 1
It remains to check the situation when tj = 1. If t, 235
where t,,...,t; < %, and we have two cases to consider: the
= ho 26, = 1,000,100t
first is § < i + 1; then 9n -1 (28 reeerlieaat)
j=2 j-1 n-1
P = he (£oDge...oDI “g)oDI " Tgo...0D" ¢

= {(m i, i

gn = {( ¢i_l°D h°D En—i-l)'}
' j-1 n-1-j+1
. C = he opJ °DEo...°D
= {(-¢oD¢s...opt l¢°D1h°Dlg )y Es o (g°Dg £)
n-i-1
. = j-1
= {(=¢oD¢o...ou; ;oD heD7g . 1)'} Rofy-2"P" “En-s
-1
j - = g. .¢D E_ 1
= {(-¢i_2°91 lh°ui_l°Di5n_i_l)'} by the naturality of u -1 n-3J
. 1 ' oL e
= finall if ¢, < x> and t, =1, we have > i + 1 by the definitioen
= {(-¢i_2°D; lhoDl 1€n_i_1°un—2)|} Y 1 -3 j ’ J 2z Y
of I Thus if we let 3 =i + %k, k=1,...,n -1 -1, we have
= {("¢i-2°Dl-;h°Dl—lEn—i-1°DJ—2“n—j)'} since X is a D-space
= gD %
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I R S
9y = {(=¢;_3eD"heD7g . 40"}

= {(‘¢i_l°Dlh0Di(g°Dgon,_oDk'zgonk_lgo,,,oDn'i'lg):}

= {(-4;_1°D hen'g, oD ¥ (go. . op™ iRy 1y

o i i i+k-1
= {(-¢;_7°D"heD7g, ,oD Epmji) 't

_ _ i i j-1
= {(=¢; ;oD heD g, ; ,eD?77g '}
- _ i i i
U005 3 °D"heD7E (5 1y3-1°D" Ep_5) "}

g. 003-15 .o

]
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Note that, for example, (¢oDh) ' is defined on a simplex
determined by the original simplex in the definition of g, and
the additional vertex (1,0).

In general, we define

j=-1

n=j

The final element of the proof is the verification of the
fact that £ is homotopic to g as an s.h.D-map. For this, we

will define an s.h.D-homotopy

In+l

h_: x an + Y.

n

The case n = 1 will serve as a good illustration of our

construction. We define h1 on I2 x DX as follows:
ho&
get
he&
ho§
fog = - .
gl ¢°Df f°g fl = fog = éon

é°ph
. ¢0Dh

¢°Dg

¢oDh

4 R
(hog 0¥ if £, 2 3 (L +t))
i-1 i-1 r 1
-(4._,oD*"theD )T Oif b, > & (14t +. t,
< i-2 n-1 i+l 2 1 j<i+1 3
" (-o._.oD"m)T  if t_.. <= (1 - t;) - t
n-1 n+l —~ 2 1 j<i+1 3
\ £°f, _, otherwise
Here, the domain of (-¢i__2°D1'lh°Dl_lgn_~i)r is the simplex obtained

from the simplex defined by t, =0 (in the definition of gn)
together with the vertex (1,0,...,1,0,...,0) where the second 1
is in the i + 1 coordinate. The proof that hn is well-defined
and is in fact an s.h.D-homotopy is similar to the proof that

g, is well-defined and is an s.h.D-map and is omitted. 58
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9. Proof of Theorem 6.1 (iii)

In order to complete the proof of the geometfical homotopy
invariance theorem, we shall utilize the follqwing lemma due

to Fuchs [7, p. 337]:

Lemma 9.1: Let f: X + Y be a homotopy egquivalence, g a homotopy
inverse of £, k: I x X + X the homotopy such that kO = idx,
k

It

1 gef; then a homotopy h: I . x Y + Y such that ho = idy,

h1 fog may be chosen so that fok = hef as homotopies between

I

f and fogof.

Proof: Consider the diagram of path spaces

*
2 (vX,£,f0g0£)—% o (v¥, fog, fogofag) —tsn (¢¥,1id,, fog)
f*

Q(Yx,f, fogof)

where f* and g* are induced by the maps £, g and ¢ is induced by
any path frem idy te fegofog (such a path exists since there is
certainly a path e¢ from idy to feg under the assumption that f
is a homotopy equivalence and thus the claimed path may be taken
to be g*[fok] * &). Since f and g are homotopy eguivalences, so
are £* and g*; moreover, ¢ is a homotopy equivalence; thus each
map in the diagram induces a one to one correspondence between
path components. We may now choose h to be any path in the
class ¢og*[fok]. We then have that f*[h] = [hef] = [fok]. Thus
fok and hof lie in the same path component of Q(Yx,f,fogof) and

are thus homotopic as paths. 59
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We proceed now with the proof of Theorem 6.1(iii): ILet

£ (x,é) +-(Y,¢) be a D-map and a homotopy equivalence with

homotopy inverse g; then g is an s.h.D-map and f<g is homotopic

to ly as an s.h.D-map.

Proof: Let k: I x X + X be a homotopy such that k = id, and
k, = gef, and let h: I x ¥ + ¥ be chosen as in Lemma 9.1 so that
ho,=~idy and h; = feg. We define an’s,h,D—structﬁre for g,

g, ® x by + %, by

jgg = kegeDg__; # ~[(ge¢oDho...op" L4eD™n) 11,

We evaluate such a compogition of homotopies by evaluating the

ith homotopy on the ith coordinate.

Notation (i): Let Pn and 9t 1™ x 7 + X be homotopies. Define

n

p, # g ¢ I' x Z + Y to be the homotopy,

s 1

pn(2t1,t2,nn°,tn) if t1 25
Pn # qn(tll""“!]tnlz) = .
qn(2t1 - litzlnon'tn) if tl >3

of course, for this to make sense, pnlt1=l should equal qnlt1=0
so that we may glue these faces together. Actually, one only
i ' ive to 0,1} x z; if
needs Pn|t1t1 homotopic to qnjt1=0 relative to {0,1} 7
this possibility occurs as it will in the following copgideratiens,
we assume that the resulting homotopy is properly reparametrized.

(ii) Let P,: ™ x 2 + X be any homotopy. We wish to

reparametrize P, inductively to obtain a new homotopy
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= an

n . . .
pﬁ: I" x 2 » X in the following manner: if n = 2, define

P
plt I x 2 + X by ' (0,
2 pa(oltzlts)

' = =
Pile,=0 = Pal(o,0¢ Pile =g = P, (E1s0) |
pa(tlltzll) ps(tllllta)

P3(01010) pg(tlloits)

Prle,=1 = Pale =0 v Prle o1 =Pl o # Pole o

py(lot, t,)

P, (0,t,) A ‘ : S p,(t ,0,0) A -
k4 . 1
Pz(tlll) ' g (\_p;(tl,tz,O)
P, (0,0) P, o (Lt)
R (iii) contrary to our use of the minus sign in the previous

pz(tl,O) section a - preceding a homotopy indicates that the homotopy
should be evaluated in reverse direction on each coordinate.

Now assuming that we have Ph_1 reparametrized in this fashion,

We proceed with the proof by first showing that each 9, is
we define

well~defined. First let n = 2; then

Pl g =P
n t1—0 n](O,.ue,O) 92 = kqgngl $ - [(g°¢°Dh°D¢°D2h)']e

!l g = (p_]
n't.;=0 TRt eeosty 1404000,0))7 To see that this is well-defined, consider first

Pale, =1 = (ply )"
p ti+l 1 n ti—O kognglltl=l = kotoD[koEoDg # ~g5¢aDh]lt -1
1

Prly =7 = # - i=1,...,n
nltl—l pnlti-—l ! ’ = gefogenkongonzg - gofogungan¢oD2h

where # pnlt‘=l means fit together the n homotopies in a manner 2 2
: i = gedoDfeDkeDg2D“g # ~ geopeDfeDgeD¢oD“h
1 consistent with the edges of this face already defined; e.gq.,

n= 3: since £ is a D-map
= go¢oDhaneDgoD2g $ - go¢onngoD¢o02h by Lemma 9.1
= ga¢oDhaD¢aD2foD2g $ - g°¢°Df°Dg°D¢°D2h

T2 e 60502
= -[(ge¢°DheDgeD h)ﬂ][t1=0°




472 473

Now let us assume that g _, is well-defined; to define g  we have - -[(go¢°DhoD¢aa,,onn"l¢omnh)-]|t -1
1

=
H
o+
-
i
-
Q
4
o
~
24
~
o
pv
i

i ne-1 n.
to fit together k°£°Dgn~l[t1=l and ~[{ge¢eDheDg...°D ~¢oD h) ]‘t1=0’ -

[}

Y
at (gogpoDhoeDpo...°D ~¢=D h)'lti=9

n-1 n
k°E°Dgn~1‘t1=1 (go$oDhoeD¢°...°D ¢oD h)I(O,,p.,O)

= go¢oD¢o¢°°ODn~l¢

1

gofogﬂDgn_l

gofogoD{kogoDg _, # -[(go¢aD¢6e=a°Dn-2¢°Dn_lh)']} = g°¢

o

n-1

If £, = 0, g (tyreeerOyaeerty)

gefogeDkeDgeD?g _, # ~[(goforeDgeDse- . oD T4oD™h) ']

kegoDy _, # -[(gogoDho...oD" ToeD™) 1], _o

ga¢onoDkaDgoD2gn‘2 # —[(go¢cheDg°D¢nD2h°.oo°Dn-l¢°Dnh)']

1

n

- : - - n
gogoDheDEeDEaD?g_, ¢ - [(gepoDEeDgeDpeD2he. . oD Lgon h) 1] = kOEODgn_lltj=D # -[(gesoDhoDgo,,.°D h)-lltj=g

= kogoBg

it

ge¢oDheD(fegeDg _,) # ~[(ge¢=nfangan¢onzhca;aoDn’l¢oD“h)']

-1
n—lltj=0 # ~[(gegeDhoD¢o...oD" ¢°Dnh)'ltj=1]

= kogoDg

=

n-1 n
and the homotopy on the left fits together with ~[(go$oDhoDge.c..oD" T¢oD hltj-l=0)?]

~l]t.=0
Y
go¢oDhoD(—[(go¢oDhq,,aomn'lh)']) by induction and the homotepy ‘ 5-p 1 —
= kogeDg_ ;| _o # ~[(go¢oDhoDgo.. oD $oD? hooDJ $0...)"1
on the right is the remaining piece. 3

% We now verify that the 9, gatisfy the equalities needed for - k°E°Dgn~llt.=0 8 —[(go¢oDhoD¢coe,ODJ—2¢OD3-1¢°=.-°Dnh)']
an s.h.D-map: If t, =0, J

= kogoDg_ |, _o # -~[(gegeDheDpo.. oD Thed Py 511
J

g, (0rtyreossty) k°5°Dgn—1lt1=G =k °5°Dg, 4

= kegog,_,opI "2y, # ~[(gopeDhenge.. oD heDIHy 411

Engn—l

The next to last eguality follews from the fact that (Y,¢) is a

b-space and that u is a natural transformation. Finally, if

t, =1
3
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gpltirecarliccast)

n-1

[}

koEngn-llt.zl # ~[(gepoDhoeDgo...oD ¢°Dnh)']lt.=1
i 3

n-1

1}

kegeDg_ _;|, .q # ~[(ge¢oDheDgo,..oD" "4oD"h) |, _o]
5 j

n-1

kogngn_l’t'zl # ~[(ge¢eDheDgo...°D ¢°Dnh[ (t
) 3 . .

1:;-n,tj_1,0,...,0

°Dn--l

kogoDg, ;| oy # ~[(gegeDhoDse...opd thonIHgenIge. . b 14) 1]
J

nog # ~L(gogepnonso. .. opIhy 1gendThe L.

[}

kogang_ZODj-l¢

We conclude this proof by showing that feog is homotopic to

n+l

ly as an s.h.D-map. Define an s.h.D-homotopy P,: I x DY + ¥

by
p. = —[(hn@obh°oea°Dn_l¢°Dnh) '1.

n

If t1 = 1, we have

kel
I

=[(hogoeacoD™h) 1], _;
1

(he$o...oD h)

'!t1=0

n
(ho¢o...eD h)](o,Q,,,O)

]
B3
[

o

)

.
o
(=}
-©-

which is the canonical s.h.D-structure for the identity map.

If tl = 0, we have

y1 ']

ETS
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p, = _[(hg¢o,7009nh)’]|tl=o

—[(h°¢°a=¢°Dnh)'[t1=l]

n
-[#(ho¢o...0D h]ti=l)']

2 i-1

#'—[(hd¢°.°,°Di— $oD foDi'l

go...oD%h) '] # -[(fogo¢o...oD"h) ']

[ (hegon..op " 2hopi2gapi=Lleopt

goD> " Lgop? " Lgo,. . oD™h) 114 (Fogege...oD h) ']

since £ is a D-map

1-24opt~Leo. .. oDPh) 114~ (fogese.. .oD™h) ']

A=
1
—
—~
=2
(-]
-
-]
.
f
.
o
(]
E=)
-]
o]

by Lemma 9.1

i-2 i=1 i-1

keD™ “goD  Tgo...oD"h) '1#~[(fogoge...oD h) ']

]

~[fokogoDkeDEo. .. oD

by iteration of the two previous steps

fo{# =[ko£oDkeDEo...oD  2kod " Lgepi™lgo. .. oD h) '1#~[ (godo...oD"h) ']}
fo{koEoDg _; # =[(gesoDho...oD"h) ']}

fogn

which is our canconical s.h.D-structure for a composition of a

D~map with an s.h.D-map.

The other equalities may be checked by a similar argument

and thus our proof is completed. &



476
Appendix

We present here a geometrical alternative to befinition 3.1

and discuss some of its consequences.

Definition Al: Let (X,{gn}) and (Y,{¢n}) be s.h.D-spaces and
let £: X + ¥ be a map., Then f is an s.h.D-map if there exists

a collection of homotopies

such that
' s
fogn_l(tz,oan,tn,z) if t, =1

£y (Epreerty 0770 (Eggqreenrtysa) 3F £ = 1

n-j 3
£ (Eyrenait s2) ={ -
fn_l(tl,m,ej,.,,,tn,nJ Mpoy(2)) Af £, =0
i
(o 1oD E s (2, 5000265028, 0 = Loty opeeart ,2)} -

1 1 .
where tl,..u,ti < 5 ti+1 > 1= l,0004n

& if £ = 0.

The concept of a homotopy between two such maps is a direct

generalization of Definition 3.3.

We may also generalize Corellary 5.2 to conclude that there
is a one to one correspondence between homotopy classes of
s.h.P-maps from X to Y and homotopy classes of D-maps from UX to

UY where X and Y are s.h.D-spaces. It can further be shown that
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there is. a well-defined category whose objects are s.h.D-spaces
and whose morphisms are homotopy classes of s.h.D-maps; in
additien, U is a fully faithful functor from this category to
hb[T]. This machinery may be used to provide an alternate
proof of the homotopy invariance Theorem Gnén

Throughout this work, we utilized geometrical complexes

whose vertices indexed homotopic maps in various s.h.D-structures.

We present here a typical counting argument used in formulating
an s.h.D-structure. We analyze Definitien Al, that of an
s.h.D-map between s.h.D-spaces. Recall that the parameter space
in the definition is a cube with one face subdivided. The reason
for this is that a one-to-one correspondence between the vertices
of the complex and the distinct maps DX + Y is needed. The
argument that follows should be considered as joint work with
Bob Ramsay.

Let us first count the distinct maps DX + Y inductively.
Let #(n) denote this number and assume that we know #(n - 1).
Now compose each o? the #(n - 1) maps with first Dn-lg; then

n-2
u

compose each of the original #(n - 1) maps with D . This

gives us 2#(n - 1) distinct maps p"%X + Y., This, however, does
not account for all pessible such maps. To obtain the

remaining ones,; consider all compositions of the form

deD¢e ° €oaa® eD

where in the ith blank we may use either Dl+l¢ or Dl_lun_i_3r
n-2

i=1l,s00sn - 2. We thus have 2 additional maps which are

all distinct. We claim that #(n) = 2#(n - 1) + 2°72, The
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verificaticn that all of the above maps are distinct and form
the cemplete set of such is tedious but straightforward; one

utilizes the properties of p in the definition of a mcnad and

-1

the fact that there are n distinct maps p"x + DT X given by

n-1 i . .
D £ and D7u, o 5 with i = 0,.00,n =~ 2,
We now turn our attention to the subdivided cubes. Recall
that we subdivided the t, = 0 face of I" into n cubes of dimension

n - 1 according teo the relation .

j4x IS arbitraryl

where i = 1,...,0 and k = 2,...;n - i. We want to count the
number of vertices of this new complex. First, there are the

2™ vertices from I where each of the n coordinates is either

0 or 1. To count the others, fix i as above an& let ti+1 = % .

Since t, = 0, the coordinates of a vertex are given by

1
(0,.,.,l,,.o) where there are i - 1 blank coordinates to the

left of % and n - i - 1 to the right of % . To the left, we

may f£ill in either 0 or % ; to the right we may £ill in either
0 or 1. At any rate, we get an2 vertices this way. But i may

n-2

vary over n - 1 positions. Thus we have (n - 1)2 vertices

n-2

of this type and thus have a total of 2% & (n - 1)2 \}ertices°

To see that the number of vertices agrees with the number
of distinct maps DX + Y, it is easy to check that the number

2" + (n - 1)2n~2 satisfies the equality #(n) = 2#{(n - 1) + 2n—2°

10.

il.

12,

13.
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Aficopt blslgebra 111, 112 B(SF; J'é) (¢=BCp) 16U ' ) (€»§)-space 78 discrete models 164

ARn/\n—Hopf‘ algebras 221
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g"n+1(k), homology of 302

distributivity diagram 76
Adams conjecture  182-184

B(SF; j é), homology of 167 distributivity formulas 11, 80, 363,

Adams operations 158, 176 } £ 41 (P¥1)/ T s homology of 306 372, 373

B(SF; j2), Bockstein spectral sequence of . . | el p i
Adem relations 6, 213 198 B} - Ceo (infinite little cubes operad) 9 Dyer-Lashof algebra 17
admissible sequence 16 B(SF; 62), homology of 192 : ;' cxX 39 Dyer-Lashof algebra, dual of  24ff
allowable R-structures 20 B(S®; k0) 163, 180 CX, Bockstein spectral sequence of 49 gih free allowable R-coalgebra functor)
allowable R _-structures 220-221 B(SF; k0), homology of 167 CX, homology of 40, 51 . : . . .

n E-oriented stable spherical fibrations
approximation theorem 58 E3 BSOgs homology of 152, 188, 193 C(X+), homology of 411 162 ‘ ;
Atiysh-Bott-Shapiro orientation 164,  BSU,, homology of 152 Coin® Bockstein spectral sequence of 234 Ee ring space 5
181 .

B'SF, homology of 115, 116 C_,,X, homology of 225, 237£f E, space 5
BBSO, Bockstein spectral sequence e
of 195 BTop 163 ¢, ¢ 56-57 excess (of sequences) 16
B Coker Jp(=BCp) 164 B Top, Bockstein spectral sequence of 170 EnX, homology of 58 F/0, homology of 114
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Errata and Addenda to [A],[G], and [G']

The cited papers contain a number of misprints, mistakes, and
results since generalized. We indicate where changes should be made in
the following list. Minor errors are indicated by line, with the material
to be changed underlined (but mathematically irrelevant typographical

errors have generally been ignored). The list also includes references to

work by other authors which adds to the results of [G] and [G'].

1. [A,p.158, line 11]: -+ {X ,. . ®...®X ,. €G, j.€...<5,3,<3 ).
; , ] ¥G,) Y(Jp)lv ) 3y <3y dy<in}

2. In view of the geometric construction of the homology operations analyzed
by Cohen in III, there is no longer any real reason to use the categories (:(p, n)

for n< o in [A, §2 and §3]. Restriction to the case n= oo would allow some

simplification of notations.
3. [A,p.161, line -4]: ... D (x) = 6*(ei®xp),

4. In the cohomology of spaces, [A, 6.8 (p.188)] was first proven in
T.Yamanoshita. On certain cohomological operations. J.Math.

Soc. Japan 8(1956), 300-344.

5.  [A,p.193, line 14} ... (DX1)D = (1 XD)D

6. [A,10.2 (p.214)] is clearly false in the case p = 2 and t>1, where
& '

H (Zzt’ 1, ZZ) = E(il)®P(;3til) just as in the pase p > 2. Therefore, when

n=1 and p=2, [A,10.3] only holds for t=1,

9. . [G,p.4, line -2]: ... highly..
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T, The letter S was used for suspension in [G]. This standard notation

is very awkward, and ¥ has been used in [G!],[R], and the present volume.

8. The weak Hausdorff rather than the Hausdorff property should be re~
quired of spaces in ﬂ and L [G,p.1]in order to validate some of the

limit arguments used in [G].

10. An elaboration of the proof of [G,1.9 (p.8)] should show that if ( is

an E00 operad, then the product on a C -space is an s.h. C-map (in the

"sense defined by Lada in V).

11. [G,3.4 (p.22)] is improved in [G*, A.2].

12. The proof of [G, 4.8 (p.35)] is not quite correct since the specified
homotopy h:l == fg is not a homotopy through points of fn(j): the disjoint
jmage requirement can be violated. The remedy is to first linearly shrink
points c e (n(j) to their maximal inscribed equidiameter points and then

linearly expand the resulting points to the maximal equidiameter points fg(c).

13. The category joo specified on [G, p. 40] is obviously appropriate to

infinite loop space theory. It is now know n that this category (or better, its

coordinate-free equivalent) is also the appropriate starting point for the con-
struction of a good stable homotopy category. See [R, chII] gor a Summary.
Full details will appear in .

J.P. May. The stable homotopy category and its applications.
(Part of a forthcoming Monograph of the London Math.Soc.)
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jp’ jé 144(" . wationtheorem in [G, §6-7] is not particularly
-525 j2: C‘}‘ ~gether with the appropriate generaliza-
5/
Jp’ pr ’ ‘58, has been given in
I8 ane
b / <es and iterated loop spaces.
Jg’ 3), 213-221.
Jé.:/ .
Q sserts that a: GnX 2" isa group completion

©3], and this statement is also an immediate consequence

-ations in III.
~eresting generalization of the approximation theorem (from a

-

/eﬁt about the configuration spaces of R” to a statement about the
Afiguration spaces of smooth manifolds) has been given in
D. McDuff. Configuration spaces of positive and negative particles.
Topology 14(1975), p.91-107.
16. A basic application of the approximation theorem has been given in

V.P.Snaith. A stable decomposation of @"s™X. J. London Math.
Soe. 7(1974), 577-583.

Snaith shows that, for a connected space X, the suspension spectrum of

7
CnX ~ o 5" splits as the wedge of the suspension spectra of
FanX/Fj—lch = ef L"n(j),zj,X]. (See [G, p. 14] for the notation.) In his
thesis (Northwestern Univ.1975), P, O. Kirley proves that, for n > 2, there

is mo finite r such that =0 ="X splits as V= e[ Rjn(j),zj,x].
b
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17. ‘As explained in [G', A. 5], the notion of strict propriety introduced in

[G,11.2 (p.102)] is unnecessary.

18. [G,p.103, line -3]: ...X, ¥ <4U ,...

19. ‘[G,p.104, line 3]: ... v=(ié,...,t'q)eAq.
20. [G,11.13 (p.109)] is improved in [G', A. 4].
21. As will be discussed in 30, when n> 2,[G, 13.1(ii) (p.129)] generalizes

in the non-connected case to the assertion that B(ann', 1,1) is a group com-

pletion. It follows that [G,13.1(iii)] remains true when Y is (a-1)-connected,

that [G,13.2 (p.132, misnumbered as 13.3)] remains true when g is a group
completion rather than a weak equivalence, and that [G,13.4] remains true

when X is grouplike.

22. In[G,13.5(ii) (p.134)], the connectivity hypothesis on X is unnecessary.
To see this, merely use [G,3.7] and [G', A. 2(ii) and A. 4] in place of [G,3.4

and 11,137 in the proof.
23. [G,p.136, line -5]: The reference should be to [G'], not [21].

24. As was proven in [G', 2.3], [G, 14. 4(ii) (p.144)] generalizes in the non-
connected case to the assertion that B(aroo-n-oo, 1,1) is a group completion, It
follows that [G, 14. 4(vi)] remains true when each Y, is (i-1)~connected, that
[G, 14.5] remains true when g is a group completion, and that [G, 14. 6]

remains true when @'Y is connective and (in its second part) when X is

‘arbitrary . Again, by [G!,3.1], X need not be connected in [G, 14.8], and

[G,14.7 and 14, 9] remain true when X is (i-1)-connected.
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25. The discussion of conmnectivity hypotheses and homotopy invariance

in [G, p. 156~160] are of course obsolete.

7

26. [G,p.166, line -8]: lsufx) if 0<s<1/4

(8u)[x, s] = 9 u(x) if 1/4<s<3/4

(4-4s)u(x) if 3/4 g s<1

27. In[G',§1], it is asserted that {:G = QBG is a group completion if -
the monoid G and the H-space QBG are both admissible in the sense of
[G',1.3]. This restriction allows the simple proof given in

J.P. May. Classifying spaces and fibrations. Memoirs Amer. Math.
Soc. 155 (1975).

A convincing, and not very much more difficult, proof assuming only that
vOG is central in H_G has since been givén in

D, McDuff and G.Segal. Homology fibrations and the "group completion"

Theorem. Preprint.

(Both proofs were suggested by ﬂnpublished arguments of Quillen.)

28. The proof of [G', 2.1] is incomplete, since the assertion that X or
B(M, C X M,X) is strongly homotopy commutative is not obvious. The veri-
fication is unnecessary if one is willing to use the strengthened version of the
group completion theorem cited in 27. Alternatively, a simple rigorous proof

of [G!,2.1] is given in [R, VI 2. 7(iv)].
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30. By l4 and a comparison of the proofs of [G, 13.1] and [G', 2.3], the
genera;.lizaiion of the former result cited in 21 requires only the appropriate
anélog of [G',2.1]. Here I know of no construction to which the weaker
form of the group completion theorem applies. For a local equivalence
B *’C’n of T-free operads with n 2 2, we require a functor G and natural
group completion g:X = GX for D ~-spaces X We assume that
P = C X C’n where C is locally contractible (since all known examples are
of this form). We define '

GX = @BB(M, C X CI’X)
and let g:X - GX be the following composite:

B(g,1,1)

x-Th) B(C X C ,C X C,,X)——=2-1> B(M,C X C,,X) £ oax.

1’
Then 7T(q) and B(E,1,1) are equivalences of H-spaces by [G,9.8] and
[G,3.7 and G' A. 2(ii) and A. 4(ii)], while { is a group completion by 27.

Here X is regarded as a t X Ei-space by pullback along the inclusion

C x £,.C oy xC_.

31. [G", 3.7 (p.76-the second result labeled 3.7)] is incorrect. The
error occurs on line -7, from which a factor O‘(jl, v ,jk) has been omitted
on the right side of the equation. With this factor, v on line -5 depends on o

and the argument collapses. (See also [R, VL. 2.7(v) and (vi}].)

32. A more structured version of [G', 4.2] is given in [R, VI.3.2].
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33. [G',p.82, line1]: 3 xF. x...xZ, xQ’ X, Exal.
k \E e J
34, [G', p.82, line 5}: Y(o37,s...,T ) =" ®... 87 cali, s enesiy)
i k -1 -1 i k
¢ (1) o (k)

35. The consistency with Bott periodicity asserted in the next to last para-

graph of [G', p.85] is proven rigorously in [R, VIII §1].

36. A quick proof of [G', A.1] will appear in

J.P. May. On duvality and completions “in homotopy theory.
(Part of a forthcoming Monograph of the London Math. Soc.)
' . R . -
37. [G', p.90 line 3 (of top diagram)]: Xq-l-lx Aq-i-l Fq+1]Xl .

38. [G',p.90 line 4]: where g(six, u) = |x, u-iu] and g(x, 6iv) = ]aix,v] cen
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