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While everything I’ll talk about can be found in one or another of Eisenbud,
Matsumura, or Weibel, I’ll bang out selected notes to avoid being encyclopedic.
With a few exceptions, rings are understood to be commutative and Noetherian.
We shall be explicit when we assume R to be local, and we then write m for the
maximal ideal and k for the residue field R/m.

1. Flat, projective, and free modules

Since I recently mentioned Serre’s problem, I’ll give a brief sketch proof of the
following weak analogue for local rings.

Theorem 1.1 (Matsumura, 7.10). Let (R,m, k) be a local ring. Then all finitely
generated flat R-modules are free.

Sketch Proof. A set of generators for a finitely generated R-module M is minimal if
and only if its image in M/mM is a k-basis. If M is flat, then such a set is linearly
independent over R and forms an R-basis for M . �

The following result is the only one in which we drop the Noetherian hypothesis.

Theorem 1.2 (Weibel, 3.2.7). A finitely presented flat R-module is projective.

Corollary 1.3. If R is Noetherian, a finitely generated flat R-module is projective.
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2 COHEN-MACAULEY AND REGULAR LOCAL RINGS

2. Review of regular local rings

I’m assuming that the material of this section was covered in the Winter quarter,
but I’ll try to supply proofs of anything that was not covered.

Let R be a local ring of Krull dimension n with maximal ideal m and residue
field k. Write ā for the image in k of an element a in R. Recall that there is at
least one ideal I with radical m, so that m is minimal over I, that can be generated
by a set {a1, · · · , an} of n elements, which is then called a system of parameters.
Recall that dimR/(a1, · · · , ai) = n− i, and we can choose a system of parameters
such that ht(a1, · · · , ai) = i for 1 ≤ i ≤ n.

A minimal set of generators of m has q generators, where q = dim k(m/m
2).

Then q ≥ n, and equality holds if and only if R is regular. In that case, an n
element generating set for m is called a regular system of parameters.

Theorem 2.1. Let R be a regular local ring of dimension n and let {a1, · · · , ai}
be a set of elements of m. Then the following are equivalent.

(i) {a1, · · · , ai} is a subset of a regular system of parameters.
(ii) {ā1, · · · , āi} is a subset of a k-basis for m/m2.
(iii) R/(a1, · · · , ai) is a regular local ring of dimension n− i.

Theorem 2.2. R is regular of dimension n if and only if

gr
m

(R) ∼= k[x1, · · · , xn].

Corollary 2.3. A regular local ring is an integral domain.

Theorem 2.4. A completion of a regular local ring is regular.

3. Cohen-Macauley rings

We give the following definition in general, but we are interested primarily in
the local case, with I = m.

Definition 3.1. Let M be an R-module and {a1, · · · , aq} a set of elements in
an ideal I such that M/IM 6= 0. The set {a1, · · · , aq} is said to be a regular
(or normal) M -sequence in I if ai is not a zero divisor for M/(a1, · · · , ai−1)M for
1 ≤ i ≤ q. The I-depth of M is the maximal length of an M -sequence in I.

Definition 3.2. Let R be local and abbreviate m-depth to depth. A finitely gen-
erated R-module M is a Cohen-Macauley module if M = 0 or the depth of M
is equal to the dimension of M , which by definition is the dimension of the ring
R/ann(M). R is a Cohen-Macauley ring (= CM ring) if depth(R) = dim (R).

Definition 3.3. A ring R is CM if Rm is a CM ring for all maximal ideals m.

Let R be local in the rest of this section. We recall the following consequence of
Krull’s Hauptidealsatz.

Lemma 3.4. If a ∈ m is not a zero divisor, then

dimR = dimR/(a) + 1

Proposition 3.5. depth(R) ≤ dim (R).

Proof. If {a1, · · · , aq} is a regular R-sequence and Ri = R/(a1, · · · , ai), the lemma
gives that dimRi = dimRi+1 + 1. Therefore dimR = dimRq + q ≥ q. �
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Theorem 3.6. If R is a regular local ring, then any regular system of parameters
is a regular R-sequence and R is therefore a CM ring.

Proof. If {a1, · · · , an} is a regular system of parameters, then R/(a1, · · · , ai) is a
regular local ring and thus an integral domain. Therefore ai+1 is not a zero divisor
for R/(a1, · · · , ai) and depth(R) ≥ dim (R). �

The converse fails in general.

4. The Koszul complex

If {a1, · · · , aq} is a regular M -sequence in I and Mi = M/(a1, · · · , ai)M , then
we have short exact sequences

0 −→Mi−1
ai−→Mi−1 −→Mi −→ 0.

These give rise to long exact sequences of Tor and Ext groups and suggest the
relevance of homological methods. A basic starting point is the elementary notion
of a Koszul complex. We define it and give its basic properties here, and we show
that it detects depth in the next section.

For a ∈ R, define K(a) to be the complex

0 −→ R
a
−→ R −→ 0,

where the first and second copies of R are in degrees 1 and 0. The alternative
cohomological grading is generally used in algebraic geometry. For a set of elements
a = {a1, · · · , an} of R, define

K(a) = K(a1) ⊗ · · · ⊗K(an).

We may think of K(a) as the exterior algebra over R on one generator e of degree
1 and K(a) as the exterior algebra on n generators ei, 1 ≤ i ≤ n, all of degree 1.
Then, as a graded R-module, K(a) is free on the basis

{ei1 · · · eiq |1 ≤ i1 < · · · < iq ≤ n},

where the empty product is interpreted as the basis element 1 = e0 ∈ K0(a). The
differential is given explicitly on basis elements by

d(ei1 · · · eiq) =

q∑

p=1

(−1)p−1aipei1 · · · eip−1
eip+1

· · · eiq .

Viewed as the exterior algebra, K(a) is a DGA (differential graded R-algebra),
meaning that d(xy) = d(x)y + (−1)degxxd(y) for all x, y ∈ K(a).

For an R-module M , define K(a;M) = K(a) ⊗RM and define

H∗(a;M) = H∗(K(a;M)).

Let I = (a1, · · · , an). Visibly from the definition,

H0(a;M) = M/IM and Hn(a;M) = {m|Im = 0}.

For a chain complex C, define the suspension or shift ΣC = C[1] to be the chain
complex specified by Cp+1[1] = Cp, with the same differentials as in C. Consider
the chain complex C ⊗K(a). We have the short exact sequence

0 //C
i //C ⊗K(a)

p
//C[1] //0,
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where i(c) = c⊗ e0, p(c⊗ e0) = 0, and p(c⊗ e1) = c, viewed as an element of C[1].
This gives rise to a long exact sequence

· · · //Hq(C)
i∗ //Hq(C ⊗K(a))

p∗
//Hq−1(C)

∂ //Hq−1(C) // · · ·

We have used that Hq(C[1]) = Hq−1(C). Note for inductive arguments that we can
take C to be a Koszul complex. The identification of ∂ is elementary but crucial.

Lemma 4.1. The connecting homomorphism ∂ is multiplication by (−1)q−1a, and
a annihilates H∗(C ⊗K(a)).

Proof. Let z ∈ Cq−1 = Cq[1] be a cycle. Then z = p(z ⊗ e1) and

d(z ⊗ e1) = (−1)q−1(z ⊗ ae0) = (−1)q−1ai(z).

This gives the first statement. For the second, let z = x⊗ e1 + y⊗ e0 be a cycle in
(C ⊗K(a))q. We then have

d(z) = d(x) ⊗ e1 + (−1)q−1ax⊗ e0 + d(y) ⊗ e0 = 0.

This implies that d(x) = 0 and d(y) = (−1)qax and therefore az = (−1)qd(y⊗ e1),
so that a[z] = 0. �

Corollary 4.2. The ideal I = (a1, · · · , an) annihilates H∗(a;M).

Proof. Proceed inductively, taking a = an and C = K(a1, · · · , an−1) ⊗RM in the
lemma. �

Theorem 4.3. Let M be a finitely generated R-module, M 6= 0. Let a = {a1, · · · , an},
and let I = (a1, · · · , an), I 6= R.

(i) If a is a regular M -sequence, then

H0(a;M) = M/IM and Hp(a;M) = 0 for p > 0.

(ii) Conversely, if R is local and H1(a;M) = 0, then a is a regular M -sequence
and therefore Hp(a;M) = 0 for p > 0.

Proof. Let a′ = {a1, · · · , an−1} and take C = K(a′) ⊗RM and a = an above. We
obtain the following end part of a long exact sequence.

H1(a
′;M) //H1(a;M) //H0(a

′;M)
an //H0(a

′;M) //H0(a;M) //0.

We proceed by induction on n, the case n = 1 being clear in both parts. For (i), ear-
lier parts of the long exact sequence and the induction hypothesis giveHq(a;M) = 0
for q > 1. Since H0(a

′;M) = M/I ′M , where I ′ = (a1, · · · , an−1), multiplica-
tion by an in the sequence above is a monomorphism and H1(a;M) = 0 since
H1(a

′;M) = 0. For (ii), since H1(a;M) = 0 the beginning part of the exact se-
quence above gives that an : H1(a

′;M) −→ H1(a
′;M) is an epimorphism and there-

fore H1(a
′;M) = 0 by Nakayama’s lemma. By the induction hypothesis, a′ is a reg-

ular M -sequence. Again by the exact sequence above an : H0(a
′;M) −→ H0(a

′;M)
is a monomorphism, which means that a is a regular M -sequence. �

Up to isomorphism, K(a) is independent of how the sequence a is ordered, hence
Theorem 4.3(ii) has the following consequence. By an exercise, the conclusion is
false if R is not local.

Corollary 4.4. If R is local, any permutation of a regular R-sequence is regular.

Theorem 4.3 has the following interpretation in terms of Tor.
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Corollary 4.5. If a is a regular R-sequence, then K(a) is a free R-resolution of
R/I, I = (a1, · · · , an), and therefore

H∗(K(a);M) = TorR
∗
(R/I,M).

In particular, if R is local and I = m, then

H∗(K(a);M) = TorR
∗
(k,M).

5. The Koszul resolution detects depth

There is an alternative way of reaching much the same conclusion as Theorem 4.3
but which gives precise information on the depth and shows that any two maximal
regular M -sequences in I have the same length.

Theorem 5.1. Let I = (b1, · · · , bn) be a proper ideal of R and let M be a finitely
generated R-module such that M/IM 6= 0. Let s be the largest integer for which
Hs(b;M) is non-zero. Then any maximal regular M -sequence in I has length n−s,
so that

depthI(M) = n− s.

Proof. Note that n is quite arbitrary, since we could throw in more generators; the
result would be to increase both n and s without changing n− s. Let {a1, · · · , ar}
be a maximal regular M -sequence in I. It suffices to prove that Hp(b;M) = 0 for
p > n− r and Hn−r(b;M) 6= 0. We prove this by induction on r. If r = 0, then all
elements of I are zero-divisors for M . The set of zero divisors for M is the union of
its associated prime ideals P , hence I ⊂ P for some associated prime P of M . By
the definition of an associated prime, P is the annihilator of some non-zero element
x ∈ M , and thus Ix = 0. Since Hn(b;M) = {m|Im = 0}, Hn(b;M) 6= 0, and the
conclusion holds in this case. Now let r > 0 and set M1 = M/a1M , so that we
have the short exact sequence

0 −→M
a1−→M −→M1 −→ 0.

Tensoring with K(b), we obtain a short exact sequence of chain complexes and thus
a long exact sequence of homology groups. Since IH∗(b;M) = 0, a1 annhilates
H∗(b;M) and therefore the long exact sequence breaks into short exact sequences

0 −→ Hp(b;M) −→ Hp(b;M1) −→ Hp−1(b;M) −→ 0.

Since {a2, · · · , ar} is a maximal M1-sequence in I, the induction hypothesis gives
Hp(b;M1) = 0 for p > n+1−r andHn+1−r(b;M1) 6= 0. The conclusion follows. �

Specializing this result, we obtain a more precise version of Theorem 4.3(i).

Corollary 5.2. Let I = (a1, · · · , an), I 6= R. Of the following statements, (i)
implies (ii), (ii) and (iii) are equivalent, and, if R is local, (iii) implies (i).

(i) {a1, · · · , an} is a regular M -sequence.
(ii) depthI(M) = n.
(iii) Hp(a;M) = 0 if p > 0.

Proof. Theorem 5.1 implies that n ≥ depthI(M), hence (i) implies equality. With
bi = ai, (ii) and (iii) are each equivalent to the statement that s = 0 in Theorem 5.1.
When R is local, the implication (ii) implies (i) is part of Theorem 4.3(ii). �
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Remark 5.3. The implication (iii) implies (i) is said to hold in general in Mat-
sumura (Corollary, p. 131), but that would imply that any permutation of the
sequence {a1, · · · , an} is regular, which an exercise shows to be false.

6. The detection of depth by use of Ext

Let (R,m, k) be a local ring (for simplicity only) and let M be a finitely gener-
ated R-module. We give another way to detect depth, starting with the following
observation.

Lemma 6.1. The depth of M is zero if and only if HomR(k,M) 6= 0.

Proof. The depth of M is zero if and only if every a ∈ m is a zero divisor for M .
Since the set of zero divisors for M is the union of its associated prime ideals, this
holds if and only if m is contained in that union, hence is contained in and therefore
equal to an associated prime of M . This means that there is an x 6= 0 in M such
that m is the annihilator of x. A non-zero map of R-modules f : k −→ M is a
choice of a non-zero element x = f(1) ∈ M such that mx = 0, and the conclusion
follows. �

Theorem 6.2. The depth of M is the smallest number d such that ExtdR(k,M) is
non-zero.

Proof. Let {a1, · · · , an} be a maximal regular M -sequence. If n = 0, the conclusion
holds by the lemma. Let n > 0 and proceed by induction on n. Let M1 = M/a1M

and note that the depth of M1 is n− 1, so that ExtjR(k,M1) = 0 for j < n− 1 and

Extn−1
R (k,M1) 6= 0. The short exact sequence

0 //M
a1 //M //M1

//0

gives a long exact sequence of Ext groups, in which multiplication by a1 is zero
since a1k = 0. Thus we have short exact sequences

0 // ExtjR(k,M) // ExtjR(k,M1) // Extj+1
R (k,M) //0.

Taking j < n − 1, these give that ExtjR(k,M) = 0 for j ≤ n − 1, and, taking

j = n− 1, we then see that ExtnR(k,M) ∼= Extn−1
R (k,M1) 6= 0. �

7. Global dimension

The projective dimension of an R-module M , denoted pdR(M), is the smallest q
such that M admits a projective resolution P of length q, meaning that Pr = 0 for
r > q; pdR(M) = ∞ if there is no such q. The injective dimension of M , idR(M)
is defined similarly. The global dimension of R, gldim(R), is the smallest q such
that pdR(M) ≤ q for all R-modules M . It is a kind of measure of the complexity
of R. Wedderburn theory concerns (non-commutative) rings of global dimension
zero. Dedekind rings are examples of rings of global dimension one. The following
characterization is the starting point for the understanding of global dimension.

Proposition 7.1. The following statements are equivalent.

(i) gldim(R) ≤ n; that is, pdR(M) ≤ n for all M .
(ii) pdR(M) ≤ n for all finitely generated M .
(iii) pdR(R/I) ≤ n for all ideals I.
(iv) idR(N) ≤ n for all N .
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(v) ExtqR(M,N) = 0 for all q > n and all M and N .

If R is Noetherian, the following statement is also equivalent to these.

(vi) TorRq (M,N) = 0 for all q > n and all finitely generated M and N .

Proof. Trivially, (i) implies (ii), (ii) imples (iii), and either (i) or (iv) implies (v).
To see that (iii) implies (iv), let

0 −→ N −→ I0 −→ · · · −→ In−1 −→ Q −→ 0

be an exact sequence, where the Ij are injective. We must show that Q is injective.
Using cokernels to break the displayed long exact sequence into a sequence of short
exact sequences and using their associated long exact sequences of Ext groups, we
see that

Ext1R(R/I,Q) ∼= Extn+1
R (R/I,N) = 0.

This implies that Hom(R,Q) −→ Hom(I,Q) is an epimorphism for all I, and an
exercise shows that this is equivalent to the injectivity of Q. Similarly, to show that
(v) implies (i), let

0 −→ T −→ Pn−1 −→ · · · −→ P0 −→M −→ 0

be an exact sequence, where the Pj are projective. We must show that T is projec-
tive. Breaking this long exact sequence into short exact sequences and using long
exact sequences of Ext groups, we see that

Ext1R(T,N) ∼= Extn+1
R (M,N) = 0

for all N . This implies that the functor HomR(T,−) preserves epimorphims, which
is equivalent to the projectivity of T . In general, (i) implies (vi). When R is
Noetherian, (vi) implies (ii) by a proof similar to that of (v) implies (i), using
Corollary 1.3. The point is that the argument applies to detect the length of flat
rather than projective resolutions, but these can be used interchangeably for finitely
generated modules over Noetherian rings. �

8. Minimal resolutions and global dimension

Let (R,m, k) be a local ring in this section. Looking at the third characterization
of global dimension, it seems plausible that gldim(R) = pdR(k). This means that
pdR(k) ≥ pdR(R/I) for all ideals I. We shall prove this by the use of minimal
resolutions. Note that since finitely generated R-modules detect global dimension
and finitely generated flat R-modules are projective and indeed free, we may as
well work with Tor, which in principle measures flat dimension, rather than Ext.

Definition 8.1. A free resolution

· · · −→ Fn −→ Fn−1 −→ · · · −→ F0 −→M −→ 0

is said to be minimal if the image of dn : Fn −→ Fn−1 is contained in mFn−1 for
each n. This implies that the induced differential on F∗ ⊗R k is zero and therefore

TorR
∗
(M,k) = F∗ ⊗R k = F∗/mF∗.

We usually assume that M is finitely generated, and then Fn = 0 if and only if
TorRn (M,k) = Fn/mFn = 0.

Proposition 8.2. Any finitely generated R-module M admits a minimal resolution,
and any two minimal resolutions are isomorphic.
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Proof. Choose a minimal set of generators for M and let F0 be free with one basis
element for each generator. Construct ε : F0 −→ M by mapping basis elements
to generators. Then Ker(ε) ⊂ mF0 because the minimality means that ε induces
an isomorphism F0 ⊗R k −→ M ⊗R k. To construct d1, choose a minimal set of
generators for Ker(ε), let F1 be free with one basis element for each generator, and
let d1 take basis elements to generators. Clearly we can continue inductively. If
we have two minimal resolutions F and F ′, we can construct a map F −→ F ′ of
resolutions of M . It is an isomorphism since it induces an isomorphism F ⊗R k −→
F ′ ⊗R k, both of these being TorR

∗
(M,k). �

Proposition 8.3. Let R be local. Then gldim(R) = pdR(k).

Proof. Let pdR(k) = n. It suffices to show that pdR(M) ≤ n for any finitely gener-

atedR-moduleM . For a minimal resolution F ofM , Fn+1/mFn+1 = TorRn+1(M,k) =
0 and therefore Fn+1 = 0. �

Use of minimal resolutions gives the following non-vanishing result. This is only
the tip of the iceberg. There are many related results that I may mention at the
end of these notes.

Proposition 8.4. Let M be a non-zero finitely generated R-module and let pdR(M) =
r <∞. Then ExtrR(M,N) 6= 0 for all finitely generated R-modules N .

Proof. Let F be a minimal resolution of M , so that Fr+1 = 0 and Fr 6= 0. Then
ExtrR(M,N) is computed by the exact sequence

Hom(Fr−1, N)
d∗r // Hom(Fr , N) // ExtrN (M,N) −→ 0.

The two Hom R-modules are finite direct sums of copies of N , and the map d∗R =
HomR(dr, idN ) is given by a matrix with coefficients in m since dr(Fr) ⊂ mFr−1.
Therefore the image of d∗r is contained in m Hom(Fr , N), and d∗r cannot be an
epimorphism since Hom(Fr , N) is non-zero. �

9. Serre’s characterization of regular local rings

Again, let (R,m, k) be local. We saw in Theorem 3.6 that regular systems of
parameters are regular R-sequences. By Corollary 4.5, this implies that the Koszul
complex of a regular system of parameters is a free resolution of k. In fact, it is a
minimal resolution, and we have the following conclusion.

Proposition 9.1. If R is regular and dim(R) = n, then TorR
∗
(k, k) is the exterior

algebra over k on n generators of degree 1 and thus pdr(k) = gldim(R) = dim(R).

This proves one direction of the following beautiful theorem.

Theorem 9.2 (Serre). R is a regular local ring if and only if gldim(R) is finite,
and then gldim(R) = dim(R).

Proof. Assume that gldim(R) = n < ∞ and let a = {a1, · · · , aq} be a minimal set
of generators for m. By the Hauptidealsatz, dim(R) ≤ q. In this section, we shall
prove that q ≤ n and in the next section we shall prove that depth(R) = n. Since
depth(R) ≤ dim(R), this will give

n = depth(R) ≤ dim(R) ≤ q ≤ n. �
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Proof that q ≤ n. Since K(a) is a free complex, there is a map φ from it to any
minimal resolution F of k, as displayed in the diagram

0 // Kq(a) //

φq

��

Kq−1(a) //

φq−1

��

// · · · // K0(a)

φ0

��

// k // 0

· · · // Fq // Fq−1 // · · · // F0
// k // 0.

We claim that each φp is a split monomorphism of R-modules. We have K0(a) = R
and K1(a) = Rq; d1 sends the ith basis element to ai. Since K∗(a) is minimal
this far, φ0 and φ1 are isomorphisms. Assume inductively that φp−1 is a split
monomorphism and consider the diagram

Kp(a)
dp

//

φp

��

Kp−1(a)

φp−1

��

Fp
dp

// Fp−1.

The images of the differentials dp are contained in mKp−1(a) and mFp−1. By
Nakayama’s lemma, it suffices to prove that the induced map

φ̄p : Kp(a)/mKp(a) −→ Fp/mFp

is a monomorphism. Indeed, any map φ : F −→ F ′ of finitely generated free R-
modules that induces a monomorphism mod m is a split monomorphism since a
basis for F must map to a set that can be extended to a basis for F ′. The map φ̄p
fits into the following diagram, which is induced by the one above.

Kp(a) ⊗R (R/m)
d̄p

//

φ̄p

��

Kp−1(a) ⊗R (m/m2)

φ̄p−1

��

Fp ⊗R (R/m)
d̄p

// Fp−1 ⊗R (m/m2)

By the induction hypothesis, φ̄p−1 is a monomorphism since φp−1 is a split monomor-
phism. We claim that the top map d̄p is a monomorphism by direct linear algebra
from the definition of K(a), and it will follow that φ̄p is a monomorphism. For the
claim, consider a typical element

x =
∑

ai1,··· ,ipei1 · · · eip

of Kp(a), where 1 ≤ i1 < · · · < ip ≤ q. To prove our claim, it suffices to show
that if dp(x) ∈ m

2Kp−1(a), then x ∈ mKp(a). We consider the coefficient of dp(x)
of a typical basis element y = ej1 · · · ejp−1

, 1 ≤ j1 < · · · < jp−1 ≤ q. Using the
exterior algebra multiplication to order the basis elements of K(a), we see that, up
to sign, for each k not in the set {j1, · · · , jp−1}, the element yek is one of the basis
elements ei1 · · · eip . Again up to sign, this basis element contributes ai1,··· ,ipak to
the coefficient of y in dp(x), which is then obtained by summing over such k. Since
{ai} is a minimal generating set for m, we see that each non-zero ai1,··· ,ip must be
in m, which proves our claim. �
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10. The Auslander-Buchsbaum theorem

We must still prove that depth(R) = gldim(R) if the latter is finite, and we have
the following more general result. Observe that depth(k) = 0 since k is annihilated
by m.

Theorem 10.1 (Auslander–Buchsbaum). Let (R,m, k) be a local ring and let M
be a finitely generated R-module such that pdR(M) = r <∞. Then

pdR(M) + depth(M) = depth(R).

Proof. Proceed by induction on r. If r = 0, then M is free and depth(M) =
depth(R). Assume that r > 0. Choose a free module F of minimal dimension for
which there is an epimorphism ε : F −→ M . Then L = Ker(ε) is contained in mF
and pdR(L) = r−1. Using Theorem 6.2 and the induction hypothesis, we find that

inf{i|ExtiR(k, L) 6= 0} = depth(L) = depth(R) − pdR(L) = depth(F ) + 1 − r.

Call this number d. We claim that depth(M) = d− 1. The conclusion will follow.
Since L ⊂ mF , we see that the map ExtiR(k, L) −→ ExtiR(k, F ) is zero. Therefore
the long exact sequence of Ext groups breaks up into short exact sequences

0 −→ ExtiR(k, F ) −→ ExtiR(k,M) −→ Exti+1
R (k, L) −→ 0.

Noting that d ≤ depth(F ), we see that ExtiR(k,M) = 0 for i < d − 1 and

Extd−1(k,M) 6= 0. By Theorem 6.2, this proves the claim. �

11. Localizations of regular rings

Here we no longer assume that R is local, but we still insist that it be commu-
tative and Noetherian.

Definition 11.1. A ring R is regular if all of its localizations at prime ideals are
regular.

Before the introduction of homological methods, it was unclear that the local-
ization of a regular local ring is regular, but Serre’s theorem implies the following
stronger conclusion.

Theorem 11.2. R is regular if and only if all of its localizations at maximal ideals
are regular. If R has finite Krull dimension and finite global dimension, then R is
regular and these dimensions are equal. If R is regular and the dimensions of its
localizations are all at most n, then R has finite global dimension at most n.

Proof. Let P be a prime ideal of R such that pdR(R/P ) < ∞. This always holds
if R is a regular local ring or if R has finite global dimension. Let k be the residue
field RP /PP of RP and observe that k ∼= R/P ⊗R RP . If X is a projective R-
resolution of R/P of finite length, then X ⊗R RP is a flat and therefore projective
RP -resolution of k of finite length. Therefore RP has finite global dimension and
is thus regular. By the definition of the Krull dimension, if dim(R) is finite, then
dim(Rm) ≤ dim(R) for all maximal ideals m, and there is at least one m for which
equality holds. For the last statement, recall that we have proven that localization
commutes with Tor, in the sense that

(TorRq (M,N)P ∼= TorRP

q (MP , NP ).
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This is zero for all maximal ideals P when q > n. Since a module is zero if and only if
all of its localizations at maximal ideals are zero, this implies that TorRq (M,N) = 0
for q > n. By Proposition 7.1(vi), this implies that gldim(R) ≤ n. �

The Hilbert syzygy theorem, in a generalized form, says that if R has finite global
dimension d, then the polynomial algebra R[x1, · · · , xn] has finite global dimension
d + n. In particular, the theorem shows that all localizations of k[x1, · · · , xn] are
regular.

12. A theorem about maps of rings

We are headed for some other results, also due to Auslander and Buchsbaum,
that are of intrinsic algebraic interest and have interesting consequences for char-
acteristic classes in algebraic topology. We return to local rings, but our exposition
will no longer be entirely self-contained.

Lemma 12.1. Let f : R −→ S be a map of local rings with maximal ideals m and
n, where R is regular. Let J = f(m)S. Assume that S (that is, f∗S) is finitely
generated as an R-module. Then dim(S) = ht(J).

Proof. Since S is non-zero and finitely generated over R, we cannot have mS = S
and therefore cannot have f(m)S = S. Thus f(m) ⊂ n. Let k = R/m. Then the
ring S/J is a finite dimensional vector space over k and is therefore Artinian. Thus
there is some q such that n

q ⊂ J ⊂ n. The conclusion follows. �

Theorem 12.2. Let f : R −→ S be a map of regular local rings of the same di-
mension such that S is finitely generated as an R-module. Then S is free as an
R-module and, in particular, f is a monomorphism.

Proof. Let J = f(m)S. Then dim(S) = ht(J) by Lemma 12.1. By assumption,
this is equal to dim(R). Let n be the common dimension. If m = (a1, · · · , an),
then {a1, · · · , an} is a regular sequence in R. The ideal J in the regular local
ring S is generated by the n elements f(ai). By an exercise, this implies that
{f(a1), · · · , f(an)} is a regular sequence in S and thus {a1, · · · , an} is a regular
sequence for S in m. Thus depthR(S) ≥ n. Since depthR(S) + pdR(S) = n, this
implies that pdR(S) = 0, so that S is free over R. �

Everything we have done for commutative rings works just as well for graded
commutative algebras over a field k. Such an algebra R is given by vector spaces
Rn over k together with products Rm ⊗k Rn −→ Rm+n and a unit element 1 ∈ R0

such that the product is associative with 1 as a two-sided identity element. We can
understand commutativity in either the classical or the graded sense with the stan-
dard sign convention, and we take the latter. Then, unless k has characteristic two,
a polynomial algebra must be understood to have generators in even degree. We
emphasize that we are thinking homogeneously, not allowing addition of elements of
different degree. We say that R is connected if Rn = 0 for n < 0 and R0 = k. Then
R is local with maximal ideal consisting of the graded sub vector space consisting
of all positive degree elements, that is, all elements of all Rn for n > 0. The Hilbert
syzygy theorem applies: a polynomial algebra R on n generators (of even degreee
unless char(k) = 2) is a regular local ring of dimension n.
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Corollary 12.3. Let R = k[x1, · · · , xn] and S = k[y1, · · · , yn] be connected polyno-
mial algebras and let f : R −→ S be a map of rings such that S is finitely generated
as an R-module. Then S is free as an R-module and f is a monomorphism.

This result has beautiful applications to the theory of characteristic classes in
algebraic topology. This will be sketched in class, but not included in these notes.

13. Unique factorization

The goal of this section is to explain the proof of the following remarkable the-
orem, a triumph of homological techniques.

Theorem 13.1. A regular local ring is a UFD.

We need a few preliminaries. Let R be an integral domain throughout this
section. Recall that any PID is a UFD and that k[x1, · · · , xn], k a field, is a UFD.
Recall too that an element p ∈ R is prime if (p) is a prime ideal and is irreducible
if p = xy implies that x or y is a unit. Prime elements are irreducible, and R is
a UFD if and only if every irreducible element is prime and the ascending chain
condition on principal ideals is satisfied. We omit the easy verifications of these
statements. The following two results are a little less obvious. In both, we assume
that the integral domain R is Noetherian.

Proposition 13.2. R is a UFD if and only if every prime ideal of height one is
principal.

Proof. First, assume that R is a UFD and let P be a prime ideal of height one.
Let a ∈ P , a 6= 0, and write a as the product of finitely many prime elements bi.
Since P is prime, one of the bi, denoted b, must be in P . Then (b) ⊂ P , and since
ht(P ) = 1, (b) = P . For the converse, since R is Noetherian it suffices to prove
that every irreducible element a is prime. Let P be a minimal prime over (a). By
the Hauptidealsatz, ht(P ) ≤ 1, hence ht(P ) = 1. By assumption P = (b). Since
a ∈ P , a = bc. Since a is irreducible and b is not a unit, c is a unit. Therefore
(a) = (b) = P , so (a) is prime. �

Proposition 13.3. Let S be the multiplicative subset of R generated by a prime
element x. If the localization RS = R[x−1] is a UFD, then R is a UFD.

Proof. Let P ⊂ R be a prime ideal of height one. If P ∩ S is nonempty, then
P contains an element xi ∈ S, hence x ∈ P and (x) ⊂ P . Since ht(P ) = 1,
(x) = P is principal. Thus assume that P ∩ S is empty. Then PRS is a height one
prime ideal of the UFD RS , hence is principal, say PRS = aRS . We may choose a
generator a ∈ P such that (a) is maximal among those principal ideals of R that
are generated by an element of P that generates PRS . Then a is not divisible by
x, since if a = bx then (a) ⊂ (b) and b also generates PRS . We claim that P = (a).
If z ∈ P , then z ∈ aRS and there is an element xi ∈ S such that xiz = ab for some
b ∈ R. Since x does not divide a, a is not in (x). Since x is prime, b is in (x), say
b = xc, and xi−1z = ac. Repeating inductively, we see that z is in (a) and therefore
P = (a). �

Definition 13.4. An R module M is stably free if M ⊕ F is free for some finitely
generated free R-module F . An ideal I is stably free if I ⊕Rn ∼= Rn+1 for some n.

Lemma 13.5. A stably free ideal I is principal.
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Proof. If I ⊕ Rn ∼= Rn+1, then, applying the (n + 1)st exterior power, we see that
I is isomorphic to R. �

Lemma 13.6. If a projective module P has a FFR (finite free resolution)

0 → Fn
dn−→ · · ·

d1−→ F0
ε
−→ P → 0,

then P is stably free.

Proof. If n = 0, F0
∼= P . Assume the result for n− 1. Then F0

∼= P ⊕ Ker(ε) and
Ker(ε) is stably free. Therefore P is stably free. �

Proof of Theorem 13.1. We proceed by induction on the dimension ofR. If dim(R) =
0, then R is a field, and if dim(R) = 1, R is a DVR. The result is clear in these
cases. Assume dim(R) > 1 and let x ∈ m − m

2. Then x is a prime element since
R/(x) is again regular and is therefore an integral domain.

By Proposition 13.3, it suffices to prove that R[x−1] is a UFD. Let Q be a prime
ideal of R[x−1] of height one. By Proposition 13.2, it suffices to prove that Q is
principal. By Lemma 13.5, it suffices to prove that Q is stably free. Let P = Q∩R.
Then Q = PR[x−1]. Since R is regular, P has a FFR

0 → Fn
dn−→ · · ·

d1−→ F0
ε
−→ P → 0.

Tensoring this withR[x−1], we obtain a FFR of the R[x−1]-moduleQ. By Lemma 13.6,
it suffices to prove that Q is projective.

For any maximal ideal (indeed any prime ideal) n of R[x−1], R[x−1]n is isomor-
phic to Rn∩R, which is a regular local ring of dimension less than dim(R), so is
a UFD by induction. Therefore Qn is a principal ideal and thus a free R[x−1]n-
module. For an epimorphism M −→ N of R[x−1]-modules, let C be the cokernel
of HomR[x−1](Q,M) −→ HomR[x−1](Q,N). Looking at localizations, we see that
Cn is zero for all n and therefore C is zero. Thus Q is projective. �

14. Stably free does not imply free

The Serre conjecture, now a theorem of Quillen and Suslin (1976), says that
projective modules over k[x1, · · · , xn] are free. They are stably free because they
have FFR’s. However, it is not always true that stably free modules are free. We
give some details of a counterexample (Eisenbud, p. 485). Let

A = R[x1, · · · , xn]/(1 −
∑

x2
i ).

We think of this as a sphere, or more precisely as the affine coordinate ring of the
real (n− 1)-sphere Sn−1. We have the following split short exact sequence.

0 //A
ξ

//
An

ψ
oo

//T //0

Here ξ(a) = (ax1, · · · , axn) and ψ(a1, · · · , an) = a1x1+· · ·+anxn. clearly (ψξ)(a) =
a

∑
x2
i = a. Therefore An ∼= A ⊕ T and thus T is stably free. Note that T may

be identified with the kernel of ψ, which consists of those t = (t1, · · · , tn) such
that

∑
tixi = 0. We may think of T as the module of polynomial sections of the

tangent bundle of Sn−1. To see this, let t ∈ T ⊂ An and let z ∈ Sn−1, so that∑
z2
i = 1. Let Pz = (x1 − z1, · · · , xn− zn) ⊂ A. Then Pz is a maximal ideal. Since∑
tixi = 0, the image of t in the quotient An/PzA

n ∼= R
n is a vector orthogonal to
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z and is thus a tangent vector to Sn−1 at z. Since this holds for all z, t corresponds
to a tangent vector field. If T were free, then it would have n− 1 basis elements vi
since it clearly has rank n− 1. The images of the vi in T/PzT would form a basis
of the tangent space for all z ∈ Sn−1, and we would therefore have n − 1 linearly
independent vector fields. This would give us a trivialization of the tangent bundle
of Sn−1. By Adams’ solution of the Hopf invariant one problem, this is possible if
and only if n is 1, 2, 4, or 8, corresponding to R, C, H, and O. For example, for
n = 3, we cannot comb the hair of a tennis ball, hence a rank 1 free summand of T
does not exist.


