
LOW DIMENSIONAL EXAMPLES

NOTES FOR REU BY J.P. MAY

Drawing posets, and thinking about them, leads to lots of eliminations from the
list of finite T0-spaces that might not be (weakly) contractible (we are unconcerned
here with the difference between contractible and weakly contractible spaces).

Lemma 0.1. If X has a unique maximal element or a unique minimal element,

then X is contractible.

Proof. If X has a unique maximal element, then the only open set containing that
point is X and therefore X is contractible. Replacing open by closed gives the
conclusion when X has a unique minimal point. �

Proposition 0.2. The only finite space X with at most four points that is not a

disjoint union of contractible spaces is the four point circle S S0

Proof. We may assume that X is a minimal finite space that has at least two
minimal and two maximal points. This implies that it has four points. Unless
both minimal points are less than both maximal points, X contains an upbeat or
downbeat point and is thus not minimal. �

Proposition 0.3. There is only one minimal five point space X that is not a

disjoint union of contractible spaces

Proof. A counterexample would have at least two maximal and at least two minimal
points. If it has exactly two minimal and two maximal points, then it has only
one intermediate point y. But then a point connected to y must be upbeat or
downbeat. By antisymmetry, we can assume that there are exactly two minimal
and three maximal elements. By the minimality of X , each maximal element must
be connected to both minimal elements. �

Remark 0.4. The space |K (X)| associated to this X is homeomorphic to the union
of three longitudes connecting the poles of a two sphere, as we see by thinking of
the two minimal points as the north and south pole and the three maximal points
as points on the equator.

We leave open the full statement and proof of the following result.

Proposition 0.5. There are only ? minimal six point spaces X that are not disjoint

unions of contractible spaces. One is the six point two sphere S
2S0. Another is

homeomorphic to the union of three longitudes connecting the poles of a two sphere.

The others are ?.

Proof. We must have at least two minimal and at least two maximal points. If
we have just one intermediate point y, any point greater or less than it is upbeat
or downbeat. If we have two intermediate points, they cannot be comparable
without again contradicting minimality, and if they are incomparable we arrive
by minimality at S

2S0. The only remaining cases have all points either minimal
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or maximal, and we can assume there are either two or three minimal points, by
antisymmetry. By the minimality of X , if there are two minimal points, each
maximal point must be connected to both. Thinking of the minimal points as the
north and south pole, we arrive at the second possibility. Finally, suppose that X

has three minimal and three maximal points. The remaining analysis is left to you,
at least for now. �

The height h(X) of a poset X is the maximal length h of a chain x1 < · · · < xh

in X . It is one more than the dimension d(X) of the space |K (X)|. In the analysis
just given, we noticed that if X has six elements then h(X) is 2 or 3. Barmak and
Minian [1] observed the following related inequality.

Proposition 0.6. Let X 6= ∗ be a minimal finite space. Then X has at least 2h(X)
points. It has exactly 2h(X) points if and only if it is homeomorphic to S

h(X)−1S0.

Proof. Let x1 < · · · < xh be a maximal chain in X . Since X cannot have a
minimimum point, there is a y1 which is not greater than x1. Since no xi is an
upbeat point, 1 ≤ i < h, there must be some yi+1 > xi such that yi+1 is not greater
than xi+1. The points yi are easily checked to be distinct from each other and from
the xj . Now suppose that X has exactly these 2h points. By the maximality of
our chain, the xi and yj are incomparable. For i < j, we started with xi < xj , and
we check by cases from the absence of upbeat and downbeat points that yi < xj ,
yi < yj, and xi < yj . Comparing with the interated suspension, we see that this
implies that X is homeomorphic to S

h−1S0. �

Corollary 0.7. If |K (X)| is homotopy equivalent to a sphere Sn, then X has at

least 2n + 2 points, and if it has exactly 2n + 2 points it is homeomorphic to S
nS0.

Proof. The dimension h(X) − 1 of |K (X)| must be at least n, so h(X) ≥ n + 1.
The conclusion is immediate from the previous result. �
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