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Algebraic topology is a young subject, and its foundations are not yet firmly in
place. I shall give some history, examples, and modern developments in that part of
the subject called stable algebraic topology, or stable homotopy theory. This is by
far the most calculationally accessible part of algebraic topology, although it is also
the least intuitively grounded in visualizable geometric objects. It has a great many
applications to such other subjects as algebraic geometry and geometric topology.
Time will not allow me to say as much as I would like about that. Rather I will
emphasize some foundational issues that have been central to this part of algebraic
topology since the early 1960’s, but that have only been satisfactorily resolved in
the last few years.

It was only in 1952, with Eilenberg and Steenrod’s book “Foundations of alge-
braic topology” [9], that the nature of ordinary homology and cohomology theories
was reasonably well understood. Even then, the modern way of thinking about
cohomology as represented by Eilenberg-Mac Lane spaces was nowhere mentioned.
It may have been known by then, but it certainly was not known to be impor-
tant. The subject changed drastically with a series of extraordinary advances in
the 1950’s and early 1960’s. By around 1960, it had become apparent that alge-
braic topology divides naturally into two rather different major branches: unstable
homotopy theory and stable homotopy theory. The former concerns space level
invariants, such as the fundamental group, that are more or less invisible to homol-
ogy and cohomology theories. The latter concerns invariants that are in a sense
independent of dimension. More precisely, it concerns invariants that are stable
under suspension, such as homology and cohomology groups. It had also became
apparent that many interesting phenomena that a priori seemed to depend on a
dimension could be translated into questions in stable algebraic topology. Three
fundamental examples have set the tone for a great deal of modern algebraic topol-
ogy. They occurred nearly simultaneously in the late 1950’s and early 1960’s. The
order I will give is not chronological.

First, Adams [1] proved that the only possible dimensions of a normed linear
algebra over R are 1, 2, 4, or 8 by translating the problem into one in stable
homotopy theory. More precisely, the problem translated into a problem in ordinary
mod 2 cohomology theory that involved only the Steenrod cohomology operations

Sqn : Hq(X;Z2) −→ Hn+q(X;Z2)

and not the cup product. The Steenrod operations are stable, in the sense that

ΣSqn = SqnΣ

This is essentially the text of the 1997 Hardy Lecture delivered to the Society on June 20,
1997.
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where

Σ : H̃q(X;Z2) −→ H̃q+1(ΣX;Z2)

is the suspension isomorphism. Cup products, in contrast are unstable: the cup
product of two cohomology classes in H̃∗(ΣX) is zero. We explain the reason. For
based spaces X, the analog of cartesian product is the smash product

X ∧ Y = X × Y/{∗} × Y ∪X × {∗}.

The suspension ΣX is X ∧ S1. The cup products on the reduced cohomology of
ΣX are induced by the reduced diagonal map ΣX −→ ΣX ∧ ΣX, and this map is
null homotopic because the diagonal map S1 −→ S1 ∧ S1 ∼= S2 is null homotopic.
Nevertheless, since it is visible to cohomology, cup products should also be visible
to stable homotopy theory. This dichotomy, the semi-stable nature of products, is
the starting point for the theme of this talk.

Second, Thom [24] succeeded in classifying smooth compact n-manifolds up to
cobordism for every n by translating the problem into one in stable homotopy the-
ory. Here two such n-manifolds M and M ′ are cobordant if their disjoint union
is the boundary of an (n + 1)-manifold W . The set Nn of cobordism classes is
isomorphic to πn+q(TO(q)) for any sufficiently large q, where TO(q) is the “Thom
space” associated to the universal q-plane bundle ξq : EO(q) −→ BO(q). TO(q)
is obtained by forming the fiberwise one-point compactification of EO(q) and then
identifying all of the points at infinity. We won’t need to know the precise defini-
tion of BO(q). Universality means that any q-plane bundle over any space X is
equivalent to pullback of the universal bundle along some map f : X −→ BO(q);
homotopic maps pull back to equivalent bundles. That is, the set of equivalence
classes of q-plane bundles over X is in bijective correspondence with the set of ho-
motopy classes of maps X −→ BO(q). Whitney sum, that is, fiberwise direct sum,
of vector bundles corresponds on the classifying space level to a system of maps
BO(q) × BO(r) −→ BO(q + r). On passage to Thom complexes, there results a
system of maps TO(q)∧TO(r) −→ TO(q + r). These induce pairings of homotopy
groups

πm+q(TO(q))⊗ πn+r(TO(r)) −→ πm+n+q+r(TO(q + r)).

Under the Thom isomorphism, this corresponds to Cartesian product of manifolds.
Third, Atiyah and Hirzebruch [3] followed up Bott’s proof [7] of his periodicity

theorem by inventing topological K-theory as the prime example of a generalized
cohomology theory. Bott’s theorem states that πn(BO) ∼= πn+8(BO) for n > 0,
where BO is the union of the classifying spaces BO(q) under the sequence of maps
iq : BO(q) −→ BO(q +1) that correspond to adding a 1-dimensional trivial bundle
to a q-plane bundle. For a compact space X, the set of bundles over X of all
dimensions is a semi-group under Whitney sum, and KO(X) is the Grothendieck
group obtained by formally adjoining inverses. There is a reduced version of K-
theory on based spaces X, and K̃O(X) is isomorphic to the set [X, BO × Z] of
homotopy classes of based maps from X to BO×Z. Crossing with Z has the effect
of making periodicity hold for n ≥ 0, and Bott periodicity implies that KO(X) is
the degree zero part of a cohomology theory that satisfies

K̃O
n
(X) ∼= K̃O

n+8
(X).
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Here the tensor product of bundles gives rise to a multiplication in KO-theory
analogous to the cup products in cohomology. It arises from a system of pairings
of classifying spaces BO(q)×BO(r) −→ BO(qr).

It quickly became apparent that these three examples have a great deal in com-
mon. Long before the work just described, Eilenberg and MacLane had constructed
the Eilenberg-MacLane spaces K(π, n) for abelian groups π. They are characterized
by

πq(K(π, n)) =
{

π if q = n
0 if q 6= n.

For based spaces X and Y , we let [X, Y ] denote the set of homotopy classes of
based maps X → Y . Then, for an abelian group n and based space X,

H̃n(X; π) ∼= [X, K(π, n)].

The suspension isomorphism corresponds to the fact that

K(π, n) ' ΩK(π, n + 1),

where ΩY is the space of loops at the basepoint in Y , the implication coming from
the adjunction

[ΣX,Y ] ∼= [X, ΩY ].

Replacing π by a commutative ring R, the cup product on H̃∗(X; R) is induced
from the diagonal map X → X ∧X and a system of pairings

K(R, m) ∧K(R,n) −→ K(R,m + n).

For cobordism, the map of bundles over iq : BO(q) −→ BO(q + 1) induces a
map ΣTO(q) −→ TO(q + 1). Taking adjoints and iterating, we obtain inclusions

TO(n) −→ ΩTO(n + 1) −→ Ω2TO(n + 2) −→ · · · .

The union of these spaces is called MO(n), and we have homeomorphisms

MO(n) ∼= ΩMO(n + 1).

We define a cohomology theory on based spaces by

M̃O
n
(X) =

{
[X, MO(n)] if n ≥ 0
[X, Ω−nMO(0)] if n < 0.

We didn’t need to define ordinary cohomology in negative degrees this way, since,
if we did, we would obtain zero groups because K(π, 0) is discrete. However, that
is not true in cobordism, where

MO−n(pt) ≡ M̃O
−n

(S0) = Nn.

The Whitney sum pairing of Thom spaces induces pairings

MO(m) ∧MO(n) −→ MO(m + n)

and these give rise to a product in the cobordism theory M̃O
∗
(X).

For K-theory, we define

KO(8j − i) = Ωi(BO × Z)

for j ≥ 1 (or j ∈ Z) and 1 ≤ i ≤ 8. Bott periodicity gives homotopy equivalences

KO(n) ' ΩKO(n + 1)
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and reduced real K-theory is given by

K̃O
n
(X) = [X, KO(n)], n ∈ Z.

The tensor product pairing gives rise to maps

KO(m) ∧KO(n) −→ KO(m + n),

that represent the products in K̃O
∗
(X).

In all three cases, we obtain unreduced theories by adjoining disjoint basepoints
to unbased spaces; for example,

H∗(X;R) = H̃∗(X+; R).

Then all three of our cohomology theories take values in Z-graded associative,
commutative, and unital rings.

With these examples in mind, Brown in 1962 [8] proved a representability the-
orem to the effect that every cohomology theory on spaces arises in the fashion
illustrated by our examples. By the early 1960’s, algebraic topologists realized that
serious calculational analysis required a good “stable homotopy category” whose
objects should be some sort of stabilized analog of spaces, each of which should rep-
resent a cohomology theory. The essential need was to be able to work effectively
with multiplicative structures given by rings and modules in the stable homotopy
category. I will give a capsule introduction to one version of what the stable cat-
egory is, but you shouldn’t take this part too seriously: I am just trying to give
a vague impression of what the objects we study really are. This category was
first constructed by Boardman in his 1964 Warwick thesis [5]. An exposition was
later given by Adams [2]. In historical perspective, I regard their construction as a
stopgap. It had very serious intrinsic limitations that I will describe shortly. The
construction I will sketch leads to an equivalent category.

We define a prespectrum to be a sequence of spaces Tn and maps σ : ΣTn −→
Tn+1. The Thom prespectrum TO = {TO(n)} is an example. The sequence of
suspensions {ΣnX} of a based space X is another. A map f : T −→ T ′ of prespectra
is a sequence of maps fn : Tn −→ T ′n that are strictly compatible with the structure
maps, in the sense that the following diagrams commute:

ΣTn
Σfn //

σn

²²

ΣT ′n

σ′n
²²

Tn+1
fn+1

// T ′n+1.

A spectrum E is a prespectrum whose adjoint structure maps σ̃n : En −→ ΩEn+1

are homeomorphisms. A map f : E −→ E′ of spectra is just a map of underlying
prespectra. The forgetful functor ` : S −→ P from the category of spectra to
the category of prespectra has a left adjoint L : P −→ S . For example, MO =
{MO(n)} is LTO. Similarly, for a based space X, define QX = ∪ΩqΣqX, where
the inclusions are given by suspension of maps. Then the suspension spectrum of
X is

Σ∞X = L{ΣnX} = {QΣnX}.
We define S = Σ∞S0 to be the sphere, or zero sphere, spectrum.

The zeroth space E0 of a spectrum is denoted Ω∞E; such spaces are called
infinite loop spaces. These are not the kind of spaces one encounters in nature.
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They are monstrously large. Even loop spaces are quite large: there are lots of
maps from a circle into a given space. This is one reason that this definition of a
spectrum, which I first gave in 1968 [19], was slow to catch on. Most experts now
accept that this is really the right definition. For one thing, there is a very simple
relationship between maps of spaces and maps of spectra. The functors Σ∞ and
Ω∞ are left and right adjoint. More generally, there is a shift desuspension functor
Σ∞n that is left adjoint to the nth space functor; that is,

S (Σ∞n X, E) ∼= T (X,En),

where T is the category of based spaces. We define sphere spectra for integers n
by

Sn = Σ∞Sn if n ≥ 0 and S−n = Σ∞n S0 if n > 0.

We define the smash product of a prespectrum T and a based space X by

(T ∧X)n = Tn ∧X,

with the obvious structure maps. We then define E ∧ X = L(`E ∧ X). Taking
X = I+, this gives us a notion of homotopy between maps of spectra. We define
homotopy groups of spectra by

πn(E) = [Sn, E], n ∈ Z.

By our adjunctions, they are computable in terms of homotopy groups of spaces.
We say that a map of spectra is a weak equivalence if it induces an isomorphism of
homotopy groups. We have a homotopy category hS , in which homotopic maps
are identified. The desired stable homotopy category h̄S is obtained from hS
by adjoining formal inverses to the weak equivalences. Every spectrum is weakly
equivalent to a CW spectrum, and h̄S is equivalent to the homotopy category
of CW spectra. This category is stable in the sense that the suspension functor
Σ : h̄S −→ h̄S is an equivalence of categories.

The essential point is to define a smash product E ∧ E′ of spectra. Looking on
the prespectrum level, there is no obvious choice for (T ∧ T ′)n, and naive attempts
to go from pairings Tm ∧ Tn −→ Tm+n of the sort we had in our examples to some
sort of honest map of prespectra run into problems of permutations of suspension
coordinates. Up to homotopy, Boardman solved this in his 1964 thesis, and Adams
gave an equivalent solution. Starting with different definitions than I have given,
they obtained a smash product that is homotopy associative, commutative, and
unital with unit S. That is, one has these relations in h̄S , although one does not
have them on the point-set level. This allows the definition of a ring spectrum E
and E-module M in terms of unit and product maps S −→ E, E ∧ E −→ E, and
E ∧M −→ M . The homotopy groups of such a ring spectrum E are graded rings.

Before going further, let us record the homotopy groups of some of the spectra
we have on hand. For a based space X,

πn(Σ∞X) = colim πn+q(ΣqX)

is the nth stable homotopy group of X. For an Abelian group π we can choose
our Eilenberg-MacLane spaces so that {K(π, n)} is a spectrum, denoted Hπ, and
then π0(Hπ) = π and πi(Hπ) = 0 for i 6= 0. For a ring R, HR is a ring spectrum
and π0(HR) = R as rings. Rather than record the homotopy groups of MO and
KO, let us consider their complex analogs MU and KU . They are constructed
like MO and KO, but using complex vector bundles instead of real ones. Manifold
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theoretically, π∗(MU) is isomorphic to the cobordism groups of weakly almost
complex manifolds, namely those with complex structures on their stable normal
bundles. These are ring spectra, and we have

π∗(MU) = Z[xi | i ≥ 1],

where deg xi = 2i, and
π∗(KU) = Z[u, u−1],

where deg u = 2.
For each prime p and each i ≥ 1, there is a ring spectrum K(i) such that

π∗(K(i)) = Fp[vi, v
−1
i ],

where deg vi = 2pi − 2. These are the Morava K-theory spectra. Together with
the HF for fields F , they are the only ring spectra whose homotopy rings are
graded fields. They have played a vital role in stable homotopy theory since the
1970’s. It has been an embarrassment to the subject that there has been no good
construction of them. Originally, they were obtained by the Baas-Sullivan theory
of manifolds with singularities, which relied on difficult geometric topology to kill
unwanted generators of π∗(MU) by making them cobordant to zero in a weaker
sense than the usual one. Moreover, this procedure makes it very hard to show
that the K(i) are actually ring spectra. It has long been understood that if one
could obtain a sufficiently precise theory of MU -module spectra, then one could
mimic commutative algebra to construct the K(i) as if one were doing pure algebra,
forming K(i) as the MU -ring spectrum, or MU -algebra up to homotopy, specified
by

(MU/I)[x−1
pi−1]

where I ⊂ π∗(MU) is the ideal generated by p and the xj for j 6= pi − 1. One
problem is that, with the usual homotopical notion of ring and module spectra,
the cofiber N ∪f CM of a map f : M −→ N of MU -modules need not be an
MU -module.

This is one of very many motivations for trying to obtain a good point-set topo-
logical notion of a commutative ring spectrum E and its modules M . One wants E
to be associative, commutative, and unital on the point-set level. However, that is
impossible even to formulate if the underlying smash product is itself only associa-
tive, commutative, and unital up to homotopy. Until quite recently, I would have
said that there could be no category of spectra with an associative, commutative,
and unital point-set level smash product from which a category equivalent to the
stable homotopy category could be constructed. I am happy to say that I was
wrong.

The construction is due to Elmendorf, Kriz, Mandell and myself [10, 11] and I
find it quite beautiful. If I were addressing an audience of algebraic topologists,
this would be the starting point of my talk, and I would give some details. Instead,
I will just state that there is a notion of an S-module, which is a spectrum with
additional structure. The category of S-modules is symmetric monoidal under a
smash product ∧S with unit S, and there is even a function S-module functor FS

such that
MS(M ∧S N, P ) ∼= MS(M,FS(N, P )),

where MS is the category of S-modules. Thus the properties of MS are exactly
like those of the category of modules over a commutative ring k, with its tensor
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product and Hom functors. We define the derived category DS by adjoining formal
inverses to the weak equivalences, and we prove that DS is equivalent to the stable
homotopy category h̄S and that the equivalence preserves smash products and
function spectra.

Given the category of S-modules, we define an S-algebra R by requiring a unit
S −→ R and product R ∧S R −→ R such that the evident associativity and unit
diagrams commute. We say that R is a commutative S-algebra if the evident
commutativity diagram also commutes. We define a right R-module similarly, by
requiring a map R ∧S N −→ N such that the evident associativity diagram com-
mutes. For a right R-module M and left R-module N , we define M ∧R N by a
coequalizer diagram

M ∧S R ∧S N
µ∧SId //
Id∧Sν

// M ∧S N // M ∧R N,

where µ and ν are the given actions of R on M and N . If R is commutative,
then the smash product of R-modules is an R-module, the category MR of R-
modules is symmetric monoidal with unit R, and there is a function R-module
functor FR(M,N) with the usual adjunction. We can define R-algebras exactly as
we defined S-algebras, via unit and product maps R −→ A and A ∧R A −→ A.
This is beginning to look like genuine algebra, isn’t it? Lots of formal properties of
modules, rings, and algebras go over directly to the new subject of stable topological
algebra. For example, the smash product A ∧R A′ of commutative R-algebras A
and A′ is their coproduct in the category of commutative R-algebras.

Thinking homotopically, MR has a derived category DR that is obtained by
inverting the maps of R-modules that are weak equivalences of underlying spectra.
For an S-algebra R, the category DR is not just a tool for the the study of classical
algebraic topology, but an interesting new subject of study in its own right.

What about examples? There are notions of A∞ and E∞ ring spectra that
Frank Quinn, Nigel Ray, and I defined in 1972 [20]. These earlier definitions turn
out to be essentially equivalent to the new definitions of S-algebras and commu-
tative S-algebras. Therefore earlier work gives a host of examples. In particular,
multiplicative infinite loop space theory provides a tool for constructing A∞ and
E∞ ring spectra, and therefore S-algebras, from space level data.

This theory constructs HR as an S-algebra for any discrete ring R, and HR is
commutative if R is. With their usual constructions, the Thom spectra MO and
MU are E∞ ring spectra and thus commutative S-algebras by direct inspection of
definitions. The new theory has led to a beautiful conceptual proof that KO and
KU are commutative S-algebras. The question of proving that they are E∞ ring
spectra had been an unsolved open problem for the last twenty years. Infinite
loop space theory showed much earlier that the connective versions kO and kU are
E∞ ring spectra. Here

π∗(ku) = Z[u].

Similarly, the algebraic K-theory spectrum KR of a discrete ring R is an E∞ ring
spectrum. By inspection, the suspension spectrum Σ∞G+ of a topological monoid
G is an S-algebra.

We have used the word “derived” in analogy with algebra. For a discrete ring R,
the category MR of chain complexes over R has an associated derived category DR

that is obtained from the homotopy category hMR by adjoining formal inverses
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to the quasi-isomorphisms (= homology isomorphisms), which are analogous to
weak equivalences in topology. This process is made rigorous by replacing chain
complexes by appropriate projective resolutions. I have suppressed the fact that, in
topology, the construction of our derived categories is made rigorous by replacing
R-modules by weakly equivalent cell R-modules. In fact, one can carry out the
algebraic construction most efficiently by mimicking the topological theory of cell
R-modules. In any case, working in the derived category of HR-modules for a
discrete ring R, we find that

TorR
∗ (M, N) ∼= π∗(HM ∧HR HN)

and
Ext∗R(M, N) ∼= π−∗(FHR(HM,HN)).

Moreover,
DR is equivalent to DHR.

Thus our new topological derived categories subsume a lot of classical algebra.
As the first topologically interesting example, the algebraic structure of the cat-

egories DkU , DKU , DkO, and DKO has been analyzed by Jerome Wolbert [25, 26].
For another topological analog of a classical algebraic construction, consider a

commutative S-algebra R and an R-algebra A. We can define Ae = A∧R Aop. For
an (A, A)-bimodule M , we can then define topological Hochschild homology by

THHR
∗ (A; M) = π∗(M ∧Ae A).

Comparing with algebra, if R is a discrete commutative ring, A is an R-algebra
such that A is a flat R-module, and M is an (A,A)-bimodule, then the (relative)
algebraic Hochschild homology is realized topologically as

HHR
∗ (A;M) ∼= THHHR

∗ (HA;HM).

However, the topology offers something new: we can take the ground ring to be S
and define the topological Hochschild homology groups of R, THH∗(R), by

THH∗(R) = THHS
∗ (HR).

These algebraic invariants of discrete rings, due originally to Bökstedt [6], are the
starting point for recent applications of stable algebraic topology to extensive com-
putations of the algebraic K-groups of number rings. See Madsen [16, 17] for
surveys.

Thinking of DMU as a category in which to do homotopy theory, we easily con-
struct K(i) as an MU -ring spectrum in the homotopical sense, as I indicated earlier,
and similarly for many other interesting spectra associated to MU . Moreover, the
new constructions come with more structure and their possible ring structures are
far more easily studied than was possible with earlier constructions. Here the work
of [11] has recently been carried significantly further by Neil Strickland [23].

There are also applications in algebraic K-theory and algebraic geometry. Cat-
egories of modules in algebra have associated algebraic K-theories, and so do our
new categories of modules over S-algebras. For a discrete ring R, the new alge-
braic K-theory of HR agrees with the old algebraic K-theory of R constructed
by Quillen. Similarly, for a based space X, Σ∞(ΩX)+ is an S-algebra, and the
algebraic K-theory associated to its modules is Waldhausen’s algebraic K-theory
of X. This is work of Mike Mandell.
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The whole theory started from the development of a parallel algebraic theory
that studies differential graded algebras up to homotopy, that is, k-chain complexes
with actions by operads of chain complexes for some commutative ground ring k.
These are called A∞ and E∞ k-algebras. When k = Q, A∞ and E∞ algebras are
equivalent to DGA’s and commutative DGA’s, but this is false for Z or for the
field Fp. Igor Kriz and I [15] developed the algebraic theory in order to carry out
a program suggested by Deligne for the construction and study of integral mixed
Tate motives in algebraic geometry, but it has other applications.

Recently Mike Mandell [18] has proven that the categories of commutative Hk-
algebras and E∞ k-algebras are equivalent. While intuitively plausible, this is quite
difficult to prove. This allows a really remarkable application of stable topological
algebra: it gives rise to an algebraization of unstable p-adic homotopy theory anal-
ogous to the Quillen-Sullivan algebraization of rational homotopy theory. There is
a functor that carries a space X to the commutative Hk-algebra F (X+,Hk), Here

H∗(X; k) ∼= π−∗(F (X+,Hk)).

An unpublished theorem of Dwyer and Hopkins, for which Mandell has given a
proof, states that, when k is the algebraic closure F̄p of the field Fp, this functor gives
an equivalence from the homotopy category of p-adic spaces to a full subcategory
of the homotopy category of commutative HF̄p-algebras. Mandell identifies the
composite of these two functors with the singular cochain functor C∗(X; F̄p) and
thus shows that this functor algebraicizes p-adic homotopy theory.

Another application of the new theory involves the generalization of the entire
theory to stable equivariant topological algebra. In fact, we can develop the entire
theory with a compact Lie group G acting on everything in sight. The starting point
is to index G-spectra not as sequences of G-spaces En but as systems of G-spaces
EV indexed on representations V of G. We require EV to be G-homeomorphic to
ΩW−V EW when V ⊂ W . This builds representation theory into the definition of
G-spectra. Stability allows for spheres SV associated to representations, and the
associated cohomology theories are graded, not on Z, but on the real representation
ring RO(G).

A theorem of Atiyah and Segal [4] asserts that, for a compact G-space X,

KUG(X)Î
∼= KUG(EG×X),

where I is the augmentation ideal of the complex representation ring R(G). Here

KUG(EG×X) ∼= KU(EG×G X),

In particular, this calculates the K-theory of the classifying space BG:

R(G)Î
∼= K(BG).

When G is finite, John Greenlees and I observed that there is a spectrum level
generalization of the Atiyah-Segal theorem that is given in terms of completions of
RG-modules at ideals of R∗G, where RG is a commutative SG-algebra [12, 13]. In
symbols,

(MG)Î ' F (EG+,MG)
for any KUG-module MG. We then proved the same theorem for equivariant cobor-
dism [14], replacing KUG by MUG and I by the augmentation ideal of MU∗

G. For
example, our new construction of K(i) works just as well to give an equivari-
ant Morava K-theory G-spectrum KG(i). More elegantly there is a construction
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MUG∧MU M of MUG-modules from MU -modules [22]. As with K-theory, we have
the relation

(F (EG+, MG))G ' F (BG+,M).
Thus our completion theorem shows that the equivariant homotopy groups of (MG)Î

compute the ordinary nonequivariant cohomology groups M∗(BG).
Each of the last five applications could be the starting point of another talk, but

I’ve already said more than enough in this one.
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