
PROJECT DESCRIPTION:
HIGHER CATEGORICAL STRUCTURES AND THEIR APPLICATIONS

PROPOSED RESEARCH

1. Background, context, and perspective

Eilenberg and Mac Lane introduced categories, functors, and natural transforma-
tions in their 1945 paper [54]. The language they introduced transformed modern
mathematics. Their focus was not on categories and functors, but on natural trans-
formations, which are maps between functors. Implicitly, they were introducing the
2-category “Cat” of categories, functors, and natural transformations.

Higher category theory concerns higher level notions of naturality, which can be
expressed as maps between natural transformations, maps between such maps, and
so on, that is, maps between maps between maps. Just as the original definitions
of Eilenberg and Mac Lane gave a way of thinking about categorical structures
and analogies between such structures in different fields, higher category theory
promises to allow serious thinking about and study of higher categorical struc-
tures that appear in a variety of specific fields. The need for such a language has
become apparent, almost simultaneously, in mathematical physics, algebraic geom-
etry, computer science, logic, and, of course, category theory. As we shall explain,
such a language and a relevant body of results is already implicit throughout al-
gebraic topology. In all of these areas, higher categorical structures are there in
nature, and one needs a coherent way of thinking about them.

To give some feel for how such structures appear, we briefly consider topological
quantum field theory (TQFT). A TQFT is a structure-preserving functor from a
suitable cobordism category of manifolds to an analogously structured algebraic
category. With the usual definitions, the objects of the domain category are closed
manifolds of a certain dimension and the maps between them are equivalence classes
of cobordisms between them, which are manifolds with boundary in the next higher
dimension. However, it is in many respects far more natural to deal with an n-
cobordism “category” constructed from points, edges, surfaces, and so on through
n-manifolds that have boundaries with corners. The structure encodes cobordisms
between cobordisms between cobordisms. This is an n-category with additional
structure, and one needs analogously structured linear categories as targets for the
appropriate “functors” that define the relevant TQFT’s. One could equally well
introduce the basic idea in terms of formulations of programming languages that de-
scribe processes between processes between processes. A closely analogous idea has
long been used in the study of homotopies between homotopies between homotopies
in algebraic topology. Analogous structures appear throughout mathematics.

In contrast to the original Eilenberg-Mac Lane definitions, there are many pos-
sible definitions of n-categories for larger n. This is already visible when n = 2,
where there are strict 2-categories and weak 2-categories. However, the two notions
are suitably equivalent, whereas this is false for n ≥ 3. It is not to be expected
that a single all embracing definition that is equally suited for all purposes will
emerge. It is not a question as to whether or not a good definition exists. Not
one, but many, good definitions already do exist, although they have been worked
out to varying degrees. There is growing general agreement on the basic desiderata
of a good definition of n-category, but there does not yet exist an axiomatization,
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and there are grounds for believing that only a partial axiomatization may be in
the cards. This is a little like the original axiomatization of a cohomology the-
ory in algebraic topology, where the core axioms give a uniqueness theorem, but
full generality allows variants. Thus, for example, singular and Cech cohomology
are different, although they agree on finite complexes. There are deeper and more
relevant analogies with algebraic topology that we will explain below.

In the 1930’s, there were many definitions of cohomology theories and no clear
idea of the relationship between them. Definitions of algebraic K-theory (in the late
1960’s), of spectra in algebraic topology (in the early 1960’s on a crude level and
in the 1990’s on a more highly structured level), and of mixed motives in algebraic
geometry (ongoing) give other instances where a very major problem was, or is, the
foundational one of obtaining good definitions and a clear understanding of how
different good definitions are related. That is the nature of the main focus of the
project we are proposing.

We are also working on applications that are intertwined with these foundational
issues, and we propose related work in several directions. Our technical proposal
gives a brief and inadequate overview of the state of the art in these areas. In
fact, only one of the six co-Directors of this project has his mathematical roots in
category theory. The others have roots in algebraic topology, mathematical physics,
algebraic geometry, logic, and computer science. We intend to continue our work
in these areas. Nevertheless, like all others interested in n-categories, we agree
that the fundamental problem of understanding the foundations must be addressed
satisfactorily for this subject to reach maturity. We believe that, despite their
intrinsic complexity, when developed coherently, higher categorical structures such
as n-categories, will eventually become part of the standard mathematical culture.

In the United States, the last sentence may well read as hyperbole, a gross
overstatement. That is far less true elsewhere. Category theory was invented in the
United States, and many of its pioneers worked here. However, the category theory
community has burgeoned elsewhere while it has contracted here. For example, the
category theory discussion list on the web has more subscribers than the algebraic
topology discussion list, but a far smaller proportion of Americans, and a still
smaller proportion of the active mathematicians on the list are American. It is
hard to think of another important field of mathematics in which the United States
is so woefully weak. As far as we know, no category theorist is supported by the
NSF. It is not even clear to which program such a person could apply.

This might not matter if the field were peripheral, but it is not. Categorical ideas
are implicit in many major branches of modern mathematics, and it is painfully
apparent to a categorically knowledgable reader that much recent work contains
reinventions in specific areas of material that has been familiar to category theorists
for decades. There are common categorical structures that appear in a variety of
mathematical contexts, and there is a lot to be said about them in full generality.
It is a beautiful part of the essential nature and structure of mathematics that the
best way to solve a problem is often to generalize it. In particular, it is often very
much harder to understand a categorical structure in a specialized context than it
is to understand it in its natural level of generality.

We have no doubt that this applies to higher category theory and its applica-
tions. While the theory must be developed with a close eye to the applications,
the internal logic and fundamental nature of the mathematical structures at hand,
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their aesthetics if you will, must be the main guide to the development of the foun-
dations. Anything less would be fundamentally shortsighted. In the technical part
of the proposal to follow, we shall give our current vision of how the project of
unification seems likely to proceed, outlining a precise technical program. We shall
also try to explain the relevance of foundational work in higher category theory to
applications in specific fields.

The U.S. PI’s on this proposal are not themselves expert in modern category
theory. They have ideas that they wish to see implemented, but expertise that is
unavailable in the United States will be needed to carry out these ideas in detail.
There are strong and active groups of mathematicians working in category theory
in other countries, and they are training a new generation of excellent young people.
There are no such groups in this country. Some of these young people are directly
interested in n-category theory, and we are already working in collaboration with a
few of them. We hope to use the resources of an FRG to bring such young people to
this country for sustained collaboration. We hope that this, and other facets of our
project, will help initiate a rejuvenation of category theory in the United States.

We wish to emphasize the communal nature of this proposal. Around fifty “in-
formal participants” have actively aided us in its preparation. A list of their names
and affiliations is given below. The list includes most of the people who have
worked on the definition and analysis of n-categories and most of the people who
are directly involved in their applications. These people come from a wide range
of backgrounds, interests, and locations. They are all in agreement that the time
is right to make a concerted effort to establish firm and coherent foundations for
higher category theory. The lack of such foundations is a major impediment to
further progress in a number of important areas of application. They join us in
hoping to develop modes and habits of collaboration that will allow us to give this
entire field of mathematics a more coherent and unified structure.

2. The relationship with higher homotopies

Higher category theory is related both mathematically and by analogy to the
higher homotopies that have been used since the late 1940’s in algebraic topology
and homological algebra. The analogy is obvious and precise: a natural transfor-
mation between functors C → D can be viewed as a functor C × I → D, where I
is the evident category with two objects and one non-identity morphism. Category
theory is intrinsically more general, in a transparently obvious way: homotopies
have inverses, but natural transformations do not.

Steenrod’s 1947 paper [137] already used a sequence of higher commutativity
homotopies, called ∪i-products, on cochains to define the Steenrod squares in mod
2 cohomology. The ∪i were quickly made combinatorially explicit, but that feature
disappeared from memory, returning in the 1990’s in one proof of Deligne’s conjec-
ture on the cochain algebra of Hochschild cohomology [116, 117]. The reason for the
amnesia is that, to define Steenrod operations in mod p cohomology for odd primes
p, the higher homotopies were encapsulated within the language of resolutions and
the cohomology of groups [138].

A similar passage from explicit higher homotopies to abstract encapsulations
reappeared on the space level in the theory of A∞-spaces of Sugawara and Stasheff
[135, 136, 144, 145, 146] and its later codifications in terms of operad actions (E1-
spaces) [113] or diagrams of spaces (∆-spaces) [126]. Here the notion of a topological
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monoid is relaxed to a notion where strict associativity is replaced by a sequence
of higher associativity homotopies. The combinatorics of higher homotopies are
encapsulated in a more conceptual framework, and it is found that any A∞-space
is equivalent to a topological monoid.

A deeper manifestation of similar ideas appeared around 1970 in the theory of
iterated loop spaces. Here Steenrod’s two approaches to cohomology operations
were recapitulated homotopically in the development of homology operations, mod
2 by Kudo and Araki [2] and mod p by Dyer and Lashof [51]. In parallel, the theory
of A∞-spaces was generalized to a topological theory of iterated loop spaces that
aimed at an understanding of what internal structure on a space ensures that it is
equivalent to an n-fold or infinite loop space. Here work of Boardman and Vogt,
May, and Segal [21, 113, 126] gave conceptual encapsulations that hid the implicit
higher homotopies, whose combinatorial structure is still somewhat obscure. These
encapsulations are given in terms of PROP or operad actions (En and E∞-spaces)
or diagrams of spaces (Γ-spaces).

3. Higher categorical structures

It is gradually becoming more and more apparent that the categorical analogues
of higher homotopies appear throughout mathematics and its applications, at least
implicitly. Explicit use of 2-categories is by now commonplace. To give just one
example, the theory of algebraic stacks [91] makes pervasive use of this language.
Quite generally, homotopy theory of the classical sort, both on spaces and on chain
complexes, is intrinsically 2-categorical: homotopies are maps between maps.

Like categories themselves, 2-categories are easy to understand. However, there
is a glimpse of difficulties to come. There are strict 2-categories, defined by Ehres-
mann and Eilenberg and Kelly [52, 53] and there are weak 2-categories, defined
by Benabou [18] under the name of bicategories. Intuitively, in strict 2-categories,
coherence diagrams are required to commute; in weak ones, they are required to
commute only up to natural isomorphism. Here the difference is only technical,
since there is a theorem that any weak 2-category is equivalent in a suitable sense
to a strict one [89].

The difficulties in understanding n-categories become fully apparent only for
n = 3, where the corresponding result does not hold: not every weak 3-category is
equivalent to a strict one. Indeed, while strict n-categories for all n were defined by
Eilenberg and Kelly in the same 1965 paper in which they defined strict 2-categories,
even for n = 3 the more general weak ones were only defined by Gordon, Power
and Street thirty years later [66], under the name of tricategories.

Despite their greater subtlety, it is the weak n-categories that are most impor-
tant in applications. This becomes clear already for n = 3. For example, knot
theory and the quantum invariants of 3-manifolds make extensive use of braided
monoidal categories, which are a special kind of weak 3-category [81]. Also, Joyal
and Tierney [83] have shown that weak 3-categories are a suitable framework for
studying homotopy 3-types, while the strict ones are not sufficiently general. For
this reason, current research is concentrated on understanding weak n-categories.
As is becoming standard, we call these simply ‘n-categories’ from now on.

There are several other kinds of higher categorical structures that occur naturally
and are directly relevant to the study of n-categories. For example, there are n-fold
categories and multicategories which have many compositions, but not arranged
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hierarchically as in n-categories. There are also weakenings of the notion of a
category. For example, we may view a category as a monoid with many objects,
and there is a notion of an A∞-category analogous to the notion of an A∞-space
(e.g. [11]). Both notions have cochain level algebraic versions, and the Fukaya
categories relevant to mirror symmetry are naturally occurring examples of such
algebraic A∞-categories [61, 62].

4. The focus of this proposal

Our central focus is the understanding of n-categories and their applications,
where n ≥ 3. We allow n to go to infinity and include the study of ω-categories
(or ∞-categories). The theory of 3-categories worked out in [66] is explicit and
combinatorial. While not every 3-category is equivalent to a strict 3-category, there
is an intermediate notion of a Gray category [68], or semi-strict 3-category, such that
every 3-category is equivalent to a Gray category. The idea is that some but not
all coherence diagrams can be arranged to commute strictly without essential loss
of information. Trimble [152] has defined 4-categories in a similarly concrete vein,
but it is apparent that more conceptual encapsulations are essential to a coherent
theory of n-categories that can be useful in applications.

The problem of understanding n-categories is so very natural that a dozen dif-
ferent definitions have been proposed. Ten of them are sketched in Leinster [99],
with no attempt at comparisons. Many are direct descendents of ideas introduced
in the study of iterated loop space theory, involving operad actions or categories of
presheaves (diagram categories in the topological literature). While the plethora
is indicative of the broad interest in the subject, the situation is untenable for as
potentially important an area of mathematics as this. People working on these def-
initions are spread around the world, with the largest groups in Australia, France,
and the British Isles. Only a very few people in the United States are currently
involved. Moreover, the definitions have been proposed by people with backgrounds
in mathematical physics, algebraic geometry, and algebraic topology, as well as by
category theorists with backgrounds in logic and/or computer science. There is
a need for both specific theories of n-categories and for a metatheory, ideally an
axiomatization, that describes what features the specific theories should have in
common. Further, there is an evident need for precise comparisons among theo-
ries. Once the theory is better understood, there is a need to explain it in intuitive
non-technical terms that are accessible to those without categorical expertise.

5. Programs for comparisons of definitions

May has initiated one program for comparison. It is based on the use of tech-
niques introduced in algebraic topology, especially Quillen model category theory,
which have recently been used to obtain precise comparisons among very different
definitions of highly structured spectra in stable homotopy theory [111, 112, 125].
The much earlier axiomatizations of infinite loop space machines and of one-fold
loop space machines given in [56, 115, 149] are also directly relevant. The analogies
are close enough that at least a portion of the theory of n-categories works in an
analogous fashion.

However, the project here is far larger than the cited comparison projects in alge-
braic topology. The definitions of n-categories are very different one from another,
having arisen from such widely different perspectives, and they involve awesomely
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complicated combinatorics. The hope and expectation is that this proposed method
of comparison will cut through the combinatorics, just as the cited comparisons in
topology turned out to depend on general features rather than on the distinctive
intricacies of the various definitions being compared.

Nevertheless, the combinatorics must be retained, perhaps in encapsulated form,
because it is the central feature for many areas of application. An alternative
approach to unification, one which confronts rather than hides the combinatorics,
has been proposed by Makkai [107], thinking from a logical perspective that seems
worlds apart from the perspective arising from algebraic topology. There is an
another program for comparison that again involves ideas from algebraic topology
but retains more of the combinatorics. It is based on a rethinking of homotopical
algebra, still in a somewhat preliminary stage, in terms of variant kinds of simplicial
analogues of A∞-categories, which are variously called Segal categories (Dwyer,
Kan, and Smith [50]), weak Kan complexes or quasi-categories (Joyal [80]), or h-
categories (Kontsevich [90]), and which first appeared implicitly in the work of
Segal [126] and explicitly in the work of Boardman and Vogt [21]. We shall later
refer ambiguously to any such notion as a “weak category”. Boardman and Vogt
were concerned with homotopy invariant structures in algebraic topology, and the
issues they confronted are closely analogous to the issues involved in retaining the
combinatorics in a comparison of n-categories. We need to understand not just how
to compare definitions but how to compare different kinds of comparisons.

The tension and interplay between the encapsulated global perspective and the
unravelled combinatorial perspective is a major source of richness and difficulty in
this entire subject. The definition of strict n-categories illustrates the point. There
is a well understood notion of a category C enriched over a category B. For each
pair of objects X, Y of C, there must be an internal hom object C(X,Y ) in B. The
category B must have a product, say ⊗, and there must be composition maps in B

C(Y, Z)⊗ C(X, Y ) −→ C(X,Z).

Starting from (small) categories as 1-categories and using × as ⊗, we define strict
(n + 1)-categories inductively as categories enriched over the category of strict n-
categories. This is clear, concise, and conceptual. In this case, it is not hard to
unravel the encoded combinatorics and write down in explicit non-recursive terms
exactly what a strict n-category or strict ω-category is. Ignoring well understood
set-theoretic issues, as we shall do throughout this proposal, we find that the cate-
gory of strict n-categories is itself a strict (n+1)-category. A major expected feature
of any good definition of (weak) n-categories is that the category of n-categories
should itself be an (n + 1)-category. We shall return to a more detailed discussion
of the foundational issues after describing some special cases, some related higher
categorical structures, and some areas of application. The foundational issues we
intend to address are intertwined with the structures needed in the applications.

6. Strict ω-categories and concurrency problems

The unravelled combinatorical structure of strict ω-categories turns out to be
directly relevant to the study of concurrency problems in computer science. An
example of such a problem is the management of simultaneous transactions by a
centralized data bank so as to avoid deadlock. More precisely, it is relevant to
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understanding the deformations of higher dimensional automata that leave invari-
ant the quantities that are relevant to such applications. This theory is related
both to the higher category theory that is our central focus and to the ongoing
efforts to understand homotopy theory in terms of higher categorical structures.
It leads to an interesting new variant of homotopy theory that feels natural both
categorically and topologically, called directed homotopy, or “dihomotopy”. The
point is that in concurrency problems one is dealing with time directed flows, with
no time reversal. Dihomotopy theory is concerned with spaces with a local partial
ordering that represents the time flow and with directed, or non-decreasing, maps.
Each map ht in a directed homotopy h between directed maps h0 and h1 must
be directed. There is an obvious forgetful functor mapping dihomotopy theory to
homotopy theory. Using the natural ordering of the interval, the unreduced sus-
pension provides a functor “Glob” relating homotopy theory to directed homotopy
theory; each value of the suspension coordinate gives a copy of X in GlobX as an
“achronal cut”, a subspace on which the partial order reduces to equality. The rela-
tionships among homotopy theory, dihomotopy theory, and higher category theory
are not well understood. An idea of the state of the subject is given in the papers
[63, 64, 65, 67] of Gaucher and Goubault. Work in this area currently use strict
n-categories, but there are interesting theoretical and computational interactions
with the weak theory.

7. Unravelling of definitions and k-tuply monoidal n-categories

Unravelling some of the recursive definitions of n-categories appears to be quite
difficult. While the specialization of most to 1-categories and 2-categories is rea-
sonably well understood, relating the various proposed definitions to 3-categories
as described in [66] is already a difficult undertaking. Thus detailed explorations in
low dimensions are essential. A related and fascinating specialization is to (n + k)-
categories with only one object, one 1-morphism, and so on up to one (k − 1)-
morphism for some k. There is a reindexing process that allows one to transform
such an (n + k)-category to an n-category with additional structure, called a k-
tuply monoidal n-category. Baez and Dolan [8, 9] have formulated very interesting
conjectures as to the structure of such special kinds of n-categories.

As yet unknown higher dimensional analogues of Gray categories are relevant
here since these speculations are best understood in semi-strict situations. For ex-
ample, as a starting point, McCrudden [118] has given a fully explicit combinatorial
definition of a symmetric monoidal 2-category.

In low dimensions, the Baez and Dolan conjectures work as follows. When n = 0,
we obtain sets for k = 0, monoids for k = 1, commutative monoids for k = 2 and,
conjecturally, commutative monoids for all k ≥ 2. When n = 1, we obtain categories
for k = 0, monoidal categories for k = 1, braided monoidal categories for k = 2,
and, conjecturally, symmetric monoidal categories for all k ≥ 3. When n = 2,
one starts at k = 0 with 2-categories and conjectures that the sequence stabilizes
at strongly involutory monoidal 2-categories for k ≥ 4. This point of view gives
a clear conceptual reason for the appearance and importance of braided monoidal
categories and higher analogues that appear naturally in such areas as knot theory
and mathematical physics. For example, categories of representations of quantum
groups are braided monoidal categories [81].
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The general stabilization conjecture, analogous to the Freudenthal suspension
theorem for homotopy groups, is that the sequence stabilizes when k ≥ n+2. This
is a test property for a good definition of n-categories, and Simpson [132] has proven
it for one of the proposed definitions [129, 147]. Batanin’s recent work [15] relating
his higher operads (without permutations) to classical operads is an important step
towards proving it for his entirely different proposed definition [12].

8. Categorical modelling of homotopy types

The comparison with homotopy theory is not frivolous. The reason for the
stabilization when n = 0 is a categorical version of the argument used to show
that the homotopy groups of spaces are Abelian for k ≥ 2. It is a basic fact
that this Abelianization fails for groupoids and still more so for the higher order
versions of fundamental groups defined in terms of paths, paths between paths,
and so on. In fact, Grothendieck [69] conjectured that homotopy theory itself
could be entirely algebraicized in terms of n-groupoids, which are n-categories in
which all morphisms are isomorphisms, and he seemed to have strict n-groupoids in
mind. However, it is now understood that the only spaces that can be modelled by
strict n-groupoids have trivial Whitehead products and indeed trivial k-invariants.
There are correct versions of Grothendieck’s program that use n-fold groupoids
or “n-categorical groups”, and these objects have been shown to be equivalent to
more calculationally accessible algebraic objects, such as “crossed n-cubes”; see for
example [24, 25, 38, 55, 100, 122]. There is a generalized Van Kampen theorem [30]
that allows the computation of some homotopy types, with explicit computations
of homotopy groups, compositions and Whitehead products in some cases.

The relationship of these methods in homotopy theory with other methods, such
as stabilisation, localisation, and completion, needs much further study. More ex-
plicitly, it would be of considerable interest to find a precise relationship between
this categorical algebraization of homotopy theory and the traditional algebraiza-
tions of rational, and, recently (Mandell [110]), p-adic homotopy theory in terms
of cochain algebras, but that is totally unknown territory at present. A current
impediment to such comparisons is that the use of higher dimensional analogues
of groupoids in algebraic topology is little known in the U.S, although it has been
pursued to good effect in Europe since the late 1960’s. For example, the survey [24]
cites 110 references, including only a few background works written by Americans.

The higher groupoid approach to homotopy theory gives an example of the kind
of technical interaction that this project should foster. In formulating and proving
a generalized Van Kampen theorem in the form of colimit theorems for relative
homotopy modules or crossed modules, Brown and Higgins [26, 27] were led to
extend cubical techniques (which have generally been discarded in the U.S.). They
introduced extra cubical degeneracies, called connections because of an analogy
with connections in differential topology, that obey an appropriate transport law.
Now, much later, this insight is playing a significant role in a homological approach
to concurrency problems, where cubical sets with connections and compositions,
and their relationship with strict ω-categories, play a major role.

This is related to a fundamental test property for definitions of n-categories.
It is known for some definitions (e.g. [83, 131, 148]) and must hold for any good
definition that homotopy theory can be modelled on (weak) n-groupoids, which
are the n-categories in which every morphism is an equivalence. More precisely,
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n-groupoids model spaces with trivial homotopy groups for i > n, and ω-groupoids
model all spaces. The relationship between this categorical modelling of homotopy
types and that in terms of n-fold groupoids requires elucidation. A closely related
problem is to understand n-categories in cubical terms rather than the traditional
simplicial terms. On the strict level, relationships have been worked out in [1, 28,
29], but none of the current definitions of n-categories are expressed in the cubical
terms that appear naturally in the n-fold groupoid approach to homotopy theory.

9. Categorical modelling of iterated loop spaces

There is another, quite different, categorical modelling of homotopy theory that
is conceptually related to the ideas just discussed and which well illustrates the
depth of the study of coherence maps and their properties. Balteanu, Fiedorowicz,
Schwänzl, and Vogt [10] introduced a theory of n-fold monoidal categories that
mimics and models categorically the tautology that an (n + 1)-fold loop space is
a loop space in the category of n-fold loop spaces. A 1-fold monoidal category is
just a monoidal category and, inductively, an (n + 1)-fold monoidal category is a
monoidal category in the category of n-fold monoidal categories. To make sense of
this, the category of n-fold monoidal categories must itself be monoidal, and here the
stabilization phenomenon is circumvented by relaxing the notion of a morphism of
n-fold monoidal categories. For example, a map F : A −→ B of monoidal categories
requires a coherence natural transformation η : F (A) ⊗ F (B) −→ F (A ⊗ B). If
such transformations are required to be isomorphisms, then stabilization occurs
and n-fold monoidal categories model infinite loop spaces for any n ≥ 3 [81]. In
contrast, with general transformations allowed, the theories of n-fold loop spaces
and of n-fold monoidal categories are essentially equivalent.

The relationship between the categorical modelling of spaces discussed in the
previous section and this categorical modelling of n-fold loop spaces is illuminated
by recent work of Batanin [15], who reinterprets the theory of [10] as a particular
case of a theory of suspensions of n-categories. The classical operads used in [10]
are actually constructed out of higher “n-operads”. Recent work of Day and Street
[40, 41] suggests a q-fold version of Batanin’s theory.

10. The semantics of programming languages

To return to our low dimensional examples, another example of categorical mod-
elling comes from the study of the structure of programming languages. A rigorous
mathematical programming semantics gives rise to categories with various kinds
of algebraic structure. This uses the theory of T -algebras for a 2-monad T , as in
[20]: already there are strict and weak notions. Much relevant structure on the
resulting 2-categories is weak and, as explained by Power [123], the study of this
structure and the study of the natural (weak) functors between the relevant 2-
categories involves 3-categories. By the coherence theorem mentioned in Section 3,
the relevant combinatorics can then be handled using Gray categories (semi-strict
3-categories). In extending this programme, Hyland and Power in [77] have studied
‘pseudo-commutative’ 2-monads. With this additional structure, the 2-category of
T -algebras reflects a general higher dimensional linear algebra [78]; in particular it
seems that these give examples of symmetric monoidal bicategories, but the rele-
vant combinatorics are not yet understood. Similar considerations to these appear
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to arise in the study of concurrent processes, the theory of higher dimensional au-
tomata, and probably also in proof theory. The higher dimensional algebra being
developed in connection with programming semantics is also relevant to a rigorous
formulation of TQFT (see below). But for that one will also need a good theory of
higher dimensional duality. At the level of monoidal bicategories this is treated in
[42], and the related theory of 2-Hilbert spaces is developed in [6].

11. Applications to TQFT

There are many applications of n-categories to mathematical physics; let us
mention just two. The most well-established application is to topological quan-
tum field theory. The connections between 3-dimensional TQFTs and category
theory have been intensively studied since the early 1980s by researchers includ-
ing Jones [79], Drinfel’d [44], Witten [155], Joyal–Street [81], Freyd–Yetter [60],
Reshetikhin–Turaev [154], and many others. Indeed, our current understanding of
braided monoidal categories, and of the necessity for “weakening” in n-category
theory, is to a large extent a spinoff of this body of work. By now it is known that
3-dimensional TQFTs can be constructed either from Hopf algebras or monoidal
categories. These constructions are related by the fact that the representations of
a Hopf algebra form a monoidal category. Many interesting examples are known,
mainly coming from the Hopf algebras known as quantum groups. Though research
in this area is still active, by now one can say that quantum groups and their relation
to quantum field theory—specifically, Chern–Simons theory—are well-understood.

It is widely believed that this whole story generalizes to higher dimensions. How-
ever, even in dimension 4, work is just beginning. On the bright side, we know how
to construct 4-dimensional TQFTs from certain Hopf categories [37] and monoidal
2-categories [101], and we also know that representations of a Hopf category form
a monoidal 2-category [120]. However, it has not yet been shown that the TQFT
coming from a given Hopf category is the same as that coming from its monoidal
2-category of representations. Still worse, the only concrete examples of these con-
structions so far come from the relation between n-categories and homotopy theory,
and thus give only homotopy invariants of 4-manifolds [102]. We really want ex-
amples that give explicit combinatorial formulas for Donaldson invariants, Seiberg–
Witten invariants, and related invariants of smooth 4-manifolds. For this, we need
to translate the quantum–field theoretic approach to these invariants into the lan-
guage of algebra, as was successfully done for Chern–Simons theory. One obstacle
is that, at least as currently formulated, Donaldson and Seiberg-Witten theory are
not TQFTs in the strict Atiyah sense [3], since they apply only to simply–connected
4-manifolds. The implications of this fact for the algebra are puzzling.

However, the current proposal will mainly have impact on another aspect of this
problem, namely developing the necessary n-categorical infrastructure for study-
ing TQFTs in higher dimensions. One crucial task is to clarify the concept of
“extended TQFT” [58, 92]. For this, we should define an n-category nCob whose
objects are collections of points, whose morphisms are cobordisms between these,
whose 2-morphisms are “cobordisms between cobordisms”, and so on up to the
nth dimension. An n-dimensional extended TQFT will then be a well-behaved n-
functor from nCob to the n-category nVect of “n-vector spaces”. Baez and Dolan
have conjectured a purely algebraic description of nCob in terms of a universal prop-
erty [4], which if verified will greatly assist in constructing examples. At present we



11

expect to focus on developing the theory of n-categories to the point where nCob
and nVect have been given rigorous definitions for all n; currently this has only
been done for low values of n [6, 84].

12. Applications to string theory

A second, newer, application of n-categories to mathematical physics arises from
string theory. In traditional quantum field theory particles are treated as pointlike,
and the parallel transport of a particle along a path is described using gauge fields,
that is, connections on bundles. In string theory, however, point particles are just
the bottom of a hierarchy which includes 1-dimensional strings, 2-dimensional “2-
branes”, and so on. It has gradually become clear that a consistent theory of these
higher-dimensional objects involves an n-categorical generalization of the concepts
of bundle and connection. So far this has most successfully been formalized using
the concept of n-gerbe, rigorously defined so far only for n ≤ 2 [22]. Intuitively, a
0-gerbe is just a sheaf, which assigns to any open set in the manifold representing
spacetime a set of “sections”, for example the sections of some bundle. Similarly, a
1-gerbe assigns to any open set a groupoid of sections, and a 2-gerbe assigns to any
open set a 2-groupoid of sections. Using a more precise and restrictive definition
of an n-gerbe, the set of equivalence classes of n-gerbes associated to a group G
and living over a space X can be viewed as the G-valued degree n non-Abelian
cohomology of X. For n = 1, this is the familiar description of equivalence classes
of principal G-bundles over X as the degree one G-valued cohomology of X. The
notion of connection and higher curvature data can be generalized to these contexts,
both when the coefficient group G is abelian [31, 103] and when it is non-Abelian
[23]. It has been suggested that the transport, and the interactions, of n-branes are
described by connections on n-gerbes [43, 59, 157], with the higher curvature forms
as the associated field strengths. This gives some urgency to the task of developing
the theory of n-gerbes and their differential geometry for higher values of n.

13. Applications to algebraic geometry

A classical application of algebraic topology to another area of mathematics
is the study of the topology of the complex points of algebraic varieties. In the
middle of the last century, this branched off into a closely related area, that of
defining analogues of algebraic topology (such as étale cohomology) for algebraic
varieties defined over general ground fields. It is natural that a close study of
higher homotopies is useful for the study of this aspect of algebraic geometry. In a
parallel development, at about the same time, category theory came into heavy use
in the formalization of algebraic geometry, especially with the concept of “sheaf”.
This again naturally leads to consideration of a form of higher homotopies, and
from there algebraic (and differential) geometers were led to a sort of homotopical
notion of sheaf called “stack”. This appears for example in the notion of how to
glue together sheaves which are defined on open subsets of a variety.

In more recent years these two directions have converged, with the development
of notions of “higher stacks” that encode sheaf-like data that takes into account the
existence of many different levels of higher homotopies. Intuitively, the n-gerbes
mentioned in the previous section are to n-stacks as n-groupoids are to n-categories.

To give an idea of the definition of an n-stack, suppose that we have a good
theory of n-categories on hand. Workers in this area have so far been using the
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Tamsamani-Simpson definition [129, 147]. We can regard a 1-category as an (n+1)-
category, and in the cited theory it makes sense to form the (n + 1)-category nCat
of n-categories and the internal hom (n + 1)-category HOM(Cop, nCat). This is
the (n + 1)-category of n-prestacks on C. When C is a Grothendieck site, we can
say what it means for an n-prestack to satisfy the descent condition for hyper-
coverings, and the resulting objects are the n-stacks for the site C. One can go
on to define ω-stacks. In particular, for a scheme X, one can define an ω-stack of
perfect complexes of OX -modules.

These and related definitions only make sense once one has sufficiently developed
foundations of n-category theory, and they are at the heart of the development of
non-Abelian Hodge theory of Simpson and his collaborators. We mention, for
examples, the construction of the non-abelian Hodge filtration, the Gauss-Manin
connection and the proof of its regularity (see [127, 133]), the higher Kodaira-
Spencer deformation classes (see [128]), the non-abelian (p, p)-classes theorem (see
[85]), a non-abelian analogue of the density of the monodromy (see [86]), and the
notion of non-abelian mixed Hodge structure (see [87]). Recently Toen has made
progress on Grothendieck’s program of defining “schematic homotopy types” (see
[151]) with a view toward the development of Hodge theory for these objects; this
in turn has given new restrictions on homotopy types of projective manifolds (see
[88]). All of these results were guessed and proved using higher stack and/or higher
category theory.

The Tamsamani-Simpson definitions of n-categories and related structures used
in this work have already allowed the generalization of a number of basic tech-
niques from category theory and topology [129, 130, 134]. On the other hand, in
this formalism, the composition operations giving the structure of an n-category
are implicit rather than explicit, which means that in some basic sense we lack
calculability. The paper [57] of Fiedorowicz and May, which compares definitions
of homology operations in terms of operads and in terms of Segal machinery, illus-
trates an analogous situation in infinite loop space theory. A comparison between
different theories of n-categories could potentially add a dimension of calculability
to the current applications of n-category theory to non-Abelian cohomology.

A closely related reason for alternative definitions is that the Tamsamani-Simpson
definition appears to be ill-adapted to more general contexts that deal with linear
higher categories, or more exotic enrichment. This problem has already proven to
be an obstacle to completing Toen’s program of Tannaka duality for n-categories
[150], an idea which is philosophically behind his work on schematization but which
has not yet been fully worked out. Again, a precisely analogous situation already
appeared in infinite loop space theory. Because Segal machinery depends on the
projections present on Cartesian products, it does not work for general kinds of
products, which usually lack projections. In contrast, operads are defined in any
symmetric monoidal category. The Batanin [12] and May [114] definitions of n-
categories are operadic, and the comparison, now nearing completion, between the
May definition and the Tamsamani-Simpson definition based on Segal machinery
should allow effective simultaneous use of these definitions in just the same way
that the corresponding two equivalent infinite loop space machines have long been
used in algebraic topology. These ideas are illustrative of the gains that we can
expect from a successful comparison program in n-category theory.
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14. The existing definitions of n-categories

Returning to the basic foundational questions, such as the comparison between
different definitions of n-categories, that are our main theme, we put forward a
tentative and provisional picture of some ways the theory might evolve.

The starting point must of course be the present state of the field: we have a
dozen definitions of n-categories, and a few comparisons. The various definitions are
at uneven stages of internal development. The earliest, due to Street, was presented
briefly and tentatively in [139, 140], 1987–88 papers that focused primarily on strict
n-categories. The explosion of interest in the area came almost a decade later. As
already noted, the basic monograph [66] on 3-categories did not appear until 1995.
A wave of definitions of n-categories, some still available only in brief summaries,
began appearing soon after. The list of references for this proposal includes around
fifty items dealing primarily with n-categories, all more recent than 1995.

We give a brief and inadequate overview of the various definitions, suppressing
the most important details, which concern, for example, what shapes of diagrams
are allowed for the various compositions of morphisms (which may or may not ac-
tually be directly present, or which may be suitably parametrized when present).
One can think in terms of diagrams based on iteration of the idea that a relation
h = g ◦ f is given as a triangle with edges f , g, and h. This gives simplicial shapes.
Alternatively, one can think in terms of iteration of the idea that a morphism of
maps is an arrow between parallel arrows. It is standard to write the “parallel”
arrows as upper and lower curves connecting source and target, hence the natu-
ral shape of the resulting diagrams is “globular”. Much more general shapes are
obtained if one thinks in terms of arrows between composites of arrows, and the
combinatorics used to describe this idea in conceptual form is new and interesting.

There are several ways of classifying the various definitions “taxonomically”.
Although there are persuasive reasons for enlarging the perspective to an enriched
context, as mentioned above, it is generally accepted that 0-categories should be
sets, 1-categories should be ordinary categories, and 2-categories should be bicate-
gories, at least up to suitable equivalence. In recursive definitions, (n+1)-categories
are defined as n-categories with suitable additional structure. In some cases, the
recursive definition is not the original one, but rather is obtained by examining a
more direct definition or by suitably specializing a definition of ω-categories.

Street’s original definition [139], which he has since developed much further, is
motivated by the classical simplicial approach to algebraic topology. A complete
analysis in low dimensions has been given by Duskin [45]. The starting point is that
any category can be viewed as a simplicial set via the nerve functor, and that one
can characterize combinatorially exactly which simplicial sets arise from categories
in this fashion. The definition identifies ω-categories as simplicial sets with appro-
priate higher level combinatorial restrictions, and it then identifies n-categories by
specialization. This is conceptually the simplest of a number of definitions that can
be thought of as given by presheaves with suitable combinatorial restrictions.

There are several definitions that are motivated by the operadic approach to
iterated loop spaces, and a direct comparison among them may be possible. In
the definitions of Batanin [12, 17, 141] and their later variants due to Leinster
[95, 96, 97, 98], n-categories are specializations of operadically defined ω-categories.
The shapes of diagrams in these definitions are globular, and the relevant operads
live in a category of globular sets that specifies the underlying diagrams of sets of
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ω-categories. A related definition has been given by Penon [121], and Batanin has
already compared that definition with his own [13]. In the same paper, Batanin
claimed that certain key combinatorial structures relevant to his definition, called
computads, were given as a category of presheaves. Makkai and Zawadowski noticed
that this fails in general, but Batanin [16] recently determined for which of his
higher operads the associated computads do form a presheaf category. The required
condition is expressed in terms of a sequence of classical operads determined by
his higher operad. There seems to be a close connection between the coherence
problem for weak n-categories and the behaviour of these operads, and Batanin
has formulated precise conjectures [16]. These points may sound technical, but
their understanding is an important first step towards further comparisons.

The definitions of Trimble [153] and May [114] are recursive, with (n + 1)-
categories defined to be algebras over some operad that defines a monad on the
category of n-categories. Trimble’s approach is geared towards relations to homo-
topy theory, and his operads are operads of n-categories. They are obtained by
applying a recursively defined functor from spaces to n-categories to a specific op-
erad of spaces that is defined in terms of paths on intervals. In contrast, May works
in an enriched context in which one can start with any operad C in Cat and make
sense recursively of an action of C on an n-category defined with respect to C; these
algebras are the (n + 1)-categories defined with respect to C.

Work in progress by Batanin and Weber promises to give a recursive version of
Batanin’s definition, and that should open the way to a comparison between his def-
inition and May’s. May’s definition allows many as yet unexplored generalizations
of the notion of an n-category. In particular, there is a notion of a q-fold monoidal
n-category that builds a direct analogue of iterated loop space theory into higher
category theory. This should admit comparison with the more highly developed
work of Batanin [15] relating iterated loop space theory to his suspension theory
on n-categories.

The definitions due to Tamsamani and Simpson [129, 147] are motivated by the
Γ-space approach to infinite loop spaces or, more precisely, the ∆-space approach to
1-fold loop spaces. They were developed with a view towards the theory of n-stacks
and its application to the development of non-Abelian Hodge theory that we have
already discussed. Simpson’s definition can be expressed recursively and it can be
compared to May’s definition by recursive use of arguments analogous to those that
Thomason [149] and Fiedorowicz [56] used to compare the operadic and ∆-space
approaches to 1-fold loop space theory. With considerable input from Simpson and
Toen, May has recently made progress on this comparison, although further model
theoretic work is necessary to pin down all of the details.

Baez and Dolan [5, 8, 9] gave a remarkable definition designed to allow very
general diagram shapes, with what they call “opetopic sets” replacing globular
sets. With n-opetopic sets replacing simplicial sets, their definition is conceptually
analogous to Street’s definition, except that it works one n at a time. Their n-
opetopic sets are given by a presheaf category, and their n-categories are suitably
restricted n-opetopic sets. Variants of their definition are given and studied by
Hermida, Makkai, and Power [70, 71, 72, 73, 73, 75], Makkai and Zawadowski [106,
108, 156], Leinster [94, 95] and Cheng, who also gives comparisons among definitions
within this family [32, 33, 34, 35]. Another conceptually similar definition, using
an alternative diagram scheme, has recently been given by Higuchi, Miyada and
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Tsujishita [76, 119]. Part of the point of these alternative definitions is to make the
scheme of allowable shapes more combinatorially complete and more computable.

Finally, there is a definition due to Joyal [80]. It is part of a general program
for redoing all of category theory in terms of the weak categories mentioned above
and then viewing weak categories as the case n = 1 of (weak) n-categories. For
this purpose, a category Θ built up out of categorically defined “discs” is used to
specify the diagram shapes of a presheaf category of Θ-sets. Then ω-categories are
defined as suitably restricted Θ-sets. The category Θ is a colimit of categories Θ(n)
that are used similarly to define n-categories. Berger [19] has taken initial steps
towards a comparison of the definitions of Batanin and Joyal.

15. The issues involved in comparing definitions

These definitions and their internal development, which ranges from just starting
to quite fully developed, together with the few comparisons already mentioned, give
a rough idea of the present state of the foundations. While some of the definitions
seem complicated, each has a compelling internal logic and structure. We wish
to go from here to a more coherent subject, and there are many paths that we
must explore. To make comparisons, we must specify precisely what it is that
we are comparing. The sketch above discusses only the objects of our various n-
categories. We must go on to define morphisms of n-categories and morphisms
between morphisms, and so forth. As stated before, we expect in the end to have
well-defined (n + 1)-categories of n-categories. The intuition is, first, that there
should be an n-category HOM(X, Y ) between any two n-categories X and Y and,
second, that there should be suitable composition operations

HOM(Y,Z)×HOM(X, Y ) −→ HOM(X, Z).

The first intuition is clear and precise, and it is known to hold in several cases.
The second intuition is less obvious; it means that there should be the kind of
“composition” that defines (n + 1)-categories in terms of n-categories for a given
(recursive) definition of (n + 1)-categories. It is known to hold with Simpson’s
definition [129]. We then should make sense of comparisons via a suitable notion of
equivalence of (n + 1)-categories. More modest goals may serve as stepping stones.
More ambitious goals must be explored as well.

We discuss some of the issues involved and then come back to possible approaches
and to other central problems. In every case, there is an evident notion of a strict
map of n-categories and thus an evident (ordinary) category of n-categories and
strict maps. Strict maps are not what we want combinatorially: weaker notions
will be essential to applications that involve the combinatorics. The analogue in
infinite loop space theory is well understood, and as a first approximation we might
hope that something similar happens in n-category theory. If so, we will arrive at
the following picture, which is part of our program of exploration.

The first problem is to define what it means for a strict map of n-categories to
be a “weak equivalence”. The notion of an equivalence of categories is generally
agreed to be the right starting point, at n = 1, and there is a well understood
notion of a biequivalence of bicategories that gives the next stage. With recursive
definitions of n-category, there is an essentially obvious recursive definition of a weak
equivalence. Thus assume that we agree on a definition of a strict weak equivalence
of n-categories. In analogous topological situations that already appeared in the
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work of Stasheff and Sugawara [135, 136, 144] on A∞ spaces and were first studied
systematically in Boardman and Vogt’s fundamental work on homotopy invariant
algebraic structures [21], there are weak maps as well as strict maps, but there is a
sense in which they are equivalent notions.

In crude form, with the same structured objects, one obtains the same morphism
sets [X, Y ] on passage to homotopy categories when we define homotopy categories
by passing to homotopy classes of weak maps or by starting with strict maps and
formally inverting the weak equivalences. This miracle happens because there is an
object, WX say, such that a strict map WX −→ Y is the same thing as a weak map
X −→ Y , and there is a strict weak equivalence WX −→ X. A general topological
version was given by Boardman and Vogt [21], and a more recent categorical version
was given by Batanin [11] in the context of A∞ categories. His paper works out the
explicit combinatorics of composition of weak maps of A∞ categories and works out
its relationship to the construction W . This provides one prototype for the study
of weak maps of n-categories.

This equivalence of homotopy categories is not good enough. We want a sense in
which the relevant categories are equivalent before passage to homotopy, since pas-
sage to homotopy throws out the combinatorial structure. The immediate problem
is that there are no relevant categories in sight to compare. It is a fact of life, already
apparent in topological contexts in the 1950’s, that weak maps do not compose to
give a category, but only a weak category or A∞ category, and we have wrong way
arrows if we think in terms of strict weak equivalences. There is a long understood
solution if we take the second approach. Dwyer and Kan [46, 47, 48, 49] defined
and studied a “simplicial localization” LC of a category C with a given subcategory
W of weak equivalences. This construction retains all of the combinatorial struc-
ture, and passage to components from this category gives the homotopy category,
C[W−1], that is obtained from C by formally inverting the maps in W. The solution
in the first approach is to expect, not a category, but rather a weak category (or
Segal category, or A∞-category) WC of weak maps. This is part of the motiva-
tion for Joyal’s program to redevelop category theory in terms of weak categories.
Kontsevich has also embarked on such a program [90]. Several others have ideas
towards such a program, and the extensive “coherent homotopy theory” of Cordier
and Porter [36] is directly relevant. The work of Rezk [124] is also relevant. He
obtains a model category with certain generalized Segal categories as the fibrant
objects, thus obtaining one model for a “homotopy theory of homotopy theories”.

16. The homotopical comparison program

This leads to two (modest!) programs of comparison. One might try to compare
simplicial localizations or one might try to compare weak categories of n-categories.
One advantage of the first program is that there is a very well established methodol-
ogy for making comparisons of this sort. It originated in the topological literature,
but it applies in general. A second advantage is that it does not require any defini-
tion or study of weak maps. That is also its disadvantage: eventually, we do want
to understand the weak maps. However, based on experience in algebraic topology,
it seems likely that weak maps are entirely irrelevant to some kinds of applications.
For example, they play no role in the work on n-stacks and non-Abelian Hodge the-
ory described above. Thus the first program is of intrinsic interest in its own right.
Moreover, as we shall explain in a moment, it leads to an alternative to a direct
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attack on the second program. Such a direct attack may be unrealistic at this time.
The definition of weak maps in a given theory of n-categories will surely depend
heavily on the internal combinatorics of that theory, hence direct comparison of the
weak categories associated to two definitions is likely to be quite difficult. In any
case, we do not yet have a fully worked out theory of weak maps in any one of our
categories of n-categories, let alone in two of them.

Optimistically, once the theory of weak maps is worked out, we should be able
to prove that the miracle cited above works. Indeed, we expect the definition
of the construction WX to go hand in hand with the definition and analysis of
weak maps. It should be a general principle of homotopical algebra that, when
the miracle occurs, the simplicial localization LC and the weak category WC are
suitably equivalent. To the best of our knowledge, no precise theorem of this form
has yet been written down, but there is little doubt that such a result must hold.
We expect this part of the general theory to be understood within the time span
of our proposal, and we take it for granted now. The point to emphasize is that
the problems of defining WC and proving that it is equivalent to LC are part of
the internal development of C. It is a major part of our program to work out the
internal structure of certain of our categories C of n-categories, at least to the point
that we can either prove such an equivalence or, as it might turn out, see that it is
unrealistic to expect such a result.

Suppose that we have such a result for two of our categories C and D. Then
LC is equivalent to WC and LD is equivalent to WD. Thus, to prove that WC is
equivalent to WD, we need only prove that LC is equivalent to LD. Conceptually,
this reduces the comparison of weak categories of weak maps, when we finally define
and understand them, to the comparison of categories defined entirely in terms of
strict maps, a problem that may already be accessible. In fact, in definitions that
are global and encapsulated, it may be unrealistic to attempt a direct definition of
weak maps. If D is of that sort and LC is equivalent to LD, then the theory of weak
maps in C can be viewed as implicitly giving a theory of weak maps in D. Precisely
this philosophy applies in stable homotopy theory. Although the theory there is
almost as recent as the theory here, it is already routine to obtain information
coming from the infrastructure of one highly structured category of spectra and to
interpret it as giving information in another such category.

The standard method for comparing simplicial localizations of categories C and
D with prescribed subcategories of weak equivalences is to define classes of cofibra-
tions and fibrations such that C and D are Quillen model categories, and then to
prove that C and D are Quillen equivalent. The requisite definitions are simple and
conceptual, and the relevant theory is very highly developed, providing a simple
and convenient framework for homotopical algebra where it applies. The notion of
Quillen equivalence, which requires a well-behaved adjunction, may be too restric-
tive, but Mandell [109] has worked out general necessary and sufficient conditions
for two model categories to have equivalent simplicial localizations. Some categories
C of n-categories are known to be model categories, and it is hoped that all of them
are. In the cases of categories of suitably restricted presheaves, an optimistic guess is
that one can give the entire category of presheaves a model structure whose fibrant
objects are the ω-categories, with suitable specializations to n-categories. Since the
restrictions are sophisticated analogues of the Kan extension condition that defines
fibrant simplicial sets (Kan complexes), this does not seem unreasonable.
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Baez, together with Leinster and Cheng, has made progress in this direction
in the case of the Baez-Dolan definition of n-categories. If there are such model
structures, then methods of comparison that were used in [111, 112, 125] to compare
model categories of presheaves of spaces (which give versions of spectra) should
adapt to give comparisons here. The first step must be to define comparison functors
relating the domain categories of the relevant presheaf categories, and several people
have made progress in this direction.

17. An alternative perspective

A different conceptual perspective explains why it seems plausible to expect
equivalences between categories of presheaves based on different diagram shapes
(globular and opetopic, say). No matter how expressed in terms of specific defini-
tions, the intuition is that we are weakening the well understood notion of a strict
n-category, replacing equations by equivalences throughout in a systematic way. It
makes sense to seek a general theory of this kind of “weakening” that applies not
only to n-categories but to more general mathematical structures and which might
lead to conceptual comparisons. Cogent insights in this direction come not only
from homotopical algebra but also from work of Makkai [104, 105, 107], which leads
to alternative perspectives on the nature of the definitions of n-categories and the
comparisons that we seek. It is based on an interesting alternative perspective on
the conceptual foundations of category theory.

To give some idea of this perspective, let us return to the “suitable restrictions”
required of n-categories in the various presheaf definitions. These conditions are
existential: they require the existence of “horn fillers” satisfying certain conditions,
but the fillers are not specified and are not unique. They encode “virtual” com-
position operations, “virtual” meaning that composition is many-valued, but with
values varying within suitable equivalence classes. In this framework, we expect
to be able to to find exact equivalences between notions of n-category based on
different diagram shapes. Makkai [107] is proposing an exact general scheme of
formal specifications of concepts of n-category of this sort, together with a means
of comparing these specifications. The ideas have been shown to work on low di-
mensional fragments of the concepts, and there is some computational evidence
that they work in higher dimensions.

18. The problem of coherence

One of the thorniest issues in the emerging subject of n-categories is that of
coherence. This can be viewed as the issue of satisfying two potentially conflicting
desiderata of a good notion of an n-category. On the one hand, one certainly
requires a compact and explicit specification of the concept. On the other hand, one
wants the definition to encode implicitely precise coherence conditions of the sort
familiar from traditional applications of categorical concepts. From the perspective
of computer science, for example, one surely wants all of the structure present to
be computable in a reasonable sense. We would like the definitions to be more
determinate than many of them seem to be.

One interpretation of our coherence desiderata is to ask for a description of n-
categories, up to suitable equivalence, as algebraic theories in the sense of Lawvere
[93]. For example, even in the definition of a tricategory in [66], certain transfor-
mations are required to be equivalences, but inverse equivalences are not specified.
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For that reason, tricategories are not algebraic in Lawvere’s sense. That could be
rectified by specifying inverses and adding further axioms to an already unwieldy
definition. A much more satisfying solution is given by the pair of statements that
semistrict Gray categories are algebraic and every tricategory is triequivalent to a
Gray category. It is this pair of statements that entered into the results behind our
allusion to the importance of Gray categories in the study of the logic and semantics
of programming languages, and it is this kind of coherence result that is needed to
interpret the various kinds of k-tuply monoidal n-categories in a fashion similar to
the standard definition of a braided monoidal category. A perhaps overoptimistic
hope is that there is a notion of a semi-strict n-category such that semi-strict n-
categories are algebraic and every n-category is suitably equivalent to a semi-strict
n-category, just as in the case n = 3. It might be that there is more than one such
semi-strict notion. However, coherence of n-categories for n > 3 may require and
certainly is illuminated by rethinking the very meaning of coherence.

In fact, the problem of comparing definitions is intimately related to the meaning
of coherence. For example, the equivalence of a definition based on globular shapes
with a definition based on opetopic shapes would be a kind of coherence theorem
saying intuitively that, despite the intrinsic relevance of more general shapes coming
from the non-strict associativity of the various compositions, any n-category defined
in terms of such general shapes is suitably equivalent to one defined only in terms
of the familiar globular shapes specified iteratively in terms of source and target.
However, it may well be that greater clarity can be obtained by focusing instead on
the most general shapes possible. In some sense, that is analogous to the problem
of defining “all” in the classical idea that coherence theory seeks to make precise
the notion that “all” coherence diagrams (in terms of specified coherence maps)
that can reasonably be expected to commute do in fact commute.

The last point of view appears naturally in the comparison scheme discussed in
the previous section. The horn fillers that appear in some of the presheaf definitions
of n-categories are specified by virtual compositions that encode universal proper-
ties analogous to the standard universal properties used to define such categorical
concepts as tensor products, colimits, and limits. There is an intuition that these
definitions give a notion of n-category that is “coherent”, in the sense that they
are defined in terms of conditions that must be preserved by any reasonable kind
of comparison map. Moreover, any of the presheaf definitions should be exactly
comparable to a definition in which “all” possible shapes are accounted for.

19. Conclusion

This reinterpretation in terms of coherence of the filler conditions that single
out the n-categories in a suitable category of presheaves seems very far away from
the idea that precisely the same conditions specify the fibrant objects of a model
category. We must make precise comparisons between such disparate ideas. There
is an enormous amount of work to be done in this field and an enormous num-
ber of natural directions to pursue. The exploration of categorical structures like
these is in its infancy, and our project can have a major impact on the shape this
emerging subject takes. The natural appearance of these categorical structures in
algebraic topology, differential geometry, algebraic geometry, mathematical physics,
and computer science makes it abundantly clear that this subject is likely to be an
important part of twenty-first century mathematics.
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