NOTES ON FILTRATIONS, TOPOLOGIES, AND COMPLETIONS

J.P. MAY

Contents

1.	Filtered groups	1
2.	Filtered rings and modules	2
3.	The Artin–Rees Lemma and Krull intersection theorem	3
4.	<i>I</i> -adic completion	4
5.	Faithfully flat <i>R</i> -modules	5
6.	Zariski rings	7
7.	The I -adic metric on R	7
8.	Hensel's lemma	8

1. Filtered groups

1. Let G be a group with a decreasing filtration by normal subgroups G_i . Then G is a topological group. The G_i form a fundamental system of neighborhoods of the identity. The open subsets are the arbitrary unions of finite intersections of cosets gG_i .

2. The following are equivalent.

(i) G is Hausdorff.

(ii) Points in G are closed.

(iii) The G_i intersect in $\{e\}$.

Of course, (i) implies (ii) by general topology. For (ii) implies (i), the diagonal in $G \times G$ is $\mu^{-1}(e)$, where $\mu(g, h) = gh^{-1}$. Since $G - G_i$ is the union of the cosets gG_i with $g \notin G_i$, $G - G_i$ is open, hence $G - G_i$ is both open and closed, hence so is G_i . Now (iii) clearly implies (ii). If x is in all G_i and is not e, then there are no open neighborhoods separating e and x, so G is not Hausdorff.

3. If $H \supset G_i$, then $H - G_i$ is open since it is the union of the cosets hG_i , $h \in H - G_i$ and, similarly, H is also closed.

4. $G / \cap G_i$ is the associated Hausdorff group of G.

5. Consider the canonical map $\gamma: G \longrightarrow \lim G/G_i$, obtained from the quotient homomorphisms $\gamma_i: G \longrightarrow G/G_i$. Give the target the inverse limit topology, where the G/G_i are discrete. Then γ is continuous since $\gamma_i^{-1}(eG_i) = G_i$. If γ is a bijection, then it is a homeomorphism. Indeed, the G_i then give a fundamental system of neighborhoods of the identity in both. We say that G is complete when this holds.

6. Define the completion of G to be $\hat{G} = \lim G/G_i$; it is more accurate to view the map $\gamma: G \longrightarrow \hat{G}$ as the completion of G. Let \hat{G}_i be the kernel of $\hat{G} \longrightarrow G/G_i$. This gives \hat{G} a decreasing filtration, and the topology on \hat{G} is the same as the topology associated to this filtration. Moreover, $G/G_n \cong \hat{G}/\hat{G}_n$.

J.P. MAY

7. Two filtrations of G give the same topology if for each m and n there exist p and q such that $G_m \subset G'_p$ and $G'_n \subset G_q$. By cofinality, the completions are isomorphic as topological groups (homeomorphic via an isomorphism of groups).

2. Filtered rings and modules

Let R be a commutative ring and M an R-module. We consider decreasing filtrations $R = R_0 \supset R_1 \supset R_2 \supset \cdots$ by ideals such that $R_i \cdot R_j \subset R_{i+j}$. Similarly, we consider decreasing filtrations $M = M_0 \supset M_1 \supset M_2 \supset \cdots$ by sub R-modules such that $R_i \cdot M_j \subset M_{i+j}$. In favorable cases $\cap R_i = \{0\}$ and $\cap M_i = \{0\}$. The notations $F_i R = R_i$ and $F_i M = M_i$ are frequently used. In the most important example, we take an ideal I of R and define $R_i = I^i$ and $M_i = I^i M$. These are called I-adic filtrations.

We can apply the constructions of the previous section to the underlying filtered Abelian groups of R and M. The completion \hat{R} inherits a multiplication from R, and the completion \hat{M} becomes an \hat{R} -module. We are interested in understanding the exactness properties of these constructions. We start in the general case in this section and specialize to *I*-adic completions in the next.

We start over with a filtered R-module M, with no filtration given on $R = R_0$, so that each M_i is an R-module. Of course each M_i is open and closed in the resulting "linear topology" on M. Let N be a sub R-module of M and let P = M/N. Then N has the filtration given by $N_i = N \cap M_i$, P has the filtration given by letting P_i be the image of M_i , and N and P have associated linear topologies.

1. The subspace topology on N coincides with the linear topology. Indeed, a subset $X \subset N$ is open in the subspace topology iff $X = N \cap U$ for some open subset U of M, while X is open in the linear topology iff X is a union of finite intersections of subsets of the form $x + N_i = x + N \cap M_i$, $x \in N$. Here U is a union of finite intersections of the form $y + M_i$, but if $N \cap (y + M_i)$ is non-empty, then $y + M_i = x + M_i$ for some $x \in N$.

2. The closure \overline{N} of N in M is given by $\overline{N} = \bigcap_i (N + M_i)$. Indeed, $x \in \overline{N}$ iff $(x + M_i) \cap N \neq \emptyset$ for all i, and that holds if and only of $x \in N + M_i$ for all i. Therefore N is closed in M iff $\bigcap(N + M_n) = N$, and this holds iff $\bigcap P_i = 0$, that is, iff P is Hausdorff in the linear topology.

3. The quotient topology on P coincides with the linear topology. Indeed, let $X \subset P$. Then X is open in the quotient topology iff the inverse image, Y say, of X in M is open. This means that if $y \in Y$ then $y + M_i \subset Y$ for some *i*. Reducing mod N, this means that if $x \in X$, then $x + P_i \subset X$ for some *i*, which means that X is open in the linear topology on P.

4. Since $P/P_i \cong M/N + M_i$, we have the short exact sequences

$$0 \longrightarrow N/N \cap M_i \longrightarrow M/M_i \longrightarrow P/P_i \longrightarrow 0.$$

On passage to limits, there results a short exact sequence

$$0 \longrightarrow \hat{N} \longrightarrow \hat{M} \longrightarrow \hat{P} \longrightarrow 0.$$

That is, $\widehat{M/N} \cong \widehat{M}/\widehat{N}$. Here \widehat{N} is the closure of the image of N in \widehat{M} . Exactness at the left is a general fact on inverse sequences. Exactness at the right uses that the maps in our inverse systems are epimorphisms. In detail, let $(p_j) \in \widehat{P}$. Inductively, suppose chosen m_i , i < j, such that $m_i \longrightarrow p_i$ and $m_i \longrightarrow m_{i-1}$ for each i. Choose m'_j that maps to p_j . Then $m'_j - m_{j-1}$ is in $N + M_{j-1}$, say $m'_j - m_{j-1} = n + m$.

Let $m_j = m'_j - n = m_{j-1} + m$. Inductively, this gives an element (m_j) of \hat{M} that maps to (p_j) .

3. The Artin-Rees Lemma and Krull intersection theorem

Let I be a proper ideal in R and $N \subset M$ be R-modules. Filtering M by the I^iM , we obtain two filtrations on N, namely the I-adic filtration given by the I^iN and the submodule filtration given by the $N \cap I^iM$. Clearly $I^iN \subset N \cap I^iM$. The opposite inclusion fails, but the two linear topologies are sometimes the same. Let R be Noetherian and M be finitely generated throughout this section. Then we have the following result.

Lemma 3.1 (Artin–Rees). There is an m such that

 $N \cap I^n M = I^{n-m} (N \cap I^m M)$

and therefore $N \cap I^n M \subset I^{n-m} N$ for all n > m.

Proof. Define a graded ring $B_I(R) = R \oplus I \oplus I^2 \oplus \cdots$; it is called the Rees ring of (R, I). Think of $B_I(R)$ as $R[It] \subset R[t]$ for an indeterminate t. Write $E_I^0 R$ (or $gr_I(R)$) for the associated graded ring of R with respect to the I-adic filtration, that is, $\bigoplus_{i\geq 0} I^i/I^{i+1}$. Observe that $B_I(R)/IB_I(R) \cong E_I^0 R$. Thus the construction replaces the associated graded by a simple quotient. Let $M_* = \{M_i\}$ be any decreasing I-filtration of M, meaning that $IM_i \subset M_{i+1}$. Say that the I-filtration is I-stable if $IM_n = M_{n+1}$ for all sufficiently large n. The filtration $\{I^iM\}$ is certainly I-stable, and the claim is that the filtration $\{N_i = N \cap I^iM\}$ is I-stable. Define $B(M_*) = M \oplus M_1 \oplus M_2 \oplus \cdots$ and observe that $B(M_*)$ is a graded $B_I(R)$ -module. The second of the following two lemmas is a generalized version of the result we are after.

Lemma 3.2. The $B_I(R)$ -module $B(M_*)$ is finitely generated iff the I-filtration M_* is I-stable.

Proof. Suppose that $B(M_*)$ is finitely generated. Its generators lie in the first m terms for some m. Replace the generators by their homogeneous components (or work homogeneously from the start). These components are still finite in number and still generate $B(M_*)$. Thus $B(M_*)$ is generated by the elements of the M_i for $i \leq m$. This implies that $M_m \oplus M_{m+1} \oplus \cdots$ is generated as a $B_I(R)$ -module by M_m . This means that $M_{i+m} = I^i M_m$ for $i \geq 0$ or, equivalently, that the filtration is *I*-stable. Conversely, if $M_{i+m} = I^i M_m$ for some m and all $i \geq 0$, then $B(M_*)$ is generated by the union of the sets of generators of the M_i for $i \leq m$, which is a finite set.

Lemma 3.3. Let M_* be any *I*-stable filtration of M, such as $\{I^iM\}$, and let $N_i = N \cap M_i$. Then N_* is an *I*-stable filtration of N.

Proof. Clearly $B(N_*)$ is a sub $B_I(R)$ -module of $B(M_*)$. Since M_* is *I*-stable, $B(M_*)$ is finitely generated. Since *I* is finitely generated, $B_I(R)$ is finitely generated as an *R*-algebra. Therefore, by the Hilbert basis theorem, $B_I(R)$ is a Noetherian ring. But then $B(N_*)$ is finitely generated and therefore N_* is *I*-stable. \Box

Corollary 3.4 (Krull intersection theorem). Let $N = \cap I^i M$. Then there exists $r \in R$ such that 1 - r is in I and rN = 0. If $I \subset \sqrt{R}$, then N = 0.

Proof. By the Artin-Rees theorem and $N \subset I^n M$, there exists m such that

$$N = N \cap I^{m+1}M = I(N \cap I^m M) = IN.$$

The existence of r is now either a standard lemma in the proof of Nakayama's lemma (which says that N = 0 if $I \subset \sqrt{R}$) or is sometimes itself referred to as Nakayama's lemma. One proof is by induction on the number of generators of modules N such that IN = N. The last statement follows since r is a unit if $I \subset \sqrt{R}$.

4. *I*-ADIC COMPLETION

Let I be a proper ideal of a commutative ring R and let M be an R-module. We have the completion $\gamma \colon R \longrightarrow \hat{R}_I = \lim R/I^i$, which is a continuous homomorphism of topological rings. We say that R is complete at I if γ is an isomorphism. We also have the completion $\gamma \colon M \longrightarrow \hat{M}_I = \lim M/I^i M$, which is a continuous homomorphism of topological R-modules. Let $\hat{I} = \{(r_i) | r_0 = 0\}$. Then \hat{I} is an ideal of \hat{R}_I such that $\hat{I}^n = \{(r_i) | r_i = 0 \text{ if } i < n\}$. The associated graded rings $E_I^0 R$ and $E_{\hat{I}}^0 \hat{R}$ are the same. The Artin–Rees lemma gives the following fundamental result.

Lemma 4.1. If R is Noetherian, then completion is an exact functor on the category of finitely generated R-modules. Therefore \hat{R}_I is a flat R-module.

Algebraic topologists must often work with rings that are not Noetherian and modules that are not finitely generated even when R is Noetherian. For them, the "right" notion of completion is not *I*-adic completion, but rather its zeroth left derived functor (and its first left derived functor is also relevant).

Lemma 4.2. Let \mathfrak{m} be a maximal ideal of R. Then $\hat{R}_{\mathfrak{m}}$ is a local ring with maximal ideal $\hat{\mathfrak{m}}$, and $R/\mathfrak{m} = \hat{R}_{\mathfrak{m}}/\hat{\mathfrak{m}}$. The completion $R \longrightarrow \hat{R}_{\mathfrak{m}}$ is the composite of the localization $R \longrightarrow R_{\mathfrak{m}}$ and the completion $R_{\mathfrak{m}} \longrightarrow \hat{R}_{\mathfrak{m}}$.

Proof. We must show that an element (r_i) of \hat{R}_I that is not in $\hat{\mathfrak{m}}$ is a unit. Now $(r_i) \notin \hat{\mathfrak{m}}$ if and only if $r_0 \neq 0$ in R/\mathfrak{m} . Since r_i maps to r_0 under $R/\mathfrak{m}^i \longrightarrow R/\mathfrak{m}$, r_i is not in $\mathfrak{m}R/\mathfrak{m}^i$, so is a unit in R/\mathfrak{m}^i . The sequence (r_i^{-1}) is $(r_i)^{-1}$ in $\hat{R}_{\mathfrak{m}}$. \Box

A complete local ring R is a Noetherian local ring which is complete at its maximal ideal \mathfrak{m} . Such rings are central to number theory and algebraic geometry.

Example 4.3. The *p*-adic integers $\hat{\mathbb{Z}}_{(p)}$ are usually denoted \mathbb{Z}_p (or sometimes $\hat{\mathbb{Z}}_p$). They can be represented in terms of "infinite *p*-adic expansions" $\sum a_i p^i$, where $0 \leq a_i < p$.

Example 4.4. The completion of the polynomial ring $R[x_1, \dots, x_n]$ at the ideal $I = (x_1, \dots, x_n)$ is isomorphic to the power series ring $R[[x_1, \dots, x_n]]$. Explicitly, send a formal power series f to the element $(f \mod I^i)$ of the completion. For the inverse, consider an element (f_i) of the completion. Here f_i can be represented $(\mod I^i)$ as a polynomial of degree less than i in the x_q , and then $f_i = f_{i+1}$ plus terms of degree i + 1. The formal power series $f_0 + (f_1 - f_0) + (f_2 - f_1) + \cdots$ gives the corresponding element of the power series ring.

It is left as an exercise to prove that if R is *I*-adically complete, then I is contained in the radical of R. If M is *I*-adically complete, then it is an \hat{R}_I -module and therefore multiplication by 1 + a, $a \in I$ is an automorphism of M.

It is also left as an exercise to prove that if $I = (a_1, \dots, a_n)$ is an ideal in a Noetherian ring R, then \hat{R}_I is isomorphic to

$$\ddot{R}_I \cong R[[x_1,\ldots,x_n]]/(x_1-a_1,\cdots,x_n-a_n).$$

This has the following basic consequence.

Corollary 4.5. If R is Noetherian, then \hat{R}_I is Noetherian.

One way to work the excercise just cited is to use the following result, which shows that ideal theory passes nicely to completions.

Proposition 4.6. Let I and J be ideals in a commutative Noetherian ring R and let M be a finitely generated R-module. Then

$$\widehat{(JM)}_I = J \cdot \widehat{M}_I \text{ and } (\widehat{M/JM})_I \cong \widehat{M}_I / J \widehat{M}_I.$$

Moreover, $\widehat{(JM)}_I$ is the closure of JM in \hat{M}_I .

Proof. By Artin–Rees, the short exact sequence

 $0 \longrightarrow JM \longrightarrow M \longrightarrow M/JM \longrightarrow 0$

gives an exact sequence

$$0 \longrightarrow \widehat{(JM)}_I \longrightarrow \widehat{M}_I \longrightarrow (\widehat{M/JM})_I \longrightarrow 0$$

on passage to *I*-adic completion, and this implies that $\widehat{(JM)}_I$ is the closure of JMin \widehat{M}_I . Certainly $J \cdot \widehat{M}_I \subset \widehat{(JM)}_I$. Let $J = (a_1, \dots, a_r)$ and define $\phi \colon M^r \longrightarrow M$ by $\phi(m_1, \dots, m_r) = \sum a_i m_i$. The image of ϕ is JM, so we have an exact sequence

$$M^r \xrightarrow{\phi} M \xrightarrow{\pi} M/JM \longrightarrow 0.$$

On passage to limits, there results an exact sequence

$$(\widehat{M}_I)^r = \widehat{(M^r)}_I \xrightarrow{\hat{\phi}} \widehat{M}_I \xrightarrow{\hat{\pi}} (\widehat{M/JM})_I \longrightarrow 0.$$

Since the kernel of $\hat{\pi}$ must be $\widehat{(JM)}_I$, this gives $(\widehat{M/JM})_I \cong \widehat{M}_I/\widehat{(JM)}_I$. Here again, $\hat{\phi}(m_1, \dots, m_r) = \sum a_i m_i$, where now $m_i \in \widehat{M}_I$. The image of $\hat{\phi}$ is $J \cdot \widehat{M}_I$, and this is equal to the kernel, \widehat{JM}_I , of $\hat{\pi}$.

Corollary 4.7. Let \widehat{M}_i denote the kernal of the projection $\widehat{M}_I \longrightarrow M/I^i M$. Then $\widehat{M}_i = I^i \cdot \widehat{M}_I$. Thus the linear topology of \widehat{M}_I coincides with its I-adic topology as an R-module, which in turn coincides with its $I \cdot \widehat{R}_I$ -adic topology as an \widehat{R}_I -module. Proof. $M/I^i M = (\widehat{M/I^i M})_I$, and the kernel of $\widehat{M}_I \longrightarrow (\widehat{M/I^i M})_I$ is $I^i \cdot \widehat{M}_I$ by the previous result.

5. Faithfully flat R-modules

An R-module N is said to be *faithfully flat* if a sequence of R-modules is exact if and only if it becomes exact on tensoring with N. We shall relate this notion to completions. We record the following general result.

Proposition 5.1. An R-module N is flat if and only if the canonical map

$$I \otimes_R N \longrightarrow R \otimes_R N \cong N$$

is a monomorphism for all finitely generated ideals I, so that $I \otimes_R N \cong IN$.

Proof. The forward implication is clear. Assume the condition on ideals. Any ideal is the colimit of its finitely generated ideals, and tensoring with N commutes with colimits. We conclude that $I \otimes_R N \longrightarrow N$ is a monomorphism for any ideal I. Let $M' \longrightarrow M$ be a monomorphism. We must show that $M' \otimes_R N \longrightarrow M \otimes_R N$ is a monomorphism. Clearly M is the colimit of the sums M' + M'', where $M'' \subset M$ is finitely generated. By induction on the number of generators and passage to colimits, it suffices to show the required monomorphism when M = M' + Rx for some $x \in M$. Let $I = \{r | rx \in M'\}$. We then have a short exact sequence

$$0 \longrightarrow M' \longrightarrow M \longrightarrow R/I \longrightarrow 0.$$

Since we have a short exact sequence

$$0 \longrightarrow I \longrightarrow R \longrightarrow R/I \longrightarrow 0$$

and since $I \otimes_R N \longrightarrow R \otimes_R N$ is a monomorphism, we see that $\operatorname{Tor}_1^R(R/I, N) = 0$. Therefore $M' \otimes_R N \longrightarrow M \otimes_R N$ is a monomorphism.

The following result, together with Nakayama's lemma, shows that flat modules are often necessarily faithfully flat.

Proposition 5.2. The following conditions on an *R*-module *N* are equivalent.

- (i) N is faithfully flat.
- (ii) N is flat and $M \otimes_R N = 0$ implies M = 0.
- (iii) N is flat and $\mathfrak{m}N \neq N$ if \mathfrak{m} is a maximal ideal.

Proof. (i) \implies (ii): If $M \otimes_R N = 0$, then $0 \longrightarrow M \longrightarrow 0$ becomes exact after tensoring with N, hence is exact, and M = 0.

(ii) \Longrightarrow (iii): $N/\mathfrak{m}N \cong R/\mathfrak{m} \otimes_R N$, so this is clear.

(iii) \Longrightarrow (ii): Assume $M \otimes_R N = 0$ and $x \in M$ is non-zero. Then $Rx \cong R/I$, where I is the annihilator of x. Embed I in a maximal ideal \mathfrak{m} . Since $IN \subset \mathfrak{m}N \neq N$, $Rx \otimes_R N \cong N/IN \neq 0$. Since N is flat $Rx \otimes_R N \longrightarrow M \otimes_R N$ is a monomorphism, which contradicts the assumption that $M \otimes_R N = 0$.

(ii) \implies (i): Let $M' \xrightarrow{f} M \xrightarrow{g} M''$ be a sequence such that

$$M' \otimes_R N \xrightarrow{f \otimes \mathrm{id}} M \otimes_R N \xrightarrow{g \otimes \mathrm{id}} M'' \otimes_R N$$

is exact. Then, using that N is flat, $\operatorname{Im}(g \circ f) \otimes_R N = 0$. Therefore $\operatorname{Im}(g \circ f) = 0$ and $g \circ f = 0$. Let $H = \operatorname{Ker}(g)/\operatorname{Im}(f)$. Again, $H \otimes_R N = 0$, hence H = 0. \Box

A ring homomorphism $f: R \longrightarrow S$ is said to be faithfully flat if S is faithfully flat as an R-module.

Proposition 5.3. Let $f: R \longrightarrow S$ be a faithfully flat ring homomorphism.

(i) For any R-module M, extension of scalars

$$\mathrm{id} \otimes f \colon M = M \otimes_R R \longrightarrow M \otimes_R S$$

is a monomorphism. In particular, f is a monomorphism.

(ii) Regard f as an inclusion. If I is an ideal in R, then $IS \cap R = I$.

Proof. For (i), let $x \in M$ be non-zero. The monomorphism $Rx \otimes_R S \longrightarrow M \otimes_R S$ has image $(x \otimes 1)S$, hence $x \otimes 1$ is non-zero. To see (ii), apply (i) to M = R/I, noting that $M \otimes_R S \cong S/IS$. If $r \in R$ is not in I, then it is also not in IS. \Box

6. ZARISKI RINGS

A pair (R, I) consisting of a commutative Noetherian ring R and an ideal $I \subset \sqrt{R}$ is called a *Zariski ring*. The interest of this notion comes from the following result.

Theorem 6.1. The following conditions are equivalent for an ideal I in a commutative Noetherian ring R.

- (i) $I \subset \sqrt{R}$.
- (ii) Every ideal of R is closed in the I-adic topology.
- (iii) \hat{R}_I is faithfully flat over R.

Proof. (i) \implies (ii): More generally, $N \subset M$ is closed for any submodule of a finitely generated *R*-module *M* since M/N is Hausdorff by the Krull intersection theorem and therefore $\{0\}$ is closed in M/N.

(ii) \implies (iii): It suffices to show that $\mathfrak{m}\hat{R}_I \neq \hat{R}_I$ for every maximal ideal \mathfrak{m} . Since $\{0\}$ is closed in R, $\cap I^i = 0$ and the completion $\gamma \colon R \longrightarrow \hat{R}_I$ is a monomorphism. Since \mathfrak{m} is closed in R and $\mathfrak{m}\hat{R}_I$ is the closure of \mathfrak{m} in \hat{R}_I , $\mathfrak{m}\hat{R}_I \cap R = \mathfrak{m}$ and therefore $\mathfrak{m}\hat{R}_I \neq \hat{R}_I$.

(iii) \Longrightarrow (ii): $\mathfrak{m}\hat{R}_I \neq \hat{R}_I$ for any maximal ideal \mathfrak{m} . Since \hat{R}_I is *I*-adically complete, \hat{I}_I is contained in the radical of \hat{R}_I . As in (i) \Longrightarrow (ii), if *N* is a submodule of a finitely generated \hat{R}_I -module *M*, then *N* is closed in *M*. Since γ is continuous, $\mathfrak{m} = \mathfrak{m}\hat{R}_I \cap R$ is closed in *R*. If *I* is not contained in \mathfrak{m} , then $I^i + \mathfrak{m} = R$ for all i > 0, contradicting that \mathfrak{m} is closed in *R*. Therefore $I \subset \sqrt{R}$.

Consider a Noetherian local ring R with maximal ideal \mathfrak{m} . Obviously, $\mathfrak{m} = \sqrt{R}$. We have proven the following results. Recall that R is said to be complete if it is \mathfrak{m} -adically complete.

1. $\cap \mathfrak{m}^i = 0.$

2. If N is a submodule of a finitely generated R-module M, then N is closed in the m-adic topology. That is, $N = \cap (N + \mathfrak{m}^i N)$.

3. Let $\hat{R} = \hat{R}_{\mathfrak{m}}$. Then \hat{R} is faithfully flat over $R, R \subset \hat{R}$, and $I = I\hat{R} \cap R$ for any ideal I.

4. \hat{R} is a Noetherian local ring with maximal ideal $\mathfrak{m}\hat{R}$, and $\hat{R}/\mathfrak{m}^i\hat{R} \cong R/\mathfrak{m}^i$ for i > 0. In particular, R and \hat{R} have the same residue field.

5. If R is a complete local ring and I is a proper ideal, then R/I is a complete local ring.

7. The *I*-adic metric on R

Let I be an ideal in R and define d(x, y) to be 1/n if x - y is in I^n and not in I^{n+1} and to be 0 if $x - y \in \cap I^n$. Then d(x, y) = d(y, x) and

$$d(x,z) \le \max(d(x,y), d(y,z)) \le d(x,y) + d(y,z).$$

Thus d is a pseudo-metric on R, and it is a metric if $\cap I^n = 0$.

Any pseudo-metric space X is normal. If A and B are disjoint closed subset of X, let $U = \{x | d(A, x) < d(B, x)\}$ and $V = \{x | d(B, x) < d(A, x)\}$. Then U and V are disjoint open subsets that contain A and B. Of course, X need not be Hausdorff since points need not be closed.

We assume the reader knows what a Cauchy sequence is and what it means for two Cauchy sequences to be equivalent. We say that X is complete if every Cauchy sequence converges, and every Cauchy sequence then converges to a unique point

J.P. MAY

if X is Hausdorff. We define the completion of X to be the set of equivalence classes of Cauchy sequences with the induced metric topology, where $d((x_n), (y_n))$ is the limit of the $d(x_n, y_n)$. The completion $\gamma: X \longrightarrow \hat{X}$ sends x to the constant sequence at x, and it is a continuous map with dense image.

Proposition 7.1. The completion of R at I is canonically homeomorphic to its completion in the I-adic metric.

Indeed, the metric topology is the same as the *I*-adic topology on *R*. More explicitly, an element (r_i) of $\lim R/I^i$ can be viewed as an equivalence class of Cauchy sequences in *R*.

8. Hensel's Lemma

Here is one fundamental and beautiful reason to care about complete rings, and especially complete local rings.

Lemma 8.1 (Hensel's lemma). Let R be an I-adically complete Noetherian ring and let k = R/I be the residue ring. Use small letters for polynomials in k[x] and capital letters for polynomials in R[x]. Let F be a polynomial in R[x] that reduces mod I to a polynomial f = gh in k[x], where g and h are relatively prime and g is monic. Then there is a factorization F = GH in R[x] such that G and H reduce mod I to g and h and G is monic. If h is also monic, then H can be chosen to be monic and the resulting factorization is unique.

Sketch Proof. Choose any polynomials G_1 and H_1 that reduce mod I to g and h, taking G_1 to be monic and taking $\deg(G_1) = \deg(g)$ and $\deg(H_1) = \deg(h)$. Proceeding inductively, suppose given G_n and H_n that reduce mod I^n to g and h, where G_n is monic, $\deg(G_n) = \deg(g)$ and $\deg(H_n) = \deg(h)$. Write $F - G_n H_n = \sum a_i J_i$, where $a_i \in I^n$ and $\deg(J_i) < \deg(F)$. Since (g,h) = 1, there are polynomials u_i and v_i such that $j_i = gu_i + hv_i$, and we can arrange that $\deg(u_i) < \deg(h)$ by replacing u_i by its remainder after division by h and adjusting v_i accordingly. Then $\deg(hv_i) = \deg(j_i - gu_i) < \deg(f)$ and therefore $\deg(v_i) < \deg(g)$. Choose U_i and V_i that reduce mod I to u_i and v_i , with $\deg(U_i) = \deg(u_i)$ and $\deg(V_i) = \deg(v_i)$. Set $G_{n+1} = G_n + \sum a_i V_i$ and $H_{n+1} = H_n + \sum a_i U_i$. A quick check shows that $F \equiv G_{n+1}H_{n+1} \mod I^{n+1}$, G_{n+1} is monic, $\deg(G_{n+1}) = \deg(g)$ and $\deg(H_{n+1}) = \deg(h)$. Then (G_n) and (H_n) are Cauchy sequences (coefficientwise) and we can pass to limits to obtain polynomials G and H as required. When h is monic, we can choose the H_n to be monic, and comparison shows that different choices of the sequences G_n and H_n give equivalent Cauchy sequences.

Corollary 8.2. If $F \in R[x]$ and $a \in R$ are such that F'(a) is a unit in R and $F(a) \equiv 0 \mod I$, then there exists $b \in R$ such that F(b) = 0 and $b \equiv a \mod I$.

Proof. Reducing mod I, $f(x) = (x - \bar{a})g(x)$. Since

$$f'(x) = g(x) + (x - \bar{a})g'(x),$$

$$g(x) \equiv f'(x) \equiv f'(\bar{a}) \mod (x - \bar{a})$$

Since $f'(\bar{a})$ is a unit in k, g(x) and $x - \bar{a}$ generate k[x] and thus are relatively prime. Hensel's lemma gives F(x) = (x - b)G(x), where G reduces to g and x - b reduces to $x - \bar{a} \mod I$.