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These notes record the basic results about DVR’s (discrete valuation rings) and
Dedekind rings, with at least sketches of the non-trivial proofs, none of which are
hard. This is standard material that any educated mathematician with even a mild
interest in number theory should know. It has often slipped through the cracks of
Chicago’s first year graduate program, but then we would need at least three years
to cover all of the basic algebra that every educated mathematician should know.

Throughout these notes, R is an integral domain with field of fractions K.

1. Fractional ideals

Definition 1.1. A fractional ideal A of R is a sub R-module of K for which there is
a non-zero element d of R such that dA ⊂ R. Define A−1 to be the set of all k ∈ K,
including zero, such that kA ⊂ R. For fractional ideals A and B define AB to be
the set of finite linear combinations of elements ab with a ∈ A and b ∈ B. Observe
that AB and A−1 are fractional ideals. The set of isomorphism classes of non-zero
fractional ideals is a commutative monoid with unit R under this product. Clearly
AA−1 ⊂ R. Equality need not hold, and A is said to be invertible if it does. The
class group C(R) is the Abelian group of isomorphism classes of invertible fractional
ideals of R. If this group is finite, its order is the class number of R.

Remark 1.2. If there is any B such that AB = R, then B = A−1.

Lemma 1.3. Every finitely generated sub R-module of K is a fractional ideal, and
the converse holds if R is Noetherian.

For each non-zero element k ∈ K, kR is an invertible fractional ideal that is
isomorphic to R, and C(R) can be identified with the quotient of the Abelian group
of all invertible R-modules by its subgroup of principal R-modules. We think of
C(R) as measuring by how much ideals can differ from being principal. When R
is a Dedekind ring, all non-zero fractional ideals are invertible, and they can all be
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generated by two elements. If, further, R is a ring of integers in a number field,
then C(R) is finite.

We relate invertibility to projectivity. The following general observation, in
which R can be any commutative ring, will make the relationship apparent.

Theorem 1.4 (Dual basis theorem). An R-module A is projective if and only there
is a set of elements ai of A and a set of R-maps fi : A −→ R such that the sum∑

fi(a)ai is finite and equal to a for each element a ∈ A.

Proof. Choose a free module F on a basis ei and an epimorphism g : F −→ A. Let
ai = g(ei). Then A is projective if and only if there is an R-map f : A −→ F such
that g ◦ f = id. Given f , we can write f(a) =

∑
riei and define fi(a) = ri. The

fi are R-maps as in the statement. Conversely, given such fi, we can define f by
f(a) =

∑
fi(a)ei. �

There is a related conceptual version that is particularly important.

Corollary 1.5. Define

φ : HomR(A, R) ⊗R A −→ HomR(A, A)

by φ(f ⊗ b)(a) = f(a)b. Then A is finitely generated and projective if and only if φ
is an isomorphism.

Returning to our integral domain R, we have the following result.

Proposition 1.6. A non-zero fractional ideal A is invertible if and only if it is
projective, and it is then finitely generated.

Proof. If A is invertible, we can write 1 as a finite sum
∑

aibi, where ai ∈ A and
bi ∈ A−1. The ai generate A, and we can define fi : A −→ R by fi(a) = bia. By
the dual basis theorem, A is projective with finite set of generators ai. Conversely,
let A be projective and let fi : A −→ R and ai be as in the dual basis theorem.
Choose any fixed non-zero b ∈ A and let ki = fi(b)/b. Observe that

afi(b) = bfi(a)

for any a ∈ A. This is trivial if a = 0. If a 6= 0, we can write a = m/n and b = p/q
as quotients of non-zero elements of R. Then, since fi is an R-map,

afi(b)nq = anfi(bq) = fi(anbq) = fi(an)bq = fi(a)bnq.

Dividing by b, fi(a) = kia for all a, hence kiA ⊂ R. Since fi(b) = 0 for all but
finitely many i, ki = 0 for all but finitely many i. For any a,

a =
∑

fi(a)ai =
∑

kiaia.

Since this is an equation in K,
∑

kiai = 1. Therefore A is invertible. �

2. The definition of Dedekind rings and DVR’s

There are many equivalent definitions of Dedekind rings. We take the following
one, at least provisionally.

Definition 2.1. An integral domain R is a Dedekind ring (or Dedekind domain) if
every non-zero ideal of R is invertible. A discrete valuation ring, or DVR, is a local
Dedekind ring.

Proposition 2.2. A PID is a Dedekind ring.
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Proof. Immediate from the definition. �

It is clear that every non-zero ideal is invertible if and only if every non-zero
fractional ideal is invertible. That is, all non-zero fractional ideals must be in the
group C(R). We shall justify the name DVR shortly. Such rings have a very simple
ideal structure, and a standard method for proving results about Dedekind rings,
such as the following theorem, is to observe them locally and deduce them globally.
We state the following theorem now and prove it later. It shows that our definition
of a Dedekind ring is equivalent to Dedekind’s original one.

Theorem 2.3. A ring R is a Dedekind ring if and only if R is a Noetherian
integrally closed integral domain of (Krull) dimension 1, so that every non-zero
prime ideal is maximal.

Theorem 2.4. The ring OK of integers in an algebraic number field K is Dedekind.
More generally, if R is Dedekind, L is a finite extension of K, and S is the integral
closure of R in L, then S is Dedekind.

Proof. The first statement follows from the second since Z is Dedekind. For the
second statement, we use our second characterization of Dedekind rings. Certainly
S is integrally closed since it is an integral closure.

First assume that the extension is separable. Then there is a finite basis {xi}
for L over K such that S is contained in the sub R-module spanned by the xi.
Since R is Noetherian, this implies that S is finitely R-generated and therefore
also Noetherian. Let P be a non-zero prime ideal of S and p = P ∩ R. Then p

is non-zero since the constant coefficient of a minimal degree equation of integral
dependence for x 6= 0 in P is non-zero and in (x), hence in P ∩ R. If P ⊂ Q is a
proper inclusion of prime ideals in S, then, by passing to quotients by P , we deduce
that P ∩ R ⊂ Q ∩ R is a proper inclusion of non-zero prime ideals in R, which is a
contradiction.

In the general case, L is a purely inseparable extension of a separable extension
Ls of K. The integral closure Rs of R in Ls is Dedekind, and S is the integral closure
of Rs in L. Thus we may assume that L is a purely inseparable finite extension of
K. The minimal polynomial of a non-zero x in S is of the form xpe

− a, where p
is the characteristic and a ∈ K. Since x is integral over R, so is a, and since R is
integrally closed, a is in R. Since L is finite over K, the exponents pe are bounded,
say by q = pf , and S is the set of all elements x ∈ L such that xq ∈ R. Let K ′ be
the field of qth roots of elements of K and R′ the integral closure of R in K ′. Then
x 7→ xq is an isomorphism K ′ −→ K that restricts to an isomorphism R′ −→ R,
so that R′ is Dedekind. To show that S is Dedekind, it suffices to show that every
non-zero ideal I of S is invertible. Since R′I is invertible in K ′, 1 =

∑
aibi with

ai ∈ I and bi ∈ (R′I)−1. Then 1 =
∑

aq
i b

q
i and bqi

i in K. Let ci = aq−1
i bq

i , so that
1 =

∑
aici with ci in L. It is easy to check that ci ∈ I−1 in L since bi ∈ (R′I)−1

in K ′. Therefore I is invertible. �

The class number of a number ring is finite, but that is not true for a general
Dedekind ring R.

3. Characterizations and properties of DVR’s

We start over with a new definition of a DVR, and we then prove that the new
notion is equivalent to the notion of a local Dedekind ring. Remember that R is an



4 J.P. MAY

integral domain with field of fractions K. To avoid trivial cases, it is convenient to
require R not to be K.

Definition 3.1. A domain R is a valuation ring if it is not a field and x ∈ K − R
implies x−1 ∈ R.

Lemma 3.2. If I and J are ideals in a valuation ring R, then either I ⊂ J or
J ⊂ I. Therefore R is local.

Proof. Let x ∈ I and x /∈ J . For y 6= 0 in J , x/y /∈ R, hence y/x ∈ R and
y = (y/x)x ∈ I. �

Let R× denote the subgroup of units in a ring R.

Definition 3.3. A discrete valuation on a field K is a function ν : K× −→ Z that
satisfies the following properties.

(i) ν is surjective.
(ii) ν(xy) = ν(x) + ν(y).
(iii) ν(x + y) ≥ min{ν(x), ν(y)}.

It is often convenient to set ν(0) = ∞, which makes sense of (iii) when x = −y
and ensures that (ii) and (iii) are valid for all x, y ∈ K. With that convention,
for a discrete valuation ν, R = {x|ν(x) ≥ 0} is the valuation ring of (K, ν). It is
a valuation ring by (ii) and (iii). A discrete valuation ring (DVR) is an integral
domain R that is the valuation ring of a discrete valuation on its field of fractions.

Lemma 3.4. Let R be a DVR. Then a non-zero element u ∈ R is a unit if and
only if ν(u) = 0.

Proof. ν(1) = 0 by (ii) since 1 · 1 = 1, and then (ii) applied to u · u−1 = 1 gives
that ν(u) = 0 if and only if ν(u−1) = 0, in which case the inverse u−1 is in R. �

Note that it suffices to define a discrete valuation ν on R, since if x = r/s ∈ K,
then we can and must define ν(x) = ν(r) − ν(s).

Lemma 3.5. If R is a DVR, then ν : R − 0 −→ N is a Euclidean norm. Thus R
is a Euclidean domain and therefore a PID.

Proof. Let x, y ∈ R − 0. By (ii), ν(x) ≤ ν(xy). If ν(x) ≥ ν(y), then ν(x/y) ≥ 0
and x/y ∈ R. The equations x = (x/y)y + 0 if ν(x) ≥ ν(y) and x = 0y + x if
ν(x) < ν(y) verify the other defining condition for a Euclidean norm: there exist s
and r in R such that x = sy + r with either r = 0 or ν(r) < ν(y). �

Examples 3.6. We exhibit some discrete valuation rings.

(i) For a prime p, the ring Z(p) of p-local integers is the valuation ring of
νp : Q −→ Z, where νp(p

na/b) = n if a and b are integers which are prime
to p.

(ii) Let F be a field. For an irreducible polynomial f ∈ F [x], the localization
F [x](f) is the valuation ring of ν : F (x) −→ Z, where νf (fna/b) = n if a
and b are polynomials which are prime to f .

(iii) The power series ring F [[x]] is the valuation ring of the valuation ν on the
Laurent series ring F [x, x−1] = F ((x)) specified by ν(

∑
aix

i) = n for the
smallest n such that an 6= 0 but ai = 0 for i < n.

Definition 3.7. An element t of a DVR R is a uniformizing parameter, abbreviated
UP, if ν(t) = 1.
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Lemma 3.8. Let R be a DVR with fraction field K and UP t.

(i) If r 6= 0 in R, then r = utn where u ∈ R× and n = ν(r) ≥ 0.
(ii) If x 6= 0 in K, then x = utn where u ∈ R× and n = ν(x) ∈ Z.
(iii) The only non-zero proper ideals of R are (tn) with n ≥ 1.
(iv) The only non-zero prime ideal of R is the maximal ideal (t), which is the

set of elements a ∈ R such that ν(a) > 0.
(v) The only non-zero fractional ideals of R are the (tn) for n ∈ Z.

Proof. For (i) and (ii), x = utn where u = xt−n is a unit in R by Lemma 3.4. For
(iii), if I ⊂ R is a non-zero proper ideal and n is minimal such that there exists
a ∈ I with ν(a) = n, then a = utn for a unit u and (tn) ⊂ I. If b ∈ I, then b = utq

where u is a unit and q ≥ n, hence b ∈ (tn). The rest is clear. �

We now give the basic characterization theorem for DVR’s. It is usually stated
starting just with a commutative ring, but it seems more convenient to start with
an integral domain. It shows in particular that a DVR in the sense of Definition
3.3 is the same as a DVR in the sense of Definition 2.1.

Theorem 3.9. The following statements are equivalent for an integral domain R
which is not a field.

(i) R is a DVR (in the sense of Definition 3.3).
(ii) R is a local PID.
(iii) R is a UFD with a unique irreducible element t (up to associates).
(iv) R is a Noetherian local ring with a principal maximal ideal.
(v) R is an integrally closed Noetherian local ring of dimension 1.
(vi) R is a local ring such that every non-zero ideal of R is invertible.

Proof. We first show that (i), (ii), and (iii) are equivalent. We have already shown
that (i) =⇒ (ii). Assume (ii) and let the maximal ideal of R be (t). Then t is
irreducible, since if t = xy with neither x nor y a unit, we would have t ∈ (t2),
implying that t is a unit; t is the unique irreducible by the maximality of (t), so
that (iii) holds. Assume (iii). The ideal (t) is prime, and it is maximal by the
uniqueness of t. For any r ∈ R, there exists n such that r ∈ (tn) and r /∈ (tn+1).
We set ν(r) = n and find that ν induces a valuation on K with valuation ring R,
so that (i) holds.

Clearly (ii) implies (iv). The equivalent conditions (i), (ii), and (iii) also imply
(v) and (vi) since the only ideals of R are (tn) for a UP t, and similarly for fractional
ideals, and since R is integrally closed by inspection: no element of K not in R can
satisfy an equation of integral dependence over R. We shall prove the implications
(iv) =⇒ (ii), (vi) =⇒ (iv), and (v) =⇒ (iv).

(iv) =⇒ (ii). Let M = (t) be the maximal ideal of R. We must show that any
ideal I is principal. Since I is finitely generated, there is a maximal n such that
I ⊂ Mn. For an element a of I that is not in Mn+1, a = utn for some unit u and
thus a is in (tn). Since this holds for all such a and since Mn+1 ⊂ (tn), I = (tn).

(vi) =⇒ (iv). Since invertible ideals are finitely generated, R is Noetherian. We
need only show that the maximal ideal M is principal. By Nakayama’s lemma
M 6= M2. Let t ∈ M − M2. Since t ∈ M , tM−1 ⊂ R, and tM−1 6⊂ M since
t /∈ M2. Therefore tM−1 = R and (t) = M .

(v) =⇒ (iv). This is the hardest part, since we must find a way to use the
assumption that R is integrally closed. We must prove that the maximal ideal M is
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principal. Again, M 6= M2 by Nakayama’s lemma, and we can choose t ∈ M −M2.
Clearly (t) ⊂ M , and we claim that equality holds. Since M is the unique non-zero
prime ideal, it is the radical of (t). Let n be minimal such that Mn ⊂ (t). We claim
that n = 1, and we assume for a contradiction that n > 1. Let x be an element of
Mn−1 that is not in (t). Then xM ⊂ Mn ⊂ (t). Let y = x/t ∈ K. Then y /∈ R
since yt = x /∈ (t). We claim that y is integral over R and therefore in R, which
is a contradiction. Since xM ⊂ (t), yM ⊂ R and yM is an ideal. If yM = R, say
ym = 1, then xm = tym = t is in Mn ⊂ M2, contradicting the choice of t. Thus
yM is a proper ideal, yM ⊂ M . This leads to the required equation. Let M be
generated by a finite set of elements mi. Then ymj =

∑
aijmi with aij ∈ R, which

can be written ∑
(δijy − aij)mi = 0.

Let d = det(δijy − aij). By Cramer’s rule, dmi = 0 for all i and thus dM = 0.
Since M 6= 0, d = 0 , and this is an equation of integral dependence for y. �

The following corollary shows how little more is needed to ensure that a valuation
ring is a DVR.

Corollary 3.10. A valuation ring R is a DVR if and only if it is Noetherian.

Proof. A DVR is a PID and is therefore Noetherian. Conversely, let R be a Noe-
therian valuation ring. An ideal I is generated by finitely many elements ai. By
Lemma 3.2, one of the (ai) must contain all of the others and therefore must be I.
Thus R is a local PID and therefore a DVR by the theorem. �

The following corollary and proposition are useful in local to global arguments.

Corollary 3.11. If P is a minimal non-zero prime ideal in an integrally closed
Noetherian integral domain, then RP is a DVR.

Proof. RP is an integrally closed Noetherian local ring of dimension 1. �

Proposition 3.12. R is integrally closed if and only if RP is integrally closed for
all prime ideals P or, equivalently, all maximal ideals P .

Proof. Let i : R −→ S be the inclusion of R in its integral closure in K. Thus R is
integrally closed if and only if i is an epimorphism. Of course, K is also the field of
fractions of RP for all primes P , and the integral closure of RP is iP : RP −→ SP .
Since i is an epimorphism if and only if iP is an epimorphism for all prime ideals
P or, equivalently, all maximal ideals P , the conclusion follows. �

4. Completions of discrete valuation rings

We assume for now that the reader has seen completions of rings.

Example 4.1. Consider the p-adic integers Zp in their fraction field Qp. This is a
local PID with maximal ideal (p), hence a DVR. Any x ∈ Qp is of the form upn,
where u is a unit in Zp and n is an integer. The required valuation νp is given by
νp(x) = n.

Clearly the valuations on Z(p) and Zp are related. We make this precise. Let
ν be a discrete valuation on a field K. Pick a real number q > 1 and define
d(x, y) = ||x − y||, where ||x|| = q−ν(x). Then K is a metric space with metric d
since the following three properties of d are immediate. For (i) we use our convention
that ν(0) = ∞ and interpret q−∞ to be zero.
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(i) d(x, y) ≥ 0 with equality if and only if x = y.
(ii) d(x, y) = d(y, x)
(iii) d(x, y) ≤ max{d(x, z), d(z, y)} ≤ d(x, z) + d(z, y).

We complete K as a metric space, taking K̂ to be the set of equivalence classes
of Cauchy sequences, so that Cauchy sequences converge in K̂. For definiteness, we
add subscripts ν to everything in sight when we want to remember which valuation
on K we have in mind.

Example 4.2. We have the valuation νp on Q. Here we take q = p so that

||pna/b||p = p−n. Then Q̂ = Qp and Ẑ(p) = Zp. One way to think of this is to

represent elements of Qp as p-adic Laurent series a =
∑

aip
i, 0 ≤ ai < p, with

νp(a) being the minimal n such that an 6= 0.

Example 4.3. For a field F , the completion of F (x) at νx gives F ((x)), with F [x]
completing to F [[x]].

Of course, these completions give the starting point for analytic number theory.

5. Characterizations and properties of Dedekind rings

The global analogue of our characterization theorem for DVR’s reads as follows.
The equivalence of (i) and (iii) is the promised Theorem 2.3.

Theorem 5.1. The following statements are equivalent for an integral domain R
which is not a field.

(i) R is Noetherian, integrally closed, and of dimension 1.
(ii) R is Noetherian and each localization RP at a prime is a DVR.
(iii) Every non-zero ideal of R is invertible.
(iv) Every non-zero proper ideal of R is a product of maximal ideals.
(v) Every non-zero proper ideal of R is a product of prime ideals.

Moreover, the product decomposition in (iv) is then unique.

Proof. Since primes of RP correspond to primes contained in P in R, we see that
the dimension of R is one if and only if the dimension of each RP is one. Similarly,
the Noetherian property is local, and so is integral closure by Proposition 3.12.
Thus (i) is equivalent to (ii) by Theorem 3.9.

By Theorem 3.9 again, to show that (ii) is equivalent to (iii), it suffices to show
that every non-zero ideal of R is invertible if and only if every non-zero ideal of
each RP is invertible. In K, which is the field of fractions of RP ,

(A−1)P = (AP )−1 and (AB)P = AP BP

for finitely generated fractional ideals A and B of R. Moreover, just as for ideals,
each fractional ideal of RP has the form RP A for some fractional ideal A of R. Thus,
if AA−1 = R, then AP (AP )−1 = RP . Since (iii) implies that R is Noetherian, this
gives the implication (iii) ⇒ (ii). For the converse, if AP (AP )−1 = RP for all P ,
then (AA−1)P = RP for all P . Taking intersections over P , this gives AA−1 = R.
For a more pedestrian proof, taking A to be an ideal, if AA−1 is properly contained
in R, then it is contained in some maximal ideal P . Now AP is principal, say
generated by a/s with a ∈ A and s ∈ R − P . Let I be generated by finitely many
elements bi. Each bi can be written as (ri/si)(a/s) for some elements ri ∈ R and
si ∈ R − P . Let t be the product of s and all of the si. Then t ∈ R − P , and
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t/a ∈ A−1 since each bit/a is in R. But then t = a(t/a) is in AA−1 ⊂ P , which is
a contradiction.

There are several ways to prove that (iii) implies (iv). The usual one uses reduced
primary decompositions, but a proof that does not assume familiarity with that
theory is perhaps preferable. Note again that (iii) implies that R is Noetherian
and let S be the set of all non-zero proper ideals that are not finite products of
maximal ideals. If S is non-empty, it contains a maximal element I. Since I cannot
be a maximal ideal, it must be properly contained in some maximal ideal M . Let
J = M−1I. Then J ⊂ R and the inclusion is proper. Now I = MJ ⊂ J , and again
the inclusion is proper since MJ = J implies M = R. By the maximality of I, J
must be a product of maximal ideals. But then so is I, which is a contradiction.

Obviously (iv) implies (v). We will complete the proof by showing that (v) ⇒
(iii) after giving some corollaries of what has already been proven and proving some
preliminary results. �

Corollary 5.2. A Dedekind ring R is a PID if and only if it is a UFD.

Proof. Any PID is a UFD. Assume R is a UFD and let P be a prime ideal. Let a
be a non-zero element of P . Some irreducible factor t of a is in P and so (t) ⊂ P .
Since dim(R) = 1, (t) = P . Thus every prime ideal is principal. Since every ideal
is a product of prime ideals, every ideal is principal. �

Corollary 5.3. Let I be a non-zero proper ideal of a Dedekind ring R.

(i) There is an ideal J such that IJ is principal.
(ii) Every ideal in R/I is principal and R/I is Artinian.
(iii) If I ⊂ J , then J = I + (b) for some b ∈ R.
(iv) I can be generated by two elements.

Proof. Let I = P r1

1 · · ·P rn
n , where the Pi are distinct maximal ideals and ri > 0.

Distinct maximal ideals P and Q are comaximal, P + Q = R, and it follows that
any powers P r and Qs are also comaximal. Therefore, by the Chinese remainder
theorem (CRT), R/I is the product of the R/P ri

i . The CRT also implies that if

bi ∈ R − P ri+1
i , then there exists an a ∈ R such that a ≡ bi mod P ri+1

i for each i.
We can choose bi ∈ P ri for each i, and then a ∈ I. We let J = aI−1. Then J ⊂ R
and IJ = (a), which proves (i).

For (ii), R/I is Noetherian of dimension 0, which is one of the equivalent con-
ditions for a ring to be Artinian. Any one of its factors, R/P r say, is isomorphic
to RP /RP P r, which is a quotient of a DVR. Therefore every ideal in R/P r is
principal, and it follows that every ideal in R/I is principal. Comparing with the
quotient by I, we see that (iii) is just a reinterpretation of (ii) in R. Finally, for
(iv), if a is a non-zero element of I, we can apply (iii) to the inclusion (a) ⊂ I to
obtain b such that I = (a, b). �

We now head towards the proof that (v) =⇒ (iii) in Theorem 5.1. We start with
two general observations, the first of which implies the uniqueness statement at the
end of that result.

Lemma 5.4. Let I be an ideal in an integral domain R. If I can be factored as a
product of invertible prime ideals, then the factorization is unique.

Proof. Suppose P1 · · ·Pm = Q1 · · ·Qn are two such factorizations of I. We must
show that m = n and, after reordering, Pi = Qi. Take Q1 to be minimal among the
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Qj, so that Q1 ⊃ Qj implies Q1 = Qj . Since I ⊂ Q1, some Pi ⊂ Q1. Reordering,
we can take P1 ⊂ Q1. Similarly, P1 ⊃ Qj for some j. But then Qj ⊂ P1 ⊂ Q1

and these are all equal. Multiplying by Q−1
1 we have P2 · · ·Pm = Q2 · · ·Qn. The

conclusion follows by induction. �

Lemma 5.5. Let R be an integral domain and let x 6= 0 in K. Suppose that
xR = A1 · · ·Aq for fractional ideals Ai. Then each Ai is invertible.

Proof. The inverse of Ai is x−1A1 · · ·Ai−1Ai+1 · · ·An. �

We assume in the following two lemmas that R is an integral domain such that
all ideals in R are finite products of prime ideals.

Lemma 5.6. Every invertible prime ideal P is maximal.

Proof. Let a ∈ R − P . We claim that P + (a) = R. If not, we can write P + (a)
and P + (a2) as products P1 · · ·Pm and Q1 · · ·Qn of prime ideals. Clearly P is
contained in each Pi and Qj. Let b be the image of a in the integral domain R/P
and note that b2 is the image of a2. Then (b) is the product of the prime ideals
Pi/P and (b2) is the product of the prime ideals Qj/P . By Lemma 5.5, each Pi/P
and Qj/P is invertible. Clearly

(P1/P )2 · · · (Pm/P )2 = Q1/P · · ·Qn/P.

By Lemma 5.4, n = 2m and each Pi/P appears twice among the Qj/P . This proves
the equality in the following display, its inclusions being obvious.

P ⊂ P + (a2) = (P + (a))2 ⊂ P 2 + (a).

If x ∈ P , then x = y + ra with y ∈ P 2 and r ∈ R, and ra = x − y is in P . Since
a /∈ P , r ∈ P . Thus P ⊂ P 2 + aP ⊂ P and P = P 2 + aP = P (P + (a)). Since P is
invertible, R = P + (a), as claimed. �

Lemma 5.7. Every non-zero prime ideal P is invertible.

Proof. Let a ∈ P , a 6= 0. Then (a) = P1 · · ·Pn, Pi prime. Each Pi is invertible and
therefore maximal, by Lemmas 5.5 and 5.6. Since (a) ⊂ P , Pi ⊂ P for some i, and
then P = Pi is invertible. �

Proof of (v) =⇒ (iii) in Theorem 5.1. Every non-zero ideal is a product of prime
ideals and every non-zero prime ideal is invertible. �

Let R be a Dedekind ring in the rest of the section.

Corollary 5.8. Any non-zero fractional ideal A has a unique factorization

A = P r1

1 · · ·P rq

q ,

where the Pi are maximal ideals and the ri are non-zero integers.

Proof. This is clear from Lemma 5.4 if A is an ideal. Applied to (d) and dA where
dA ⊂ R, it follows in general. �

We know that the localizations RP are DVR’s, but we can now see this directly.

Definition 5.9. Let x ∈ K, x 6= 0, and write (x) = P r1

1 · · ·P
rq

q . Let P be a prime
and define νP (x) = ri if P = Pi and νP (x) = 0 if P is not one of the Pi.

The following result is immediate from the definition.

Proposition 5.10. νp is a valuation on K with valuation ring RP .
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6. Ideals and fractional ideals in Dedekind rings

The theory above sets up the starting point for algebraic number theory. It
allows us to manipulate ideals and prime ideals exactly as if they were numbers
and prime numbers. We illustrate by giving ideal versions of standard terminology
and results for integers. Let A and B be fractional ideals (in any integral domain
R). We say that B divides A, B|A, if there is an ideal I such that A = IB. Clearly
this implies A ⊂ B. When R is Dedekind, as we assume throughout this section,
the converse holds. If A ⊂ B and we define I = AB−1, then I ⊂ BB−1 = R and
IB = A. We define the greatest common divisor D = (A, B) to be a divisor of A
and B such that any C that divides both A and B divides D.

Proposition 6.1. Let I = P r1

1 · · ·P
rq

q and J = P s1

1 · · ·P
sq

q be ideals, where ri ≥ 0
and sj ≥ 0.

(i) I ⊂ J if and only if J |I if and only if si ≤ ri for 1 ≤ i ≤ n.

(ii) I + J = (I, J) = P t1
1 · · ·P

tq

q , where ti = min(ri, si).

Proof. For (i), note that I = HJ , where H = P r1−s1

1 · · ·P
rq−sq

q . For (ii), note that

P t1
1 · · ·P

tq

q is the smallest ideal that contains both I and J . �

For fractional ideals in general, we have the following result.

Proposition 6.2. For fractional ideals A and B, there are elements x and y in K
such that xA and yB are relatively prime ideals.

Proof. Multiplying by suitable elements of R, we may assume without loss of gen-
erality that A and B are ideals in R. Let A = P r1

1 · · ·P
rq

q and B = P s1

1 · · ·P
sq

q ,
where ri ≥ 0 and sj ≥ 0. We can find an ideal I and an element b of R such
that AI = (b), and we can then find an ideal J and an element a of R such that
IJ = (a). We may take I to be a product of powers of prime ideals Qj distinct
from the Pi and J to be a product of prime ideals distinct from the Pi and Qj.
Then (a/b)A = (IJ)(I−1A−1)A = J , which is relatively prime to B. �

This result has interesting implications about sums of fractional ideals that will
lead to a classification of finitely generated torsion free R-modules.

Lemma 6.3. Fractional ideals A and B are isomorphic if and only if A = xB for
some non-zero x ∈ K.

Proof. Clearly x : B −→ xB is an isomorphism with inverse x−1. Conversely,
A ∼= B implies R ∼= B−1A, and the image of 1 gives an element x ∈ B−1A such
that B−1A = xR, hence A = xB. �

Proposition 6.4. For fractional ideals A1, · · · , An,

A1 ⊕ · · · ⊕ An
∼= Rn−1 ⊕ A1 · · ·An.

Proof. By a quick induction, it suffices to prove the result when n = 2 and we are
dealing with fractional ideals A and B. Multiplying by suitable elements x and
y of K, we may assume that A and B are relatively prime ideals in R. Define
π : A ⊕ B −→ R by π(a, b) = a + b. The kernel of π is A ∩ B = AB. Since A and
B are relatively prime, π is an epimorphism. The short exact sequence

0 //AB //A ⊕ B
π

//R //0

splits since R is free, and this gives the conclusion. �
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There is a boring plebian proof and an elegant proof of the following result. Of
course, we will not be plebian, but that means that we must assume familiarity
with the theory of determinants of modules. The following three results hold for
any integral domain R.

Proposition 6.5. Let A and B be fractional ideals. Then

Rm ⊕ A ∼= Rn ⊕ B

if and only if m = n and A ∼= B.

Proof. In one direction this is trivial. Assume we have the displayed isomorphism.
For any fractional ideal A, A ⊗R K ∼= K. Therefore, applying (−) ⊗R K to our
isomorphism, we obtain isomorphic vector spaces of dimensions m + 1 and n + 1,
so m = n. Now apply the (n + 1)st exterior power, that is, the determinant, to
our isomorphism. Since the determinant carries sums to tensor products, our given
isomorphism becomes an isomorphism A ∼= B. �

Corollary 6.6. If I ⊕ Rm ∼= Rm+1, then I ∼= R is principal.

Definition 6.7. Two finitely generated modules over a ring are said to be sta-
bly isomorphic if they become isomorphic after taking direct sums with a finitely
generated free R-module.

Corollary 6.8. If an ideal in an integral domain is stably free, then it is principal.

Returning to our Dedekind ring, we obtain the following conclusion.

Corollary 6.9. For fractional ideals A1, · · · , Am and B1, · · ·Bn,

A1 ⊕ · · · ⊕ Am
∼= B1 ⊕ · · · ⊕ Bn

if and only if m = n and A1 · · ·An = xB1 · · ·Bn for some x ∈ K.

Proof. The displayed isomorphism is equivalent to an isomorphism

Rm−1 ⊕ A1 · · ·Am
∼= Rn−1 ⊕ B1 · · ·Bn,

which in turn is equivalent to m = n and an isomorphism A1 · · ·An
∼= B1 · · ·Bn,

which, finally, is equivalent to m = n and A1 · · ·An = xB1 · · ·Bn. �

7. The structure of modules over a Dedekind ring

We explain how the classical classification of finitely generated modules over a
PID extends to Dedekind rings. Remember that an invertible fractional ideal over
an integral domain R is a finitely generated projective R-module.

Definition 7.1. The torsion submodule, Tor(M), of an R-module M is the set
of elements m such that rm = 0 for some non-zero r ∈ R. Equivalently, it is the
kernel of M −→ M ⊗R K. M is torsion free if Tor(M) = 0, and M/Tor(M) is
torsion free for any M . If M is finitely generated, the rank of M , rank(M), is the
dimension over K of M ⊗R K.

Observe that M cannot be projective if it has a torsion element m, rm = 0,
because m is in the kernel of any homomorphism from M to a free R-module.
Assume that R is Dedekind in the rest of the section.
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Theorem 7.2. A finitely generated R-module M is projective if and only if it is
torsion free, and this holds if and only if M ∼= Rn−1 ⊕ I, where n = rank(M) and
I is an ideal. Thus M is stably isomorphic to I.

Proof. If M is projective, then it is a direct summand of a free R-module and is
therefore torsion free. Assume that M is torsion free and proceed by induction on
the rank n of M . If n = 1, then M is a sub R-module of M ⊗R K ∼= K and is
therefore isomorphic to a fractional ideal. By choosing n − 1 elements of M that
span a vector space of that dimension in M⊗RK, we can construct a sub R-module
N of rank n − 1. The exact sequence

0 −→ N −→ M −→ M/N −→ 0

remains exact upon tensoring with K, hence M/N has rank 1. Thus M/N is
projective and the sequence splits. Since any fractional ideal is isomorphic to an
ideal, the conclusion follows from the inductive hypothesis and Proposition 6.4. �

This leads to the structure theorem for finitely generated R-modules.

Theorem 7.3. Let M be a finitely generated R-module. Then

M ∼= Tor(M) ⊕ M/Tor(M);

M/Tor(M) is stably isomorphic to an ideal I, uniquely determined up to isomor-
phism, and

Tor(M) ∼= R/P r1

1 ⊕ · · · ⊕ R/P rq

q

for uniquely determined prime ideals Pi and positive integers ri.

Proof. Since M/Tor(M) is torsion free, it is projective and the short exact sequence

0 −→ Tor(M) −→ M −→ M/Tor(M) −→ 0

splits. In view of the previous result, it remains to consider the structure of finitely
generated torsion modules N . Let J be the annihilator of N , J = {r|rN = 0}. Let
J = P s1

1 · · ·P
sq

q be its prime factorization. Then

R/J ∼= R/P s1

1 × · · · × R/P sq

q .

Therefore, as an R/J-module,

N ∼= N/P s1

1 N × · · · × N/P sq

q N,

where each N/P si

i N can be identified with the Pi-torsion summand {n|P sin = 0}.
Thus it remains to study finitely generated modules Q over the Artinian quotient
ring R/P s ∼= RP /P s

P for a prime ideal P . The following result gives the conclusion.
�

Proposition 7.4. Let M be a finitely generated module over a quotient ring R/(ts),
where R is a DVR with UP t. Then M is isomorphic to a direct sum of modules
R/(tr), where 1 ≤ r ≤ s. Let di be the dimension of the vector space tiM/ti+1M
over R/(t). Then the number of summands of type R/(tr) appearing in the decom-
position of M is dr−1 − dr.

Proof. The quotient ring Q = R/(ts) is self-injective (that is, Q is a quasi-Frobenius
ring). We may as well assume that there exists m ∈ M such that ts−1m 6= 0, since
otherwise M is a module over R/(ts−1). Then Qm ∼= Q and the inclusion Qm ⊂ M
splits, so that M ∼= Qm ⊕ N where N has one fewer generator than M . The
conclusion follows by induction. �


