PROOFS OF THE MODEL AXIOMS FOR TOP

Theorem 1 (Quillen model structure). The category of spaces is a model category
with the usual weak equivalences, q-fibrations the Serre fibrations, and q-cofibrations
the maps that satisfy the RLP with respect to the acyclic q-fibrations.

Lemma 2 (Small object argument). Let . be a set of maps of spaces with compact
domain. Then any map f: X — Y of spaces factors as a composite
X % X/ L. Y’7

where p satisfies the RLP with respect to each map in & and i satisfies the LLP
with respect to any map that satisfies the RLP with respect to each map in 5.

Proof. Let X = Xy. We construct a commutative diagram

0 in

Xo X3 X, Xn+1*>"‘
(1) f:p()l lpl J{pn lpni»l
Y—3=Y Y—gY

as follows. Suppose inductively that we have constructed p,. Consider all maps
from a map in .# to p,. Each such map is a commutative diagram of the form

(2) 1l lpn

BT>Y

with i € .#. Summing over such diagrams, we construct a pushout diagram

HA&XH

Tl

HB - X7L+1'

The maps 3 and p,, induce a map ppy1 @ X411 — Y such that p,41 04y = pp-
Let X’ = colim X,,, let i : X — X’ be the canonical map, and let p: X/ — Y
be obtained by passage to colimits from the p,. Constructing lifts by passage to
coproducts, pushouts, and colimits of sequences, we see that each ,, and therefore
also i satisfies the LLP with respect to maps that satisfy the RLP with respect to
maps in .. Assume given a commutative square
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where i is in #. To verify that p satisfies the RLP with respect to i, we must
construct a map ¢ that makes the diagram commute. Clearly X’ is constructed as
the colimit of a sequence of inclusions. Since A is compact, the natural map

(3) colim Top(A, X,,) — Top(A, X')

is a bijection. Therefore o’ : A — X' factors through some X,,, giving one of the
commutative squares used in the construction of X, 1. By construction, there is a
map B — X, 11 whose composite with the natural map to X’ gives a map g. [

We use this to prove a refined version of one of the factorization axioms.

Lemma 3. Any map f: X — Y factors as poi, where i is an acyclic q-cofibration
that satisfies the LLP with respect to any q-fibration and p is a q-fibration.

Proof. Let 7 be the set of maps ip : D" — D" x I, n > 0. A map is a ¢-
fibration if and omly if it satisfies the RLP with respect to every map in ¢ and
every map in _¢# is an acyclic g-cofibration. Use the lemma to factor f. Then p is
a g-fibration and i satisfies the LLP with respect to all g-fibrations. In particular,
i is a g-cofibration. Since each 14, is the inclusion of a deformation retract, so is i.
Therefore i is an acyclic g-cofibration. O

By definition, the g¢-cofibrations satisfy the LLP with respect to the acyclic ¢-
fibrations. The other lifting axiom is now formal.

Lemma 4. The q-fibrations satisfy the RLP with respect to the acyclic q-cofibra-
tions.

Proof. Let f: X — Y be any acyclic g-cofibration. We must show that f satisfies
the LLP with respect to g-fibrations. By the previous lemma, we may factor f
as f = poi, where i : X — X’ is an acyclic g-cofibration that does satisfy the
LLP with respect to ¢-fibrations and p : X’ — Y is a ¢-fibration. Since f and
1 are weak equivalences, so is p. Since f satisfies the LLP with respect to acyclic
g-fibrations, there exists g : Y — Y” such that go f =7 and po g = idy. Clearly
p and g, together with the identity map on X, express f as a retract of 4. Since 4
satisfies the LLP with respect to g-fibrations, so does f. (I

Finally, here is the proof of the other factorization axiom.

Lemma 5. Any map f: X — Y factors as poi, where i is a q-cofibration and p
is an acyclic q-fibration.

Proof. This is another application of the first lemma. Let .# be the set of inclusions
i:8" 1 — D" n >0, where S~! is empty. A map is an acyclic ¢-fibration if
and only if it satisfies the RLP with respect to all maps in .. The proof of this
statement is an exercise in the meaning of homotopy groups and weak equivalences.
Each map in .# is thus a g-cofibration. In the factorization f = poi that we now
obtain from the lemma, p is an acyclic ¢-fibration and ¢ is a g-cofibration. O

We define cell .#-complexes and relative cell .#-complexes in the evident way.
With .# and ¢ as in the previous two lemmas, we deduce the following corollary.
It says that Top is a compactly generated model category with generators .# for
the g-cofibrations and ¢ for the acyclic g-cofibrations.

Lemma 6. The g-cofibrations are the retracts of the relative .# -cell complexes. The
acyclic g-cofibrations are the retracts of the relative _Z -cell complezes.



