
SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS

Definition 1. A monoid is a set M with an element e and an associative multipli-
cation M×M −→ M for which e is a two-sided identity element: em = m = me for
all m ∈ M . A group is a monoid in which each element m has an inverse element
m−1, so that mm−1 = e = m−1m.

A homomorphism f : M −→ N of monoids is a function f such that f(mn) =
f(m)f(n) and f(eM ) = eN . A “homomorphism” of any kind of algebraic structure
is a function that preserves all of the structure that goes into the definition.

When M is commutative, mn = nm for all m, n ∈ M , we often write the product
as +, the identity element as 0, and the inverse of m as −m. As a convention, it
is convenient to say that a commutative monoid is “Abelian” when we choose to
think of its product as “addition”, but to use the word “commutative” when we
choose to think of its product as “multiplication”; in the latter case, we write the
identity element as 1.

Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian
group G(M) together with a homomorphism of Abelian monoids i : M −→ G(M)
such that, for any Abelian group A and homomorphism of Abelian monoids f :
M −→ A, there exists a unique homomorphism of Abelian groups f̃ : G(M) −→ A

such that f̃ ◦ i = f .

We construct G(M) explicitly by taking equivalence classes of ordered pairs
(m, n) of elements of M , thought of as “m − n”, under the equivalence relation
generated by (m, n) ≃ (m′, n′) if m + n′ = n + m′. The “addition” on G(M) is
specified by passing to equivalence classes from (m, n) + (p, q) = (m + p, n + q).
The homomorphism i sends m to the equivalence class of (m, 0), and the additive
inverse −i(m) is the equivalence class of (0, m).

Once the construction is completed, it is usual to be sloppy and write m for i(m)
and m − n for i(m) − i(n), which is the equivalence class of (m, n), just as we do
when constructing the integers from the non-negative integers. However, as we saw
by example, this is an abuse of notation since i can send two elements of M to the
same element of G(M).

Definition 3. A semiring T is a set T which is both an Abelian monoid (addition
+ and identity element 0) and a monoid (multiplication · and identity element 1)
and that satisfies the distributive laws: (s + s′)t = st + s′t and s(t + t′) = st + st′.
A ring is a semi-ring R which is an Abelian group under its addition. A ring or
semi-ring is commutative if its multiplication is commutative.

A homomorphism f : S −→ T of semi-rings is a function f such that f(s+s′) =
f(s) + f(s′), f(0) = 0 (which is implied if R is a ring), f(ss′) = f(s)f(s′), and
f(1) = 1; the last is not implied, but we insist that it be true: we are only interested
in rings and semi-rings with unit. The kernel of f is the set elements s ∈ S such
that f(s) = 0. The image of f is the set of elements of the form f(s) in T .
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Exercise 4. If every element of a ring R satisfies x2 = x, then the ring is commu-
tative. The same is true if every element satisfies x4 = x.

Definition 5. The Grothendieck construction on a commutative semi-ring T is a
commutative ring G(T ) together with a homomorphism of commutative semi-rings
i : T −→ G(T ) such that, for any commutative ring R and homomorphism of semi-

rings f : T −→ R, there exists a unique homomorphism of rings f̃ : G(T ) −→ R

such that f̃ ◦ i = f .

We construct G(T ) explicitly by applying our previous construction to T re-
garded just as an Abelian monoid under addition. We then give G(T ) a multiplica-
tion by passing to equivalence classes from the rule (m, n)(p, q) = (mp+nq, mq−np),
checking that this is indeed well-defined. With our abuse of notation, this becomes
(m − n)(p − q) = mp + nq − mq − np.

Example 6. Let G be a finite group. Consider finite sets S with actions by G,
that is products G × S −→ S such that g(g′s) = (gg′)s and es = s. For example,
for H ⊂ G, the orbit set G/H = {kH |k ∈ G} is a G-set with g(kH) = (gk)H .
Let T (G) be the set of equivalence classes of finite G-sets, where two finite G-
sets are equivalent if there is a bijection α : S ∼= S′ that preserves the action by
G, α(gs) = gα(s). Then T (G) is a commutative semi-ring with “addition” given
by disjoint union of finite G-sets, S

∐
S′, and “multiplication” given by Cartesian

product, S×S′, with g(s, s′) = (gs, gs′). The Grothendieck ring of T (G) is denoted
A(G) and called the Burnside ring of G.

Exercise 7. Show that, as an Abelian group, A(G) is free Abelian with basis
elements the equivalence classes [G/H ] of orbits G/H . Letting G = πp be the
cyclic group of prime order p, determine the multiplication table for A(πp).

Exercise 8. Show that there is a unique homomorphism of rings χH : A(G) −→ Z

that sends the equivalence class of a finite G-set S to the cardinality of the fixed
point set SH = {s|hs = s for all h ∈ H}. We say that H ′ is conjugate to H
if gHg−1 = H ′ for some g ∈ G and we write (H) for the conjugacy class of H .
Choosing one H from each conjugacy class, we obtain a homomorphism of rings
χ : A(G) −→ C(G), where C(G) denotes the Cartesian product of one copy of Z
for each conjugacy class (H) and χ has coordinate homomorphisms the χH . It is
always true that χ is one-to-one. Prove this when G = πp. Is χ surjective?

Definition 9. A commutative ring R is an integral domain if it has no zero divisors:
xy = 0 implies x = 0 or y = 0. A commutative ring R is a field if every non-zero
element x has an inverse element x−1.

An element of R with an inverse is a unit, the set of units of R form a group
under multiplication, and this group is R − {0} if and only if R is a field. A field
is an integral domain.

Exercise 10. Show that a finite integral domain is a field.

Definition 11. An ideal I in a commutative ring R is an Abelian subgroup under
addition such that ra ∈ I if r ∈ R and a ∈ I. An ideal P is prime if ab ∈ I implies
a ∈ I or b ∈ I. An ideal M is maximal if the only proper ideal of R that contains
M is M itself.

Proposition 12. R is an integral domain if and only if 0 is a prime ideal. R is a
field if and only if 0 is a maximal ideal.
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For an ideal I, the quotient ring R/I is the set of equivalence classes of elements
of R, where x is equivalent to y if x − y is in I. It inherits an addition and
multiplication from R that makes it a commutative ring such that the quotient
map R −→ R/I is a homomorphism of rings.

Proposition 13. If f : R −→ S is any homomorphism of rings, then its kernel is
an ideal I and its image is isomorphic to R/I.

Proposition 14. R/I is an integral domain if and only if I is prime. R/I is a
field if and only if I is maximal. A maximal ideal is prime, but not conversely.

Exercise 15. Let f : R −→ S be a homomorphism of rings and let J ⊂ S be an
ideal. Let I = f−1(J) = {a|f(a) ∈ J} ⊂ R. Show that I is an ideal and that I
is prime if J is prime. Show by example that I need not be maximal when J is
maximal.

Exercise 16. Find all of the prime and maximal ideals of Z×Z. Then find all of
the prime and maximal ideals of A(πp).

Exercise 17. Let R be the ring of continuous functions from the closed interval
[0, 1] to the real numbers under pointwise addition and multiplication. This means
that (f + g)(t) = f(t) + g(t) and (fg)(t) = f(t)g(t). Let M be a maximal ideal of
R. Show that there is an element t ∈ [0, 1] such that M = {f |f(t) = 0}.

Observe that the set of maximal ideals in this example has a topology, since it
can be identified with the topological space [0, 1]. We shall come back to this idea.

Definition 18. Let R be an integral domain. The field of fractions of R is a field
K together with a homomorphism of integral domains i : R −→ K such that, for
any homomorphism of integral domains f : R −→ L, where L is a field, there is a
unique homomorphism of fields f̃ : K −→ L such that f̃ ◦ i = f .

The explicit construction is familiar: the elements of K are fractions x/y, where
x, y ∈ R and y 6= 0. The addition and multiplication are given by the evident
formulas. The following is a special case of a more general definition.

Definition 19. Let R be a commutative ring and let R ⊂ A where A is a ring. We
say that A is an R-algebra if ra = ar for r ∈ R and a ∈ A.

Thus A is automatically an R-algebra if A is commutative. The polynomial
algebra R[x1, . . . , xn] can be defined inductively as R[x1, . . . , xn−1][xn]. Yet again,
there is a universal property here: for any commutative R-algebra A and any
function f : {x1, . . . , xn} −→ A, there is a unique homomorphism of R-algebras

f̃ : R[x1, . . . , xn] −→ A such the f̃ ◦ i = f . The point is that, by definition, a
homomorphism of R-algebras must restrict to the identity function on R, and then
f̃ is entirely determined by the f(xi).

Polynomials f ∈ R[x1, . . . , xn] have degrees in each variable, and a total degree.
In R[x], we have deg(fg) = deg(f)+ deg(g) and deg(f + g) ≤ max(deg(f), deg(g)).
Proofs of results about polynomials often proceed by inductive arguments in which
one lowers degrees of polynomials by taking appropriate linear combinations. The
new proof of the Nullstellensatz carries that simple idea to extreme lengths.

Proposition 20. If R is an integral domain, then R[x1, . . . , xn] is an integral
domain.



4 SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS

Indeed, by induction on n, it suffices to show this for n = 1. Here fg = 0 implies
deg(fg) = 0, and the conclusion follows.

An element p of an integral domain R is irreducible if it is not zero and not a unit,
and if p = ab implies that either a or b is a unit. This is one possible generalization
of the notion of a prime number in Z. Here is another. An element p is prime
if the principal ideal (p) = {rp|r ∈ R} is a prime ideal. Every prime element is
irreducible (prove this), but not conversely.

Exercise 21. In the quadratic ring Z[
√
−5], the element 3 is irreducible but is not

prime.

An integral domain is a principal ideal domain (PID) if every ideal I is principal.
This is true of Z and of F [x] for a field F , and in this case every irreducible element
is prime: the two notions coincide. Moreover, in this case, p is irreducible if and
only if (p) is not just prime but maximal: if (p) ⊂ (q), then p = rq, and if p is
irreducible then r must be a unit and (p) = (q).

Definition 22. An integral domain R is a unique factorization domain (UFD) if
every non-zero element a that is not a unit can be written in as a finite product of
irreducibles, uniquely up to multiplication by units. That is, if a = p1 · · · pm and
a = q1 . . . qn, then m = n and, after reordering, qi = uipi for a unit ui.

Theorem 23. Every principal ideal domain is a unique factorization domain.

Theorem 24. If R is a unique factorization domain, then so is R[x].

Corollary 25. If R is a unique factorization domain, then so is R[x1, . . . , xn].

Of course, this would be false if UFD were replaced by PID, since x1 would be
an irreducible element such that (x1) is not maximal.

In R[x], x2 +1 is irreducible, and the field R[x]/(x2 +1) is a copy of the complex
numbers C: we have adjoined i =

√
−1.

Theorem 26 (Fundamental theorem of algebra). Every f ∈ C[x] has a root a ∈ C.
Thus, if f is monic, it splits completely as a product of linear polynomials x − ai.

This means that the only maximal ideals in C[x] are the principal ideals (x−a).
A field K with the property of the conclusion is said to be algebraically closed. The
Nullstellensatz says that this property propagates to polynomials in many variables.

Theorem 27 (Nullstellensatz). Let K be an algebraically closed field. Then an
ideal M in K[x1, . . . , xn] is maximal if and only if there are elements ai ∈ K such
that M is the ideal generated by the elements xi − ai. That is,

M = (x1 − a1, . . . , xn − an).

With K = C, the set of maximal ideals can be identified with Cn and thus given
a topology. Again, we shall return to this idea.

The new proof of the Nullstellensatz is a direct consequence of the following
theorem, which a priori has nothing to do with algebraically closed fields.

Theorem 28 (Munshi). Let R be an integral domain with the property that the
intersection of the non-zero prime ideals in R is zero. If M is a maximal ideal in
R[x1, . . . , xn], then M ∩ R 6= 0.
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Proof of the Nullstellensatz. Let M be a maximal ideal in K[x1, . . . , xn], where
n ≥ 2. Regard this ring as K[x1][x2, . . . , xn]. The ring K[x1] satisfies the hypothesis
on R in Munshi’s theorem, as we show shortly, hence there is a non-zero element
f ∈ M ∩ K[x1]. Since K is algebraically closed, f splits into a product of linear
factors. Since f is in M , at least one of those linear factors, say x1 − a1, is in M .
The same argument gives an element xi − ai in M for each i, 1 ≤ i ≤ n. Then

(x1 − a1, . . . , xn − an) ⊂ M.

Since (x1 − a1, . . . , xn − an) is maximal, equality holds and we are done. �

We have used a special case of a result of Kaplansky, and we will also need
Kaplansky’s result in the proof of Munshi’s theorem.

Theorem 29 (Kaplansky). Let R be an integral domain. Then the intersection I
of the non-zero prime ideals in R[x] is zero.

Let K be the field of fractions of R. We need a definition and some lemmas.

Definition 30. R is of finite type if K is finitely generated as an R-algebra.

Lemma 31. If K is generated by elements k1, . . ., kn, where ki = ai/bi, then it is
generated by the single element c = b1 · · · bn, so that K = R[1/c].

Lemma 32. The following conditions on a non-zero c ∈ R are equivalent.

(i) c ∈ I.
(ii) Any non-zero ideal J of R contains some power of c.
(iii) K = R[1/c].

Proof. (i) =⇒ (ii). Assume that no power of c is in J and let P be an ideal maximal
among those that contain J but do not contain any power of c. Then P is prime.
Indeed if ab ∈ P and neither a nor b is in P , then (P, a) and (P, b) each properly
contain P and therefore contain some power of c, say p + ra = cm and q + sb = cn

for some p, q ∈ P and r, s ∈ R. The product of these two elements is a power of c
that is in P , which is a contradiction. But then P is a prime ideal that does not
contain c, contradicting (i). Therefore some power of c must be in J .
(ii) =⇒ (iii) For any non-zero b ∈ R, some power cn of c is in the ideal (b), say
rb = cn. Then, in K, 1/b = r/cn. This implies (iii).
(iii) =⇒ (i) Let P be any non-zero prime ideal of R, let b be a non-zero element of
P , and write 1/b = r/cn. Then br = cn is in P , hence c ∈ P . Therefore c ∈ I. �

Lemma 33. If R is a PID, then R is of finite type if and only if it has only finitely
many prime elements pi (up to units).

Proof. If 0 6= c ∈ R, then, up to a unit, c is a product of finitely many prime
elements pi. If K = R[1/c], then these must be the only prime elements in R. �

Lemma 34. If R ⊂ S ⊂ K and R is of finite type, then S is of finite type.

Proof. K is also the field of fractions of S. If K = R[c−1], then K = S[c−1]. �

Lemma 35. K[x] has infinitely many prime ideals.

Proof. K[x] is a PID, and it has infinitely many monic irreducible polynomials,
which are prime elements. Indeed, Euclid’s proof that there are infinitely many
prime numbers applies. if p1, . . ., pn are all of the irreducible monic polynomials
and q = 1 + p1 · · · pn, then q is a monic polynomial divisible by none of the pi. �
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Proof of Kaplansky’s theorem. Suppose that c ∈ I is non-zero. If F is the field of
fractions of R[x], then R[x] ⊂ K[x] ⊂ F and F = R[x][c−1] = K[x][c−1]. Lemma
33 gives that K[x] has finitely many prime elements, but Lemma 35 gives that K[x]
has infinitely many prime elements. The contradiction proves the result. �

Proof of Munshi’s theorem. . We first prove the case n = 1, then the case n = 2. It
will be immediately apparent that the same argument applies to prove the general
case, at the price of just a little added notational complexity.

Let n = 1, write x = x1, and assume for a contradiction that M ∩ R = 0. Let

f(x) = a0x
k + a1x

k−1 + · · · + ak

be a polynomial of minimal degree in M , where ai ∈ R and ak 6= 0. Then our
assumption is that k ≥ 1. By hypothesis, there is a non-zero prime ideal P such
that a0 /∈ P . Let p ∈ P be non-zero. Since p ∈ R, p /∈ M . Thus (M, p) = R[x].
Let S = R − P . For each s ∈ S, we can choose an element gs(x) ∈ R[x] such
that pgs(x) + s ∈ M . Since s /∈ P , s /∈ (p) and pgs(x) + s 6= 0. Note that
gs(x) and gs(x) + s have the same degree. Here gs(x) need not be unique, and we
agree to choose gs(x) to be of minimal degree among all possible choices. Since
pgs(x) + s ∈ M , its degree is at least k.

Further, we choose s0 to be an element of S such that gs0
(x) has minimal degree

among all gs(x). Write

gs0
(x) = b0x

j + b1x
j−1 + · · · + bj

with b0 6= 0. Then j ≥ k. Since P is prime and both a0 ∈ S and s0 ∈ S,
t = a0s0 ∈ S. We have the element

a0(pgs0
(x) + s0) − b0pxj−kf(x) ∈ M.

Its degree is at most j−1, since the coefficient of xj is zero. Clearly, we may rewrite
this polynomial as an expression of the form

gt(x) + t ∈ M.

Since gt(x) has degree at most j − 1, this contradicts the choice of s0. Thus our
original assumption that k ≥ 1 is incorrect and M ∩ P 6= 0.

Now let n = 2 and again assume for a contradiction that M ∩ R = 0. Write
x = x1 and y = x2 to simplify notation. Since Kaplansky’s theorem shows that
R[x] and R[y] satisfy the hypothesis of Munshi’s theorem, the case n = 1 gives
that M ∩ R[x] 6= 0 and M ∩ R[y] 6= 0. Choose polynomials d(x) ∈ M ∩ R[x] and
e(y) ∈ M ∩ R[y] of minimal degrees m and n among all such polynomials.

Let N be the non-negative integers and give N × N the reverse lexicographic
order: (i, j) < (i′, j′) if j < j′ or if j = j′ and i < i′. Define the bidegree of a
non-zero polynomial h =

∑
aijx

iyj to be the maximal (i, j) such that aij 6= 0;
we call aij the leading coefficient of h. It is convenient pictorially to think of the
points of N × N as a lattice in the plane, with arrows drawn left and downwards
to indicate adjacent inequalities.

The polynomials yjd(x) and xie(y) in M have bidegrees (m, j) and (i, n), re-
spectively. Since M ∩ R = 0, m > 0 and n > 0, so that

(0, 0) < (m, 0) < (0, n).

Let B and ∂B denote the lower left box

B = {(i, j) | i ≤ m and j ≤ n}
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and its partial boundary

∂B = {(i, j) | i = m or j = n} ⊂ B.

We have an element of M of bidegree (i, j) for each (i, j) ∈ ∂B.
A flow F from (aq, bq) to (0, 0) is a finite sequence of adjacent lattice points

(0, 0) < (a1, b1) < · · · < (aq, bq),

so that, for 0 ≤ i < q, either

(i) ai = ai+1 − 1 and bi = bi+1 or
(ii) ai = ai+1 and bi = bi+1 − 1.

We say that (ai, bi) ∈ F is a point on the flow F . Observe that

(iii) Any flow from a point outside B to (0, 0) must intersect ∂B.
(iv) Any flow from a point in B to (0, 0) is part of a flow from (m, n) to (0, 0).

Going downstream in the flow corresponds to going down in the order. Let F

denote the (finite) set of all flows from (m, n) to (0, 0).
Now we mimic the proof in the case n = 1.
For a flow F from (m, n) to (0, 0), let MF be the set of non-zero polynomials in

M with bidegree on F . Then MF is non empty since there are non-zero polynomials
of bidegree (m, n) in M . Choose a polynomial fF ∈ MF of minimal bidegree. Since
M ∩ R = 0, the bidegree of fF is not (0, 0); let aF be its leading coefficient. Let
a ∈ R be the product of the aF . There is a non-zero prime ideal P ⊂ R such that
a /∈ P . Let p ∈ P be non-zero. Since p ∈ R, p /∈ M . Thus (M, p) = R[x, y]. Let
S = R − P . Since a ∈ S, aF ∈ S for all F ∈ F . For each s ∈ S, we can choose an
element gs(x, y) ∈ R[x, y] such that pgs(x, y) + s ∈ M . Since s /∈ P , s /∈ (p) and
pgs(x) + s 6= 0. Here gs(x, y) need not be unique, and we agree to choose gs(x, y)
to be of minimal bidegree among all possible choices.

Further, we choose s0 to be an element of S such that gs0
(x, y) has minimal

bidegree among all gs(x, y). Let b be the leading coefficient of gs0
(x, y). Consider

any flow from the bidegree of gs0
(x, y) to (0, 0). By (iii) and (iv), this flow must

coincide with a flow F from (m, n) to (0, 0) from some point onwards. Clearly the
bidegree of fF lies downstream to, or coincides with, the bidegree of gs0

(x, y). Let
(u, v) be the difference of the bidegrees of these two polynomials. Then xuyvfF

and pgs0
(x, y) + s0 are elements of M of the same bidegree. Multiplying by bp and

aF , we obtain elements of M with the same leading term. Since P is prime and
both aF ∈ S and s0 ∈ S, t = aF s0 ∈ S. The element

aF (pgs0
(x, y) + s0) − bpxuyvfF ∈ M

can be rewritten in the form

pgt(x, y) + t ∈ M,

where the bidegree of gt(x, y) is less than the bidegree of gs0
(x, y). This is a con-

tradiction, hence our original assumption M ∩ R = 0 must be false.
As said at the start, the generalization to n variables works the same way. �

The name “Nullstellensatz”, or “zero place theorem”, comes from the following
consequence.

Corollary 36. If I is a proper ideal of F [x1, . . . , xn], then there is an element
a = (a1, . . . , an) ∈ Fn such that f(a) = 0 for all f ∈ I.
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Proof. I must be contained in some maximal ideal (x1 − a1, . . . , xn − an). �

The result we have called the Nullstellensatz is actually the “weak form”. For
completeness, and because it is the real starting point of algebraic geometry, we
go on to show just how little more is required to derive the strong form. The
argument is standard. We do need the Hilbert basis theorem. A commutative ring
is Noetherian if every ideal is finitely generated. We need only consider integral
domains, but the general case of the following result is no more difficult.

Theorem 37 (Hilbert basis theorem). If R is a commutative Noetherian ring, then
so is R[x]. Therefore R[x1, . . . , xn] is Noetherian for all n.

An ideal I is a radical ideal if an ∈ I implies a ∈ I. The radical of an ideal I,
denoted

√
I, is the set of all elements a some power of which is in I. It is not hard

to see that it is in fact an ideal containing I.
Now focus on F [x1, · · · , xn] for a field F and a fixed n. Write An = An[F ] for

Fn regarded just as a set, and call it affine space. One point is to ignore its linear
structure as a vector space over F . The zeroes Z (I) of an ideal I ⊂ F [x1, · · · , xn]
are the points a ∈ An such that f(a) = 0 for all f ∈ I. The affine algebraic sets
are the subsets V of An that are the zeroes of a set of polynomials {fi}. The ideal
I (V ) is then defined to be the set of all polynomials f such that f(v) = 0 for all
v ∈ V . This is an ideal, and it is clearly a radical ideal: if (fn)(v) = f(v)n = 0,
then f(v) = 0.

Thus an algebraic set V gives rise to a radical ideal I (V ), and an ideal I gives
rise to an algebraic set Z (I). Because we start with sets V that are the zeroes of a
set of polynomials, it is immediate that V = Z (I (V )). On the other hand, for an
ideal I, it is immediate that I ⊂ I (Z (I)). Equality cannot be expected in general
since I (Z (I)) must be a radical ideal. However, even if we start with a radical
ideal, equality need not hold. The point is that not all radical ideals are of the form
I (V ) for some V . For example, any prime ideal is a radical ideal, and the prime
ideal (x2 + 1) ∈ R[x] has no zeroes in R. The strong form of the Nullstellensatz
says that these conclusions do hold for algebraically closed fields.

Theorem 38 (Strong form of the Nullstellensatz). Let F be an algebraically closed

field. Then, for any ideal I ⊂ F [x1, · · · , xn], I (Z (I)) =
√

I. Therefore the
correspondences Z and I between algebraic sets and radical ideals are inverse
bijections.

Proof. We must prove that I (Z (I)) ⊂
√

I. By the Hilbert basis theorem, I
is generated by a finite set {f1, . . . , fq} of polynomials. Let g ∈ I (Z (I)). We
must prove that some power of g is in I. Introduce a new variable y and let
J ⊂ F [x1, · · · , xn, y] be the ideal generated by the fi and yg − 1. Clearly g and
the fi depend only on the xi, and g vanishes on any point a ∈ An on which each fi

vanishes. Therefore, if a ∈ An+1 and fi(a) = 0 for all i, then an+1g(a) − 1 = −1.
Thus Z (J) is empty and J cannot be a proper ideal, so that J = F [x1, · · · , xn, y].
We may write

1 = h1f1 + · · · + hqfq + hq+1(yg − 1)

for some hi ∈ F [x1, · · · , xn, y]. Working in the field of fractions, say, we may set
z = y−1 and think of the hi as polynomials in the xi and z−1, and we may think
of the last summand as z−1hq+1(g − z). Multiplying by zN for N large enough to
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clear denominators, we obtain

zN = j1f1 + · · · jqfq + jq+1(g − z)

for some ji ∈ F [x1, · · · , xn, z]. We may set z = g in this polynomial equation, and
this shows that gN ∈ I. �

It is convenient to let radical ideals I correspond to their quotient F -algebras
F [x1, · · · , xn]/I. If I = I (V ), this is called the coordinate ring of V and denoted
F [V ]. It is to be thought of as the ring of polynomial functions on V , since two
polynomials f and g define the same element of F [V ] if and only if their restrictions
to V are the same; that is their difference is identically zero on V and therefore in
the ideal I. The passage back and forth between algebraic sets and their coordinate
rings is an algebraization of the geometry of solutions to polynomial equations, the
starting point of algebraic geometry.

The geometry has an underlying topology, and we want to understand that
algebraically. Working more generally now, let R be any commutative ring. Let
Spec(R) denote the set of all prime ideals of R. We define a topology on Spec(R)
by letting the closed sets be the sets

V (I) = {P | I ⊂ P}
where I ranges over all ideals of R. This is called the Zariski topology.

To say that the set of sets V (I) is a topology is to say that the empty set and
the entire set are closed, and that finite unions and arbitrary intersections of closed
sets are closed. The empty set is V (R): no prime ideal contains R. The whole set
is V (0): every prime ideal contains the ideal 0 = {0}. If J is the product of a finite
set of ideals {Iq}, denoted J =

∏
Iq, then J is the ideal of linear combinations of

products of one element from each Iq, and a prime ideal P contains J if and only
if it contains one of the Iq. This means that V (J) is the union of the V (Iq). If J
is the sum of an arbitrary set of ideals {Iq}, denoted J =

∑
Iq, then J is the ideal

of finite R-linear combinations of elements of the Iq, and a prime ideal P contains
J if and only if it contains each of the Iq. This means that V (J) is the intersection
of the V (Iq).

Moreover, the space Spec(R) is compact. One way of specifying compactness is
to say that if an intersection of a set of closed subsets is empty, then the intersection
of some finite subset of the given set is empty. If {Iq} is a set of ideals such that
∩qV (Iq) = ∅, then no prime ideal contains all of the Iq, so that the sum J =

∑
Iq

must be all of R. Then we can write 1 as a finite linear combination of elements
ar ∈ Ir for some finite subset {Ir} of the original set. No prime ideal can contain
all of the Ir , since it would then contain 1.

For an element r ∈ R, let D(r) denote the set of prime ideals such that r /∈ P .
As the complement of the closed set V ((r)), D(r) is open. These open sets form a
basis for the topology. For each prime ideal P , there is at least one r /∈ P , so that
P ∈ D(r). If P ∈ D(r) ∩ D(s), then P ∈ D(rs) ⊂ D(r) ∩ D(s). That is, if r /∈ P
and s /∈ P , then rs /∈ P , and if rs /∈ Q, then r /∈ Q and s /∈ Q.

We define Max(R) ⊂ Spec(R) to be the subspace whose points are the maximal
ideals of R. This is still compact, by the same proof. A basis for its topology is
given by the sets E(r) = D(r) ∩ Max(R).

Now let R = C[x1, · · · , xn]. The maximal ideals in R are in bijective corre-
spondence with points a = (a1, . . . , an) ∈ A

n(C); the correspondence sends a to
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Ma = (x1 − a1, . . . , xn − an). For f ∈ R, f /∈ Ma means that f(a) 6= 0. That is,
E(f) is the set of points of Cn = An(C) that do not satisfy the polynomial f . These
sets are open in the standard metric topology on Cn. Thus the latter topology is
finer (has more open sets) than the Zariski topology. Said another way the identity
function from C

n to A
n[C] is continuous, but its inverse is not. This is strikingly

illustrated by the compactness of An[C] and non-compactness of Cn.
Rather than pursue inadequately the direction of algebraic geometry, we give

some idea of the information in the topology on Spec(R) by describing in algebraic
terms what the components of Spec(R) mean.

A space X is connected if it is not the disjoint union of two open subsets; equiv-
alently, it is not the disjoint union of two closed subsets. We say that x and y are in
the same component of X , and we write x ∼ y, if there is a connected subspace of
X that contains both x and y. The equivalence classes of points are called the com-
ponents of X . Equivalently, they are the maximal connected subsets of X . They
are connected disjoint subspaces whose union is X , and any connected subset of
X intersects only one of them. Components are closed, but they need not be open
unless there are only finitely many of them. They must not be confused with path
components, with which they coincide when X is locally path connected. That fails
for Spec(R). We let πX denote the set of components of X .

An element e ∈ R is idempotent if e2 = e, and we say that two idempotents are
orthogonal if their product is zero. If R = R1 ×R2, then e1 = (1, 0) and e2 = (0, 1)
are orthogonal idempotents of R such that e1 + e2 = 1. Thus any prime ideal of
R must contain e1 or e2, but not both. We conclude that the prime ideals of R
are the ideals of the form P1 × R2 or R1 × P2, where Pi is a prime ideal of Ri.
Moreover, these two collections of primes are each closed subsets, namely V (R2)
and V (R1), where R1 = R1 × 0 ⊂ R and similarly for R2. Therefore these two
closed sets are also open, and they separate Spec(R) into two components. This
behavior generalizes.

Proposition 39. Let R be a commutative Noetherian ring. The decompositions of
1 as a sum 1 = e1 + · · · en of n non-zero orthogonal idempotents are in bijective
correspondence with the decompositions of R as the direct sum of n ideals and with
the decompositions of Spec(R) as disjoint unions of n open and closed subsets. Thus
Spec(R) is connected if and only if 0 and 1 are the only idempotents of R.

Proof. The ideal and component corresponding to ei are (ei) and Ui = V ((1− ei)).
Clearly (ei)∩ (ej) = 0, Ui ∩Uj = ∅ for i 6= j and each prime is in one of the Ui. �

An idempotent is indecomposable if it is non-zero and is not the sum of two
non-zero idempotents; the summands must be orthogonal if 2r = 0 implies r = 0.
The proposition is most interesting when each idempotent is indecomposable.

Now let us return to the Burnside ring A(G) of a finite group G. Recall that fixed
point cardinality homomorphisms give a ring homomorphism χ : A(G) −→ C(G),
where C(G) is the product over conjugacy classes (H) of copies of Z. A subgroup
of G is perfect if it is equal to its commutator subgroup. A subgroup is solvable if it
has a composition series (each term is a maximal normal subgroup of the previous
one) whose factors are cyclic of prime order. Each H ⊂ G has a smallest normal
subgroup Hs such that H/Hs is solvable; (Hs)s = Hs, and H is perfect if and only
if H = Hs. There is a composition series

(40) Hs = Hk ⊳ Hk−1 ⊳ · · · ⊳ H1 = H
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such that each Hj/Hj+1 is cyclic of order pj for some primes pj . Thus G is solvable
if and only Gs = e. Let P (G) be the set of conjugacy classes of perfect subgroups
of G. We can identify P (G) with the set of equivalence classes of conjugacy classes
(H), where (H) is equivalent to (H ′) if (Hs) = (H ′

s).
We shall sketch two ways to prove the following result.

Theorem 41. The indecomposable idempotents of A(G) are in bijective correspon-
dence with the elements of P (G). Therefore G is solvable if and only if the only
idempotent elements of A(G) are 0 and 1, that is, Spec(A(G)) is connected.

Thus the Feit-Thompson theorem says that Spec(A(G)) is connected if G has
odd order. We briefly explain the idea. We mentioned the follow result before.

Proposition 42. The homomorphism χ : A(G) −→ C(G) is a monomorphism.

Proof. Suppose x 6= 0 but χ(x) = 0. Write x =
∑

aH [G/H ] in terms of our basis
{[G/H ]}. Partial order the basis elements by [G/H ] < [G/K] if H is subconjugate
to K, which means that gHg−1 ⊂ K for some g ∈ G. Let [G/H ] be maximal such
that aH 6= 0. If K ⊂ G and (G/K)H is nonempty, then H must be subconjugate
to G: hgK = gK for all h ∈ H implies g−1Hg ⊂ K. When K = H , g must be in
the normalizer NH of H in G, and we see that (G/H)H can be identified with the
group WH = NH/H . Therefore

χH(x) = aHχ(G/H) = aH |WH | 6= 0,

contradicting our assumption that χ(x) = 0. �

From here, there are two routes. If e ∈ A(G) is an idempotent, then χ(e) ∈ C(G)
is an idempotent, but we know all of the idempotents in a product of copies of Z.
So the question is: which idempotents of C(G) can be in the image of χ? The
answer is: precisely those idempotents f ∈ C(G) whose coordinates f(H) satisfy
f(H) = f(Hs). The f(H) must all be 0 or 1. There are certain congruences which
characterize those elements f ∈ C(G) which are in the image of φ. Namely, for
each H ⊂ G,

∑
[NH : NH ∩ NK]µ(K/H)f(K) ≡ 0 mod |WH |

where the sum runs over the H-conjugacy classes of groups H ⊂ K ⊂ NH such
that H is normal in K and K/H is cyclic; µ(K/H) is the number of generators of
K/H . The proof is not very hard, but it does depend on some knowledge of the
representation theory of finite groups. In principle, if Theorem 41 is true, then one
can check it by using the congruences to prove that, for an idempotent f , f is in
the image of φ if and only if f(Hs) = f(H) for all H .

There is a trick that makes this easy, illustrates ideas, and allows us to minimize
use of these horrid congruences. Suppose that H is normal in G with quotient
group G/H ∼= πp, a cyclic group of order p. Then there are no groups K properly
contained between H and G, so the sum has just two terms and reduces to

f(H) + (p − 1)f(G) ≡ 0 mod p.

Equivalently, this is
f(H) ≡ f(G) mod p,

which is something that we can easily prove must hold. Indeed, if S is a finite
G-set, then SG = (SH)G/H . For a πp-set T , it is clear that the elements of T that
are not fixed by πp break up into orbits of p elements each. Therefore |T | − |T πp |
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is divisible by p. This implies the last congruence. If we know that f(H) and f(G)
are each 0 or 1, then this forces f(H) = f(G).

Now we go back to general principles. For an inclusion i : H ⊂ G, we obtain a
ring homomorphism i∗ : A(G) −→ A(H) by use of the defining universal property
of A(G). We may regard a finite G-set S as a finite H-set i∗S, and i∗ clearly sends
disjoint unions to disjoint unions and Cartesian products to Cartesian products.
Moreover, for J ⊂ H , χJ ◦ i∗ = χJ since the J-fixed point set of S is the same
whether S is considered as a G-set or as an H-set. That is, we can study the χJ

by restricting to A(H) for any convenient subgroup H such that J ⊂ H ⊂ G.
Returning to our question of idempotents, to prove that f(Hs) = f(H) for f in

the image of χ, it suffices to show that if H ⊂ K ⊂ G with H normal in K and
K/H ∼= πp for some prime p, then f(K) ≡ f(H) modp. But this is now clear:
we may restrict down to A(K) and apply our trick. Conversely, if f satisfies these
equalities, then we can check directly that the congruences hold.

A more conceptual proof (which generalizes to compact Lie groups G) makes
use of Proposition 39 and avoids use of the general congruences altogether. We can
study the prime ideals of A(G) by comparing them with the prime ideals of C(G),
which we understand completely. We have prime ideals

q(H, p) = {x |χH(x) ≡ 0 modp}
where p is zero or a prime. These are the inverse images in A(G) of prime ideals
of C(G) and therefore are prime ideals. Clearly q(H, 0) ⊂ q(H, p) for all non-zero
p, and the ideals q(h, p) for varying p are in the same component of Spec(A(G)).

One can check that the q(H, p) are all of the prime ideals of A(G). However,
there are redundancies. The minimal prime ideals q(H, 0) are distinct, in the sense
that there is one for each conjugacy class (H). However, many H can give the same
maximal ideal q(H, p). Let us say that H ∼p K if q(H, p) = q(K, p). If H ⊳ K and
K/H ∼= πp, then H ∼p K since, for a finite K set S, |SH | − |SK | is divisible by
p. It is plausible and not hard to show that these relations and conjugacy generate
the equivalence relation ∼p. It can be deduced from this that H ∼p K implies
(Hs) = (Ks). Define

β : P (G) −→ πSpec(A(G))

by β(L) = [q(L, 0)], the component of q(L, 0). Define

γ : πSpec(A(G)) −→ P (G)

by γ(q(H, p)) = (Hs). Before passing to components, one can use a slick argument
to check that γ is continuous and deduce that γ is well-defined, but it is perhaps
more convincing to check algebraically that if q(H, p) and q(H ′, p′) are in the same
component, then Hs is conjugate to H ′

s. It is immediate that γβ = id on P (G),
and βγ = id since use of (40) and our description of ∼p imply that q(H, p) and
q(Hs, 0) are in the same component.


