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AN INFINITE loop space machine is a functor which constructs spectra out of simpler 
space level data. There are many such machines known[ 14,8,151. They differ 
somewhat in the data they accept. Worse, they are given by such widely disparate 
topological constructions that it is far from obvious that they turn our equivalent 
spectra when fed the same data. The purpose of this paper is to prove that all 
machines which satisfy certain reasonable properties do in fact turn out equivalent 
spectra. The properties are satisfied by Segal’s machine[l5], but require use of 
somewhat more general input data than the other machines in the literature are geared 
to accept. We generalize May’s machine [8,9] so that it acts in the requisite generality 
and satisfies the requisite properties. Thus the May and Segal machines are 
equivalent. This proof will illustrate what would be involved in the corresponding 
generalization of other machines, and we are quite confident that an exhaustive 
case-by-case verification would lead to the conclusion that there is really only one 
infinite loop space machine. 

To avoid leaving a wrong impression, we hasten to add that this does not mean we 
can now discard all but one of the explicit constructions. The purpose of the 
constructions is to prove theorems and make calculations, of the sort sketched in 
[ll], and such applications may only be accessible to one or another of the machines. 
For example, the passage from E, ring spaces to E, ring spectra, the construction of 
classifying spectra for bundle and fibration theories oriented with respect to an E, 

ring spectrum, and the passage from E, ring spectra to H, ring spectra[l2,131 are part 
of a calculationally powerful circle of ideas which depends on use of the particular 
geometry of May’s machine. The point here is that while there is now a uniqueness 
theorem for infinite loop space machines, there is no uniqueness theorem for the 
assembly lines of multiplicative infinite loop space factories. On the other hand, 
Segal’s machine has the distinct advantage of being very much simpler to construct 
than the others. Moreover, it will play a canonical role in our theory. Rather than 
compare two machines directly, we compare each of them to Segal’s machine. 

We give a general discussion of the input data of infinite loop space machines in 6 I 
and give a way to construct examples in 04. We prove the uniqueness theorem in $02 
and 3, except that we relegate the proof of a key result about spectra to the first 
appendix. We give the promised generalization of May’s machine in §§S and 6. 

As is traditional in this subject, there is also an appendix about cofibrations. 
In the course of proving our new results, we have had to redevelop and systema- 

tize the foundations of infinite loop space theory, and it is our hope that the present 
paper can serve as a readable source for its main ideas and techniques. 

The first author wishes to acknowledge that the key new idea is entirely due to the 
second author and the latter wants to thank Waldhausen for a very helpful con- 
versation. Both authors wish to acknowledge that the basic insight comes from 
Fiedorowicz’ paper [6]. 

51. CATEGORIES OF OPERATORS AND THEIR ACTIONS 

We here describe a general framework that seems to encompass appropriate 
domain data for infinite loop space machines and other such theories of algebraic 
structure up to homotopy. We first define the notion of a (e-space for a category of 
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operators 93 and then compare the categories of (B-spaces as 3 varies. It will be 
apparent that Segal’s r-spaces fit into this framework, and we shall see in 94 that 
Boardman and Vogt’s homotopy everything H-spaces and May’s E, spaces also fit 
into this framework. This section should be regarded as an elaboration of the first half 
and alternative to the second half of Segal[lS, App. B]. No originality is claimed. 

Let 9 denote the category of finite based sets n = (0, 1, . . ., n} with basepoint 0; its 
morphism are the based functions. Let II denote the subcategory of 9 consisting of 
all morphisms 9: m + n such that 4-‘(j) has at most one element for 15 j 5 n (d-‘(O) 
may have more than one element). 

Regard the set N of objects of 9 as a discrete space. 

Definition 1.1. A category of operators is a topological category 93 with object 
space N such that $ contains Ii and is augmented over 9 by a functor Q: $9 + 9 which 
restricts to the inclusion on H. A map of categories of operators is a continuous 
functor Y: %+ X such that u(n) = n and the following diagram commutes: 

The map Y is said to be an equivalence if each map Y: +?(m, n)+X(m,n) is an 
equivalence. 

We shall add a minor technical condition to the definition in Addendum 1.7 below. 
That % is topological means that its set of morphisms is a space and its structural 
functions are continuous but, as should be but is not standard, we require in addition 
that the identity function from objects to morphisms be a cofibration, so that 
1 E %(n, n) is a non-degenerate basepoint for each n. 

Intuitively, we think of %(m, 1) as a space of m-ary operations and we think of 
‘3(m, n) as a space of operations with m inputs and n outputs. II consists of the 
elementary operations in 5, namely those which do not combine distinct variables. 

Let 9 denote the category of nondegenerately based compactly generated weak 
Hausdorff spaces. We do not insist that spaces have the homotopy type of CW- 
complexes, and by an equivalence we agree to mean a weak homotopy equivalence; 
we emphasize that this convention is to remain in force throughout the paper. Recall 
the notion of an equivariant cofibration from[4, App. 921. 

Definition 1.2. Let 3 be a category of operators. A g-space is a functor X: 9?+ Z 
written n-X, on objects, such that the adjoints %(m, n) X X, +X, are ~~~~~~~~~~ 

and the following properties hold (where we use the same name for maps in (8 and for 
their images under X). 

(1) X0 is aspherical (that is, equivalent to a point). 
(2) For n > 1, the map X. +X,” with coordinates Si is an equivalence, where 8: 

n + 1 is the map in II given by &(j) = 1 if i = j and &(j) = 0 otherwise. 
(3) If 4 : m -_, n is an injection in II and H+ is the group of permutations Q: u + n such 

that a4 = 4, then 4: X, -P X,, is a 2+-equivariant cofibration. 
Let $[9] denote the category of %-spaces, its morphisms being the natural trans- 
formations under 3. A map X+X’ of %-spaces is said to be an equivalence if each 
?& + XA is an equivalence. 

Restriction gives a forgetful functor 9?[.5F]+H[~], and a %-space is to be thought 
of as an underlying H-space with additional structure. In turn, a H-space X is to be 
thought of as a sequence of spaces X. with all the formal and homotopical properties 
that would be present if X. were the n-fold product Y” for some based space Y. The 
following definitions make this more precise. 
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Definition 1.3. Let L: TI[s]+ T’be the functor which sends a II-space X to the 

space X, and let R: T-B ll[T] be the functor which sends a space Y to the n-space 

with nth space Y”; for 4: m + n in II, 4: Y” + Y” is specified by 4(y) = z where 

zi = yi if 4(i) = j and ,q = * if jgZ Im 4, I 5 j I n. Observe that L and R are left and 

right adjoints, 
T(LX, Y) = II[T](X, RY), 

since a map f: X, + Y extends ur$quely to a map r’: X + RY, f”: X, + Y” having ith 
coordinate fSi for 15 i 5 n (and fo mapping XO to the point Y’). 

As the following remarks make precise, 9-spaces are essentially the same thing as 
r-spaces. 

Remarks 1.4. As was first observed by Anderson, the category 9 is isomorphic to 
the opposite of the category r introduced by Segal[lS]. The only differences between 
our notion of s-space and Segal’s notion of r-space are that we have chosen to 

introduce basepoints and impose a cofibration condition. The former change is 
reasonable since basepoints are always present in practice and in any case must be 
introduced as soon as loop spaces are considered. The latter change has the usual 
technical convenience. 

The reader unhappy about the cofibration condition in our definition of a %-space 

should be reassured by the following definition and proposition, which show that this 
condition results in no loss of generality. 

Definition 1.5. An improper g-space is a functor from 3 to based spaces which 
satisfies conditions (1) and (2) but not necessarily condition (3), in the definition of a 

%-space. 

Thus an improper s-space is exactly a r-space with basepoints. The proof of the 
following “whiskering proposition” is deferred until Appendix B. This result will play 

a technical role in obtaining the full generality of our uniqueness theorem. 

PROPOSITION 1.6. For appropriate categories of operators 3, such as 9, there is a 
functor Wfrom improper%spaces to %-spaces and a natural equivalence 7~: WX + Xof 
improper %-spaces. 

To compare categories of $-spaces, we assume given a map Y: %+ 9? of 
categories of operators. For an X-space Y, pullback along Y gives a $-space V* Y. We 
want a converse construction which assigns an X-space u,X to a g-space X. We 
essentially follow Segal[lS, App. B], but we rephrase his argument in terms of the 
generalization of the two-sided bar construction presented in [lo, 9121 in hopes that 
this may provide some clarification. 

Let 0 be a fixed space, thought of as a space of objects. Recall from [IO, 9121 that 
a “right graph” is a space 8 together with a source map 9 + 0, a “left graph” is a space 
9! together with a target map %“+ 0, and a “graph” is a space with both a source and 
target map to 0. There is an evident product (composable pairs) on the category of 
graphs such that a category Ce with object space 0 is precisely a monoid in the 
category of graphs, composition giving the product and identity giving.the unit. There 
are evident notions of right and left graphs over 3. Given such structures 5 and Z?, we 
can construct a two-sided bar construction B(9, %, Z’) which enjoys most of the good 
properties familiar from the clasical situation in which 0 is replaced by a single point. Our 
interest is in the case 6 = N. 

We refer the reader to [lo, 0121 for details and return to our map Y: Ce+ &9. For each 
fixed n 10, the space % = lI%‘(m, n) is a right graph over 99, the requisite maps 
%(m, n) X %(q, m)-*%‘(q, n) being given by 1 X Y followed by composition. For a 
g-space X, let X also denote the space LIX, regarded as a left graph over % via the 

maps %(q, m) X X,--,X,,,. We thus obtain B(& 3, X). We have a trivial %-space *, 
with nth space a point, and a natural map *+X. The nondegeneracy of basepoints 
implies that the induced map 
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is a cofibration. Define 

tv*m, = Et% % X)/B(%, 3, *). 

A map m+n in X induces a map %,,, + %‘,, of right graphs over (8, by composition, 
and there results a map (Y*X), -+(v*X).. Thus v,X is a functor X+-Z and the 
adjoints X(m, n) X (v*X),,, + (vex), are continuous by the continuity of the functor 
B. We impose the following addition to the definition of a category of operators in order 
to ensure that 4: (v*X), + (v*X), is a S+-equivariant cofibration if I#J: m-+n is an 
injection in II. 

Addendum 1.7. We require of a category of operators $3 that left composition 
‘9, -+ % by an injection 4 : m + n in lI be a 2,+-equivariant cofibration. 

This holds trivially for %I = 9 and for our examples in §4. The following result is 
due to Segal[lS, B.11. 

THEOREM 1.8. Let v: % + X be an equivalence of categories of operators. For a 
S-space X, v*X is an X-space and there are natural equivalences of g-spaces 

v*v*x - 1,x - x, 

where l* is induced by the identity functor of 3. For an %-space Y, there is a natural 
equivalence of X-spaces V*V* Y --, Y. 

Proof. Consider the following equivalences: 

B(& %, X) _yn B(%“,, %, X) L X”. 

Here V. is short for B(v, 1, 1) and is an equivalence by[9, A.41 and E, is obtained by 
restriction of nth components from the canonical equivalence E: B(%, $3, X)+X of 
[8,9.8 and 11.101. When X = *, these show that each B(&. 3, *) is contractible, and it 
follows that the projections 

B(%‘,,, +6X)---* (v*X), ‘and B(%, 3,X) - (1,X)” 

are equivalences. Thus the equivalences above induce equivalences 

(v*v*X)” -(1*X), - X”. 

These define natural transformations of functors 2V+ 5 and show that (v*X)~ is 
aspherical and (v*X), +(v*X),” is an equivalence. Thus v*X is an X-space and the 
first part is proven. For an Z-space Y, the same references as above show that the 
maps 

B(%“, 2-3, Y* Y) - y” B(2& 2, Y)L Y”. 

V, = B(l, Y, I), are equivalences. By passage to quotients, they induce equivalences 

(V*V*Y). A (l*Y), (n Y”, 

where I* is induced from the identity functor of 2’. These composites give the 
required equivalence V*V* Y + Y. 

52. THE UNIQUENESS THEOREM 

We contend that an appropriate domain of definition for an infinite loop space 
machine is the category of $-spaces for any category of operators %? such that E: 
%+ 9 is an equivalence. We assume given such a % throughout this section. Given 
two such %, there will usually not be an equivalence between them. It is therefore 
unreasonable to attempt to compare directly two machines based on different %. 
However, Theorem 1.8 shows that the categories of %-spaces and of s-spaces are 
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essentially equivalent. We thus findit sensible to compare a machine based on 3 to a 
canonical machine based on 9, and we take Segal’s machine for the latter. To effect 
such a comparison, we must first specify precisely what we mean by an infinite loop 
space machine. 

We require conventions about spectra. By a spectrum, we shall here understand a 
sequence of based spaces E; and equivalences vi: Ei + OEi+l. A map f: E+ E’ will be 
a sequence of maps fj: Ei + E: such that the diagram 

Ei 
fi 

l E: 

(*) _I 
flEi+l 

commutes (on the nose, not up to homotopy). A homotopy h: f-f’ will be a 
parametrized family of maps h,: E+ E’ of spectra such that the h,i specify a 
homotopy fi = f: for each i. A map f will be called an equivalence if each fi is an 
equivalence. Such maps need not have inverses, and we shall also use the term 
equivalence for chains of equivalences with arrows going either forwards or back- 
wards. We defer further discussion of this category of spectra until after the 
statements of our main results. 

All of our spectra will be connective, in the sense that each E; is (i - I)-connected. 
Note that a map f: E+ E’ between connective spectra is an equivalence if and only if 
fO: EO+E; is an equivalence. In turn, since EO is equivalent to the product of its 
identity component and the discrete group &E,,). fO is an equivalence if and only if it 
induces an isomorphism on 7ro and on integral (or field coefficient) homology. 

Definition 2.1. An infinite loop space machine defined on %-spaces is a functor E 
from Y&spaces to connective spectra, written EX = {EiX, ai}, together with a natural 
group completion L: X, + EoX. 

That L is a group completion means that ro(EoX) is the universal group associated 
to the monoid &CI and that H.&E&) is the localization of the Pontryagin ring H,X, at 
its submonoid 7roX1 for every commutative ring of coefficients or, equivalently by [9,1.4], 
for every field of coefficients. It is by now well understood that this group completion 
property is an essential feature of any worthwhile machine. We require several direct 
consequences of the definition. 

LEMMA 2.2. If POX, is a group, then L: X,+E,X is an equivalence. 

LEMMA 2.3. If f: X+X’ is a map of (e-spaces such that f,: X,+X; is either an 
equivalence or a group completion, then Ef: EX --, EX’ is an equivalence. 

Proof. Eof induces an isomorphism on 7~~ and on homology under either hypo- 
thesis. 

The categories of %-spaces and of spectra have evident products, and we have the 
following commutation relation. 

LEMMA 2.4. For $-spaces X and X’, the projections specify an equivalence 
E(X x X’) --* EX x EX’. 

Proof. For commutative algebras R and S over a field k with multiplicative 
submonoids M and N, the tensor product over k of the localization of R at M and the 
localization of S at N is the localization of R @ S at the image of M x N, this being a 
formal consequence of the defining universal property of localization and the fact that 
tensor product is the coproduct in the category of algebras. Since we can restrict 
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attention to field coefficients, it-follows by the Kunneth theorem that the map I x L in 
the following commutative diagram is a group completion: 

_ 
E,(X x X’) - EoX, x EoX’ 

I* 

Therefore the bottom map induces an isomorphism on 7ro and on homology. 

Segal[lS] has constructed an infinite loop space machine S defined on g-spaces, 
and the following uniqueness theorem is our main result. 

THEOREM 2.5. For any infinite loop space machine E defined on %-spaces, there is a 
natural equivalence of spectra between E(c* Y) and SY for .9-spaces Y. 

The proof will be given in the next section, and the definition of S will be recalled 
there. It should be observed that this is really a statement about the infinite loop space 
machine Ee* defined on s-spaces. Thus, for purposes of proof, we may assume 
without loss of generality that E itself is defined on F-spaces. This has technical 
advantages in that 9 admits certain constructions that would not be available for 
general Ce. However, the theorem has the following consequence for %-spaces. 

COROLLARY 2.6. For any infinite loop space machine E defined on $-spaces, there is 
a natural equivalence of spectra between EX and S(e*X) for %-spaces X. 

Proof. S(e*X) is equivalent to E(e*e*X), and the latter is equivalent to EX by 
Theorem I.8 and Lemma 2.3. 

Thus the machines E and S are completely equivalent. 
Although all known machines take values in our category of spectra, it may be 

worth remarking that there is an alternative version of our results valid for infinite 
loop space machines which take values in the category of spectra and weak maps, by 
which we understand sequences fi: Ei + E: for which the diagrams (*) above are only 
required to commute up to homotopy; here maps f and f’ are homotopic if fi = fj for 
each i. with no compatibility between homotopies as i varies. The proofs proceed 
along the same lines as those below and will be omitted. The interest is that the 
homotopy category of spectra and weak maps is essentially the same (see [12. p. 401) 
as the category of cohomology theories on spaces. 

We regard the category of spectra in which we have chosen to work here as 
merely a convenient first approximation to the stable homotopy category. In [12. p. 
401. spectra as defined here were called weak fit-prespectra, the structural maps oi: 
Ei + RE,,, of R-prespectra being required to be inclusions as well as equivalences and 
the structural maps of spectra being required to be homeomorphisms. With this 
hierarchy of terms, and with maps, homotopies, and equivalences defined as for our 
present category of weak R-prespectra, the iterated mapping cylinder construction of 
[7, Thm 41 yields a functor T which replaces weak fl-prespectra by naturally 
equivalent R-prespectra and then the direct limit construction of [12, 11.1.4) yields a 
functor fin which replaces R-prespectra by naturally equivalent spectra. These 
functors preserve homotopies and equivalences. The point is that, as was summarized 
in [I2. II] and will be explained in detail in [14]. the stable category can and should be 
defined as that category obtained from the homotopy category of 
structural maps homeomorphisms) by formally adjoining inverses to 
Therefore Theorem 2.5 and Corollary 2.6 yield isomorphisms 

R”TE(e* Y) s R”TSY and WTEX = R”TS(e*X) 

in the stable category. Actually, S takes values in R-prespectra, 

spectra (with 
equivalences. 

hence TS is 
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equivalent to S. If E happens to take values in spectra, as holds for May’s machine 
for example, then R”TE is equivalent to E and we conclude that the spectra-valued 
machines E and fYS are equivalent. We have chosen to work with weak R- 
prespectra, and to call them spectra, in order to avoid excess verbiage involving Q” 
and T, but it is the derived conclusions in the stable category that we are really after. 

63. 3%SPACES, SEGAL'S MACHINE, AND BISPECTRA 

The proof of the uniqueness theorem is based on the use of “99-spaces” on the 
input side and of “bispectra” on the output side. We begin by defining the former 
notion but, for clarity and for use in a later paper, we proceed in greater generality 
than needed and assume given a category of operators 9% 

Definition 3.1. An B-space is a functor 2: 9+ $?[.Y], written n + 2. on objects, 
such that the following properties hold. 

(I) The component spaces of the %-space Z,, are aspherical. 
(2) For n > 1, the map 2, -,Zl” with coordinates Si is an equivalence of %-spaces. 

Let S%[Y] denote the category of S%?-spaces, its morphisms being the natural 
transformations under 9. 

Thus an 9%space consists of spaces Znq, maps &: Z,, + Z,, for 4: m+n in 9, 
and maps (km: Z,, + Z,, for +: p-, q in 97 such that the following diagrams commute 
(because 4 is required to be a map of %-spaces): 

We shall sometimes write Zn* for the %-space Z,. Symmetrically, the maps 9, on Z,, 
for fixed p give a functor 9+ 9, and conditions (1) and (2) imply that this functor 
satisfies the corresponding conditions of Definition 1.2. Thus Z*, is an improper 
g-space (as defined in Definition 1.5). 

We have the following lemma on the condensation of 9%spaces to improper 
P-spaces via appropriate functors. 

LEMMA 3.2. Let D be any junctor from Sspaces to based spaces which satisfies 
the following properties. 

(i) If XI is aspherical, then DX is aspherical. 
(ii) If j: X+X’ is an equivalence of S-spaces, then Dj: DX+ DX’ is an 

equivalence. 
(iii) The map D(X x Xl)-, DX x DX’ given by the projections is an equicalence. 

Then for any F3-space Z, the spaces DZ, and maps 04 for (5: m + n in 9 specify an 
improper S-space DZ. 

Proof. The map DZ, + (DZ,)” with coordinates DSi factors as the composite of 
equivalences 

D(Xbi) 
DZ,, - D(Z,“)-+ (DZI)“. 

For an infinite loop space machine E defined on (B-spaces, Lemmas 2.2-2.4 show 
that each functor Ei, i 20, satisfies the properties specified in the lemma. The 
following facts about the resulting improper S-spaces EiZ are immediate by naturality. 

LEMMA 3.3. The group completions L: Z,, + EOZ, and equivalences cr;: EiZn -+ 
fiEi+lZn specify maps I: Z*I + EOZ and ui: EiZ+ REi+lZ of improper 9-spaces. 
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E and 2 -of interest to us, one can verify directly that all 
improper ?-spaces in sight do in fact satisfy the cofibration condition of Definition 
1.2. However, rather than complicating our axioms by insisting on conditions which 
ensure this. we shall make use of Proposition 1.6 to replace improper s-spaces by 
%spaces. 

We shall only need ss-spaces, and in fact we shall only need those *$-spaces 
which arise via the following functor from F-spaces to Br-spaces; its definition is 
abstracted from ideas of Segal[lS]. 

Construction 3.4. Construct a functor 9[91+ 95[5_1. written Y + Y on objects, 
as follows. Let A : 9 x 9 --, 9 be the functor “smash product of finite based sets”, with 
n A q = nq on objects and 

(4 hrL)((i- I)p+i)=( (d(i)- I)q + J/(j) if cb(i)>O and +(j)>O 
o if b(i) = 0 or Jl(j)=O 

on morphisms 4: m+n and $: p-q, where 1 sism and 15 jsp. Let v,: 9+ 
9 x 9 be the functor specified by q --, (n, q) on objects and I(I --* (1, JI) on morphisms. 
Define Y” to be the s-space given by the composite functor 

Y” is to be thought of as a pseudo n-fold product of Y; it has qth space YnV For a 
map 4: m+ n in 9, the maps &, = 4 A 1: Ymq + Yns specify a morphism 4: p,,, + F” of 
g-spaces, and these give Y a structure of $s-space. Observe that F,, = Yoo, and Ye0 
are both constant at Y0 and that Y, = Y,* and Y*, are both copies of the given 
g-space Y. The functoriality of this passage from s-spaces to $$-spaces is evident. 

This construction will play two distinct and independent roles in our work, one 
being that it is the starting point for the definition of Segal’s machine S. Since we need 
some elementary facts about S not recorded in [15] and since we wish to modify 
Segal’s definitions slightly, we review his constructions. 

LEMMA 3.5. The category A such that a simplicial object is a covariant functor 
defined on A maps to 9. 

Proof. A map f: m* n in A is a non-decreasing function 
(0.1,. . .* m}, and the corresponding map 4: m + n in 9 is specified by 

d-‘(j)={ilf(j-l)<isf(j)} for Ilj<n 

and 

+-l(O) = m - CJ 4-‘(j). 
i=l 

(Note that this functor A+ 9 is not an embedding.) 

(0.1,. . ., n)-, 

Therefore an F-space Y has an underlying simplicial based space and thus a 
geometric realization ] Y] in 3. We take realization in the classical sense, with 
degeneracies. The cofibration condition in Definition 1.2 ensures that Y is a proper 
simplicial space in the sense of [8. 0 11 and 9, App.], or a good simplicial space in the 
sense of [l5, App. A]; by the latter, ]Y] has the same homotopy type as Segal’s thick 
realization. 

We have a cofibration YO+ (Y] and we define DY = I Y]/ Y,,; of course, the quotient 
map I Y] + DY is an equivalence. In practice, Y0 is usually a point (and this could 
easily be arranged functorially if desired), but the construction used to prove 
Theorem I.8 leads to F-spaces with large contractible zeroth spaces. With its 
standard filtration, the first filtration of IY I is the quotient of YoLI( Yr x I) by an 
equivalence relation which identifies (y, t) to y for y E Yo, where YO is embedded in 
Y, via the cofibration so, and identifies points of YI X aI to points of Yo. There results 
a natural map ZY,+DY with adjoint L: Y,+RDY, which is an inclusion, and the 
main theorems of Segal’s paper[l5] assert that L is a group completion. 
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By [9, A.51, DY is i-connectedif Y, is (i - I)-connected. Since geometric realiza- 
tion preserves products [S, 11.41 and equivalences of proper simplicial spaces [9. A.41, 
the functor D from 9-spaces to based spaces satisfies the conditions of Lemma 3.2. 
For an .R+-space of the form Y, it is straightforward to verify that the resulting 
improper s-space DY inherits the cofibration condition of Definition 1.2 from Y and 
is therefore an s-space. We can now define Segal’s machine. 

Definition 3.6. Define the classifying g-space BY of an F-space Y to be DY and 
observe that 

(BY), = DY, = DY. 

Inductively, define BOY = Y and B’Y = B(B’-‘Y) for i > 0. Define the Segal spectrum 
SY = {SiY, o;} by 

S,Y=flDY and Si+lY=DB’Y for iz0, 

ao=l:SoY+RS~Y and oi=L:S;Y+RS;+lY for i>O. 

The ai are equivalences since SiY is (i- I)-connected, and I: Y,+RDY = SOY is a 
natural group completion. 

Thus S is an infinite loop space machine defined on 9-spaces. Its relationship with 
loops will be vital to the proof of the uniqueness theorem. 

Observe that, for any category of operators 3, composition with the loop functor 
on based spaces yields a loop functor on improper %-spaces. By use of [S, A.71, the 
looping of a g-space satisfies the cofibration condition requisite to again be a ‘X-space. 

The loop functor on spectra is specified by (0E)i = fk(Ei), the structural 
equivalences being the composites 

where T is given by twisting coordinates, (~g)(s)(t) = g(t)(s). The twist is correct 
geometrically and is vital to the following result. 

PROPOSITION 3.7. For g-spaces Y, there is a natural map 5: SRY +RSY such that 
the following diagram commutes: 

‘ 8-h /J cc! 
son Y f2SoY. 

Zf TRY, is a group, then 6 is an equivalence. 

Proof. The last statement will be immediate from Lemma 2.2 and the diagram. 
There is- a natural transformation y: ]fIY[ +fl]Y( for 
[S, 8121). namely 

r(lfv al)(t) = If(t). al 

simplicial spaces Y (studied in 

for f E R Y4, u E A,, and t E I. Clearly this induces y: Da Y --, flDY for s-spaces Y. 
A trivial calculation shows that the following diagram commutes. 

I/ 

flDRY *’ 
.I 

- fKlDY - RRDY. 
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We therefore define [,,= r “fly: S&Y +M,Y, and we then define & = y: S,fIY + 
RS, Y. These make sense since SOY = fIDY and S, Y = DY. Because the twist 7 in the 
diagram above is the zeroth structural map of the spectrum RSY, the equality 
Ry = r 0 T 0 Ry is the compatibility relation fIl,o o. = a00 lo. To proceed further, 
observe that composition with the loop functor on 9[.9] defines a loop functor on 
99r[9] such that m = RF. By naturality, the maps 

y: (Bfl Y)” = DH” -4-I@, = Q(BY). 

specify a map y*: BCLY +RBY of P-spaces. Inductively, let ye0 be the identity map 
of R Y and define yei for i > 0 to be the composite 

l+*i-’ 
B’R Y - BRB’-‘Y - y* RB’Y. 

By the naturality of L and the commutativity of the diagram above we have the following 
commutative diagram for i > 0. 

p, i-l 

DB’-‘R Y A 
7 

NIB’-‘Y - RDB’-‘Y 

(BY*‘-‘), /I 
(Bil-kY)l - (BOB’-‘Y) 

(VA II 
I - R(BiY)l 

We define & = y 0 L?y*‘-‘: Si$IY +nSiY for i > 1 and conclude from the diagram that 
6: SR Y + RSY is then a map of prespectra such that to 0 I = Rb, as desired. 

The key to the proof of the uniqueness theorem is the following definition and 
theorem. These are inspired by and closely analogous to, but nevertheless different 
from, the corresponding parts of Fiedorowicz’ paper[6]. We defer a precise 
comparison until Appendix A. 

Definition 3.8. A bispectrum is a sequence of connective spectra Fi and 
equivalences 7;: Fi 4 RFi+l* 

In more detail, a bispectrum consists of spaces ET and equivalences vii: Ey+ 
flFi.i+i and rij: Zrii + flnFi+r.i such that the following diagrams commute: 

We shall sometimes write Fi, for the spectrum Fi. Symmetrically, the spaces Fii and 
maps rij for fixed j form a spectrum Fei. The following “up and across theorem’* will 
be proven in Appendix A. 

THEOREM 3.9. The spectra F. = Fo, and F*. associated to a bispectrum F are 
naturally equioalent. 
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We now have all the ingredienti required to prove that EY is naturally equivalent 
to SY if E is an infinite loop space machine defined on g-spaces. By Lemma 3.2 and 
Construction 3.4, we have improper 9-spaces EiFo For clarity of exposition, we 
assume here that the EiF are actual 9-spaces, relegating the technical elaboration of 
the argument necessary when this assumption fails to Appendix B. Under this 
assumption, we have Segal spectra SEiF, and Lemmas 2.3 and 3.3 and Proposition 3.7 
yield a composite equivalence 

so, c 
7i: SEiY - SflEi+l Y - RSEi+l Y. 

We have a bispectrum and are entitled to conclude that SEop and &ET = {SoEiF+ Ti.0) 
are equivalent. By Lemmas 2.3 and 3.3 again, SL: SY + SE,v is an equivalence of 
spectra. By the naturality of L for S and the diagram in Proposition 3.7, the maps L: 
E’iY = (EiF)I+ SoEiP specify an equivalence of spectra EY + &ET. The required 
natural equivalence between SY and EY follows. 

94. OPEFUDS AND CATEGORIES OF OPERATORS 

We now know how to compare different machines and are faced with the problem 
of showing that any particular given machine acts in the requisite generality. We begin 
by relating the data of other machines to the general context of 01. It will be apparent 
that most existing machines can be viewed as defined only on those %-spaces with 
underlying II-space of the form RY for a space Y, hence the problem is to allow for 
more general underlying II-spaces. We shall solve this problem in the case of May’s 
machine and leave the remaining cases to the interested reader. 

The domain of definition of May’s machine is the category of %-spaces for a 
suitable “operad” 5% Aside from their working in the world of simplicial sets and 
restricting attention to one particular operad, that is also the domain of definition of 
the theory of Barratt and Eccles [2]. The original theory of Boardman and Vogt [4] was 
based on the notion of an action by a PROP on a space, and a PROP has an operad as 
part of its structure. Beck[3] also used PROP-actions. Thus to analyze the domain of 
definition of any of these theories it suffices to consider %-spaces. 

Recall from [8, 011 that an operad % consists of a sequence of (unbased) spaces 
Z(j) such that Z(O) is a point *, there is a unit element 1 E %‘(I), %(j) has a right action 
by the symmetric group Zj, and there are maps 

y: %(k) X%(j,) X * * . X U(i)+ %:(j, + * . . + jk), 

all subject to appropriate axioms. By [8, App.], we may as well assume that 1 is a 
nondegenerate basepoint in %(I). Points of ‘X(j) are to be thought of as j-ary 
operations. From these we will construct a space %?(m, n) of operations accepting m 
inputs and yielding n outputs. 

Conslruction 4.1. Let Ce be an operad. Construct the associated category of 
operators 4 as follows. Let 

where IS] denotes the cardinality of a set S (and %?(m, 0) is to be interpreted as a point 
* indexed on the unique map m+O in 9). Write elements in the form (4; cl, . . ., c,), 
or (4; c) for brevity. For (4; c) E @(m, n) and (I+%; d) E @(q, m), define 

Here the di with 4(i) = j are ordered by the natural order on their indices i (between 1 
and m) and aj is that permutation of ](d$,)-‘(j)] letters which converts the natural ordering 
of (&5/)-‘(j) as a subset of (1, . . ., q} to its ordering obtained by regarding it as 
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II G-‘(i) so ordered that all elements of 4-‘(i) precede all elements of JI-‘(i’) if i < i’ 
.+ci,=i 
and that each $-l(i) has its natural ordering as a subset of { 1, . . ., 4). The associativity 
of composition follows readily from the definition of an operad. Define the aug- 
mentation E: %? + 9 by ~(4; c) = 4 and observe that E is an equivalence if each Cc(j) is 
contractible. Embed II in %’ by sending 4: m +n to (4;c), where Cj=l if jEIm4 
and cj = * if j 6Z Im 4. This makes sense since Id-‘(j)] is either 0 or 1. Certainly the 
identity (1; I”) is a nondegenerate basepoint in @(II. n). If 4 is an injection, then left 
composition by 4 from @,,, to @, is an inclusion onto some of the components and is 
trivially a 2+-equivariant cofibration. 

Observe that this construction gives a functor from operads to categories of 
operators. 

Definition 1.2 now specializes to give a notion of g-space, and the following 
observation shows that this is a natural generalization of the notion of %-space [8, 011. 

LEMMA 4.2. A @-space with underlying II-space RY determines and is determined 

by a V-space structure on Y. 

Proof. An action of V on Y is a map of operads % + gv and so determines a map 
of categories of operators 3 -P Z?r, where %:y is the endomorphism operad of Y [8, 8 I]. 
Since gy(j) is the space of based maps Y’+ Y, a trivial reinterpretation allows us to 
regard % + gy as a @-space 9 + F with underlying II-space RY. For the converse, let 
4j E S(j, 1) be given by 4i(i) = 1 for 1 5 i s j, this being the canonical j-fold product in 
the context of F-spaces, and think of V?(j) as the component of 4j in @(j, 1). Given a 
g-space with underlying II-space RY, restriction gives maps q(j)+ a,(j) which 
define a morphism of operads, the maps y and unit 1 being preserved since a g-space 
is a functor and the action of Zj being preserved since (4j; CU) = (4j: ~)(a; 1’) for 

The following philosophical remarks on the comparisons 
%-spaces. and g-spaces may be illuminating. 

between 9-spaces, 

Remarks 4.3. Let K be the operad such that each X(j) is a point. Clearly R is 
precisely 9. An X-space is the same thing as a commutative topological monoid 
hence, if connected, has the homotopy type of a product of Eilenberg-MacLane spaces. 
Thus, for 9-spaces, the higher homotopies essential to distinguish general infinite loop 
spaces from K(rr, n)‘s come entirely from the distinction between genera1 II-spaces 
and II-spaces of the form RY. For %-spaces, these homotopies come entirely from the 
contractibility (or lesser connectivity in the theory of n-fold loop spaces) of the 
spaces V(j). The notion of g-space allows both sources of higher homotopies and is 
the natural simultaneous generalization of the notions of I-space and E, space. There 
are no known machines based on categories of operators which do not come from 
operads. 

95. OPERADS AND MOFADS 

The required generalization of May’s machine from V-spaces to G-spaces amounts 
to a change of ground categories from F to II[F]. The essential starting point is the 
fact that the functorial association of a monad to an operad of [8, 821 remains valid 
after this change. Modulo the key verification, which is deferred momentarily, the 
following construction gives the monad (&, C;. 6) in II[F] associated to an operad %. 

Construction 5.1. Let X: II+= F be a functor. Construct a functor eX: II-, F and 
natural transformations 4 : X + CX and 6 : CeX + dX as follows. The n th space CX 
of 6X is the “coend” 

I $(m, n) x X, = II 9(m. n) X X,1(-), 
n IPI 
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where the equivalence relation is specified by 

for (4; c) E g(m,_n), JI E II(q. m), and x E X,. Composition on the left by maps n+p 
in II gives maps C,X --, cP,X such that eX is a functor. The maps 4 : X, + C,X and fi : 
d,,C?X+ d,,X are obtained by use of the identity maps and composition of the 
category $‘, and the fact that %? is a category implies the commutativity of the 
diagrams 

Therefore (6.6, +) is a monad in the category of functors II -+ 9. 

To show that (c, 6, +) is a monad in II[Y], we must show that CX is a II-space if 
X is a L-I-space; that is, we must show that (?X inherits properties (l)-(3) of Definition 
1.2 from X. As the cofibration condition (3) is easily verified, this not depending on the 
corresponding condition for X, we concentrate on (1) and (2). We require some 
elementary facts about the morphisms of 9 in order to give an explicit description of 
the spaces &X. 

Notations 5.2. Say that a morphism r: m -*II of 4 is a projection if p-‘(j) has 
exactly one element for 15 j I n. Say that a morphism .e of 9 is effective if 
e-‘(O) = (0). The effective morphisms are to be thought of as those operations of 9 
which genuinely involve all variables. Note that the effective projections are precisely 
the permutations and the effective morphisms in II are precisely the injections. Say 
that an effective morphism E: m+n is ordered if e(i) < e(P) implies i < i’ and note 
that the unique effective morphism, &, from m to 1 is ordered. Let %’ be the 
subcategory of 9 whose morphisms are effective and ordered. 

LEMMA 5.3. A morphism 4: m + n in 9 factors as a composite 

n ( 
m - q - n, 4 = n - J~#J-‘(O)J, 

where P is a projection and E is eflective. If 4 = &IT’ is another such factorization, then 
there is a unique permutation u: q-q such that the following diagram commutes: 

LEMMA 5.4. For any efective morphism E: m-, n, there is a permutation T: m+n 
such that ET is ordered. If E is ordered, then ET is ordered if and only if 7 ES(E), where 

Z(E) = Z,r-‘,l)( x 

n)x X,,, in 

CX. Then c,,X is the union of the F,&X. If X is a II-space, the;zPd.X is obtained 
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from F,_,d,,X by means of a pusho& diagram 

where sX,_, is the union of the images of X,_, under the p ordered injections ai: 
p - l+ p and v is specified by 

V((E; C), UiX) = ((ET C) o 0;. X). 

Moreover, the vertical arrows of the diagram are cojibrations. 

Here the last statement is a consequence of results in [4, App. 021. By standard 
facts about the homotopy invariance of pushouts and unions of cofibrations together 
with an inductive argument just like that in the proof of [9, A. 41, the lemma has the 
following consequence. 

LEMMA 5.6. Assume that each S’(j) is xi-free. If f: X-+X’ is an equivalence of 
J&spaces, then each e,,f: c”,X + e,,X’ is an equivalence. 

The hypothesis on the Z(j) is used to deduce that f induces an equivalence on the 
spaces in the left column of the diagram of Lemma 5.5 because it induces an 
equivalence on the corresponding spaces before passage to orbits with respect to the 
Z(E). Technically, we are using the homotopy exact sequences of the evident cover- 
ings and the fact that, in the presence of cofibrations. a pushout of (weak) 
equivalences is a (weak) equivalence [14, 111.8.21. 

We need another consequence of Lemma 5.5. Recall the functors L and R relating 
spaces to II-spaces from Definition 1.3 and recall the construction of the monad 
(C, p, q) in .Y associated to V from [8, 2.41. An easy inspection gives the following 
result. 

LEMMA 5.7. Let YE .7. Then LeRY = e,RY = CY and (?RY coincides with the 
II-space RCY. 

For a II-space X, let 8: X --, RLX be the natural equivalence (given by X, + Xi” 
on the n th space; compare Definition 1.3). We have the commutative diagram 

?,a 
> 6,RLX. 

A CC,SY . 
(C,X)” - (C,RLX)” 

Thus the previous lemmas imply the following result. 

PR?POSITION 5.8. Assume that each V(j) is Zi-free. then 6X is a II-space if X is a 
II-space, hence (6, I;. +) is a monad in the category of II-spaces. 

96. MAY'S MACHINE 

May’s construction of spectra from spaces acted upon by suitable operads is based 
on a categorical two-sided bar construction B(F, C, X) defined when given a monad C 
in some ground category W which acts from the left on an object X E W and from 
the right on a functor F: W + ¶f, where ‘V is some category with underlying spaces. 
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(See [8, 091.) It was the freedom to use arbitrary ground categories which gave this 
approach its efficacy in multiplicative infinite loop space theory, and that freedom also 
makes it easy to generalize the construction from spaces to II-spaces. 

We shall apply the bar construction to monads d in ll[.T] associated to operads Ce 
with each U(j) Zj-free, and we need a few preliminaries concerning the variables X 

and F. 
Just as in [S, 2.81, we can replace 9 spaces by C-spaces, collections of action maps 

+?(m, n) x X,,, +X, being replaced by sequences of action maps &X-+X,. 

LEMMA 6.1. A G-space determines and is determined by a e-space in such a way 
that the categories of G-spaces and c-spaces are isomorphic. 

To obtain the appropriate C-functors, we must elaborate Lemma 5.7 to a formal 
comparison between the monad (C,p, 77) on spaces and the monad (6,;. 6) on 
II-spaces. Observe that the functor RCL on II-spaces is a monad with unit and 
product induced from those of C via the maps 

6 
X-RLX- Rs RCLX and RCLRCLX= RCCLX Rlr u RCLX. 

(Recall that LX = XI, RY = {Y’}, and thus LRY = Y for a space Y.) 

LEMMA 6.2. The maps 66: eX + CRLX = RCLX specify a morphism of monads 
in II[s]. 

If (F, A) is a C-functor in Sr, so that F is a functor .T+ Y and A: FC+ F is a 
natural transformation such that A 0 Fq = 1: F +FandAoFg=AOA: FCC+F,then 
FL: ll[?7]+ Y is an RCL-functor in V with action induced from A via the maps 

FLRCLX = FCLX L FLX. 

Therefore, by pullback, the previous lemma has the following consequence. 

LEMMA 6.3. If (F, A) is a C-functor in ‘-7, then FL is a &-functor in ‘v with action 
given by the composites 

1 FL& 

FLCX - FLRCLX = FCLX 2 FLX. 

We can now prove the following theorem, which allows us to apply the uniqueness 
theorem to compare the May and Segal machines. For what it is worth, we note that 
the argument applies equally wel! to generalize May’s recognition principle for n-fold 
loop spaces from %‘,,-spaces to Ce.-spaces, where Q& is the nth little cubes operad [4, 
II.6 and 8, §4]. 

THEOREM 6.4. Let Ce be an operad such that each S’(j) is contractible. Then the 
functor M from %-spaces to spectra constructed in [8] and [9] extends to an infinite 
loop space machine M defined on $?-spaces. 

Proof. The details of [8] and [9] go through with only the slightest of 
modifications. We follow the sketch in [9, 821. Let 9, be the product operad V x %,,. 
Since each %&e.(j) is xj-free, so is each 3 (j). Let 0, and fi,, be the monads in y and 
lI[.7] associated to 9”. For a C-space X, we have spaces B(Z”L, & X) and in- 
clusions (which are not equivalences) 

B(Z”L. I3”, X) - B(RC”+‘L, fi.,,, X) 2 fW(Z”+‘L, B,,,, X), 

the first map being induced by the natural map Y + RZ Y and the inclusion 9, --, g,,+, 
and the map y being the natural comparison between geometric realization on loops 
and loops on geometric realization. We define MX to be the spectrum obtained by 
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application of the functor E’ to this prespectrum, so that 

Mix = colim fi’B(Z’+‘L, Di+j* X). 

ClearlqM is a>unctor from g-spaces to spekra. It follows formally from the natural 
isomorphism D.R = RD,, of functors on %-spaces that 

B(Z”L, fi”, RY) = B(Z”, D,, Y) 

for %-spaces Y. Thus the functor h4R from %-spaces to spectra agrees with that 
obtained in [S] and [9]. 

The required natural group completion L: X, + M,,X is defined by commutativity of 
the following diagram: 

LI 
x, = LX c---2 

L4 
LB&,, &, X) = B(L6,. IL X) 

‘ BCLLLS) 

Here E is the usual natural equivalence with inverse T [S, 9.101. ym is the limit over n 
of the natural comparisons 

y”: B(f-FE”L. 6”. X) - fI”B(C”L, L%, Xl 

and is an equivalence by [S. 12.31, B(f) is short for B(f, 1, 1). r is the projection 
Dm + Cm, and a, is the natural map C,+ Q of [S, 5.21. B(a,?r) is a group completion 
by precisely the same argument as was given in [9, 2.31, the only caveat being that the 
proof of [9, 2.21 is incomplete but is completed in [12, VI.2.7(iv)], and B(Ldl,S) is an 
equivalence by Lemma 5.6 and [9, A.41 since S: X --) RLX is an equivalence for any 
II-space X. Thus L is a composite of equivalences and a group completion and is thus 
a group completion as asserted. This completes the proof. 

We close with a conjecture on the nature of the spaces LX for a $-space X. While we 
are quite confident of its truth, we have not attempted a proof. Its statement refers to 
Lada’s theory of strong homotopy C-spaces [5, VI. 

Conjecture 6.5. If X is a C-space, then LX is naturally a strong homotopy 
C-space. 

Since Lada’s theory provides a functor U from sh C-spaces to actual C-spaces, 
this would have the conceptual attractiveness of completing the triangle 

C-spaces 

/ 
u R 

\ 
sh C-spaces t---- C-spaces 

and would presumably lead to homotopy invariance theorems for e-spaces. 

APPENDIX A. PRETERNATURALITY AND THE UP AND ACROSS THEOREM 

We aim to prove Theorem 3.9, the up and across theorem. This is in fact quite elementary, given a 
certain amount of folklore technique. There are two technical points involved. Fist, it is essential that we 
use the loop functor on spectra defined with a twist in the structural maps and not the translation 
desuspension A: the latter is defined by (AJ$ = a(&), with structural maps noi: llEi+ClREi+l. The 
second is that we want to come out with a natural equivalence in the category of spectra rather than in the 
category of spectra and weak maps. The difference between these categories (or rather, between ap- 
propriate derived categories) is the same as the difference between cohomology theories on spaces and 
cohomology theories on spectra and is discussed, for example, in [l2, II 931; use of weak maps amounts to 
neglect of certain lim’ terms, or phantom maps. 
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These points are not unrelated. If d,: flE,+RE, is defined to be the identity map for even i and the 
negative of the identity interpreted as coordinate reversal, d(g)(t) = ~(1 - r), for odd i, then d: RE-+AE is 
a weak map. However, the relevant homotopies are natural in E. and a folklore result, perhaps due to 

Boardman from whom one of us learned it, allows us to conclude that RE and AE are naturally equivalent 
in the category of spectra. We shall need this argument twice, so we make it precise in the following 
definition and lemma. in which preternaturality allows control over phantoms. 

Definition A.I. Let D and D’ be functors from any category ?f to the category of spectra. A 
preternatural transformation d: D + D’ is a natural transformation d in the category of spectra and weak 
maps together with a natural choice of (based) homotopies. That is, for each K E X and each i 2 0, there is 
given a map d,: DiK +D;K and a homotopy h,: DiK x I +flD;+,K from adi+, 0 ai to a: 0 d,, both d, and hi 
being natural in K. 

LEMMA A.2. There is a functor T from spectra to spectra and a natural equivalence TE+E such that 
any preternatural transformation d: D + D’ determines a natural transformation d: TD+ D’ of spectra- 
valued functors in such a way that the diagram of weak maps 

TDK 

J\ a 

d 
DK- D’K 

homotapy commutes for each K. If d: DK -S D’K is an equivalence, then so d: TDK + Dk. 

Proof. The last statement will follow from the diagram. The functor T is given by the iterated mapping 
cylinder construction considered in 17, Thm 41; that T is a functor from spectra to spectra and that there is 
a natural equivalence TE+ E follows from the proof of [7. Thm 4(ii) and (iv)]. From the construction of T 
and generalities about mapping cylinders, maps of spectra TE + E’ correspond bijectively to data consisting 
of a weak map e: E+ E’ and a choice of homotopies h,: fIei+, 0 cr, = u: 0 e, for i B 0, this correspondence 
being natural in E and E’. The existence of d follows. and homotopy commutativity of the triangle holds by 
[7, Thm 4(iii)]. 

Proof of Theorem 3.9. Let F be a bispectrum, with structural equivalences o;,: &,-fl&+, and T,~: 
F;r +nFi+tjv and recall the diagram following Definition 3.8. A map f: F + F’ of bispectra is a collection of 
maps f,: Fii + Fb such that f,+ and fai are maps of spectra for all i and j. We must show that the functors 
from bispectra to spectra which send F to its edge spectra F,, and Fe0 are naturally equivalent. In fact, we 
shall construct “diagonal” functors D and D’ from bispectra to spectra together with natural equivalences 
e: F,,+DF and e’: F,,+D’F and a preternatural equivalence d: DF -t D’F. By the previous lemma, this 
will suffice. Thus define 

D,,F = WF,,, = D:F, 

the structural maps 6.: D”F-nD.+,F and 8:: D:F+fID:+,F being the respective composites 

where ~1. is given by twisting the last coordinate past the first n coordinates, (p,,g)(s)(r) = g(r)(s) for s E S” 
and r E S’. For a map f: F-* F’ of bispectra, DJ and Dg are both fI”f”.. By the definition of a bispectrum, 
the two structural maps WF,. +R”*2F~+,,n+, differ by the interchange of the first and last coordinates of 
the functor a”+*. Note that the map of spheres which induces this has degree minus one and define d.: 
WF.. +R”F”” to be the identity map for even n and the negative of the identity interpreted as reversal of 
the first coordinate for odd n. Then d: DF -+ D’F is a natural weak map, and we can use the coordinate 
spheres to obtain homotopies h.: Rd.,, 0 6. ^- 8: 0 d. which are natural in F. Thus d is preternatural, and it 
remains to construct the natural equivalences e and e’. By symmetry, it suffices to construct e: F,,+DF. 
Define equivalences e,.: F, -a”-‘F.. by e.. = 1 and, inductively, by letting e,,, for i < n be the composite 

By a diagram chase which uses induction on n - i. the definition of a bispectrum, the naturality of r, and the 
fact that T 0 &+-i-i = cc.-,, we find that for each fixed i z 0 the maps ei. for n B i specify a map of spectra 
{Fi.. u,~}+{R”-‘F,., xM}. where x,. is the composite 

The case i = 0 gives the required equivalence e. 

TOP Vol. 17. No. 3-B 
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Remarks A.3. We reiterate that the-idea behind the up and across theorem is due to Fiedorowicz[6]. 
However, he worked with weak maps and, at least in the preprint version of (61, there was ambiguity as to 
whether fl stood for the loop or the translation desuspension. The first author wishes to point out that the 
same ambiguity crept into [12]. where the loop of a spectrum is correctly defined in 11.2.3 but R is implicitly 
the translation desuspension in VII.3.4 (since that result refers back to [8. p. 1471. where fl = A). Of course, 
the arguments here show that the confusion causes no real mathematical difficulty. Our version of the up 
and across theorem implies that there is a version of Fiedorowicz’ uniqueness theorem valid for appropriate 
functors from rings to our category of spectra. 

APPENDIX B. WHISKERINGS OF G-SPACES 
We aim to prove Proposition 1.6 and related results needed to complete the proof of _the uniqueness 

theorem. In that proposition, “appropriate” categories of operators are those of the form % for an operad 
V. We do not assume that & acts freely on S(j). hence the operad K with 2 = 9 of Remarks 4.3 is allowed. 
Indeed, this is the only example required for the proof of the uniqueness theorem. Along the lines of the 
cited remarks, the construction here is the appropriate simultaneous generalization of the whiskering of 
%-spaces considered in [8. App.] and the thickening of r-spaces consigered in [ 15, App.]. 

Let X be an improper ‘&-space. We shall construct a (proper) ‘&-space WX and an equivalence n: 
WX + X of improper w-spaces in the following definition and lemmas. 

Let I = [0, I] have basepoint I and the product specified by (s, t)+min {s, I}; it is essential to Lemma 
B.7 below that minima rather than products of real numbers be used. Then I is a topological Abelian 
monoid and so determines an T-space I: 9-*Y with nth space I”. Explicitly, the map 4: I” +I” 
determined by a map I$: m-n in 9 is specified by 

d(Sl.. . . . s,) = (I,, . . ., 1.). where r, = min {si}. 
*,il=i 

Here the miniqum of the empty set is to be interpreted as the basepoint I. Regard I as a g-space via the 
augmentation % + 9. 

We have a product improper e-space I x X with nth space I” x X.. 

D&&ion B.I. Define W.X to be the subspace of I” xX. which consists of those points (&x), 
t = (t, , . . ., t.), such that x E 4(X,,,). where 4 is that ordered injection such that j E Im 4. I I j 5 n, if and 
only if !i = 0. Define n: W.X + X. by Ir(t. x) = x. Observe that X,, embeds in W.X as the set of points 
(0,. . ., 0, x) and is an unbased deformation retract of W.X via the deformation h((t, x). r) = (rt, x). where 
rt = (rr,. . . . . a,,). Thus = is an equivalence. 

Remarks B.2. W.X should be thought of as obtained from X. by growing a beard consisting of a thick 
whisker I”-” attached to each point of 9(X,,,) for each ordered injection 4: m-+n. but with identifications 
of partial whiskers corresponding to compositions of injections. When the II-space X is RY for a based 
space Y. W-X is precisely (I v Y)“. where I is given the basepoint 0 in forming the wedge. 

LEMMA B.3. The action map %?(m. n) x I” x X, -1” XX. reslricrs I0 a map 9(m, n) X W,X+ W.X. 
hence WX is a subfunclor of I x X. 

Proof. Let (4; cl,. . ., cm) E &m, n), 4: m-ro in 9 and ci E O(l1$-‘(j)1) and let (s, x) E W,,,X. We must 
show that the element 

(4; c)(s. 1) = (I. (4; c)(x)) 

ofI”xX.isin W.X.Let$:p+mando:q + n be the ordered injections such that i E Im $ if and only if si = 0 
and jEIm o if and only if r, = 0. We are given that x E $(X,,). say x = $(x’). and must show that 
(4; c)(x) E w(X,). Since q T ,ytni {si}, i E Im JI implies b(i) E Im W. There is thus a unique map 5: p+q in 9 

- 
such that o 0 5 = Q 0 $. If % were 9 we would be done since we would have 4(x) = 4+(x’) = o&r’). For a 
genera1 %, Construction 4.1 gives that 

(4;c,,..., c.)~~=(~~cL;c,,. . ..G.) 

for certain Ei and that 4 = * E ‘&(O) if j E II - Im o since then j E n - Im (4JI). It follows that 

(4 o ‘k; c,, . . . . C.) = o 0 (5: d,, . . . . d,) 

for certain di. We therefore have that 

(4; c)(x) = (4; CMX’) = (4 0 JI; 0(x’) = o(5; 2)(x’). 

The following result completes the proof of Proposition I .6. 

LEMMA B.4. WX is a $-space and w: WX +X is an equivalence of improper G-spaces. 

Proof. In view of Definition B.l and Lemma B.3, we need only show that 4: W,X+ W.X is a 
Z,-equivariant calibration if 4: m+n is an injection in II. We claim fist that 

&( W,X) = ((1, X)lti = I if jE Im 4) C W.X. 

We certainly have ri = 1 if je Im I$ for all points in this image (by the convention that the minimum of the 
empty set is 1). Conversely, consider (1. x) with ri = 1 if jE Im 4. Let I& p-+a be that ordered injection such 
that j E Im $ is and only if ti = 0. so that x E $(X,). Then Im JI C Im 4 and there is a unique map g: p+m 

I 



THE UNIQUENESS OF INFINITE LOOP SPACE MACHINES 223 

in II such that $ = 4 0 5. Thus x E b(X,,,)_and (t, x) E d( W-X). From this description, it is easy to see that 
4( W,X) is a deformation retract of its neighborhood ((1. x)lr, >O if jf! Im 4) and, in fact, that 
( W.X, q5( W,X)) is a & - NDR pair as defined in [4, p. 2321. Thus 4 is a Z.-cofibration by [4, App.. 2.21. 

Remarks B.S. Applied to the unique injection 4: 0 + n, the result gives that 4: X0 = W,X + W.X is a 
cofibration. Thus if X0 is nondegenerately based, then so is each W-X even if the X. for n > 0 are not. The 
condition on X, can be eliminated by setting W:X = W.X/&XO) and observing that W’X then inherits a 
structure of (proper) g-space from WX, with all basepoints nondegenerate regardlqss of such conditions on 
X. Here the diagram XcWX+ W’X displays a natural equivalence of improper V-spaces between X and 
W’X. We conclude that, in the definition of an improper V-space, we need not assume the X. to be 
nondegenerately based. 

For the uniqueness theorem. we need the following analog of Proposition 3.7. 

LEMMA B.6. For improper @-spaces X, there is a natural equivalence 5: WRX-+O WX such that the 
following diagram commutes up to natural homotopy: 

Proof. We would like to define 5.: W,,nX +R W,,X by [.(t, g)(s) = (I, g(s)). Here g E 0X is a based 
map S’+X., but this equation does not define a based map S ‘+ W.X unless all coordinates of t = 

(t,, . . ., 1.) are 1. We modify the definition to 

I 

(a(r). g(0)). IQ(s) = I - 3s + 3sr,, if OrSsSl/3 

[“(l, g)(s) = (I, g(3s - 1)) if l/3 c s 5 2/3 

(u(r). g(1)). ui(s)=3s-2++3-3s)ti, if 2/3~s~l 

and find that 5. is a well-defined natural map W.RX + R W.X such that the & determine a map of e-spaces 
WRX -*R WX. A natural homotopy h: R = Rn 0 5 is specified by 

h((t, g), r)(s) = 

i 

g(0) if 05s S(l/3)r 

g(3s - r/3 - 2r) if (1/3)r 5 s I I - (1/3)r. 

&c(l) if I-(1/3)rSssl 

Since w and flrr are equivalences, so is 5. 

We return to the proof of the uniqueness theorem. Let E be an infinite loop space machine defin_ed on 
S-spaces. For an S-space Y, Lemmas 3.2 and 3.2 and Constru_ction 3.4 give improper %-spaces EY and 
natural maps of_ improper 9-spaces L: Y+E,Y and u,: E,Y +QE,+,Y. Define EY to be the Segal 

spectrum SWEY and define 7,: CY +OFi+, Y to be the composite equivalence 

SWEip -=+ SWREi+, P --% SO WE,+, p 2 UWE,,, p. 

We have a bispectrum and thus a natural equivalence between FoY = FO,Y and F,oY. We have natural 
equivalences 

s* SW. 
SY-SWY- SWEo? = FoY, 

hence it suffices to prove that EY is naturally equivalent to FaoY. Introduce an auxiliary spectrum “WRY” 
with ith space ( WE,~)I and ith structural equivalence the composite 

(WO,,, Cl 
(WE,%% - (WnE,+,p), - (RWE,+,Y), = R(WE,+,Y),, 

the subscripts referring to the first space of the relevant F-spaces. By the naturality of L and the diagram of 
Proposition 3.7, the maps 

b: (WE,%%-+SoWE,p = F,oY 

specify a natural equivalence of spectra WEY +F,,Y. By the naturality of n and the diagram of the 
previous lemma, the maps 

l ,: (WE,P),-*(E,P), = E,Y 

specify a preternatural equivalence WEY -B EY. Thus EY is naturally equivalent to WEY by Lemma A.2. 

Rem&s B.7. The proof above could equally well be carried out with W replaced by the functor W’ of 
Remarks B.S. Indeed, the equivalence 5 of Lemma B.6 induces an equivalence 5’: W’RX + R W’X such 
that the diagram 

C 
wnx-nwx 

I I’ I 
wnx - I-l W’X 
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commutes, and we need only interpolate,the equivalence SY+SWY+SW’Y in showing that SY is 
equivalent to SW’E,? and interpolate the equivalence EY +WEY + W’EY in showing that EY is 
equivalent to SoW’Ev. We therefore find that there is no need to assume that the spaces EX are 
nondegenerately based in the definition of an infinite loop space machine. In general, it is technically best 
not to require the basepoints of the component spaces of spectra to be nondegenerate since this condition 
seems not to be preserved by the functor 0”. In particular, we have not verified that May’s machine 
produces spaces with nondegenerate basepoints (although we believe that it does). 
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