PROOFS OF THE MODEL AXIOMS FOR TOP

Theorem 1 (Quillen model structure). The category of spaces is a model category with the usual weak equivalences, q-fibrations the Serre fibrations, and q-cofibrations the maps that satisfy the RLP with respect to the acyclic q-fibrations.

Lemma 2 (Small object argument). Let \mathscr{I} be a set of maps of spaces with compact domain. Then any map $f: X \longrightarrow Y$ of spaces factors as a composite

$$X \xrightarrow{i} X' \xrightarrow{p} Y,$$

where p satisfies the RLP with respect to each map in \mathscr{I} and i satisfies the LLP with respect to any map that satisfies the RLP with respect to each map in \mathscr{I} .

Proof. Let $X = X_0$. We construct a commutative diagram

(1)
$$\begin{array}{cccc} X_{0} \xrightarrow{i_{0}} X_{1} \longrightarrow \cdots \longrightarrow X_{n} \xrightarrow{i_{n}} X_{n+1} \longrightarrow \cdots \\ f = p_{0} \middle| & & & \downarrow p_{1} & & \downarrow p_{n} & & \downarrow p_{n+1} \\ Y \xrightarrow{i_{d}} Y \xrightarrow{i_{d}} Y \longrightarrow \cdots \longrightarrow Y \xrightarrow{i_{d}} Y \xrightarrow{j_{d}} \cdots \end{array}$$

as follows. Suppose inductively that we have constructed p_n . Consider all maps from a map in \mathscr{I} to p_n . Each such map is a commutative diagram of the form

(2)
$$\begin{array}{c} A \xrightarrow{\alpha} X_n \\ i \\ \downarrow \\ B \xrightarrow{\beta} Y \end{array}$$

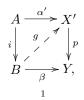
with $i \in \mathscr{I}$. Summing over such diagrams, we construct a pushout diagram

$$\coprod A \xrightarrow{\sum \alpha} X_n$$

$$\downarrow \qquad \qquad \downarrow^{i_n}$$

$$\coprod B \longrightarrow X_{n+1}.$$

The maps β and p_n induce a map $p_{n+1}: X_{n+1} \longrightarrow Y$ such that $p_{n+1} \circ i_n = p_n$. Let $X' = \operatorname{colim} X_n$, let $i: X \longrightarrow X'$ be the canonical map, and let $p: X' \longrightarrow Y$ be obtained by passage to colimits from the p_n . Constructing lifts by passage to coproducts, pushouts, and colimits of sequences, we see that each i_n and therefore also i satisfies the LLP with respect to maps that satisfy the RLP with respect to maps in \mathscr{I} . Assume given a commutative square



where i is in \mathscr{I} . To verify that p satisfies the RLP with respect to i, we must construct a map g that makes the diagram commute. Clearly X' is constructed as the colimit of a sequence of inclusions. Since A is compact, the natural map

(3)
$$\operatorname{colim} Top(A, X_n) \longrightarrow Top(A, X')$$

is a bijection. Therefore $\alpha' : A \longrightarrow X'$ factors through some X_n , giving one of the commutative squares used in the construction of X_{n+1} . By construction, there is a map $B \longrightarrow X_{n+1}$ whose composite with the natural map to X' gives a map g. \Box

We use this to prove a refined version of one of the factorization axioms.

Lemma 3. Any map $f : X \longrightarrow Y$ factors as $p \circ i$, where *i* is an acyclic *q*-cofibration that satisfies the LLP with respect to any *q*-fibration and *p* is a *q*-fibration.

Proof. Let \mathscr{J} be the set of maps $i_0 : D^n \longrightarrow D^n \times I$, $n \ge 0$. A map is a q-fibration if and only if it satisfies the RLP with respect to every map in \mathscr{J} and every map in \mathscr{J} is an acyclic q-cofibration. Use the lemma to factor f. Then p is a q-fibration and i satisfies the LLP with respect to all q-fibrations. In particular, i is a q-cofibration. Since each i_n is the inclusion of a deformation retract, so is i. Therefore i is an acyclic q-cofibration.

By definition, the q-cofibrations satisfy the LLP with respect to the acyclic q-fibrations. The other lifting axiom is now formal.

Lemma 4. The q-fibrations satisfy the RLP with respect to the acyclic q-cofibrations.

Proof. Let $f: X \longrightarrow Y$ be any acyclic q-cofibration. We must show that f satisfies the LLP with respect to q-fibrations. By the previous lemma, we may factor f as $f = p \circ i$, where $i: X \longrightarrow X'$ is an acyclic q-cofibration that does satisfy the LLP with respect to q-fibrations and $p: X' \longrightarrow Y$ is a q-fibration. Since f and i are weak equivalences, so is p. Since f satisfies the LLP with respect to acyclic q-fibrations, there exists $g: Y \longrightarrow Y'$ such that $g \circ f = i$ and $p \circ g = \operatorname{id}_Y$. Clearly p and g, together with the identity map on X, express f as a retract of i. Since i satisfies the LLP with respect to q-fibrations, so does f.

Finally, here is the proof of the other factorization axiom.

Lemma 5. Any map $f : X \longrightarrow Y$ factors as $p \circ i$, where i is a q-cofibration and p is an acyclic q-fibration.

Proof. This is another application of the first lemma. Let \mathscr{I} be the set of inclusions $i: S^{n-1} \longrightarrow D^n, n \ge 0$, where S^{-1} is empty. A map is an acyclic q-fibration if and only if it satisfies the RLP with respect to all maps in \mathscr{I} . The proof of this statement is an exercise in the meaning of homotopy groups and weak equivalences. Each map in \mathscr{I} is thus a q-cofibration. In the factorization $f = p \circ i$ that we now obtain from the lemma, p is an acyclic q-fibration and i is a q-cofibration. \Box

We define cell \mathscr{I} -complexes and relative cell \mathscr{I} -complexes in the evident way. With \mathscr{I} and \mathscr{J} as in the previous two lemmas, we deduce the following corollary. It says that Top is a compactly generated model category with generators \mathscr{I} for the *q*-cofibrations and \mathscr{J} for the acyclic *q*-cofibrations.

Lemma 6. The q-cofibrations are the retracts of the relative \mathscr{I} -cell complexes. The acyclic q-cofibrations are the retracts of the relative \mathscr{J} -cell complexes.