NOTES ON ATIYAH’S TQFT’S

J.P. MAY

As an example of “categorification”, I presented Atiyah’s axioms [1] for a topolog-
ical quantum field theory (TQFT) to undergraduates in the University of Chicago’s
summer 2002 REU. These notes are written for the use of the participants and to
test my own understanding.The aim is just to make very categorically precise what
the basic definitions are. Also, there are some details in Atiyah’s original definition
that are subsumed in the more recent and by now standard categorical definition,
and it seemed worthwhile to present a comparison. I have in mind hitting TQFT’s
with infinite loop space machines, which may perhaps provide a little unusual mo-
tivation. However, these notes are written to be readable by the students attending
the REU, although standard categorical background that was explained in the talks
is not repeated here. Needless to say, we have very good students at Chicago!!!

1. SYMMETRIC MONOIDAL CATEGORIES

The notion of a symmetric monoidal category € is standard: € must have a unit
object S and a product ®% x ¥ — % that is unital, associative, and commutative
up to coherent natural isomorphism. When such a category is essentially small (has
a set of isomorphism classes of objects), it can be replaced by an equivalent permu-
tative category, which is a symmetric monoidal category that is strictly associative
and unital. One cannot make the commutativity isomorphism, or “braiding”, an
isomorphism, and we use the letter v to denote it. See [?] for symmetric monoidal
categories and, for example, [?] for permutative categories.

For symmetric monoidal categories ¢ and 2 and a functor F : € — &, there
are three obvious choices of what it means for F' to be “symmetric monoidal”. In
all of them, we require a map A : Ry — F(Ry) relating the unit objects and a
natural transformation

p: F(X)®e F(Y) — F(X®¢Y)

relating the products, and in all of them we require all coherence diagrams relating
the associativity, unit, and commutativity isomorphisms of ¥ and 2 to commute.
We would refer to a “monoidal functor”, if we only had such coherence for the
associativity and unit isomorphisms, not for the commutativity isomorphisms. We
say that F'is strict, strong, or lax symmetric monoidal if A and ¢ are both identity
maps, both isomorphisms, or both just morphisms. In practice, while it is often
true that A is the identity, it is rarely true that ¢ is the identity, and it is often the
case that ¢ is not even an isomorphism. In our definition of a TQFT, we understand
strong symmetric monoidal, but with identities on unit objects. Replacement of
symmetric monoidal categories by equivalent permutative categories is functorial:
it transforms strong symmetric monoidal functors between symmetric monoidal
categories to strict symmetric monoidal functors between permutative categories.
1
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2. SYMMETRIC MONOIDAL CATEGORIES WITH DUALITY

We say that a symmetric monoidal category € has duality if every object is
“dualizable”. This means that there is an object DX and mapsn: S — X ® DX
and € : DX ® X — S such that the following composites are identity maps.

id i
X5 X L XxeDXoX %% xgsaX

and
id ®n e®id
DX2DX®S—=DXRXQ®DX —S®DX=2DX

This notion is often discussed in the context of subcategories of closed categories,
which have an internal Hom functor. In such a category, DX is isomorphic to
Hom(X, S) when X is dualizable, but not all objects X need be dualizable; see [?]
for a recent discussion. The properties proven in that context carry over directly
to categories that are not equipped with an internal Hom functor. We record some
of the relevant properties.

Dual map

Adjunction

Uniqueness of X*

Symmetric monoidal maps preserves duality, on both objects and morphisms.

Euler characteristics and traces

3. HILBERT SPACES AND *-CATEGORIES

A x-category is a category ¥ with a contravariant involution % : ¥ — % that
is the identity on objects. That is, we must have X* = X, (¢f)* = ¢*f*, and
f** = f. In many sources, * is written for both duals and an involution. This can
be a source of real confusion, especially when the duality and the involution are
closely related. This is very much the case in the context of TQFT’s. The natural
target for a TQFT is a symmetric monoidal *-category with duality.

It is usual to take the target category to be the category Hilb of finite dimensional
Hilbert spaces, but we can equally well start from any field with an involution. Write
x +— 7 for the involution on elements and write V for V with the conjugate action
of A, (z,v) — Zv. Write ¥ for v regarded as an element of V. Write (v,v’) for her-
mitian forms. For present purposes a Hilbert space is a finite dimensional complex
vector space equipped with a nondegenerate hermitian form. The morphisms of €
are all the linear transformations L : V — W, and the adjoint L* : W — V of
L is characterized by (Lv,w) = (v, L* w) for v € V and w € W. The contravariant
functor x is an involution that gives Hilb a structure of x-category.

The tensor product of Hilbert spaces gives Hilb a structure of symmetric monoidal
category. Its unit is C. It has duals DX = Hom(X,C). Themape: DX®X — C
is evaluation. We can define n: C — V ® DV by n(1) = > v; ® o, where {v;} is
a basis for V' with dual basis {«;}. It is a pleasant exercise to verify that this does
specify a duality and that the trace of a linear transformation L : V' — V defined
as in the previous section is precisely the trace of the matrix of L with respect to
the basis {v;}. In particular, x(V) = dim(V).

We say that L is an isometry if (Lv, Lv’) = (v,v') for v,v" € V. We have an
isomorphism ¢ : V. — DV specified by ((w)(v) = (v,w) for v,w € V. It is
contravariantly functorial with respect to isometric isomorphisms f : V — W, in
the sense that Df = Cf%C —1. This relates duality to the involution .
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4. THE DEFINITION OF A TQFT

Throughout these notes, manifolds, with or without boundary, are understood
to be smooth, compact, and oriented. Diffeomorphisms are understood to be
orientation-preserving. Fix an integer d. We define the symmetric monoidal cate-
gory with duality and Cob(d + 1). With this convention, the objects of Cob(d + 1)
are the manifolds of dimension d, without boundary. We write ¥* for ¥ with the
opposite orientation. We have two kinds of morphisms between objects. First, we
have the “ordinary morphisms”, namely the diffeomorphisms f : X9 — X, with
the evident composition and identity maps.

Second, we have the “cobordism morphisms” [M] : ¥g — ;. These are the
equivalence classes of (smooth, compact, oriented) manifolds M of dimension d+ 1,
with boundary OM = X" I X;. Two such “cobordisms” M and M’ are equivalent
if there is a diffeomorphism M — M’ that restricts to the identity map on their
common boundary. We allow Xy, X1, or both, to be empty, with #°° = @, and
we allow M to be empty. Composition is by gluing. That is, if IN = 37P I o,
then the composite [N] o [M] : £g — X5 is the equivalence class of the manifold
M Us,, N with boundary X II ¥5 that is obtained by gluing M and N together
along ¥;. We have 0(X x I) = ¥*II ¥, and it is immediate from the smooth
boundary collar theorem that (34 x I) Us, M and M Uyx, (¥¢ x I) are diffeomorphic
to M, relative boundary, and therefore represent the same cobordism morphism.
Thus the ¥ x I : ¥ — ¥ give the identity cobordism morphisms. Composition is
associative since we have evident diffeomorphisms between the relevant manifold-
level composites of gluing operations.

We also have “2-morphisms” M — M’ between cobordism morphisms M :
Yo — X1 and M’ : £ — X}, namely equivalence classes of diffeomorphisms
g: M — M’ where g and ¢’ are equivalent if they restrict to the same diffeomor-
phisms fo¥ : 3P — X and f1: 3 — Y.

Finally, we have a symmetric monoidal structure on Cob(d + 1) given by dis-
joint union of d-manifolds and of (d + 1)-manifolds with boundary. The empty
d-manifold gives the unit object for Cob(d 4 1) regarded as a category with its
ordinary morphisms, and the empty (d 4+ 1)-manifold gives the unit for the sym-
metric monoidal category under disjoint union whose objects are the cobordism
morphisms and whose morphisms are the 2-morphisms.

Now fix a symmetric monoidal category € with product ® and unit object R.
We are thinking of the category of finitely generated modules over a commutative
ring R under the tensor product. We think of € as a symmetric monoidal 2-fold
2-category in which the “ordinary morphisms” and the “cobordism morphisms”
coincide and in which the only 2-morphisms are identity morphisms.

Definition 4.1. A TQFT Z in dimension d over % is a map of symmetric monoidal-
categories Z : Cod(d) — .

We spell out precisely what this means, leaving the phrase “without duality”
for discussion in the next section. For each d-manifold ¥, we have an object Z(X)
of . For each diffeomorphism f : ¥y — X;, we have an isomorphism Z(f) :
Z(39) — Z(31). For each (d + 1)-manifold M with OM = X°P I ;, we have
a morphism Z(M) : Z(3g) — Z(X1), and equivalent cobordisms give the same
morphism Z(M). These assignments give us two functors with values in €. In
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particular, since the ¥ x I are identity morphisms,

(4.2) Z(ExI)=1id: Z(¥) — Z(%).

If OM' = ¥P I 3} and if diffeomorphisms fo : g — X and f; : 31 — X}
extend to a diffeomorphism g : M — M’, then the following diagram commutes.

(4.3) 2(50) 22 2(21)

Z(fo)l lz(fl)

2(%h) 5o Z(2H)
This is forced by the requirement that the only 2-morphisms of % are identity maps,
but those unfamiliar with the relevant categorical language should take this as part
of what we mean by definition of a “map” in Definition 4.1.

Note in particular that properties (4.2) and (4.3) give an expected homotopy
invariance property of a TQFT. To see this, take M = M’ = X x I. Then g is a
homotopy fo =~ fo, and the cited properties give that Z(fy) = Z(f1).

The question of the meaning of a “map” becomes more serious when we consider
the symmetric monoidal structure. For symmetric monoidal categories ¥ and 2
and a functor F' : € — 2, there are three obvious choices of what it means for F
to be “symmetric monoidal”. In all of them, we require a map A : Ry — F(Ry)
relating the unit objects and a natural transformation

¢p:F(X)®gy F(Y) — F(X®¢Y)

relating the products, and in all of them we require all coherence diagrams relating
the associativity, unit, and commutativity isomorphisms of ¥ and 2 to commute.
We would refer to a “monoidal functor”, if we only had such coherence for the
associativity and unit isomorphisms, not for the commutativity isomorphisms. We
say that F is strict, strong, or laz monoidal or symmetric monoidal if A and ¢ are
both identity maps, both isomorphisms, or both just morphisms. In practice, while
it is often true that X is the identity, it is rarely true that ¢ is the identity, and it
is often the case that ¢ is not even an isomorphism. In our definition of a TQFT,
we understand strong symmetric monoidal, but with identities on unit objects.

We spell this out explicitly. We require that Z(0)) = R, where @) is the empty
d-manifold, and we require that Z(0) = id : R — R, where () is the empty (d+ 1)-
manifold regarded as a cobordism morphism from the empty d-manifold to itself.
We require a binatural isomorphism

(4.4) 6:Z2(2)®Z(Y) > Z(Z1IY)

that makes all coherence diagrams commute. Here “binatural” means that it is
natural with respect to both diffeomorphisms and cobordisms. In particular, for
M : %y — ¥y and M’ : ¥ — X, the following diagram commutes

(4.5) Z(50) © Z(Sh) —a> Z(5 1))

Z(M)®Z(M’)i J{Z(MHM’)

2(81) ® Z(5)) —> Z(S, 11 %4)
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5. ATIYAH’S DEFINITION OF A TQFT

We insist in this section that & be the category of modules over a commutative
ring R. We could just as well work with a general closed symmetric monoidal
category, with internal hom functor Hom, but we desist. We write V* for the
dual Hom(V, R) of an R-module V and we write &, or (v,v) on elements, for the
evaluation pairing V* ® V — R. For R-modules U, V, and W, we later write
(u®v, v ®@w) for the pairing id®eco7Rid: UV QV*QW — U ® W, where 7
interchanges V and V*.

If we think of a manifold M with boundary OM as a cobordism () — M, then
Z(M) is a morphism R = Z(0) — Z(OM) in €. It is determined by its value
on 1, which is an element z(M) of Z(OM). In [1], both the element z(M) and the
morphism Z(M) : Z(Xy) — Z(X1) when M = 3P II £, are denoted Z(M).
I find this a little confusing, and it would obscure our comparison of definitions,
hence I have changed notation to z(M). On the other hand, we can view M°P as a
cobordism OM — ). Then Z(M°P) is a morphism Z(OM) — Z(0) = R. It may
be viewed as an element z°P(M°P) of Z(OM)*.

When M is closed, dM = 0, 2(M) = z°P(M) is an element of R = Z({)) and
is thus a numerical invariant of M. In general, the elements z(M) and z°P(M)
are invariants of the pair (M, 0M). We regard the axiomatization of a TQFT as a
categorification of the notion of such relative invariants of manifolds with boundary.
An essential point is to understand how to compute z(M) when M is cut into two
parts M; and Ms along an embedded d-manifold ¥, so that M = M; Uy M> with
OM; = ¥ and OM, = X°P. Regarding M; as a cobordism ) — X and M, as
a cobordism ¥ — (), we have Z(M) = Z(Ms) o Z(M;) and thus, on elements,
2(M) = (2°P(Mz), 2(My)).

Clearly, it is natural to insist on a relationship between the values of Z on
manifolds and their opposites. Atiyah’s notion of a TQFT is a restriction of ours
that accomplishes this. He requires R to be a field, denoted A, and he requires the
Z(X) to be finite dimensional vector spaces. Actually, his definition works just as
well for general commutative rings R, provided that the Z(X) are required to be
finitely generated projective R-modules. Thus we now take € to be the category
of finitely generated projective R-modules. This allows the following definition.

Definition 5.1. A TQFT without duality is involutory if there is an isomorphism
(5.2) §:2(3°) = Z(2)*

that is natural with respect to diffeomorphisms in the sense that the following
diagram commutes for f: ¥y — Xj.

opy ZU™) o
(5.3) Z(55") —= Z(37")

% lg

Z(%o)* mZ(Zl)*

We can now reconcile our definition with Atiyah’s original definition.

Proposition 5.4. A TQFT in the sense of Atiyah is the same structure as an
imwvolutory TQFT without duality.
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Proof. In Atiyah’s paper [1], ¢ in (4.4) and ¢ in (5.2) are written as equalities rather
than isomorphisms, and the naturality diagram (5.3) is left implicit. However, in
pedantically rigorous terms, it is clear that this is what Atiyah had in mind. Even
after making these points precise, his definition looks just a little different than
ours, and we indicate how to compare them. As already noted, Atiyah requires an
element Z(M) in Z(OM) for each (d + 1)-manifold M, and we are rewriting his
element as z(M) to avoid confusion with our linear transformations Z(M). Our
Z(M) determines his z(M) as the image of 1 under Z(M) : R = Z() — OM.
Conversely, when M = X3P 11 X4, his z(M) determines our Z (M) as the image of
z(M) under the composite isomorphism

(5.5) Z(OM) = Z(ZF 118 = Z(20)* © Z(21) = Hom(Z(Zo), Z(X1)).

Observe that the last displayed isomorphism requires that the Z(X) be finite dimen-
sional, or finitely generated projective when working over a general commutative
ring. Atiyah’s key axiom, [1, 3b], can be formulated as follows. Take manifolds M;
and M2 with 8M1 = 20 HEl and aMg = Ecl)p HEQ and let M = Ml Uzl MQ. Then

(5.6) 2(M) = (2(M), 2(Mz)),

where the isomorphisms ¢ and § of (4.4) and (5.2) are used to identify Z(0M),
Z(@Ml) and Z(@Mg) with Z(EO) ® Z(EQ), Z(Eo) ® Z(El) and Z(El)* ® Z(EQ)
Using (5.5), it is easily verified that this axiom is equivalent to the transitivity
of our Z(M). Together with (4.2), which is Atiyah’s axiom (4c), this verifies our
requirement that Z be functorial with respect to cobordism morphisms. The rest
is an immediate comparison of definitions. ([l

6. THE DEFINITION OF A TQFT WITH DUALITY

As Atiyah remarks, his involutory axiom is conceptually lacking in that it ignores
the cobordism morphisms. In other words, although it allows a definition entirely in
terms of the Z(X) and the z(M), it fails to relate z(M) to z(M°P). This correlates
with our introduction of z°P(M°P) € Z(OM)*. There are important examples where
these invariants are genuinely different, so the extra generality is desirable. This
also makes it plausible that a definition such as ours that does away entirely with
the involutory axiom will find applications. However, duality is of fundamental
importance in many examples, and the more structured version of a TQFT with
duality appropriately sharpens the involutory axiom. The obvious point is that,
since the maps Z(M) need not be isomorphisms, we need additional structure
to obtain the appropriate analogue of (5.3). We could describe such structure
axiomatically on a general closed symmetric monoidal category V', but we follow
Atiyah in using standard field theory instead.

Henceforward, let A be a field with an involution, denoted = +— T on elements.
We write V for V with the conjugate action of A, (z,v) — Zv, and we write v for v
regarded as an element of V. We write (v, v’) for hermitian forms, and we take % to
be the category of finite dimensional vector spaces V' equipped with nondegenerate
hermitian forms. The morphisms of & are the linear transformations L : V — W,
and the adjoint L* : W — V of L is characterized by (Lv,w) = (v, AdL w) for
veVandweW. For K:U — V, Ad(Lo K) = AdK o AdL. We say that L
is an isometry if (Lv, Lv') = (v,v’) for v,v’ € V. As usual, the essential point is
that we have a natural isomorphism ¢ : V — V* specified by ((w)(v) = (v, w) for
v,w € V, and this allows us to interpret V* as a covariant functor of V.
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Definition 6.1. Let Z be an involutory TQFT in ¢ such that Z(f) is an isometry
for each diffeomorphism f. We say that Z is a TQFT with duality if

(6.2) Z(M°?) = Ad(Z(M)) : Z(51) — Z(S0)

for all cobordisms M : ¥y — .

When Xy = 0, this says that z°P(M°P) = 2z

Applying the isomorphisms Z(X°P) = Z(X)* = Z(X) to ¥ = dM, this can be
reinterpreted elementwise as z(M°P) = z(M) in Z(0M).

The double M Ugps M of a manifold M is closed, and z(M Ugpys M) = z2(M)z(M)
which is [2(M)]2.

)
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