
OPERADIC CATEGORIES, A∞-CATEGORIES AND
n-CATEGORIES

J.P. MAY

When I offered to talk here, I asked myself if I had something suitable for a nice
short 20 minute talk, and sent in an abstract about “cores of spaces and spectra”.
However, since I have been given 50 minutes, I have decided to scrap that for
something a little more substantial. It is brand new. I assume that I am among
friends and that you won’t mind if some of what I say turns out to be nonsense.

On April 1, a paper of mine on triangulated categories was posted on the alge-
braic K-theory web site. The next day, Maxim Kontsevich called me from Paris
to talk about a possible use of “h-categories”, which are homotopical analogues of
“A∞-categories”, as an alternative way of thinking about triangulated categories.
At the time, I had no idea what an A∞-category was. Now I do, and the notion fits
together with some ideas I have long had about parametrizing the composition in a
category by use of operads. I wrote up some notes for Kontsevich on this and sent
them off on April 15. Two days later, Carlos Simpson gave an Adrian Albert talk
at Chicago on n-categories. It was immediately apparent to me that the ideas in
my notes for Kontsevich would give a considerably simpler and probably equivalent
alternative way of thinking about n-categories. This is based on a model category
of enriched operadic A∞-categories. The model category point of view also gives
an easy construction of the triangulated derived category of complexes of modules
over an A∞-category. I shall try to explain the ideas in the simplest possible terms.
There are no real applications yet, but the concepts just feel right to me. I will give
the idea by presenting an intuitive example that is naturally related to topological
conformal field theory.

You have all seen the pair of pants picture of a composite of cobordisms, with say
two inputs (around the ankles) and one output (around the waist). Now pants hide
more structure, legs with knee joints. Instead of glueing along matching outputs
and inputs, one might more naturally and flexibly sew in a cobordism with one
input and one output at each joint. For symmetry, we don’t want different looking
knees, so we sew in the same cobordism at joints at the same level. Formally, the
idea looks like this. Consider the moduli space M (j, k) whose points are (possibly
disconnected) Riemann surfaces Σ, say of arbitrary genus or more modestly just of
genus zero, together with j + k biholomorphic maps from the disc D into Σ, with
disjoint interiors. We think of the first j disks as inputs and the last k as outputs.
Let C (j) be the Cartesian product of j − 1 copies of M (1, 1). We get maps

θ : C (j)×M (ij−1, ij)× · · · ×M (i0, i1) −→ M (i0, ij)

as follows. For (c1, . . . , cj−1) ∈ C (j), we sew the input disc of cr to each of the ir
output discs of a point of M (ir−1, ir) and we sew the output disc of cr to each of the
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input discs of a point of M (ir, ir+1). These maps are Σi1 ×· · ·×Σij−1-equivariant,
but that is not a feature I want to emphasize. We have maps

γ : C (k)× C (j1)× · · ·C (jk) −→ C (j)

where j = j1 + · · · + jk. These just order the j − 1 points of M (1, 1) given by
a point in the domain by shuffling so as to put the rth entry of a point of C (k)
between the entries given by points of C (jr−1) and C (jr). With these structure
maps, the C (j) give an operad without permutations, and the maps θ give that the
M (j, k) are the morphism spaces of a “C -category”. This is exactly like the notion
of a C -space, or C -algebra, X given by maps C (j) ×Xj −→ X that I introduced
in 1970. That notion is the special case of a C -category X with a single object.

Now I want to take a different starting point. Even earlier, Stasheff introduced
the notion of an A∞-space X. Simplifying still earlier work of Sugawara, his notion
of an A∞-space gave an intrinsic characterization of what structure on a connected
H-space X ensures that it admits a delooping or classifying BX. The structure is
given by higher associativity homotopies encoded in maps K (j) × Xj −→ X for
certain polytopes K(j) that are homeomorphic to Ij−2 when j ≥ 2. Here K (0),
K (1), and K (2) are points, giving the basepoint of X, the identity map X −→ X,
and the unital product X×X −→ X; K(3) = I, giving homotopy associativity, and
K(4) is a pentagon, encoding an evident homotopy between homotopies relating the
five ways that one can associate products of four elements. In retrospect, the K (j)
comprise an operad (again, without permutations), and an A∞-space is exactly a
K -space in the operad action sense.

Theorem 1. A connected A∞-space X admits a classifying space BX such that
X is equivalent as an A∞-space to ΩBX.

I will briefly indicate three different proofs. The details won’t matter to us,
but the method given in the second proof will generalize to show how to replace
A∞-categories by equivalent genuine categories.

First proof. Mimic the standard inductive construction of the classifying space of
a topological group or monoid. ¤
Second proof. Show that the A∞-space X is equivalent to the topological monoid
M = B(J,K, X), where J is the James construction or free topological monoid
functor and K is an analogous functor constructed from the operad K . The cat-
egorical bar construction used here was also constructed in 1970. We can take
BX = BM . ¤
Third proof. Change operads to the little 1-cubes operad C1, which we can do
functorially, and show that X ' ΩB(Σ, C1, X); that is, use the special case n = 1
of my n-fold delooping machine. ¤

There are two notions of a map of A∞-spaces f : X −→ Y . For a strict map,
the following diagrams commute:

K (j)×Xj
id×fj

//

²²

K (j)× Y j

²²
X

f
// Y.
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For a weak, or “strong homotopy map”, there are suitably compatible maps

K (j)× I ×Xj −→ Y or Ij−1 ×Xj −→ Y

starting from f . This notion is due to Sugawara and gives just enough information
to get an induced map Bf : BX −→ BY , using the first proof above. In the rest
of this talk, I will only consider strict maps, but the complete story will have to
deal with weak maps. This can be done by the methods of Boardman and Vogt
or Lada, as modernized by Batanin, but perhaps a more model theoretic approach
might allow a simplified repackaging of the combinatorics. One way to handle this
is to show that a weak map induces a strict map with respect to a suitably enlarged
operad weakly equivalent to K . One could then change operads, as in the third
proof above, to get back to a strict map between K -spaces that are equivalent to
the original K -spaces.

We now turn to algebra. We work over a fixed commutative ground field k. A
differential graded algebra A has a bar construction BA that has a spectral sequence

E2
p,q = TorH∗(A)(k, k) =⇒ H∗(BA).

Stasheff formulated a notion of an A∞-algebra A such that

C∗(BX) ∼= B(C∗X)

for an A∞-space X, thus obtaining a spectral sequence

E2
p,q = TorH∗(X)(k, k) =⇒ H∗(BX).

The notion of an A∞-algebra can be described as an action of an algebraic operad
K alg of chain complexes on a chain complex A that is obtained from a simplicial
structure on the operad K . Instead, staring at the K (n), Stasheff came up with the
following elegant but perhaps mysterious looking equivalent definition. Kontsevich
has an even more elegant and mysterious looking reformulation.

Definition 2. An A∞-algebra A is a graded unital k-module together with maps
mj : Aj −→ A of degree j − 2, j ≥ 1, such that

∑

1≤i≤j,p+q=j+1

(−1)ε(i,q,a)mp(a1 ⊗ · · · ai−1⊗

mq(ai ⊗ · · · ⊗ ai+q−1)⊗ ai+q ⊗ · · · ⊗ aj) = 0.

for j ≥ 1, where ε(i, q, a) = i + q(i + j +
∑i−1

h=1 degah). The conditions required of
the unit are that

m2(a⊗ 1) = a = m2(1⊗ a) and mj(a1 ⊗ · · · ⊗ aj) = 0

if any ai = 1.

Let d = m1 and write m2(a ⊗ b) = ab. For j = 1, the equation gives d ◦ d = 0.
For j = 2 it gives that the product is a map of chain complexes. For j = 3 it gives
that the product is chain homotopy associative. And so on.

Theorem 3. An A∞-algebra A admits a bar construction BA with a spectral se-
quence exactly as above.

First proof. Mimic the standard description of the algebraic bar construction. ¤
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Second proof. Replace A by the equivalent DGA

B(Jalg,Kalg, A)

and take its bar construction; here Jalg is the free algebra functor. ¤

Again, there are two notions of a map, strict and weak, with the weak notion
being just sufficient to induce a map of bar constructions.

We define A∞-categories in a way that should now be obvious.

Definition 4. An A∞-category A with object set O consists of graded k-modules
A(S, T ) for each pair of objects (S, T ), unit elements 1 ∈ A(S, S), and maps

mj : A(Sj−1, Sj)⊗ · · ·A(S0, S1) −→ A(S0, Sj)

of degree j − 2, j ≥ 1, such that the same conditions as in the definition of an
A∞-algebra are satisfied.

Of course, A∞-algebras are A∞-categories with a single object. These structures
arose in work of Fukaya, who formulated the definition. His examples, now called
Fukaya categories, play a central role in Kontsevich’s conjectures on mirror sym-
metry. There are serious technical issues (unit condition problems, for example)
that prevent direct interpretation of his geometry in these algebra terms, but the
concept and examples seems to be of fundamental importance. From an algebraic
point of view, especially in view of my work with Kriz on operadic algebra, it seems
sensible to go to an operadic view of these structures, using K alg instead of the
mn. This allows use of a monadic reformulation that is better suited to homotopical
work. However, it unfortunately means that, on a technical level, we are moving
away from precise concepts currently in use in connection with mirror symmetry.

Contrasting our moduli space example with our A∞-category example, it seems
reasonable to define the basic terms in full generality. This will lead us quite
directly to the promised theory of n-categories and to the derived category of an
A∞-category. We fix once and for all a preferred base category B. Pick your
favorite. It might be compactly generated unbased topological spaces, simplicial
sets, or Z-graded chain complexes of k-modules, for example. It could also be C at,
the category of small categories, or it could be the category of simplicial sheaves in
the Nisnevich topology. We assume that B is closed symmetric monoidal, meaning
that it has a product ⊗B with unit object uB and an internal hom functor B
satisfying the usual adjunction

B(A⊗B B,C) ∼= B(A, B(B,C)).

We want to set up the foundations to do serious homotopy theory in categories
of operadic categories, so we assume that B is a Quillen model category. For the
experts, we want B to be cofibrantly generated and proper.

For full generality, we fix a ground category G that has all of the same structure
that we required of B, except that we do not require internal hom objects, which
may or may not be present. We assume instead that G is enriched over B. This
means that G has hom objects G (X, Y ) in B, unit maps uB −→ G (X, X) in B,
and a composition law

G (Y, Z)⊗B G (X,Y ) −→ G (X, Z)

that is associative and unital in the evident sense. The underlying category of G
has as its morphism sets the set of morphisms uB −→ G (X, Y ) in B, sometimes
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denoted G0(X, Y ). Examples show that this always give the underlying category
that you thought you were looking at in the first place.

You can think of the case G = B, but then you will miss the punch line. Alge-
braically, you can think of B as the category of chain complexes of k-modules and
G as the category of chain complexes of A-modules for a commutative DGA A over
k. Topologically, you can think of B as the category of simplicial sets or topological
spaces and G as one of the modern categories of spectra, such as symmetric spec-
tra, orthogonal spectra, or S-modules, that are closed symmetric monoidal Quillen
model categories. Or you can think of B as simplicial sheaves and G as one of
the model categories of spectra in that category. We will construct some surprising
new examples.

We assume that G is complete and cocomplete in the enriched sense that it has
all indexed limits and colimits. This is equivalent to requiring that it have ordinary
colimits and limits in its underlying category and that it be tensored and cotensored
over B. That means that there must be functorial “tensors” X¯B and “cotensors”
F (B,X) in G between objects B ∈ B and X ∈ G with natural isomorphisms in B

G (X ¯B, Y ) ∼= B(B, G (X, Y )) ∼= G (X,F (B, Y )).

We emphasize that the construction of tensors is often by no means obvious, and
they need not be given by some familiar kind of tensor product. For example, it is
entirely obvious how to tensor a k-module with an A-module, but it is not at all
obvious how to tensor a k-module with an A-algebra. Similarly, it is obvious how to
tensor a space with an S-module, but it is not obvious how to tensor a space with
an S-algebra. In both cases, the required tensors exist, but they are not standard
and simple constructions. This sounds awfully technical and categorical, but it was
absolutely central to the deeper parts of the work of Elmendorf, Kriz, Mandell, and
myself (EKMM) in stable homotopy theory, and it is even more central to the new
theory of n-categories. Fortunately, the work done in EKMM makes it perfectly
clear how to proceed in this new theory.

Since B is symmetric monoidal, we can define operads in B. For the present
purposes, “operad” means an operad without permutations. An A∞-operad is
one each of whose objects is weak equivalent to uB. There are many examples, for
example K and C1 in spaces, K alg and C∗(C1) in chain complexes. There is always
the trivial example A ss with A ss(j) = uB; its algebras are just the monoids in
the symmetric monoidal category B. We fix any operad C in B. We indicate later
how to change operads in favorable circumstances. We can define actions of C on
objects of G in terms of maps C (j)¯Xj −→ X, where Xj is the j-fold power of X
under ⊗G . Such mixing of categories has often arisen in topological contexts. We
follow MacLane in misusing the word “graph” for the following obvious concept.

Definition 5. For a set O, the elements of which are called objects, an O-graph
M in G is a set of objects M (S, T ) of G , one for each pair (S, T ) of objects in O.
We call M (S, T ) the object of morphisms with source S and target T . A morphism
F : M −→ N of O-graphs is a set of morphisms F : M (S, T ) −→ N (S, T ) in G .
More precisely, these are the morphisms in the underlying category of the enriched
category of O-graphs in G , which has morphism objects in B, namely

∏

(S,T )

G (M (S, T ),N (S, T ))
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Ignoring the enrichment, this is just a silly but convenient way of describing
the category G O2

of functors from the discrete category (identity morphisms only)
O × O to G . As a diagram category, G O2

inherits a model structure from G .

Definition 6. Define a product ⊗ on G O2
by setting

(M ⊗N )(S, V ) =
∐

T

M (T, V )⊗G N (S, T ).

Define the unit O-graph U = UO by letting U (S, S) = u and U (S, T ) = ∅, the
initial object of G , if S 6= T . Since Xq∅ = X and X⊗∅ = ∅, G O2

is monoidal (but
of course not symmetric monoidal) with unit object U . Also, define the tensor of
an object A of B with an O-graph M in the obvious way:

(A¯M )(S, T ) = A¯M (S, T ).

Definition 7. Define the category of graphs to have objects (M ,O), where M is an
O-graph, and to have morphisms (F, f) : (M , O) −→ (N , P), where f : O −→ P
is a function and F consists of a set of maps M (S, T ) −→ N (f(S), f(T )). More
conceptually, f determines a functor f∗ from P-graphs to O-graphs by setting
f∗N (S, T ) = N (f(S), f(T )), and then F is just a map M −→ f∗N of O-graphs.
Again, this describes the underlying category of an enriched category with mor-
phism objects in B, namely

∏

(S,T )

G (M (S, T ), N (f(S), f(T ))).

We usually abbreviate (M , O) to M , leaving O understood.
Clearly, a category enriched over G with object set O is exactly a monoid in the

monoidal category of O-graphs in G . We call these “categories in G over O”. The
notion of a C -category in G over O is now nearly obvious, as is the corresponding
notion of a C -functor between such categories. Write M j for the j-fold ⊗-power
of an O-graph M , with M 0 = UO .

Definition 8. A C -category in G over O is a C -object M in the category of O-
graphs in G . That is, there must be maps C (j) ¯ M j −→ M of O-graphs such
that the usual unit and associativity diagrams commute.

Unravelling, we have maps in the underlying category of G

C (j)¯M (Sj−1, Sj)⊗G · · · ⊗G M (S0, S1) −→ M (S0, Sj)

and can write the relevant diagrams accordingly. When C = A ss, this is just a
category in G over O. As usual, we have a monadic reinterpretation. We recall
some standard categorical definitions.

Definition 9. Let S be any category. A monad in S is a functor C : S → S
together with natural transformations µ : CC → C and η : Id → C such that the
following diagrams commute:

C
ηC //

Id !!CC
CC

CC
CC

CC

µ

²²

C
Cηoo

Id}}{{
{{

{{
{{

and CCC

µC

²²

Cµ // CC

µ

²²
C CC

µ // C.
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A C-algebra is an object A of S together with a map ξ : CA → A such that the
following diagrams commute:

A
η //

id !!CC
CC

CC
CC

CA

ξ

²²

and CCA

µ

²²

Cξ // CA

ξ

²²
A CA

ξ // A.

Taking ξ = µ, we see that CX is a C-algebra for any X ∈ S . It is the free C-
algebra generated by X. That is, for C-algebras A, restriction along η : X → CX
gives an adjunction isomorphism

C[S ](CX, A) ∼= S (X, A),

where C[S ] is the category of C-algebras.

Construction 10. The operad C in B determines a monad C = CO on the
category of O-graphs for any set O. For an O-graph M ,

CM =
∐

j≥0

C (j)¯M j .

The unit η : Id −→ C and product µ : CC −→ C are defined from the structure
maps of C .

Proposition 11. The category of C -categories in G over O is isomorphic to the
category of algebras over the monad CO in the category of O-graphs.

For fixed O, we have implicitly defined a morphism between C -categories with
the same object set O to be a map of C -algebras (or equivalently CO -algebras).
This defines the C -functors whose object functions are identity maps. We define
C -functors between C -categories with varying maps of object sets by reducing to
this special case. This requires some easy categorical observations.

Proposition 12. Let f : O −→ P be a function. The functor f∗ from P-graphs
to O-graphs is lax monoidal and commutes with tensors. As O varies, the monads
CO specify a monad C in the category of graphs.

Definition 13. Define a C -functor F with object function f from a C -category
M to a C -category N in G to be a C -functor F : M −→ f∗N . Equivalently,
F : M −→ N is a morphism of C-algebras in the category of graphs.

The definition just keeps track of the additional structure that we require on the
maps of morphism objects F : M (S, T ) −→ N (f(S), f(T )). We have now defined
the (honest) category of C -categories in G and C -functors. The standard notion
of an enriched natural transformation carries over amusingly to this context, but I
am not sure this is the best definition.

Definition 14. Let F and G be C -functors from M to N with object functions
f and g. A C -natural transformation α : F −→ G is a set of morphisms

α : uG −→ C (2)¯N (f(S), g(S))
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in G such that the following diagrams commute in G :

M (S, T ) F //

G

²²

N (f(S), f(T ))

α∗
²²

N (g(S), g(T ))
α∗

// N (f(S), g(T )).

Here, if ξ is the action of C on N , then α∗ is the composite map in G displayed in
the diagram

N (f(S), f(T ))

∼=
²²

α∗ // N (f(S), g(T ))

u⊗N (f(S), f(T ))
α⊗id // C (2)¯N (f(T ), g(T ))⊗N (f(S), f(T )).

ξ

OO

The map α∗ in G is defined similarly, using N (g(S), g(T ))⊗ u.

Now change notations and fix an object set O and a C -category A in G over
O. We think of A as some kind of algebra, and we want to define modules over it.
When C = A ss, we can specialize the usual notion of a left action of a monoid on an
object: an A -module should then be an O-graph M together with an associative
and unital action map A ⊗ M −→ M of O-graphs. In operad theory, there
is a standard notion of a module over a C -algebra that specializes to give the
appropriate generalization of this notion.

Definition 15. A left A -module M is an O-graph M together with maps

µ : C (j)¯A j−1 ⊗M −→ M

of O-graphs such that the appropriate associativity and unit diagrams commute.

When O has only one object, the model category theory of module categories
like this is well understood, and the generalization to modules with many objects
presents no difficulty. We easily obtain the following result.

Theorem 16. The category of A -modules is complete and cocomplete, and it is
enriched, tensored, and cotensored over B. It is a cofibrantly generated proper
model category in which the weak equivalences and fibrations M −→ N are the
levelwise weak equivalences and fibrations: each map M (S, T ) −→ N (S, T ) must
be a weak equivalence or fibration in G .

When B = G is the category of chain complexes over k, its homotopy category
with respect to the standard model structure is just the derived category D(k), and
of course it is a triangulated category. The homotopy category of O-graphs inherits
a triangulation from D(k), and the homotopy category of A -modules inherits a
triangulation from the category of O-graphs.

Corollary 17. Let B = G be the category of chain complexes over k and let D(A )
be the homotopy category associated to the model category of A -modules for a C -
category A in B over O. Then D(A ) is a triangulated category with a faithful and
exact forgetful functor to the triangulated homotopy category of O-graphs.

When C = K alg, this gives the promised triangulated derived category D(A )
of an A∞-category A .
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Returning to the main theme, we revert to the notation M and N for C -
categories in G . We have three theorems on the structure of the category of C -
categories in G .

Theorem 18. The category of C -categories in G is complete and cocomplete, and
it is enriched, tensored, and cotensored over B.

I have not written down a complete proof of the following deeper result, but I
have thought through the proof and I have no doubt that it is correct. The main
problem concerns set theory, and that should not be a major stumbling block.

Theorem 19. The category of C -categories in G is a cofibrantly generated proper
model category. The weak equivalences are the essentially surjective levelwise weak
equivalences and the fibrations are the levelwise fibrations.

Here “levelwise” refers to the maps F : M (S, T ) −→ N (f(S), f(T )) in G of a
morphism (F, f) of C -categories in G . To explain the term “essentially surjective”,
I will assume for simplicity that C is an A∞-operad. Then, on passage to the ho-
motopy category associated to G , a C -category M gives rise to a category enriched
over HoG with the same object set. We require F to be surjective on isomorphism
classes of objects in the underlying categories.

The next theorem requires that the operad C be a Hopf operad: there must be a
coassociative and cocommutative map of operads C −→ C ⊗ C , where the operad
C ⊗ C has jth object C (j) ⊗B C (j) and the evident structure maps. When B is
Cartesian closed, ⊗B = ×, diagonal maps give the required coaction. There are
interesting examples when B is the category of k-chain complexes.

Theorem 20. If C is a Hopf operad, then the category of C -categories in G is a
symmetric monoidal category.

Of course, we cannot expect internal hom objects in the precise sense of the
usual ⊗-adjunction, since we do not have them in categories of algebras.

Here is the punch line: when C is a Hopf operad, the category of C -algebras in
G has all of the structure that we assumed on G . Therefore, we can iterate the
construction. This gives a new theory of n-categories.

Definition 21. We define the category B(n; C ) of n-C -categories enriched over
B. We take B(0; C ) = B, so that a 0-category is just an object of B. Inductively,
we define B(n; C ) to be the category of C -categories in B(n− 1;C ).

One can even start with B = C at, in which case it would be sensible to start
the inductive definition with B(1; C ) = C at, letting B(0; C ) just be the category
of sets. This makes the construction conceptually interior to category theory and
is in conformity with past practice in n-category theory.

For the cases when B is spaces or simplicial sets and G is a good category of
spectra, these categories give a starting point for a higher categorical homotopy
theory of stable homotopy theory.

When C is an A∞-operad, the objects of B(n; C ) deserve to be called (weak)
n-categories. There is a vast literature of n-categories with a chaotic confusion of
competing definitions. In all of the earlier approaches, 0-categories are understood
to be sets, whereas we prefer a context in which 0-categories come with their own
homotopy theory. Otherwise our approach is similar in spirit to an approach of
Simpson and Tamsamani, although they make no use of operads. Our approach is
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very much simpler in detail. Operads do appear in the two quite different alternative
treatments due to Baez and Dolan and to Batanin. Our approach is also similar in
spirit to Batanin’s, but again it is very much simpler in detail. Our definition should
form a bridge that allows comparison of the definitions of Simpson-Tamsamani and
Batanin to our new definition and therefore to each other.

Incidentally, I believe that everything I have said works for braided monoidal
rather than symmetric monoidal base and ground categories.

As promised, we can sometimes change operad. Given operads C and D in B,
we write C ⊗D for the monad associated to the product operad C ⊗D , by abuse.
We assume, as holds automatically when B is Cartesian monoidal, that we have
projections C ←− C ⊗ D −→ D . For a C -category M , we then have a two-sided
bar construction B(D, C ⊗ D, M ), which is a D-category, and we have a pair of
natural maps of (C ⊗D)-categories in G

M ←− B(C ⊗D,C ⊗D,M ) −→ B(D, C ×D, M ).

The first map is a weak equivalence and the second map is a weak equivalence if
C is an A∞-operad. In particular, taking D = A ss and C to be any A∞-operad,
this shows how to replace A∞ categories enriched over G with honest categories
enriched over G .

Strict n-categories are defined using C = A ss. It might seem at first glance that
the equivalence that I just gave should lead inductively to an equivalence between
our homotopy categories of n-categories over an A∞ operad C and of strict n-
categories enriched over B, but that is not the case. The extra generality in the
choice of operad appears naturally and gives flexibility. It is expected to be essential
to the potential applications in algebraic geometry and topological quantum field
theory. As I said at the start, these ideas and definitions just feel right to me. Time
alone will tell how valuable they really are.


