





HOMOLOGY OPERATIONS ON
INFINITE LOOP SPACES

J. PETER MAY

In the last few years, it has become clear that homology operations on infinite
loop spaces play a very important role in algebraic topology. These operations
are the fundamental tool in the study of the homology of such spaces as QX , BF,
B Top, etc. Irecently observed that the language of topoltogical PROP’s developed
by Boardman and Vogt in [2], allows extremely simple constructions of the
operations and proofs of their properties. This approach to the operations was
‘the subject of my talk at the summer institute, but is not yet ready for publication.
Instead, T shall here summarize the basic algebraic results of the theory and shall
briefly indicate the extent of our present information about the subject, including
precise descriptions of the homology of F, F/0, and BF. The quoted results are
due to various people. Only those results which are stated without historical
references are due to the author; more complete statements and proofs will
appear later. This paper is divided into three sections as follows:

(1) The Dyer-Lashof algebra and its dual,
(2) Allowable R-modules and H (QX),
(3) The homology of F, F/O, BF, and B Top.

Much of this material has been previously circulated in preprint form, but
some of the results in § 3 are new.

1. The ,Dyer,-Lashof algebra and its dual. By an infinite lpop sequence
B = {B, li 2 0}, we understand a sequence of based spaces such that B, = QB ,;
by a map g:B — C of infinite loop sequences, we understand a sequence of base-
point preserving maps g;:B; — C; such that g; = Qg,,,, i 2 0. B, and g, are
then called (perfect) infinite loop spaces and maps. These notions are equivalent
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for the purposes of homotopy theory to the more usual ones in which equalities
are replaced by homotopies [8]. We define H,(B) = H,(By; Z,) for some fixed
prime p and regard H, as a functor from the category of infinite loop sequences
to that of graded Z, —modules : *(B) admits homology operations which are
analogous to the Steenrod operations in cohomology For p = 2,these operations
were first introduced by Araki and Kudo [1]; their work was later simplified by
Browder [4]. Dyer and Lashof [5] introduced the. ope&ratxons for odd primes
and developed many of their algebralc properties; we shall therefore’ refer to the
operations as Dyer-Lashof opetations. The following theorem summarizes their
properties. Parts (1) through (5) wére proven by Dyer and Lashof, and part (6)
was first observed by Milgram. The Adem relations (7) were implicit in the work
of Dyer and Lashof and the Nishida relations (8) were proven by Nishida in [14].
We state the results. for an arbitrary prime p; the modifications needed in the
case p = 2 are indicated in square brackets,

THEOREM 1.1. There exist natural homomorphisms Q' : H (B) — H(B),i = 0,
of degree 2i(p — 1) [of degree i]. They satisfy the following properties:

1) Q%¢) = ¢ and Q'(¢).= 0 for i > 0, where p.e¢ H 0(B) is the identity element
for the loop product in H (B). ,

(2) Q'(x) = 0if2i < degree (x) [if i < degree (x)].

(3) Q'(») = xP if 2i = degree (x) [if i = degree (x)].

@) 0,0' = Q'c,, where o, :IH (QB) — H (B) is the homology suspension.
- (5) Cartan formula:  Q%(xy) = ZI Q‘(x)Q“”v' y) and, if Y(x) =Y x ® x"
then Y0'x) = Yia 5, 0¥) ©® 01"

(6) If y:HB)— HB) is the conjug_atlon (induced from the map y(I)(t) =
i1 - o), x:QBl‘ — QB,), then Q' = Q'y.

(7) Adem relations: If p 2 2 and a > pb, then

Q°Q" = ¥ (~1)"*(pi — a,a — (p — Db — i — DO TQ;

if p > 2,a = pb, and 8 is the mod p Bockstein, then
QaﬁQb = ?(-—l)qr”(m‘ —a,a— (P — l)b _ i)ﬁQaH:—iQ:‘

—2(=1F*pi —a~la~(p— Db - NR*"7BQ".

(8) Nishida relations: Let Py :H (B)— H,(B), of degree —2s(p'— 1), be dual
to P* (i.e. P* = Homy (P5; 1) with H¥B) = Homy (H,(B); Z,)) if p > 2, and
let P, = Sq3,, of degree —s,if p = 2; then '

PoO" = ¥ (—1)*s — pi,r(p — 1) — ps + pi)Q" * TP

. _ -

ifp>2,
PLBQ" =¥ (—1)"(s — pi,r(p — 1) — ps + pi — Q" ™""P,,

+ Z(—l)i-l-s(,s pi — L,r(p — 1) — ps + pdQ'~ s+ipi i .
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In(7)and (8), (i, /) = (i + jYiljlifi > Oandj > 0,(;,0) = 1 = (0, )ifi = 0,
and (i, ) = 0ifi < 0 orj < O; the sums are over the integers.
. Deﬁne the Dyer-Lashof algebra R to be the quotient F/J of the free associative
algebra F generated by {Q°, BO**! | 5.2 0} (not B itself) [by {Q*| s.= 0}] modulo
the: two—mded ideal J consisting of all elements which-annihilate every homology
class.of evety. infinite loop space. We shall exphcltly describe R, and shall then
descrlbe its: clual R*. We need the following definition: :

DEFINITION 12. @p > 2. Consider sequences =2 (€7, Sy,...,6, 5)
where ej = Qor lands; = ¢;. Define the degree, length, and excess of I by

() = Z 250 - 1) — ¢, D=k,
j=1 '

_ X k
e(I') =28, — € — Z [2ps; — fj —25;_3] = 28, — ¢ — Z [25p — 1) - &]-

Tissaid to be admissible if ps; — €; 2 §;-yfor2 £ j = k. Bachl determines o' =
ﬁHQSl . ﬁEstk < R. ,

(b) p = 2. Consider sequences I=(sy,...,5%),s; 20, and define d(I) =
' Zj L S5 I =k, e) = s, — Zj , (28— 8;_0) =5, — Z;‘ , 55 I is said to be
admissible if 2s; 2 5,1 for 2<j< k. EachI determlnes the element Q@ =
Q-S'1 . Q&: € R

(c) Convention. The empty sequence I is admissible and satisfies d(I) = 0,
KI) = 0, and e(I) = oo for all p; it determines Q' = 1 e R.

The structure of R is given by the following theorem:

TaeOREM 1.3. The ideal J is generated by the Adem relations (7) (and, if
p > 2, the relations obtained by applying B to the Adem relations) and by the
relations Q' = 0 if e(I) < O (see (2)). R has the Z-basis {Q" | I is admissible and
e(l) 2 0}. R, (degree zero) is the polynomial algebra generated by Q° and R is
augmented via €:R — Z, defined by e(Q°Y) = 1,j 2 0. R admits a structure of
"Hopf algebra with copraduct defined on generators by the formulas

(@) -—-H; ¢ ®Q;  Ypet) = +Z (80" ® ¢/ + Q' ® pO’*].

=g itj=s .

R admits a structure of left coalgebra over A°, the opposite Hopf algebra of the.
Steenrod algebra; the operations P, are determined by the Nishida relations (8)
and induction on the length of admissible monomials, starting with the formulas

PO = (=1, rlp — 1) — ps)Q"%
PLpQ" = (—1)(s,r(p — 1) — ps — 1)BQ"™".

Here A° enters since we are writing Steenrod operations on the left in homology
and HomZ ( ;Z,)is contravariant; for any space X, H (X)is a left A°-coalgebra.
Observe that the induotive definition of the P} on R could equally well be started
with P5(1) = 0 for s > 0 and P2(1) = 1. The theorem is proven by showing that
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R operates fa:thfully on a homology class of a certain 1nﬂn1te loop space [see
Theorem 2.5].

. If i > 0, then R; is finite dimensional, although R, is not. Let R[k] < R
be the-subspace spanned by {Q'| I is admissible, e(I) = 0, and i(I) = k} (R[0]
is spanned by 1). By (5), (7), and (8), each R[k] is a sub A°-coalgebra of R, and
R= @50 R[K] as an A°coalgebra. R[] is connected and R,[k] is spanned
by (Q°)" The product takes R[k] ® R[I]into R[k + []since, in marked contrast
to the Steenrod algebra, the Adem relations for R are homogeneous with respect
to length (because Q° # 1). As an A-algebra, R* = [].%, R[k]*. The identity
element of R[k]* is the dual &y, of (Q°), and the identity of R*is [T, . , éox. Strictly
speaking, R* is not a Hopf algebra, since R is not of finite type, but it is the inverse
limit of its quotient A-algebras [["_ R[k]*, n < o, and each of these may be
regarded as a sub Hopf algebra of R* (dual to the quotient Hopf algebra
R/Y.,... R[I) of R). [Tr., R[k]* is augmented by €(épo) = 1 and e(éqy) = O,
k > 0; clearly &, = &o and ¥(&op) = D¥_, Soi @ &ou—i- We shall describe
R[k]* as an A-algebra and shall give the coproduct on generators.

- Define certain admissible sequences inductively as follows:

@ Iy, 1<jskpz2: I, =(0,1) I =0, Pt = p*, I)ifj = k;
Livrxrr = 0,05 L) [if p = 2, omit the zeroes; ifp > 2, the zeroes merely denote
omission of Bockstein]. Then d(I;) = 2(p* — p*™)) if p > 2 and d(i,) =
2k — 2kiifp = 2.

(b) ij;l Sjfkp>2Jd,,=01,1; Jj,k+1 =0, p* — Pk“js-]jk)ifj =k

Jerrp+1 = (1, p5 1), Thend(Jy) = 2(* — p*79) — 1. _
(C) K:jksl =i <.] S k p > 2! KI.J' k+1 & (0 p pk b — k JsKijk)i.fj é k;
K: ki1, k+1 = (1, P - P - Jw). . Then d(K;;) = 20" - p* 7t - -J) Let

{I i L K Jr,‘} ifp>2and S, = {I,}ifp = 2. Observe that the elements
I and K, with j < k all give pth powers when the corresponding Q' is applied
to a zero-dimensional class. :

Lemma 1.4, {Q!| 1€ S} is a basis for the primitive elements PR[K] of R[k].
The Steenrod operations and Bockstein on PR[k] are determined by the following
formulas:
@) PE*QW = —QU-1xif2 £ j £ k(PYQ"Y = 0 otherwise).
(ii) P"" ’Q"ﬁ‘ = —-Ql-ukif2 < j S k(PEQI* = Ootherwise).
(iii) P" ToRkin = — QK- jf]l <i<j—1 <k
p- iQ"”" = —QK-1aijf ) < i < j £ k(PY Q¥ = 0 otherwise).

(iv) ﬁQ’”‘ = Q'i; pOI* = QXmcif | < k(PO = O otherwise, I € S)).

Let &5 = (Q")*, T = (@7™)*, and 0,5 = (@*¥*)* in R[k]* (in the dual basis
to that of admissible monomials). Let R*[k] = R[k] if p = 2 and let R*[k] be
the sub-coalgebra of R[k] spanned by those Q' such that ¢; = O (that is, which
do not involve B)if p > 2. Also, if p > 2 define elements v, € R[k]* for each set
p=1{ry,...,r}suchthatl Sr, <+ <r; S kbythe formulas:
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() v, = 0y i Brgak " ** Ory_ e if J IS €VED; vp'= Orirak ™ Orygryy e 1f J 18
~odd. ,
' Let v, = & if p is the empty set, and let ¥; be the subspace of R[k]* spanned
by the v, (the v, are linearly independent). With these notations, the structure of
R* is: determlned by the following theorem.

THEOREM 1.5. For p 2 2, RT[k]* is the polynomial algebra generated by
{Ex| 1.8 £ k}. If p > 2, the product defines an isomorphism R*[k]* ® V; —
R[k}*, and R[k]* is determined as an algebra by the relations (p = {ry, ..., 1},
je=2i —'¢,e =0o0r1):

(i) v,05 = 0if seportep; v,iy =0ifsep.

(i) v, 00 = (=10, (5,9 if S¢ p and t ¢ p, where o is the number of indices |
such that s<rn <t

(i) v,7q4 = (- 1)”+‘§kkvpu{s} if s¢ p, where B is the number of indices 1 such
that r; < s. _

. With sums taken over all integers which make sense ({;; = 0if i <Qorj 5 i,
ty=0i<lorjsien=0ifh<lori< horj < i),thecoproductis given
on generators by the formulas:

(V) () “(hZ)é‘EH,"" E i1 @ Lhs

(v) Wit = Y SR8 ® Ty + ;ai:,i_ﬂ,-_.-,k_i ® &,

(h,d)

t
. ) /- — i— .h —ph—-g +{-f - h‘*
ll’(aijk) - Zh ( Z‘:II: hpI:l ; P géph gg-:l !f ss k— h€ ffk ph ’ . sés k-—gh)® o-fgh
(f.9:h)
—ph 1
- Zﬁfihp—gh i gk W j—nk— - ® Tgh
(g, h)

+ka PR b i~k k—h & Cpns

i)

where, in the first sum, t =minimum(i — f,j — g,k — h).

The proof is by direct dualization, using the Adem relations. In the case
p = 2, the structure of R* was first discovered by I. Madsen [7]. While compli-
cated, the A-algebra structure of R* is not unmanageable. The Steenrod operations
on the indecomposable elements QR[k]* are computed by Lemma 1.3 which
implies the following useful corollary. :

COROLLARY 1'6. If p = 2, R[k]* is generated as an A-algebra by &,,. If
p > 2, R[1]* is generated as an A-algebra by t,, and R[k]*, k > 1, is generated
'as an A-algebra by &, and ¢ ,;.

In other words, R[k]* is a quotient A-algebra either of H*(K(Zp, n)) or of
HYK(Z,,n) ® K(Z p m)), for appropriate integers n and m.

REMARK 1.7. R is very closely related to the E,-term of the Curtis-Kan et al.
[3] version of the Adams spectral sequence. Precisely, R is a quotient algebra
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of the opposite algebra ES. ThlS relationship, which was first noticed by I. Madsen,
“deserves further study.

2. Allowable R-modules and H . (QX ). Having introduced the Dyer-Lashof
algebra we can now give analogs of the notions of unstable A-modules and
A-algebras in the cohomology of spaces. These notions will yield a concise
description of H,(QX) as a functor of H,(X), where 9X = inj lim Q"S"X. Of
course, 08'X = QQS**1X and QX is therefore a (perfect) infinite loop space. The
QX are, in a precise sense, the free infinite loop spaces (seg the proof of Corollary
2.7); they playarolein the theory of infinite loop spaces Wthh is roughly analogous
to that played by K(=, n)’s in the cohomology of spaces. Clearly n,(QX) is the
nth stable homotopy group of X.

The following lemma is required in order to obtain a sensible analog to the
notion of unistable A-module. |

LemMa 2.1. Let K% g 2 0, denote the subspvace of R spanned by {Q'| I is
ddmissible and 0<el) < q} Then K9 is a two-sided ideal (and sub A°-module)
of R; and K4 is preczsely the set of all elements of R which annihilate every homology
~class of degree = q of every infinite loop space. The quotient algebra R = R/K‘
has basis {Q"| I admissible, e(l) Z q}.

In order to deal with nonconnected spaces, which are crucial to the applications,
we need a preliminary definition.

DEerFINITION 2.2. By a homology coalgebra C, we mean a cocommutative,
unital (7:Z, — C), augmented (¢:C — Z,) coalgebra C such that C is a direct
sum of connected coalgebras. We then define GC = {g|ge C, ¥(g) = g ® ¢,
g # 0}. GC is a basis for C, e(g) = 1 for g € GC, and each g € GC determines a
component C, of C whose positive degree elements are {e | Ylc)=c® g +
Yo ® " + g ® c}; clearly Cis the direct sum of its components C, forg e GC.

If X is a based space, then H(X) is a homology coalgebra; its base-point
determines the unit and its components determine the direct sum decomposition.

DerINITION 2.3, An R-module D is said to be allowable if K?D, = 0 for all
g = 0. The category of allowable R-modules is the full subcategory of that of
R-modules whose objects are allowable; it is an Abelian subcategory which is
closed under the tensor product. An allowable R-algebra is an allowable R-
module and a commutative algebra such that the product and unit are morphisms
of R-modules and such that Q'(x) = x? if p > 2 and 2i = deg(x) or if p = 2 and
i = deg(x). (Here R operates on Z, through its augmentation.) An allowable
R-coalgebra is an allowable R-module and homology coalgebra whose coproduct,
unit, and augmentation are morphisms of R-modules. An allowable R-Hopf

' algebra is an allowable R-module and Hopf algebra which is both an allowable
R-algebra and an allowable R- coalgebra and which admits a conjugation ¥
[13, Definition 8.4] such that y> = 1 and yx is a morphism of R-modules (y is
necessarily a morphism of Hopf algebras and, by definition, ¢(1 & xW = #e).
For any of these structures, an allowable AR-structure is an allowable R-structure
and an unstable A°-structure of the same type (in the sense of homology: its dual,
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if of finite type, is an unstable A-structure of the dual type) such that the A° and
- R operations satisfy the Nishida relations. '
With these definitions, the entire content of Theorem 1.1 is that the mod P
homology of an infinite loop space carries a natural structure of allowable AR-Hopf
algebra. Itshould be observed that if B is connected and satisfies the definition of
an allowable R-Hopf algebra, except for the condition about y, then this last
“condition is automatically satisfied. This is false in the nonconnected case, where
we have : o o

© LeMMa 24 Let B be an allowable R-Hopf algebra. Then each g € GB
Is nvertible and y(g) = g'. If xeB, deg(x) >0, and Y(x)=x X g +
=Zx ® X" + g @ x, then y(x) = —x-g7 =¥ xxx") g "

‘To take advantage of our definitions, we require free functors taking values
' m our various categories of allowable R and AR-structures. These are obtained
~ as-follows.

(a) Z -modules to allowable R-modules. If M is a Z -module, define D(M) =

s 20R? ® M,(D,M)=@P),20R:_, ® M, gives the grading). R operates
on the left of D(M) via the maps R — RY,

(b) Homology coalgebras to allowable R-coalgebras. If C is a homology
coalgebra with unit #:Z,— C, and JC = Coker y, define E(C) = Z, @ D(JC)
as an R-module; C < E(C) and, by induction on the length of adm1s31bfe
monomials, the coproduct on C together with the Cartan formula define a structure
~ of allowable R-coalgebra on E(C).

(¢) Homology unstable A°-coalgebras to allowable AR-coalgebras. Given
C, the Nishida relations and A° operations on C define an allowable 4 R-coalgebra
~structure on E(C) by induction on the length of admissible monomials.

(d) Allowable R-modules to allowable R-algebras. Given D, define V(D) =
 A(D)/I, where A(D) is the free commutative algebra generated by D and I is the

ideal generated by {d? — Q'(d)|2i = deg(d)} if p > 2 or by {d* - Qd)|i =
deg(d)} if p = 2; the Cartan formula and the requirement that the unit be a
morphism of R-modules define a structure of allowable R-algebra on V(D).

(e) Allowable R-'coalgebras to allowable R-Hopf algebras. Given E, define
W(E) = V(JE), JE = Coker n; E = W(E) and the coproduct on E induces a
coproduct on W(E) such that W(E) becomes a Hopf algebra over R, not necessarily
allowable unless E is connected. GW(E) is a commutative monoid, Wy(E) is its
monoid ring, and W(E} = V(E) ® WO(E) as an algebra, where E is the set of
positive degree elements of E. Let GWI(E) be the (commutatlve) group generated
" by GW(E), let W,(E) be its group ring, and define W(E) = V(E) ® Wy(E) as an
algebra. The coproduct on W(E) is determined by those on W(E) < c W(E) and
on W,(E), and (as in Lemma 2 4) W(E) admits a conjugation extending that on
W,(E). The R-operations on -W(E) are determined by those on W(E) and by
O = yQ°. With these structures, W(E) is an allowable AR-Hopf algebra.
Of course, if E is connected, then W(E) = W(E).

(f) Allowable AR-coalgebras to allowable AR-Hopf algebras. Given E, the
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Cartan formula (for the Steenrod operations) deﬁnes a structure of allowable
AR-Hopf algebra on W(E).

In each case, verifications are required to prove that these functors are well
defined and are adjoint to the forgetful functor going in the other direction.
The. functots ¥V and W occur in other contexts in algebraic topology and are
discussed in [9].

- LetX bea space. H,(X) 1sah0mology unstabler-coalgebra hence WEH (X)
is defined and is the free allowable AR-Hopf algebra generated by H(X). The
natural inclusion X — QX induces a monomorphism on homology; by the
freeness of WEH «X), there results a ‘morphism of AR-Hopl algebras f:
WEH H(X)—H *(QX ) which defines a natural transformation of functors on the
category 7 of based spaces. Dyer and Lashof [ 5] proved that f'is an isomotphism
of algebras if X is connected and computed a component of H (QS5°) as an algebra.
Simple proofs of their results are obtainable by use of the Eilenberg-Moore spectral
sequence. By a reinterpretation and generalization of their methods, we can
prove the following theorem; observations of I. Madsen were instrumental in
obtaining this result.

-~ THEOREM 2.5. f:WEH «X) — H_ (OX) is an isomorphism of AR-Hopf algebras
- for every space X. '

_ REMARK 2.6. The mod p Bockstein spectral sequence of QX is determined
by that of X and the following formula [10, Proposition 6.8], which is valid for
any three-fold loop space B.

(1) Let y e Hy,(B) and let f,_,(y) be defined; then, modulo indeterminacy,
BAY?) = B,—1(y)y*™" unless » = 2 and p = 2, when B,(y*) = B(¥)y + Q*'B(y).
(Of course, if p = 2, Theorem 1.1 (8) implies that SQ° = (s — 1)0°*~') Thus
. the Bockstein spectral sequences of QX are functors of those of X, and the (additive)
integral homology of QX is explicitly known as a functor of the 1ntegral homology

of X..
‘The followmg corollary of Theorem 2.5 gives an analog to the statement that

the cohomology of any space is a quotient of a free unstable A-algebra.

 COROLLARY 2.7. If B s an infinite loop space, then Hy(B) is a quotient of the
free allowable AR-Hopf algebra H (QB,).

PROOF. By [8, Proposition 1], there is an adjunction isomorphism
Homi, (X, Bo) — Hom,, (0(X), B),

~ where & is the category of infinite loop sequences and J(X) = {QS'X | iz 0}.
_It follows that, for any infinite loop sequence B = {B;}, thereisamapg: QB0 — B
in % such that the composite B0 — OB, > B, is the identity in 7, the category
of based spaces.
As an algebra, H, (QX) = VD(JH (X)) ® HQX), where VD(JH (X)) is
the free commutative algebra generated by the Z ,-module: {Q%(x)|x € JH (X),
I admissible, deg(Q'x) >0, e(I) + ¢, > deg(x)}. (If p = 2, &) > deg(x) is
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required; Of = 1 is allowed if deg(x) > 0.) The Q'(x) with e(/) = deg(x) > 0
and, if p > 2, ¢, = 0 precisely account for the pth powers of positive degree
elements. Note that:

7o(0X) = Ty(X) = inj lim (S'X) = inj lim H(S'X) = JH(X).

Therefore Hy(QX), as a Hopf algebra with conjugation, is the group ring of the
free commutative group with one generator x € JH (X)) forreach component of X
other than that of the base-point, in agreement with (¢). The coproduct and
Steenrod operations on H (QX) are induced from those on H,(X) by the Cartan
formulas and Nishida relations; their explicit evaluation requires use of the Adem
relations for the Dyer -Lashof operations,

3. The homology of F, F/O, BF, and B Top. To illustrate the _previous
resuits-and prepare for the discussion of F and BF, we- consider 0S° in detail.
Let F(n) denote the space of based maps S*— 8", S:F(n)— F(n + 1), and
let F =injlim F(n). Then F(n) = Q"S" and F = QS° Let F, denote the
component of F consisting of the maps of degree i, ie Z. If [i] e H (F) is repre-
sented by a map of degree i, then {[i]|ie Z} is a basis for Hy(F). Denote the
loop productin F = QQS* by ». Then «: Fix F,— F,,,j and [i1# [j] = [i + j].
Each Q° takes H (F) to H (F,), and Q°[i] = [pl] [0] is the identity for = and
Q°[0] = 0 for s > 0. Let R denote the set of positive degree elements of R and
let H,(S°) have basis [0] and [1]. Then EH (5% = Z,[0] ® R [1],

. WEH (5°) = V(R[1]) = V(R[1]) ® P{[1]},
an
H,(F) = WEH (S°) = V(R[1]) ® Hq(F).

Let A(X ) denote the free commutative algebra generated by the set X, then
V(R[l]) A{Q'[1]| I admissible, d(I) > 0, e(I} + ¢; > 0}.

-R — H (F) defined by 07 — Q’[l] is a monomorphlsm of A%coalgebras; by the
Cartan formulas and Nishida and Adem relations, R determines the Steenrod
operations and coproduct in H *(F' ) and the Dyer-Lashof operations on V(R[1]);
- fori> 0,Q1—i] = ZO°[i].

~ Ofcourse, Fisa topologlcal monoid under the product ¢ defined by composmon
of maps, c: F, X F — F This product is homotopic to that obtained from the
smash product of maps F(m) x F{n)— F(m + n) by passage to limits, and is
* therefore homotopy commutative.

With the product ¢, F plays a special role in the theory of infinite loop spaces.
Thus let B = {B,|i = 0} be any infinite loop sequence. Then B, = QO"B, is
homeomorphic to the spaces of based maps §" — B,, and composition of maps
defines an operation c,:B, x F(n)— B,. Since ¢, (1 x §) = ¢,, we obtain
¢:B, x F— B, by passage to limits. Clearly c:0S® x F— QS® coincides
with the composition product on F. The basic properties of c,:H.(B) ®
H (F)— H (B) are given in the following theorem. |
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THEOREM 3.1. ¢, gives H,(B) a structure of Hopf algebra over the Hopf
algebra H (F) and, with c (b ® f) = ¥f,

(1) ¢ f = e(f)p, e: Hy(B)— Z where ¢ € H(B) is the identity.

(i) PLfy =3, PUBPLIHS) and Bf) = PON + (—1)%9bB(f).

(i) Q" ) S =24 Q"*‘bPL(f Yand,if p > 2,

ﬁQ"(b) f= ZﬁQ"*‘(bP (f)— Z( 1)*a*Q* (b - PLA())-

(iv): a,*(b)f‘ = 0,(bf), where o is the homology suspension.

Thus H,(B) is a Hopf algebra over each of R, A°, and H_(F), all of these
homology operations are stable, and we have precise commutation formulas
relating these three types of operations. Appliedto B = {QS*|i 2 0},the theorem
completely determines the structure of H,(F) as an algebra under c,. Explicitly,
we have the following corollary.

COROLLARY 3.2, Ifx,y,z € H(F) and y(z2) = Y, 2’ ® 2, then
@) (xxp)z =Y (—1)%9799 755" x 2", and
®) G * [Py * LD = X (— 1ydeox"deav'sc'y’ 5 x"[ ] % y"[i] * [4].

Thus Cy 18 determined by the producis between the generators of H F) under
» namely [ +1] and the Q'[1]. The products Q1] - Q’[ 1] are determined by (iii)
of the theorem and induction on [I); in particular, all Q’[1] with iI) > 1 are
decomposable under c, in terms of the fQ°[1]. Finally, x - [1] = x,x-[~1]} =
Z(x), and x - [0] = e(x)[O] for x € H(F).

Now recall that F = F, u F_, is the space of based homotopy equivalences
of spheres and that SF = F,. It is easy to compute H «(F) as an algebra from the
corollary. The following result was first proved by Milgram [11] in the case
p = 2 and later by the author and Tsuchiya [17], independently, in the case
p > 2. The proofs of Milgram and Tsuchiya rely on similar, but less general,
results than Theorem 3.1. It will be convenient to first fix notations for various
elements and sets of elements in H,(SF). Thus define

(@) x, = Q1] *[1 — p]; deg x, =35 if p=2, and deg x, = 2s(p — 1),
if p > 2; ,

(b) y, = Q"7 PQ 1] *[1 — p?]; degy, = 2sif p = 2and deg y, = 2sp(p — 1)
ifp >2; '

(€) z, = Q°H1Q[1] * [—3]ifp = 2; deg z, = 25 + 1;

(d) z, = Q¥ VBO 1] x[1 — p*¥]ifp > 2; degz, = 2spp — 1) — 1;

() I = Q1] [t — p'P], where I is admissible, [(I) = 2,and e(I) + ¢; > 0;
let X denote the set of all such I € H_(SF); observe that z,e X but y, ¢ X and,
ifp> 2, Bz, ¢ X. Define

) Y={ytuXifp=2and Y= {fz;} v Xifp > 2 (here y, ¢ Y).

COROLLARY 3.3.  As an algebra under ¢,., H (SF) = E{x,} ® P(Y)if p= 2
and H (SF) = E{fx,} ® P{x,;} @ A(Y)ifp > 2.
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- Let J:80 — SF be the natural inclusion. We next give precise information
“on J, and describe H (F/0).

Let p=2. Then H,SO)= E{a,|s =1}, where deg a, = s, Yla,) =
Zi 2 Q) 8s—ys and Wei, 04(a)> = 1. We may define Stiefel-Whitney classes
W, = ¢~ 'Sg°p(1) € H*(BSF), where ¢ is the Thom isomorphism, and then
(B_.I)*(ws) = w,. Thus (BJ)* H*(BSF) — H*(BSO) is an epimorphism, hence
5018 J¥. *‘ ' v :

_ THEORBM3 4. Letp = 2. ThenJfa,) = X, hencelm J, = E{x,}. H(F/0) =
*(SF)//J ~ P(Y), H*(SF)—r H (F /O) isthe natural eplmorph:sm and H (F/0)—
*(BO) is trwlal

-~ Now let p > 2. Then H(SO) = E{a,|s 2 1}, where dega, =45 — 1, a, is
primitive, and (P,, o(a,)) = 1, with P, the Pontrjagin class reduced mod p. We
may define Wu classes g, = ¢~ 'P°¢(1) in both H*(BF) and H*(BO). Then

(BNH*4g,) = q, and, in H*BO), ¢, — kP, is decomposable, where m =
(1/2)(p—1) and 0 # ke Z, [12, p. 120]. By a*(BJ)* = J*¢* and dualization,
J @) #0in H,(F).

" We nheed the following lemma.

‘LeMMA 3.5, Letp > 2. Then the sub Hopf algebra E{fx;} ® P{x,} of H (SF)
contains unique primitive elements b, such that b; — Px, is decomposable, and
E{ﬁxs} & P{xs} = E{bs} & P{xs}

THEOREM 3.6. Let p > 2. Then J(a,;) = b, 0 £l Z,, and J,(a) =0
fors # Omod m, hencelm J, = E{b,}. Further,H (F/O) = [HXBO)/P{gs}]* ®

H. (SF)}J,where H (SF)//J =~ P{x,} ® A(Y); H(SF)— H_(F/O)is the natural
ep:morphlsm onto H, (SF)|J,; and HF/0)— H/BO) is the inclusion on
[H *(BO)//P{qs}]* and is trivial on H (SF)|/J .

We ncxt discuss the classifying space BF. If p = 2, H (BF) is already deter-
mlned as a coalgebra, by H (F) since E* = E” for dlmensmnal reasons in the
: Ellenberg-Moorc spectral sequence converging from Tor H (SF)(Z,, Z,) to

H, (BSF). Thus Milgram [11] first computed H (BF; Z,) as a coalgebra. For
p > 2, and to compute H (BF; Z,) as an algebra, more information is needed.
This information for p > 2 was obtained first by Tsuchlya [17] and then by the
author and for p = 2 by Madsen [7]; it will be discussed below.

Tugorem 3.7. If p =2, H(BF) = H,(BO)® BC as a Hopf algebra
- where BC is the primitively generated Hopf algebra
E{6,(3)} @ P{o,(z)} ® P{o (D |IeX,ell) > 1}.

If p> 2 H,(BF) = [P{q,} ® E{fq,}]* ® BC as a Hopf algebra, where BC
is the przmttwely generated Hopf algebra

E{O'*(st)} ® P{o,(z)} ® Ao, (D|IeX,el) + ¢ > 1}.
In both cases, BC is closed under the Steenrod operations in H (BF).
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-Of course, the pth powers in (BC)* are all zero. - There are spaces B Im J (one
for each p), constructed by Stasheff [16], such that H*¥(BIm J) = P{q,} ® E{fq,}
if p > 2. Peterson and Toda [15] first proved that H*(BF) = H¥BIm J) ®
(BC)*, 'as a Hopf algebra over the Steenrod algebra, but without computing
~ (BC)Y*. In principle, the theorem determines the Steenrod operations in H_(BF)
since the given generators of BC are suspensions of elements with known Steenrod
operations in H(SF). There is one practical difficulty, however. In applying
the Nishida relations to the Q'[1] « [1 — p'®], one sometimes reaches terms
Q’[1] * [1 — p"P], where Q’[1] is a pth power in the loop product *. It is not
known that all such elements {(other than the y, if p = 2) are decomposable under
¢, Thus such elements could conceivably suspend nontrivially to H,(BF).

It is instructive to compare H (BSF) to H (QS'). The latter is the free.com-
" mutative primitively generated Hopf algebra

A{Q"i | Iis admissible and e(I) + ¢; > 1},

where i is the fundamental class of H_(S'). In the case p = 2, the presence of
H,(BSO) in H(BSF) forced the appearance of the additional generators o _(y,)
and o,(z,). In the case p > 2, the presence of the Wu classes and their Bocksteins
in H*(BF) forced the appearance of the additional generators o,(8°z).

The description of H (BF) just given is clearly inappropriate for most appli-
cations. The interest in BF lies mainly in its relationship to BO, B Top, BPL,
'F/pl, etc. By the work of Boardman and Vogt [2], all of these spaces are inﬁnite
loop spaces and the maps between them are infinite loop maps. To study these
maps and to compute H,_(BBF), etc., one must describe H (BF) in terms of its
own Dyer-Lashof operations rather than in terms of the suspensions of the Q°
for the * product in H *(F ).

To study this problem, it is again convenient to use all of F. Although Fis
not an infinite loop space under c, since no{F)isnot a group under c,, it is easy to
' prove by use of topologlcal PROP’s that H (F) admits Dyer-Lashof operations
o H*(Fi)—» H (F ) which coincide with the infinite loop operations for the
composition product on H «(F) and which satisfy all of the properties stated in

The_qrern 1.1 except (6). Thc information required for the proof of Theorem 3.7
was, in the case p = 2, the determination of the first operation above the square,
namely O%(x) for xe H,_,(SF) and, in the case p > 2, the determination of
'ﬁ‘Qs(x) for x & H,,_ (SF). If p > 2, these f0%x) produced nontrivial dlﬁ'erentlals
(d,-,) in the Eilenberg-Moore spectral sequence and, for all p, these O%(x) deter-
mmed the algebra extensions from E,, to H (BF). An carlier preprint of mine
_claimed a complete algebraic determination of the higher O°; the methods used
did give considerable information, but less than was claimed. Tsuchiya [17]
initiated a direct geometric study of the 0%, but his results did not give an explicit
hold on the higher operations. Recently Madsen [7] obtained precise formulas,
in the case p = 2, for the evaluation of the 0% on H «(F) in terms of the Q* and the
loop and composition products. Modulo one ambiguity, I have since obtained
such an evaluation for all p. The key resultis the following theorem, which evaluates
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the Q on elements of H ,(F) which are -decomposable.

THEOREM 3.8. There exist operations Qi *(F‘) ® H*(F) — H*(F) Jor
0gisg psuch that, for all x, y € H (F),

1) Qs(x * J’) PN Qs" A ® YN %k O ® y®), 35, = 5, where

o »tll(x ®P)=YxVR YO R - ® xP ® y“” gives the iterated coproduct in

H,(F) ® HJF).
The 5 and Q" are determined from the O° by
2) Qo(x ® y) = O%(e(y)x) and Qx ® y) = O*(elx)y), e:H F)— 2,
.The 35,0 <'i < p, are determined from the O° by the formulas
: (3) Ekon”"P x ®y) =Y, G([1] @ [1Px® - x~Dy® ..y where
W(x) = Zx“’ ®® X" and Yy) = ¥ YW ® - ® y¥ give the iterated
coproducts this farmula is inductively solvable for Q”(x ® y) in terms of the Steenrod
_operattons, the composition product, and the elements g[1] ® [1];
(4) (Z [1] & [1]) ZQS'(D] x [ # - w QS"([I] ® [, X §8; = s, for
1 <i<p ‘where ri'- (1/p)(z p — i) dnd
®) 0111 ® 1D = 1]
In parucular formulas (3) and (5) lmply
(6 0i([1] ® ») = Q0 for all y ‘e H,(F).

, The crucial formula (5) is obtainable algebralcally, from knowledge of H (0O),

if p = 2, but requires a very explicit geometric hold on the operations if p > 2,
The theorem reduces the problem of calculating the Oson H < F)to their evaluation
~on elements which are indecomposable under both the loop and composition
prodiscts. We have the following lemma.

LevMA 3.9. If's > 0, then 0°[0] = 0,0°[1] = 0,and,ifp > 2,0°[—1] = 0;
ifp =2, then O'[—1] = x, = Q'[1] » [~ 1].

Thus by Corollary 3.2, we ar¢ reduced to the evaluation of the 3°B<Q'[1], and,
by Theorem 3.8, it suffices to evaluate the O*8x, instead. Now Kochmari [6] has
succeeded in completely determining all Dyer-Lashof operations in the homology
of all spaces involved in Bott periodicity. By Theorems 3.4 and 3.6, his results on

H ,(S0)compute the 0%(x,) if p = 2 and the %(b,)if p > 2. With H,(SO) = E{a,},
“as above, Kochman has proven the following theorem. :

THEOREM 3.10. Ifp = 2, then, withay = 1,

C¥

_.Q’(a{, =(r,s—r— Da,,, + Y [(r ~i,i+j~2r-1)

Ogi<j<k,i+j+k=r+s 7
+r—is—j—-r—1)

+(r—j,s—i—r—1Dlaaa

pr > 2,thenQ%a,) = (—1)(2r — 1,5 — 28, 4y = (1/2)(p — 1). Mp = 2,.
these formulas completely determine the 0% if p > 2, the 0%x,) are not yet
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determined, but this problem appears to be solvable geometrically. Of course,
the algebraic complexity of these results is enormous. They evaluate the O° in
terms of our basis for H =i<(J‘f’)dcﬁned by means of the loop product and its operations
¢, but their purpose is to enable us to prove that H_(F) admits a reasonable basis
described in terms of the {° themselves. The important result is therefore the
following, which we state provisionally as a conjecture, although a complete proof
should be available shortly.

CoNJECTURE 3.11.  Theorem 3.7 remains true with o, (I) replaced by Q’a*(K)
for those I = (J, K) € X such that (K) = 2 and I(J). > 0 (with e(I) + ¢; > 1).

The conjecture implies the weaker statement that BC is generated as an
R-algebra by the elements o,(K) with l(K) =2 (and the o, (y,) and o,(°zy)), and
so reduces the number of R-algebra generators of H,(BF) to manageablé propor-
tions. For p = 2, this weaker statement has been proven by Madsen [7]

Finally, we shall very briefly discuss H +(B Top). Let p > 2. Sullivan (unpub-
lished) has shown_ that BPL, which is mod p homotopy equivalent to B Top by
- the triangulation theorem, spl(lt)s as a space, after localization at p, into a product
BO x B-CokerJ. (Here BO £ Y x Y’, where H*(Y) = P{q,}, and the relevant
map BO — BPL is the natural inclusion on Y < BO and is the composite

—~Bo % F/PL— BPLonY') By the Adams conjecture Fismod phomotopy
equlvalent to Im J x Coker J (the analogous statement for BF is an exceedingly
difficult open question). Using these facts and Theorem 3.8, I have proven the
following resuit.

THEOREM 3.12. If p > 2, then H (BPL) is iso__niofphic as a Hopf algébra to
H_(BO) ® BC, and the following composite is an isomorphism of A®-coalgebras:

H (B Coker J}) — H (BPL) - H _(BF)— H (BF)//(E{fq,} ® P{q,})* = BC.

1 do not claim that H,(B Coker J) maps into BC = H (BF), and I thus do
not have complete information on the map H . (BPL)— H (BF). The previous
result ‘had been conjectured, and proven in low dimensions, by Peterson.

~ For p = 2, the problem is considerably more difficult Madsen [7] has ob-
tained very useful information on the Dyer-Lashof operations in H(F/T op, Z5)
and his work may well lead to a computation of H «(B Top; Z,).

ADDED IN PROOF. A number of changes have occurred, since the summer
conference, in the state of our knowledge.

(1) For p = 2, Madsen has proven Conjecture 3.11 and has shown that BF -
does not split as BJ x B Coker J; however, such a splitting has always appeared
far less likely for p = 2 than for p > 2, and the question for p > 2 is still open.

(2) Madsen, Brumfiel, and Milgram have succeeded in computing
H_ (B Top; Z,), and Tsuchiya has given an independent proof of Theorem 3.12,
in “Characteristic classes for PL-microbundles” (mimeographed notes).

(3) I have obtained very simple proofs of the results of Boardman and Vogt,
and this work has greatly streamlined the construction of the operations and the
proofs of the results of this paper.
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