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This is an edited version of Part III of [8]. It is an elementary introduction to
the theory of derived categories that is based on slavish immitation of the theory
of CW complexes, or rather cell complexes, in algebraic topology. The basic theory
is in Sections 1, 2, 3, and 5. The other sections, although important, are a little
more advanced.

Let k be a commutative ring. We consider Z-graded chain complexes of k-
modules, which we abbreviate to k-complexes. Such an X = {Xq} has a differential
d : Xq → Xq−1. The cohomologically minded reader can reindex by setting Xq =
X−q and dq = d−q, so that the differential raises degree. A k-chain map f : X → Y
is a sequence of maps f : Xq −→ Yq that commute with the differentials, d◦f = f◦d;
f is a quasi-isomorphism if it induces an isomorphism on homology. The tensor
product (over k) X ⊗ Y of k-complexes X and Y is given by

(X ⊗ Y )n = ⊕p+q=nXp ⊗ Yq,

with differential

d(x ⊗ y) = d(x) ⊗ y + (−1)px ⊗ d(y)

if deg(x) = p.
Let A be a differential graded associative and unital k-algebra (= DGA). This

means that A is a k-complex with a unit element 1 ∈ A0 and an associative and
unital product map A⊗A −→ A of chain complexes. Writing products by juxtapo-
sition, d(xy) = d(x)y+(−1)pxd(y). The novice in homological algebra may think of
the simple case A = k, concentrated in degree zero and given zero differential, but
the general case is no more difficult and is very important in modern mathematics.
By an A-module M , we mean a left A-module such that the action A ⊗ M −→ M
is given by a k-chain map.

As many topologists recognize, there is a close analogy between the derived cat-
egory DA of differential graded A-modules and the homotopy category of spaces
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in algebraic topology. The analogy becomes much closer if one considers the sta-
ble homotopy category of spectra, but the novice is not expected to know about
that. We here give a topologically motivated, but purely algebraic, exposition of
the classical derived categories associated to DGA’s. These categories admit re-
markably simple and explicit descriptions in terms of “cell A-complexes”. These
are the precise algebraic analogs of “cell complexes” in topology, which are defined
in the same way as CW complexes except that cells need not be attached only to
cells of lower dimension.

Such familiar topological results as Whitehead’s theorem and Brown’s repre-
sentability theorem transcribe directly into algebra. There is also a theory of CW
modules, but these are less useful, due to the limitations of the algebraic cellular
approximation theorem. Derived tensor products and Hom functors, together with
differential Tor and Ext functors and Eilenberg-Moore (or hyperhomology) spectral
sequences for their computation, drop out quite easily. Since [8] assumed familiarity
with spectral sequences, which the novice will not have seen, we put the relevant
material into a small section of its own. In the lectures, I intend to interpolate a
brief discussion of the classical Tor and Ext functors from the present point of view
by specialization of Sections 1–3.

Our methods can be abstracted and applied more generally, and some of what
we do can be formalized in Quillen’s context of closed model categories. We prefer
to be more concrete and less formal. We repeat that many topologists have long
known some of this material. For the expert, we emphasize that k is an arbitrary
commutative ring and we nowhere impose boundedness or flatness hypotheses. The
novice will wonder why such hypotheses were ever thought to be needed.

1. Cell A-modules

We begin with some trivial notions, expressed so as to show the analogy with
topology. Let I denote the “unit interval k-complex”. It is free on generators [0]
and [1] of degree 0 and [I] of degree 1, with d[I] = [0] − [1]. A homotopy is a map
X ⊗ I → Y . The cone CX is the quotient module X ⊗ (I/k[1]) and the suspension
ΣX is X ⊗ (I/∂I), where ∂I has basis [0] and [1]. Additively, CX is the sum of
copies of X and ΣX , but with differential arranged so that H∗(CX) = 0. The usual
algebraic notation for the suspension is ΣX = X [1], and (ΣX)q

∼= Xq−1. Since we
have tensored the interval coordinate on the right, the differential on ΣX is the
same as the differential on X , without the introduction of a sign.

The cofiber of a map f : X → Y is the pushout of f along the inclusion X =
X ⊗ [0] → CX . There results a short exact sequence

0 → Y → Cf → ΣX → 0.

Up to sign, the connecting homomorphism of the resulting long exact homology
sequence is f∗. Explicitly, (Cf)q = Yq ⊕ Xq−1, with differential

d(y, x) = (dy + (−1)qfx, dx).

The sequence
X → Y → Cf → ΣX

is called a cofiber sequence, or an exact triangle.
Now assume given a DGA A over k. If X is a k-complex and M is an A-module,

then M ⊗ X is an A-module, and the notion of a homotopy between maps of A-
modules is defined by taking X = I. Since we defined cofiber sequences in terms of
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tensoring with k-complexes, the cofiber sequence generated by a map of A-modules
is clearly a sequence of A-modules. Let MA denote the category of A-modules
and hMA be its homotopy category. Its objects are the A-modules, and its maps
are the homotopy classes of maps of A-modules. Then the derived category DA

is obtained from hMA by adjoining formal inverses to the quasi-isomorphisms of
A-modules. In Construction 2.7 below, we shall give an explicit description that
makes it clear that there are no set theoretic difficulties. (This point is typically
ignored in algebraic geometry and obviated by concrete construction in algebraic
topology.)

The sequences isomorphic to cofiber sequences in the respective categories give
hMA and DA classes of “exact triangles” with respect to which they become tri-
angulated categories in the sense of Verdier [14] (see also [13]), but we do not go
seriously into that here.

It is also convenient to think of the suspension functors in a slightly different
way. Let Sq be the free k-complex generated by a cycle iq of degree q, where q ∈ Z.
Then our suspension functors are just

ΣqM = M ⊗ Sq.

We think of the Sq as sphere k-complexes. We let Sq
A = A⊗Sq and think of the Sq

A

as sphere A-modules; they are free on the generating cycles iq. The reader puzzled
by the analogy with spaces might prefer to take all k-complexes X to satisfy Xq = 0
for q < 0, as holds for the chains of a space.

Digressively, as noted before, the closer analogy is with stable homotopy theory,
since that is a place in which negative dimensional spheres live topologically. In
fact, one description of the stable homotopy category ([9]) translates directly into
our new description of the derived category. (The preamble of [9] explains the re-
lationship with earlier treatments of the stable homotopy category, which did not
have the same flavor.) In brief, one sets up a category of spectra. In that cate-
gory, one defines a theory of cell and CW spectra that allows negative dimensional
spheres. One shows that a weak homotopy equivalence between cell spectra is a
homotopy equivalence and that every spectrum is weakly homotopy equivalent to
a cell spectrum. The stable homotopy category is obtained from the homotopy
category of spectra by formally inverting the weak homotopy equivalences, and it is
described more concretely as the homotopy category of cell spectra. With spectra
and weak homotopy equivalences replaced by A-modules and quasi-isomorphisms,
precisely the same pattern works algebraically, but far more simply.

Definitions 1.1. (i) A cell A-module M is the union of an expanding sequence of
sub A-modules Mn such that M0 = 0 and Mn+1 is the cofiber of a map φn : Fn →
Mn, where Fn is a direct sum of sphere modules Sq

A (of varying degrees q). The
restriction of φn to a summand Sq

A is called an attaching map and is determined
by the “attaching cycle” φn(iq). An attaching map Sq

A → Mn induces a map

CSq
A = A ⊗ CSq → Mn+1 ⊂ M,

and such a map is called a (q+1)-cell. Thus Mn+1 is obtained from Mn by adding a

copy of Sq+1
A for each attaching map with domain Sq

A, but giving the new generators
jq+1 = iq ⊗ [I] the differentials

d(jq+1) = (−1)qφn(iq).
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We call such a copy of Sq+1
A in M an open cell; if we ignore the differential, then

M is the direct sum of its open cells.
(ii) A map f : M → N between cell A-modules is cellular if f(Mn) ⊂ Nn for all n.
(iii) A submodule L of a cell A-module M is a cell submodule if L is a cell A-module
such that Ln ⊂ Mn and the composite of each attaching map Sq

A → Ln of L with
the inclusion Ln → Mn is an attaching map of M . Every cell of L is a cell of M .

We call {Mn} the sequential filtration of M . It is essential for inductive ar-
guments, but it should be regarded as flexible and subject to change whenever
convenient. It merely records the order in which cells are attached and, as long
as the cycles to which attachment are made are already present, it doesn’t matter
when we attach cells.

Lemma 1.2. Let f : M → N be an A-map between cell A-modules. Then M
admits a new sequential filtration with respect to which f is cellular.

Proof. Assume inductively that Mn has been filtered as a cell A-module Mn =
∪M ′

r such that f(M ′

r) ⊂ Nr for all r. Let x ∈ Mn be an attaching cycle for the
construction of Mn+1 from Mn and let χ : CSq

A → Mn+1 be the corresponding cell.
Let r be minimal such that both x ∈ M ′

r and f ◦ χ has image in Nr+1. Extend
the filtration of Mn to Mn+1 by taking x to be a typical attaching cycle of a cell
CSq

A → M ′

r+1. �

Definition 1.3. The dimension of a cell CSq
A → Mn+1 is q+1. A cell A-module M

is said to be a CW A-module if each cell is attached only to cells of lower dimension,
in the sense that the defining cycles φn(iq) are elements in the sum of the images
of cells of dimension at most q. The n-skeleton Mn of a CW A-module is the sum
of the images of its cells of dimension at most n, so that Mn ⊂ Mn+1. We require
of cellular maps f : M → N between CW A-modules that they be “bicellular”, in
the sense that both f(Mn) ⊂ Nn and f(Mn) ⊂ Nn for all n. By Lemma 1.2, the
latter condition can be arranged by changing the order in which the cells of M are
attached.

Definition 1.4. A cell A-module is finite dimensional if it has cells in finitely many
dimensions. It is finite if it has finitely many cells.

Just as finite cell spectra are central to the topological theory, so finite cell
A-modules are central here, especially when we restrict to commutative DGA’s
and discuss duality. The collection of cell A-modules enjoys the following closure
properties, which imply many others.

Proposition 1.5. (i) A direct sum of cell A-modules is a cell A-module.
(ii) If L is a cell submodule of a cell A-module M , N is a cell A-module, and
f : L → N is a cellular map, then the pushout N ∪f M is a cell A-module with
sequential filtration {Nn ∪f Mn}. It contains N as a cell submodule and has one
cell for each cell of M not in L.
(iii) If L is a cell submodule of a cell A-module M and X is a cell submodule
of a cell k-complex Y , then M ⊗ Y is a cell A-module with sequential filtration
{
∑

p(Mp⊗Yn−p)}. It contains L⊗Y +M⊗X as a cell submodule and has a (q+r)-
cell for each pair consisting of a q-cell of Mp and an r-cell of Yn−p, 0 ≤ p ≤ n.
(iv) The mapping cylinder Mf = N ∪f (L⊗ I) of f : L → N is the pushout defined
by taking L = L⊗ k[0] ⊂ L⊗ I. If f is a cellular map between cell A-modules, then
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Mf is a cell A-module, L = L ⊗ k[1] is a cell submodule, the inclusion N → Mf
is a homotopy equivalence, and Cf = Mf/L.

Proof. Parts (i) and (ii) are easy and (iv) follows from (ii) and (iii). For (iii),
observe that there are evident canonical isomorphisms

Sq ⊗ Sr ∼= Sq+r and Sq
A ⊗ Sr ∼= Sq+r

A .

M⊗Y has an open cell Sq+r
A for each open cell Sq

A of M and Sr of Y ; the differential
on its canonical basis element is the cycle

d(jq) ⊗ jr + (−1)qjq ⊗ d(jr). �

2. Whitehead’s theorem and the derived category

A quick space level version of some of the results of this section may be found
in [11], and the spectrum level model is given in [9, I §5]. We construct the derived
category explicitly in terms of cell modules. As in topology, the “homotopy ex-
tension and lifting property” is pivotal. It is a direct consequence of the following
trivial observation. Let i0 and i1 be the evident inclusions of M in M ⊗ I.

Lemma 2.1. Let e : N → P be a map such that e∗ : H∗(N) → H∗(P ) is a
monomorphism in degree q and an epimorphism in degree q +1. Then, given maps
f , g, and h such that f |Sq

A = hi0 and eg = hi1 in the following diagram, there are

maps g̃ and h̃ that make the entire diagram commute.

Sq
A

i0 //

��

Sq
A ⊗ I

h
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f
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A ⊗ I
h̃
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CSq
Ai0

oo
g̃
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Proof. Let i = iq ⊗ [0] and j = iq ⊗ [I] be the basis elements of CSq
A, so that

d(j) = (−1)qi. Then eg(i) = h(i ⊗ [1]) and f(i) = h(i ⊗ [0]), hence

d(h(i ⊗ [I]) − f(j)) = (−1)q+1eg(i).

Since eg(i) bounds in P , g(i) must bound in N , say d(n′) = g(i). Then

p ≡ e(n′) + (−1)q(h(i ⊗ [I]) − f(j))

is a cycle. There must be a cycle n ∈ N and a chain c ∈ P such that

d(c) = p − e(n).

Define g̃(j) = (−1)q(n′ − n) and h̃(j ⊗ [I]) = c. �

Theorem 2.2 (HELP). Let L be a cell submodule of a cell A-module M and let
e : N → P be a quasi-isomorphism of A-modules. Then, given maps f : M → P ,
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g : L → N , and h : L ⊗ I → P such that f |L = hi0 and eg = hi1 in the following

diagram, there are maps g̃ and h̃ that make the entire diagram commute.

L

��

i0 // L ⊗ I

h

{{xx
xx

xx
xx

x

��

L
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~~}}
}}

}}
}}

��

P N
eoo

M
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//

f
>>}}}}}}}}

M ⊗ I
h̃

ccFFFFFFFFF

M

g̃

``AAAAAAAA

i1

oo

Proof. By induction up the filtration {Mn} and pullback along cells not in L, this
quickly reduces to the case (M, L) = (CSq

A, Sq
A) of the lemma. �

For objects M and N of any category Cat, let Cat(M, N) denote the set of
morphisms in Cat from M to N .

Theorem 2.3 (Whitehead). If M is a cell A-module and e : N → P is a quasi-
isomorphism of A-modules, then e∗ : hMA(M, N) → hMA(M, P ) is an isomor-
phism. Therefore a quasi-isomorphism between cell A-modules is a homotopy equiv-
alence.

Proof. Take L = 0 in HELP to see the surjectivity. Replace (M, L) by the pair
(M ⊗ I, M ⊗ (∂I)) to see the injectivity. When N and P are cell A-modules, we
may take M = P and obtain a homotopy inverse f : P → N . �

Theorem 2.4 (Cellular approximation). Assume that Hq(N/N q) = 0 for all q and
all CW A-modules N . Let L be a cell submodule of a CW A-module M , let N be
a CW A-module , and let f : M → N be a map whose restriction to L is cellular.
Then f is homotopic relative to L to a cellular map. Therefore any map M → N
is homotopic to a cellular map, and any two homotopic cellular maps are cellularly
homotopic.

Proof. By Lemma 1.2, we may change the sequential filtration of M to one for
which f is sequentially cellular. Proceeding by induction up the filtration {Mn}, we
construct compatible cellular maps gn : Mn → Nn and a homotopy hn : Mn ⊗ I →
Nn from f |Mn to gn. The result quickly reduces to the case of a single cell of M
that is not in L and thus to the case when (M, L) = (CSq

A, Sq
A). The conclusion

follows by application of Lemma 2.1 to the inclusions e : (Nn)q+1 → Nn. �

Remark 2.5. If Hq(A) = 0 for all q < 0, then the homological hypothesis holds
and we can work throughout with CW A-modules and cellular maps rather than
with cell A-modules. This matches the intuition: CW theory works topologically
because the homotopy groups of a sphere Sq are zero in degrees less than q. In
many of the motivating algebraic examples, the natural grading is cohomological,
with the cohomology groups of the spheres Sq

A zero in degrees less than q. In
homological grading, this reverses the inequality, and the homological hypothesis
of the cellular approximation theorem then fails in general. That is why we focus
on cellular rather than CW theory here.

Theorem 2.6 (Approximation by cell modules). For any A-module M , there is a
cell A-module N and a quasi-isomorphism e : N → M .
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Proof. We construct an expanding sequence Nn and compatible maps en : Nn → M
inductively. Choose a cycle ν in each homology class of M , let N1 be the direct
sum of A-modules Sq

A, one for each ν of degree q, and let e1 : N1 → M send the νth
canonical basis element to the cycle ν. Inductively, suppose that en : Nn → M has
been constructed. Choose a pair of cycles (ν, ν′) in each pair of unequal homology
classes on Nn that map under (en)∗ to the same element of H∗(M). Let Nn+1 be
the “homotopy coequalizer” obtained by adjoining a copy of Sq

A ⊗ I to Nn along
the evident map Sq

A ⊗ ∂I → Nn determined by each such pair (ν, ν′) of degree
q. Proposition 1.5 implies that Nn+1 is a cell A-module such that Nn is a cell
submodule. Any choice of chains µ ∈ M such that d(µ) = ν − ν′ determines an
extension of en : Nn → M to en+1 : Nn+1 → M . Let N be the colimit of the
Nn and e : N → M be the resulting map. Clearly, N is a cell module, e induces
an epimorphism on homology since e1 does, and e induces a monomorphism on
homology by construction. �

Construction 2.7. For each A-module M , choose a cell A-module ΓM and a quasi-
isomorphism γ : ΓM → M . By the Whitehead theorem, for a map f : M → N ,
there is a map Γf : ΓM → ΓN , unique up to homotopy, such that the following
diagram is homotopy commutative.

ΓM
Γf //

γ

��

ΓN

γ

��
M

f
// N

Thus Γ is a functor hMA → hMA, and γ is natural. The derived category DA can
be described as the category whose objects are the A-modules and whose morphisms
are specified by

DA(M, N) = hMA(ΓM, ΓN),

with the evident composition. When M is a cell A-module,

DA(M, N) ∼= hMA(M, N).

Using the identity function on objects and Γ on morphisms, we obtain a functor
i : hMA → DA that sends quasi-isomorphisms to isomorphisms and is universal
with this property. Let CA be the full subcategory of MA whose objects are the cell
A-modules. Then the functor Γ induces an equivalence of categories DA → hCA

with inverse the composite of i and the inclusion of hCA in hMA.

Therefore the derived category and the homotopy category of cell modules can
be used interchangeably. Homotopy-preserving functors on A-modules that do not
preserve quasi-isomorphisms are transported to the derived category by first ap-
plying Γ, then the given functor. Much more emphasis is placed on this simple
procedure in the algebraic than in the topological literature, as is reflected in the
respective notational conventions.

Digressively, we note that topologists routinely transport constructions to the
stable homotopy category by passing to CW spectra, without change of notation.
In fact, while a great deal of modern work in stable homotopy theory depends
heavily on having a good underlying category of spectra, earlier constructions of
the stable homotopy category did not even allow spectra that were more general
than CW spectra. For this and other reasons, topologists are accustomed to work
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with CW spectra and their cells in a concrete calculational way, not as something
esoteric but rather as something much more basic and down to earth than general
spectra. An analogous view of differential graded A-modules is rather intriguing.

3. Derived tensor product and Hom functors: Tor and Ext

We first record some elementary facts about tensor products with cell A-modules.

Lemma 3.1. Let N be a cell A-module. Then the functor M ⊗A N preserves exact
sequences and quasi-isomorphisms in the variable M .

Proof. With differential ignored, N is a free A-module, and preservation of exact
sequences follows. The sequential filtration of N gives short exact sequences of free
A-modules

0 −→ Nn −→ Nn+1 −→ Nn+1/Nn −→ 0,

where the subquotients Nn+1/Nn are direct sums of sphere A-modules. The preser-
vation of quasi-isomorphisms holds trivially if N is a sphere A-module, and the gen-
eral case follows by passage to direct sums, induction up the filtration, and passage
to colimits. �

It is usual to define the derived tensor product, denoted M⊗L
AN , by replacing the

left A-module N (or the right A-module M) by a suitable resolution P and taking
the ordinary tensor product M ⊗A P , in line with the standard rubric of derived
functors (see e.g. Verdier [14], who restricts to bounded below modules). Our
procedure is the same, except that we take approximation by quasi-isomorphic cell
A-modules as our version of a resolution and, following the pedantically imprecise
tradition in algebraic topology, we prefer not to change notation. That is, in Dk,
M ⊗A N means M ⊗A ΓN (or ΓM ⊗A ΓN or ΓM ⊗A N : the three are canonically
isomorphic in Dk). The lemma shows that the definition makes sense. We can
also use the lemma to show that the derived category DA depends only on the
quasi-isomorphism type of A.

Proposition 3.2. Let φ : A → A′ be a quasi-isomorphism of DGA’s. Then the
pullback functor φ∗ : DA′ → DA is an equivalence of categories with inverse given
by the extension of scalars functor A′ ⊗A (?).

Proof. For M ∈ MA and M ′ ∈ MA′ , we have

MA′(A′ ⊗A M, M ′) ∼= MA(M, φ∗M ′).

The functor A′ ⊗A (?) preserves sphere modules and therefore cell modules. This
implies formally that the adjuction passes to derived categories, giving

DA′(A′ ⊗A M, M ′) ∼= DA(M, φ∗M ′).

If M is a cell A-module, then

φ ⊗ id : M ∼= A ⊗A M −→ φ∗(A′ ⊗A M)

is a quasi-isomorphism of A-modules. These maps give the unit of the adjunction.
Its counit is given by the maps of A′-modules

id⊗φγ : A′ ⊗A ΓM ′ −→ A′ ⊗A′ M ′ ∼= M ′,

where ΓM ′ is a cell A-module and γ : ΓM ′ −→ M ′ is a quasi-isomorphism of A-
modules. Since the composite of this map with the quasi-isomorphism φ ⊗ id for
the A-module ΓM ′ coincides with γ, this map too is a quasi-isomorphism. �
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For left A-modules M and N , let HomA(M, N)q be the k-complex of homomor-
phisms of A-modules of degree q (components f : Mn −→ Nn+q for all n) with the
differential (df)(m) = d(f(m))− (−1)qf(d(m)). It is usual to regrade this cohomo-
logically, but it is nicer to view it as an object in our original category of Z-graded
k-complexes. For k-complexes L,

(3.3) MA(L ⊗ M, N) ∼= Mk(L, HomA(M, N)),

where A acts on L ⊗ M through its action on M (with the usual sign convention:
a(ℓ ⊗ m) = (−1)degadegℓℓ ⊗ am). This isomorphism clearly passes to homotopy
categories. Letting L run through the sphere k-complexes and using (3.1) and
the Whitehead theorem, we see that if M is a cell A-module then the functor
HomA(M, N) preserves quasi-isomorphisms in N .

This allows us to define HomA(M, N) in DA for arbitrary modules M and N by
first replacing M by a cell approximation ΓM and then taking HomA(ΓM, N) on
the level of modules. Thus, in Dk, HomA(M, N) means HomA(ΓM, N). This gives
a well-defined functor such that

(3.4) DA(L ⊗ M, N) ∼= Dk(L, HomA(M, N)).

Remark 3.5. The argument we have just run through is a special case of a general
one. If S and T are left and right adjoint functors between two categories of the
sort that we are considering, then S preserves objects of the homotopy type of cell
modules if and only T preserves quasi-isomorphisms, and in that case the resulting
induced functors on derived categories are still adjoint. See [9, I.5.13] for a precise
categorical statement.

We can now define differential Tor and Ext (or hyperhomology and hypercoho-
mology) groups as follows. We ignore questions of justification in terms of standard
homological terminology, some of which we believe to be antiquated.

Definition 3.6. Working in derived categories, define

TorA
∗
(M, N) = H∗(M ⊗A N) and ExtA

∗
(M, N) = H∗(HomA(M, N)).

It is usual to regrade Ext cohomologically, along with Hom. If we specialize by
setting k = Z and letting A be a ring, thought of as a DGA concentrated in degree
zero and with zero differential, then these groups Tor and Ext are the Tor and Ext
groups of classical homological algebra. We can check this by comparing definitions,
but it is more satisfactory to make this treatment self-contained by checking that
our functors satisfy the axioms that characterize the classical functors.

4. Some spectral sequences

This section is addressed to those who have seen spectral sequences. It will
not be used in later sections. No matter how Tor and Ext are defined in the
generality of modules over DGA’s, the essential point is to have Eilenberg-Moore,
or hyperhomology, spectral sequences for their calculation.

Theorem 4.1. There are natural spectral sequences of the form

(4.2) E2
p,q = TorH∗A

p,q (H∗M, H∗N) =⇒ TorA
p+q(M, N)

and

(4.3) E2
p,q = ExtH∗A

p,q (H∗M, H∗N) =⇒ ExtAp+q(M, N).
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These are both spectral sequences of homological type, with

(4.4) dr : Er
p,q → Er

p−r,q+r−1.

In (4.2), p is the usual homological degree, the spectral sequence is non-zero only
in the right half-plane, and it converges strongly. In (4.3), p is the negative of
the usual cohomological degree, the spectral sequence is non-zero only in the left
half plane, and it converges strongly if, for each fixed (p, q), only finitely many of
the differentials (4.4) are non-zero. (The best study of the convergence of spectral
sequences, is given in [1].)

Our construction of the spectral sequences follows [6], which is a precursor of
the present approach to derived categories. Let ǫ : P → N be a quasi-isomorphism
of left A-modules, where P is a cell A-module. Rewrite the cellular filtration of P
by setting FnP = Pn+1. Thus

0 = F−1P ⊂ F0P ⊂ F1P ⊂ · · · ⊂ FnP ⊂ · · · .

The filtration gives rise to a spectral sequence that starts from

E0
p,qP = (FpP/Fp−1P )p+q

∼= A ⊗ (P̄p,∗)p+q,

where P̄p,∗ is k-free on the canonical basis elements of the open cells of Pp. The
definition of a cell module implies that d0 = d ⊗ 1. Therefore

E1
p,∗P

∼= H∗(A) ⊗ P̄p,∗.

Thinking of N as filtered with F−1N = 0 and FpN = N for p ≥ 0, we see that
E1

∗,∗P gives a complex of left H∗(A)-modules

(4.5) · · · → E1
p+1,∗P → E1

p,∗P → · · · → E1
0,∗P → H∗(N) → 0.

Definition 4.6. Let P be a cell A-module. A quasi-isomorphism ǫ : P → N is said
to be a distinguished resolution of N if the sequence (4.5) is exact, so that {E1

p,∗P}
is a free H∗(A)-resolution of H∗(N).

Observe that ǫ : P → N is necessarily a homotopy equivalence if N is a cell A-
module, by Whitehead’s theorem. The following result, which is due to Gugenheim
and myself [6, 2.1] and will not be reproven here, should be viewed as a greatly
sharpened version of Theorem 2.6: it gives cell approximations with precisely pre-
scribed algebraic properties.

Theorem 4.7 (Gugenheim-May). For any A-module N , every free H∗(A)-resolu-
tion of H∗(N) can be realized as {E1

p,∗P} for a distinguished resolution ǫ : P → N .

A distinguished resolution ǫ : P → N of a cell A-module N induces a homotopy
equivalence M ⊗A P → M ⊗A N for any (right) A-module M . Filtering M ⊗A P
by

Fp(M ⊗A P ) = M ⊗A (FpP ), p ≥ 0,

we obtain the spectral sequence (4.2).
Similarly, a distinguished resolution ǫ : P → M of a cell A-module A-module M

induces a homotopy equivalence HomA(M, N) ∼= HomA(P, N) for any (left) A-
module N , and the filtration

FpHomA(P, N) = HomA(P/F−p−1P, N), p ≤ 0,

gives rise to the spectral sequence (4.3).
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5. Commutative DGA’s and duality

Let A be commutative throughout this section. We give DA a structure of a
closed symmetric monoidal category in the sense of [10, 7]. This means that we
have a tensor product, M ⊗A N , which is associative, commutative, and unital
(with unit A) up to coherent natural isomorphism and that we also have internal
hom objects, HomA(M, N), with the property that

(5.1) DA(L ⊗A M, N) ∼= DA(L, HomA(M, N)).

We also discuss duality, characterizing the (strongly) dualizable objects or, in an-
other language, identifying the largest rigid tensored subcategory of DA. Again,
in DA, M ⊗A N means M ⊗A ΓN . Since A is commutative, this is an A-module.
From our present point of view, it makes good sense to resolve both variables since
we now have canonical isomorphisms of A-modules

Sq
A ⊗A Sr

A
∼= Sq+r

A

As in Proposition 1.5(iii), this directly implies that tensor products of cell A-
modules are cell A-modules.

Proposition 5.2. If M and M ′ are cell A-modules, then M ⊗A M ′ is a cell A-
module with sequential filtration {

∑
p(Mp ⊗A Nn−p)}. It has a (q + r)-cell for each

pair consisting of a q-cell of Mp and an r-cell of M ′

n−p, 0 ≤ p ≤ n.

For A-modules M and N , HomA(M, N) is an A-module such that

(5.3) MA(L ⊗A M, N) ∼= MA(L, HomA(M, N)).

In DA, HomA(M, N) means HomA(ΓM, N), and we have the isomorphism (5.1).
There are general accounts of duality theory in the context of symmetric monoidal

categories in the literature of both algebraic geometry [4, §1], [3] and algebraic
topology [5], [9, III§1]. I have recently given what I hope is an easily readable
exposition [12]. I will recall some of the ideas. Observe first that, by an easy direct
inspection of definitions, the functor HomA(M, N) preserves cofiber sequences in
both variables. (Actually, in the variable M , the functor HomA(M, N) converts an
exact triangle into the negative of an exact triangle.)

The dual of an A-module M , denoted M∨ (in algebraic geometry) or DM , is
defined to be HomA(M, A). The adjunction (5.1) specializes to give an evaluation
map ǫ : DM ⊗A M → A and a map η : A → HomA(M, M). It also leads to a
natural map

(5.4) ν : HomA(L, M) ⊗A N → HomA(L, M ⊗A N),

which specializes to

(5.5) ν : DM ⊗A M → HomA(M, M).

M is said to be “dualizable” or “finite” or “rigid” if, in DA, there is a coevaluation
map η : A → M ⊗A DM such that the following diagram commutes, where τ is the
commutativity isomorphism.

(5.6)

A
η //

η

��

M ⊗A DM

τ

��
HomA(M, M) DM ⊗A M

ν
oo
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The definition has many purely formal implications. The map ν of (5.4) is an
isomorphism (in DA) if either L or N is dualizable. The map ν of (5.5) is an
isomorphism if and only if M is dualizable, and the coevaluation map η is then the
composite γν−1η in (5.6). The natural map

ρ : M → DDM

is an isomorphism if M is dualizable. The natural map

⊗ : HomA(M, N) ⊗A HomA(M ′, N ′) → HomA(M ⊗A M ′, N ⊗A N ′)

is an isomorphism if M and M ′ are dualizable or if M is dualizable and N = A.
Say that a cell A-module N is a direct summand up to homotopy of a cell A-

module M if there is a homotopy equivalence of A-modules between M and N ⊕N ′

for some cell A-module N ′.

Theorem 5.7. A cell A-module is dualizable if and only if it is a direct summand
up to homotopy of a finite cell A-module.

Proof. Observe first that Sq
A is dualizable with dual S−q

A , hence any finite direct
sum of A-modules Sq

A is dualizable. Observe next that the cofiber of a map between
dualizable A-modules is dualizable. In fact, the evaluation map ǫ induces a natural
map

ǫ# : DA(L, N ⊗A DM) → DA(L ⊗A M, N),

and M is dualizable if and only if ǫ# is an isomorphism for all L and N [9, III.3.6].
Since both sides turn cofiber sequences in the variable M into long exact sequences,
the five lemma gives the observation. We conclude by induction on the number of
cells that a finite cell A-module is dualizable. It is formal that a direct summand
in DA of a dualizable A-module is finite. For the converse, let M be a dualizable
cell A-modulewith coevaluation map η : A → M ⊗A DM . Clearly η factors through
N⊗ADM for some finite cell subcomplex N of M . By a diagram chase ([9, III.1.2]),
the bottom composite in the following commutative diagram is the identity (in DA):

N ⊗A DM ⊗A M
1∧ǫ //

��

N ⊗A A

��

∼= // N

��
M ∼= A ⊗A M

55kkkkkkkkkkkkkk

η∧1
// M ⊗A DM ⊗A M

1∧ǫ
// M ⊗A A

∼= // M

Therefore M is a retract up to homotopy and thus, by a comparison of exact
triangles, a direct summand up to homotopy of N . (Retractions split in triangulated
categories.) �

Let FA be the full subcategory of MA whose objects are the direct summands
up to homotopy of finite cell A-modules. In the language of [4, 1.7], the theorem
states that the homotopy category hFA is the largest rigid tensored subcategory
of the derived category DA. Note that the sequential filtration of a finite cell A-
module can be arranged so that a single cell is attached at each stage. That is,
such a module is just a finite sequence of extensions by free modules on a single
generator, and each quotient module Mn/Mn−1 has the form Sq

A for some q. A
direct summand up to homotopy of a finite cell A-module, which is the appropriate
analog in DA of a finitely generated projective A-module, need not be an actual
direct summand and need not be isomorphic in DA to a finite cell A-module. The
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situation demands the introduction and study of the K-theory group K0(FA), but
we shall desist.

6. Brown’s representability theorem

We revert to a general DGA A, not necessarily commutative. Functors of coho-
mological type on DA are of considerable interest, and we here recall a categorical
result that characterizes when they can be represented in the form DA(?, N). The
topological analogue has long played an important role.

We have said that we think of the Sq
A as analogs of sphere spectra. Just as

maps out of spheres calculate homotopy groups and therefore detect weak equiv-
alences, so maps out of the Sq

A calculate homology groups and therefore detect
quasi-isomorphisms. We display several versions of this fact for later use: for all
A-modules N ,

(6.1) Hq(N) ∼= hMk(k, N⊗S−q) ∼= hMk(Sq, N) ∼= hMA(Sq
A, N) ∼= DA(Sq

A, N).

The category DA has “homotopy limits and colimits”. These are weak limits
and colimits in the sense that they satisfy the existence but not the uniqueness
property of categorical limits and colimits. For example, the homotopy pushout of
maps f : L → M and g : L → N is obtained from M ⊕ (L ⊗ I) ⊕ N by identifying
l⊗[0] with f(l) and l⊗[1] with g(l). More precisely, we first apply cell approximation
and then apply the cited construction. We used a similar homotopy coequalizer in
the proof of Theorem 2.6. The homotopy colimit, or telescope TelMi, of a sequence
of maps fi : Mi → Mi+1 is the homotopy coequalizer of Id: ⊕Mi → ⊕Mi and
⊕fi : ⊕Mi → ⊕Mi; equivalently, it is the cofiber of g : ⊕Mi → ⊕Mi, where
g(m) = m − fi(m) for m ∈ Mi. We now have enough information to quote the
categorical form of Brown’s representability theorem given in [2], but we prefer to
run through a quick concrete version of the proof.

Theorem 6.2 (Brown). A contravariant functor J : DA → Sets is representable in
the form J(M) ∼= DA(M, N) for some A-module N if and only if J converts direct
sums to direct products and converts homotopy pushouts to weak pullbacks.

Proof. Necessity is obvious. Thus assume given a functor J that satisfies the spec-
ified direct sum and Mayer-Vietoris axioms. Since homotopy coequalizers and tele-
scopes can be constructed from sums and homotopy pushouts, J converts homotopy
coequalizers to weak equalizers and telescopes to weak limits. Write f∗ = J(f) for
a map f . Consider pairs (M, µ) where M is an A-module and µ ∈ J(M).

Starting with an arbitrary pair (N0, ν0), we construct a sequence of pairs (Ni, νi)
and maps fi : Ni → Ni+1 such that f∗

i (νi+1) = νi. Let N1 = N0 ⊕ (⊕Sq
A), where

there is a copy of Sq
A for each element φ of each set J(Sq

A). Let ν1 have coordinates
ν and the elements φ, and let f0 : N0 → N1 be the inclusion. Inductively, given
(Ni, νi), let Li be the sum of a copy of Sq

A for each q and each unequal pair (x, y) of
elements of Hq(Ni) such that, when thought of as maps Sq

A → Ni in DA, x∗(νi) =
y∗(νi). Let fi : Ni → Ni+1 be the coequalizer of the pair of maps Li → Ni

given by the x’s and the y’s. By the weak equalizer property, there is an element
νi+1 ∈ J(Ni+1) such that f∗

i (νi+1) = νi.
Let N = Tel Ni. By the weak limit property, there is an element ν ∈ J(N) that

pulls back to νi for each i. For an A-module M , define θν : DA(M, N) → J(M) by
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θν(f) = f∗(ν). Then, by construction, θν is a bijection for all Sq
A. We claim that

θν is a bijection for all M .
Suppose given elements x, y ∈ DA(M, N) such that θν(x) = θν(y). Replacing M

by a cell approximation if necessary, we can assume that x and y are given by maps
M → N . Let c : N → N ′

0 be the homotopy coequalizer of x and y and choose an
element ν′

0 ∈ J(N ′

0) such that c∗(ν′

0) = ν. Construct a pair (N ′, ν′) by repeating
the construction above, but starting with the pair (N ′

0, ν
′

0). Let j : N ′

0 → N ′ be
the evident map such that j∗(ν′) = ν′

0. Then, since (jc)∗(ν′) = ν and both θν

and θν′ are bijections for all Sq
A, jc : N → N ′ is an isomorphism in DA. Since

cx = cy by construction, it follows that x = y. Therefore θν is an injection for all
A-modules M .

Finally, let ω ∈ J(M) for any module M . Repeat the construction, starting with
the zeroth pair (M ⊕N, (ω, ν)). We obtain a new pair (N ′, ν′) together with a map
i : M → N ′ such that i∗(ν′) = ω and a map j : N → N ′ such that j∗(ν′) = ν.
Again, j is an isomorphism in DA since both θν and θν′ are bijections for all Sq

A.
Therefore ω = (ij−1)∗(ν) and θν is a surjection for all A-modules M . �

Observe that we can start with N0 = 0, in which case N can be given the struc-
ture of a cell A-module. It is formal that the module N that represents J is unique
up to isomorphism in DA and that natural transformations between representable
functors are represented by maps in DA.
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