
PROOFS OF THE MODEL AXIOMS FOR TOP

Theorem 1 (Quillen model structure). The category of spaces is a model category
with the usual weak equivalences, q-fibrations the Serre fibrations, and q-cofibrations
the maps that satisfy the RLP with respect to the acyclic q-fibrations.

Lemma 2 (Small object argument). Let I be a set of maps of spaces with compact
domain. Then any map f : X −→ Y of spaces factors as a composite

X
i // X ′ p // Y,

where p satisfies the RLP with respect to each map in I and i satisfies the LLP
with respect to any map that satisfies the RLP with respect to each map in I .

Proof. Let X = X0. We construct a commutative diagram
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as follows. Suppose inductively that we have constructed pn. Consider all maps
from a map in I to pn. Each such map is a commutative diagram of the form
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with i ∈ I . Summing over such diagrams, we construct a pushout diagram
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B // Xn+1.

The maps β and pn induce a map pn+1 : Xn+1 −→ Y such that pn+1 ◦ in = pn.
Let X ′ = colim Xn, let i : X −→ X ′ be the canonical map, and let p : X ′ −→ Y
be obtained by passage to colimits from the pn. Constructing lifts by passage to
coproducts, pushouts, and colimits of sequences, we see that each in and therefore
also i satisfies the LLP with respect to maps that satisfy the RLP with respect to
maps in I . Assume given a commutative square
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where i is in I . To verify that p satisfies the RLP with respect to i, we must
construct a map g that makes the diagram commute. Clearly X ′ is constructed as
the colimit of a sequence of inclusions. Since A is compact, the natural map

(3) colim Top(A,Xn) −→ Top(A, X ′)

is a bijection. Therefore α′ : A −→ X ′ factors through some Xn, giving one of the
commutative squares used in the construction of Xn+1. By construction, there is a
map B −→ Xn+1 whose composite with the natural map to X ′ gives a map g. ¤

We use this to prove a refined version of one of the factorization axioms.

Lemma 3. Any map f : X −→ Y factors as p◦i, where i is an acyclic q-cofibration
that satisfies the LLP with respect to any q-fibration and p is a q-fibration.

Proof. Let J be the set of maps i0 : Dn −→ Dn × I, n ≥ 0. A map is a q-
fibration if and only if it satisfies the RLP with respect to every map in J and
every map in J is an acyclic q-cofibration. Use the lemma to factor f . Then p is
a q-fibration and i satisfies the LLP with respect to all q-fibrations. In particular,
i is a q-cofibration. Since each in is the inclusion of a deformation retract, so is i.
Therefore i is an acyclic q-cofibration. ¤

By definition, the q-cofibrations satisfy the LLP with respect to the acyclic q-
fibrations. The other lifting axiom is now formal.

Lemma 4. The q-fibrations satisfy the RLP with respect to the acyclic q-cofibra-
tions.

Proof. Let f : X −→ Y be any acyclic q-cofibration. We must show that f satisfies
the LLP with respect to q-fibrations. By the previous lemma, we may factor f
as f = p ◦ i, where i : X −→ X ′ is an acyclic q-cofibration that does satisfy the
LLP with respect to q-fibrations and p : X ′ −→ Y is a q-fibration. Since f and
i are weak equivalences, so is p. Since f satisfies the LLP with respect to acyclic
q-fibrations, there exists g : Y −→ Y ′ such that g ◦ f = i and p ◦ g = idY . Clearly
p and g, together with the identity map on X, express f as a retract of i. Since i
satisfies the LLP with respect to q-fibrations, so does f . ¤

Finally, here is the proof of the other factorization axiom.

Lemma 5. Any map f : X −→ Y factors as p ◦ i, where i is a q-cofibration and p
is an acyclic q-fibration.

Proof. This is another application of the first lemma. Let I be the set of inclusions
i : Sn−1 −→ Dn, n ≥ 0, where S−1 is empty. A map is an acyclic q-fibration if
and only if it satisfies the RLP with respect to all maps in I . The proof of this
statement is an exercise in the meaning of homotopy groups and weak equivalences.
Each map in I is thus a q-cofibration. In the factorization f = p ◦ i that we now
obtain from the lemma, p is an acyclic q-fibration and i is a q-cofibration. ¤

We define cell I -complexes and relative cell I -complexes in the evident way.
With I and J as in the previous two lemmas, we deduce the following corollary.
It says that Top is a compactly generated model category with generators I for
the q-cofibrations and J for the acyclic q-cofibrations.

Lemma 6. The q-cofibrations are the retracts of the relative I -cell complexes. The
acyclic q-cofibrations are the retracts of the relative J -cell complexes.


