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1. Filtered groups

1. Let G be a group with a decreasing filtration by normal subgroups Gi. Then
G is a topological group. The Gi form a fundamental system of neighborhoods of
the identity. The open subsets are the arbitrary unions of finite intersections of
cosets gGi.

2. The following are equivalent.

(i) G is Hausdorff.
(ii) Points in G are closed.
(iii) The Gi intersect in {e}.

Of course, (i) implies (ii) by general topology. For (ii) implies (i), the diagonal in
G×G is µ−1(e), where µ(g, h) = gh−1. Since G−Gi is the union of the cosets gGi

with g /∈ Gi, G−Gi is open, hence G−Gi is both open and closed, hence so is Gi.
Now (iii) clearly implies (ii). If x is in all Gi and is not e, then there are no open
neighborhoods separating e and x, so G is not Hausdorff.

3. If H ⊃ Gi, then H − Gi is open since it is the union of the cosets hGi,
h ∈ H − Gi and, similarly, H is also closed.

4. G/ ∩ Gi is the associated Hausdorff group of G.
5. Consider the canonical map γ : G −→ limG/Gi, obtained from the quotient

homomorphisms γi : G −→ G/Gi. Give the target the inverse limit topology, where
the G/Gi are discrete. Then γ is continuous since γ−1

i (eGi) = Gi. If γ is a bijection,
then it is a homeomorphism. Indeed, the Gi then give a fundamental system of
neighborhoods of the identity in both. We say that G is complete when this holds.

6. Define the completion of G to be Ĝ = limG/Gi; it is more accurate to view

the map γ : G −→ Ĝ as the completion of G. Let Ĝi be the kernel of Ĝ −→ G/Gi.

This gives Ĝ a decreasing filtration, and the topology on Ĝ is the same as the

topology associated to this filtration. Moreover, G/Gn
∼= Ĝ/Ĝn.
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7. Two filtrations of G give the same topology if for each m and n there exist
p and q such that Gm ⊂ G′

p and G′
n ⊂ Gq. By cofinality, the completions are

isomorphic as topological groups (homeomorphic via an isomorphism of groups).

2. Filtered rings and modules

Let R be a commutative ring and M an R-module. We consider decreasing
filtrations R = R0 ⊃ R1 ⊃ R2 ⊃ · · · by ideals such that Ri · Rj ⊂ Ri+j . Similarly,
we consider decreasing filtrations M = M0 ⊃ M1 ⊃ M2 ⊃ · · · by sub R-modules
such that Ri · Mj ⊂ Mi+j . In favorable cases ∩Ri = {0} and ∩Mi = {0}. The
notations FiR = Ri and FiM = Mi are frequently used. In the most important
example, we take an ideal I of R and define Ri = Ii and Mi = IiM . These are
called I-adic filtrations.

We can apply the constructions of the previous section to the underlying filtered
Abelian groups of R and M . The completion R̂ inherits a multiplication from R,
and the completion M̂ becomes an R̂-module. We are interested in understanding
the exactness properties of these constructions. We start in the general case in this
section and specialize to I-adic completions in the next.

We start over with a filtered R-module M , with no filtration given on R = R0, so
that each Mi is an R-module. Of course each Mi is open and closed in the resulting
“linear topology” on M . Let N be a sub R-module of M and let P = M/N . Then
N has the filtration given by Ni = N ∩Mi, P has the filtration given by letting Pi

be the image of Mi, and N and P have associated linear topologies.
1. The subspace topology on N coincides with the linear topology. Indeed, a

subset X ⊂ N is open in the subspace topology iff X = N ∩ U for some open
subset U of M , while X is open in the linear topology iff X is a union of finite
intersections of subsets of the form x+Ni = x+N ∩Mi, x ∈ N . Here U is a union
of finite intersections of the form y + Mi, but if N ∩ (y + Mi) is non-empty, then
y + Mi = x + Mi for some x ∈ N .

2. The closure N̄ of N in M is given by N̄ = ∩i(N + Mi). Indeed, x ∈ N̄ iff
(x + Mi) ∩ N 6= ∅ for all i, and that holds if and only of x ∈ N + Mi for all i.
Therefore N is closed in M iff ∩(N + Mn) = N , and this holds iff ∩Pi = 0, that is,
iff P is Hausdorff in the linear topology.

3. The quotient topology on P coincides with the linear topology. Indeed, let
X ⊂ P . Then X is open in the quotient topology iff the inverse image, Y say, of
X in M is open. This means that if y ∈ Y then y + Mi ⊂ Y for some i. Reducing
mod N , this means that if x ∈ X , then x + Pi ⊂ X for some i, which means that
X is open in the linear topology on P .

4. Since P/Pi
∼= M/N + Mi, we have the short exact sequences

0 //N/N ∩ Mi
//M/Mi

//P/Pi
//0.

On passage to limits , there results a short exact sequence

0 //N̂ //M̂ // P̂ //0.

That is, M̂/N ∼= M̂/N̂ . Here N̂ is the closure of the image of N in M̂ . Exactness at
the left is a general fact on inverse sequences. Exactness at the right uses that the
maps in our inverse systems are epimorphisms. In detail, let (pj) ∈ P̂ . Inductively,
suppose chosen mi, i < j, such that mi −→ pi and mi −→ mi−1 for each i. Choose
m′

j that maps to pj . Then m′
j − mj−1 is in N + Mj−1, say m′

j − mj−1 = n + m.
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Let mj = m′
j − n = mj−1 + m. Inductively, this gives an element (mj) of M̂ that

maps to (pj).

3. The Artin–Rees Lemma and Krull intersection theorem

Let I be a proper ideal in R and N ⊂ M be R-modules. Filtering M by the
IiM , we obtain two filtrations on N , namely the I-adic filtration given by the IiN
and the submodule filtration given by the N ∩ IiM . Clearly IiN ⊂ N ∩ IiM . The
opposite inclusion fails, but the two linear topologies are sometimes the same. Let
R be Noetherian and M be finitely generated throughout this section. Then we
have the following result.

Lemma 3.1 (Artin–Rees). There is an m such that

N ∩ InM = In−m(N ∩ ImM)

and therefore N ∩ InM ⊂ In−mN for all n > m.

Proof. Define a graded ring BI(R) = R ⊕ I ⊕ I2 ⊕ · · · ; it is called the Rees ring
of (R, I). Think of BI(R) as R[It] ⊂ R[t] for an indeterminate t. Write E0

I R (or
grI(R)) for the associated graded ring of R with respect to the I-adic filtration,
that is, ⊕i≥0I

i/Ii+1. Observe that BI(R)/IBI(R) ∼= E0
I R. Thus the construction

replaces the associated graded by a simple quotient. Let M∗ = {Mi} be any
decreasing I-filtration of M , meaning that IMi ⊂ Mi+1. Say that the I-filtration is
I-stable if IMn = Mn+1 for all sufficiently large n. The filtration {IiM} is certainly
I-stable, and the claim is that the filtration {Ni = N ∩ IiM} is I-stable. Define
B(M∗) = M ⊕M1 ⊕M2 ⊕ · · · and observe that B(M∗) is a graded BI(R)-module.
The second of the following two lemmas is a generalized version of the result we
are after. �

Lemma 3.2. The BI(R)-module B(M∗) is finitely generated iff the I-filtration M∗

is I-stable.

Proof. Suppose that B(M∗) is finitely generated. Its generators lie in the first m
terms for some m. Replace the generators by their homogeneous components (or
work homogeneously from the start). These components are still finite in number
and still generate B(M∗). Thus B(M∗) is generated by the elements of the Mi for
i ≤ m. This implies that Mm ⊕ Mm+1 ⊕ · · · is generated as a BI(R)-module by
Mm. This means that Mi+m = IiMm for i ≥ 0 or, equivalently, that the filtration
is I-stable. Conversely, if Mi+m = IiMm for some m and all i ≥ 0, then B(M∗)
is generated by the union of the sets of generators of the Mi for i ≤ m, which is a
finite set. �

Lemma 3.3. Let M∗ be any I-stable filtration of M , such as {IiM}, and let

Ni = N ∩ Mi. Then N∗ is an I-stable filtration of N .

Proof. Clearly B(N∗) is a sub BI(R)-module of B(M∗). Since M∗ is I-stable,
B(M∗) is finitely generated. Since I is finitely generated, BI(R) is finitely generated
as an R-algebra. Therefore, by the Hilbert basis theorem, BI(R) is a Noetherian
ring. But then B(N∗) is finitely generated and therefore N∗ is I-stable. �

Corollary 3.4 (Krull intersection theorem). Let N = ∩IiM . Then there exists

r ∈ R such that 1 − r is in I and rN = 0. If I ⊂
√

R, then N = 0.
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Proof. By the Artin-Rees theorem and N ⊂ InM , there exists m such that

N = N ∩ Im+1M = I(N ∩ ImM) = IN.

The existence of r is now either a standard lemma in the proof of Nakayama’s lemma
(which says that N = 0 if I ⊂

√
R) or is sometimes itself referred to as Nakayama’s

lemma. One proof is by induction on the number of generators of modules N such
that IN = N . The last statement follows since r is a unit if I ⊂

√
R. �

4. I-adic completion

Let I be a proper ideal of a commutative ring R and let M be an R-module.
We have the completion γ : R −→ R̂I = limR/Ii, which is a continuous homomor-
phism of topological rings. We say that R is complete at I if γ is an isomorphism.

We also have the completion γ : M −→ M̂I = lim M/IiM , which is a continuous

homomorphism of topological R-modules. Let Î = {(ri)|r0 = 0}. Then Î is an ideal

of R̂I such that În = {(ri)|ri = 0 if i < n}. The associated graded rings E0
I R and

E0
Î
R̂ are the same. The Artin–Rees lemma gives the following fundamental result.

Lemma 4.1. If R is Noetherian, then completion is an exact functor on the cate-

gory of finitely generated R-modules. Therefore R̂I is a flat R-module.

Algebraic topologists must often work with rings that are not Noetherian and
modules that are not finitely generated even when R is Noetherian. For them, the
“right” notion of completion is not I-adic completion, but rather its zeroth left
derived functor (and its first left derived functor is also relevant).

Lemma 4.2. Let m be a maximal ideal of R. Then R̂m is a local ring with maximal

ideal m̂, and R/m = R̂m/m̂. The completion R −→ R̂m is the composite of the

localization R −→ Rm and the completion Rm −→ R̂m.

Proof. We must show that an element (ri) of R̂I that is not in m̂ is a unit. Now
(ri) /∈ m̂ if and only if r0 6= 0 in R/m. Since ri maps to r0 under R/m

i −→ R/m,

ri is not in mR/m
i, so is a unit in R/m

i. The sequence (r−1
i ) is (ri)

−1 in R̂m. �

A complete local ring R is a Noetherian local ring which is complete at its
maximal ideal m. Such rings are central to number theory and algebraic geometry.

Example 4.3. The p-adic integers Ẑ(p) are usually denoted Zp (or sometimes Ẑp).

They can be represented in terms of “infinite p-adic expansions”
∑

aip
i, where

0 ≤ ai < p.

Example 4.4. The completion of the polynomial ring R[x1, · · · , xn] at the ideal
I = (x1, · · · , xn) is isomorphic to the power series ring R[[x1, · · · , xn]]. Explicitly,
send a formal power series f to the element (f mod Ii) of the completion. For
the inverse, consider an element (fi) of the completion. Here fi can be represented
(mod Ii) as a polynomial of degree less than i in the xq, and then fi = fi+1 plus
terms of degree i + 1. The formal power series f0 + (f1 − f0) + (f2 − f1) + · · · gives
the corresponding element of the power series ring.

It is left as an exercise to prove that if R is I-adically complete, then I is
contained in the radical of R. If M is I-adically complete, then it is an R̂I -module
and therefore multiplication by 1 + a, a ∈ I is an automorphism of M .
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It is also left as an exercise to prove that if I = (a1, · · · , an) is an ideal in a

Noetherian ring R, then R̂I is isomorphic to

R̂I
∼= R[[x1, . . . , xn]]/(x1 − a1, · · · , xn − an).

This has the following basic consequence.

Corollary 4.5. If R is Noetherian, then R̂I is Noetherian.

One way to work the excercise just cited is to use the following result, which
shows that ideal theory passes nicely to completions.

Proposition 4.6. Let I and J be ideals in a commutative Noetherian ring R and

let M be a finitely generated R-module. Then

(̂JM)I = J · M̂I and ̂(M/JM)I
∼= M̂I/JM̂I .

Moreover, (̂JM)I is the closure of JM in M̂I .

Proof. By Artin–Rees, the short exact sequence

0 //JM //M //M/JM //0

gives an exact sequence

0 // (̂JM)I
//M̂I

// ̂(M/JM)I
//0

on passage to I-adic completion, and this implies that (̂JM)I is the closure of JM

in M̂I . Certainly J · M̂I ⊂ (̂JM)I . Let J = (a1, · · · , ar) and define φ : M r −→ M
by φ(m1, · · · , mr) =

∑
aimi. The image of φ is JM , so we have an exact sequence

M r
φ

//M
π

//M/JM //0.

On passage to limits , there results an exact sequence

(M̂I)
r = (̂M r)I

φ̂
//M̂I

π̂
// ̂(M/JM)I

//0.

Since the kernel of π̂ must be (̂JM)I , this gives ̂(M/JM)I
∼= M̂I/(̂JM)I . Here

again, φ̂(m1, · · · , mr) =
∑

aimi, where now mi ∈ M̂I . The image of φ̂ is J · M̂I ,

and this is equal to the kernel, ĴMI , of π̂. �

Corollary 4.7. Let M̂i denote the kernal of the projection M̂I −→ M/IiM . Then

M̂i = Ii · M̂I . Thus the linear topology of M̂I coincides with its I-adic topology as

an R-module, which in turn coincides with its I ·R̂I-adic topology as an R̂I-module.

Proof. M/IiM = ̂(M/IiM)I , and the kernel of M̂I −→ ̂(M/IiM)I is Ii · M̂I by
the previous result. �

5. Faithfully flat R-modules

An R-module N is said to be faithfully flat if a sequence of R-modules is exact
if and only if it becomes exact on tensoring with N . We shall relate this notion to
completions. We record the following general result.

Proposition 5.1. An R-module N is flat if and only if the canonical map

I ⊗R N −→ R ⊗R N ∼= N

is a monomorphism for all finitely generated ideals I, so that I ⊗R N ∼= IN .
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Proof. The forward implication is clear. Assume the condition on ideals. Any ideal
is the colimit of its finitely generated ideals, and tensoring with N commutes with
colimits. We conclude that I ⊗R N −→ N is a monomorphism for any ideal I. Let
M ′ −→ M be a monomorphism. We must show that M ′ ⊗R N −→ M ⊗R N is a
monomorphism. Clearly M is the colimit of the sums M ′ + M ′′, where M ′′ ⊂ M
is finitely generated. By induction on the number of generators and passage to
colimits, it suffices to show the required monomorphism when M = M ′ + Rx for
some x ∈ M . Let I = {r|rx ∈ M ′}. We then have a short exact sequence

0 //M ′
//M //R/I //0.

Since we have a short exact sequence

0 //I //R //R/I //0

and since I ⊗R N −→ R⊗R N is a monomorphism, we see that TorR
1 (R/I, N) = 0.

Therefore M ′ ⊗R N −→ M ⊗R N is a monomorphism. �

The following result, together with Nakayama’s lemma, shows that flat modules
are often necessarily faithfully flat.

Proposition 5.2. The following conditions on an R-module N are equivalent.

(i) N is faithfully flat.

(ii) N is flat and M ⊗R N = 0 implies M = 0.
(iii) N is flat and mN 6= N if m is a maximal ideal.

Proof. (i) =⇒ (ii): If M ⊗R N = 0, then 0 −→ M −→ 0 becomes exact after
tensoring with N , hence is exact, and M = 0.
(ii) =⇒ (iii): N/mN ∼= R/m ⊗R N , so this is clear.
(iii) =⇒ (ii): Assume M ⊗R N = 0 and x ∈ M is non-zero. Then Rx ∼= R/I, where
I is the annihilator of x. Embed I in a maximal ideal m. Since IN ⊂ mN 6= N ,
Rx⊗R N ∼= N/IN 6= 0. Since N is flat Rx⊗R N −→ M ⊗R N is a monomorphism,
which contradicts the assumption that M ⊗R N = 0.

(ii) =⇒ (i): Let M ′ f−→ M
g−→ M ′′ be a sequence such that

M ′ ⊗R N
f⊗id−−−→ M ⊗R N

g⊗id−−−→ M ′′ ⊗R N

is exact. Then, using that N is flat, Im(g ◦ f) ⊗R N = 0. Therefore Im(g ◦ f) = 0
and g ◦ f = 0. Let H = Ker(g)/Im(f). Again, H ⊗R N = 0, hence H = 0. �

A ring homomorphism f : R −→ S is said to be faithfully flat if S is faithfully
flat as an R-module.

Proposition 5.3. Let f : R −→ S be a faithfully flat ring homomorphism.

(i) For any R-module M , extension of scalars

id⊗f : M = M ⊗R R −→ M ⊗R S

is a monomorphism. In particular, f is a monomorphism.

(ii) Regard f as an inclusion. If I is an ideal in R, then IS ∩ R = I.

Proof. For (i), let x ∈ M be non-zero. The monomorphism Rx ⊗R S −→ M ⊗R S
has image (x ⊗ 1)S, hence x ⊗ 1 is non-zero. To see (ii), apply (i) to M = R/I,
noting that M ⊗R S ∼= S/IS. If r ∈ R is not in I, then it is also not in IS. �
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6. Zariski rings

A pair (R, I) consisting of a commutative Noetherian ring R and an ideal I ⊂
√

R
is called a Zariski ring. The interest of this notion comes from the following result.

Theorem 6.1. The following conditions are equivalent for an ideal I in a commu-

tative Noetherian ring R.

(i) I ⊂
√

R.

(ii) Every ideal of R is closed in the I-adic topology.

(iii) R̂I is faithfully flat over R.

Proof. (i) =⇒ (ii): More generally, N ⊂ M is closed for any submodule of a finitely
generated R-module M since M/N is Hausdorff by the Krull intersection theorem
and therefore {0} is closed in M/N .

(ii) =⇒ (iii): It suffices to show that mR̂I 6= R̂I for every maximal ideal m. Since

{0} is closed in R, ∩Ii = 0 and the completion γ : R −→ R̂I is a monomorphism.

Since m is closed in R and mR̂I is the closure of m in R̂I , mR̂I∩R = m and therefore
mR̂I 6= R̂I .
(iii) =⇒ (ii): mR̂I 6= R̂I for any maximal ideal m. Since R̂I is I-adically complete,

ÎI is contained in the radical of R̂I . As in (i) =⇒ (ii), if N is a submodule of a

finitely generated R̂I -module M , then N is closed in M . Since γ is continuous,
m = mR̂I ∩ R is closed in R. If I is not contained in m, then Ii + m = R for all
i > 0, contradicting that m is closed in R. Therefore I ⊂

√
R. �

Consider a Noetherian local ring R with maximal ideal m. Obviously, m =
√

R.
We have proven the following results. Recall that R is said to be complete if it is
m-adically complete.

1. ∩m
i = 0.

2. If N is a submodule of a finitely generated R-module M , then N is closed in
the m-adic topology. That is, N = ∩(N + m

iN).

3. Let R̂ = R̂m. Then R̂ is faithfully flat over R, R ⊂ R̂, and I = IR̂ ∩ R for
any ideal I.

4. R̂ is a Noetherian local ring with maximal ideal mR̂, and R̂/m
iR̂ ∼= R/m

i for

i > 0. In particular, R and R̂ have the same residue field.
5. If R is a complete local ring and I is a proper ideal, then R/I is a complete

local ring.

7. The I-adic metric on R

Let I be an ideal in R and define d(x, y) to be 1/n if x − y is in In and not in
In+1 and to be 0 if x − y ∈ ∩In. Then d(x, y) = d(y, x) and

d(x, z) ≤ max(d(x, y), d(y, z)) ≤ d(x, y) + d(y, z).

Thus d is a pseudo-metric on R, and it is a metric if ∩In = 0.
Any pseudo-metric space X is normal. If A and B are disjoint closed subset of

X , let U = {x|d(A, x) < d(B, x)} and V = {x|d(B, x) < d(A, x)}. Then U and V
are disjoint open subsets that contain A and B. Of course, X need not be Hausdorff
since points need not be closed.

We assume the reader knows what a Cauchy sequence is and what it means for
two Cauchy sequences to be equivalent. We say that X is complete if every Cauchy
sequence converges, and every Cauchy sequence then converges to a unique point
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if X is Hausdorff. We define the completion of X to be the set of equivalence
classes of Cauchy sequences with the induced metric topology, where d((xn), (yn))

is the limit of the d(xn, yn). The completion γ : X −→ X̂ sends x to the constant
sequence at x, and it is a continuous map with dense image.

Proposition 7.1. The completion of R at I is canonically homeomorphic to its

completion in the I-adic metric.

Indeed, the metric topology is the same as the I-adic topology on R. More
explicitly, an element (ri) of limR/Ii can be viewed as an equivalence class of
Cauchy sequences in R.

8. Hensel’s lemma

Here is one fundamental and beautiful reason to care about complete rings, and
especially complete local rings.

Lemma 8.1 (Hensel’s lemma). Let R be an I-adically complete Noetherian ring

and let k = R/I be the residue ring. Use small letters for polynomials in k[x] and

capital letters for polynomials in R[x]. Let F be a polynomial in R[x] that reduces

mod I to a polynomial f = gh in k[x], where g and h are relatively prime and g is

monic. Then there is a factorization F = GH in R[x] such that G and H reduce

mod I to g and h and G is monic. If h is also monic, then H can be chosen to be

monic and the resulting factorization is unique.

Sketch Proof. Choose any polynomials G1 and H1 that reduce mod I to g and h,
taking G1 to be monic and taking deg(G1) = deg(g) and deg(H1) = deg(h). Pro-
ceeding inductively, suppose given Gn and Hn that reduce mod In to g and h, where
Gn is monic, deg(Gn) = deg(g) and deg(Hn) = deg(h). Write F −GnHn =

∑
aiJi,

where ai ∈ In and deg(Ji) < deg(F ). Since (g, h) = 1, there are polynomials
ui and vi such that ji = gui + hvi, and we can arrange that deg(ui) < deg(h)
by replacing ui by its remainder after division by h and adjusting vi accord-
ingly. Then deg(hvi) = deg(ji − gui) < deg(f) and therefore deg(vi) < deg(g).
Choose Ui and Vi that reduce mod I to ui and vi, with deg(Ui) = deg(ui) and
deg(Vi) = deg(vi). Set Gn+1 = Gn +

∑
aiVi and Hn+1 = Hn +

∑
aiUi. A quick

check shows that F ≡ Gn+1Hn+1 mod In+1, Gn+1 is monic, deg(Gn+1) = deg(g)
and deg(Hn+1) = deg(h). Then (Gn) and (Hn) are Cauchy sequences (coefficient-
wise) and we can pass to limits to obtain polynomials G and H as required. When
h is monic, we can choose the Hn to be monic, and comparison shows that different
choices of the sequences Gn and Hn give equivalent Cauchy sequences. �

Corollary 8.2. If F ∈ R[x] and a ∈ R are such that F ′(a) is a unit in R and

F (a) ≡ 0 mod I, then there exists b ∈ R such that F (b) = 0 and b ≡ a mod I.

Proof. Reducing mod I, f(x) = (x − ā)g(x). Since

f ′(x) = g(x) + (x − ā)g′(x),

g(x) ≡ f ′(x) ≡ f ′(ā) mod (x − ā).

Since f ′(ā) is a unit in k, g(x) and x− ā generate k[x] and thus are relatively prime.
Hensel’s lemma gives F (x) = (x − b)G(x), where G reduces to g and x − b reduces
to x − ā mod I. �


