
AUSTRALIAN CATEGORY THEORY

TALKS BY STEVE LACK IN CHICAGO, 2006

Contents

0.1. Introduction 3
0.2. Examples of 2-categories 3
0.3. Examples of bicategories 4
0.4. Duality 5
0.5. Formal category theory 5
0.6. Things to fix up 7
1. 2-categorical things, continued 7
1.1. Extensions 7
1.2. Monads 8
1.3. Lax morphisms 9
1.4. Pseudofunctors and 2-functors 10
2. 2-dimensional universal algebra 12
2.1. 2-monads 12
2.2. Sketch proof of the existence of (−)′ 16
2.3. More 18
3. Presentations for 2-monads 20
3.1. Endomorphism Monads 20
3.2. Pseudomorphisms of monads 21
3.3. Locally finitely presentable 2-categories 22
3.4. Presentations 23
3.5. Monoidal categories 24
3.6. Some More Examples 26
4. Limits 30
4.1. Limits in T -Alg 30
4.2. A Meta-Comment 35
4.3. Weighted Limits 35
4.4. Cat-weighted limits 36
4.5. Pseudolimits 37
4.6. PIE-limits 38
4.7. Bilimits 38
4.8. Colimits 39
4.9. T -Alg again 39
5. Model categories, 2-categories, and 2-monads 41
5.1. Model structures on 2-categories 41
5.2. Model structures for T -algebras 43
5.3. Model structures for 2-monads 44
5.4. Model structure on 2-Cat 45
5.5. Back to 2-monads 48

1

2 TALKS BY STEVE LACK IN CHICAGO, 2006

6. The formal theory of monads 50
6.1. Generalized Algebras 50
6.2. Monads in K 51
6.3. Mnd as a monad 53
6.4. Making it into Limits 54
6.5. Limits in T -Algc and T -Alg` 55
6.6. FTM 2 56
6.7. Another point of view on EM(K). 59
7. Pseudomonads 59
7.1. Coherence 60
7.2. Algebras 61
8. 2-Nerves 62

AUSTRALIAN CATEGORY THEORY 3

0.1. Introduction. There are bicategories, 2-categories, and Cat-categories. The
latter two are exactly the same, but two different ways of thinking about things.
The first two are nominally different, although not really up to biequivalence, but
also have a very different flavor.

Anything you take from category theory can be enriched more or less smoothly.
Took some years and don’t want to play down what was done, but now we can call
that easy.

Bicategories are sort of easy also, in some sense. Never say that two arrows are
equal, only isomorphic, and sort of obvious what you should do to Cat-category
theory to get bicategory theory: make equations into isomorphisms, and then worry
about coherence. In principle that’s easy, but getting the details right can be really
hard. People tend not to bother; if they’re really good, it may be true (although
not always), but hard to understand for mortals.

In 2-category theory, using enriched category theory, but not applying it in a
simple-minded way. There is some thought in passing from Cat-categories to 2-
categories. Over in bicategories, everything is true as long as you make it suitably
weak, although it can be hard to state and prove, but in 2-category theory it’s not
always obvious what the theorems are.

I guess a preference for 2-categories is more Steve than Australian. All of these
are Australian.

Also have sS -enriched categories, which are also closely related. Can take nerves
to get one of these, which are good things to look at. Not really going to talk about
them.

And double categories, internal categories in Cat. Not going to say much about
these either. 2-categories live inside of double categories, but in a variety of different
ways. Some sorts of things work better in the internal world than in the enriched
world, so there can be advantages to using double categories instead of 2-categories
sometimes.

0.2. Examples of 2-categories. Cat is the mother of all 2-categories, just as
Setis the mother of all categories. From many points of view, it has all the best
properties.

Two directions of generalization of this.

• V -Cat is one possible generalization of Cat, where V is generally a sym-
metric monoidal closed category, complete and cocomplete.

• Can also consider W -Cat, where W is a bicategory. Not a monoidal bi-
category, but a ‘many-object monoidal category’. Going to talk about this
much later on.

• Cat(E): internal categories in a category E with finite limits (though can
get away with less, like pullbacks or even less, and usually want more, such
as a topos, for good things to be true).

There is another class of examples consisting of ‘categories with structure’:

• Finite products
• finite limits
• monoidal
• toposes
• etc.

4 TALKS BY STEVE LACK IN CHICAGO, 2006

At each stage need to ask what morphisms you want. Normally don’t want strictly
algebraic, i.e. preserving structure on the nose; that can be technically useful, but
not fundamentally interesting. Generally use functors preserving structure ‘up to
iso’.

Then we have MonCat, which means monoidal categories, monoidal functors
(by which we mean lax monoidal functors), and monoidal natural transformations.
Our monoidal functors have transformations FA ⊗ FB → F (A ⊗ B); the other
direction we will call ‘opmonoidal’, although there is some controversy here. Two
justifications for this:

• The forgetful functor U from A b to Set, for example, definitely doesn’t
preserve structure up to iso, only up to the universal bilinear map UG ×
UH → U(G⊗H)

• These functors take monoids to monoids
• Suppose A � B is an adjunction with A , B monoidal. Typically the left

adjoint F is strong monoidal (i.e. the transformation is invertible) but U
is just monoidal. (Think of the tensor product as a type of colimit, so the
left adjoint preserves it, but the right adjoint doesn’t necessarily.)

Moreover, an internal adunction in MonCat is always in this case; this is called
doctrinal adjunction. If you’re Australian, one thing you do is throw the words
‘doctrinal adjunction’ around a lot, and people don’t know what you’re talking
about. In general, given an adjunction between categories which are algebras for
some doctrine, to make the right adjoint a lax morphism is equivalent to making
the left adjoint an oplax morphism, and to make the whole thing into an adjunction
in the 2-category of algebras and lax morphisms is equivalent to making the left
adjoint a strong morphism.

0.3. Examples of bicategories. Rel consists of sets and relations. Relations
from X to Y , written X p→Y , are monomorphic functions R � X × Y . This
bicategory is ‘locally posetal’, in other words, given two parallel 1-cells, there is
at most one 2-cell between them. We get a 2-category biequivalent to this one by
identifying isomorphic 1-cells; this works for any locally posetal 2-category.

Par consists of sets and partial functions. A partial function from X to Y is a
diagram X �→ Y in Set. Again, we get a biequivalent 2-category by identifying
isomorphic 1-cells.

Span consists of sets and ‘spans’ X ← E → Y in Set, with composition by
pullback. Unlike the previous two, this one is no longer locally posetal, so to get
a biequivalent 2-category we need to do more. We know we can always do it in
a formal way, but in fact naturally occurring concrete bicategories are equivalent
to naturally defined 2-categories as well. In this case, we can take the 2-category
whose objects are sets and whose morphisms are adjunctions Set/X � Set/Y .
This is equivalent via pulling back along one of the arrows in a span, X ′ 7→ E′.

X ′

��

E′

��

oo

X Eoo // Y

Mat has objects sets, and 1-cells funct(ors) X × Y → Set. These are X × Y
‘matrices’ of sets. Composition is matrix multiplication. This is essentially the same
as Span. A biequivalent 2-category consists of sets and adjunctions SetX � SetY ,

AUSTRALIAN CATEGORY THEORY 5

since SetX is the free cocompletion of X ; which of course is the same as what we
did for Span. These differences will become important when we start to enrich and
internalize.

Mod has (for today) objects rings R, 1-cells R p→S are ‘modules’. One thing
about being Australian is that you never call it a bimodule, just a module. Modules
are understood to go from one ring to another, although one of them may happen to
be the integers. A biequivalent 2-category involves adjunctions RMod� SMod.

This is really ‘A b −Mod’ since it’s enriched over abelian groups. Another
Australian thing is to work over any base; if we didn’t write the base we’d generally
assume Set. Also no reason to have only one objects. Thus V -Mod (or W -Mod)
consists of V -categories and V -modules A p→B are functors A → [Bop , V], or
equivalently an adjunction [A op ,V]� [Bop , V].

Now let’s internalize and enrich the other examples. If E is a ‘regular category’,
i.e. morphisms factor as a strong epi followed by a monomorphism and strong epis
are stable under pullback (could really be any factorization as long as stable), then
we can form Rel(E) whose objects are those of E and whose morphisms X p→Y are
monomorphisms R� X × Y . To compose these, we need a factorization system,
and to make it associative, we need the factorization system to be stable under
pullback.

Similarly, if C is a category and M is a class of monomorphisms in C , then we
can look at Par(C ,M), defined as above where the given monomorphism is in M .
There are conditions on M you need to make this work well.

If E has finite limits, we can look at Span(E) defined in an obvious way. Need
the pullbacks for composition to work. No exactness is involved, although if you
wanted to get a nice biequivalent 2-category, you are going to need to start making
more assumptions on E. It turns out that Span(E) is crucial to building up internal
categories in E (an internal category in E is the same as a monoid in Span(E)).

Mat, on the other hand, gets enriched rather than internalized. Then V -Mat
(traditionally, things enriched over go in front, while things internalized in go on
the right) has objects sets and morphisms V -valued matrices X × Y → V . These
matrices will be the internal homs of V -categories.

0.4. Duality. B a bicategory, we have

• Bop reverse 1-cells
• Bco reverse 2-cells
• Bcoop reverse both

In the case of a monoidal category (a 1-object bicategory) V , then V op reverses
1-cells (which is V co as a bicategory) and V rev reverses the tensor product (V op

as a bicategory).
Steve believes there is no perfect way to name things ‘op’s and ‘co’s, although

people have expressed other opinions.

0.5. Formal category theory. One point of view is that a 2-category is a general-
ized category (add 2-cells). Another important one is that an object of a 2-category
is a generalized category (since Cat is the primordial 2-category). This is ‘formal
category theory’: think of a 2-category as a collection of category-like-things.

We can’t always think of a V -category as an element of a 2-category, just as
we can’t always think of a group as just being an object of Grp, but many things

6 TALKS BY STEVE LACK IN CHICAGO, 2006

work out well when we take the ‘element-free’ approach. You tend to avoid talking
about objects of a category, instead talking about morphisms into the category.

The fundamental paper of formal category theory, and where its name comes
from, is Ross Street’s “formal theory of monads”. Its origin is related to this
question: what is the enriched version of universal algebra (monads)? It uses all
four dualities to incredible effect. There was also a book by Gray called “formal
category theory”.

Let K be a 2-category. If we started with a bicategory, we could replace it by
a biequivalent 2-category, and in this context you probably should. Can translate
everything to bicategory language, but I don’t think you gain anything, so let’s
keep things simple.

Can define an adjunction f : A� B : u in K with 2-cells η : 1→ uf , ε : fu→ 1,
and triangle equations. In a lot of 2-categories, this is a good thing to study. We
mentioned MonCat. Also good to study it in Mod (Morita theory). If η and ε
are invertible, we have an adjoint equivalence.

Another way to define adjunctions is with bijections on hom-sets; this also works
fine here: to give a 2-cell fa→ b is the same as to give a 2-cell f → ub. The proof
is identical to the usual one; the usual case is when the source of a and b is 1. The
reason for this is that 2-functors preserve adjunctions, and we have representable
2-functors K(X,−), giving adjunctions

K(X, f) : K(X,A)� K(X,B) : K(X,u)

(A 2-functor preserves 2-category structure strictly. Pseudofunctors also preserve
adjunctions.)

There are also the contravariant representable functors

K(−, X) : Kop → Cat

which also preserve adjunctions.

Exercise 0.1. f is a left adjoint in K iff it is a right adjoint in Kco iff it is a right
adjoint in Kop .

Thus to give a 2-cell s→ tf is the same as one su→ t. This is true even in Cat,
and very useful and perhaps less well-known than it should be there.

Can also combine these two. Given a pair of adjunctions, then squares

A
f //

a

��
⇒

B

b

��
A′

f ′
// B′

correspond to squares

A

a

��
⇒

B
uoo

b

��
A′ B′

u′
oo

These pairs of 2-cells are called mates. This is easy once you know it’s true, but
you might not think of it.

AUSTRALIAN CATEGORY THEORY 7

0.6. Things to fix up. Didn’t exactly explain what slashing means. Slashing
doesn’t just mean how you write an arrow in a bicategory, it’s how you write
certain sorts of arrows, the ones that are more like relations/modules instead of
functions/functors. In an abstract bicategory, wouldn’t slash anything, but if they
have the flavor of relations, modules, or parametrized spectra, write them as p→ .

Also the dichotomy between a straight arrow → and a squiggly arrow for a
weaker type of morphism. This is sometimes useful. It doesn’t usually get taken as
far as to have a notation for lax things.

Insofar as comparing categories to V -categories, would be much more likely to
say a category is a special sort of V -category, rather than a V -category being a
category.

1. 2-categorical things, continued

1.1. Extensions. Let K be a 2-category. What is the universal solution to extend-
ing f along j?

B

��@
@

@
@

A

j
??~~~~~~~

f
// C

Call this Lanj f , then by universal we mean a bijection

f −→ gj

Lanj f −→ g
.

When such a Lanj f exists in K, it is called a left extension of f along j.
It looks like a Kan extension and we’d like it to be one. For Kan extensions we

have a coend formula

(Lanj f)b =

∫ a

B(ja, b) · fa

but we don’t yet know quite what this means in K. (Kan extensions exist which
are not ‘pointwise’, i.e. don’t satisfy this formula, but they’re in general the ‘wrong’
ones.)

Consider an object b ∈ B as a morphism b : 1 → B, then this formula is telling
us what the composite

j/b
d //

c

��
����|�

A

��

f

��????????

1
b // B

Lanj f // C

Here j/b is the comma category. The really good notion of extension is when in
addition (Lanj f)(b) = Lanc(fd) for all morphisms b with codomain B (in Cat,
it’s enough to have b with domain 1). In this case we say Lanj f is the pointwise
extension. This is a really good notion for lots of 2-categories, such as internal ones,
but not quite enough for the enriched case.

Let’s leave the pointwise aspect aside and go back to extensions.

• A left extension in Kco (reverse the 2-cells) is a right extension.
• A left extension in Kop (reverse the 1-cells) is a left lifting.
• A left extension in Kcoop (reverse both) is a right lifting.

8 TALKS BY STEVE LACK IN CHICAGO, 2006

The right lifting has the property that

pg −→ f

g −→ r = f C p
which is a sort of internal-hom.

Look at the special case of adjunctions

A

f
&&

u

ff ⊥ B

Then

A
f

��@@@@@@@

X

a

>>~~~~~~~

b
//

�� ��
��

B

and the correspondence B(fa, b) = A(a, ub) shows that ub = bCf . That lies behind
a lot of the stuff Niles was talking about.

In particular, u = 1C f . Thus every adjunction gives a right lifting, and a right
lifting u = 1 C f is an adjunction iff it is ‘respected’ by any b, i.e. ub = b C f .
Similarly for all the dual versions. A closed structure for the bicategory is about
right extensions and right liftings only.

Let me point out a little lemma which everyone knows for Cat, but which is
true for 2-categories basically because everything is representable. If we have an

adjunction A

f
&&

u

ff ⊥ B with unit 1 → uf invertible, then f is representably fully

faithful, i.e. for all X , the functor K(X,A)
K(X,f)−→ K(X,B) is fully faithful. Also

u is ‘co-fully-faithful’, meaning that all functors K(f,X) are fully faithful (i.e. u is
fully faithful in Kop).

In places like Mod, extensions tend to exist. In places like Cat, it’s a condition.

1.2. Monads. If A

f
&&

u

ff ⊥ B is an adjunction, we get a 1-cell t = uf : A→ A, with

unit 1 → [η]t and multiplication µ : ufuf
uεf−→ uf . Exactly as for categories. We

have the notion of a monad (t, µ, η) in a 2-category K (on a 0-cell A). Sometimes
write (A, t) for a monad t on A, although this is obviously stupid since we haven’t
specified the most important things µ and η.

Never talk about a monad in a category for the classical situation; call it a
monad on the category, since the monad lives in the 2-category (in this case, Cat).

Example 1.1. Monads in Cat. Know that.

Example 1.2. Monads in Span(E). We have an object E0, a 1-cell t : E0 p→E0, i.e.
a span

E1

d

~~||||||||
c

 BBBBBBBB

E0 E0

AUSTRALIAN CATEGORY THEORY 9

(a ‘graph’) with a multiplication

µ : E1 ×E0 E1 → E1

from the ‘object of composable pairs’ to the arrows, giving a composite, have asso-

ciativity = associativity, and a unit 1
η−→ t gives E0 → E1 since the identity span

is
E0

~~||||||||

!!CCCCCCCC

E0 E0.

Thus a monad in Span(E) is the same as an internal category in E.
This is one of the most important reasons for having any interest in the span

construction.

Example 1.3. Monads in V -Mat. We have an object X , which is just a set, a 1-cell
X p→X , i.e. X × X → V , which we think about as sending (x, y) 7→ C (x, y), a
‘hom-object’. Another Australian thing is to never write the word ‘hom’, only the
name of the category: C (x, y) instead of homC (x, y). The multiplication map goes
from the matrix product

∑

y

C (y, z)⊗ C (x, y) −→ C (x, z)

and gives a composition map. Again associativity = associativity, unit = unit, and
we get that a monad in V -Mat is the same as a category enriched over V .

A morphism of monads (which we haven’t defined yet) in Span(E) is, however,
not an internal functor, since it will involve a 1-cell E0 p→F0; but rather it is an
internal profunctor or module. Similarly, morphisms of monads in V -Mat give
modules between V -categories.

Of course, you can get the internal and enriched functors if you use double
categories.

To get 2-cells, you don’t use the (obvious) notion of 2-cells between monads in
‘The Formal Theory of Monads’, but rather in ‘The Formal Theory of Monads II’
(by Street and SL). May talk about that later.

1.3. Lax morphisms. I switch seemingly at random between 2-categories and
bicategories. All that was 2-categories, and I feel like using the word bicategory for
now.

A ‘morphism’ or lax functor from A to B sends objects A to objects FA, has
functors F : A (A,B)→ B(FA, FB) (thus preserving 2-cell composition in a strict
way), and has some comparison maps ϕ : Fg · Ff → F (gf) and ϕ0 : 1FA → F (1A)
and some coherence conditions, which are the same as the coherence conditions for
monoidal functors, since it’s the same thing.

There are several systems of naming:

Strict strong – (unadjectived) op–
2- or strict pseudo lax oplax

but sometimes the unadjectived one is the pseudo version (such as for 2-algebras).
All the good things that happen for (lax) monoidal functors happen for lax func-

tors, such as taking monoids to monoids, only here we call them monads instead.
A monad in B on X is the same as a monoid in the monoidal category B(X,X).

10 TALKS BY STEVE LACK IN CHICAGO, 2006

For example, consider the identity monad 1 in the 2-category 1. Then for any
lax functor 1 → B, the object ∗ gets set to F∗ = A, 1 is sent to F1 = t, the
comparison maps become µ : tt → t and η : 1 → t, and the coherence conditions
make this precisely a monad. In fact, monads in B= lax functors 1 → B. For
Benabou, this was really the reason to consider ‘morphisms’ of bicategories, rather
than the stronger version. This is also true for transformations, perhaps with an op.
Perhaps due to some historical error, the ‘right’ sort of transformations frequently
come with an op.

In particular, V -categories are the same as lax functors 1 → V -Mat. This is
the same as a set X together with a lax functor

Xch
lax−→ ΣV

where Xch is X made into a chaotic/indiscrete category (every object is uniquely
isomorphic to every other), then made a bicategory with only identity 2-cells, and
ΣV means pretend a monoidal category is a 1-object bicategory. Why? We send
each x to ∗, we have a functor

Xch(x, y)→ ΣV (∗, ∗)
which is just 1→ V picking out the hom C (x, y), and the lax comparison maps ϕ
become the composition and identity maps.

If we replace ΣV by an arbitrary bicategory W , we get the notion of a W -enriched
category: a set X with a lax functor

Xch
lax−→ W

Another way to think about Xch, as a bicategory, is to say that the unique
map X → 1 is fully faithful. But we can also consider, more generally, a pair of
bicategories with a partial map

D
strict,f+f

~~}}}}}}}}
lax

 AAAAAAA

A B

This partial map is called a 2-sided enrichment or a category enriched from A to
B. If A is 1, it’s just a category enriched over B. Using the notion of composition
for these things is very helpful in analyzing the change of base between different
bicategories and enrichment.

1.4. Pseudofunctors and 2-functors. These are the lax functors for which ϕ
and ϕ0 are invertible.

Example 1.4. B a bicategory, then the representable things

B
B(B,−)−→ Cat

are (not strict) pseudofunctors.

Example 1.5. Indexed categories: a pseudofunctor Bop → Cat, where magically
and confusingly, here B stands more for ‘base’ than for ‘bicategory’. Often B is
just a category here. Then such a pseudofunctor corresponds to a fibration E → B
in the ‘Grothendieck picture’.

AUSTRALIAN CATEGORY THEORY 11

Similarly, ‘2-functors’ (or ‘strict homomorphisms’ between bicategories) are where
ϕ and ϕ0 are identities. This makes it preserve the associativity and so on, in ad-
dition to the composition strictly.

2-functors are much nicer to work with, but often we only have a pseudofunc-
tor. One reason you might prefer them is not to have to worry about coherence.
Moreover, 2-functors have better properties than pseudofunctors. For example, in
the category of 2-categories and 2-functors, you have limits and colimits, but this
is not true for 2-categories and pseudofunctors.

The (1-)category 2Catps of 2-categories and pseudofunctors is neither complete
nor cocomplete. For example,

(0→ 1)

(1)

;;wwwwwwwww

##GGGGGGGGG

(1→ 2)

has no pushout. Why? Such a pushout would have to have (0 → 1 → 2) and
a composite, but in some other K there is nowhere we know how to send the
composite. Of course, this is being a little perverse; in a higher-dimensional world,
we have an appropriate notion. But it can be nice to restrict to this situation, if
we can.

On the other hand, even if you start in the world of 2-categories and 2-functors,

you may be forced out of it. A 2-functor A
F−→ B is a biequivalence if A (A,B)→

B(FA, FB) are equivalences and it is ‘bi-essentially surjective’, i.e. for all X ∈ B,
there exists an A ∈ A and an equivalence FA ' X . This is the ‘right notion’ of
equivalence for 2-functors.

The point is that you’d like something going back the other way, and you have
it, but it’s just not a 2-functor in general. Given X ∈ B, pick FA ' X and let

GX = A. Given X
x−→ Y , we can bring it across the equivalences FA ' X and

FB ' Y to get x : FA→ FB, and since F is locally an equivalence, x ∼= Fa some
a : A → B, let Gx = a. This all works, but since everything is only defined up to
isomorphism, there’s no way you can possibly hope for G to preserve things strictly.

There is a model structure on 2-Cat for which the weak equivalences are the
biequivalences, and clearly getting something going the other way has something
to do with A being cofibrant.

12 TALKS BY STEVE LACK IN CHICAGO, 2006

2. 2-dimensional universal algebra

‘Universal 2-algebra’? Maybe no reason not to call it that.
Lots of categorical approaches to universal algebra. Theories, operads, sketches

(a bit wilder), but I’ll mostly talk about monads. Certainly today, ‘universal al-
gebra’ will mean monads. Although you may see parallels, certainly with operads
and also with theories.

The ordinary universal algebra picture you should have in mind is monoids (or
groups, rings, etc.) living over sets. Doesn’t have to be single-sorted; could be
living over some power of sets. Abstractly, of course, we could be living over
almost everything. For a small category C , the functor category [C ,Set] living
over [ob C ,Set] is a good one to have in mind. If C has one object, we get M -sets
for a monoid M .

When we come to 2-categories, we might generalize monoids over sets to

monoidal categories

��
Cat

(won’t prejudge yet what the morphisms in monoidal categories are, strict, strong,
lax). Also categories with finite products, or coproducts, or both, maybe with a
distributive law.

Corresponding to diagrams we have

Hom(B,Cat)

��
[ob B,Cat]

(Homomorphisms from some bicategory B to Cat. Haven’t talked about transfor-
mations between pseudofunctors yet, will do that at some point, but it will actually
pop out of the general theory.)

Today particularly, will see a lot of interplay between 2-category theory and
Cat-category theory. Trying not to really assume that you know any V -category
theory, so tend to do things like go over the ordinary case and then tell you it
works when you do it it for V , and concentrate more on how to modify it for the
2-category situation.

2.1. 2-monads. When I say ‘2-’ that means strict, here and elsewhere. Still strict,
but just when we do stuff, we’ll do it in a different way, maybe. A 2-monad
consists of a ‘good’ 2-category K (like Cat, maybe, complete, cocomplete, etc.),
with T = (T,m, i) where

T : K → K
m : T 2 → T

i : 1→ T

With the usual associativity and unit rules. Here m, i are 2-natural transformations
and T is a strict 2-functor. This is precisely a monad in the 2-category of 2-
categories, 2-functors, and 2-natural transformations. Perhaps a bit funny to think
of that as a 2-category, you can think of it as a 3-category if you like. So far, it’s

AUSTRALIAN CATEGORY THEORY 13

just about V . A V -monad is just a monad in V -Cat, so far we haven’t departed
from that.

A (strict) T -algebra is the usual thing, an A ∈ K with TA
a−→ A and the usual

equations. This point is where something happens, can’t just keep making things
strict. A lax T -morphism (A, a)→ (B, b) is a morphism f : A→ B in K, but

TA //

��
����~� f

TB

��
A // B

with some coherence conditions, which I will write down, since perhaps not as
familiar. If I forced you to go away and guess, you’d probably get it right. First we
have

T 2A
T 2f //

Ta

��
������ Tf

T 2B

Tb

��
TA

Tf
//

a

��
������ f

TB

b

��
A

f
// B

= T 2A
T 2f //

mA

��

T 2B

mB

��
TA

Tf
//

a

��
������ f

TB

b

��
A

f
// B

(note that the outer 1-cells are the same; I wouldn’t write this down if they weren’t)
and

A

i

��
TA //

��

TB

��
A // B

should be the identity.
Let’s do a little baby example: K = Cat and TA =

∑
nA

n the usual free monoid
construction. The T -algebras are strict monoidal categories, and a lax morphism
is a square ∑

nA
n //

⊗
��

�����	

∑
nB

n

⊗
��

A // B
so we have transformations

f(a1)⊗ . . .⊗ f(an) −→ f(a1 ⊗ . . .⊗ an)

when I defined monoidal functor, I just did the case n = 0 and n = 2, but you can
build it up in the usual way, and the coherence conditions just say that you did it
in the only sensible way, not some stupid way. This should be some sort of evidence
for the reasonableness of the definition.

As more motivation, here’s an abstract reason why this definition pops out.
There’s a 2-category Lax(2,K) where 2 is the arrow category. In detail:

• An object is an arrow in K

14 TALKS BY STEVE LACK IN CHICAGO, 2006

• A 1-cell is a square

A //

��
����|�

A′

��
B // B′

• A 2-cell. . . you can decide for yourself.

Since this is functorial, we get a 2-monad Lax(2, T) on Lax(2,K). Then a Lax(2, T)-
algebra, in the strict sense, is the same as a lax T -morphism. Our coherence is the
usual axioms for something to be an algebra.

We also have, for lax T -morphsims (f, f), (g, g) : (A, a)→ (B, b), a T -transformation
is a 2-cell ρ : f → g in K such that

TA
((
66

�� ��
��Tρ

��
����~� g

TB

��
A // B

= TA //

��
����~� f

TB

��
A

&&
88

�� ��
�� ρ B

In the baby example, for n = 2 this says that

fa1 ⊗ fa2
//

ρa1⊗ρa2

��

f(a1 ⊗ a2)

ρ

��
ga1 ⊗ ga2 // g(a1 ⊗ a2)

so you get a monoidal natural tranformation, just as you’d like.
You can play the Lax(2,K)-sort of game with the transformations as well, but

I won’t.
We get a 2-category T -Alg` of T -algebras, lax Tmorphisms, and T -trasnformations,

and a forgetful 2-functor

T -Alg`
U`−→ K

Sometimes this is what we really want to study, sometimes we want things to
go pseudo. If f is invertible, we say that (f, f) is a pseudo T -morphism or just a
T -morphism (privileging these over the strict or the lax, since in a lot of cases we
care most about those). We get

T -Alg
U−→ K

with strict algebras and pseudo morphisms.
Some people think that using strict algebras is some sort of cop-out, because

it turns out that in reasonable cases you can always replace T by some other 2-
monad T ′ (a ‘cofibrant replacement’) such that pseudo T -algebras are the same
as strict T ′-algebras. But there’s also a really practical reason. It’s true that
the pseudo-algebras for the strict-monoidal-categories 2-monad gives the monoidal
categories, but that’s a relatively hard fact. Some cofibrant replacements are bigger
than others, and here there’s another, easier one, that gives you exactly monoidal
categories without having to deal with the huge T ′ thing. Later, not very much
today, about ‘presentations’ for monads, which is how we could write down a 2-
monad whose strict algebras are monoidal categories.

AUSTRALIAN CATEGORY THEORY 15

We also have the strict T -morphisms when f is an identity (normally you say
that the square just commutes). Still want the condition on 2-cells where we put
the f = id in. These give

T -Algs
Us−→ K

Each of these 2-categories have the same objects, and we have

T -Algc

T -Algs J
//

J`

**

%%KKKKKKKKKK T -Alg //

��

99ttttttttt
T -Alg`

yyssssssssss

K
(we’ve added the one with co-lax morphisms at the upper right, which you can have
fun formulating as lax things on Kco .) We also have the category Ps−T -Alg of
pseudo T -algebras, which do come up sometimes, but in practice are usually less
important.

Remark 2.1. 2-monads are also algebras. There is a K and a T for which 2-monads
on a fixed 2-category are the T -algebras. The point for doing this is a notion of
pseudo-morphism of 2-monad, which will be really important. Also the ′ thing.
Will come back to this. Also we have presentations (later on), which are colimits
of monads.

For now let T be reasonable, by which we mean that K is cocomplete and T has
rank, which in turn means that T : K → K preserves α-filtered colimits for some
α, which means that it describes some sensible structure that you could actually
write down. For ordinary monads on categories, it says that we can describe the
structure in terms of not necessarily finitary operations, but α-ary for some very
large cardinal α. Much of the time, finitary is good enough. The famous example
of a monad on Set which is not α-filtered is the covariant power set monad.

[MS: what about, say, ‘complete categories’?]
[EC: you can’t do that, size issues.]
Actually, you can fix that, do things with universes, but once you do that, then

the same problems are fixed
Then

T -Algs
J−→ T -Alg

T -Algs
J`−→ T -Alg`

have left adjoints. What does this mean? That we have a bijection

A B

A′ → B

We see that the left adjoint to J is called (−)′ (which is sort of an embarrasing
name for a functor). These are 2-adjoints, which means Cat-adjoint, so the above
bijection underlies an isomorphism of categories

T -Algs(A
′, B) ∼= T -Alg(A, JB)

16 TALKS BY STEVE LACK IN CHICAGO, 2006

which is 2-natural in A and B. We usually omit writing the J , since it is the
identity on objects. From this we get a unit

p : A A′

and counit

q : A′ → A

and one of the triangle equations tells you that qp = 1. The other one says maybe
qp′ = 1, meaningfully interpreted.

This is actually the same as the prime we saw earlier, when we remember that
2-monads are also algebras.

2.2. Sketch proof of the existence of (−)′. There are two proofs that I know;
will sketch both, one in much more detail.
Step 1. T -Algs is cocomplete.

This is essentially where you use the reasonableness assumption (the only place,
in this proof). Colimits of algebras, as we know, are generally hard. The problem
is essentially that it’s a ‘quadratic’ thing, have TA→ A with two As. We ‘linearize’
and it becomes easy. What does that mean?

Take the T -algebra and forget any conditions, and also forget that the two As
are the same, so consider it only as a map TA→ B. This defines the objects of a
new category; morphisms are

TA //

Tf

��

TB

g

��
TC // D

Recall that T -Algs is the ordinary Cat-enriched thing. We just did this for ordinary
categories, you can enrich it yourself. You might call this the comma category T/K.
The point is that we have a full embedding

T -Algs //T/K
(check that in a morphism in T/K between two T -algebras, the two maps f and g
must be the same, using the unit condition).

The point is that colimits in T/K are easy. Say we have a diagram of things
TAi → Bi. Take the colimits in K and take the pushout

colimTAi //

��

colimBi

��
T colimAi //

to get the colimits in T/K. The hard bit is that we have a left adjoint T/K →
T -Algs, which is where we use the reasonableness assumption. Big and nasty
transfiniteness, as you expect once we write down something involving α-filtered
colimits.

[JPM: Classically, there is an easy proof when T preserves reflexive coequalizers.
Does this generalize?]

I guess so. If so, then the same construction should work. Does this depend on
any nice property of V ? Disagreement.

AUSTRALIAN CATEGORY THEORY 17

In general, if T preserves α-filtered colimits, it’s enough. If T preserves more
colimits, then it’s easier, and should it preserve all colimits, it becomes trivial: you
get them all constructed pointwise. In particular, this is true for diagram categories.

Also true that for part 2, we don’t need all colimits, only rather special ones,
which have the flavor of reflexive coequalizers.
Part 2. Let (A, a) an algebra, want to construct A′. A T -morphism (A, a)→ (B, b)
consists of various stuff. Want to translate all the stuff into T -Algs. It’s some sort
of bar construction, you’ve probably realized this already.

A (pseudo) T -morphism A→ B consists of

• A morphism f : A→ B in K, which we can model in T -Algs by a morphism
g : TA→ B where g = b · Tf .

• A square

TA
Tf //

a

��
����~� f

TB

b

��
A // B

which will become a square

T 2A
mA //

Ta

��
����~� ζ

TA

g

��
TA g

// B

in T -Algs

b.T (fa) = b.Tf.Ta = g.Ta

b.T (b.Tf) = b.T b.T 2f = · · · = g.mA

• The condition f.iA = id corresponds to saying that ζ.T iA = id
• The other one becomes

T 2A
mA //

Ta

��
����~� ζ

TA

g

��
T 3A

mTA

;;xxxxxxxx

T 2a ##FFFFFFFF TA g
// B

T 2A
Ta

//

mA

OO
9999 �
ζ

TA

g

OO

= the other way

Had A not been an algebra but a pseudo-algebra, then some of these commuting
squares would have some stuff in there, but everything would still work, to get a
left adjoint defined on pseudo-algebras.

We have a truncated simplicial gizmo:

T 3A
mTA

//

T 2a //
TmA // T 2A

mA
//

Ta //
ATiAoo

and we take the codescent object of this construction. Alternately, we can do it
working our way up step by step. We first universally insert a 2-cell in between (a

18 TALKS BY STEVE LACK IN CHICAGO, 2006

coinserter)

T 2A
mA

//
Ta //

A

and then do a coequifier forcing the next-level equation to hold. Will talk about
2-categorical limits later.

Another fact is that the thing T iA going back the other way makes it look like
a reflexive coequalizer, which makes it have a better chance of being presered by T
than a random one.
Alternative proof. This was actually the original proof. It involves embedding
T -Alg ↪→ T/psK in some pseudo-comma category and constructing a reflection
there.

2.3. More. Power has just proven a corresponding theorem for the 3-dimensional
version, using a Gray-monad on a Gray-category. The equations are only invert-
ible 3-cells satisfying some coherence conditions (a 4-cube). In his way, the cubes
are not quite so evident. Haven’t really understood the suitable notion of codescent
object yet.

Recall we have

A′

 @@@@@@@

A

>>
>~

>~
>~

>~

A

with qp = 1. It’s also true that pq ∼= 1, so that this is an equivalence, and thus
A ' A′ in T -Alg (but not in T -Algs).

If q has a section in T -Algs (as opposed to T -Alg), then A is said to be flexible
(which is another word for cofibrant). Think of A′ as being a cofibrant replacement
for A; could make this precise, but won’t today. The q is a strict morphism which
is an equivalence in T -Alg, which should be thought of as the weak equivalences.
There is some model structure on T -Algs in which flexible becomes the same as
cofibrant.

Exercise 2.2. If A is flexible, then any wobbly A is isomorphic to a strict A→ .

The fact of A ' A′ gives us a ‘coherence result for morphisms’. Could also be
thinking about algebras; recall there was

T -Algs → T -Alg→ PsT -Alg

and the composite still has a left adjoint, which you could almost still call (−)′ (as
we remarked earlier the same thing works if you stick an extra isomorphism in here
and there). If A is a pseudo T -algebra, we get a strict T -algebra A′ and a pseudo
map A A′ which is universal in the sense that any A B factors through as
A′ B.

Here the counit is a little different; have to start with a strict algebra. If B is
strict, we get q : B′ → B, but just starting with a pseudo-algebra A there is no
reason to have such. In some cases, p : A A′ is an equivalence. For example, it’s
an equivalence if T preserves these codescent objects, since can then construct it
downstairs and use the universal property there to get a map going back the other
way. There are various sufficient conditions for this to work.

Tend to think of the existence of (−)′ and then the fact of A A′ being an
equivalence as the ‘full coherence result’. But in practice, not that important, since

AUSTRALIAN CATEGORY THEORY 19

usually the strict algebras are what you want; you wanted to use some smaller
cofibrant replacement for T that T ′.

Know an example of a 2-monad whose pseudo-algebras don’t strictify, but it’s
horrible on some horrible K; don’t know one with these nice conditions but for
which A A′ fails to be an equivalence.

20 TALKS BY STEVE LACK IN CHICAGO, 2006

3. Presentations for 2-monads

‘Presentations’ means free things and colimits of things. First of all, ought to
justify why colimits of monads are good things; this isn’t really 2-categorical at all.

3.1. Endomorphism Monads. T 2-monad on K (really a 2-category, might just
as well be a category), K complete. Then given objects

K
〈A,B〉

��@@@@@@@

I
B //

A

??��������
K

The right Kan extension is a functor defined as

〈A,B〉C = K(C,A) t B

where t means the cotensor, defined as

K(D,X t B) ∼= Cat(X,K(D,B))

Thus in our case, this becomes the universal property of the right Kan extension.
In particular, we have bijections of 2-natural transformations.

T −→ 〈A,B〉
TA −→ B

This is starting to look like something you might want to do if T is a monad.
We have a natural ‘composition’ map

〈B,C〉〈A,B〉 −→ 〈A,C〉

which makes K actually enriched over [K,K]. Writing down where this comes from
is a good exercise. We also have a unit

1→ 〈A,A〉

Thus, as always, 〈A,A〉 becomes a monoid in [K,K], i.e. a monad. And monad
maps

T
monad−→ 〈A,A〉
TA

alg.str−→ A

correspond to T -algebra structures on A.
This tells us that colimits of monads are interesting. For example, algebras for

S + T (coproduct as monads) are objects with an algebra structure for S and T
with no particular relationship between them.

What are the algebras for 〈A,A〉? A has an obvious one given by evaluation,
but maybe there aren’t any other interesting ones? Certainly if B ∼= A then B has
an algebra structure.

This is exactly like the endomorphism operad of an object, except that instead
of the n-ary operations, we are looking at the collection of ‘C-ary operations’ for
all objects C ∈ K:

〈A,A〉C = K(C,A) t A

AUSTRALIAN CATEGORY THEORY 21

So far, everything is V -categorical for any V . Can do the same thing for mor-

phisms. For A
f−→ B we get the lower right corner,

T //

��

〈A,A〉

��
〈B,B〉 // 〈A,B〉

and so if we have algebras T → 〈A,A〉 and T → 〈B,B〉, this square commuting
means that f is a strict map of algebras. Don’t really want this to commute strictly,
only pseudo or laxly. To give a 2-cell

TA //

��

A

��
TB // B

����
=Ef

is the same as

T //

��

〈A,A〉

��
〈B,B〉 // 〈A,B〉

				
@H

Thus if we form the comma object

{f, f} //

��

〈A,A〉

��
〈B,B〉 // 〈A,B〉

				
@H

to give a 2-cell as above is the same as to give a 1-cell T → {f, f}.
Now {f, f} becomes a monad. This is an exercise involving pasting together

squares. And in such a way that

{f, f} //

��

〈A,A〉

〈B,B〉

are monad maps (although 〈A,B〉 is not a monad). Finally, T → {f, f} is a monad
map iff (f, f) is a T -morphism. And of course there is a pseudo version of this.
Thus we can work out the algebras and morphisms for a monad just by looking
at monad morphisms out of T . This is supposed to justify the importance of free
monads and and colimits of monads. Exercise: describe the T -transformations in
this way.

3.2. Pseudomorphisms of monads. In addition to strict monad maps, where
the good colimits live, there are also pseudo maps of monads. A pseudomorphism
of 2-monads on K is T → S which is 2-natural (might also want to consider it being

22 TALKS BY STEVE LACK IN CHICAGO, 2006

only pseudonatural) and ‘looks like a strong monoidal functor’

T 2 //

��
∼=

T

��
T // S

1

OO >>}}}}}}}}

∼=

satisfying the same usual coherence conditions. These will be wobbly, as usual.
Note that maps in the ‘underlying’ place, not preserving anything at all, somehow

become straight arrows again.
Now to give

T 〈A,A〉
becomes TA

a−→ A in the underlying world, and the 2-cells and their coherence
conditions unravel to make A precisely a pseudo-T -algebra (which we never wrote
down the full definition of before).

Now, build up to a presentation of the 2-monad for monoidal categories. Put it
together step by step, using free monads for operations, and colimits of monads,
for more stuff.

3.3. Locally finitely presentable 2-categories. The problem is that free mon-
ads don’t exist and colimits of monads don’t exist, for stupid size reasons, so we
have to do something to tame them. Assume that K is a locally finitely presentable
2-category. Various ways I could tell you what that means:

• Some definition, which you don’t need to know because I’m not going to
prove anything. A cocomplete 2-category with a small full subcategory
which is a strong generator and consists of finitely presentable objects.

• Complete and cocomplete and transfinite arguments work more than usual.
They almost just work.

• Things (2-equivalent to things) of the form Lex(C ,Cat) for C a small
2-category with finite limits, and ‘Lex’ meaning finite-limit-preserving 2-
functors. Can take C to be Kop

f where Kf is the full subcategory of finitely
presentable objects.

• Examples: can also take [A ,Cat] for any small 2-category A , or CatX for
any set X . The 2-category of groupoids is another example.

• Full reflective subcategories of presheaf categories which are closed under
filtered colimits.

• Complete and cocomplete, and is the free cocompletion under filtered col-
imits of some small thing (an Ind-completion). The latter, plus cocomplete,
implies complete as well.

Again, this is all V , nothing particularly special about Cat, although need V
to be somewhat nicer than usual.

Then to give a finitary 2-functor K → K (meaning filtered-colimit-preserving)
is to give an arbitrary one Kf → K. Write Endf (K) ' [Kf ,K] for the monoidal
category of finitary endo(-2-)functors on K. Unlike [K,K] this is locally small, since
Kf is small.

AUSTRALIAN CATEGORY THEORY 23

We also have Mndf (K), the finitary 2-monads on K, meaning that the functor
part is finitary. This is just the monoids in Endf (K). In this world, we do have a
left adjoint

Mndf (K)

��
Endf (K)

DD

Can also regard this as a partial adjunction in the unrestricted case, defined on
the finitary objects. That sort of is important because the 〈A,A〉 things are not
finitary, although we can sort of coreflect them into the finitary things.

Everything is still true if you replace ‘finite’ by some regular cardinal α, if you
like that sort of thing.

Moreover, Endf (K) and Mndf (K) are themselves lfp 2-categories, so they are
complete and cocomplete. Moreover, colimits in the good 2-category of finitary
2-monads are still colimits upstairs in the category of all 2-monads.

Moreover, the adjunction is monadic; there is a 2-monad on Endf (K) for which
Mndf (K) is the strict algebras and strict morphisms. We can drop down even
further to get

Mndf (K)

W

��
U

}}

Endf (K)

H

DD

V

��
[ob Kf ,K]

H

DD
F

==

and go back up by left Kan extension. The lower adjunction is also monadic, and
actually all of these are monadic.

Depending on which monad you think of the top as algebras over, it affects what
the pseudomorphisms and pseudoalgebras will be. Dropping down one level, the
transformations are 2-natural ones, while if we drop down the whole way, they will
be only pseudonatural.

3.4. Presentations. What I regard as the most basic generator for a 2-monad is
an object of the bottom, i.e. an X : ob Kf → K, c 7→ Xc. Can then construct the
free 2-monad on such a thing, FX .

What is an FX-algebra? A monad map

FX → 〈A,A〉
which is the same as

X → U〈A,A〉.
(Here we’re being a little innacurate, since 〈A,A〉 is not finitary, but you can either
coreflect (given by restriction) or do stuff we said before). This just means that for
each c, we have

Xc→ 〈A,A〉c
which unravels to a functor

K(c, A)→ K(Xc,A)

24 TALKS BY STEVE LACK IN CHICAGO, 2006

between hom-categories. Since K is cocomplete (including tensored), this is the
same as a map ∑

c

K(c, A) ·Xc −→ A

Thus we can think of Xc as the ‘object of all c-ary operations’.

Example 3.1. Let K = Cat, so Kf is the finitely presentable categories, and X
assigns to every such c a category Xc of c-ary operations. We take

c 7→
{

1 c = 0, 2 = 1 + 1

0 o/w

(2 is the discrete category 2). Thus we have one binary operation and one nullary
operation. An FX-algebra is then a category A with maps as above. If Xc is
empty, then K(Xc,A) is terminal, so there’s nothing to do. In the other cases, we
get maps

A2 → A

when c = 2 and

A0 = 1→ A

when c = 0. This is the first step along our path of building up the 2-monad for
monoidal categories. The morphisms, which we can work out, will preserve both of
these ⊗ and I , up to isomorphism, but nothing else to do, since FX is free.

Example 3.2. Again let K = Cat, and let

X∗c =

{
2 c = 1

0 o/w

Then an FX∗ algebra is a category with a map

A→ A2

in other words, a pair of maps with a natural transformation

A
&&
88

�� ��
�� A .

This is an example when Xc is not discrete.

In the case of monoidal categories, there are operations of ‘type arrow’ but I’m
not going to construct them that way, although you could. It’s not a nice way.

3.5. Monoidal categories. Actually,, let’s forget about the units, just worry
about the binary operation. Then Xc is 1 if c = 2 and 0 otherwise, so an FX-
algebra is a category with a single binary operation. Then we have

FX-Algs
Us

yysssssssss
Us

%%KKKKKKKKK

Cat

Cat(3,−) %%KKKKKKKKKK Cat

Cat(1,−)yyssssssssss

Cat

AUSTRALIAN CATEGORY THEORY 25

which sends
(A,⊗)7

{{wwwwwwwww �

##GGGGGGGGG

A �

##GGGGGGGGG A7

{{wwwwwwwww

A3 ⇒ A

and we have the two maps ⊗(⊗1) and ⊗(1⊗) which are natural, so we get two
transformations in the above square. Want to make them isomorphic.

Take the mate along the adjoint of Us to get

FX-Algs
Us

%%KKKKKKKKK

Cat

Fs

99sssssssss

Cat(3,−) %%KKKKKKKKKK Cat

Cat(1,−)yyssssssssss

Cat

with two 2-cells in the middle. Note that UsFs = FX is the monad. Now we
can drop the identity functor Cat(1,−) (which we put in to clarify more general
versions) and we have have these two transformations

Cat(3,−)⇒ FX,

which are morphisms of endofunctors. We can now soup them up to get monad
morphisms

HCat(3,−)⇒ FX.

Then if we also have
HCat(3,−)⇒ FX −→ 〈A,A〉,

restriction along the two arrows is picking out the two structure maps ⊗(⊗1) and
⊗(1⊗). Now in the 2-category Mndf (K) we construct the universal thing FX → S
with an isomorphism between the two restrictions. This is called a co-iso-inserter,
another 2-categorical colimit (completely strict) which we will meet later on.

Now, an S-algebra is a category A with a functor ⊗ : A2 → A and a natural
isomorphism α : ⊗ (1⊗) ∼= ⊗(⊗1). Can also write down what it means to be a
pseudo or lax morphism of such algebras, and it’s what you want it to be; the
tensor-preserving isomorphisms are forced to commute with this associator.

To do the coherence condition, we have a pair of 2-cells

HCat(4,−)
((
66

�� ��
�� S

which encode the two isomorphisms that one wants to make equal. Now we form the
coequifier q : S → T , in the category of monads, of these two 2-cells, the universal
thing with the property that qγ = qβ of making them equal.

Then the 2-category T -Alg is the 2-category of ‘semigroupoidal categories’ and
strong morphisms (we can get the strict and lax morphisms in the obvious way
too). All this follows from the universal property of the monad T .

26 TALKS BY STEVE LACK IN CHICAGO, 2006

3.6. Some More Examples.

3.6.1. Terminal Objects. Consider the structure of category with terminal object.
How do you say algebraically that a category has a terminal object? Give an
object

1
t−→ A

with a natural transformation

A

A

""
�� ��
�� τ

��??????? A

1

??�������

such that the component of t

1
t // A

A

""
�� ��
�� τ

��??????? A

1

??�������

is the identity. This is a baby example, but you can do any limist you like once you
understand this example.

Let’s give a presentation for it. Two ways we can think of doing it. The way
from last time was starting with basic operations and build up more stuff using
colimits. Never said this, but there was this mystical thing: all the object-type
stuff at the beginning, then all the colimits were never imposing equations between
objects, only making objects isomorphic or 2-cells equal.

Could do that in this case. t is a nullary operation, so that would involving
giving something

Cat(0, A)→ Cat(1, A)

which corresponds to an X which takes value 1 on c = 0 and 0 everywhere else.
Could now form the corresponding free monad and then do some coinserters and
coequifiers.

Here’s a slightly different way. Start the same, with a nullary operation

Cat(0, A)
t−→ Cat(1, A)

and then put in a unary operation of type arrow:

Cat(1, A)
τ−→ Cat(2, A)

which specifies two endormorphisms of A and a natural transformation between
them.

A

f
&&

g

88
�� ��
�� τ A

AUSTRALIAN CATEGORY THEORY 27

Now have to say what f and g are. Can now start building up ‘derived operations’
which are produced by composites and functoriality from the original ones; we see
them in the free monad. We have

Cat(1, A) τ
//

1

**
Cat(2, A)

Cat(d0,A)
// Cat(1, A)

and the equality of these says that f = 1A. Then we have

Cat(1, A)
τ //

Cat(!,A)

��

Cat(2, A)

Cat(d1,A)

��
Cat(0, A)

t
// Cat(1, A)

whose commutativity makes g = t◦!. Finally, we have

Cat(0, A)
t //

t

��

Cat(1, A)

Cat(1,A)

��
Cat(1, A) τ

// Cat(2, A)

whose commutativity makes the last axiom true.
Note that here the algebras are categories with a chosen terminal object. This

seems strange, but not really a problem. The strict morphisms preserve the chosen
terminal object strictly, which is stupid, but the pseudo morphisms just preserve it
in the usual way.

3.6.2. Bicategories. Two reasons for doing this one: an example when K 6= Cat,
and also important for 2-nerves.

Let K = Cat-Grph, the 2-category of category-enriched graphs. A Cat-graph
consists of a set of things G,H, . . . and hom-categories G (G,H) ∈ Cat. (Can do
this for any V , of course.) A morphism is a function on sets and functors on hom-
categories. Can’t express naturality for the 2-cells, and we could take them to be
just components that have no naturality, but here what we do is require that for a
2-cell

G

F ((

F1

77
�� ��
�� H

to exist, we must have F = F ′ on objects, and then we ask for natural transforma-
tions

G (G,H)

F --

F ′
11

�� ��
�� H (FG,FH)

on all hom-categories.
Now, given a Cat-graph, what do you need to do to turn it into a bicategory?

Have to give compositions

G (H,K)× G (G,H) −→ G (G,K).

28 TALKS BY STEVE LACK IN CHICAGO, 2006

Let c be the (locally discrete) Cat-graph (· → · → ·). Then it turns out that

K(c, scrG) =
∑

G,H,K

G (H,K)× G (G,H).

If we define Xc = (· → ·), then

K(Xc, scrG) =
∑

G,K

G (G,K).

To get the individual maps, not just the sums, we need to put in an equation. Have
two maps 1→ Xc, compose it with both of those and say that it’s the right thing.

That’s all I want to say about the construction. There’s a lot more stuff of
course. What we get is:

• An algebra is a bicategory.
• A lax morphism is a lax functor.
• A pseudo morphism is a pseudo functor.
• A strict morphism is a strict functor.
• A 2-cell is an icon. This is an oplax natural transformation (which we

haven’t officially met yet) for which the 1-cell components are identities.
ICON stands for ‘Identity Component Oplax Natural-transformation’.

FA

��
����~�

GA

��
FB GB

These are what turn out to be the monoidal natural transformations when we
restrict to one-object ones.

These guys are also just nice enough to give us a 2-category of bicategories. In
general, lax natural transformations between lax functors can’t even be whiskered
by lax functors.

//
>>

�� ��
�� //

For pseudo things, we can define it, but composition fails to be associative, so we
only get a tricategory. But with just icons, we do get a 2-category, which is moreover
a category of algebras for (this) 2-monad. Still not perfect: this restriction is quite
severe and for some things you just don’t want to have to do that, need to go to
the full tricategory, but it’s good enough for lots of things.

For example, in this 2-category, it’s true that every bicategory is equivalent (in
the 2-category) to a 2-category, since we don’t have to do anything to the objects
to strictify. This 2-category also turns out to be a full sub-2-category of simplicial
objects in Cat, via nerve constructions, once we restrict to normal homomorphisms
by working with reflexive Cat-graphs to start out with.

The reason oplax transformations are called ‘oplax’ is due to Benabou. He got
the functors right: lax functors are much more important than oplax ones. But it
definitely seems that he got it wrong for the transformations: oplax ones are clearly
the good ones.

AUSTRALIAN CATEGORY THEORY 29

3.6.3. Cartesian closed categories. Could be monoidal closed, symmetric monoidal
closed, doesn’t make much difference for the point I want to make. Here we have
this internal-hom thing

Aop ×A→ A

and we’re just not allowed to talk about Aop the way we’re doing things. Our
operations are supposed to be of the sort Ac → A. How can we deal with this?

In fact, it’s a theorem that cccs don’t have the form T -Alg over Cat. Have to
change our base 2-category again, take K = Catg , the 2-category of categories,
functors, and natural isomorphisms. Recall that Cat(2, A) is just A × A, but in
Catg(2, A) we have only Aiso ×Aiso. The internal-hom does give us a map

Aiso ×Aiso −→ Aiso

which is

Catg(2, A) −→ Catg(1, A)

since we can turn around an isomorphism in the first variable to make contravari-
ant into covariant. This gives a new problem; we have to put in the rest of the
functoriality separately by hand, which is a real pain if you try to do it in detail.

Put in another operation

Catg(2+ 2, A) −→ Catg(2, A)

which encodes the effect on morphisms of [−,−]. Then have to specify domains and
codomains, encode that this is a functor, that it has the right universal property.
We also have to make the product functorial by hand.

Observe that anything monadic over Cat gives induced monads on Catg and
on the 1-category Cat0 (since things are stable under change of base enriching
category, categories to groupoids to sets). But at each stage, to present the same
structure becomes harder. We want to stop at the groupoid-enriched stage so that
we can talk about pseudo morphisms, which we wouldn’t be able to do in Cat0. We
don’t have an independent notion of lax morphism any more, though, since they
all reduce to pseudo ones. For some things this is quite adequate, but for others
it’s not so good; that’s life.

3.6.4. Diagram 2-categories. The first version of this is not really an example of
a presentation at all, since the 2-monad pops out for free. Let C be a small
2-category, and consider the 2-category [C ,Cat] of (strict) 2-functors, 2-natural
transformations, and modifications. This is the Cat-enriched functor category.
Can now forget down:

[C ,Cat]

Us

��
[ob C ,Cat]

]]DD

which has both adjoints given by left and right Kan extension. The existence of the
right adjoint tells us that the forgetful functor preserves all colimits. In this case
Us is strictly monadic (purely enriched notion); easy to prove with the enriched
Beck’s theorem. The induced monad T then preserves all colimits, and we can
write, using the Kan extension formula,

(TX)c =
∑

d

C (d, c) ·Xd.

30 TALKS BY STEVE LACK IN CHICAGO, 2006

It’s now fairly easy to check that

• pseudo T -algebras are pseudo-functors,
• lax algebras are lax functors,
• pseudo morphisms are pseudo-natural transformations,
• etc.

Everything works (perhaps the lax and the oplax get switched?). Note that when
you write down the coherence conditions for a lax morphism it will tell you more
than is in the definition of a lax functor, which is because the latter is the ‘minimum’
necessary to make ‘everything’ true.

Now let C be a bicategory. Could try to do the same game, but wouldn’t get a
2-monad, since the associativity of the multiplication for the monad corresponds to
the associativity of composition in C , so we’d just get a pseudo-monad. We could
do this, but we’ve been avoiding pseudo-monads, so let’s continue. We can instead
give a presentation for a 2-monad T on [ob C ,Cat] whose

• (strict) algebras are pseudofunctors C → Cat,
• pseudomorphisms of algebras are pseudonatural transformations,
• etc.

The target doesn’t really need to be Cat. Need to have coproducts at least for
the first case. In the second case, need all colimits. But then that’s enough.

4. Limits

Let’s start with some concrete examples. Talk about limits in T -Alg, as a
stepping-stone to the general notion.

4.1. Limits in T -Alg. As always, T -Alg is the strict algebras and pseudo mor-
phisms for a nice 2-monad T on a nice 2-category K.

4.1.1. Terminal objects. Let’s start with something really easy: terminal objects.
Let 1 be terminal in K; we have a unique map T1→ 1, making 1 a T -algebra, and
then for any other A we have a unique ! : A→ 1, and

TA
T ! //

��

T1

��
A

!
// 1

commutes strictly, so there’s a unique strict algebra morphism A → 1. Moreover,
by the 2-universal property of 1, there’s a unique isomorphism in the above square,
which happens to be an identity; thus there is only one pseudo morphism as well
(which happens to be strict). A similar argument works for endomorphisms of this
morphism; thus

T -Alg((A, a), (1, !)) ∼= 1

so (1, !) is a terminal object in T -Alg.

AUSTRALIAN CATEGORY THEORY 31

4.1.2. Products. Similarly for products, we have an obvious map

T (A×B)→ TA→ TB → A× B

and so on. This is just like ordinary monads, nothing 2-categorical going on here.
The point is that if we have some pseudo morphisms

TC //

��
∼=

TA

��
C // A

TC //

��
∼=

TB

��
C // B

we get

TC //

��

T (A× B)

��
C

(f,g)
// A×B

And to give a 2-cell in here is, by the universal property of A×B, just to give two
2-cells, one into A and one into B, so we get one. Can check the universal property,
so we get

T -Alg(C,A×B) ∼= T -Alg(C,A) × T -Alg(C,B)

These are strict 2-limits (enriched Cat-limits). Might consider weakening these
things, which can be a good thing to do, but it’s even better here.

Note that the projections A×B → A and A×B → B are actually strict maps,
by construction. Moreover, they jointly ‘detect strictness’: a map into A × B is
strict if and only if its composites into A and B are strict. This is a useful technical
property.

Actually, we didn’t really need to check anything, since we’ve already seen that
T -Algs ↪→ T -Alg has a left adjoint, hence preserves all limits, and in the case of
terminal objects and products, the thing we’re taking a limit of is just objects, so
it already exists in the strict world. Although having the adjoint involves some
transfinite constructions, which might not exist in some places, but anyway you
can just check that the limits are preserved.

4.1.3. Equalizers. Now let’s look at equalizers. Here it’s different, because the
morphisms might not be strict morphisms. If they are, then the equalizer exists in
T -Algs and is preserved, but if they aren’t, the adjunction doesn’t help. In fact,
in general equalizers of pseudo morphisms need not exist.

For example, let T be the 2-monad on Cat for categories with a terminal object.
Let 1 be the terminal category and let I be the free-living isomorphism. Clearly
both have a terminal object, and both inclusions are pseudo morphisms. But any
functor which equalizes them has to have empty domain, and no category with an
empty domain has a terminal object.

32 TALKS BY STEVE LACK IN CHICAGO, 2006

4.1.4. Equifiers. Thus T -Alg is not complete, and that’s that. But we can look at
some of the limits that it does have. Consider equifiers. Here we have a parallel
pair of 1-cells with a parallel pair of 2-cells between them:

A

f

((

g

66α⇓ ⇓β B

and we want the universal 1-cell K
k−→ A such that αk = βk. In other words,

K(D,C) is isomorphic (not equivalent) to the category of morphisms D
h−→ A

with αh = βh. We do have equifiers. This is as we expect; we can make 2-cells
equal, but not 1-cells, because of the pseudo morphisms.

In T -Alg, we have

CT
Tk //

c

��

TA

Tf
**

Tg

44Tα⇓ ⇓Tβ

��
����{� f

����|� g

TB

��
C

k // A

f

))

g

55α⇓ ⇓β B

with isomorphisms f on the back and g on the front, making the cylinders commute.

Let C
k−→ A be the equifier in K; we want to make C an algebra such that the left

square commutes. To factor through C (in fact strictly) we just need to show that
αa.Tk = βa.Tk. We have the composite

TC
Tk // TA a

//

Tf

$$
�� ��
�� f
A

f
&&

g

88
�� ��
�� α B

Since α is an algebra 2-cell, we can replace αf with g.Tα:

TB
b

!!CCCCCCCC

TC
Tk // TA

Tf
44

Tg

GG
9999 � Tα

a
""EEEEEEEE g B

A

g

=={{{{{{{{

But αk = βk, so by functoriality Tα.Tk = Tβ.Tk, getting

TB
b

!!CCCCCCCC

TC
Tk // TA

Tf
44

Tg

GG
9999 �
Tβ

a
""EEEEEEEE g B

A

g

=={{{{{{{{

AUSTRALIAN CATEGORY THEORY 33

and then we use the fact that β is an algebra 2-cell backwards, to get that the first
composite is equal to

TC
Tk // TA a

//

Tf

$$
�� ��
�� f
A

f
&&

g

88
�� ��
�� β B .

Finally, since f is invertible, we can cancel them off the pasting diagrams to get
αa.Tk = βa.Tk as desired. Thus we get the unique induced c as desired. Have to

check that TC
c−→ C is an algebra (c.iC = 1 and c.T c = c.mC), which is just like

the usual case, since C is a limit and both of these are things going into C. We
now have a strict algebra morphism C → A; then also check the universal property
for this in T -Alg.

Observe that once again, the projection map k of the limit is actually a strict
map, and detects strictness of incoming maps.

What fails for the equalizer? Could do the same thing, but to get a c we’d need
to know that f.a.T i = g.a.T i, but we’d only get these isomorphic to b.Tf.T i and
b.T g.T i, respectively, which are equal, but this only tells us that f.a.T i ∼= g.a.T i,
rather than equal, so we don’t get a factorization. This is stupid thing you shouldn’t
expect, so we shouldn’t really expect to have equalizers.

4.1.5. Inserters. What about inserters? These play a bit like the role of equalizers;
you can’t make 1-cells equal, but you can make them isomorphic, or (as here) just
put a 2-cell in between them. Given A⇒ B, this is the universal C → [k]A together
with fk → [κ]gk. In detail, K(D,C) should be isomorphic to the category whose
objects are morphisms D → [`]A equipped with f`→ [λ]f`, and whose morphisms
are 2-cells

D

`
&&

m

88
�� ��
�� α A

such that

f`
λ //

fα

��

g`

gα

��
fm κ

// gm

commutes.
Once again, inserters in K lift to T -Alg, where they have strict projections and

detect strictness. Given a pair

(A, a)

(f,f)
((

(g,g)

66
(B, b)

of pseudo morphisms, we construct the inserter (k, κ) of f and g, and want to make
it an algebra. We need to get from f.a.Tk to g.a.Tk to induce c, so we follow our
nose:

f.a.Tk ∼= b.Tf.Tk
b.Tκ−→ b.T g.Tk ∼= g.a.Tk

34 TALKS BY STEVE LACK IN CHICAGO, 2006

This thing then must be κc for a unique c, by the universal property of the inserter
in K. Check that c makes C into an algebra, and so on; everything goes through
just as before.

Observe that inserters in a category with no nonidentity 2-cells is the same as
an equalizer.

4.1.6. PIE-limits. Thus T -Alg has products, inserters, and equifiers, so it has PIE-
limits, defined to be precisely the limits we can build up out of products, inserters,
and equifiers. This is quite a good class, for various reasons. Equalizers aren’t in
here, but we do get the following:

• iso-inserters, which are inserters where we ask the 2-cell to be invertible.
We insert something going the other way, then equify their composites with
identities. But iso-inserters don’t suffice to construct inserters.

• cotensors by categories. Given a category C, we first use products to do
discrete C, then use inserters to put the morphisms in, and then do some
equifiers to make it functorial.

• inverters, where we start with a 2-cell α and make it invertible, i.e. k is
universal such that αk is invertible. Do this as before: insert something
going back the other way, then equify composites with the identity. Observe
that coinverters in Cat are also known as ‘categories of fractions’ C [Σ−1].

AUSTRALIAN CATEGORY THEORY 35

4.2. A Meta-Comment. I haven’t been very careful about describing results, and
probably won’t. I have started preparing a references; maybe wait until finished
and then give it to you. Not intended to be complete, but contains all my favorite
stuff.

4.3. Weighted Limits. Let C
S−→ K be a functor between, say, ordinary cate-

gories. The limit is supposed to be defined by the fact that maps

K(A, limS) ∼= Cone(A,S)

= [C ,K](∆A,S)

= [C ,Set](∆1,K(A,S)).

In other words, for each C ∈ C we have a map 1→ K(A,SC) in Set, hence a map
A→ SC, and naturality in C is precisely what gives you a cone. Don’t assign any
importance to the difference between ∼= and =. This last is the definition of limit
we’re going to use today, and ask what happens if we change ∆1 to something else.

Example 4.1. No one really uses this in practice, but it’s useful to think about. Let
C = 2 have two objects, so a functor S : C → K is a pair of objects B and C, and
a weight is a functor J : C → Set, say it sends one to 2 and the other to 3. Then

[C ,Set](J,K(A,S))

consists of 2 → K(A,B) and 3 → K(A,C), thus 2 arrows A → B and 3 arrows
A→ C. Thus this becomes an arrow A→ B2×C3, so we get a ‘weighted’ product.
This is quite contrived, but you see where the word ‘weight’ comes from.

For general V , have S : C → K and J : C → V both V -functors, and we consider

[C ,V](J,K(A,S)).

If this is representable as a functor of A, the representing object is called the J-
weighted limit of S and written {J, S}. Thus we have a natural isomorphism

K(A, {J, S}) ∼= [C ,V](J,K(A,S)).

which defines the limit.

Exercise 4.2. If K = V , then {J, S} is the internal hom [C ,V](J, S).

That’s all I want to say about general V .
When V = Set, this is a good thing to think about, but it doesn’t give you

any new limits that didn’t exist already. I.e. if K is an ordinary category which is
complete in the usual sense of having all conical limits (J = ∆1), then it also has
all of these weighted limits. But the weighted ones are more expressive, so it’s still
useful to think about them. Think of the weight J as determining the type of limit,
not just the diagram shape C .

But for V 6= Set it’s not in general true. But if you have all conical limits
and cotensors, you can construct all weighted limits. A little bit subtle because the
constant functor at 1 is usually not what you want to look at, nor need it even exist.
Instead of maps out of 1, you want to look at maps out of I , the unit object of V .
And ∆I may not exist either, unless C is the free V -category on some ordinary
category B. But we can talk about those sorts, and together with cotensors you
can construct all weighted limits from them.

36 TALKS BY STEVE LACK IN CHICAGO, 2006

4.4. Cat-weighted limits.

Example 4.3 (Inserters). Let C = (⇒), so S is determined by a parallel pair of
arrows A ⇒ B. The weight J : S → Cat sends it to (1 ⇒ 2). Then to give
a natural transformation J → K(C, S) gives us 1 → K(C,A), hence an arrow
h : C → A, and 2→ K(C,B), hence

C
&&
88

�� ��
�� B .

But by naturality the two 1-cells must be fh and gh, so the data consists of h : C →
A and a 2-cell β : fh→ gh.

Need then to check that it gets the arrows right, since we have not just a 1-
dimensional property but a 2-dimensional one. But in the presence of tensors, we
get that for free.

Example 4.4 (Equifiers). Here, our category C is

''77⇓ ⇓

and our weight is

1
((
66⇓ ⇓ 2

in which the two 2-cells get mapped to the same 2-cell in Cat.

Example 4.5 (Comma objects). C is the same shape for pullbacks

��//

and J is

1

1

��
1

0
// 2

.

There is no 2-cell in C , since we don’t start with a 2-cell, we only add one universally
(hence it is in J).

Example 4.6 (Inverters). Recall, this is where we start with a 2-cell and make it
universally invertible. Then C is

>>

�� ��
��

and J is

1
''
77

�� ��
�� I

where I is the ‘free-living isomorphism’ ·� ·.

AUSTRALIAN CATEGORY THEORY 37

Suppose in general we have some ‘limit-notion’ which we know in advance is a
weighted limit, but we don’t know what the weight is, here’s what you can do.
(This is the sort of trick you should never give away. I’m going to give it away,
but I’m not going to give away the reason, so maybe it’ll still be slightly mystical.)
Consider the version of the Yoneda embedding C → [C ,V]op and take its ‘limit’,
for the notion of limit we’re interested in. Never actually seen that written down
anywhere.

4.5. Pseudolimits. Now we are interested in

K(A, pslimS) ∼= Ps(C ,Cat)(∆1,K(A,S)).

where Ps(A ,B) is the 2-category of 2-functors, pseudonaturals, and modifications
from A to B. The right side is what we mean by a pseudo-cone. Note that this is
still an isomorphism of categories, not an equivalence.

Example 4.7 (Pseudopullbacks). Again we take C to be

��//

A pseudo-cone then consists of

��

''∼=
∼=

�� ��//

with isomorphisms in each triangle. We have made the cones commute only up to
isomorphisms, but the universal property and factorizations are still strict. Note
that the pseudopullback is equivalent (not isomorphic) to the isocomma object (as-
suming both exist). In the latter, we specify fa ∼= gb without specifying the middle
diagonal arrow. Of course, we can take it to be fa, or gb, so we get ways of going
back and forth.

But they are not in general equivalent to the pullback (‘not all pullbacks are ho-
motopy pullbacks’). But if either is a fibration in the suitable sense (the categorical
model structure on Cat), then they are equivalent to the pullback.

Again, given a weight J : C → Cat, the weighted pseudolimit is defined by

K(C, {J, S}ps) ∼= Ps(C ,Cat)(J,K(C, S)).

I don’t really want to do any examples of this one. I want to do some general
nonsense instead.

Remember than Ps(C ,Cat) = T -Alg for some T on ob C -indexed families of
Cat. And we have T -Algs = [C ,Cat], so

[C ,Cat] ↪→ Ps(C ,Cat)

has a left adjoint which rejoices under the name of (−)′. Thus

Ps(C ,Cat)(J,K(C, S)) ∼= [C ,Cat](J ′,K(C, S))

38 TALKS BY STEVE LACK IN CHICAGO, 2006

which just defines the universal property for the J ′-weighted limit. In other words,
pseudolimits are not some more general thing, but a special case of ordinary (weighted)
limits. Thus we say that a weight ‘is’ a pseudolimit if it is J ′ for some J .

This is typical. Recall, for example, that pseudo-algebras for monads are strict
algebras over a cofibrant replacement monad. Thus talking about things of the form
PsT -Alg is actually less general than things of the form T -Alg, since everything
of the former form has the latter form, but not conversely.

Modulo details, it is also true that homotopy limits are a special case of weighted
limits.

4.6. PIE-limits. Recall that these are the limits constructible from products, in-
serters, and equifiers.

Fact 4.8. Pseudolimits are PIE-limits.

But not conversely. For example, inserters are not pseudolimits (proof: why
should it be?). Neither are iso-comma objects, although they’re pretty close (as we
saw above).

This is because of the construction of (−)′ that I gave. By Yoneda, applying
colimits to the weights corresponds to limits of the diagrams; more precisely, to say
that pseudolimits are PIE-limits is to say that all pseudolimit weights J ′ can be
constructed by PIE-colimits from representables (which, as weights, correspond to
evaluation at one spot, by Yoneda again). But recall that we constructed J ′ using
coinserters and coequifiers applied to free algebras (for which we need coproducts
as well). So we use precisely the PIE-limits.

Remember that T -Alg had all PIE-limits. It therefore has all pseudolimits as
well. But consider the class of all limits (weights) which are equivalent (in [C ,Cat],
so that the equivalences are 2-natural) to pseudolimits. It is not the case that T -Alg
has all of those limits. So equivalence of limits is not always totally trivial.

For example, consider splitting of idempotent equivalences, which seems like a
very benign thing to do.

TA //

��
∼=

TA

��
T

e // T

If we split this idempotent equivalence, we won’t necessarilly get a T -algebra back,
only a pseudo-algebra. For, say, strict monoidal categories, it isn’t.

4.7. Bilimits. “I’m going to write down all the same symbols, but they’ll just
mean different things.”

C
S−→ K and C

J−→ Cat are now homomorphisms (pseudofunctors) between
bicategories. The weighted bilimit is defined by an equivalence

K(C, {J, S}b) ' Hom(C ,Cat)(J,K(C, S)).

Now our limits are determined only up to equivalence, instead of up to isomorphism.
In the case when C and K are 2-categories and J and S are 2-functors, then the

RHS is equal to the RHS for pseudolimits, just by definition (since Ps(C ,Cat) ↪→
Hom(C ,Cat) is locally an isomorphism). Thus every pseudolimit is a bilimit.

On the other hand, if just K is a 2-category, then you can always change C so
that C is a 2-category and J and S are 2-functors, so that the RHS stays the same

AUSTRALIAN CATEGORY THEORY 39

up to equivalence. So for limits in a 2-category (which we might as well talk about),
you may as well suppose C is a 2-category and J and S are 2-functors, without any
essential loss of generality. And for any type of bilimit, there is a corresponding type
of pseudolimit which, if it exists in a 2-category, is the given type of bilimit (but
the bilimit might exist without the pseudolimit existing). So this is a difference you
should ignore. The real difference is that there is an equivalence in the definition
instead of an isomorphism.

“But if you do have the isomorphism, then you’d be a bloody fool not to use
it.” Sometimes, as for T -Alg, it’s easier to check the strict universal property.
Similarly, the 2-category of (bounded) toposes has PIE-colimits, but limits are
more interesting and harder to construct, and much easier to use the PIE-colimits
than the bicolimits.

4.8. Colimits. Colimits in K are limits in Kop . That’s really all you have to say,
but I should show you the notation. Usually we switch back to K and replace C
by C op , so we consider

S : B → K
J : Bop → Cat

with the weighted colimit notated J ? S.
A form of the Yoneda lemma says that

J ∼= J ? Y

where Y : B → [Bop ,Cat]. This is the explanation of why you can construct the

weighting from a ‘limit-notion’ by J ∼= {J, Ỹ }.
“Possibly the shortest ever treatment of Yoneda in the history of the world.”

4.9. T -Alg again. When we say T -Alg we always mean for a reasonable K, com-
plete and cocomplete, and a reasonable T , having a rank. In particular, if K is
locally finitely presentable and T is finitary. In this case T -Alg has PIE-limits,
as we saw, and so has pseudo-limits, and so has bilimits. So from a bicategorical
perspective, we have everything we might want.

Also, T -Alg has bicolimits (but not, in general, PIE-colimits). But unlike the
PIE-limits, they are not constructed as downstairs. I’m not going to prove this,
but state a more general theorem from which it follows.

Fact 4.9. Suppose we have some other 2-functor G

T -Algs
I−→ T -Alg

G−→ L

such that the composite GI has a left adjoint F . Then IF is left biadjoint to G.

In other words, we have a pseudonatural equivalence

T -Alg(IFL,A) ' L (L,GA).

Note that we assume a strict left 2-adjoint F , but conclude a left biadjoint.
Probably F being only a left biadjoint isn’t good enough.

This implies that T -Alg has bicolimits, and also that given a monad morphism

S
f−→ T , the induced forgetful map f∗ : T -Alg→ S-Alg has a left biadjoint. (For

which we use the general enriched-category-theory fact that T -Algs → S-Algs has
a strict left adjoint.)

40 TALKS BY STEVE LACK IN CHICAGO, 2006

Why is this? To give L → GIA, corresponds by adjunction to FL → A, and
thus from IFL → IA; but there could be more pseudo-maps arising. What we
need is that FL is ‘cofibrant’ enough. It’s the fact that the right adjoint GI factors
through T -Alg that forces the left adjoint to land in ‘cofibrant’ things. The unit
for the original adjunction 1→ GIF will also be the unit for the biadjunction (so
it’s a bit special as a biadjunction, since both functors are 2-functors and the unit
is 2-natural).

We have a wobbly FL (FL)′, and applying G we get GFL → G((FL)′) =
GI((FL)′). Composing with the unit L→ GFL, we get

L→ GI((FL)′)

FL→ (FL)′

which is then a strict map, and you check it’s isomorphic to the wobbly you started
with. Hence FL is equivalent to (FL)′ in T -Algs, which is what we want.

Now, we want a biadjoint to f∗:

T -Algs //

I

��

S-Algs

��

rr

T -Alg // S-Alg

(−)′

WW

We then apply the above result to the two known 2-adjunctions; one is prime, and
the other is the strict version that we know exists by general enriched category
theory..

To see that T -Alg has bicolimits, take S : C → T -Alg and J : C op → Cat
2-functors on a 2-category C , and we have

T -Alg(S, 1) : T -Alg −→ Hom(C op ,Cat)

which sends A 7→ T -Alg(S,A), and we want a left biadjoint to this (which would
send J to J ? S). Then the composite

T -Algs −→ T -Alg −→ Hom(C op ,Cat)

is still T -Alg(S, I), which is the same as T -Algs(S
′, 1) (apply prime pointwise to S).

But (under assumptions of rank) T -Algs is cocomplete, so it has pseudocolimits,
and hence this functor has a left 2-adjoint.

How would you ever hope to prove that T -Alg has bicolimits directly? That
would be a disaster. But using the strict notion of pseudolimits we can do it.

AUSTRALIAN CATEGORY THEORY 41

5. Model categories, 2-categories, and 2-monads

Lots of things this could mean, and four that it will.

(1) Model structures on 2-categories: If K is a (nice) 2-category, we get a model
structure on its underlying ordinary category K0, whose weak equivalences
are the 2-categorical equivalences. This is totally uninteresting in its own
right, but we can use it to build up to other things.

(2) Model categories for 2-categories: There’s a model structure on the cate-
gory of 2-categories and 2-functors, and one for bicategories too.

(3) For T a 2-monad on K, the ordinary category (T -Algs)0 of strict algebras
and strict morphisms has a model structure induced in a standard way by
the one mentioned above on K, but no longer of that form; now the weak
equivalences are those which become an equivalence downstairs in K.

(4) The category Mndf (K) of finitary 2-monads also has a model structure. In
fact, it has two, one induced by endofunctors and one by object-indexed
things. This is related to the above.

Other things that it might mean but won’t:

(1) What is a ‘model 2-category’? Some 1-morphism weak equivalences which
would become equivalences in a ‘homotopy 2-category’, but also some 2-
morphism weak equivalences? Think I know what this might mean, but
not for today.

5.1. Model structures on 2-categories. Let K be a 2-category with finite limits
and colimits. In particular, K0 has finite limits and colimits, and also K has tensors
and cotensors with 2. (In fact, this is equivalent.)

In particular, we have the pseudolimit of an arrow E → B. Ordinarily we don’t
talk about limits of an arrow, since in an ordinary category the limit is just E, but
the pseudolimit is equivalent to E but not equal to it. It’s the universal picture
that looks like

L
f //

u
��??????? �� ��
�� ∼=

B

A

v

??~~~~~~~

such that given fa ∼= b there is a unique c : X → L with uc = a and vc = b. In
this case, u is an equivalence, because (1, f) factors through by a D : A → L, and
ud = 1 while du ∼= 1.

The model structure is:

• The weak equivalences are the equivalences;
• The fibrations are the isofibrations, the maps such that

X
a //

00b

����|� ∼=

A

f

��
B

42 TALKS BY STEVE LACK IN CHICAGO, 2006

lifts to a

X

a
&&

a′
88

�� ��
�� ∼=

00b

A

f

��
B

• The cofibrations have the left lifting property.

The trivial fibrations are then the surjective equivalences, i.e. p such that there
is an s with ps = 1 and sp ∼= 1.

In particular, for K = Cat, you get the ‘categorical model structure’ or ‘folklore
model structure’. (There are other model structures on Cat, in particular the
famous one due to Thomason that gives you a homotopy theory equivalent to
simplicial sets.)

The pseudo limit of f gives us, for any f , a factorization f = vd where v is a
fibration (which follows from the universal property of the pseudolimit) and d is
an equivalence. In the case of Cat, you could stop there and d would already be a
trivial cofibration, but in general need to keep going. We’ve reduced the problem
to factorizing an equivalence, however.

The way you do that is also the way you get the other factorization: use the
dual thing. Form the pseudocolimit of the arrow f , and use (f, 1) to induce an e
with

A
i //

f

��

f

''
C

e // B

B

j

??~~~~~~~ 1

;;>>>> �#
∼=

This time i is a cofibration and e is a trivial fibration, and if f itself is an equivalence,
then i has the left lifting property with respect to the fibrations (so it’s what’s going
to become a trivial cofibration).

That’s all I’ll say about the proof. There is, of course, a dual structure in which
the cofibrations are characterized and the fibrations are defined by a right lifting
property. For Cat, these coincide. In general, I know less about the dual one;
lifting it to T -Alg later on would probably be harder.

When K is arbitrary, no reason this should be cofibrantly generated. Certainly
for Cat it is, and have lots of other examples, but I can’t tell you exactly when it
is.

As evidence for the triviality of this:

• All objects are cofibrant and fibrant.
• The morphisms in the homotopy category Ho(K0) are the isomorphism

classes of 1-cells in K.

Could also take categories internal to some other category. If your starting
category is reasonable, internal categories will be good too. Could do the above
for this 2-category, but that’s not what people tend to do with internal categories.
Given F : A → B you tend to say it’s an equivalence if it’s full and faithful and
essentially surjective in an internal sense. For Cat this is equivalent to the usual
notion by the axiom of choice, but in general it won’t be. It’s the weak equivalences
in this sense that people tend to use as their weak equivalences for Cat(E). When

AUSTRALIAN CATEGORY THEORY 43

E is a topos, this was studied by Joyal and Tierney, and there’s been recent work
on other cases, when E is groups (get crossed modules) or abelian groups.

5.2. Model structures for T -algebras. Now let T be a (finitary) 2-monad on K
(locally finitely presentable), and T -Algs the strict algebras and strict morphisms.
Then the underlying ordinary category (T -Algs)0 is the algebras for the underlying
ordinary monad T0 on K0, so we have adjunctions

T -Algs

U

��

GG

a

(T -Algs)0

��

GG

a

K K0

There’s this usual recipe for lifting model structures. Gives a model structure
on (T -Algs)0 where f is a weak equivalence or fibration iff Uf is one in K0. The
cofibrations are defined by the llp. Play the usual silly games. Not completely
automatic in general, there are a few things you have to check, but they are easy
to check here, especially because all objects in K are fibrant.

Starts to become a little more interesting, since it doesn’t have this trivial form

any more. In general, if (A, a)
(f,f)−→ (B, b) is a pseudomorphism of T -algebras and

A
f−→ B is an equivalence, then choosing an inverse B

g−→ A naturally becomes an
equivalence upstairs. This is a 2-categorical analogue of the fact that if an algebra
morphism is a bijection, its inverse also preserves the algebra structure.

But, if f is strict (f is an identity), there is no reason why its inverse equivalence
should also be strict. For example, a strict monoidal functor which is an equivalence
of categories has an inverse which is strong monoidal, but not in general strict.

Recall the inclusion

T -Algs

(−)′ ++

ll ⊥ T -Alg

has a left adjoint (−)′, so that

A B

A′ → B
.

This fits into the model category theory very nicely. The counit of this adjunction

A′
q−→ A

is a cofibrant replacement: a trivial fibration with A′ being cofibrant. So we see that
T -Alg, which is the thing we’re more interested in, is starting to come out of the
picture. This is a much tighter thing than the general philosophy that ‘we should
think of maps in the homotopy category as maps out of a cofibrant replacement.’

An algebra turns out to be cofibrant iff A′
q−→ A has a section in T -Algs.

(There’s always a wobbly one.) One direction is obvious as q is a trivial fibration,
and otherwise A is a retract of A′ which is cofibrant. Recall that such an object is
said to be flexible. These notions somehow developed in parallel; probably cofibrant
is a bit older. Again, it’s a tighter sort of situation than you might have in general.

44 TALKS BY STEVE LACK IN CHICAGO, 2006

5.3. Model structures for 2-monads. Recall now that we have adjunctions

Mndf (K)

W

��
H

GG

a

Endf (K)

V

��
H

GG

a

[ob Kf ,K]

both of which are monadic, as is the composite. Thus Mndf (K) is both M -Algs
and N -Algs where M is the induced monad on Endf (K) and N is the induced
monad on [ob Kf ,K].

Thus Mndf (K) has two lifted model structures. They’re not the same, since
something can be an equivalence all the way downstairs without being one in
Endf (K) (which is itself algebras for another induced monad on [ob Kf ,K]).

A monad map S
f−→ T is a 2-natural transformation compatible with the unit

and multiplication. If the 2-natural transformation is an equivalence in Endf (K),
these are the weak equivalences for the M -model structure. If the components of
the 2-natural transformation are equivalences, these are the weak equivalences for
the N -model structure.

First consider the M -model structure, induced by

Mndf (K)

W

��
H

GG

a

M -Algs

Endf (K)

Here we have the prime construction, which will classify pseudomorphisms of mon-
ads. These are precisely the things that arise when talking about pseudoalgebras:
recall that a pseudo-T -algebra was an object A with a pseudo-morphism

T 〈A,A〉

into the ‘endomorphism 2-monad’ of A, corresponding to maps TA
a−→ A which

are associative and unital up to coherent isomorphism.
This corresponds to a strict map T ′ → 〈A,A〉, so that T ′-Alg = PsT -Alg. (This

is the part of the justification for working with strict algebras that people tend to
understand first.)

Now we have T ′
q−→ T . If q has a section in M -Algs = Mndf (K), then T is said

to be flexible (= cofibrant). This was the context in which the notion of ‘flexible’ was
first introduced. Any monad that you can give a presentation for without
having to use equations between objects is always flexible. For example,
the monad for monoidal categories is flexible, but the monad for strict monoidal
categories is not. These are the cases in which it’s true that every pseudo-algebra
is equivalent to a strict one. Remember that the importance of pseudo-algebras
is not for describing concrete things, but for the theoretical side, since various
constructions don’t preserve strictness of algebras. For particular structures like
monoidal categories, better off choosing the right monad to start with.

AUSTRALIAN CATEGORY THEORY 45

5.4. Model structure on 2-Cat. 2-Cat is the category of 2-categories and 2-
functors. It underlies a 3-category, and a 2-category, and perhaps more importantly
a Gray-category. Want to describe a model structure on this, analogous to the one
above for Cat.

The weak equivalences will be the biequivalences, which somehow we haven’t
talked about yet. F : A → B is a biequivalence if

• A (A,B)
F−→ B(FA, FB) is an equivalence of categories, and

• F is ‘biessentially surjective’ on objects, i.e. if C ∈ B, there exists an
A ∈ A with FA ' C in B.

General remarks on notation:

• = is equality
• ∼= is isomorphism
• ' is equivalence (these are quite widespread)
• ∼ is sometimes used for biequivalence, although it’s a bit unsatisfactory,

and it’s not at all clear what to do next.

Of course, for equivalences you have the corresponding thing of having a functor
going back the other way. Here too: you can build a thing G : B → A with GF ' 1
and FG ' 1. You can make G a pseudofunctor, but generally not a 2-functor, even
when F is (just like in the last section). That’s sort of the whole point of the model
structure. Also the equivalences will be pseudonatural, and that’s generally as good
as it gets.

Thus the analogy with equivalences ‘breaks down’ here, if you regard it as break-
ing down; maybe you should regard pseudofunctors as the ‘natural’ thing. But if
you allow arbitrary pseudofunctors, you don’t have limits and colimits. Of course,
if you pass up to the full tricategory structure, you do in a suitable sense, but the
suitable sense is kind of messy and if you can avoid it, that’s good.

Clearly biequivalence is the right notion of ‘sameness’ for bicategories, or 2-
categories, but there is this ‘stability’ problem.

The fibrations are similar to the case of 2-categories. There we lifted invertible
2-cells; here we lift equivalences. F : A → B is a fibration if

(1) given an equivalence downstairs, we have a lift

A′_

��

' // A_

��

A

F

��
B

' // FA B

(2) given an isomorphism 2-cell downstairs, we have a lift

A′_

��

**∼= 55 A_

��

A

F

��
B

((
66

∼= FA B

That is to say, all the functors A (A1, A2)→ B(FA1, FA2) are an (iso)fibration
in Cat.

Note that the notion of biequivalence is not internal to the 3-category or Gray-
category of 2-categories, which maybe speaks against the existence of an general

46 TALKS BY STEVE LACK IN CHICAGO, 2006

construction on an arbitrary 3-category or Gray-category, at one which would re-
duce to this one.

There’s an equivalent way of expressing these which is useful. Keep the second
as is, but modify the first to lifting of full adjoint equivalences, which is equivalent
in the presence of the second:

A′_

��

'
&&

gg a A_

��

A

F

��
B

'
((

ff a FA B

Clearly this implies lifting of equivalences, since we can complete any equivalence
to an adjoint equivalence, but the converse is only true when we can lift 2-cell
isomorphisms.

This is related to a mistake I made in my first paper on this topic, where I used
a condition like this on lifting equivalences that aren’t necessarily adjoint equiva-
lences. Regard ‘being an equivalence’ as a property, and ‘an adjoint equivalence’
as a structure, but be wary of regarding ‘a not-necessarily-adjoint equivalence’ as
a structure. Adjoint equivalences are now completely algebraic, classified by maps
out of ‘the free-living adjoint equivalence’, which is biequivalent to the terminal
2-category 1. A ‘free-living not-adjoint equivalence’ would not be biequivalent to
1.

The trivial fibrations, which are the things which are both, can be characterized
as the 2-functors which are

• Surjective on objects, and
• A (A1, A2) → B(FA1, FA2) are surjective equivalences (the trivial fibra-

tions in Cat).

Note that the trivial fibrations don’t use the 2-category structure; you don’t need
anything about the composition to know what these things are, only the ‘2-graph’
structure. So they’re much simpler to work with.

There’s an obvious ω-categorical analogue to these things, which is throughout
Makkai’s work on ω-categories. You don’t need the ω-category structure, only a
globular set, to say what this means. The corresponding notion of ‘cofibrant object’
is then what he calls a ‘computad’.

It’s a bit less trivial than the other cases to prove that this all works, but it’s
not really hard. Everything is directly a lifting property (once you use the version
with adjoint equivalences), so finding generating sets is easy.

Here all objects are fibrant. But not all objects are cofibrant. We have a special

cofibrant replacement A ′
q−→ A with the property that

A B

A ′ → B

with the same sorts of properties. And A is cofibrant (flexible) iff the trivial
fibration q has a section in 2-Cat. This happens exactly when the underlying
category A0 is free on some graph (i.e. you haven’t imposed any equations on 1-
cells, only isomorphisms). In principle, it could be a retract of something free, but
it turns out that in this case that actually makes you free.

AUSTRALIAN CATEGORY THEORY 47

Two things of interest to me in this paper. This (cofibrant = flexible) was the first
one. The second was monoidal structures. The model structure is not compatible
with the cartesian product ×. The thing you should have in mind is that the locally
discrete 2-category 2 is cofibrant, but 2× 2 is not, since a commutative square

//

�� ��//

is not free. There are various tensor products you can put on 2-Cat. The cartesian
product is also called the ordinary product (since it is also a special case of the
tensor product of V -categories), but I like to call it the black product since the
square is ‘filled in’.

There’s also the white or funny product, in which the square has nothing in it at
all. It’s a theorem that on Cat there are exactly 2 symmetric monoidal closed struc-
tures: the ordinary one and the funny one. The closed structure corresponding to
the funny product is the not-necessarily-natural transformations (just components).
Enriching over this structure gives you a ‘sesquicategory’ (perhaps an unfortunate
name, but you can see how it came about), which has hom-categories and whisker-
ing, but no middle-four interchange, hence no well-defined horizontal composition
of 2-cells.

Finally, there’s the Gray or grey tensor product in which you put an isomorphism
in the square, so it’s ‘partially filled in’.

//

��
∼=

��//

The first two make sense for any V at all, but this one doesn’t. The reason I started
thinking about this at all was to think about Gray tensor product from various
different points of view. For general V there’s a canonical comparison from the
funny product to the ordinary one, and you’d like to put a ‘cofibrant replacement’
in between. I fought with some general theory using factorization systems for a
while, never got anywhere, then tried model categories. Model categories were
never really going to work, since going to weak factorizations lose some control, but
here’s what happens.

The Gray tensor product 2⊗2 is cofibrant. More generally, the model structure
is compatible with the Gray tensor product.

The Gray tensor product is not what Gray defined: he defined the lax version.
And I’m told that for some time he refused to believe that there was such a tensor
product, while Joyal and Street insisted there should be, since the closed structure
of pseudonatural transformations is obviously there.

Now consider Bicat, the category of bicategories and strict morphisms. Every-
thing before looks exactly the same, i.e. the full inclusion 2-Cat ↪→ Bicat reflects
weak equivalences and fibrations. This inclusion has a left adjoint ‘strictification’

2-Cat
**

jj ⊥ Bicat .

It’s not a prime, since all morphisms are strict, and it’s not st either. In general
the unit is not a biequivalence. This fits well into the Quillen picture: in fact this

48 TALKS BY STEVE LACK IN CHICAGO, 2006

(obviously Quillen, by definition) adjunction is a Quillen equivalence, for which we
need the components of the unit at cofibrant objects only to be weak equivalences.
There exist bicategories (even monoidal categories) for which there does not exist
a strict map into a 2-category which is a biequivalence, although we know that any
B has a wobbly B Bst. But it is true for cofibrant ones, since this says ‘there
aren’t any equations between 1-cells’. (The classification of cofibrant objects in
Bicat is a little less tight than for 2-Cat.)

As for 2-Cat, we have a prime construction which models weak homomorphisms.
And also the cartesian product is not compatible. Don’t know if there exists a Gray
tensor product for bicategories; once you pass to bicategories, generally tend to just
make everything weak.

The model structure on 2-Cat is proper; showing that it’s left proper (biequiv-
alences are stable under pushout along cofibrations) was the hardest part of that
paper. Right proper is trivial since everything is fibrant; didn’t check left proper
for Bicat. Much less pleasant to deal with free bicategories.

5.5. Back to 2-monads. Recall we had also an adjunction

Mndf (K)

��

GG

a

N -Algs

[ob Kf ,K]

giving an N -model structure on Mndf (K). Why is this interesting?
There are some annoying details here I haven’t completely thought about. Con-

sider 2-CAT, the category of possibly-large 2-categories and functors between them.
Everything I said before you can do in this case too. Need to move to a higher
universe for small object arguments to work. I want instead to pass to the slice
2-CAT/Cat, which inherits a model structure in the usual way.

The point is that we have a 2-functor

Mndf (Cat)op sem−→ 2-CAT/Cat

which you might call semantics, defined by:

T 7→ (T -Alg
U−→ Cat).

and

(S
f−→ T 7→ (T -Alg

f∗−→ S-Alg).

since if TA → A is a T -algebra, then SA → TA → A is an S-algebra, since f is a
morphism of monads.

In the ordinary unenriched, or V -enriched, case (or here, if we took T -Algs),
this functor would be fully faithful. But for T -Alg, it isn’t true any more. In
fact, to give a map in 2-CAT/Cat corresponds to giving a ‘pseudo-morphism’ of
2-monads, not in the old (and usual) sense but now in the sense given by the N -
model structure. Instead of a 2-natural transformation which is compatible with
multiplication and unit up to isomorphism, it is a pseudonatural transformation
which is so compatible.

This thing sem preserves limits, fibrations, and trivial fibrations (all proven using
these things 〈A,A〉, {f, f}, and so on). All these are interpreted in Mndf (Cat)op ,
hence correspond to colimits, cofibrations, and trivial cofibrations. Thus, it should
in principle be the right adjoint part of a Quillen adjunction. It’s not, of course,

AUSTRALIAN CATEGORY THEORY 49

because of size problems. I’m moderately confident that at some point I’m going to
sit down and get some decent full subcategory of 2-CAT/Cat so that both those
problems are resolved.

I suspect that sem doesn’t preserve weak equivalences in general, in particular the
weak equivalence T ′ → T . But it does preserve weak equivalences between cofibrant
objects, i.e. flexible monads. The problem with preserving weak equivalences is that
you’ll get out of the strict algebras into pseudo ones, but with a flexible monad you
can rectify that at the end.

50 TALKS BY STEVE LACK IN CHICAGO, 2006

6. The formal theory of monads

6.1. Generalized Algebras. The formal theory of monads is the jewel in the
crown of formal category theory; it’s a remarkable thing. Let’s start by thinking
about ordinary monads.

Let A be a category, t = (t, µ, η) a monad on A. Can from the Eilenberg-Moore
category At, the category of algebras. The starting point is to think about the

universal property of this construction. What is it to give a functor C
a−→ At?

We give for each c ∈ C, an algebra ac, which we also use for the name of the

underlying object, with structure map tac
αc−→ ac. And for every γ : c→ d, we have

an aγ : ac→ ad with a square

tac
αc //

taγ

��

ac

aγ

��
tad

αd
// ad.

This square looks an awful lot like a naturality square; it wants to say that α is
natural with respect to γ.

What we’re actually doing is giving a functor C
a−→ A and a 2-cell

C
a //

++a

����|� α

A

t

��
A

with equations of natural transformations

t2a
µa //

tα

��

ta

α

��

a
ηaoo

1
����������

ta α
// a

which just says that on components, it makes each ac into a t-algebra.
You might call this a generalized algebra, or a t-algebra with domain C. Think

of a usual algebra as one with domain 1.
Similarly, you can look at natural transformations. To give a natural transfor-

mation

C

a
''

b

77
�� ��
�� At

amounts to giving

C

a
%%

b

99
�� ��
�� ϕ A

which is suitably compatible, i.e.

ta
tϕ //

α

��

tb

β

��
a

ϕ
// b.

AUSTRALIAN CATEGORY THEORY 51

So the algebras construction has a universal property. This is the starting point of
the whole thing.

I’ve been talking all along about categories, but once we’ve decided that algebras
with domain 1 don’t have such a special role, there’s no reason to restrict that way,
so we can instead talk about a monad on an object A in any 2-category K. We
can’t just ‘build it up’ as we did before, but we can ask whether there exists an

object At with this universal property, i.e. there exists a 1-cell At
u−→ A such that

maps into At correspond to maps into A with an action.
(Remember that the notion of monad has not been weakened or made higher-

dimensional in any way (yet). The 2-categoryK might be Cat, or 2-Cat, or V -Cat,
but we use the same definition.)

You can make this precise, but a slick way to say it is that the hom-category
K(C,A) has a monad K(C, t) on it (since 2-functors take monads to monads), and
this is the ordinary type of monad in Cat. The endofunctor part of this monad
sends a : C → A to ta : C → A. This generalized notion of algebra is then nothing
but the usual sort of algebra for the ordinary monad K(C, t). So what we want is

K(C,At) ∼= K(C,A)K(C,t)

naturally in C (where the RHS means the ordinary Eilenberg-Moore category of
algebras for the ordinary monad K(C, t)).

It turns out that in some places, such as Cat, it’s enough to check that this is
true for C = 1, but in an abstract 2-category there may not be a 1, and if there is,
it may not be enough to get the full universal property.

Now we can start reworking and reformulating these things in various 2-categorical
ways to get interesting things. This maybe looks a bit like a limit, and we’ll see
that in a bit, but first let’s do a different point of view.

6.2. Monads in K. For a 2-category K, Mnd(K) is a 2-category of monads in K.
Note thath previously we’d been talking about Mndf (K) which meant the finitary
2-monads on K (as a fixed base object), while now we mean all the internal monads
in K, with base objects varying.

• Its objects are monads in K.
• Its 1-cells are supposed to correspond to morphisms which lift to the level

of algebras:

At
m //

ut

��

Bt

us

��
A m

// B

and we can think of this as an identity 2-cell and take its mate, since the
the us are right adjoints:

A
m //

f t

��
����}�

B

fs

��
At

m //

ut

��

Bt

us

��
A m

// B

52 TALKS BY STEVE LACK IN CHICAGO, 2006

which we then paste together to get a 2-cell, and the forgetful-free composite
gives us the monads. Thus we should define a morphism of monads to be

A
m−→ B with a 2-cell sm

ϕ−→ mt such that

sm
sϕ //

µm

��

smt
ϕt // mtt

mµ

��
sm

ϕ
// mt

plus another one for the identities. We could take the first square as a
definition, provided the Eilenberg-Moore objects exist, which they don’t
need to in an abstract 2-category; in general giving a ϕ with this condition
will be the same as giving a lifting of m to the algebra objects.

• The 2-cells are

A

m
&&

n

88
�� ��
�� ρ B

with a compatibility condition, which you could express as saying that ρ
lifts to a ρ betwen algebra objects, or saying that

sm
ϕ //

sρ

��

mt

ρt

��
sn

ψ // nt

There’s a full embedding Id : K ↪→ Mnd(K) sending A to the identity monad
(A, 1) on A, and the obvious thing for 1-cells and 2-cells. This is particularly clear
in the algebra-objects picture (which doesn’t always make sense), since if t = 1 then
At = A, so obviously m will lift uniquely to an m (which is what fully faithfulness
of Id says).

A trivial observation is that for any monad we can always choose to forget the
monad and be left with the object, and this is left adjoint to Id. The interesting
thing is a right adjoint. To give a right adjoint to Id is exactly to give a choice
of an Eilenberg-Moore object for each monad in K. Why? Look at the universal
property. If A 7→ At is the right adjoint, this says that

K(C,At) ∼= Mnd(K)((C, 1), (A, t))

The key point is that the RHS is equal to K(C,A)K(C,t), since we get

C
a //

1

��
����|� α

A

t

��
C a

// A

which is the same as for a generalized algebra, and so on. If you write them down,
they really are identical except for the extra 1-cells sitting around.

Now the really beautiful thing happens: we can start looking at duals of K and
see what happens. Consider first Kco , where we reverse the 2-cells but not the
1-cells. A monad in Kco is then a comonad in K. And an EM-object in Kco is the
obvious analogue for comonads. If K = Cat, we get ordinary comonads, and the
EM-object is the usual category of coalgebras for the comonad.

AUSTRALIAN CATEGORY THEORY 53

That’s nice, but not incredibly surprising. What’s more interesting is what
happens in Kop . A monad in Kop consists of an object A, a morphism not from A
to A, but rather from A to A:

A← A

and for the multiplication, you have to make sure when you compose t with itself,
you do it in the reverse order, and so on. Thus we get just a monad in K.

But what about the EM-object? The arrows are reversed, so we get a different
universal property. An algebra for this monad consists of

A

a

��

A
too

ass

>>>> �#
α

C

The amazing thing is that this is the same thing as a map At → C where At is the
familiar Kleisli object!

By the way, it’s true (in any 2-category) that, as classically stated, the EM-
object is the terminal adjunction giving rise to the monad, and the Kleisli object is
the initial one, but this universal property is ‘richer’ in that it refers to maps with
arbitrary domains.

Using Kcoop , of course, gives you Kleisli objects for comonads.

6.3. Mnd as a monad. Now, where does the construction Mnd(K) really live?
Consider 2-Cat as a 2-category of 2-categories, 2-functors, and 2-natural transfor-
mations. Completely banish from your mind all concerns about size, which doesn’t
have any role here. What I’ve done is shown that if you start with a 2-category K,
you get a 2-category Mnd(K), and this is clearly completely 2-functorial, so we get

Mnd: 2-Cat→ 2-Cat

and the inclusion Id is clearly natural in K, so we get

2-Cat

1 **

Mnd

44
�� ��
�� Id 2-Cat

A certain sort of person is tempted to pose the question of whether this is part of
the structure of a monad on 2-Cat! We do have a composition

2-Cat

Mnd2

++

Mnd

33
�� ��
��Comp 2-Cat

This is the other beautiful thing about the paper.
What is a monad in Mnd(K)? It’s

• a monad (A, t) in K,

• an endo-1-cell, which consists of a morphism A
s−→ A in K with a 2-cell

ts
λ−→ st (with conditions)

• A multiplication (s, λ)(s, λ) → (s, λ), corresponding to s2 ν−→ s (with con-
ditions)

• a unit 1→ (s, λ) corresponding to 1→ s (with conditions)

54 TALKS BY STEVE LACK IN CHICAGO, 2006

As well as the conditions for these to be 1-cells and 2-cells in Mnd(K), we need
the conditions for this to be a monad there. These make s itself into a monad on
A in K. The 2-cell λ is now what’s called a distributive law between these two
monads, which is exactly what you need to compose these two monads and get
another monad.

Think about this as like the tensor product of rings. R⊗S is the tensor product
of the underlying abelian groups, with multiplication

R⊗ S ⊗R ⊗ S tw−→ R⊗R⊗ S ⊗ S mR⊗mS−→ R⊗ S
The point is we’re trying to do something very similar, but here we’re in a world
where the tensor product is not commutative, so we don’t have the twist. So λ plays
the role of the twist; it’s a ‘local’ commutativity or ‘braiding’ that only applies to
these two objects. The conditions put on it are exactly what we need to make the
composite st into a monad.

For example, the multiplication on st is then

stst
sλt−→ sstt

ssµ−→ sst
µt−→ st

The notion of distributive law, in the ordinary case of categories, is due to Jon
Beck, and he proved that we have a bijection between distributive laws ts→ st and
‘compatible’ monad structures on st, and also to liftings of s to At (whenever At

exists). It’s not as well-known as it should be and is frequently rediscovered.
Can do this also for Kco or Kop or Kcoop , of course. If you do it in Kop , then a

distributive law becomes the other way round, hence an extension to the Kleisli ob-
ject rather than a lifting to the EM-object. It’s easy to get confused, and sometimes
it doesn’t go quite the way you expected.

Note that operads are monoids in a monoidal category, and passing to the asso-
ciated monad preserves the composition (via a functor from the monoidal category
of collections to the monoidal category of endofunctors), so the conditions for one
operad to distribute over another are formally exactly the same. But it’s not clear
that every distributive law for monads comes from a distributive law for the asso-
ciated operads.

Peter: the notion of action of one operad on another, as formulated,
involves diagonals, so it only makes sense cartesian? Algebraic distribu-
tivity x(y + z) = xy + xz involves the diagonal on x.

Semidirect products: if the underlying category is cartesian, we have an obvious
twist S×R→ R×S, but we can use a different one. If we have an action S×R→ R,
we can then put it together with the diagonal of S to get a different distributive
law S ×R→ R × S. That does depend on cartesian setting.

6.4. Making it into Limits. There are two ways to do this. Remember that
way back in the first week, we saw that monads t in K correspond to lax functors
t̃ : 1→ K. Then the lax limit of t̃ is exactly the EM-object At.

I didn’t quite explicitly talk about lax limits of lax functors, but it’s the same
thing as pseudo limits of pseudo functors. This is incredibly nice, but sometimes
it’s nice not to have to deal with lax functors, so I’ll also tell you another way to
do it using 2-functors instead.

Let’s recall how t̃ works. We send ∗ to A, and 1∗ to an endo-cell t : A → A,
the unit is the lax unit comparison, and the multiplication is the lax composition
comparison. To understand the lax limit of these sorts of things, we should think

AUSTRALIAN CATEGORY THEORY 55

about lax cones. A lax cone would involve a vertex C of K, with just one component

C
a−→ A, and a lax naturality 2-cell for every 1-cell in 1:

C
a //

����|� α

A

t

��
C a

// A

and some conditions.
There’s old paper of Street called ‘two constructions on lax functors’, and this

was the first one. This was the motivating example. The other was the lax colimit,
which gives the Kleisli construction.

We have the corresponding construction to prime (which replaces pseudo maps
by strict maps) which replaces lax maps by strict maps. Thus there’s a 2-category
mnd which is the universal 2-category with a monad in it, i.e.

2-functors mnd −→ K
lax functors 1 −→ K

Remember that a monad in K is the same as a monoid in a hom-category, and we
know the universal monoidal category containing a monoid is the ‘algebraic ∆’,
the category of (possibly empty) finite ordinals. Thus mnd has one object ∗ and
mnd(∗, ∗) = ordf = ∆ (not the simplicial sets delta, since it has an extra object).

Now it’s an exercise for Eugenia: give a limit notion and ask for the weight.

There exists a 2-functor mnd
alg−→ Cat such that given T : mnd→ K, the weighted

limit {alg,T} is exactly the EM-object of the corresponding monad. It follows from
what we’ve done so far that there has to be such an alg, since we expressed it in a
representable way, and I gave you a recipe for calculating what it must be: apply
the corresponding colimit-notion to the yoneda-functor mndop → [mnd,Cat]. In
our case, the Yoneda lemma determines a particular monad T in [mnd,Cat], and
we take its the Kleisli object; we do this pointwise, and what we get is the weight
for EM-objects.

Of course, such limits may or may not exist. But we can also build them up
using limits that we know already, if those exist.

• First form the inserter of A

t
&&

1

88 A . This is an A1
k−→ A equipped with

a 2-cell tk
κ−→ k.

• Then take the equifier of k(ηk) and 1 to get an A2
k′−→ A1 such that the

identity law holds.
• Finally take the equifier of something else to get the associativity.

In particular, this shows that EM-objects are PIE-limits, in fact finite PIE-limits.

6.5. Limits in T -Algc and T -Alg`. These are, recall, strict T -algebras with lax
and colax morphisms. Recall that we had nice pseudo-limits in T -Alg. Here it’s
much harder.

In T -Alg`, you have oplax limits, and in T -Algc you have lax limits (an unfor-
tunate switch happens; you could by definition make them match up better, but
there’d be a kink somewhere else). These are not nearly as good: no inserters, no
equifiers in general, so life is a bit harder.

56 TALKS BY STEVE LACK IN CHICAGO, 2006

I described how to construct inserters and equifiers in T -Alg: form the limit
downstairs and show that the thing you get canonically becomes an algebra. You’ll
see if you look carefully at that that you use invertibility for one of f and g, but
not the other one. So you can form inverters and equifiers in T -Alg` if one of the
cells is pseudo and the other is lax, if you get it the right way round.

Now suppose we’re trying to make EM-objects in T -Algc. Then it turns out
to be the right way round, we can get the inserter, since 1 is pseudo. And so on:
it turns out that T -Algc does have EM-objects. The most important case of this
is where T -Alg is monoidal categories, so that T -Algc has opmonoidal functors.
That comes up in Hopf monads and things like that.

6.6. FTM 2. We can now see EM-objects as weighted limits in the strict sense, and
there’s a well-developed theory of free completions under classes of weighted limits.
So we can form the free completion EM(K) of a 2-category K under EM-objects.
We also have KL(K) which freely adds Kleisli objects.

The colimit side is more familiar to construct. To freely add all colimits to an
ordinary category, we take the presheaf category; to add a restricted class, we take
the closure in the presheaf category under the limits we want to add. So here, to
get KL(K), we take the closure of the representables in [Kop ,Cat] under Kleisli
objects. It’s part of a general theorem that this works, at least when K is small.
Of course, EM(K) is dual.

Sometimes it can be not so easy to calculate exactly which things appear in
this completion process. You start with the representables and chuck in the Kleisli
object for any monad. Usually this is an iterative process, since there will be new
diagrams appearing at each step and you have to go on possibly transfinitely. The
nice thing about this particular case is that it stops after one step. Colimits in the
functor category are pointwise, so we construct Kleisli objects as in Cat. The key
facts are:

(1) The Kleisli adjunctions in Cat are precisely the bijective-on-objects left
adjoints.

(2) These are closed under composition.

Now, given a monad t on A we throw in the Kleisli object At in [Kop ,Cat],
which may have a new monad s on it. We then throw in its Kleisli object for s to
get (At)s, but then the composite

A −→ At −→ (At)s

is also a bijective-on-objects left adjoint, hence (At)s is also a Kleisli object for a
monad on A. Thus this is a 1-step process.

Therefore, we can identify (up to equivalence) the objects of KL(K) with monads
in K, and then explicitly describe morphisms and 2-cells between them in terms of
K itself.

In the dual case, where EM(K) = (KL(Kop))op , we get

• The objects are the monads in K,
• The morphisms are the monad morphisms (same as in Mnd(K)), and

AUSTRALIAN CATEGORY THEORY 57

• The 2-cells (A, t)

(m,ϕ) ++

(n,ψ)
33

�� ��
�� (B, s) are

A

m

!!�� ��
��

n
��@@@@@@@

B

s

@@��������

(which should look sort of Kleisli) with some compatibility with t.

Composition is a also Kleisli sort of thing. Think of sn as the ‘free s-algebra on
n’, so using the universal property of free algebras, can express this as something
sm→ sn, and express compatibility that way.

Why is this a good thing to do?

(1) We still have K Id−→ EM(K), and a right adjoint to this is just, by general
nonsense for limit-completions, to give a choice of EM-objects in K.

(2) This comes up in examples. If we start with Span, we’ve seen that monads
in Span are categories and the morphisms are (pro)functors, but the 2-cells
didn’t match up. But here they do: we have

Cat ↪→ KL(Span)

which is bijective-on-objects and locally fully faithful (restrict to the func-
tors). Can also do this for Cat(E), or V -Cat, or generalized multicategories

(3) Remember that before a distributive law was a monad in Mnd(K). The
multiplication and unit are 2-cells, so if we change the 2-cells, the notion of
monad changes. A monad in EM(K) is more general: we call it a wreath,
since the composition operation is a wreath product.

For example, think about group extensions. Let G be a group acting on an

abelian group A, and we have some normalized 2-cocycle G×G ρ−→ A. We consider
A and G as monoids, hence monoids in the monoidal category Set. (Everything
here can be done for bicategories, such as monoidal categories, of course. Better to
do for 2-categories since the theory of free completions works better in the enriched
setting, but all the definitions make sense for bicategories.)

A wreath still lives on a monad (A, t) in K. We have an endo-thing A
s−→ A as

before, along with a λ : ts → st with some conditions as before. (But s is not any

more a monad.) The multiplication is now something ss
ν−→ st, and the unit is

1→ st. You can still make sense of associativity and unit using λ, but everything
ends up in st. Ultimately this gives a monad structure on st, which is called the
wreath product or composite of s and t.

Let’s come back to the example. A is our monoid. G happens to also be a group,
but the group structure isn’t encoded anywhere. We have the action

λ : G×A→ A×G
(g, a) 7→ (ga, g)

and our

ν : G×G −→ A×G

58 TALKS BY STEVE LACK IN CHICAGO, 2006

(g, h) 7→ (ρ(g, h), gh)

this is a wreath, so it induces a monoid structure AoG (which is actually a group).
The multiplication is the usual one coming from the cocycle.

There’s a corresponding thing for Hopf algebras. Not the most general type of
‘twisted smash products’, but they are known.

We have two right adjoints to Id defined on different categories Mnd(K) and
EM(K), but the adjunction involves things mapping out of monads whose mul-
tiplications are identities, in which case the change in 2-cells doesn’t matter. In
the new setting, the 2-cells are just 2-cells upstairs, that don’t need to be lifting
anything downstairs:

At
((
66

�� ��
��

��

Bs

��
A // B

AUSTRALIAN CATEGORY THEORY 59

6.7. Another point of view on EM(K). This is due to me, but I’m going to
follow something due to Aaron Lauda, which makes the terminology more sensible.
Of course, that’s only a bicategory, but you shouldn’t pay any attention at all
to that fact. I’m going to confuse the 2-category and rings-and-modules setting,
however I feel like it; could be a bumpy ride.

Recall that a morphism (f, ϕ) : (A, t)→ (B, s) consists of f : A→ B and sf
ϕ−→

ft. If K = Ab, the monoidal category (1-object bicategory) of abelian groups, then
a monad (monoid) is a ring R. These are the objects of EM(Ab). A 1-cell R p→S
then consists of an abelian group M and a map S⊗M →M⊗R. You should think
of this as being a bimodule structure on M ⊗R; the left action is

S ⊗M ⊗R −→M ⊗R⊗R −→M ⊗R

and the right action is the free one, and the conditions on ϕ make it work. Thus
the 1-cells are the right-free bimodules. The 2-cells are then just module maps.

Composition of 1-cells is the ordinary module composition, but because of the
freeness condition, don’t need to use any coequalizers. If I were to look at KL(K),
we’d get the left-free modules. We might also consider the construction Mod(K),
but for that we need some condition on local coequalizers.

In the other construction Mnd(K), we get only the maps M ⊗ R → N ⊗ R of
modules which are induced by a map M → N .

7. Pseudomonads

Relationship with monoidal categories. A pseudomonad involves a thing T ,

which plays the role of a category, a multiplication T 2 m−→ T , a unit 1
i−→ T , an

associativity isomorphism

T 3 //

��
∼=

T 2

��
T 2 // T

unit isomorphims λ, ρ, and so on, looking very like a monoidal category.
If we want this to be internal to a Gray-category A, this is a different from

monoidal categories. Monoidal categories are pseudo-monoids in the monoidal 2-
category Cat, which is not strict, but doesn’t have the Gray property. Here, the
associativity pentagon becomes a cube, relating ways to go from T 4 → T , involving
a bunch of µs and a pseudonaturality isomorphism. In monoidal categories, one
side of the cube corresponds to

((A⊗B)⊗ C)⊗D

��
(A⊗ (B ⊗ C))⊗D

))TTTTTTTTTTTTTTT
A⊗ (B ⊗ (C ⊗D))

A⊗ ((B ⊗ C)⊗D)

55jjjjjjjjjjjjjjj

60 TALKS BY STEVE LACK IN CHICAGO, 2006

while the other side corresponds to

(A⊗B)⊗ (C ⊗D) (A⊗B)⊗ (C ⊗D)

))TTTTTTTTTTTTTTT

((A⊗B)⊗ C)⊗D

55jjjjjjjjjjjjjjj
A⊗ (B ⊗ (C ⊗D))

while in general, the equality will be replaced by an isomorphism, saying that it
doesn’t matter whether we tensor A and B first, then C and D, or vice versa.

Our unit isomorphisms will be

T //

�� BBBBBBBB
����}�

����
=E

T 2

��
T 2 // T

we could take them going the same way, to avoid using inverses (say, if we cared
about lax things), but this way will be convenient for the coherence result.

7.1. Coherence. The coherence result describes the fact that there’s a universal
Gray-category with a pseudo-monad in it. I.e. there’s a Gray-category Psm
such that to give a Gray-functor Psm → A corresponds to a pseudomonoid in
A. Want to make everything enriched-categorical since we have a lot of machinery
there to help.

Psm is sort of a cofibrant resolution of ∆. Could prime ∆ to get a 2-category,
but that’s ‘too big’; there are some composites that should ‘come for free’. The way
it works is that Psm has a single object ∗ and Psm(∗, ∗) is a cofibrant replacement
of ∆. The underlying category of Psm(∗, ∗) (which is a 2-category, since Psm is
a Gray-category) is freely generated by the face and degeneracy maps in ∆ (forget
the relations we expect to hold)

//
//
//
. . .oo

Since this graph G generates ∆, we have a map FG → ∆ which is bijective on
objects and surjective on objects, so we can factor it as a b.o.b.a. 2-functor followed
by a l.f.f. one (throw in isomorphisms between the things that would become equal
in ∆), to get

FG //

%%JJJJJJJJJ ∆

Psm(∗, ∗)

::uuuuuuuuuu

To construct prime, we forgot all the way down to the underlying graph of ∆,
rather than a generating graph for it, and that would produce all sorts of stuff that
we don’t really need. That would, maybe, correspond to an ‘unbiased’ notion of
pseudo-monad, where we included a generating operation T n → T for all n

We also saw something like this for the Gray tensor product, factoring the map
from the funny tensor to the ordinary one.

You now have to define the composition in Psm

Psm(∗, ∗)⊗Psm(∗, ∗) −→ Psm(∗, ∗)

AUSTRALIAN CATEGORY THEORY 61

to make it a Gray-category. You basically take the composition in ∆, use that to
define it on the generators, then build it up to deal with arbitrary 1-cells, but since
the relations only hold up to isomorphism, that’s why the Gray-tensor appears.

Now prove that this has the universal property that I said it does, so it really
does classify pseudo-monads in a Gray-category. I’m certainly not going to do that.
Roughly, how does it go? Given a pseudo-monad, we have

1
i // T

Ti
//

iT //

T 2moo . . .

and so on, which defines it on objects, 1-cells, and 2-cells, then have to do it on
3-cells. That’s where the fun starts; have µ, λ, and ρ, and need to build up all the
3-cells we need.

Idea: show that for any 2-cell f in Psm (i.e. a 1-cell in the above picture,
generated by ms and is), there is a normal form f and an (unique) isomorphism

f ∼= f built up out of µ, λ, ρ. (This is imprecise, of course; there are things in
Psm which we should call µ, λ, ρ). And if f ∼= g, then f = g. Then to define
Psm→ A on 3-cells (the rest is easy), if f ∼= g, then compose these isomorphisms
through f = g. This is fairly technical; define this rewrite system, show that it has
to terminate, etc. You don’t want to know any more right now.

7.2. Algebras. Can now define a particular weight Psm −→ PsaGray such that
for any Gray-functor T → Psm → A, the weighted limit {Psa,T} ‘is’ the object
of pseudo-algebras, pseudo-morphisms, and algebra 2-cells (all suitably defined) for
the pseudo-monad corresponding to T. Again, this is sort of a ‘cofibrant replace-
ment’ for the corresponding one for 2-categories, although the domain has changed.

Want to explain why the fact that we have pseudo-morphisms here comes from
the fact that we’re working over Gray. Recall that for ordinary monads, we talked
about the fact that to give something C → At is the same as m : C → A with an

action tm
α−→ m, where c 7→ (tac

αc−→ ac), and γ : c→ d is sent to

tac
αc //

taγ

��

ac

aγ

��
tad

αd
// ad

and the fact that aγ is a homomorphism can be seen as the naturality of α. One
sees something corresponding for operads and Lawvere theories: the actions are
natural with respect to homomorphisms.

Then when we come up to the Gray situation, we are thinking of pseudonatural
transformations, hence the square commutes up to isomorphism, so we get pseudo-
morphisms, not strict ones. That’s the ‘reason’ for making the formal theory of
pseudo-monads live in the Gray context. Even if you wanted only to consider
3-categories A, the fact of working over Gray gives you the pseudo-morphisms.

This work came before FTM2. In the final section, I talked a bit about distribu-
tive laws, with some things called ‘theorems’. But trying to make everything live
in Gray, only some of the ways of looking at distributive laws go through nicely
in the enriched way. After FTM2, thought this would solve everything, but still
no, don’t know how to deal well with distributive laws nicely in the enriched view.

62 TALKS BY STEVE LACK IN CHICAGO, 2006

Since then, Hyland, Power, Cheng have done it ‘tricategorically’, which is a good
thing to do, but I kept holding out against it. It also turns out to be stricter than
it might be, and you don’t try to make it maximally weak, you are happy not to
have to deal with trilimits.

8. 2-Nerves

For ordinary nerves, given a category C , you associate a simplicial set NC called
its nerve in which

• a 0-simplex is an object
• a 1-simplex is a morphism
• a 2-simplex is a composable pair and its composite
• and so on.

This process gives a fully faithful embedding

Cat ↪→ [∆op ,Set]

(where now ∆ has gone back to being the topologists’ delta).
If you were to start with a bicategory B, we can still do

• a 0-simplex is an object
• a 1-simplex is a morphism
• a 2-simplex is a 2-cell living in a triangle

//

��???????
����{�

��

These 2-simplices are being overworked; they have to express at the same time
composition of 1-cells, at least in some weak way, and what the 2-cells are. The
problem is that they don’t really ever say what the composite of a 1-cell is, only
what maps out of it are. For some purposes, that’s not so great, although it has its
advantages.

Thus, we can’t expect to get the strict homomorphisms coming out, since we
don’t have any control over what the composites actually are. What you actually
get is

Bicatnormal,lax ↪→ [∆op ,Set]

where lax means noninvertible comparison, and normal means that identities ac-
tually are preserved strictly. There are some subtleties as to what that actually
means, which I’ll ignore.

A lot of the time you want to talk about homomorphisms rather than lax ones,
so if you want to get your hands on those there are various possibilites. One is
to have a bit more structure than a simplicial set: specify as extra data which
2-simplices actually have an equality, or an isomorphism (and similar for higher
simplices). This gives a stratified simplicial set. This gives rise to the notion of a
complicial set, if you go up to ω-categories. All sorts of amazing stuff there, see
Dominic Verity.

But a different way of getting more stuff in there is to consider something which
I’m calling 2-nerves, perhaps not the best name. Here we send a bicategory B to
N2B (just NB, from now on) which is a functor ∆op → Cat, a simplicial object
in Cat.

• (NB)0 is the discrete category of the objects.

AUSTRALIAN CATEGORY THEORY 63

• (NB)1 is category whose objects are morphisms and whose morphisms are

2-cells

>>

�� ��
�� . Think of this as being an ‘enriched’ nerve, although it

wouldn’t work quite as well for a general V .
• (NB)2 doesn’t need to include the 2-cells, since we already have them, so

we can have the objects be isomorphisms

//

��???????
����{� ∼=
��

(could use equalities too, but we won’t) and the morphisms consist of three
2-cells which commute in the obvious way (in particular, the objects are all
fixed).

• (NB)3 has objects being tetrahedra whose faces are all isomorphisms, and
so on.

Want a nice definition which is functorial. Consider N Hom, the 2-category of
bicategories, normal homomorphisms, and icons (which, recall, are oplax natural
transformations all of whose 1-cell components are identities). Now Cat ↪→ N Hom,
where Cat is the locally discrete 2-category consisting of categories, functors, and
only identity natural transformations, embedding as a full sub-2-category consisting
of the locally discrete bicategories. Note that an icon between functors can only
be an identity. And of course we have ∆ ↪→ Cat, so the composite fully fathful
J : ∆ ↪→ N hom induces

N Hom(J, 1) : N Hom −→ [∆op ,Cat]

sending B to N Hom(J−,B).
For instance, 0 ∈ ∆ goes to the terminal bicategory, and a normal homomor-

phism from that into B is just an object of B, with no room for icons. 1 ∈ ∆
goes to (→), so a homomorphism from this into B is an arrow, and the icons are
exactly what we want. And so on.

Theorem 8.1. N Hom(J, 1) = N is a fully faithful 2-functor (in a completely strict
sense) and has a left biadjoint (following from 2-categorical nonsense).

How can we characterize the image? X ∈ [∆op ,Cat] is isomorphic to some NB
iff

(1) X0 is discrete,
(2) X is 3-coskeletal, i.e. isomorphic to the right Kan extension of its 3-truncation.

The idea is that 4-simplices and higher are uniquely determined by their
boundary.

(3) X2 → cosk1(X)2 is a discrete isofibration. A functor p : A→ B is a discrete
isofibration if given e ∈ E and β : b ∼= pe, there exists a unique ε : e′ ∼= e
with pε = β. This implies that if

X
&&
88

�� ��
�� ε E

and pε = id, then ε = id.
(4) X3 → cosk1(X)3 (could also use the 2-coskeleton) is also a d.i.f.

64 TALKS BY STEVE LACK IN CHICAGO, 2006

(5) The Segal maps are equivalences. (Don’t need to say it for all of them,
since being 3-coskeletal and so on, but still true.)

A Tamsamani weak 2-category would be one of these such that just the first and
the last holding, so this shows that the 2-nerve of a bicategory is a Tamsamani
weak 2-category.

This is also a little stricter than some notion of ‘internal quasi-category in Cat’.
Tamsamani also mentions some sort of ‘2-nerve’ of a bicategory, but what he

gets isn’t this. There seems to be something missing there. Something to do with
algebraic-ness?

The inclusion of N Hom into Tamsamani 2-categories looks like it should be a
biequivalence, but it’s not quite. If so, then you have to change his morphisms and
take the (‘normal’?) pseudo-natural transformations. The 2-nerves of bicategories
here have a ‘fibrancy’ property, which Simpson talks about in different terms, so
here you can get away with just using the 2-natural transformations. Could also
restrict to the Tamsamani things which are fibrant; still a bit bigger than 2-nerves?

What you might guess for the nerve of a bicategory is to have

• NB0 the objects
• NB1 =

∑
x,y B(x, y)

• NB2 =
∑

x,y,z B(y, z)×B(x, y)

which is what we do for the Cat case. If you try to do this, you don’t get a simplicial
object at the next level, due to failure of associativity. Actually, what we do is to
take the pseudo-limit of the composition functor

∑

x,y,z

B(y, z)×B(x, y) −→
∑

x,y

B(x, y).

And this goes on; for composable triples, we have

B3 //

��
∼=

B2

��
B2 // B

and NB3 is the pseudo-limit of this whole diagram. Going on, we can take the
pseudo-limit of all sorts of various higher cubes. It’s actually even true at NB1, if
you say what you mean, but not very helpful.

