
EQUIVARIANT ORIENTATION THEORY

S.R. COSTENOBLE, J.P. MAY, AND S. WANER

Abstract. We give a long overdue theory of orientations of G-vector bundles,
topological G-bundles, and spherical G-fibrations, where G is a compact Lie
group. The notion of equivariant orientability is clear and unambiguous, but it
is surprisingly difficult to obtain a satisfactory notion of an equivariant orien-
tation such that every orientable G-vector bundle admits an orientation. Our
focus here is on the geometric and homotopical aspects, rather than the coho-
mological aspects, of orientation theory. Orientations are described in terms
of functors defined on equivariant fundamental groupoids of base G-spaces,
and the essence of the theory is to construct an appropriate universal tar-
get category of G-vector bundles over orbit spaces G/H. The theory requires
new categorical concepts and constructions that should be of interest in other
subjects, such as algebraic geometry.
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Introduction

When is a smooth G-manifold orientable, where G is a compact Lie group?
Accepting the obvious answer, “when its tangent bundle is orientable,” what does it
mean to say that a G-vector bundle is orientable? There is a good, straightforward,
answer to this question. Suppose that p : E → B is an orthogonal G-vector bundle.
Recall that, if H is a subgroup of G, then the fiber F = p−1(x) over an H-fixed point
x ∈ B is a representation of H. We say that p is equivariantly orientable if, whenever
we transport such a fiber F around a loop in the H-fixed set BH , the resulting self-
map of F is homotopic to the identity map through H-linear isometries. Already
we can see one complication that does not arise nonequivariantly: If we ask that
the self-map of F be homotopic to the identity through equivariant PL maps, or
homeomorphisms, or homotopy equivalences, rather than linear isometries, we may
get different notions of orientability. One purpose of the categorical framework we
develop here is to allow us to handle all of these cases with the same machinery.

The next obvious question is, what do we mean by an orientation of an orientable
G-manifold or G-vector bundle? Surprisingly, there is no satisfactory answer in the
literature except under rather restrictive hypotheses. One of us began work on this
question in a 1986 preprint [31], and the three of us took up the problem soon after.
This paper is a revision of an undistributed 1989 preprint, and in the meantime
a number of papers have appeared that are explicitly or implicitly based on that
preprint [1, 3, 4, 5, 6, 7, 25]. The answer to the question is necessarily complicated,
and our present categorical framework is a significant improvement on our original
one. We give the idea by reviewing one approach to classical orientation theory.

Nonequivariantly, an elaborately pedantic way of defining an orientation of an
n-plane bundle p : E −→ B runs as follows. We consider the category V (n) with
one object Rn and the two morphisms given by the two homotopy classes of linear
isometries Rn −→ Rn. We have the inclusion S of the discrete subcategory S V (n)
with just the identity morphism. We may think of S : S V (n) −→ V (n) as obtained
from SO(n) −→ O(n) by passing to components. We choose and fix an isomorphism
from each n-dimensional vector space V to Rn, thereby obtaining an equivalence
of categories from the category V (n) of all n-dimensional vector spaces to V (n).
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Using the bundle covering homotopy property (CHP), we see that p induces a
functor p∗ from the fundamental groupoid ΠB to V (n) that sends a point b to
the fiber Vb over b. Using our fixed equivalence of categories, this gives a functor
p∗ : ΠB −→ V (n). The functor p∗ fixes a choice of orientation of each fiber and
describes how the orientations of fibers change as one traverses paths in the base
space. The bundle p is orientable if and only if there is a lift of this functor to
S V (n), by which we mean a functor F : ΠB −→ S V (n) together with a natural
isomorphism φ : S ◦ F −→ p∗. A choice of such a lift is an orientation of p. Here
the functor F is obviously unique if it exists, but there are then two choices of φ if
B is path connected.

We shall mimic this procedure equivariantly. We define the equivariant funda-
mental groupoid ΠGX and the equivariant analogue VG(n) of V (n) in §1 and §2,
where we also define p∗ : ΠGB −→ VG(n) for a G-vector bundle p : E −→ B and
explain what it means for p to be orientable. There are two main variants of the
relevant categories, which coincide when G is finite. In §3 and §4, we show how
to topologize ΠGX and VG(n) so that the more commonly used variants are the
respective homotopy categories of the variants most appropriate to our theory.

The definition of the equivariant analogue S VG(n) of S V (n) turns out to be
quite subtle. The idea is to find a functor S : S VG(n) −→ VG(n) such that p
is orientable if and only if p∗ factors through S VG(n) and such that S VG(n) is
the “smallest” category with this property. To carry out this idea, we need the
categorical notion of a bundle of groupoids over the orbit category OG, or over
any category B with similar structure. We call these objects groupoids over B
for short. This notion is defined in §5; ΠGX and VG(n) are examples of groupoids
over OG. To construct S VG(n), we need the restricted types of groupoids over
B that are described in §6. These arise as quotients of ΠGB through which p∗

factors when p is orientable. We introduce and explain a kind of representation
theory of bundles of groupoids that allows us to define orientations of orientable
G-bundles in §7. The construction and characterization of the “universal orientable
representation” S : S VG(n) −→ VG(n) used in the definition is carried out in §8
and §9. We obtain the following theorem.

Theorem 0.1. A G-vector bundle p : E −→ B of dimension n is orientable if and
only if p∗ : ΠGB −→ VG(n) can be lifted to a functor F : ΠGB −→ S VG(n) together
with a natural isomorphism φ : S ◦ F −→ p∗. A choice of such a lift (F, φ) is an
orientation of p.

This notion correctly encodes the intuitive idea that an orientation should be
a consistent set of orientations of the restricted bundles over orbits of B. Here
consistency entails consistency with all paths in all fixed point spaces in B. Since
S VG(n) must allow for all possibilities, its construction is intrinsically complicated.
The categorical representation theory that is involved may well have applications
in other fields.

The very abstract definitions and constructions in Part II (§§5 – 9) are illustrated
by concrete examples in §10. Specifically, we trace through the steps of the con-
struction and give an explicit description of the universal orientable representation
for a cyclic group of prime order. The reader may find it helpful to refer to this
section while reading Part II.

We discuss G-bundles “of dimension V ” for a representation V of G and illustrate
the need for our theory with a simple example in §11. For G-bundles over a general
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compact Lie group, or even over a general finite group G, there seems to be no
precursor to our theory in the literature. There is a naive notion of an orientation
of a V -dimensional G-bundle that is sometimes used, but we show that this notion
is insufficient to give a satisfactory theory. An obvious desideratum of a satisfactory
theory is that every orientable G-bundle must admit an orientation, but this fails
with the naive notion. In fact, the 2-sphere S2 with the circle group S1 or any of its
cyclic subgroups acting by rotation around the polar axis (say) gives an elementary
example of an orientable G-manifold that admits no naive orientation. For cyclic
groups of prime order, we display the orientations of S2 explicitly. We urge the
reader who has not thought about equivariant orientation theory to consider that
example first, since it well illustrates both the problem and our solution of it.

We describe the universal orientable representation explicitly for any odd order
finite group G in §12. Here it turns out that a G-vector bundle is orientable in the
equivariant sense if and only if it is orientable in the nonequivariant sense, and then
equivariant orientations are uniquely determined by their underlying nonequivari-
ant orientations. The equivariant orientation describes additional fixed point space
information that is implicit in the nonequivariant orientation. The nature of this
information is not obvious. In fact, there is a naive notion of an equivariant orien-
tation of any G-vector bundle for a group of odd order. For V -dimensional bundles
it coincides with the naive notion of §11, so the example there shows that not every
oriented G-vector bundle can be naively oriented. We also describe the essentially
trivial complex analogue of our theory in §12.

We give a conjectural description of the universal orientable representation for
an elementary Abelian 2-group in §13. We doubt that the conjecture is right, but
with more work the ideas presented should lead to a correct description of the
universal orientable representation for any Abelian compact Lie group G. As a
first non-Abelian example, we display the universal orientable representation for
2-dimensional G-vector bundles for the dihedral group G = D6 in §14.

We return to the general categorical theory in §15 and §16, first showing how
the theory of categorical fibrations gives an alternative way of thinking about ori-
entations in §15 and then discussing the functoriality with respect to changes of
the reference groupoid over B into which representations map in §16. In §17, we
use this discussion to show that an orientation of a G-bundle p : E −→ B induces
orientations of the H-fixed point bundle over BH and of its complementary bundle
over BH for all subgroups H of G. For an oriented smooth G-manifold M , this
means that the fixed point manifolds MH and the normal bundles of the inclusions
MH ⊂ M inherit appropriate orientations.

While our main focus is on G-vector bundles, the theory also applies to topolog-
ical and PL G-bundles, to spherical G-fibrations, and to stable and virtual variants
of each of these. We explain this in §18 and §19. The discussion of functoriality in
§16 allows comparisons among these versions of orientation theory.

In §20 – §23, we describe classifying G-spaces and prove classification theorems
for oriented G-bundles and oriented spherical G-fibrations. We prove a related
classification theorem for representations of fundamental groupoids in §24.

Despite the length of this paper, we have by no means obtained a complete
theory. Nonequivariantly, there are geometric and cohomological notions of orien-
tation, and the geometric theory coincides with the cohomological theory when we
take ordinary cohomology with integral coefficients. That is a calculational fact
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that does not carry over to the equivariant context. While ideas here have been
used successfully in work towards the cohomological theory in [1, 3, 4, 5, 6, 7, 25],
there remains much work to be done, particularly in unifying and systematizing the
several different approaches that are taken in the cited papers. We plan to return
to this matter elsewhere.

Part I. Fundamental groupoids and categories of bundles

1. The equivariant fundamental groupoid

We recall the definition and properties of the fundamental groupoid of a G-space
X. We understand spaces to be compactly generated (= weak Hausdorff k-spaces),
and we let U denote the category of (unbased) spaces. A topological category is
a category enriched over U , so that its hom sets are spaces and composition is
continuous. A functor between topological categories is continuous if it is contin-
uous on hom sets. Recall that a category is a groupoid if all of its morphisms are
isomorphisms. We shall later be interested in topological groupoids, but we focus
on the underlying untopologized categories in this section and the next.

Our ambient group G is a compact Lie group, and subgroups are understood to
be closed. The orbit category OG is the topological category whose objects are the
orbit G-spaces G/H and whose morphisms are the G-maps between orbits. The
morphism set OG(G/H, G/K) is topologized as the subspace (G/K)H of G/K.

The following definition is given by tom Dieck [10, 10.7]. We regard an element
x ∈ XH as the G-map G/H −→ X that sends eH to x, going back and forth at
will between the two interpretations, and similarly for paths, etc, in XH .

Definition 1.1. Let X be a G-space. The (equivariant) fundamental groupoid
ΠGX of X is the category whose objects are the G-maps x : G/H −→ X and
whose morphisms x −→ y, y : G/K −→ X, are the pairs (ω, α), where α : G/H −→
G/K is a G-map and ω is an equivalence class of paths x −→ y ◦ α in XH . As
usual, two paths are equivalent if they are homotopic rel endpoints. Composition
is induced by composition of maps of orbits and the usual product on path classes.
Let π : ΠGX −→ OG be the functor given by π(x : G/H −→ X) = G/H and
π(ω, α) = α.

Lemma 1.2. A G-map f : X −→ Y induces a functor f∗ : ΠGX −→ ΠGY . A
G-homotopy h : f ' f ′ induces a natural isomorphism h∗ : f∗ −→ f ′∗.

We write ΠX for the nonequivariant fundamental groupoid of a space X.

Remark 1.3. For a category B and an object b, we have the category B/b of objects
a −→ b over b. Taking X = G/H, the functor π : ΠG(G/H) −→ OG factors through
a functor ΠG(G/H) −→ OG/(G/H) that is surjective on objects and morphisms
and is an isomorphism if G is finite.

We record some properties of the fundamental groupoid that will later be ab-
stracted to give the notion of a bundle of groupoids. For a functor π : E −→ B,
the fiber Eb over an object b ∈ B is the subcategory of objects and morphisms of
E that map to b and its identity morphism.

Remarks 1.4. Let X be a G-space.
(i) The fiber (ΠGX)G/H is the nonequivariant fundamental groupoid ΠXH .
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(ii) For an object y : G/K −→ X in ΠGX and a map α : G/H −→ G/K in OG,
there is an object x : G/H −→ X and a morphism (ω, α) : x −→ y. In fact,
x = y ◦ α and the constant path ω give canonical choices for x and (ω, α).

(iii) Let x : G/H −→ X, y : G/J −→ X, and z : G/K −→ X be objects in
ΠGX. Suppose that we have maps (ν, γ) : x −→ z and (µ, β) : y −→ z in
ΠGX and a map α : G/H −→ G/J such that βα = γ:

x
(ω,α) //____

(ν,γ)
¾¾6

66
66

66
y

(µ,β)
¥¥©©
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©©

z

π // G/H
α //
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>>
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¢

G/K.

There is a unique map (ω, α) : x −→ y in ΠGX such that (µ, β)(ω, α) =
(ν, γ), namely the one given by ω = (µα)−1ν. The existence and uniqueness
of (ω, α) are encoded in the statement that the following diagram is a
pullback:

ΠGX(y, z)×ΠGX(x, y) ◦ //

id×π

²²

ΠGX(x, z)

π

²²
ΠGX(y, z)× OG(G/H, G/J)◦(π×id)

// OG(G/H, G/K).

2. Categories of G-vector bundles and orientability

We need reference categories of G-vector bundles over orbits. By a G-bundle,
we will understand a real G-vector bundle with orthogonal structure group.

Definition 2.1. Let V G be the category whose objects are the G-bundles over
orbits of G and whose morphisms are the equivalence classes of G-bundle maps
between them. Here two maps are equivalent if they are G-bundle homotopic, with
the homotopy inducing the constant homotopy on base spaces. Let π : V G −→ OG

be the functor that sends a G-bundle to its base space and sends an equivalence
class of bundle maps to its map of base spaces. Let V G(n) be the full subcategory
of V G consisting of the n-dimensional bundles.

These categories are not small, but they have small skeleta.

Definition 2.2. Let VG(n) be the full subcategory of V G whose objects are the n-
plane G-bundles of the form G×H Rn −→ G/H, where H acts on Rn through some
representation λ : H −→ O(n) and we choose one such λ in each O(n)-conjugacy
class. We obtain a retraction equivalence V G(n) −→ VG(n) by choosing a fixed
isomorphism from each object in V G(n) to an object of VG(n), choosing the identity
map if the object is in VG(n). Note that we still have functors π : VG(n) −→ OG.
Let VG be the disjoint union of the categories VG(n); it is equivalent to V G.

We continue to write V for representations, even when we are thinking in terms
of objects of VG. The following observations give a description of this category.

Lemma 2.3. Up to equivalence, a G-bundle over the orbit G-space G/H has the
form G×H V −→ G/H for some real representation V of H. A map

α̃ : G×H V −→ G×K W
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of G-bundles over a map α : G/H −→ G/K has the form α̃(g, v) = (gg0, τ(v)),
where α(eH) = g0K (hence g−1

0 Hg0 ⊂ K) and τ : V −→ W is a linear isometry
which is H-linear in the sense that τ(hv) = (g−1

0 hg0)τ(v). Two maps α̃0 and α̃1

over α so determined by τ0 and τ1 are G-bundle homotopic over α if and only if
there is a path τt connecting τ0 to τ1 in the space of H-linear isometries V −→ W .

The skeletal nature of VG(n) implies the following useful observation.

Lemma 2.4. If there is a map G×H V −→ G×H W in VG(n), then V = W .

Remark 2.5. The fiber VG(n)G/H is a groupoid that has one object V in each
isomorphism class of representations of H in O(n) and has morphisms V −→ V the
homotopy classes of H-linear isometries; it has no morphisms V −→ V ′ if V 6= V ′.
By inspection of pullbacks, the evident analogues of Remarks 1.4(ii) and (iii) hold
for the functor π : VG(n) −→ OG.

The following well known fact clarifies the structure of VG(n). Let OG(V ) be
the group of G-linear isometries of a representation V of G and let π0(OG(V )) be
its group of components.

Lemma 2.6. The group π0(OG(V )) is an elementary Abelian 2-group.

Proof. Write V = ⊕Vi, where the Vi are the isotypical components of V , so that
Vi
∼= Wi ⊗ Rqi for some irreducible representation Wi. Then OG(V ) ∼= ∏

i OG(Vi).
Let Ki = HomG(Wi,Wi). Each Ki is one of R, C, or H and HomG(Vi, Vi) ∼=
Mqi(Ki). The corresponding subgroup of underlying real linear isometries is con-
nected when Ki = C or H and has two components when Ki = R. ¤

The following basic construction is central to our work. Recall Lemma 1.2.

Proposition 2.7. A G-bundle p : E −→ B determines a functor p∗ : ΠGB −→ VG

over OG. A G-bundle map (f̃ , f) : p −→ q, with f̃ : E −→ E′ the map of total
spaces and f : B −→ B′ the map of base spaces, determines a natural isomorphism
f̃∗ : p∗ −→ q∗ ◦ f∗ over the identity functor of OG. If (h̃, h) : (f̃ , f) ' (f̃ ′, f ′) is a
G-bundle homotopy, then the following diagram commutes:

p∗

f̃∗

||yy
yy

yy
yy

y
f̃ ′∗

""FF
FF

FF
FF

F

q∗ ◦ f∗
q∗◦h∗

// q∗ ◦ f ′∗.

In the last statement and later, we compose a functor (in this case q∗) with a
natural transformation (in this case h∗) by applying the functor to the maps that
define the natural transformation; we often omit ◦ in writing such composites.

Proof. It suffices to work in V G, since we can then transfer information to the
equivalent category VG. Pulling p back along G-maps x : G/H −→ B, we obtain
a system of G-bundles p∗(x) −→ G/H and bundle maps x̃ : p∗(x) −→ E. For
a G-map α : G/H −→ G/K and a path w : x −→ y ◦ α, the G-bundle covering
homotopy property (G-bundle CHP) gives a homotopy w̃ : p∗(x) × I −→ E of x̃
that covers w. The map w̃1 covers y ◦ α and factors through a G-bundle map
p∗(w, α) : p∗(x) −→ p∗(y) whose equivalence class depends only on the equivalence
class ω of w. This constructs p∗, and the remaining verifications are similar. ¤
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With these definitions in place, we can define orientability precisely.

Definition 2.8. The G-bundle p : E −→ B is orientable if the functor p∗ : ΠGB −→
VG satisfies p∗(ω, α) = p∗(ω′, α) for every pair of morphisms (ω, α) and (ω′, α)
with the same source and target and the same image in OG. That is, p∗(ω, α) is
independent of the choice of the path class ω. For example, for a representation V
of G, the projection B × V −→ B is orientable.

Remark 2.9. A G-bundle p is orientable if the defining condition holds when x = y
and α = id. Indeed, if (ω, α) and (ω′, α) are maps x −→ y, then, by Remark 1.4(iii),
there is a map (ξ, id) : x −→ x such that (ω′, α) = (ω, α)(ξ, id). If p∗(ξ, id) = id,
then p∗(ω, α) = p∗(ω′, α). This gives the claimed implication. Thus orientability is
a property of the restrictions of p over fixed point spaces BH .

The following observation is immediate from Remark 1.3.

Proposition 2.10. If G is finite, any G-bundle over an orbit G/H is orientable.

Example 2.11. This result fails for general compact Lie groups. For example, let
L be the sign representation of the cyclic group H of order 2. Regarding H as a
subgroup of S1, we can identify the open Möbius strip and its retraction to the
circle as the S1-bundle S1 ×H L −→ S1/H. Clearly this is non-orientable.

3. The topologized fundamental groupoid

When G is a general compact Lie group, we shall need topologies on the cate-
gories ΠGX and VG in order to define orientations of vector bundles. This section
and the next deal with this issue and may be skipped by the reader who wishes
to focus on finite groups. However, this material illuminates the structure of all
of the categories that we have defined and should be of independent interest. The
following easy, but basic, observation appears to be new. Here and later, we use
the term “bundle with discrete fibers” instead of “covering space” to emphasize
that we are not assuming that the base spaces or total spaces are connected. In
particular, we allow some fibers to be empty.

Proposition 3.1. The category ΠGX is a topological category such that, for objects
x : G/H −→ X and y : G/K −→ X,

π : ΠGX(x, y) −→ OG(G/H, G/K)

is a bundle with discrete fibers.

Proof. For a simply connected open neighborhood U of a point α ∈ G/KH and a
point β ∈ U , there is a unique path class να,β connecting α to β in U . Composing
with y gives a path class ν̃α,β connecting y ◦ α to y ◦ β. For ω : x −→ y ◦ α, let

U(ω, α) = {(ν̃α,βω, β)|β ∈ U} ⊂ ΠGX(x, y).

The U(ω, α) are the open sets of a basis for a topology on ΠGX(x, y) such that
π : ΠGX(x, y) −→ π(ΠGX(x, y)) is a bundle with discrete fiber ΠXH(x, y ◦α) over
α. Indeed, if α is in the image of π, then π−1(U) is the disjoint union of the U(ω, α)
as ω ranges over the inequivalent classes of paths x −→ y ◦ α. ¤
Corollary 3.2. Maps (ω, α), (ξ, β) : x −→ y, x : G/H −→ X and y : G/K −→ X,
are homotopic if and only if there is a homotopy j : G/H× I −→ G/K from α to β
and a homotopy k : G/H × I × I −→ X from a path w : G/H × I −→ X in the path
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class ω to a path z : G/H × I −→ X in the path class ξ such that k(a, 0, t) = x(a)
and k(a, 1, t) = yj(a, t) for a ∈ G/H and t ∈ I.

Remark 3.3. Identifying homotopic maps, we obtain the homotopy category hΠGX
and a functor π : hΠGX −→ hOG. By the corollary, hΠGX is tom Dieck’s “discrete
fundamental groupoid” [10, 10.9]. When G is finite, there is no distinction. Much
of our theory can be carried out in terms of homotopy categories, that being the
approach taken in the original version (circa 1989) of this work. However, use of
ΠGX turns out to be preferable since it gives a closer relationship between ΠGX
and the ΠXH and allows a more natural variant of representation theory.

So far, G could have been any (locally simply connected) topological group.
However, since G is a compact Lie group, we can give an explicit description of the
quotient functor ΠGX −→ hΠGX. This depends on the following description of
homotopies in OG [25, 1.1].

Lemma 3.4. Let j : α −→ β be a G-homotopy between G-maps G/H −→ G/K.
Then j is the composite of α with a homotopy c : G/H × I −→ G/H such that
c(eH, t) = c(t)H, where c(0) = e and the c(t) specify a path in the identity compo-
nent of the centralizer CGH of H in G. In particular β = α◦ c(1) : G/H −→ G/K.

For a path c in CGH and a path w in XH , we obtain a path c · w in XH by
setting (c ·w)(s) = c(s)w(s). If ω is the path class of w, we write c · ω for the path
class of c ·w. Combining the notations and hypotheses of Corollary 3.2 and Lemma
3.4, we obtain the following description of homotopies in ΠGX.

Proposition 3.5. Consider objects x : G/H −→ X and y : G/K −→ X of ΠGX.
Let (k, j) give a homotopy between maps (ω, α), (ξ, β) : x −→ y in ΠGX, where j =
α◦c and thus β = α◦c(1). Then (ω, α) is homotopic to (c ·ω, α◦c(1)) (independent
of ξ), and (c · ω, β) is equal to (ξ, β) in ΠGX (independent of the homotopy j).
Therefore hΠGX(x, y) is the quotient of ΠGX(x, y) obtained by identifying (ω, α)
with (c · ω, α ◦ c(1)) for all paths c in CGH such that c(0) = e.

Proof. Define h = h(w, c) : I×I −→ XH by h(s, t) = c(st)w(s), where w represents
ω. Then h : w ' c · w, h(0, t) = w(0), and h(1, t) = c(t)w(1). Interpreting in terms
of equivariant maps on orbits, this means that (h, j) gives a homotopy (ω, α) '
(c · ω, β). Regarding k as a map I × I −→ XH , define a new map ` : I × I −→ XH

by `(s, t) = c(s)c(st)−1k(s, t). Then ` is a homotopy rel endpoints between c · w
and a representative z of ξ. ¤
Remark 3.6. The functor π : hΠGX −→ hOG has properties similar to but less
convenient than those of Remarks 1.4. The fiber (hΠGX)G/H is a quotient of
ΠXH , there is a noncanonical solution x and (ω, α) to the “source lifting” question
in Remarks 1.4(ii), and there is a non-unique solution (ω, α) to the “divisibility”
question in Remarks 1.4(iii).

4. The topologized category of G-vector bundles over orbits

We have a topologization of the category VG that is precisely analogous to the
topologization of ΠGX in Proposition 3.1. We work with VG for simplicity of
notation, but it will be the topological disjoint union of the VG(n). To emphasize
the analogy with ΠGX, we write ω or (ω, α) for a morphism p −→ q over α, so that
ω is an equivalence class of G-bundle maps α̃ over α.
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Proposition 4.1. The category VG is a topological category such that, for n-plane
G-bundles p : D −→ G/H and q : E −→ G/K,

π : VG(p, q) −→ OG(G/H, G/K)

is a bundle with discrete fibers.

Proof. As in the proof of Proposition 3.1, consider a simply connected open neigh-
borhood U of a point α ∈ G/KH and the path classes να,β of paths vα,β connecting
α to points β in U . Let α̃ be a G-bundle map over α. Applying the G-bundle CHP,
we obtain a G-bundle homotopy ṽα,β(α̃) : D× I −→ E of α̃ that covers vα,β . Write
β̃α,β(α̃) : p −→ q for the G-bundle map over β obtained at the end of the homo-
topy. Further application of the G-bundle CHP shows that the equivalence class of
β̃α,β(α̃) depends only on the equivalence class ω of α̃ and the path class να,β . We
write ζα,β(ω) for the equivalence class of β̃α,β(α̃), and we define

U(ω, α) = {ζα,β(ω)|β ∈ U} ⊂ VG(p, q).

The U(ω, α) are the open sets of a basis for a topology on VG(p, q), such that
π : VG(p, q) −→ π(VG(p, q)) is a bundle with discrete fibers. Indeed, if α is in the
image of π, then π−1(U) is the disjoint union of the sets U(ω, α) as ω ranges over
the equivalence classes of bundle maps p −→ q over α. ¤
Remark 4.2. We have a quotient category hVG obtained by identifying bundle maps
p −→ q over α and β if they are bundle homotopic over a homotopy α ' β. If G is
finite, then VG = hVG. Passage to base spaces gives a functor π : hVG −→ hOG.

The precise relationship between VG and hVG is analogous to that between
ΠGX and hΠGX described in Proposition 3.5. We see this by extending the last
sentence of Lemma 2.3 to allow for homotopies on the base space level. Consider
a path c in CGH and a bundle map α̃ : G ×H V −→ G ×K W over α specified
by α̃(g, v) = (gg0, τ0(v)), where α(eH) = g0K and τ0 : V −→ W is an H-linear
isometry. We obtain a bundle homotopy

(4.3) c · α̃ : (G×H V )× I −→ G×K W

by setting (c · α̃)(g, v, t) = (gc(t)g0, τ0(v)). If ω denotes the equivalence class of α̃,
we let c(1) ·ω denote the equivalence class of the map over β given by setting t = 1.

Proposition 4.4. Let p : G ×H V −→ G/H and q : G ×K W −→ G/K be G-
bundles. Let (j̃, j) give a homotopy between maps (ω, α), (ξ, β) : p −→ q in VG,
where j = α ◦ c. Then ω is homotopic to c(1) · ω (independent of ξ) and c(1) · ω
is equal to ξ in VG(p, q) (independent of the homotopy j). Therefore hVG(p, q) is
the quotient of VG(p, q) obtained by identifying (ω, α) with (c(1) ·ω, α ◦ c(1)) for all
paths c in CGH such that c(0) = e.

Proof. The bundle homotopy (4.3) gives ω ' c(1)·ω. We must show that c(1)·ω = ξ.
We are given a bundle homotopy j̃ : (G ×H V ) × I −→ G ×K W over j from α̃ to
β̃, where α̃ and β̃ are in the homotopy classes ω and ξ. We must define a bundle
homotopy k : (G ×H V ) × I −→ G ×K W over the constant homotopy at β from
c(1) · α̃ to β̃. Observe that the H-action on W defined by hw = g−1

0 c(t)−1hc(t)g0

is independent of t. We may write j̃(g, v, t) = (gc(t)g0, τt(v)), where the τt specify
a path in the space of H-linear isometries V −→ W . We define

k(g, v, t) = (gc(1)g0, τt(v)). ¤
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We have a perhaps more natural alternative definition of orientability. We define
it, but we then show that it agrees with the definition already given.

Remark 4.5. Let p : E −→ B be a G-bundle. Since the full strength of the G-bundle
CHP allows us to vary maps on base spaces by homotopies, Proposition 2.7 remains
valid if we replace the categories ΠGB and VG over OG with the categories hΠGB
and hVG over hOG. Thus we have a functor p∗ : hΠGB −→ hVG over hOG.

Definition 4.6. Thinking in terms of p∗ : hΠGB −→ hVG, we say that a G-bundle
p is h-orientable if p∗(ω, α) = p∗(ζ, β) for every pair of morphisms (ω, α) and (ξ, β)
of hΠGB with the same source and target and the same image in hOG.

Proposition 4.7. A G-bundle p is orientable if and only if it is h-orientable.

Proof. The construction of both functors p∗ is by use of the G-bundle CHP, starting
from homotopies on the base space level. We see that p is orientable if it is h-
orientable by starting with constant homotopies. Conversely, suppose that p is
orientable. Then Proposition 3.5 implies that p is h-orientable. Indeed, with the
notation there, the fact that p∗ in Remark 4.5 is well-defined implies that p∗(ω, α) =
p∗(α◦c(1), c·ω) in hV G. This can also be seen by direct verification using an evident
cover of the homotopy h used in the proof of Proposition 3.5. ¤

There is thus no a priori reason to prefer orientability to h-orientability. However,
as we mentioned in Remark 3.3, we prefer to use ΠGB rather than hΠGB. In
particular, we want the uniqueness specified in Definition 5.1(iv) below, and this
would fail for hΠGB.

Part II. Categorical representation theory and orientations

5. Bundles of Groupoids

We abstract the properties of the equivariant fundamental groupoid to obtain the
notion of a bundle of groupoids. We fix a topological category B, which the reader
should think of as OG. We assume that B is small, its morphism spaces are locally
path connected, and every endomorphism of an object of B is an isomorphism. We
call such a category a base category. If G is finite, we give all categories in sight
the discrete topology. It is helpful to think in terms of 2-categories [19, XII§2],
which have objects (the “0-cells”), morphisms between objects (the “1-cells”), and
morphisms between morphisms or “homotopies” (the “2-cells”).

Definition 5.1. A bundle of groupoids over B, or a groupoid over B for short, is a
small topological category E together with a continuous functor π : E −→ B that
satisfy the following properties.

(i) Each map π : E (x, y) −→ B(π(x), π(y)) is a fiber bundle with discrete fibers
(possibly empty and varying over different components of the target).

(ii) For each object b of B, the fiber Eb (the subcategory of objects and mor-
phisms of E that map to b and its identity) is a groupoid (possibly empty).

(iii) (Source Lifting) For each object y of E and morphism α : a −→ π(y) of B,
there is a morphism ω : x −→ y of E such that π(x) = a and π(ω) = α.

(iv) (Divisibility) For objects x, y, z and morphisms ν : x −→ z, µ : y −→ z of
E and a morphism α : π(x) −→ π(y) of B such that π(µ)α = π(ν), there
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is a unique morphism ω : x −→ y of E such that π(ω) = α and µ ◦ ω = ν:

x
ω //____

ν
¾¾6

66
66

66
y

µ
¥¥©©

©©
©©

z

π // π(x) α //

π(ν) ÀÀ:
::

::
::

π(y)

π(µ)¢¢¥¥
¥¥

¥¥
¥

π(z)

Moreover, ω varies continuously with the data. The existence, uniqueness,
and continuity are encoded by requiring the following diagram to be a
pullback:

E (y, z)× E (x, y) ◦ //

id×π

²²

E (x, z)

π

²²
E (y, z)×B(π(x), π(y))◦(π×id)

// B(π(x), π(z)).

We write π generically for the projections of groupoids over B, and we often write
E for π : E −→ B. The groupoids over B are the 0-cells of a 2-category. The
1-cells are the continuous functors F : E −→ F such that the following diagram
commutes:

E
F //

π
¿¿9

99
99

99
F

π
¢¢¥¥

¥¥
¥¥

¥

B.

We refer to these as functors over B. The 2-cells η : F −→ F ′ are the natural
transformations η : F −→ F ′ such that π(η(x)) = idπ(x) for all objects x of E . Since
η(x) is then a morphism of the groupoid Fπ(x), η must be a natural isomorphism.
We refer to these as isomorphisms over B. Let B(E , F ) denote the groupoid
whose objects are the functors E −→ F over B and whose morphisms are the
isomorphisms over B. Two groupoids E and F over B are equivalent if there are
functors F : E −→ F and F−1 : F −→ E over B whose composites are isomorphic
over B to the respective identity functors; E and F are isomorphic if there are
functors F and F−1 over B whose composites are equal to the respective identity
functors.

Condition (ii) of the definition is redundant, being implied by unique divisibility
(see Remark 6.3 below). It is stated for emphasis. If we ignore the topology,
then a groupoid over B is exactly a “catégorie fibrée en groupoides” over B, as
defined by Grothendieck [15, pp. 165–166]; see also [8, p. 96]. Nevertheless, what
we have defined is not some kind of stack. It must be kept in mind that the
convenient abbreviation “groupoid E over B” is an abuse of language, since E is
not a groupoid. Remarks 1.4 and 2.5, Lemma 1.2, and Propositions 2.7, 3.1, and
4.1 are summarized in the following motivating examples.

Proposition 5.2. For a G-space X, π : ΠGX −→ OG is a groupoid over OG. For
a G-map f : X −→ Y , f∗ : ΠGX −→ ΠGY is a functor over OG. A G-homotopy
h : f ' f ′ induces an isomorphism h∗ : f∗ −→ f ′∗ over OG.

Proposition 5.3. The functor π : VG(n) −→ OG is a groupoid over OG. For a
G-bundle p : E −→ B, p∗ : ΠGB −→ VG is a functor over OG. For a G-bundle
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map (f̃ , f) : p −→ q, f̃∗ : p∗ −→ q∗ ◦ f∗ is an isomorphism over OG. The following
diagram commutes for a G-bundle homotopy (h̃, h) : (f̃ , f) ' (f̃ ′, f ′):

p∗

f̃∗

||yy
yy

yy
yy

y
f̃ ′∗

""FF
FF

FF
FF

F

q∗ ◦ f∗
q∗◦h∗

// q∗ ◦ f ′∗.

Divisibility implies the following result about the bundles of morphisms of π.
For an object x of E , let Aut(x) denote the (discrete) group of self-maps of x in
the fiber Eπ(x).

Proposition 5.4. The map E (x, y) −→ B(π(x), π(y)) is a principal Aut(x)-bundle
onto its image. A map ω : x −→ y in E determines a restriction homomorphism
r : Aut(y) −→ Aut(x) characterized by ν ◦ ω = ω ◦ r(ν) for ν ∈ Aut(y).

Proof. The pullback diagram given in (iv) restricts to the pullback diagram

E (x, y)×Aut(x) ◦ //

p

²²

E (x, y)

π

²²
E (x, y)

π
// B(π(x), π(y)),

where p is projection. This implies that Aut(x) acts freely and transitively on each
nonempty fiber of the bundle π : E (x, y) −→ B(π(x), π(y)). The second statement
is immediate from divisibility. ¤

6. Skeletal, faithful, and discrete bundles of groupoids

The following restricted kinds of bundles of groupoids play a major role in the
theory. Recall that a category is skeletal if each of its isomorphism classes of objects
consists of a single object and is discrete if all of its maps are identity maps. Recall
that a functor is faithful if it maps morphism sets injectively.

Definition 6.1. A groupoid π : E −→ B over B is skeletal or discrete if each
fiber Eb is skeletal or discrete; it is faithful if the functor π is faithful, in which case
π : E (x, y) −→ B(π(x), π(y)) is an inclusion of a union of path components for each
pair of objects x and y of E .

Warning 6.2. Observe that a discrete category can admit only the discrete topology
on its morphism sets and that the category E of a discrete groupoid over B need
not be discrete in either the categorical or the topological sense. Henceforward,
the word “discrete” will be used only in the sense of categories or of bundles of
groupoids; the context will make clear which is intended.

Observe that the morphism space E (x, y) is a subspace of B(π(x), π(y)) when E
is faithful. For this reason, we need not pay much attention to the topology when
studying faithful groupoids over B. The following basic observations are easily
verified; they will be used heavily.

Remarks 6.3. Let π : E −→ B be a groupoid over B.
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(i) If E is skeletal, then divisibility implies that the object x asserted to exist
in the source lifting property is unique. If E is both skeletal and faithful,
then the morphism asserted to exist in the source lifting property is also
unique.

(ii) The fact that E (x, y) −→ B(π(x), π(y)) is a principal Aut(x)-bundle im-
plies that π is faithful if and only if every automorphism of every object in
every fiber Eb is an identity map.

(iii) If ω : x −→ y is a morphism of E such that π(ω) is an isomorphism, then
ω is an isomorphism, as we see by an application of divisibility to the
equality π(ω)π(ω)−1 = id. Since every endomorphism of any object of
B is an isomorphism, every endomorphism of any object of E is also an
isomorphism.

(iv) We can construct a faithful groupoid E /π over B with the same objects
as E , but with (E /π)(x, y) = Im(E (x, y) −→ B(π(x), π(y))). The quotient
functor E −→ E /π over B is the universal functor from E into a faithful
groupoid over B.

(v) We can construct a skeletal subgroupoid E ′ ⊂ E over B by choosing a
skeleton of each fiber Eb and taking the full subcategory of E whose objects
are in the chosen skeleta of fibers. The inclusion E ′ −→ E is an equivalence
of groupoids over B whose left inverse is a retraction over B. We call E ′ a
skeleton of E .

(vi) By (iii), the passage from E to E /π creates no new isomorphisms, so that
we can make the same choices of objects for E and for E /π when forming
skeleta. Then E ′/π = (E /π)′. This gives a canonical way of passing from
any groupoid over B to an associated discrete groupoid over B.

Discrete groupoids over B are central to our work. It is clear from the definitions
that if π : E −→ B is skeletal and faithful, then it is discrete. Remark 6.3(ii) implies
the converse.

Lemma 6.4. π : E −→ B is discrete if and only if it is skeletal and faithful.

An obvious but useful observation is that the 2-category structure trivializes for
maps into discrete groupoids over B.

Lemma 6.5. Let F be discrete. If F , F ′ : E −→ F are functors over B and
η : F −→ F ′ is an isomorphism over B, then F = F ′ and η is the identity.

In fact, discrete groupoids over B are actually quite simple and familiar objects.

Lemma 6.6. The category of discrete groupoids over B and functors over B is
equivalent to the category of continuous (= locally constant) set-valued contravariant
functors on B and their natural isomorphisms.

Proof. Given π : E −→ B, define a functor Γ: B −→ Sets by letting Γ(b) be the
set of objects of the fiber Eb. For a morphism α : a → b of B and an object y of
Eb, let Γ(α)(y) be the unique object x of Ea that is the source of a map x −→ y
covering α. Remark 6.3(i) implies that the inverse image in B(a, b) of a function
f = Γ(α) is the union of components π(E (f(y), y)) and is thus open and closed.
Conversely, given Γ, define π : E −→ B as follows. The objects of E are the pairs
(y, b) where b is an object of B and y ∈ Γ(b). A morphism (x, a) −→ (y, b) is a
morphism α : a −→ b of B such that Γ(α)(y) = x. The functor π projects onto
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the second coordinate and restricts to an injection of E ((x, a), (y, b)) onto an open
and closed subset of B(a, b); we give E ((x, a), (y, b)) the subspace topology. These
constructions specify functors that give the claimed equivalence of categories. ¤

Although reassuring, this result is not useful to us because our theory focuses
on a comparison between general groupoids over B and discrete ones. The germ
of the comparison is the fact that the categories B/b of objects over b give discrete
groupoids over B whose represented functors in the 2-category of groupoids over
B detect the fiber groupoids of arbitrary groupoids over B. We use the following
result to show this.

Lemma 6.7. Let π : E −→ B be a groupoid over B, let b be an object of B, and
let y be an object of E such that π(y) = b. Consider the commutative diagram

E /y
λy //

πy

²²

E

π

²²
B/b

λb

// B,

where λb and λy are the canonical functors and πy is induced by π. Then B/b is a
discrete groupoid over B, E /y is a groupoid over B, and λy and πy are maps over
B. The functor πy has a section σ. If E is discrete, then σ is unique and πy is an
isomorphism of categories with inverse σ.

Proof. The fiber (B/b)a is the discrete category whose objects are the maps a −→ b
in B, so that λb is discrete. The rest of the first statement is straightforward. By
the source lifting property, for each map α : a −→ b of B, there is an object xα of
E and a map σ(α) : xα −→ y such that π(σ(α)) = α. We may choose σ(idb) = idy.
By the divisibility property, for maps α′ : a′ −→ b and λ : a −→ a′ in B such that
α′ ◦λ = α, there is a unique map σ(λ) : xα −→ xα′ in E such that π(σ(λ)) = λ and
σ(α′)◦σ(λ) = σ(α). The pullback diagram in the divisibility property specializes to
show that the resulting function σ : B/b(α, α′) −→ E /y(σ(α), σ(α′)) is continuous,
and the uniqueness of divisibility implies that σ is a functor. This gives the section
σ, and it is the inverse isomorphism to πy if π is discrete by Remark 6.3(i). ¤

Proposition 6.8. Let E be a groupoid over B and let ε : B(B/b,E ) −→ Eb be
the functor that sends functors F and isomorphisms η : F −→ F ′ over B to their
evaluations on the object idb of B/b. Then ε is an equivalence of groupoids. If E
is discrete, then, for an object y of Eb, there is a unique functor ỹ : B/b −→ E over
B such that ỹ(idb) = y, and therefore ε is an isomorphism of groupoids.

Proof. Observe that a map α : a −→ b of B gives both an object α of B/b and a
morphism α : α −→ idb of B/b. The functor ε is full and faithful by the divisibility
property of π : E −→ B. Indeed, for a morphism ω : F (idb) −→ F ′(idb) of Eb, let
η(α) : F (α) −→ F ′(α) be the unique morphism of Ea such that F ′(α) ◦ η(α) =
ω ◦F (α). The η(α) give the unique morphism η : F −→ F ′ of B(B/b,E ) such that
ε(η) = ω. By [19, p. 93], to prove that ε is an equivalence of categories, it suffices
to show that for each object y of Eb, there is an object ỹ : B/b −→ E of B(B/b, E )
such that ỹ(idb) = y, and we can take ỹ = λy ◦ σ for a section σ of πy. If E is
discrete, then ỹ = λy ◦ π−1

y is unique. ¤
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7. Representations and orientations of bundles of groupoids

We think of the π : VG(n) −→ OG as target groupoids over OG for a kind of
representation theory, and we note that we have chosen these groupoids over OG

to be skeletal. It is convenient to change our point of view on bundles of groupoids
over B by focusing attention on a fixed target R for maps of groupoids over B.
We adopt the following language. Remember that we write π generically for the
projections of groupoids over B.

Definition 7.1. Fix a skeletal groupoid R over B and consider groupoids E and
F over B. We define “representations”, “maps”, and “homotopies” that give the
2-category of representations in R.

(i) A representation R of E in R is a functor R : E −→ R over B. We denote
a representation as a pair (E , R) when R is understood.

(ii) A map from a representation (E , R) to a representation (F , S) is a pair
(F, φ), where F : E −→ F is a functor over B and φ : S ◦ F −→ R is an
isomorphism over B:

E
F //

π

ºº/
//

//
//

//
//

//
//

R

ÂÂ?
??

??
??

? F
S

~~}}
}}

}}
}}

π

¨¨±±
±±
±±
±±
±±
±±
±±
±

R

π

²²

φ : S ◦ F // R.

B

The composite of (F, φ) and (K,κ) : (F , S) −→ (T , T ) is (K◦F, φ◦(κ◦F )).
We say that (F, φ) is a strict map and write (F, φ) = F if φ is given by
identity maps, so that S ◦ F = R.

(iii) A homotopy between maps of representations (F, φ) and (F ′, φ′) from (E , R)
to (F , S) is an isomorphism η : F −→ F ′ over B such that the following
diagram commutes:

S ◦ F
S◦η //

φ ""FFFFFFFF S ◦ F ′

φ′{{wwwwwwww

R.

If F and F ′ are strict maps, this means that S ◦ η = id : R −→ R.
(iv) We say that representations (E , R) and (F , S) are equivalent if there are

maps (F, φ) : (E , R) −→ (F , S) and (F−1, ψ) : (F , S) −→ (E , R) whose
composites are homotopic to the respective identity maps; (F, φ) is then
called an equivalence. We say that (E , R) and (F , S) are isomorphic if
there are maps (F, φ) and (F−1, φ−1) whose composites are equal to the
respective identity maps.

(v) A representation (E , R) is skeletal, faithful, or discrete if the groupoid E
over B is skeletal, faithful, or discrete.

(vi) A representation (E , R) is orientable if R(ω) = R(ω′) for any pair of maps
ω, ω′ : x −→ y in E such that π(ω) = π(ω′); equivalently, by Remark
6.3(iv), R must factor through the faithful quotient E /π.
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The following observation is easily verified. The analogue for skeletal represen-
tations is not valid.

Lemma 7.2. If one of two equivalent representations is either faithful or discrete,
then so is the other.

Orientations will be maps into certain discrete representations, and we have the
following immediate implication of Lemma 6.5.

Lemma 7.3. Let η : (F, φ) −→ (F ′, φ′) be a homotopy between maps of represen-
tations (E , R) −→ (F , S), where (F , S) is discrete. Then (F, φ) = (F ′, φ′) and η
is given by identity maps. Thus equivalent discrete representations are isomorphic.

We shall define an orientation of an orientable representation (E , R) to be a map
of representations from it to the “universal orientable representation” (S R, S).
We shall construct (S R, S) in the following two sections. We give some intuition
here. Since our interest now is in orientable representations and an orientable
representation of E factors through its faithful quotient E /π, we focus on faithful
representations. Since any bundle of groupoids over B is equivalent to a skeletal
bundle of groupoids (see Remarks 6.3(v) and (vi)), we may as well focus on discrete
(= skeletal and faithful) representations. We seek a discrete representation that has
as many morphisms as possible, to increase the chance that other representations
will map into it. We shall call such a representation saturated and will give a precise
definition in the next section. This will allow the following definition and theorem.

Definition 7.4. Let R be a skeletal groupoid over B. A universal orientable
representation (S R, S) in R is a saturated representation such that, for every
faithful representation (E , R), there is a map (F, φ) : (E , R) −→ (S R, S).

We emphasize that this is not a universal property: (F, φ) is not unique.

Theorem 7.5. Any skeletal groupoid R over B has a universal orientable repre-
sentation (S R, S), and (S R, S) is unique up to isomorphism of representations.

We shall prove the theorem in §9, where we give several characterizations of the
representation (S R, S). Of course, if R itself is faithful and thus discrete, then
(S R, S) = (R, Id) and the theory trivializes. We think of S : S R −→ R as the
best possible approximation of R by a discrete groupoid over B.

Definition 7.6. Let (E , R) be a representation in R. An orientation of (E , R) is
a map of representations (F, φ) : (E , R) −→ (S R, S).

Since S R is discrete and since any faithful representation maps into it, the
following reassuring result is immediate from the definition.

Corollary 7.7. A representation is orientable if and only if it has an orientation.

We obtain the definition of an orientation of a G-bundle by specializing to the
case R = VG(n), starting with the following reinterpretation of Proposition 5.3.

Proposition 7.8. For an n-plane G-bundle p : E −→ B, (ΠGB, p∗) is a represen-
tation in VG(n). For a G-bundle map (f̃ , f) : p −→ q, where q : E′ −→ B′,

(f∗, f̃∗) : (ΠGB, p∗) −→ (ΠGB′, q∗)
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is a map of representations. For a G-bundle homotopy (h̃, h) : (f̃ , f) ' (f̃ ′, f ′)
between G-bundle maps p −→ q,

h∗ : (f∗, f̃∗) −→ (f ′∗, f̃
′
∗)

is a homotopy between maps of representations.

This result suggests that there is a substantial analogy between the homotopy
theory of representations and topological homotopy theory, and we shall say more
about that point of view in §15.

Definition 7.9. Let p : E −→ B be an n-plane G-bundle. An orientation of p
is an orientation of the representation (ΠGB, p∗) of ΠGB in VG(n). That is, an
orientation of p is a map of representations

(F, φ) : (ΠGB, p∗) −→ (S VG(n), S).

If (F ′, φ′) is an orientation of an n-plane bundle q : E′ −→ B′, then a G-bundle
map (f̃ , f) : p −→ q is orientation preserving if (F, φ) = (F ′, φ′) ◦ (f∗, f̃∗); we then
say that (F, φ) is the pullback of (F ′, φ′) along f and denote it by f∗(F ′, φ′).

In view of Lemma 7.3, our notion of an orientation is homotopy invariant.

Lemma 7.10. If (h̃, h) : (f̃ , f) ' (f̃ ′, f ′) is a G-bundle homotopy between maps
p −→ q of G-bundles and (F ′, φ′) is an orientation of q, then f∗(F ′, φ′) = f ′∗(F ′, φ′).

Proof. A little diagram chase shows that F ′ ◦ h∗ is a homotopy from f∗(F ′, φ′) to
f ′∗(F ′, φ′). Since its target is discrete, it must be the identity isomorphism. ¤

8. Saturated and supersaturated representations

We fix a skeletal groupoid R over B throughout this section and the next.
Representations will mean representations in R. We give some simple definitions
and observations about groupoids over B before defining saturated representations.

Definitions 8.1. Let F : E −→ F be a functor over B.
(i) F is an injection or surjection if it is injective or surjective on both objects

and morphisms. An injection is an inclusion if it is surjective on morphisms
between pairs of objects, so that its image is a full subcategory of F .
A retraction of groupoids over B is a functor over B left inverse to an
inclusion.

(ii) A map (F, φ) : (E , R) −→ (F , S) of representations is an injection, inclu-
sion, surjection, or retraction if the underlying functor F : E −→ F is an
injection, inclusion, surjection, or retraction of groupoids over B.

(iii) An injection is strict if (F, φ) is a strict map, so that φ = id and S ◦F = R.
A strict inclusion F : (E , R) −→ (F , S) specifies a subrepresentation; that
is, F is the inclusion of a full subcategory E of F such that S|E = R.

Lemma 8.2. Let F : E −→ F be a functor over B.
(i) If E is faithful, then F is a faithful functor.
(ii) If E is skeletal and F : E (x, y) −→ F (F (x), F (y)) is a surjection for all

objects x and y of E , then F is injective on objects.
(iii) If F is faithful, then any morphism ω′ : F (x) −→ F (y) in F that is not in

the image of F has the form ω′ = F (ω)◦ξ, where ω : z −→ y is a morphism
in E , F (z) 6= F (x), and ξ : F (x) −→ F (z) is an isomorphism in F such
that π(ξ) is an identity map in B.
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(iv) If F is discrete, then the image of F is a full subcategory.

Proof. Since π ◦ F = π is faithful if E is faithful, (i) is immediate. For (ii), if
F (x) = F (y), then E (x, y) contains a map covering the identity map of π(x). This
implies that x is isomorphic to y and hence, since E is skeletal, that x = y. For
(iii), source lifting gives a map ω : z −→ y in E such that π(ω) = π(ω′). Here
F (z) 6= F (x) since π(F (ω)) = π(ω′), F (ω) 6= ω′, and F is faithful. By divisibility,
there is a map ξ : F (x) −→ F (z) such that F (ω)◦ξ = ω′ and π(ξ) is an identity map,
so that ξ must be an isomorphism. Part (iv) follows immediately from (iii). ¤

Definitions 8.3. We define saturated and supersaturated representations.
(i) Fix a set O. Define a partial ordering on the collection of faithful represen-

tations (E , R) such that E has object set O by letting (E , R) ≤ (E ′, R′) if
there is a strict injection F : (E , R) −→ (E ′, R′) such that F is the identity
on object sets. A faithful representation with object set O is supersaturated
if it is maximal with respect to this partial ordering.

(ii) A saturated representation is a discrete supersaturated representation.
(iii) A saturation of a faithful representation (E , R) is a surjection (F, φ) from

(E , R) to a saturated representation (S , S).
(iv) Two saturations (F, φ) : (E , R) −→ (S , S) and (F ′, φ′) : (E , R) −→ (S ′, S′)

are isomorphic if there is a map (K, κ) : (S , S) −→ (S ′, S′) of representa-
tions such that (F ′, φ′) = (K,κ) ◦ (F, φ). It follows from Proposition 8.14
below that (K, κ) is then an isomorphism of representations.

Supersaturated representations have all the maps they can hold while remain-
ing faithful; saturated representations have no redundant objects. The following
analogous definition will not be very useful to us, but it helps to clarify ideas.

Definition 8.4. We define replete and superreplete representations.
(i) A faithful representation (E , R) is superreplete if, for all objects x, y of E , ev-

ery map π(x) −→ π(y) in the image of π : R(R(x), R(y)) −→ B(π(x), π(y))
is also in the image of π : E (x, y) −→ B(π(x), π(y)). That is, every map
in B that might possibly be the image under π of a map in E is such an
image.

(ii) A replete representation is a discrete superreplete representation.
(iii) A repletion of a faithful representation (E , R) is a surjection (F, φ) from

(E , R) to a replete representation (F , S).

The following observations are immediate from the definition.

Proposition 8.5. The following statements hold.
(i) Any subrepresentation of a superreplete representation is superreplete.
(ii) A representation is superreplete if and only if it has a replete skeleton.
(iii) If one of two equivalent representations is superreplete, then so is the other.
(iv) Any superreplete representation is supersaturated.

We would prefer to work with replete rather than saturated representations, but
we have not been able to prove that enough of them exist for a workable theory.
One might guess that the converse of (iv) holds. We state this guess formally, as a
guide to future work, although we do not believe that it is true in general. We do
think that it may hold under restrictive hypotheses on B and R.
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Conjecture 8.6. Any supersaturated representation is superreplete.

We give some idea of the starting point towards a verification in special cases.

Remark 8.7. Suppose that, for all objects x, y of R, either R(x, y) is empty or
π : R(x, y) −→ B(π(x), π(y)) is a surjection. By Lemma 2.3, this holds when R =
VG(n) and B = OG for an Abelian compact Lie group G. Then a representation
(F , S) is superreplete if and only if, for all objects x, y in F , either F (x, y) is
empty or π : F (x, y) −→ B(π(x), π(y)) is a bijection. This condition on F is
independent of R. It implies that if (F, φ) : (E , R) −→ (F , S) is a repletion,
then, up to isomorphism, F must be the quotient category of E whose objects and
morphisms are the equivalence classes of objects and morphisms of E , where objects
x and x′ are equivalent if π(x) = π(x′) and x ∼= x′ and morphisms ω : x −→ y
and ω′ : x′ −→ y′ are equivalent if x is equivalent to x′, y is equivalent to y′, and
π(ω) = π(ω′). The functor F : E −→ F must send objects and morphisms to
their equivalence classes, and π : F −→ B must be given by π(F (x)) = π(x) and
π(F (ω)) = π(ω). These specifications give a well-defined discrete groupoid F over
B and map F : E −→ F of groupoids over B; F will satisfy the required bijectivity
of π on non-empty morphism sets if, for every pair of morphisms α, β : a −→ b in
B, there is a morphism γ : a −→ a such that α ◦ γ = β. For example, this holds
for OG if G is Abelian. However, further conditions are needed to ensure that R
factors up to isomorphism through a functor S : F −→ R.

Saturated representations give the closest possible approximations to replete
representations that can be constructed in general. The idea of their construction
is to adjoin isomorphisms over identity maps in B, as suggested by Lemma 8.2(iii),
to expand any faithful representation to a supersaturated one. Unless Conjecture
8.6 holds, we cannot expect to expand all the way to a superreplete representation.
We then take a skeleton to obtain a saturated representation. This makes sense
in view of the following crucial result, which is the analogue for supersaturated
representations of Proposition 8.5(i); it will imply the analogues of (ii) and (iii).

Theorem 8.8. Any subrepresentation (E , R) of a supersaturated representation
(S , S) is supersaturated.

Proof. Suppose for a contradiction that (E , R) < (E ′, R′). Then, by Lemma 8.2(iii),
E ′ is obtained from E by adjoining isomorphisms over identity maps of B. Let S ′

be the category obtained by adjoining these isomorphisms to S . Formally, the
category S ′ is the pushout of the inclusion E −→ S and the injection E −→ E ′:

E //

²²

E ′

²²
S // S ′.

The objects of S ′ are the objects of S , and the morphism sets are constructed in
a manner similar to the construction of amalgamated free products of groups. We
do not assume familiarity with pushouts of categories such as this, and we will give
an explicit construction of S ′ below. By the pushout property, there is a unique
functor π : S ′ −→ B that restricts to the functors π on S and E ′ and a unique
functor S′ : S ′ −→ R over B that restricts to S on S and to R′ on E ′. We will
show that S ′ is a faithful groupoid over B. This will contradict the maximality of
(S , S) and complete the proof.
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We claim first that, assuming S ′ exists, any morphism x −→ y in it must admit
a factorization of the form ωψξ, where ξ is an isomorphism in S over an identity
map in B, ψ is one of the adjoined isomorphisms of E ′ over identity maps of B,
and ω is a morphism in S . For any composite ψωψ′ in which ψ and ψ′ are in
E ′ and ω is in S , the source and target of ω are in E and therefore, since E is a
full subcategory, ω is in E . Thus the composite is in E ′. This implies that we can
reduce the length of any word in morphisms of S and E ′ to the form ω′ψ′ν′ with
ω′ and ν′ in S and ψ′ in E ′. As in the proof of Lemma 8.2(iii), we can use the
source lifting property in E and the divisibility property in S to write ν′ = µξ,
where µ is a map in E and ξ is an isomorphism in S over an identity map. By
Lemma 8.2(iii), we can write ψ′µ = ω′′ψ, where ω′′ is a map in E and ψ is one of
the adjoined isomorphisms. With ω = ω′ω′′, this gives the claimed factorization.

We construct S ′ by letting the morphisms x −→ y be the equivalence classes of
formal composites

x
ξ−→ s

ψ−→ t
ω−→ y

as above, where ωψξ is equivalent to ω′ψ′ξ′ if π(ω) = π(ω′). This condition is
equivalent to the existence of unique isomorphisms σ and τ in E that make the
triangles commute in S and the rectangle commute in E ′ in the following diagram:

s
ψ //

σ

²²

t
ω

ÂÂ?
??

??
??

?

τ

²²

x

ξ
??ÄÄÄÄÄÄÄÄ

ξ′ ÂÂ?
??

??
??

? y

s′
ψ′

// t′
ω′

??¡¡¡¡¡¡¡

Indeed, if σ and τ make the diagram commute, they must be isomorphisms over
identity maps of B since the ξ’s and ψ’s are isomorphisms over identity maps of B,
and then π(ω) must equal π(ω′). Conversely, if π(ω) = π(ω′), then by divisibility
in S there is a unique map τ making the right triangle commute. Since E is a full
subcategory of S , τ is in E . By divisibility in E ′, there is then a unique map σ
in E ′ making the middle square commute. Then π(σ) is an identity map by the
diagram, and the left triangle commutes in E ′ since E ′ is faithful. But then σ is in
E . Using the proof of the first claim above, it is an exercise to show that two such
formal composites x −→ y and y −→ z can be spliced together to give a formal
composite x −→ z, well-defined up to equivalence. This makes S ′ into a category
with E and S as subcategories.

The universal property required of a pushout is immediate from the diagram-
matic description of equivalence between morphisms. For example, π : S ′ −→ B
can and must be defined by π(ωψξ) = π(ω), and it is immediate from the spec-
ification of equivalence that π is a faithful functor. Similarly, S′ : S ′ −→ R can
and must be defined by S′(ωψξ) = S(ω)R′(ψ)S(ξ). Since the objects of S ′ are
those of S , source lifting is inherited from S . To show divisibility, suppose that
µ = ωψξ : x −→ y and µ′ = ω′ψ′ξ′ : x′ −→ y are morphisms in S ′, decomposed as
usual, and suppose that π(µ) = π(µ′)β. By divisibility in S , there is a ν such that
ω′ν = ω and π(ν) = β, and then µ′ ◦ ((ξ′)−1(ψ′)−1νψξ) = µ in S ′. This completes
the proof that S ′ is a faithful groupoid over B. ¤
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Corollary 8.9. A representation is supersaturated if and only if it has a saturated
skeleton.

Proof. The theorem implies that a skeleton of a supersaturated representation is
saturated, and the converse is obvious. ¤
Corollary 8.10. If one of two equivalent representations (E , R) and (F , S) is
supersaturated, then so is the other.

Proof. If (E , R) is supersaturated, then (F , S) is faithful, by Lemma 7.2, and (E , R)
and (F , S) have equivalent and therefore isomorphic skeleta, by Lemma 7.3. Thus
a skeleton of (F , S) is saturated and (F , S) is supersaturated. ¤
Corollary 8.11. The image of any map from any representation into a satu-
rated representation is saturated. Therefore, any map from a faithful representation
(E , R) into a saturated representation factors through a saturation of (E , R).

Proof. This is now immediate in view of Lemma 8.2(iv) and the fact that a sub-
category of a skeletal category is skeletal. ¤

Now we can produce saturations of any faithful representation.

Lemma 8.12. Any faithful representation (E , R) has a saturation.

Proof. An immediate application of Zorn’s lemma shows that there exists a super-
saturated representation (E ′, R′) ≥ (E , R). A skeleton of (E ′, R′) is still supersatu-
rated, by Theorem 8.8, and is therefore saturated. The composite of the injection of
(E , R) into (E ′, R′) with a retraction of (E ′, R′) onto a skeleton is clearly surjective
on objects, hence on morphisms by Lemma 8.2(iv), so is a saturation. ¤

This is not the only way to produce a saturated representation from a faithful
one. Here is another construction.

Lemma 8.13. Any faithful representation (E , R) contains a saturated subrepresen-
tation that is maximal with respect to inclusion.

Proof. This is just a direct application of Zorn’s lemma to the set of saturated
subrepresentations, partially ordered by inclusion. This set is nonempty because
the empty representation is saturated, and it is easy to check that the union of a
chain of saturated subrepresentations is again saturated. ¤

It is interesting that neither of these two ways of producing a saturated repre-
sentation from a faithful one gives a unique result in general. In any case, we have
plenty of saturated representations. They admit the following characterization.

Proposition 8.14. Let (E , R) be a faithful representation. If every map from
(E , R) to a faithful representation is an injection, then (E , R) is saturated. If (E , R)
is saturated, then every map from (E , R) to a faithful representation is an inclusion.

Proof. We first show that if (E , R) is not saturated, then there is a map from it
to a faithful representation that is not an injection. If (E , R) is not skeletal, then
a retraction to a skeleton gives a map to a faithful representation that is not an
injection. If (E , R) is skeletal but not supersaturated, then a saturation of (E , R)
cannot be an injection since it would then be an isomorphism.

Conversely, let (E , R) be saturated, and let (F, φ) : (E , R) −→ (F , S) be a map
into a faithful representation. By Lemma 8.2(i), F is faithful. Let E ′ be the
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groupoid over B that has the same objects as E , but has morphism sets E ′(x, y) =
F (F (x), F (y)). Certainly E ′ is faithful. Extend R : E −→ R to R′ : E ′ −→ R
by letting R′ = R on objects and letting R′(ω) = φ(y)S(ω)φ−1(x) for a map
ω : F (x) −→ F (y). By the maximality of (E , R), E ′ can have no more maps than
E , hence F : E (x, y) −→ F (F (x), F (y)) must be a surjection for all x and y. By
Lemma 8.2(ii), (F, φ) is an inclusion. ¤

9. Universal orientable representations

We are nearly ready to construct the universal orientable representation. It
is not described in terms of the usual kind of universal property, but is instead
characterized by one of several different equivalent properties.

Definition 9.1. A faithful representation (E , R) is an absolute retract if every map
from (E , R) into a faithful representation has a left inverse.

If (E , R) is an absolute retract, then every map of it into a faithful representation
must be an injection, and hence, by Proposition 8.14, (E , R) must be saturated.

Definition 9.2. A representation (E , R) is said to be injective if, for any inclu-
sion (F , S) −→ (F ′, S′) of discrete representations, each map (F , S) −→ (E , R)
extends to a map (F ′, S′) −→ (E , R).

We shall construct the universal orientable representation by first constructing
a universal discrete representation that is characterized by a categorical univer-
sal property and is injective, but is not saturated. Its saturation will inherit the
injectivity and will be the representation we want.

Construction 9.3. We construct the universal discrete representation (R̃, D) in
R. Recall the freeness property of the groupoids B/b over B given in Proposition
6.8. The objects of the category R̃ are the functors F : B/b −→ R over B. Define
π : R̃ −→ B and D : R̃ −→ R on objects by π(F ) = b and D(F ) = F (idb). The
morphisms F −→ F ′, F ′ : B/b′ −→ R, of R̃ are the strict maps of representations
α̃ : B/b −→ B/b′, so that F ′◦α̃ = F . Define π on morphisms by π(α̃) = α : b −→ b′,
where α = α̃(idb). Regarding α as a map α : α −→ idb′ in B/b′, define D on
morphisms by

D(α̃) = F ′(α) : F (idb) = F ′(α) −→ F ′(idb′).
Composition in R̃ is given by composition of functors. It is easy to check that R̃
is a well-defined category, that π and D are functors, and that π = π ◦D, so that
D is a map over B. By Proposition 6.8, the functor α̃ is determined by α, and this
implies that R̃ is a discrete groupoid over B.

The name “universal discrete representation” is justified by the following result.

Proposition 9.4. Any discrete representation (E , R) in R lifts uniquely to a strict
map R̃ : E −→ R̃.

Proof. We are given R : E −→ R, and we define R̃ : E −→ R̃ as follows. Since E is
discrete over B, Proposition 6.8 shows that an object y of E with π(y) = b uniquely
determines a functor ỹ : B/b −→ E such that ỹ(idb) = y. We let R̃(y) = R ◦ ỹ. For
a morphism ω : y −→ y′ of E with π(ω) = α : b −→ b′, we let R̃(ω) = α̃ : B/b −→
B/b′, so that ỹ′α̃ = ỹ. Then R̃ is a well-defined map over B such that D ◦ R̃ = R,
and it is the only such map. ¤
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Lemma 9.5. The representation (R̃, D) is injective.

Proof. Let (I, ι) : (S , S) −→ (S ′, S′) be an inclusion of discrete representations
and let (F, φ) : (S , S) −→ (R̃, D) be a map. Thus ι : S′◦I −→ S and φ : D◦F −→ S
are isomorphisms over B. We claim that there is a representation S′′ : S ′ −→ R
such that S′′ ◦ I = D ◦ F and an isomorphism φ′ : S′′ −→ S′ over B such that
ι ◦ (φ′ ◦ I) = φ. Taking F ′ = S̃′′, this will give a map (F ′, φ′) : (S ′, S′) −→ (R̃, D)
such that (F ′, φ′) ◦ (I, ι) = (F, φ). To check the claim, note that S′′ and φ′ are
already defined on the full subcategory I(S ) of S ′. Define S′′(y) = S′(y) and let
φ′(y) be the identity map for an object y of S ′ that is not in S . For a morphism
ω : x −→ y of S ′, we can and must define S′′(ω) = φ′(y)−1 ◦ S′(ω) ◦ φ′(x). ¤

We can now construct the universal orientable representation in R.

Theorem 9.6. The following conditions on a faithful representation (S , S) in R
are equivalent. Moreover, there exists a representation (S R, S) satisfying these
conditions, it is unique up to isomorphism, and any map from it to itself is an
isomorphism. This representation is called the universal orientable representation.

(i) (S , S) is a maximal saturated subrepresentation of (R̃, D).
(ii) (S , S) is a saturation of (R̃, D).
(iii) (S , S) is a saturated retract of (R̃, D).
(iv) (S , S) is an absolute retract.
(v) (S , S) is a saturated injective representation.
(vi) (S , S) is saturated, and any faithful representation maps into it.
(vii) (S , S) is saturated, and any saturated representation maps into it.

Proof. We understand the first statement to mean that if (S , S) satisfies one of
the conditions and (S ′, S′) satisfies another, then (S , S) is isomorphic to (S ′, S′).
The proofs will show how to obtain the required isomorphisms.

(i) ⇐⇒ (ii) and (ii) ⇐⇒ (iii): By Lemma 8.13, there exists an (S , S) satisfying
(i). By Lemma 8.12, there also exists a saturation (F, φ) : (R̃, D) −→ (S ′, S′).
By Proposition 8.14, the restriction of (F, φ) to (S , S) is an inclusion. By the
injectivity of (R̃, D) and Proposition 8.14, the inclusion of (S , S) in (R̃, D) extends
to an inclusion of (S ′, S′). By maximality, the inclusion of (S , S) in (S ′, S′) is
an isomorphism. This already proves that (i) is equivalent to (ii) and that these
conditions imply (iii); (iii) implies (i) trivially.

(iii)=⇒(iv): Let (S , S) −→ (E ′, R′) be a map into a faithful representation and
let (E ′, R′) −→ (E ′′, R′′) be a retraction onto a skeleton. By Proposition 8.14,
the composite of these maps is an inclusion. By the injectivity of (R̃, D), this
inclusion extends to a map of (E ′′, R′′) into (R̃, D). Composing with a retraction
(R̃, D) −→ (S , S), we see that (S , S) is a retract of (E ′, R′).

(iv)=⇒(iii): There is a map (S , S) −→ (R̃, D) by the universal property of (R̃, D).
This map admits a retraction since (S , S) is an absolute retract.

(iii)=⇒(v): A retract of an injective representation is injective.

(v)=⇒(vi) and (vi) ⇐⇒ (vii): Any faithful representation retracts to a skeletal and
thus discrete representation. For discrete representations, condition (vi) is just the
special case of the injectivity condition (v) in which the given domain representation
is empty. Obviously (vi)=⇒(vii), and (vii)=⇒(vi) by Corollary 8.11.
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(vi)=⇒(i): By (vi) and Proposition 8.14, there is an inclusion of any given maximal
saturated subrepresentation (S ′, S′) of (R̃, D) in (S , S). By the injectivity of
(R̃, D) and Proposition 8.14, this inclusion extends to an inclusion of (S , S) in
(R̃, D). By the maximality of (S ′, S′), the first inclusion must be an isomorphism.

The argument of the last paragraph also gives the uniqueness, up to isomorphism,
of (S , S). Varying the argument by composing the initial inclusion of (S ′, S′) with
any self-map of (S , S), and noting that such a self-map is an inclusion, we see that
any self-map of (S , S) is an isomorphism. ¤

Criterion (vi) is the one on which our definition of an orientation is based. Cri-
terion (ii) is the one most useful for the actual construction of specific examples.
One implication of the theorem is that the set of self-maps of (S R, S) is a group
under composition. This is not true for a general saturated representation, as is
shown by the following example.

Example 9.7. Take B to be the “unit interval” category I . It has two objects,
0 and 1, and one non-identity morphism I : 0 −→ 1. Clearly functors π : E −→ I
are determined by the images of objects. Let R be the groupoid over I with a
single object 0̃ over 0, a single object 1̃ over 1, and morphism sets R(0̃, 0̃) = Z,
R(0̃, 1̃) = Z, and R(1̃, 1̃) = {id}. Composition is defined so that R(0̃, 0̃) = Z as a
group and R(0̃, 0̃) acts on R(0̃, 1̃) by addition.

(i) Let E be the groupoid over I with a single object x over 0, infinitely
many objects yi, i ≥ 1, over 1, and a map ωi : x −→ yi for each i as its
only non-identity maps. Define a representation R : E −→ R by sending
ωi to i ∈ R(0̃, 1̃). Clearly (E , R) is discrete and replete, hence saturated.
There is a map (F, φ) : (E , R) −→ (E , R) with F (x) = x, F (yi) = yi+1 for
each i, φ(x) = 1 : 0̃ −→ 1̃, and φ(yi) = id1̃. The map (F, φ) is not an
isomorphism.

(ii) Unusually, in this example (R̃, D) is its own saturation. Its description is
similar to that of (E , R), except that there is now an object yi for every
integer i. Its group of self-maps is Z.

Of course, there may be many different orientations (F, φ) : (E , R) −→ (S R, S)
of a given orientable representation (E , R). We have the following observations.

Proposition 9.8. Let Ω = Ω(S R, S) be the group of automorphisms of the uni-
versal orientable representation (S R, S) and let Ω(E , R) be the set of orientations
of an orientable representation (E , R). Then Ω acts on Ω(E , R) by composition.
This action has the following properties.

(i) If (E , R) is saturated, then Ω acts transitively on Ω(E , R), hence Ω(E , R)
is isomorphic as an Ω-set to Ω/Λ, where Λ is the isotropy group of any
chosen orientation of (E , R).

(ii) If (E , R) is faithful, then any orientation (E , R) −→ (S R, S) factors
through a saturation of (E , R). Therefore,

Ω(E , R) ∼=
∐

[E ′,R′]

Ω(E ′, R′)

as Ω-sets, where the union runs over one representative from each isomor-
phism class of saturations (E , R) −→ (E ′, R′) of (E , R).
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Proof. This follows from Corollary 8.11, Proposition 8.14, and the fact that (S R, S)
is an injective representation whose self-maps are all automorphisms. ¤

Our explicit examples of universal orientable representations will be replete. In
such cases, Conjecture 8.6 certainly holds. Indeed, the following result is immediate
from Propositions 8.14 and 8.5.

Proposition 9.9. If the universal orientable representation (S R, S) is replete,
then every supersaturated representation (E , R) is superreplete.

Part III. Examples of universal orientable representations

10. Cyclic groups of prime order

We here determine (S VG(n), S) explicitly for G = Z/p. We first insert the
following observation. Recall from Remark 1.3 that OG/(G/K) ∼= ΠG(G/K) when
G is finite. Also, recall Construction 9.3.

Proposition 10.1. If G is finite, then the groupoids ṼG(n) and S VG(n) over OG

have only finitely many objects and finitely many morphisms.

Proof. It suffices to consider ṼG(n). Since ṼG(n) is faithful over OG and OG is
finite, it suffices to show that ṼG(n) has finitely many objects. The objects are the
representations F : OG/(G/K) −→ VG(n). Such functors are consistent families of
homotopy classes of maps G×H V −→ G×K W = F (idG/K) of G-vector bundles,
where W is a fixed K-representation and H runs over the subconjugates of K. We
are working in the skeletal category VG(n), and there are only finitely many choices
for W , finitely many H, finitely many choices of V for each H, and finitely many
choices of maps for each H and V . ¤

In the proof just given, W actually determines all of the representations V .
However, it does not determine the maps G ×H V −→ G ×K W , since we can
precompose a given map with any map G×H V −→ G×H V over the identity map
of G/H. This variability is crucial to understanding ṼG(n). Postcomposition with
maps G×K W −→ G×K W over the identity map of G/K leads to natural trans-
formations β −→ β′ between objects of ṼG(n) with the same W . This variability is
crucial to understanding the passage from (ṼG(n), D) to its saturated retract, the
universal orientable representation (S VG(n), S).

Let G = Z/p, where p is a prime, and let t be a generator of G. The orbit
category OG has only the two objects G = G/e and P = G/G. The maps G −→ G
form a copy of G, there is a unique quotient map q : G −→ P , and the only map
P −→ P is the identity. We consider the cases p = 2 and p > 2 separately. In both
cases, it turns out that (S VG(n), S), and therefore every saturated representation,
is replete. For this reason, the description of (S VG(n), S) can easily be guessed.
However, for illustrative purposes, we follow the outline of the general theory.

Example 10.2. p = 2. In this example, we write γ generically for a self-map of a
representation that reverses (non-equivariant) orientation and satisfies γ2 = 1.

(a) The category VG(n).
(i) VG(n) has a single object U = G × Rn over G. This object has four

self-maps, namely 1 and γ (that is, 1× γ) over the identity map of G,
and t (that is, action by t) and tγ = γt over t : G −→ G.
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(ii) For 0 ≤ k ≤ n, let Vk = Rn−k ⊕ Lk denote the sum of n − k copies
of the trivial one-dimensional representation R and k copies of the
non-trivial one-dimensional representation L. These are the objects of
VG(n) over P . There are no maps from Vk to Vk′ unless k = k′, in
which case there are either the two maps 1 and γ if k = 0 or n, or
there are the four maps 1, 1⊕ γ, γ ⊕ 1, and γ ⊕ γ if 0 < k < n; γ ⊕ γ
is the composite of 1⊕ γ and γ ⊕ 1 in either order.

(iii) There are two maps U −→ Vk, namely the action µ of G on Vk and
µγ. We have (γ ⊕ 1)µ = µγ = (1⊕ γ)µ. More interestingly, µt = µ if
k is even, but µt = µγ if k is odd.

(b) The category ṼG(n).
(i) The objects over G are the representations ΠGG −→ VG(n), and ΠGG

has two objects over G connected by an isomorphism t over t : G −→ G.
There are two such representations, U+ and U−; the first sends t to
t and the second sends t to tγ. There are no maps between these
objects, and each has a self-map t̃ over t.

(ii) The objects over P are the representations OG = ΠGP −→ VG(n).
For each k there are two representations, (Vk)+ and (Vk)−, sending P
to Vk. The first sends q to µ and the second sends q to µγ. In both
cases, t must be sent to t if k is even and to tγ if k is odd. There are
no non-identity maps among these objects.

(iii) There is a map q̃ : U+ −→ (Vk)± over q if and only if k is even; there
is a map q̃ : U− −→ (Vk)± over q if and only if k is odd.

(c) Saturations of ṼG(n).
The only maps that we may add to ṼG(n) are maps between (Vk)+ and
(Vk)−. For each k we have a choice of how to send such an added map
to VG(n): we may send it to 1⊕γ or to γ⊕1. There is only one choice, γ,
when k = 0 or n. Thus there are 2n−2 possible supersaturations. We
obtain a saturation by passing to a skeleton, which means throwing
out one of (Vk)+ or (Vk)− for each k. For definiteness, we discard
(Vk)−. Changing notation, we have the following description of the
universal orientable representation.

(d) The universal orientable representation (S VG(n), S).
(i) S VG(n) has two objects, u+ and u−, over G, and S sends each of

them to U = G×Rn. Each has a self map t over t : G −→ G; S sends
t : u+ −→ u+ to t and sends t : u− −→ u− to tγ.

(ii) S VG(n) has n + 1 objects vk, 0 ≤ k ≤ n, over P , and S(vk) = Vk.
(iii) There is a map m : u+ −→ vk over q : G −→ P if and only if k is even;

there is a map m : u− −→ vk if and only if k is odd; S(m) = µ in both
cases.
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Pictorially, the universal orientable representation looks like this:
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(e) The group Ωn = Ω(S VG(n), S).
Ωn is an elementary abelian 2-group of order 2n+1. Since (d)(iii) rules
out the possibilities A(u+) = u− or A(u−) = u+, every automorphism
(A,α) has A = id: S VG(n) −→ S VG(n), hence is specified by giving
the isomorphisms α(x) : S(x) −→ S(x) for objects x in S VG(n). As
generators for Ωn we can take the collection {α+, α−, α1, . . . , αn−1},
where, specifying only the behavior of each of these on objects not
assigned identity maps, we have

α+(u+) = γ and α+(v2k) = γ ⊕ 1 (or γ if 2k = 0 or n),

α−(u−) = γ and α−(v2k+1) = γ ⊕ 1 (or γ if 2k + 1 = n), and

αk(vk) = γ ⊕ γ.

(f) An example of non-unique saturation.
We exhibit two saturations of the representation (ΠGG,U+) given in
(b)(i) above that are not isomorphic by displaying two maps, (F, φ)
and (F ′, φ′), from (ΠGG,U+) into (S VG(n), S) whose images do not
differ by an automorphism in Ωn. In fact, let F send both objects of
ΠGG to u+, and let φ be the identity; let F ′ send both objects to u−,
and let φ′ send both to the map γ : G× Rn −→ G× Rn.

Observe that the category S VG(n) has two components, although VG(n) has
the initial object U and is therefore connected. Observe too that the order of Ωn

increases as n increases. The following simple example illustrates the fact that even
trivial bundles can have many more equivariant than nonequivariant orientations.
As we shall see, none of these phenomena can occur for a finite group of odd order.

Example 10.3. With G = Z/2 still, let S1 be the circle with G acting by complex
conjugation, so that the action of G has two fixed points. Take one of them as a
basepoint. For any integer k ≥ 2, let B be the wedge of k − 1 copies of S1, so
that B is nonequivariantly connected and has k fixed points. Let E = B× (R⊕L)
and let p : E −→ B be the projection. Then p has 2k+1 distinct orientations.
To see this, we can work with a skeleton of ΠGB consisting of one object b with
π(b) = G and k objects x1 through xk with π(xi) = P . An orientation (F, φ)
of p must satisfy F (b) = u− and F (xi) = v1 for each i. There are two possible
choices of φ : U = S ◦ F (b) −→ p∗(b) = U , namely 1 and γ corresponding to
the two nonequivariant orientations of p. Having chosen one of these, for each xi

there are then two choices of maps φ : V1 = S ◦ F (xi) −→ p∗(xi) = V1, differing
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by composition with γ ⊕ γ. Since these choices are independent, we obtain 2k+1

different orientations, as claimed.
If, instead of taking a wedge of finitely many copies of S1, we take the wedge

of countably infinitely many copies, we obtain a (trivial) bundle over a connected
basespace having uncountably infinitely many different orientations. Note also that,
in all of these examples, the group Ω2 acts neither freely nor transitively on the set
of orientations of the bundle.

Example 10.4. p odd. In this example we write γ generically for an orientation
reversing map of Rk, k ≥ 1, with γ2 = 1. A representation that contains no trivial
summands admits no orientation reversing self G-map.

(a) The category VG(n).
(i) VG(n) has a single object U = G×Rn over G. This object has 2p self

maps, namely 1 and γ (that is, 1× γ) over the identity map of G, and
ti (that is, action by ti) and tiγ = γti over ti : G −→ G.

(ii) G has the trivial irreducible representation R and (p−1)/2 non-trivial
irreducible two-dimensional representations. The objects over P are
the distinct n-dimensional sums of these. Write V for a typical such
object; it has a non-identity map γ if and only if it contains a trivial
summand.

(iii) There are two maps µ and µγ from U to each V . We have µt = µ and,
if V contains a trivial summand, µγ = γµ.

(b) The category ṼG(n).
(i) The objects over G are the representations ΠGG −→ VG(n), and ΠGG

has p objects {e1, . . . , ep} over G cyclically permuted by isomorphisms
t over t : G −→ G. For each sequence ε = (ε1, . . . , εp), εi = 0 or 1 and∑

εi even, there is a representation Uε : ΠGG −→ VG(n) that sends
t : ei −→ ei+1 to tγεi . We write U0 when all εi = 0. There is a self-map
t̃ over t of U0. If t acts on the sequences ε by cyclic permutation, there
are maps t̃ : Uε −→ Utε over t. We also have the iterates t̃i.

(ii) The objects over P are the representations OG = ΠGP −→ VG(n).
For each V , there are two such representations, V+ and V−, that send
P to V . The first sends q to µ and the second sends q to µγ; both
send t to t. There are no non-identity maps among these objects.

(iii) For each V , there are maps q̃ : U0 −→ V± over q, and there are no
other maps over q.

(c) Saturations of ṼG(n).
When V contains a trivial summand, we may add an isomorphism
between V+ and V− that maps to γ in VG(n). We may also add an
isomorphism over the identity map of G between U0 and any other Uε.
This isomorphism may be chosen to map to either the identity or γ
in VG(n). This choice then determines isomorphisms between U0 and
the other Uε′ such that ε′ is a cyclic permutation of ε. We pass to a
saturation by discarding V− when V contains a trivial summand, and
discarding all Uε with ε 6= 0. Changing notation, we have the following
description of the universal orientable representation.

(d) The universal orientable representation (S VG(n), S).
(i) S VG(n) has one object u over G, and S(u) = U = G × Rn. u has

self-maps ti over ti : G −→ G, and S(ti) = ti.
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(ii) For each representation V that contains a trivial summand, S VG(n)
has one object v over P with S(v) = V . For each representation V
that contains no trivial summand, S VG(n) has two objects v+ and
v− over P , and S(v±) = V .

(iii) For each V that contains a trivial summand, there is a map m : u −→ v
over q with S(m) = µ. For each V that contains no trivial summand,
there are maps m+ : u −→ v+ and m− : u −→ v− over q; S(m+) = µ
and S(m−) = µγ.

Pictorially, the universal orientable representation looks like this:
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(e) The group Ωn = Ω(S VG(n), S).
Ωn = Z/2. The non-trivial automorphism (A,α) has A(u) = u and
α(u) = γ; A(v) = v and α(v) = γ if V contains a trivial summand;
and A(v+) = v−, A(v−) = v+, and α(v+) = α(v−) = idV if V does
not contain a trivial summand.

11. Orientations of V -dimensional G-bundles

Let p : E −→ B be a G-bundle. Our general theory has been set up to deal
with the problem that the fiber representations of p can vary. The fiber Fx over
a point x ∈ B with isotropy group Gx is only a Gx-representation Vx, and the
bundle over the orbit G · Fx

∼= G/Gx is isomorphic to G ×Gx Vx. The universal
orientable representation gives a universal model for describing all possible ways
that such local data can be oriented consistently. It is sometimes possible to restrict
to G-bundles with a single type of fiber representation.

Definition 11.1. Let V be a representation of G. A G-bundle p : E −→ B has
dimension V if each of its fiber representations Vx is isomorphic to V , regarded
as a representation of Gx. This means that p∗ : ΠGB −→ VG factors through
VG(V ), where VG(V ) is the full subgroupoid over OG of VG whose objects are the
G-bundles isomorphic to G/H × V ∼= G×H V for some H ⊂ G. Thus (ΠGB, p∗) is
a representation in VG(V ).

For example, p must be V -dimensional for some V if B is G-connected, in the
sense that all of its fixed point spaces are non-empty and path connected. One might
think that our theory becomes trivial or unnecessary for G-bundles of dimension V
but, as we now explain, that is not the case.

Define an orientation of a fiber Fx to be a choice of a homotopy class φ(x) of
Gx-linear isometries Fx −→ V . This directly generalizes the nonequivariant idea
that an orientation of a fiber is a choice of one of the two homotopy classes of
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isomorphisms with a fixed copy of Rn. Define a naive orientation of the G-bundle
p to be a compatible collection {φ(x)} of orientations of the fibers Fx. Here, by
“compatible”, we mean that the following two conditions hold. First, noting that
Ggx = gGxg−1 for x ∈ B and g ∈ G and that g−1 maps Fgx to Fx, the φ(x) are
G-invariant in the sense that φ(gx) = gφ(x)g−1. Second, if x ∈ BH , y ∈ BK and
(ω, α) is a map from x to y in ΠGB, then φ(x) = φ(y) ◦ ω̃, where ω̃ : : Fx → Fy

is the homotopy class of H-linear isometries determined by (ω, α). This definition
can be reformulated representation theoretically as follows. To avoid pedantry, we
ignore the choice of isomorphism between G/H × V and the unique isomorphic
G-bundle in the skeletal OG-groupoid VG in what follows.

Definition 11.2. Define I : I VG(V ) −→ VG(V ) to be the injection of the sub-
groupoid over OG that contains all of the objects of VG(V ) but only the maps that
are of the form α × id : G/H × V −→ G/K × V for a map α : G/H −→ G/K in
OG. A naive orientation of a V -dimensional G-bundle p : E −→ B is a map of
representations

(F, φ) : (ΠGB, p∗) −→ (I VG(V ), I).

As in the nonequivariant case, the functor F here is uniquely determined. It
is an instructive exercise to verify that our two definitions of a naive orientation
coincide; that is, a naive orientation as defined in the previous definition determines
and is determined by a set of compatible orientations of fibers.

However, if we insist that every orientable G-bundle must have an orientation,
then the naive definition of an orientation of a V -dimensional bundle is inadequate,
at least when V G = 0. Since the representation (I VG(V ), I) is clearly discrete,
it maps into the universal orientable representation (S VG(V ), S) in VG(V ). We
may view a map (I VG(V ), I) −→ (S VG(V ), S) as an orientation of (I VG(V ), I).
However, I VG(V ) has too few morphisms for this orientation to be an isomorphism
of representations in VG(V ). Therefore, a naive orientation gives an orientation,
but not conversely. When V G 6= 0, a V -dimensional G-bundle does admit a naive
orientation, but it may have more orientations than naive orientations.

To display an orientable V -dimensional G-bundle that has no naive orientation,
let G be the circle group S1 and let G act on S2 by rotation about the axis through
the poles. Let V be the tangent representation at the north pole n. We can view S2

as the one-point compactification of the standard representation of the unit circle
of complex numbers on C, taking the origin as the north pole and the point at
∞ as the south pole. Thus V is just a copy of C with its standard action by S1.
The tangent representation at the south pole s is isomorphic to V , and the tangent
bundle τ of S2 is V -dimensional. Moreover, τ is obviously orientable since there
is only one path class connecting any two objects of the equivariant fundamental
groupoid ΠGS2. However, τ does not have a naive orientation. There is only one
homotopy class of G-linear isomorphisms from V to itself, so there is only one choice
of equivariant orientation at both the north and the south poles. These orientations
are not compatible since any nonequivariant path from the south to the north pole
induces a map of tangent planes that reverses orientation.

Now let G be a cyclic group of order p embedded as usual as a subgroup of
the circle group. By restriction, we can regard the S1-bundle just displayed as
a G-bundle. It is still V -dimensional and orientable, and it still admits no naive
orientation. In the following example, we use the universal orientable G-bundles
constructed in the previous section to display orientations of this bundle.
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Example 11.3. Let G = Z/p, let V = L2 = V2 if p = 2, and let V be an irreducible
two-dimensional representation if p is odd. Consider the sphere SV obtained by
one-point compactification of V . A skeleton Π′G(SV ) of the fundamental groupoid
has one object x over G, and two objects n and s, the north and south poles, over
P . The representation τ∗ : Π′G(SV ) −→ VG(2) induced by the tangent bundle of SV

sends x to U = G×R2 and both n and s to V . There are maps x −→ n and x −→ s
over q, and they are not sent to the same map in VG(2) due to the incompatibility
phenomenon that we have observed. Rather, one is sent to µ and the other is sent
to µγ. There are two orientations (F, φ) : (Π′G(SV ), τ∗) −→ (S VG(2), S). If p = 2,
they both have F (x) = u+ and F (n) = v2 = F (s); one has φ(x) = 1 and the other
has φ(x) = γ. If p > 2, they both have F (x) = u, one has F (n) = v+ and F (s) = v−,
and the other has F (n) = v− and F (s) = v+; both have φ(n) = id = φ(s), while
one has φ(x) = 1 and the other has φ(x) = γ.

There is a still more naive notion of an orientation of a G-vector bundle, namely
a nonequivariant orientation such that G acts by orientation preserving maps. This
notion is widely used in the literature when G is a finite group of odd order. Here
the following observation shows that the requirement that the action preserve the
orientation is a negligible restriction on nonequivariantly orientable G-bundles.

Lemma 11.4. Let G be finite of odd order and let p : E −→ B be a nonequivariantly
orientable G-vector bundle.

(i) If B is path connected, then G acts on p by orientation preserving maps for
either of the orientations of p.

(ii) If B/G is path connected, then p admits two orientations such that G acts
on p by orientation preserving maps.

(iii) In general, p admits orientations such that G acts by orientation preserving
maps.

Proof. For (i), an orientation of p is given by a Thom class in H̃n(T ;Z) ∼= Z, where
T is the Thom space of p, and action by an odd order group element must preserve
this class. For (ii), pick a path component B0 of B with isotropy group G0 and fix
an orientation of the restriction of E over B0. This is a G0-bundle, and G0 acts by
orientation preserving maps by (i). By translation by group elements, we obtain
orientations on the rest of the path components of B such that the action by G is
orientation preserving, and this is the only way that such orientations can arise.
Part (iii) follows, since B is the disjoint union of G-spaces with path connected
orbit spaces. ¤
Remark 11.5. In view of (i), the action of Z/p ⊂ S1 on S2 in Example 11.3 shows
that a nonequivariantly oriented V -dimensional G-bundle with an orientation pre-
serving action by G need not be naively G-oriented in the sense of Definition 11.2.
However, if G is finite of odd order and B is G-connected, then any nonequivariantly
oriented V -dimensional G-bundle p : E −→ B does have a naive G-orientation,
as is easily deduced from Lemma 12.1 below. Example 11.3 shows that the G-
connectivity of B is essential to the conclusion.

12. Complex Bundles and Odd-Order Groups

There is of course an analog of our theory of orientations in which we restrict
attention to complex representations and bundles throughout. However, the re-
sulting theory is quite trivial. Define UG(n) in the same way as VG(n), using
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complex n-dimensional bundles over G-orbits. Then UG(n) is discrete over OG

since there is at most one homotopy class of complex G-bundle maps covering a
given map in OG. This implies that the identity functor of UG(n) is itself the uni-
versal orientable complex representation. In fact, this functor is obviously replete,
and thus saturated, and any representation R : E −→ UG(n) specifies a strict map
(E , R) −→ (UG(n), Id). Moreover, it is also clear that there are no nontrivial au-
tomorphisms of (UG(n), Id). Therefore, every complex representation has a unique
complex orientation. Notice that we need not assume that the underlying groupoid
E is faithful. We conclude that complex G-bundles over arbitrary G-spaces admit
unique complex orientations.

We have an evident “realification” functor r : U G(n) −→ V G(2n) between the
categories of all complex and all real G-vector bundles over orbits. Using the
chosen retraction equivalences from these categories to UG(n) and VG(2n), we
obtain a realification representation r : UG(n) −→ VG(2n). Nonequivariantly, this
just corresponds to choosing an identification of Cn with R2n. We consider an n-
dimensional complex representation (E , R) as a 2n-dimensional real representation
by composing it with r, and we orient an n-dimensional complex bundle as a 2n-
dimensional real bundle by composing its complex orientation with a fixed choice of
a real orientation (UG(n), r) −→ (S VG(2n), S). There exists such an orientation
since r is an orientable representation in VG(2n).

We turn now to another simple case: orientations of real representations when G
is a finite group of odd order. We work with a fixed given odd order finite group G in
the rest of the section. We can generalize the description of the universal orientable
representation for Z/p, p odd, given in Example 10.4 to obtain a description in
the general case. The essential point is that if V is a representation of G with
V G = 0, then V admits a complex structure, and so its group of orthogonal G-
linear isometries is connected. This observation can be codified as follows.

Lemma 12.1. Let f : V −→ V be an orthogonal G-map. Then the following three
statements are equivalent.

(i) f is linearly homotopic to the identity.
(ii) f is G-linearly homotopic to the identity.
(iii) fG : V G −→ V G is linearly homotopic to the identity.

Proof. Let VG be the orthogonal complement of V G. Then f = fG ⊕ fG, and
fG : VG −→ VG is G-linearly homotopic to the identity. Since fG is linearly
homotopic to the identity if and only if it is G-linearly homotopic to the identity,
the conclusion follows. ¤

Therefore, for objects G ×H V and G ×K W of VG(n), there are at most two
morphisms G ×H V −→ G ×K W in VG(n) over a given map G/H −→ G/K in
OG. If there is one such morphism, then whether there are one or two morphisms
is entirely determined by whether or not V H is empty. Again, it turns out that
(S VG(n), S), and thus every saturated representation, is replete.

Construction 12.2. Let G be a finite group of odd order. We can describe the
universal orientable representation S : S VG(n) −→ VG(n) as follows. The category
S VG(n) has one object v = v(H) for each object G ×H V in VG(n) such that
V H 6= 0; it has two objects v+ = v+(H) and v− = v−(H) for each G ×H V such
that V H = 0. Of course, π : S VG(n) −→ OG and S : S VG(n) −→ VG(n) send



34 S.R. COSTENOBLE, J.P. MAY, AND S. WANER

these objects to G/H and G ×H V . For each object G ×H V of VG(n), choose a
map µ : G × Rn −→ G ×H V over the quotient map G −→ G/H. We think of
µ as specifying an orientation of V . Suppose that there exists a G-bundle map
G×H V −→ G×K W over a G-map α : G/H −→ G/K, where α(eH) = gK. Write
α̃+ for a map G×H V −→ G×K W covering α and satisfying α̃+ ◦µ = µ◦g, if such
exists, where g : G×Rn −→ G×Rn is given by right multiplication by g on the G
coordinate. Write α̃− for a map covering α and satisfying α̃− ◦µ = µ◦γ ◦ g, if such
exists, where, as usual, γ is the orientation reversing map on G×Rn. We think of
α̃+ as preserving orientation, and α̃− as reversing it. If V H 6= 0, then both maps
occur. If V H = 0, then only one of them occurs. If WK 6= 0 and therefore V H 6= 0,
then S VG(n) has a map m+ : v −→ w. If WK = 0 and V H 6= 0, then S VG(n)
has maps m+ : v −→ w+ and m− : v −→ w−. Finally, if V H = 0, then if α̃+ exists,
there are maps m+ : v+ −→ w+ and m+ : v− −→ w−, while if it is α̃− that exists,
there are maps m− : v+ −→ w− and m− : v− −→ w+. Whenever composites are
defined, they satisfy the generic rules

m+ ◦m+ = m+, m+ ◦m− = m−, m− ◦m+ = m−, and m− ◦m− = m+.

The functor π sends any of these maps to the underlying map α of G-orbits that is
used to define it, while the functor S sends m+ to α̃+ and m− to α̃−. It is easy to
check that S VG(n) is a well-defined OG-groupoid and S is a well-defined functor
over OG. Intuitively, the last is just the observation that the composite of two
orientation preserving maps preserves orientation, the composite of two orientation
reversing maps preserves orientation, and the composite of an orientation preserving
and an orientation reversing map reverses orientation.

The structure of (S VG(n), S) perhaps becomes clearer if we notice that the group
of automorphisms of any object maps isomorphically to the group of automorphisms
of G/H, and that S maps the automorphism over any α : G/H −→ G/H to α̃+.
One only encounters orientation reversing maps between representations that do
not contain trivial summands when a change of subgroups is involved. However,
there is no getting around such maps by relabeling, as the following example shows.

Example 12.3. Let G = H × K, where H and K are cyclic of order 3 with
generators s and t. Let V be the two-dimensional representation of G on which
both s and t act by rotation by 2π/3; let W be the two-dimensional representation
of G on which s acts by rotation by 2π/3 and t acts by rotation by −2π/3. Then V
and W restrict to the same representation Y of H and to the same representation Z
of K. The category S VG(2) has corresponding objects v±, w±, y±, and z±. We can
choose orientations so that there are maps y+ −→ v+, y+ −→ w+, and z+ −→ v+ in
S VG(2), but then we are forced to have a map z+ −→ w−. Moreover, no relabeling
will result in only orientation preserving maps in S VG(2).

The following theorem validates Construction 12.2.

Theorem 12.4. If G has odd order, then the representation (S VG(n), S) is the
universal orientable representation.

Proof. It is clear from the construction that S VG(n) is replete and thus saturated.
By Theorem 9.6, it suffices to show that any faithful representation (E , R) maps
into (S VG(n), S). Since (E , R) factors through a skeleton, we may assume without
loss of generality that E is skeletal and thus discrete.
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We must construct a functor F : E −→ S VG(n) over OG and an isomorphism
φ : S ◦ F −→ R over OG. Let π−1(G/e) be the full subcategory of E containing all
objects x with π(x) = G/e. For any object x ∈ π−1(G/e), we must take F (x) = r.
Choose an object x0 in each component of π−1(G/e), and let φ(x0) be the identity
map of G × Rn. This initial choice will determine F and φ. By source lifting and
discreteness, there is a unique map ωg,x : x −→ x0 over g : G −→ G for each g ∈ G;
divisibility implies that every x in the component of x0 is the domain of such a
map ωg,x and that every map in the component is a composite of such maps and
their inverses. We must take F (ωg,x) to be the unique map r −→ r over g; we let
φ(x) = id if R(ωg,x) = g and φ(x) = γ if R(ωg,x) = g ◦ γ. This is the unique choice
such that φ(x0) ◦ S(F (ωg,x)) = R(ωg,x) ◦ φ(x). This specifies the restrictions of F
and φ to π−1(G/e).

Now let y be an object of E such that R(y) = G ×H V with H 6= e. By source
lifting and discreteness, there is a unique map ω : x −→ y over the quotient map
G −→ G/H. In the naturality relation φ(y) ◦ S(F (ω)) = R(ω) ◦ φ(x), φ(x) and
R(ω) are already specified, and F (ω) will be determined once we specify F (y). If
V H 6= 0, then we must let F (y) = v. Here, if φ(x) = id and R(ω) = µ, or if
φ(x) = γ and R(ω) = µ ◦ γ, we must take φ(y) = id; in the remaining two cases we
must take φ(y) = γ, the unique non-identity map of G×H V . On the other hand,
if V H = 0, then φ(y) must be the identity map of G ×H V . Here, if φ(x) = id
and R(ω) = µ, or if φ(x) = γ and R(ω) = µ ◦ γ, we must take F (y) = v+; in the
remaining two cases we must take F (y) = v−.

Finally, suppose given a map ξ : y −→ z in E over α : G/H −→ G/K, where
α(eH) = gK. Let ω : x −→ y and ω′ : x′ −→ z be the unique maps over the
quotient maps G −→ G/H and G −→ G/K. By divisibility and discreteness, there
is a unique map ζ : x −→ x′ over g : G −→ G such that ω′ζ = ξω. A diagram chase
(comparing preservation and reversal of orientations) shows that in all cases there
is a unique map F (y) −→ F (z) over α in S VG(n); we can and must take F (ξ) to be
this map. It is then clear that F is a well-defined functor. The naturality relations
for ζ, ω, and ω′ imply that the naturality relation φ(z) ◦ S(F (ξ)) = R(ξ) ◦ φ(y)
holds when precomposed with S(F (ω)) and therefore holds as written. ¤

In the proof just given, we could instead have chosen φ(x0) = γ. This would
force changes from φ(y) = id to φ(y) = γ and vice-versa when R(y) = G ×H V
with V H 6= 0, and from F (y) = v+ to F (y) = v− and vice-versa when V H = 0.
Moreover, we have an independent such choice for each component of π−1(G/e).
Said another way, making a choice for each component fixes a saturation of (E , R),
and making the opposite choice in each component gives an isomorphic saturation.
Proposition 9.8 gives the following interpretation.

Corollary 12.5. Let G have odd order and let (E , R) be a faithful representation
in VG(n) such that the subcategory π−1(G/e) of E is connected.

(i) The group Ω(S VG(n), S) is cyclic of order two.
(ii) (E , R) has a unique isomorphism class of saturations.
(iii) (E , R) has exactly two orientations, and an orientation (F, φ) is determined

by φ(x0) for any chosen object x0 over G/e.

This has the following implication for orientations of G-vector bundles, which
should be compared with Example 10.3.
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Corollary 12.6. If G has odd order and B/G is path connected, then an orientable
G-vector bundle p over B admits exactly two orientations, and an orientation of p
is completely determined by a choice of nonequivariant orientation of the restriction
of p to any path component of B.

Thus our equivariant orientations encode information implicit in nonequivariant
orientations. The following complementary observation generalizes and makes pre-
cise the folklore result (see for example [11, p. 16]) that, for actions of odd order
groups, nonequivariant orientability implies equivariant orientability.

Theorem 12.7. Let G be finite of odd order. A G-vector bundle p : E −→ B
is equivariantly orientable if and only if it is nonequivariantly orientable. The
equivariant orientations of p are in bijective correspondence with the nonequivariant
orientations on which G acts by orientation preserving maps.

Proof. Clearly equivariant orientability implies nonequivariant orientability. Sup-
pose that p is nonequivariantly orientable. Let (ξ, id) : x −→ x be a map in ΠGB
and thus in Π(BH). Regarding ξ as a path in B and working nonequivariantly, we
have p∗(ξ) = id by the nonequivariant orientability of p. By Lemmas 2.3 and 12.1,
we conclude that p∗(ξ, id) = id equivariantly. By Remark 2.9, this implies that p
is equivariantly orientable. The second statement follows from the first together
with Lemma 11.4, which shows that p always admits nonequivariant orientations
on which G acts by orientation preserving maps, and Corollary 12.6. ¤

In Definition 11.2 we defined naive orientations of V -dimensional G-bundles for
any G. Using our explicit description of S VG, we can define naive orientations of
arbitrary G-bundles when |G| is odd. The notions coincide when both are defined.

Definition 12.8. Let I VG be the subcategory of S VG obtained by omitting
the objects v− and the maps to and from them. Deleting subscripts + from the
notation, the category I VG has an object v = v(H) for each G ×H V and a map
m : v −→ w over α : G/H −→ G/K if there is an orientation preserving G-bundle
map G×H V −→ G×K W over α. Let I : I VG −→ VG be the restriction of S. A
naive orientation (F, φ) of a G-bundle p : E −→ B is a functor F : ΠGB −→ I VG

over OG and an isomorphism φ : I ◦ F −→ p∗ over OG.

Remarks 12.9. We compare naive orientations and orientations for |G| odd.
(i) Clearly, we may view a naive orientation (F, φ) as a restricted kind of

orientation. Therefore, when p admits a naive orientation, its orientations
and naive orientations determine one another.

(i) We can interpret Example 12.3 as showing that I VG need not be a groupoid
over OG because it need not satisfy the source lifting property. Thus it is
only the genuine orientations that fit naturally into our definitional frame-
work.

(ii) The full subcategories of I VG and S VG with one object v = v(H) for
each G×H V such that V H 6= 0 coincide, hence naive orientations and ori-
entations coincide for G-bundles all of whose fiber representations contain
trivial summands. In particular, this holds stably.

Remark 12.10. For a general compact Lie group G, there is an essentially similar
generalization of Construction 12.2 that applies when VG is replaced by its full
subcategory whose objects are those G ×H V such that the group of H-linear
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isometries of VH is connected, where VH is the orthogonal complement of V H . That
is, we only take the representations Rq ⊕W such that W contains no irreducible
summands of real type, only summands of complex and quaternionic type.

13. Abelian compact Lie groups

We explore our theory for Abelian compact Lie groups G and give a conjectural
description of universal orientable representations when G is an elementary Abelian
2-group (Z/2)k. More precisely, we first construct a replete, hence saturated, rep-
resentation (S (n), S) for any Abelian compact Lie group G and any n ≥ 1. For
G = (Z/2)k, we then show that (S (n), S) is universal for replete representations.
Thus it is universal if Conjecture 8.6 is true for R = VG(n). However, Remark 8.7
is relevant, and we doubt that the conjecture is true even in this simple case.

Since G is Abelian, The orbit category OG has a very simple form. The function
that sends gH to the G-map g : G/H −→ G/H is an isomorphism of Lie groups

G/H −→ OG(G/H, G/H).

We regard it as an identification. We have a subcategory QG of OG whose objects
are the orbits G/H and whose morphisms are the quotient maps q : G/H −→ G/K
associated to inclusions H ⊂ K. There is a map α : G/H −→ G/K in OG if and
only if H ⊂ K, and then α is the composite of q and a map g : G/H −→ G/H.
The relations in the category are generated by the obvious commutative diagrams

G/H
g //

q

²²

G/H

q

²²
G/K

g
// G/K.

The skeletal category VG(n), n ≥ 1, also admits a simple description since G is
Abelian, as we see by use of Lemmas 2.3 and 2.6. Consider the set of maps

ω : G×H V −→ G×K W.

This set is non-empty when H ⊂ K and there is an H-linear isometry ι : V −→ W .
Any other H-linear isometry V −→ W is a composite of ι and an H-linear isometry
V −→ V . We deduce that any map ω is the composite of a self-map of G×H V and
the map q̃ : G ×H V −→ G ×K W over q : G/H −→ G/K that is obtained from ι
by passage to orbits. Note that π0(OH(V )) = Aut(G ×H V ) and, by Proposition
5.4, a map ω : G×H V −→ G×K W induces a restriction homomorphism

π0(OK(W )) −→ π0(OH(V )).

Taking ω = q̃, this map is the evident composite

r : π0(OK(W )) −→ π0(OH(W )) ∼= π0(OH(V )).

It is independent of the choice of ι and thus of the choice of q̃ over q since inner
H-linear automorphisms of V are homotopic to the identity.

Any self-map of G×H V is a composite of a map over the identity map of G/H
induced by an element of π0(OH(V )) and the map given by multiplication by g,
which covers g : G/H −→ G/H. These two types of maps commute with one
another. An element h ∈ H gives an H-linear isometry h : V −→ V . By passage
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to homotopy, this gives a homomorphism λV : H −→ π0(OH(V )). Via Lemma 2.3,
we deduce an isomorphism of groups

VG(G×H V,G×H V ) ∼= G×H π0(OH(V )),

where H acts on π0(OH(V )) via λV . Moreover, viewing G as G×H H, we see that
λV extends to a homomorphism λ̃V : G −→ VG(G ×H V, G ×H V ) that induces a
map of extensions

1 // H

λV

²²

// G

λ̃V

²²

p // G/H

∼=
²²

// 1

1 // π0(OH(V )) // VG(G×H V,G×H V )
π

// OG(G/H, G/H) // 1,

where p : G −→ G/H is the quotient homomorphism.
Now let E be a discrete groupoid over OG and consider a representation R of E

in VG(n). We consider general features of the functor R : E −→ VG(n). Let x be
an object of E with π(x) = G/H and R(x) = G×H V . Since E is faithful,

π : E (x, x) −→ OG(G/H, G/H) ∼= G/H

is an inclusion. We are especially interested in the case when π is an isomorphism,
so that E (x, x) ∼= G/H. Let

Gx = p−1E (x, x) ⊂ G and Vx = π−1E (x, x) ⊂ VG(R(x), R(x)).

The map of extensions displayed above restricts to a map of extensions

1 // H

λV

²²

// Gx

λ̃x

²²

p // E (x, x) // 1

1 // π0(OH(V )) // Vx π
// E (x, x) // 1.

Since π ◦R = π, the bottom extension is split by R : E (x, x) −→ Vx. Define

ρx : Vx −→ π0(OH(V ))

by ρx(ω) = ω ·R(π(ω))−1. Then the homomorphism

τx = ρx ◦ λ̃x : Gx −→ π0(OH(V ))

extends λV . We can turn this observation around. Clearly

Vx
∼= Gx ×H π0(OH(V )),

and it follows that an extension τx : Gx −→ π0(OH(V )) of λV determines a splitting
R : E (x, x) −→ Vx. Explicitly, R is given by R(q(g)) = (g, τx(g)−1) for g ∈ Gx.
Looked at another way, R gives the inclusion of the first coordinate of a splitting

Vx
∼= E (x, x)× π0(OH(V ))

under which λ̃x has coordinates p and τx.
We now consider maps between distinct objects of E . Taking x as above, let

ω : x −→ y be a map such that π(ω) = α : G/H −→ G/K and R(y) = G ×K W .
Then H ⊂ K and there is an H-linear isomorphism ι : V −→ W . By divisibility,
for any map ν : y −→ y, there is a map µ : x −→ x such that ν ◦ω = ω ◦µ covering
each map ξ : G/H −→ G/H such that α ◦ ξ = π(ν) ◦ α. In particular, when
H = K and thus V = W , we see that the existence of a map x −→ y implies that
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Gx = Gy and τx = τy. When H 6= K, unique source lifting (see Remark 6.3(i)) and
divisibility imply that each factorization α = q ◦ ξ, ξ : G/H −→ G/H, is uniquely
covered by a factorization ω = q̃ ◦ ξ̃. That is, ω is a composite of a map ξ̃ : x −→ x′

over ξ and the unique map q̃y : x′ −→ y with target y over q : G/H −→ G/K.
When E (x, x) ∼= G/H, Lemma 8.2(ii) implies that x′ = x, so that every morphism
x −→ y is a composite of a self-map of x and a canonical map q̃y : x −→ y. In
particular, (E , R) is replete in the sense of Definition 8.4 when E (x, x) ∼= G/H for
all H and all x over G/H. In general, since for any map ν : y −→ y there is a map
µ : x −→ x such that ν ◦ q̃ = q̃ ◦ µ, we see that Gy ⊂ Gx. By a diagram chase from
the functoriality of R, we find that the following diagram commutes:

Gy //

τy

²²

Gx

τx

²²
π0(OK(W ))

r
// π0(OH(V )).

Thus we can think of τx as an extension of r ◦ τy. When (E , R) is replete, we
conclude that the functor R is determined by maps R(q̃) that give a functor over
QG ⊂ OG together with homomorphisms τx that extend the λV and make these
diagrams commute. The point is that the commutativity of these diagrams ensures
that relations ν◦q̃ = q̃◦µ as above are carried to relations R(ν)◦R(q̃) = R(q̃)◦R(µ).
This gives an inductive description of replete representations.

We can describe maps (F, φ) : (E , R) −→ (F , S) between replete representations
in terms of these data. Since VG(n) is skeletal, for there to be an isomorphism
φ : S ◦F −→ R over OG, we must specify F on objects so that S(F (x)) = R(x) for
all x ∈ E . Since (F , S) is replete, we must then specify F on non-empty morphism
sets to be the composite

E (x, y) π //OG(π(x), π(y)) π−1
//F (F (x), F (y)).

To have S◦F = R on sets of endomorphisms, we must have τx = τF (x) for all objects
x of E . Finally, we must choose isomorphisms φ : S(F (x)) = R(x) −→ R(x) that
make the evident naturality diagrams over QG commute:

(13.1) S(F (x))
φ //

S(F (q̃))

²²

R(x)

R(q̃)

²²
S(F (y))

φ
// R(y).

Here R(q̃) = S(F (q̃)) ◦ ψq for some ψq : R(x) −→ R(x), and the diagram can be
rewritten by replacing the top arrow with ψq ◦φ and the right arrow with S(F (q̃)).
This relates the construction of the maps φ to the behavior of restriction maps
r : π0(OK(W )) −→ π0(OH(W )). The following observation is relevant.

Proposition 13.2. Let K be a subgroup of G that is not topologically cyclic and
let W be a K-space.

(i) Restriction maps induce an isomorphism π0(OK(W )) −→ limH π0(OH(W )),
where the limit is taken over the proper subgroups H ⊂ K.

(ii) Assume given a homomorphism τH : G −→ π0(OH(W )) for each proper
subgroup H of K such that τH extends λV : H −→ π0(OH(V )) and τH
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restricts to τJ , τJ = rH
J ◦ τH , when J ⊂ H. Then there is a unique homo-

morphism τK : G −→ π0(OK(W )) that extends λK and restricts to τH for
each H ⊂ K.

Proof. Let SOH(W ) be the identity component of OH(W ). Since the closure of
the subgroup generated by any element of K is a proper subgroup, we have

OK(W ) = ∩HOH(W ) = lim
H

OH(W ) and SOK(W ) = ∩HSOH(W ) = lim
H

SOH(W ).

Here π0(OK(W )) ∼= limOH(W )/SOK(W ) since π0(OK(W )) = OK(W )/SOK(W ).
Since lim1 vanishes on countable systems of compact groups, the countably many
short exact sequences

1 //SOH(W )/SOK(W ) //OH(W )/SOK(W ) //π0(OH(W )) //1

give an exact sequence on passage to limits. This gives (i), and (ii) follows by letting
τK be the homomorphism obtained from the τH by passage to limits. ¤

Of course, we can replace the OH(W ) in this result by the spaces of H-linear
isometries VH −→ W for any choices of VH that are H-isomorphic to W .

We now construct the promised replete representation (S (n), S).

Construction 13.3. Let S (n) have objects all pairs x = (G×HV, τx), where H is a
(closed) subgroup of G, V is an H-space such that G×HV is an object of VG(n), and
τx : G −→ π0(OH(V )) is a homomorphism that extends λV : H −→ π0(OH(V )).
The functors π : S (n) −→ OG and S : S (n) −→ VG(n) send x to G/H and to
G×H V . Let y = (G×K W, τy). There are no morphisms x −→ y unless H ⊂ K, V
is H-isomorphic to W (without a specified choice of isomorphism), and τy restricts
to τx. When these conditions hold, we require

π : S (n)(x, y) −→ OG(G/H, G/K)

to be a bijection. Composition is dictated by the functoriality of π. In particular,

π : S (n)(x, x) −→ OG(G/H, G/H) ∼= G/H

is an isomorphism, Gx = G, and the discussion above shows that the homomor-
phism τx determines a homomorphism

S : S (x, x) −→ VG(n)(S(x), S(x))

such that π ◦ S = π. These homomorphisms specify S on self-maps in S (n). For
each object y = (G×K W, τy) and each proper subgroup H of K we have a unique
H-space VH such that G ×H VH is in VG(n) and VH is H-isomorphic to W . The
retraction equivalence from V G(n) to VG(n) chosen in Definition 2.2 fixes a choice
of isomorphism ιH : VH −→ W . Let y|H denote the object (G ×H VH , rK

H ◦ τy).
We define S on the unique morphism q̃ : y|H −→ y that covers the quotient map
q : G/H −→ G/K to be the map S(y|H) −→ S(y) determined by ιH and passage to
orbits. Clearly this specification of maps is functorial over QG. By the discussion
above, this completes the specification of the functor S. It is immediate that
(S (n), S) is replete, hence saturated.

Theorem 13.4. Let G = (Z/2)k. Then every replete representation maps into
(S (n), S). Therefore (S (n), S) is a universal orientable representation in VG(n)
if and only if Conjecture 8.6 holds for R = VG(n).
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Proof. The second statement follows from the first by Theorem 9.6(vi) and Propo-
sition 9.9. To prove the first, let (E , R) be replete. We must construct a map
(F, φ) : (E , R) −→ (S (n), S). By the discussion above, the construction is largely
tautological. For an object x of E with π(x) = G/H and R(x) = G×H V , we must
define F (x) = (R(x), τx) on objects x, and it remains only to specify isomorphisms
φ : S(F (x)) = R(x) −→ R(x) that make the diagrams (13.1) commute. We proceed
by induction on the rank of H. If H = {e}, then R(x) = G× Rn and we choose φ
arbitrarily. Suppose next that H is of rank one. There is a unique map q̃ : x′ −→ x
over q : G −→ G/H. Since r : π0(OH(V )) −→ π0(O(n)) is an epimorphism (see
Example 10.2(ii)), we can choose φ : G ×H V −→ G ×H V making the relevant
diagram (13.1) commute. Now assume that H is of rank s and φ has been specified
for all objects over all orbits G/J with rank J < s. We deduce from Proposition
13.2(i) that there is a unique way to specify φ : S(F (x)) −→ R(x) such that all of
the relevant diagrams (13.1) commute. ¤

14. The universal orientable representation S VD6(2)

We give one non-Abelian even order example to illustrate ideas. Let G = D6

be the dihedral group of order 6. It contains a normal subgroup K of order 3 and
three conjugate subgroups H1, H2, H3 of order 2. Let J = G/K. Schematically,
with doubleheaded arrows indicating conjugations, the orbit category OG looks like

G/e

@AGFED²²

{{xxxxxxxx

##GGGGGGGG

))SSSSSSSSSSSSSSSSSS

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

G/K

@AGF ED²²

##FFFFFFFF
G/H1

{{wwwwwwww
oo // G/H2
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oo // G/H3.
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G/G

The group G has three irreducible real representations, namely the trivial represen-
tation R, the representation L obtained by pullback of the non-trivial irreducible
representation of J , and a representation V whose restriction to K is isomorphic to
the standard representation of K on C. The restriction of V to each Hi is the sum
of a trivial and a non-trivial representation.

We describe S VG(2), which has features of both cases G = Z/2 and G = Z/p
from §10. Recall from Definition 11.1 that an n-dimensional representation V of
G determines the full subgroupoid VG(V ) of VG(n) with objects isomorphic to the
G×H V . Here G×H V is isomorphic to G/H × V since G acts on V . The reader
will appreciate that examples where subgroups have representations that are not
restrictions of representations of G will be substantially more complicated.

We have the four two dimensional representations R2, R ⊕ L, L2, and V, the
first three of which are trivial as representations of K. The elements of order 2
act in an orientation preserving way on R2 and L2 and in an orientation reversing
way on R⊕ L and V. The category VG(2) has two components. For the first three
representations U, there is a copy of the orbit category in S VG(2) that maps to
the subcategory of VG(2) that is depicted schematically as follows, where downward
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pointing arrows restrict to the identity map on representations.

G× R2
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G/K × R2
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oo // G/H2 × U
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oo // G/H3 × U.
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G/G× U

One component is generated by the two subcategories with U = R2 and U = L2,
with the parts of the two categories with objects labelled by R2 rather than by
U identified; in this component, all maps by elements of order 2 are orientation
preserving; that is there is no twisting by maps γ of degree −1 on representations.
The other component is generated by the subcategory with U = R⊕L and another
subcategory that maps to the subcategory of VG(2) generated by V in a manner
that we depict schematically as follows:
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G/G× V G/G× V

The copies of G × R2 in these two subcategories are identified, and all elements
of order 2 act in an orientation reversing way on the resulting object and also on
G/K×R2 in the subcategory for U = R⊕L and on the two copies of G/K×V in the
last subcategory (compare Example 10.2(d)). Vertical arrows involve twistings γ
as indicated by the labels of arrows. It is clear that this does specify a well-defined
groupoid S VG(2) over OG together with a representation S : S VG(2) −→ VG(2).
This representation is replete, hence saturated, and it is not hard to check as in §10
that it is universal.

Part IV. Refinements and variants of the theory

15. Fibrations over B and fibrant representations

The analogy between topological and categorical homotopy theory, in particular
the categorical notion of a fibration, is illuminating to the categorical representation
theory of Part II. Although we shall not make essential use of this material, we
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here show how to use fibrations to express orientations in terms of strict maps of
representations. To begin with, we return to the framework of §5.

With I as in Example 9.7, an isomorphism over B between functors E −→ F
over B can be regarded as a map η : E × I −→ F . In fact, B × I is a base
category, E ×I is a groupoid over B ×I , and η is a functor over the projection
B ×I −→ B. Here we must take B ×I and not B as the base of E ×I since
otherwise the source lifting and divisibility properties would fail. Using this, we
can mimic topological definitions and constructions.

Definition 15.1. Let F and R be groupoids over B. A functor S : F −→ R over
B is a fibration over B if it satisfies the categorical CHP: for maps R : E −→ R
and F : E −→ F of groupoids over B and an isomorphism φ : S ◦F −→ R over B,
there is a functor F ′ : E −→ F over B such that R = S ◦ F ′ and an isomorphism
φ̃ : F −→ F ′ over B such that φ = S ◦ φ̃. In terms of diagrams of functors, this
takes the following familiar form, in which R = φ ◦ i1 and F ′ = φ̃ ◦ i1:

E
F //

i0

²²

F

S

²²
E ×I

φ
//

φ̃
;;w

w
w

w
w

R.

Since objects in the category of representations in R are maps into R in the
category of groupoids over B, we think of fibrations as fibrant representations.

Definition 15.2. A representation (F , S) in R is fibrant if S : F −→ R is a fibra-
tion over B. This means that, for any map (F, φ) : (E , R) −→ (F , S) of represen-
tations, there is a strict map F ′ : (E , R) −→ (F , S) and a homotopy φ̃ : F −→ F ′.

As in topology, a functor over B is a fibration if and only if it satisfies the path
lifting property (PLP). Let RI be the functor category of maps I −→ R over
identity maps of B. Its objects are maps ξ = ξ(I) : ξ(0) −→ ξ(1) in R, and ξ
must be an isomorphism since π(ξ) = id. A map (ρ0, ρ1) : ξ −→ ζ is a pair of maps
ρi : ξ(i) −→ ζ(i) such that the evident diagram commutes. We have the pullback
F ×R RI of S : F −→ R and p0 : RI −→ R. The universal property gives a
functor

Ψ: FI −→ F ×R RI

whose projections are p0 : FI −→ F and SI : FI −→ RI .

Lemma 15.3. A functor S : F −→ R is a fibration if and only if it satisfies the
categorical PLP: there is a functor

Λ: F ×R RI −→ FI

such that Ψ ◦ Λ = Id.

This criterion and the path lifting property for (Hurewicz) fibrations of G-spaces
imply the following relationship between topological and categorical fibrations.

Proposition 15.4. If p : E −→ B is a fibration of G-spaces, then ΠGp : ΠGE −→
ΠGB is a fibration of groupoids over B.

We can replace general functors over B with equivalent fibrations over B.
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Construction 15.5. Let R : E −→ R be a functor over B. We construct the
associated fibration R′ : E ′ −→ R via the following commutative diagram, in which
the right square is a pullback of categories and the lower triangle specifies R′:

E
J //

R

²²

E ′

R′

}}{{
{{

{{
{{

P //

²²

E

R

²²
R RI

p1
oo

p0
// R.

The objects of E ′ are the pairs (x, ξ), where x is an object of E and ξ is an
isomorphism with ξ(0) = R(x) and π(ξ) = idπ(x). A map (ω, ρ1) : (x, ξ) −→ (y, ζ)
consists of maps ω : x −→ y in E and ρ in R such that (R(ω), ρ1) is a map ξ −→ ζ;
that is, R(ω) = ζ−1ρ1ξ. The functor J sends x to (x, id) and ω to (ω, id). It is
straightforward to verify the following claims.

(i) E ′ is a groupoid over B, so that (E ′, R′) is a representation in R.
(ii) The map R′ : E ′ −→ R is a fibration over B, so that (E ′, R′) is fibrant.
(iii) R = R′◦J , so that J : (E , R) −→ (E ′, R′) is a strict map of representations,

and ψ : R ◦ P −→ R′ is a map over B, so that (P, ψ) : (E ′, R′) −→ (E , R)
is a map of representations, where

ψ(x, ξ) = ξ : (R ◦ P )(x, ξ) = R(x) = ξ(0) −→ ξ(1) = R′(x, ξ).

(iii) P ◦ J = Id: E −→ E and the maps (id, ξ) : (x, id) −→ (x, ξ) specify a
homotopy J ◦ P −→ Id, so that the representation (E , R) is a deformation
retract of the fibrant representation (E ′, R′).

In view of Corollary 8.9 and the categorical CHP, we have the following alterna-
tive description of orientations. Recall Definition 7.1(iii).

Corollary 15.6. Let (S R, S) be the universal orientable representation and let
(S ′R, S′) be an equivalent fibrant representation. Then (S ′R, S′) is supersaturated
(but not saturated), and orientations of a representation (E , R) are in bijective
correspondence with homotopy classes of strict maps F : (E , R) −→ (S ′R, S′).

16. Functoriality of universal orientable representations

We have started with a fixed skeletal groupoid R over B. There are variants of
our theory that deal with other types of G-bundles and with G-fibrations, and still
other variants that deal with special types of G-bundles, for example V -dimensional
ones for a fixed representation V of G. To make comparisons, we must understand
the functoriality of our constructions with respect to changes of R.

Proposition 16.1. Let ρ : R −→ R′ be a functor over B, where R and R′ are
skeletal groupoids over B.

(i) There is a unique map ρ̃ : R̃ −→ R̃′ of universal discrete representations
covering the map ρ, D′ ◦ ρ̃ = ρ ◦D.

(ii) There is a map σ : S R −→ S R′ of universal orientable representations
covering ρ; it is unique up to isomorphism and can be chosen to cover ρ̃.

(iii) If ρ′ : R′ −→ R′′ is another functor over B, then we can choose a map
σ′ : S R′ −→ S R′′ covering ρ′ so that σ′ ◦ σ covers ρ′ ◦ ρ.
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(iv) By composition with σ, an orientation (F, φ) of a representation (E , R) in
R induces an orientation of (E , R) in R′:

E
F //
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S′{{xxxxxxxx
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π
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B.

Proof. The essential point is that the notions of skeletal, discrete, and faithful
representations are specified entirely in terms of underlying functors over B. Thus
(i) is immediate from the universal property of D′ : R̃′ −→ R′. For (ii), it is
convenient to apply the characterization of Theorem 9.6(i). We take S = D ◦ I,
where I : S R −→ R̃ is the inclusion of a maximal saturated subrepresentation.
The image of ρ̃ ◦ I is a saturated subrepresentation of R̃′. We expand the image
to obtain an inclusion I ′ : S R′ −→ R̃′ of a maximal saturated subrepresentation,
and we take S′ = I ′ ◦D′. With this construction, σ is given by ρ̃ ◦ I and we have
S′ ◦ σ = ρ ◦ S. This can be interpreted as giving a strict map of representations in
R′. Taking this construction as the starting point for the analogous construction
of σ′, part (iii) is clear. Part (iv) is also clear. ¤

To study change of groups or to restrict to the study of G-spaces of restricted
isotropy types, we must also change the base category B.

Proposition 16.2. Let A and B be base categories, let ι : A −→ B be a con-
tinuous functor, and let π : R −→ B be a groupoid over B. Define ι∗R to be the
pullback displayed in the diagram

ι∗R //

λ

²²

R

π

²²
A ι

// B.

Then ι∗R is a groupoid over A that is skeletal or discrete if R is skeletal or discrete.
If ι is a faithful functor and R is faithful over B, then ι∗R is faithful over A .

Proof. It is elementary to check that λ : ι∗R −→ A satisfies conditions (i)–(iv) of
Definition 5.1. Note for this that the fibers of λ are copies of fibers of π, a fact
that also explains why ι∗A is skeletal or discrete if π is so. The last statement is
a standard property of pullbacks of categories. ¤

Remark 16.3. Assume the hypotheses of the proposition.

(i) Lemma 6.4 implies that if R is discrete, then ι∗R is discrete and therefore
faithful. This holds whether or not ι is faithful.

(ii) If ι is an injection, then ι∗R just restricts R to the subcategory given by
the objects and maps that π sends to objects and maps in the image of A .
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(iii) Suppose given a groupoid Q over A and a commutative diagram

Q
ρ //

λ

²²

R

π

²²
A ι

// B.

Then ρ factors uniquely through a functor ρ : Q −→ ι∗R over A . If R and
Q are skeletal over B, then ι∗R is skeletal over A and Proposition 16.1
applies to compare the universal orientable representations of Q and ι∗R.

17. Orientations and change of groups

So far, we have restricted attention to a fixed ambient group G. Various natural
constructions on equivariant bundles lead one to consider what happens on passage
to subquotient groups. For example, let H ⊂ G, let NH be the normalizer of H
in G, and let WH = NH/H. For a G-bundle p : E −→ B, the restriction p|BH

is an NH-bundle that has a subbundle pH : EH −→ BH , which is a WH-bundle,
together with a complementary NH-subbundle pH , so that pH ⊕ pH

∼= p|BH . We
here describe how orientations of p give rise to orientations of these related bundles.
In particular, if a smooth G-manifold is oriented, then its orientation, which is an
orientation of its tangent G-bundle, determines an orientation of the WH-manifold
MH and an orientation of the normal NH-bundle of the inclusion of MH in M .
Note that the dimensions of fixed point bundles can vary over components and
recall that we write VG for

∐
VG(n), and similarly for S VG.

We first consider subgroups and then consider quotient groups, making heavy
use of the observations of the previous section.

Let i : H −→ G be an inclusion. We have the functor

i∗ : OH −→ OG

given by i∗(H/K) = G ×H (H/K) ∼= G/K on objects and i∗(α) = G ×H α on
morphisms. For a groupoid π : E −→ OG over OG, let i∗E denote the pullback of E
along i∗. By Proposition 16.2, i∗E is a groupoid over OH that is skeletal, faithful,
or discrete over OH if E is skeletal, faithful, or discrete over OG. The functor i∗ is
an injection, and i∗ just restricts E to those orbits G/K such that K is a subgroup
of H. We have the following observations.

Proposition 17.1. For a G-space X, i∗ΠGX is isomorphic over OH to ΠHX. For
any n, i∗VG(n) is isomorphic over OH to VH(n).

Proof. We do mean isomorphism and not just equivalence of categories over OH .
The result for fundamental groupoids is clear since, for K ⊂ H, a K-fixed point
of X can be viewed as either an H-map H/K −→ X or a G-map G/K −→ X,
and similarly for paths. We obtain inverse isomorphisms between our categories of
G-bundles by extending H-bundles H×K V to G-bundles G×K V and restricting G-
bundles G×K V to their H-subbundles H×K V . We are using the skeletal categories
specified in Definition 2.2, and the respective composites are easily verified to be
identity functors. ¤
Proposition 17.2. Let p : E −→ B be a G-bundle and let p|H denote p regarded
as an H-bundle. The representation (p|H)∗ : ΠHB −→ VH is isomorphic to

i∗p∗ : ΠHB ∼= i∗ΠGB −→ i∗VG
∼= VH .
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Proof. Again, we mean isomorphism and not just equivalence of representations.
With the notations of Definition 7.1(iv), we set F = F ′ = Id: ΠHB −→ ΠHB and
seek an isomorphism φ : (p|H)∗ −→ i∗p∗ of functors ΠHB −→ VH over OH . Recall
the proof of Proposition 2.7, remembering the use of the equivalence V G −→ VG

described in Definition 2.2. For a morphism (ω, α) : x −→ y of ΠHB, α : H/K −→
H/L, (p|H)∗(ω, α) is the composite

H ×K V
ξH(x)−1

//(p|H)∗(x)
ω̃1 //(p|H)∗(y)

ξH(y) //H ×L W,

where ξH(x) and ξH(y) are two of the chosen isomorphisms used in defining the
equivalence V H −→ VH and ω̃1 is obtained from the H-bundle CHP. We may
extend x : H/K −→ B to a G-map G/K −→ B, and similarly for y, and we may
view (ω, α) as a morphism in ΠGB. Then ω̃1 in our description of (p|H)∗(ω, α) can
be taken to be the restriction of a map ω̃1 obtained by use of the G-bundle CHP.
The map i∗p∗(ω, α) is the restriction to H-subbundles of the composite

G×K V
ξG(x)−1

//p∗(x)
ω̃1 //p∗(y)

ξG(y) //G×L W

Here ξG(x) and ξG(y) are two of the chosen isomorphisms used in defining the
equivalence V G −→ VG. The required isomorphism φ is specified by φ(x) =
ξG(x)ξH(x)−1, where ξG(x) is restricted to the canonical H-subbundles. The point
is that we obtain an isomorphism of representations even though we must make
independent choices of the ξG(x) and ξH(x). ¤

Let (S VG, SG) denote the universal orientable representation in VG. The rep-
resentation (i∗S VG, i∗SG) in VH is not universal, but it is orientable. Therefore it
admits an orientation

(17.3) (FG
H , φG

H) : (i∗S VG, i∗SG) −→ (S VH , SH).

Although there seems to be no canonical choice of (FG
H , φG

H), we may think of it
as specifying a universal way to orient the underlying H-bundle of an oriented
G-bundle. That is, given an orientation

(F, φ) : (ΠGB, p∗) −→ (S VG, SG)

of a G-bundle p : E −→ B, we define the induced orientation of p|H to be the
composite

(17.4) (FG
H , φG

H) ◦ (i∗F, i∗φ).

Here we use Propositions 17.1 and 17.2 to interpret the domain of (i∗F, i∗φ) as
(ΠHB, (p|H)∗). The dimensions of bundles are unchanged under these construc-
tions, so that we can work equally well with VH(n) and VG(n).

To study bundles associated to a subquotient group WH = NH/H, we can use
the observations above to first restrict down from G to NH. Thus, thinking of
the normal subgroup H of NH with quotient group WH, we change notations and
consider a normal subgroup N of a group G with quotient group J . Let q : G −→ J
be the quotient homomorphism.

We have the functor
q∗ : OJ −→ OG

given by q∗J/K = G/H on objects, where H = q−1K. Since q induces an isomor-
phism of G-spaces from G/H to J/K regarded as a G-space via q, we can define
q∗ on maps by regarding a J-map of orbits as a G-map of orbits. For a groupoid
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π : E −→ OG over OG, let q∗E denote the pullback of E along q∗. By Proposition
16.2, q∗E is a groupoid over OJ that is skeletal, faithful, or discrete over OJ if E
is skeletal, faithful, or discrete over OG. The functor q∗ is an injection, and q∗ just
restricts E to those orbits G/H such that H contains N .

We also have the functor
q∗ : OG −→ OJ

that sends a G-orbit G/H to the J-orbit J ×G G/H ∼= G/HN ∼= J/K, where
K = HN/N . In contrast to our previous functors between orbit categories, q∗
is not an injection. Observe that the composite q∗q∗ : OG −→ OG sends G/H to
G/HN . The quotient G-maps γ : G/H −→ G/HN specify a natural transformation
γ : Id −→ q∗q∗ of functors OG −→ OG. For a groupoid F over OJ , let q∗F denote
the pullback of F along q∗. By Proposition 16.2, q∗F is a groupoid over OG that
is skeletal or discrete over OG if F is skeletal or discrete over OJ . We shall be
interested mainly in the case F = q∗E , where E is a groupoid over OG. An object
of q∗q∗E is a pair (G/H, x), where x is an object of E such that π(x) = G/HN ;
a morphism (G/H, x) −→ (G/L, y) is a pair (α, ω), where α : G/H −→ G/L,
ω : x −→ y, and π(ω) is the map G/HN −→ G/LN induced by α.

For a G-space X, XN is a G-space with action factoring through J .

Proposition 17.5. For a G-space X, q∗ΠGX is isomorphic over OJ to ΠJXN

and q∗q∗ΠGX is isomorphic over OG to ΠGXN .

Proof. If H ⊃ N and K = q(H), then XH = (XN )K . An H-fixed point of X
can be viewed as either a G-map G/H −→ X or a J-map J/K −→ XN , and
similarly for paths. This gives the first isomorphism. For a general subgroup H of
G, (XN )H = XHN . An H-fixed point of XN can be viewed either as G/H together
with a G-map G/HN −→ X or as a G-map G/H −→ XN , and similarly for paths.
This gives the second isomorphism. ¤

However, q∗VG is not isomorphic to VJ since q∗VG is the groupoid over OJ of
G-bundles over N -fixed orbit spaces and the total space G×H V of such a G-bundle
need not be N -fixed. Letting K = q(H) and taking N -fixed points, we obtain the
J-bundle (G ×H V )N ∼= J ×K V N over J/K. Since this gives fixed point bundles
of varying dimensions, we must work with VG and VJ rather than working one
dimension at a time. Let

ΦN : q∗VG −→ VJ

denote the functor obtained by passage to N -fixed bundles. The orthogonal com-
plement VN of V N is an H-subrepresentation of V , and we also have the functor

ΦN : q∗VG −→ q∗VG

that sends G×H V to G×H VN . Finally, we shall need the functor

Γ: q∗q∗VG −→ VG

that sends an object (G/H, G×HN V −→ G/HN) to the pullback G×H V −→ G/H
along the quotient G-map γ : G/H −→ G/HN .

Proposition 17.6. Let p : E −→ B be a G-bundle and let pN be the complementary
G-bundle to the N -fixed point J-bundle pN over BN , so that pN ⊕pN

∼= p|BN as G-
bundles. The representation (pN )∗ : ΠJBN −→ VJ is isomorphic to the composite

ΠJBN ∼= q∗ΠGX
q∗p∗ //q∗VG

ΦN
//VJ .
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The representation (pN )∗ : ΠGBN −→ VG is isomorphic to the composite

ΠGBN ∼= q∗q∗ΠGX
q∗q∗p∗ //q∗q∗VG

q∗ΦN //q∗q∗VG
Γ //VG.

Proof. The proof is precisely analogous to that of Proposition 17.2, but with passage
to N -fixed point bundles and to complementary G-bundles replacing restriction to
H-subbundles. With an evident notation, the isomorphism φ from (pN )∗ to the
displayed composite is given on objects x : J/K −→ BN by φ(x) = ξG(x)NξJ(x),
and similarly for (pN )∗. ¤

The representations (q∗S VG,ΦN ◦q∗SG) in VJ and (q∗q∗S VG, Γ◦q∗ΦN ◦q∗q∗SG)
in VG are not universal, but they are orientable. Therefore they admit orientations

(17.7) (FG
J , φG

J ) : (q∗S VG, ΦN ◦ q∗SG) −→ (S VJ , SJ).

and

(17.8) (F̄N
G , φ̄N

G ) : (q∗q∗S VG, Γ ◦ q∗ΦN ◦ q∗q∗SG) −→ (S VG, SG).

We think of (FG
J , φG

J ) and (F̄N
G , φ̄N

G ) as specifying universal ways to orient the N -
fixed J-bundle pN and the complementary G-bundle pN of an oriented G-bundle
p. That is, given an orientation

(F, φ) : (ΠGB, p∗) −→ (S VG, SG)

of a G-bundle p : E −→ B, we define the induced orientation of pN to be the
composite

(17.9) (FG
J , φG

J ) ◦ (q∗F, ΦN ◦ q∗φ),

and we define the induced orientation of pN to be the composite

(17.10) (F̄N
G , φ̄N

G ) ◦ (q∗q∗F, Γ ◦ q∗ΦN ◦ q∗q∗φ).

Here we use Propositions 17.5 and 17.6 to interpret the domains of (q∗F, ΦN ◦ q∗φ)
and (q∗q∗F, Γ ◦ q∗ΦN ◦ q∗q∗φ) as (ΠJB, (pN )∗) and (ΠGB, (pN )∗).

18. Variant kinds of orientations

Nonequivariantly, there is only one sensible definition of an orientation of a vector
bundle, but this is a calculational fact that does not extend to the equivariant
setting. The point is that

Z2
∼= π0(O(n)) ∼= π0(PL(n)) ∼= π0(Top(n)) ∼= π0(F (n))

for all n ≥ 1, including n = ∞. Nothing like this holds equivariantly. We should
think of these groups as the groups of homotopy classes of linear, PL, topological, or
homotopical equivalences of the n-sphere. If we consider instead a G-representation
V and its associated G-sphere, we get different answers as the category varies. By
forgetting or stabilizing structure, we obtain (at least) eight different reasonable
orientation theories on G-vector bundles corresponding to the linear, piecewise lin-
ear, topological, and homotopical categories and their stable variants. Similarly,
there are six orientation theories for PL G-bundles, four for topological G-bundles,
and two for spherical G-fibrations. We proceed to make this precise, the crucial
point being that our categorical framework is sufficiently general to set up and
compare all of these variants with little additional work. The following diagram
displays the skeletal groupoids over OG that serve as the target categories for the
relevant representations.
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(18.1)

VG(n) //

²²

PLG(n) //

²²

TopG(n) //

²²

FG(n)

²²
sVG(n) // sPLG(n) // sTopG(n) // sFG(n)

We shall write Cat as shorthand for any one of V , PL , Top, or F . To form
the top row of (18.1), we take skeleta of the categories CatG(n) of G-vector bundles
over orbits, with morphisms being, respectively, the homotopy classes of maps of
G-vector bundles, PL G-bundles, topological G-bundles, and spherical G-fibrations.
In the last case, we identify objects with their fiberwise one-point compactifications
and understand maps to mean maps that preserve the resulting section. We are
requiring our fibers to be equivalent, in the appropriate sense, to linear representa-
tions since we are interested in locally linear bundle and fibration theories. There
are further variants in which more general fibers are allowed, for example based
spaces homotopy equivalent to spheres in the fibration case. In all four cases, there
is an analogue of Lemma 2.3 that gives a complete description of maps in CatG(n)
in terms of the homotopy theory of CatG(n)-maps between representations. The
source lifting and divisibility properties required of a groupoid over OG are easily
checked for these categories. The arrows of the top row of (18.1) are obtained by
neglect of structure, together with choices of isomorphisms of representative objects
as we pass from more rigid to less rigid types of bundles.

The bottom row of (18.1) is the stabilization of the top row. To control the
relevant colimits, we let U be the direct sum of countably many copies of each irre-
ducible representation of G; that is, U is a “complete G-universe”. By a subspace
of U , we understand a finite dimensional sub inner product space. Observe that U
is also a complete H-universe for any H ⊂ G since any representation of H extends
to a representation of G on a possibly larger vector space. We stabilize over U as
follows. Consider objects G×H V and G×K W in CatG(n). A stable map between
these objects over a given base map α : G/H −→ G/K is the image in the colimit
of a homotopy class of CatG(n)-bundle maps

α̃ : G×H (V ⊕ Z) −→ G×K (W ⊕ Z)

over α, where Z is a K-subspace of U . The maps of the colimit system are given
by “suspension”: for Z ⊂ Z ′, we suspend α̃ to a map

G×H (V ⊕ Z ′) −→ G×K (W ⊕ Z ′)

by taking its product with the identity map of the trivial bundle Z ′−Z −→ ∗, where
Z ′ − Z is the orthogonal complement of Z in Z ′. We emphasize that ⊕ denotes
external direct sum in the previous two displays. Using the objects of CatG(n) but
replacing maps by stable maps, we obtain a groupoid sCatG(n) over OG. Taking a
skeleton, we obtain the category sCatG(n). Choosing isomorphisms between objects
of CatG(n) and the chosen representatives of their stable equivalence classes and
sending maps to their stable equivalence classes, we obtain a functor CatG(n) −→
sCatG(n). We obtain the arrows in the bottom row of (18.1) similarly. The four
squares then commute up to natural isomorphisms, which are again determined by
the chosen isomorphisms between representative objects.

The CatG(n) analogs of Proposition 2.7 are valid. A CatG(n) G-bundle or fibra-
tion p : E −→ B determines a functor p∗ : ΠG(B) −→ CatG(n) over OG. The proof
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is based on the appropriate bundle covering homotopy property. Using the functor
CatG(n) −→ sCatG(n), we obtain the stable analogue. Definition 2.8 then gives
us eight notions of orientability corresponding to these eight choices for the target
category. Similarly, Theorem 7.5 gives us eight universal orientable representations.
If R denotes any of the eight target categories, we have a corresponding universal
orientable representation (S R, S). By varying the target groupoid, and so the
corresponding universal representation, Definition 7.9 gives us the eight different
notions of an orientation of a G-vector bundle, and similarly for PL G-bundles and
so on. By Proposition 16.1, if ρ : R −→ R′ is any one of the functors over OG

displayed in (18.1), then there is a map σ : S R −→ S R′ of groupoids over OG

that covers ρ. This allows us to compare our various kinds of orientations.
We give a few examples. Observe first that the functor VG(n) −→ sVG(n) can be

taken to be the identity on objects, since if two representations are stably equivalent,
then they have the same characters and are therefore equivalent. This is implied
by the fact that RO(H) is the free group on the irreducible representations, and
it does not carry over to our other categories. Moreover, we see from the proof of
Lemma 2.6 that the functor VG(n) −→ sVG(n) is faithful.

Example 18.2. Let G = Z/2. There are two stable self-maps of V0 and Vn in
sVG(n) that are not in VG(n); that is, the exceptional cases in parts (a)(ii) and
(c) of Example 10.2 are not exceptional stably. We see that SsVG(n) = S VG(n)
and that S : SsVG(n) −→ sVG(n) is the composite of S : S VG(n) −→ VG(n) and
the stabilization functor VG(n) −→ sVG(n). The main change is that the group of
automorphisms Ω(SsVG(n), S) is an elementary abelian two group of order 2n+3.

Example 18.3. Let G be a finite group of odd order and again consider sVG(n).
The stable analogue of Construction 12.2 is similar but simpler since, stably, one
need not consider the case V H = 0 separately. The category SsVG(n) has one
object v over G/H corresponding to each bundle G ×H V in VG(n). There is a
map m : v −→ w over α : G/H −→ G/K whenever there is a stable G-bundle
map G ×H V −→ G ×K W covering α; the functor S carries m to the unique
stable bundle map preserving chosen orientations. While, as in Proposition 16.1,
we can construct a functor σ : S VG(n) −→ SsVG(n) that covers the functor
ρ : VG(n) −→ sVG(n), it is more natural to let σ send both v+ and v−, when
present, to v, and send maps labeled m, m+, or m− to m. We then have a natural
isomorphism φ : ρ ◦ SVG(n) −→ SsVG(n) ◦ σ that is the identity on objects v or v+,
and is the orientation reversing stable self map of G×H V on objects v−.

Probably the most interesting variant of orientation theory is the one concerning
stable spherical G-fibrations, which fits naturally into equivariant stable homotopy
theory. Here the Burnside rings A(H) of the subgroups of G come into play. In fact,
it is immediate from the definitions and the standard isomorphism between A(H)
and the zeroth stable H-homotopy group of S0 that the self maps in sFG(n) of any
object G×H SV form a copy of the group of units in A(H). (A more general result
may be found in [9, 10.2.2].) There are fewer objects in sFG(n) than in VG(n)
since inequivalent representations can have stably homotopy equivalent spheres.
For finite groups, an analysis of when this happens may be found in [9, §9.1]; by
a result of Traczyk, the case of general compact Lie groups reduces to the case of
finite groups [27]. Since, as in the nonequivariant world, equivariant cohomology
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theories detect only stable homotopy type, stable spherical orientations are the
appropriate ones to relate to ideas of cohomological orientation.

19. Categories of virtual G-bundles

As said in the introduction, we defer comparison between geometric and coho-
mological oriention theory to later work. However, as is made clear in [4, 5], for
such work it is useful to have four more variants of the basic theory, in which sta-
ble bundles are replaced by virtual bundles. In fact, the diagram (18.1) can be
extended by adding another row of skeletal groupoids over OG.

(19.1)

sVG(n) //

²²

sPLG(n) //

²²

sTopG(n) //

²²

sFG(n)

²²
vVG(n) // vPLG(n) // vTopG(n) // vFG(n)

The bottom row, which is also defined for negative values of n, is obtained from
the top row by passage to virtual bundles. Thus vCatG(n) is a skeleton of the
category vCatG(n) of virtual G-vector bundles of virtual dimension n and virtual
CatG-maps. Here a virtual G-vector bundle of virtual dimension n is a pair of
bundles (E,F ) = (G×H V1, G×H V2) over the same G-orbit, with |V1| − |V2| = n.
We think of (E, F ) as a formal difference E−F . Intuitively, a virtual map is a stable
pair of maps, but we must be careful with the definition. Define a virtual map from
(G×H V1, G×H V2) to (G×K W1, G×K W2) over a map of orbits α : G/H −→ G/K
to be the equivalence class of a pair of CatG-maps

fi : G×H (Vi ⊕ Z) −→ G×K (Wi ⊕ Z ′)

over α, where Z is an H-subspace of U and Z ′ is a K-subspace of U such that
|V1| + |Z| = |W1| + |Z ′| and thus also |V2| + |Z| = |W2| + |Z ′|. The equivalence
relation is generated by two basic relations, the first being G-bundle homotopy.
The second relation is as follows. Let k : G ×H T −→ G ×K T ′ be a CatG-map
over α, where T is an H-subspace of U orthogonal to Z and T ′ is a K-subspace
of U orthogonal to Z ′. Then the pair (f1, f2) is equivalent to the “suspension”
(f1 ⊕ k, f2 ⊕ k), where

fi ⊕ k : G×H (Vi ⊕ (Z ⊕ T )) −→ G×K (Wi ⊕ (Z ′ ⊕ T ′))

is the obvious fiberwise direct sum of maps. Note that, in Z⊕T , the sum is internal
in U . Composition is defined by suspending until the morphisms can be composed
as pairs of bundle maps. The following easily verified observation, applied to U
regarded as an H-universe, implies that this gives a well-defined category.

Lemma 19.2. Let U be a complete G-universe, let V , V ′, W , and W ′ be G-
subspaces of U , and suppose given CatG-maps h : V −→ V ′ and k : W −→ W ′.
Then there exist G-subspaces Z and Z ′ of V such that V ⊂ Z, W ⊂ Z, V ′ ⊂ Z ′,
and W ′ ⊂ Z ′ together with CatG-maps

j : (Z − V ) −→ (Z ′ − V ′) and ` : (Z −W ) −→ (Z ′ −W ′)

such that h⊕ j ' k ⊕ ` : Z −→ Z ′ as CatG-maps. If V = V ′, we can take j ' id.
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It is not hard to check that vCatG(n) is a groupoid over OG. It is also not hard
to check that the set of isomorphism classes of objects over G/H in vVG(n) is in
bijective correspondence with the set of n-dimensional elements of RO(H); objects
of the other categories admit similar descriptions. For n ≥ 0, we define a map
sCatG(n) −→ vCatG(n) by passing to skeleta from the evident functor that sends
the G-bundle G×H V to the pair (G×H V, G×H 0). This functor is an inclusion of
groupoids over OG. Using this functor, we obtain a theory of virtual orientations
of virtual G-vector bundles, by taking pairs of orientations in the evident fashion.

To relate equivariant orientation theory to equivariant classifying spaces, it is
convenient to have small categories that, although not skeletal, are defined in terms
of the complete universe U and are equivalent to the skeletal categories CatG(n),
sCatG(n), and vCatG(n).

Definition 19.3. Fix a complete G-universe U .
(i) Define CatG(n, U) to be the full category of CatG(n) whose objects are the

G-vector bundles of the form G×H V for any H ⊂ G and any n-dimensional
H-subspace V of U .

(ii) Define vCatG(n,U) to be the colimit over the G-subspaces V of U of the
categories CatG(n + |V |, V ⊕ U), where the colimit runs over the functors

CatG(n + |V |, V ⊕ U) −→ CatG(n + |W |, W ⊕ U)

that are obtained by adding W − V ⊂ W to objects and maps, where
V ⊂ W .

(iii) Define sCatG(n,U) to be the image of CatG(n,U) in vCatG(n,U) obtained
by setting V = {0} in the colimit system.

It is clear that the composite of the inclusion CatG(n,U) ⊂ CatG(n) and the
retraction CatG(n) −→ CatG(n) is an equivalence of categories. The analogue for
virtual bundles is less obvious.

Proposition 19.4. The categories vCatG(n) and vCatG(n,U) are equivalent, and
the equivalence restricts to an equivalence between sCatG(n) and sCatG(n,U).

Proof. For each H-representation V such that G ×H V is an object of CatG(n),
choose an H-space V̄ ⊂ U and an H-linear isomorphism iV : V −→ V̄ . These
choices determine a functor CatG(n) −→ CatG(n, U) that is an equivalence of
categories. Also, choose an H-space V̄ ⊥ ⊂ U such that V̄ ⊥ is orthogonal to V̄
and V̄ ⊕ V̄ ⊥ is a G-space, and choose a G-isomorphism jV : U −→ (U − (V̄ ⊕ V̄ ⊥)).

We first define a functor J : vCatG(n,U) −→ vCatG(n). An object X of
vCatG(n, U) is represented by an object G×H V1 of some CatG(n+|V2|, V2⊕U), and
we let J(X) be the object of vCatG(n) isomorphic to the object (G×H V1, G×H V2)
of vCatG(n). That is, we think of X as the virtual G-bundle G×H V1−G×H V2. If
G×K W1 in CatG(n+ |W2|,W2⊕U) represents a second object Y and φ : X −→ Y
is a map in vCatG(n,U), then φ is represented by a CatG-map

f1 : G×H (V1 ⊕ Z) −→ G×K (W1 ⊕ Z ′)

in CatG(n + |T |, T ⊕ U), where Z and Z ′ are G-subspaces of U such that Z is
orthogonal to V2, Z ′ is orthogonal to W2, and V2 ⊕ Z = W2 ⊕ Z ′ = T , say. We let
J(φ) : J(X) −→ J(Y ) be the map represented by the pair (f1, f2), where

f2 : G×H (V2 ⊕ Z) −→ G×K (W2 ⊕ Z ′)
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is induced by the base map G/H −→ G/K of f1 and the identity map on T .
We next define a functor R : vCatG(n) −→ vCatG(n,U). Consider an object

X = (G×H V1, G×H V2) of vCatG(n). Embed the external direct sum V̄ ⊥
2 ⊕ V̄1 in

the universe V̄2⊕ V̄ ⊥
2 ⊕U by including V̄ ⊥

2 in V̄2⊕ V̄ ⊥
2 and including V̄1 in U . This

allows us to view G×H (V̄ ⊥
2 ⊕ V̄1) as an object of CatG(n+ |V2⊕ V̄ ⊥

2 |, V̄2⊕ V̄ ⊥
2 ⊕U),

and we let R(X) be the image of this object in the colimit vCatG(n,U).
For a virtual map φ : (G×H V1, G×H V2) −→ (G×K W1, G×K W2) represented

by CatG-maps
fi : G×H (Vi ⊕ Z) −→ G×K (Wi ⊕ Z ′),

define R(φ) as follows. Using Lemma 19.2, we can find an H-space T in U that is
orthogonal to both V̄2 ⊕ V̄ ⊥

2 and Z and a K-space T ′ in U that is orthogonal to
both W̄2 ⊕ W̄⊥

2 and Z ′ together with a G-map

k : G×H (V̄ ⊥
2 ⊕ T ) −→ G×K (W̄⊥

2 ⊕ T ′)

(where the sums are external) such that
(i) Z ⊕ T and Z ′ ⊕ T ′ are G-subspaces of U .
(ii) V̄2 ⊕ V̄ ⊥

2 ⊕ jV2(Z ⊕ T ) = W̄2 ⊕ W̄⊥
2 ⊕ jW2(Z

′ ⊕ T ′) = S, say, and
(iii) The CatG-map G ×H S −→ G ×K S induced by f2 ⊕ k and our chosen

isomorphisms is the map induced by the base map G/H −→ G/K of f1

and the identity map on S.
We let R(φ) be the map in vCatG(n,U) that is represented in CatG(n+ |S|, S⊕U)
by the map G×H S −→ G×K S induced by f1 ⊕ k and our chosen isomorphisms.
Here, in the domain and target respectively, we are thinking of S as

V̄2 ⊕ V̄ ⊥
2 ⊕ jV2(Z ⊕ T ) and W̄2 ⊕ W̄⊥

2 ⊕ jW2(Z
′ ⊕ T ′).

It is laborious, but straightforward, to check that J and R are inverse equiva-
lences of categories. ¤

The categories just defined are closely related to standard models for equivariant
classifying spaces. We let C =

∐
n C (n) for any of the families of groupoids C (n)

over OG that we have introduced.

Definition 19.5. Let U be a complete G-universe. Define BOG(n,U) to be the
Grassmann G-space of n-dimensional subspaces of U ; G acts via restriction of its
action on U . Of course, BOG(n,U) is the colimit of the Grassmann G-manifolds
of n-planes in G-spaces V ⊂ U . Similarly, let

BOG(U) = colimV⊂U (q n BOG(n, V ⊕ U)),

where the colimit runs over the G-spaces V ⊂ U and the system of maps

BOG(n, V ⊕ U) −→ BOG(n + |W − V |,W ⊕ U)

given by addition of the plane W − V for V ⊂ W .

It is standard [14, 18] that BOG(n,U) classifies n-dimensional G-vector bundles
and that BOG(U) classifies virtual G-vector bundles over finite G-CW complexes X.
For the latter, this means that KOG(X) = [X, BOG(U)]G. A direct comparison
of definitions gives the following relationship between categories of bundles and
fundamental groupoids.

Proposition 19.6. As groupoids over OG,

VG(n,U) ∼= ΠG(BOG(n,U)) and vVG(U) ∼= ΠG(BOG(U)).
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Part V. The classification of oriented G-bundles

20. Introduction: classifying G-spaces

The main purpose of this part is to display classifying G-spaces for oriented
G-bundles and G-fibrations. We take the opportunity to explain several related
classifying spaces and classification theorems. We shall focus on G-vector bundles,
but the arguments apply equally well to topological G-bundles and to spherical
G-fibrations. The case of PL G-bundles requires the use of analogous simplicial
techniques and will be left to the interested reader.

Our construction of classifying G-spaces relies on the two-sided categorical bar
construction of [21, §12]. Modulo a slight change of language, B assigns a G-
space B(Y ,D , X ) to each triple consisting of a small topological category D , a
continuous covariant functor X : D → GU , and a continuous contravariant functor
Y : D → U . The G-space B(Y , D ,X ) is the geometric realization of the simplicial
G-space whose space Bn(Y ,D , X ) of n-simplices consists of tuples y[fn, . . . , f1]x,
where fi : di−1 → di is a map in D , x ∈ X (d0), and y ∈ Y (dn); B0(Y , D ,X ) is
the disjoint union over the objects of D of the spaces Y (d) × X (d). The action
of G on Bn(Y , D ,X ) is induced by the action of G on the X -coordinate. The
construction is functorial in all three variables.

The G-space B(Y , D , X ) is a fattened up homotopical version of the coend

Y ⊗D X =
∫ d∈D

Y (d)×X (d),

and there is a canonical map

ε : B(Y , D ,X ) −→ Y ⊗D X .

We sometimes also write ε for its composite with a given G-map

Y ⊗D X −→ Z.

We think of Y as a D-shaped diagram and call it a D-space. We think of X as a
fixed functor used to induce a G-action on a coalescence of Y to a single space.

For example, Elmendorf [12] applied this construction to construct a G-space
ΨT associated to an OG-space T . Here ΨT = B(T,OG, ι), where ι : OG −→ GU is
the evident functor that sends an orbit G/H, regarded as an object of the category
OG, to the orbit G-space G/H. Passage to fixed point spaces XH associates an
OG-space ΦX to a G-space X, and there is a natural spacewise weak equivalence
ΦΨT −→ T . It provides the counit of an adjunction

(20.1) [X, ΨT ]G ∼= [ΦX,T ]OG

for G-CW complexes X [12], [13, V.3.2]. The unit X −→ ΨΦX of the adjunc-
tion is a G-homotopy equivalence. Formally, this adjunction arises from a Quillen
equivalence of model categories [26], [20, III§1].

Passage to components gives a natural discretization map δ from an OG-space
T to a discrete (or set-valued) OG-space π0(T ). In particular, we have δ : ΦX →
π0(ΦX). We say that X is homotopically discrete if δ is a spacewise weak equiva-
lence, so that each component of each fixed point space XH is weakly contractible.

Examples of homotopically discrete G-spaces ΨT that are constructed from dis-
crete OG-spaces T are central to the classification of G-bundles. In particular, recall
that a family F of (closed) subgroups of a topological group G is a set of subgroups
closed under passage to conjugates and subgroups and observe that F determines a
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discrete OG-space TF that takes G/H to a point if H ∈ F and to the empty space
if H /∈ F . The G-space ΨTF is denoted EF and called the universal F -space.

We are concerned with categories D over OG; that is, we are given a fixed
continuous functor π : D −→ OG. We compose this functor with ι : OG −→ GU
to obtain a functor ι ◦ π : D −→ GU . The following definition fixes notations for
the G-spaces of greatest interest to us.

Definition 20.2. Define the classifying G-space of a category D over OG to be

BD = B(∗,D , ι ◦ π),

where ∗ is the constant functor that takes each object of D to a point. More
generally, for a contravariant functor Y : D −→ U , define

B(Y , D) = B(Y ,D , ι ◦ π).

Since (G/K)H = OG(G/H, G/K),

B(Y , D)H = B(Y ,D , OG(G/H, ιπ(−))).

In the following four sections, we explain how to use the bar construction to
classify G-bundles and G-fibrations, oriented G-bundles, oriented G-fibrations, and
representations of fundamental groupoids in a given groupoid R over OG. The
methods and some of the results are due to Waner [29, 30], who gave the equivariant
generalization of the nonequivariant classification theory developed by May [21, 22].
Since our methods are quite similar to those in the cited references, we will not give
complete details of all proofs.

21. The classification of G-bundles and spherical G-fibrations

Our theory of orientations is based on the bundles of groupoids over OG that are
described in §§1–4. Here the term “bundle” refers to bundles with discrete fibers,
in accordance with the definitions of §5. These groupoids over OG are obtained
by passage to equivalence classes of maps from much richer categories over OG.
For example, when G = e, V (n) is just π0(O(n)), regarded as a category with a
single object Rn. To classify bundles, we need to use O(n) itself. The equivariant
situation is similar. We will use Roman letters for categories that correspond in
this way to some of the categories specified by script letters in §18. We continue to
write π for the functors from these larger categories to OG.

Definition 21.1. Define VG(n) to be the category over OG whose objects are the
objects of VG(n) but whose morphisms G ×H V −→ G ×K W are the maps of G-
vector bundles, topologized with the function space topology. Passage to homotopy
classes of maps gives a functor ω : VG(n) −→ VG(n) over OG. Define TopG(n) and
FG(n) similarly, using maps of topological G-bundles and of spherical G-fibrations.

The functor π : VG(n) −→ OG is given by passage to base spaces, and it is
continuous. Since ω ◦π = π, it is clear that ω : VG(n) −→ VG(n) is also continuous,
where VG(n) is topologized as in Proposition 4.1. In fact, by compactness, it
follows that the topologies on morphism spaces specified there must coincide with
the quotient topologies induced from the topologies on the morphism spaces of
VG(n). Similarly, the functors

ω : TopG(n) −→ TopG(n) and ω : FG(n) −→ FG(n)
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are continuous, although in these cases we do not know whether or not the quotient
topology coincides with the topologies defined as in Proposition 4.1.

The following theorem gives the relevant special cases of Waner’s general classifi-
cation theorems [29] for equivariant bundles and fibrations. In particular, it implies
that BVG(n) is equivalent to the Grassmann classifying G-space BOG(n,U) speci-
fied in Definition 19.5.

Theorem 21.2. The G-space BVG(n) classifies G-vector bundles of dimension n.
That is, for G-CW complexes X, [X,BVG(n)]G is in natural bijective correspon-
dence with the set of equivalence classes of G-n-plane bundles over X. Similarly
BTopG(n) classifies locally linear topological G-bundles of dimension n and BFG(n)
classifies locally linear sectioned spherical G-fibrations of dimension n.

Here the term “locally linear” refers to our restriction to fibres homeomorphic
to G ×H V or fiber homotopy equivalent to G ×H SV for some subgroup H of G
and H-representation V . The term “sectioned” refers to our use of fibrations with
based fibers whose basepoints give a canonical section.

There is an earlier and perhaps more conceptual proof of the classification theo-
rem that applies to G-vector bundles and topological G-bundles but not to spheri-
cal G-fibrations. We describe it in the case of G-vector bundles. For a topological
structure group Π, such as Π = O(n) or Π = Top(n), a principal (G, Π)-bundle is a
Π-free (G×Π)-space. We think of G as acting from the left and Π as acting from the
right, the two actions commuting. Just as in nonequivariant bundle theory, every
n-dimensional G-vector bundle p : E −→ X has an associated principal (G, O(n))-
bundle π : P −→ X, and equivalence classes of G-n-plane bundles over X are in
bijective correspondence with equivalence classes of principal (G,O(n))-bundles.
The analogue for topological G-bundles also holds.

There is a standard construction of a universal principal (G, Π)-bundle π :
EG(Π) −→ BG(Π) in terms of the universal F -space for a well chosen family
F of subgroups of G×Π.

Definition 21.3. Let FG(Π) be the family of subgroups Λ of G × Π such that
Λ ∩ Π = {e}. Such a subgroup Λ has the form {(h, λ(h)) | h ∈ H} for some
subgroup H ⊂ G and homomorphism λ : H → Π. Define

EG(Π) = EFG(Π) and BG(Π) = EFG(Π)/Π

and let π : EG(Π) −→ BG(Π) be obtained by passage to orbits.

The G-map π is the universal principal (G, Π)-bundle; see [13, VII§2], for exam-
ple.

Theorem 21.4. For G-CW complexes X, [X, BG(Π)]G is in natural bijective cor-
respondence with the set of equivalence classes of principal (G, Π)-bundles over X.

Remarks 21.5. (i) When Π = O(n), we view a homomorphism λ : H −→ O(n) as
specifying an action of H on Rn, and we denote this representation by V (λ). Thus
groups Λ in FG(O(n)) correspond to objects p(λ) : G ×H V (λ) −→ G/H of the
category VG(n). This is the beginning of a direct comparison between our two ways
of classifying G-n-plane bundles.
(ii) When Π = Top(n), we must modify the definition of FG(Π) to account for
our restriction to linear fibers. Viewing subgroups of G × O(n) as subgroups of
G×Top(n), we here take FG(Top(n)) to be the family of subgroups of G×Top(n)
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that is generated under conjugation by the subgroups in the family FG(O(n)). See
[17, §1] for background on the relevant G-bundle theory.

22. The classification of oriented G-bundles

In this section, we give a classification theorem for oriented G-bundles, starting
from Theorem 21.4. We treat spherical G-fibrations in the next section. We assume
throughout that our base G-spaces X have the G-homotopy types of G-CW com-
plexes. For definiteness, fix a representation S : S −→ VG(n). We could use other
of the target categories displayed in (18.1) or (19.1). We have in mind the universal
orientable representation (S VG(n), S). However, (S , S) need not be universal for
the theory of this section, and the generality is likely to have applications in the
study of restricted types of G-bundles.

We have the notion of an orientation (F, φ) : (ΠGB, p∗) −→ (S , S) of a G-n-
plane bundle p : E −→ B. We know what it means for a map of G-bundles to be
orientation preserving, and we can pull back orientations along G-bundle maps; see
Definition 7.9 and Lemma 7.10. We shall classify equivalence classes of oriented G-
bundles under the relation given by orientation preserving equivalence of bundles.
That is, we shall construct a G-vector bundle p : EG(O(n), S) −→ BG(O(n), S)
together with an orientation

µ = (F, φ) : (ΠGBG(O(n), S), p∗) −→ (S , S)

such that (p, µ) is universal in the sense that pullback of bundles and orientations
along G-maps specifies a bijection from the set [X,BG(O(n), S)]G of G-homotopy
classes of G-maps X −→ BG(O(n), S) to the set of equivalence classes of oriented
G-n-plane bundles over X. We begin by giving a diagrammatic description of
orientations. Recall Definition 21.3 and Remark 21.5(i).

Definition 22.1. We define a discrete OG×O(n)-space TS . Let TS(G × O(n)/Λ)
be empty if Λ /∈ FG(O(n)) and be the set of orientations of G×H V (λ) −→ G/H
in (S , S) if Λ ∈ FG(O(n)). As is easily checked from Lemma 2.3, a (G × O(n))-
map from G×O(n)/Λ to G×O(n)/Λ′ determines and is determined by a map of
G-vector bundles from G×H V (λ) −→ G/H to G×H′ V (λ′) −→ G/H ′. Thus, by
pullback of orientations, TS is a well-defined contravariant functor on OG×O(n).

Remark 22.2. Taking S = S VG(n), Proposition 2.9 and Example 2.10 show that
TS(G×O(n)/Λ) is non-empty if G is finite and Λ ∈ FG(O(n)), but that this fails
for general compact Lie groups G.

We have the following basic observation. See for example [16, Thm. 12] for
the analysis of the fixed point spaces of principal (G,O(n))-bundles and their base
spaces which is used in its proof.

Lemma 22.3. Let p : E −→ B be a G-n-plane bundle and let π : P −→ B be
its associated principal (G,O(n))-bundle. An orientation (F, φ) of p in (S , S)
determines and is determined by a map of OG-spaces θ : ΦP −→ TS.

Proof. We have E = P ×O(n) Rn and B = P/O(n). Let x ∈ BH . If π(y) = x, then
y ∈ PΛ for some Λ = {(h, λ(h)) | h ∈ H}; Λ and thus λ are determined by x only
up to O(n)-conjugacy. There is a unique choice such that the corresponding bundle
p(λ) : G ×H V (λ) −→ G/H is in the skeletal category VG(n), and p∗(x) = p(λ).
Regarding x as a G-map G/H −→ B, the specification of p∗ on morphisms depends
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further on a fixed choice of isomorphism between the pullback of p along x and the
bundle p(λ). Such an isomorphism is given by a bundle map x̃ : G×H V (λ) −→ E
over x, and the choice of such a map is equivalent to the choice of y ∈ PΛ. Two
choices of y differ by right action by an element τ in the centralizer O(n)λ of λ, and
the corresponding maps x̃ differ by precomposition with the bundle automorphism
of G ×H V (λ) determined by τ . The choice of retraction V̄G(n) −→ VG(n) in
Definition 2.2 fixes x̃ and thus y.

A map θ : ΦP −→ TS of OG-spaces is given by a natural choice of maps constant
on components from the spaces PΛ to the sets of orientations of the bundles p(λ).
Write (Fy, φy) for the orientation assigned to the component of y. Thus Fy is a
functor ΠG(G/H) −→ S over OG and φy is an isomorphism S ◦Fy −→ p(λ)∗ over
OG. We specify the corresponding orientation (F, φ) of p by letting the functor
F : ΠGB −→ S be given on objects x = π(y) ∈ BH by F (x) = Fy(idG/H).
The specification of F on morphisms and the specification of the isomorphism
φ : S◦F −→ p∗ over OG are similarly determined by the choices above together with
the functors Fy and isomorphisms φy specified by θ. The details of the verification
that this gives a bijective correspondence are tedious but straightforward. ¤

Theorem 22.4. There exists a universal oriented bundle (p, µ). The G-n-plane
bundle p : EG(O(n), S) −→ BG(O(n), S) is characterized as follows. If p : E −→ B
is a G-n-plane bundle with associated principal (G,O(n))-bundle π : P −→ B, then
p admits an orientation µ in (S , S) such that (p, µ) is universal if and only if P
is homotopically discrete and the diagram π0(ΦP ) is isomorphic to TS.

Proof. Define PG(O(n), S) = ΨTS and BG(O(n), S) = PG(O(n), S)/O(n), and let

EG(O(n), S) = PG(O(n), S)×O(n) Rn.

With the evident projections p and π, this gives a G-n-plane bundle whose asso-
ciated principal (G,O(n))-bundle has the prescribed fixed point structure. By the
lemma, the discretization map δ : ΦPG(O(n), S) −→ TS gives p an orientation µ.
Moreover, PG(O(n), S) is a (G×O(n))-CW complex. The adjunction (20.1) and use
of (G×O(n))-CW approximation imply that any other principal (G,O(n))-bundle
P with the stated fixed point structure is weakly G-equivalent to PG(O(n), S), and
the lemma implies that its associated G-n-plane bundle has a compatible orien-
tation. To check universality, suppose given an oriented G-n-plane bundle over a
G-CW complex X and let Q be its associated principal (G,O(n))-bundle. By the
lemma, the orientation is given by a map θ : ΦQ −→ TS of OG-spaces. By the cited
adjunction, there results a (G × O(n))-map Q −→ PG(O(n), S). Passage to base
G-spaces from this map of principal (G,O(n))-bundles gives the required classifying
G-map X −→ BG(O(n), S), and the rest is routine. ¤

Corollary 22.5. There is a G-map f : BG(O(n), S) −→ BG(O(n)) that represents
the forgetful functor from oriented G-n-plane bundles to G-n-plane bundles.

Proof. Since there is a unique function from any set to a point, there is an evident
natural map of discrete OG-spaces TS −→ TFG(O(n)). We obtain f by first applying
Ψ and then passing to orbits over O(n) ¤

Remark 22.6. We can obtain the analogous results for locally linear topological
G-bundles in exactly the same fashion, replacing O(n) by Top(n) and interpreting
FG(Top(n)) as in Remark 21.5(i).
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23. The classification of oriented spherical G-fibrations

We now turn to the case of spherical G-fibrations, where we follow the methods
of [21, 22, 29, 30]. As in the cited references, slight modifications give alternative
treatments of the cases of G-vector bundles and topological G-bundles.

We fix n and a representation S : S −→ FG(n); we could instead use the
corresponding category of stable or virtual fibrations over orbits. Define a sphere
space to be a G-map p : E −→ B such that, for each b ∈ BH , p : Gp−1(b) −→ Gb is
a sectioned G-fibration that is fiber G-homotopy equivalent to G ×H SV for some
subgroup H of G and representation V of H. A map (f̃ , f) : p −→ p′ of sphere
spaces is a pair of maps f : B −→ B′ and f̃ : E −→ E′ such that p′ ◦ f̃ = f ◦ p
and each f̃ : Gp−1(b) −→ G(p′)−1(fb) is a section-preserving fiber G-homotopy
equivalence. Define an S-sphere space to be a sphere space such that each G-
fibration p : Gp−1(b) −→ Gb has a given orientation µb in (S , S); we do not assume
any compatibility among these orientations at this point. A map of S-sphere spaces
is a map of sphere spaces such that each f̃ : Gp−1(b) −→ G(p′)−1(fb) preserves
orientation. Thus, given (f̃ , f) and the orientations of the fibers of p′, there are
unique orientations of the fibers of p such that (f̃ , f) is a map of S-sphere spaces.

An S-sphere space p : E −→ B is said to be an S-fibration if it satisfies the
S-covering homotopy property (S-CHP): Given an S-sphere space q : D −→ A, a
G-homotopy h : A × I −→ B, and a G-map h̃0 : D −→ E such that (h̃0, h0) is a
map of S-sphere spaces, there is a G-homotopy h̃ that starts at h̃0 and covers h
and is such that (h̃, h) is a map of S-sphere spaces. Here q × I : D × I −→ A × I
has the evident structure of S-sphere space determined by that of q and thus, via
(h̃0, h0), by that of p. We have the following consistency observation.

Lemma 23.1. An S-sphere space p : E −→ B is an S-fibration if and only if p is
a G-fibration with an orientation in (S , S) that induces the given orientations of
the restrictions p : Gp−1(b) −→ Gb.

Proof. If p is a G-fibration with an orientation in (S , S), then the ordinary G-CHP
immediately implies the S-CHP; any covering homotopy is automatically a map of
S-spaces because the orientations of orbits of points connected by paths in the fixed
point spaces of B are compatible. Conversely, the S-CHP obviously implies the G-
CHP, and it also implies that the orientations of orbits have the compatibility on
paths required to specify an orientation of p. ¤

Definitions 23.2. Define a topological category FG(n, S) over OG as follows. Its
objects are pairs (x, µ), where x is an object of FG(n) and µ is an orientation of
x in (S , S). Its morphisms are the maps of S-fibrations, with the function space
topology. Neglect of orientation gives a functor f : FG(n, S) −→ FG(n) over OG.
We define several functors on FG(n, S), and we abbreviate notation by writing
F = FG(n, S).

(i) Define a covariant functor E = EG(n, S) from F to G-spaces by sending
an object (x, µ) to the total space of x and sending a map in F to the
underlying map of total spaces.

(ii) Define a covariant functor B = BG(n, S) from F to G-spaces by sending
an object (x, µ) to the base space of x and sending a map in F to the
underlying map of base spaces. Thus, with the notation of §20, B = ι◦π.We
have an evident natural transformation p : E −→ B.
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(iii) Given an S-sphere space p : E −→ B, define a contravariant functor PE
from F to spaces by sending α = (x, µ) to the space of maps of S-fibrations
x −→ p; PE is specified on morphisms by precomposition. This is to be
viewed as a principalization construction. We define PB by sending α to
the space of maps on base spaces of maps of S-fibrations x −→ p, and
we have the evident natural map PE −→ PB. For each α, PE(α) −→
PB(α) is a nonequivariant fibration (as in [29, I.3.3]).

(iv) For each object α = (x, µ) of F , define a covariant functor E [α] from F to
spaces by sending an object β to the space F (α, β) of maps α −→ β in F ;
E [α] is specified on morphisms by postcomposition. There is an analogous
functor B[α] that sends β to the space of maps on base spaces of morphisms
in F (α, β), and there is an evident natural map p[α] : E [α] −→ B[α].

Theorem 23.3. The G-space BFG(n, S) = B(∗,FG(n, S),BG(n, S)) classifies
S-fibrations. That is, the set of equivalence classes of S-fibrations over a G-CW
complex X is in natural bijective correspondence with the set [X,BFG(n, S)]G.
The G-map Bf : BFG(n, S) −→ BFG(n) represents the forgetful functor from
equivalence classes of S-fibrations to equivalence classes of spherical G-fibrations.

Proof. We sketch the argument, referring the reader to [21, §9] and [29, §2] for
more detailed accounts of analogous proofs. The latter source gives the proof of
Theorem 21.2, and we are simply elaborating the argument to take account of the
orientations. We abbreviate F = FG(n, S), etc. For a sphere space p : E −→ X,
there is a natural way to construct a spherical G-fibration Γp : ΓE −→ X and a
natural map η : p −→ Γp of sphere spaces; η is a fiber G-homotopy equivalence if p
is a G-fibration, in which case a fiber homotopy inverse ξ : Γp −→ p is essentially a
path lifting function. See [21, §3] and [29, 1.2]. If p is an S-sphere space, then Γp
is an S-sphere space and η is a map of S-sphere spaces. The map p is said to be a
G-quasifibration if each pH is a quasifibration, and the map η : E −→ ΓE is then
a weak G-equivalence (see [23] for a modernized treatment of quasifibrations). We
say that p is an S-quasifibration if it is a G-quasifibration with an orientation in
(S , S). (While the pullback of a quasifibration need not be a quasifibration, the
restriction of a sphere space over an orbit is a G-fibration, and it therefore makes
sense to talk about orientations of sphere spaces.)

For any contravariant functor Y : F −→ U , the canonical map

p = B(id, id, p) : B(Y , F , E ) −→ B(Y , F , B)

is a G-quasifibration. Moreover, it has a canonical orientation in (S , S). In fact,
since G acts only on the E and B coordinates, each orbit in the base space is a
copy of the base space of a particular object (x, µ) of F , and the inverse image of
that orbit is a copy of the total space of x. Remembering µ, we see that we have
canonical orientations of the restrictions of p to orbits. Because the morphisms
of F are orientation preserving, these orientations of orbits satisfy the requisite
compatibility to specify an orientation of p in (S , S).

We claim that the S-fibration

Γp : ΓB(S , F ,E ) −→ B(S , F , B)

is universal. Pulling p back along G-maps, we obtain a natural transformation Ψ
from the functor [X,B(S ,F , B)]G to the functor that assigns to X the set of
equivalence classes of S-fibrations over X, and our claim is that Ψ is a natural
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bijection. We construct an inverse natural transformation Φ. Let p : E −→ X be
an S-fibration. We have a pair of maps

X B(PE, F ,B)εoo q //B(∗, F ,B) = BF .

Here q is induced by the unique natural map PE −→ ∗ and ε is induced by the
composite PE ⊗F B −→ PB ⊗F B −→ X, where the second arrow is given
by evaluation of maps of base spaces. We claim that ε is a weak G-equivalence.
Granting this, our assumption that X is a G-CW complex ensures that there is a
map g : X −→ B(PE, F , B), unique up to G-homotopy, such that ε ◦ g ' id. We
define Φ(p) to be the homotopy class of f = q ◦ g.

We first verify our claim about ε, then verify that ΨΦ is the identity transfor-
mation, and finally verify that ΦΨ is a natural automorphism; it follows formally
that ΦΨ must be the identity.

For each object α of F and any Y , the canonical map

ε : B(Y ,F ,E [α]) −→ Y (α)

induced by the evident evaluation map Y ⊗F E [α] −→ Y (α) is a homotopy equiv-
alence by the argument of [22, Prop. 9.9]. We apply this with Y = PE for an
S-fibration p : E −→ X to obtain a map of fibrations

B(PE, F , E [α]) ε //

²²

PE(α)

²²
B(PE, F , B[α]) ε // PB(α).

The map ε of total spaces is an equivalence, fibers map by equivalences, and thus
the map ε of base spaces is a weak equivalence. If α = (x, µ) and x has base orbit
G/H, then PB(α) is a subspace of BH ; similarly, B(PE, F , B[α]) is a subspace of
B(PE, F , B)H . Since the maps ε are weak equivalences for all α, a little analysis
of fixed point spaces shows that εH : B(PE, F ,B)H −→ XH is a weak equivalence
for all H; see [29, 2.3.2]. This verifies our claim that ε is a weak G-equivalence.

Now consider ΨΦ(p), p : E −→ X. We must check that if f = q ◦ g is the
classifying G-map that we have constructed, then the pullback of the universal
S-fibration along f is equivalent to p. The following schematic diagram gives the
idea.

E //

²²

ΓE

²²

ΓB(PE, F , E )
ε̃oo q̃ //

Γp

²²

ΓB(∗, F , E )

Γp

²²

g−1(Γp)

²²

K //

H1

ccGGGGGGGGG
g̃

77ooooooooooo
f−1(Γp)

f̃

88qqqqqqqqqq

²²

X X

HHHHHHHHHH

HHHHHHHHHH B(PE, F , B)
εoo q // B(∗, F , B)

X X

f=q◦g

77pppppppppppp
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Here K is given by the universal property of the pullback f−1(Γp) and H1 is
obtained at the end of a homotopy which starts at ε̃ ◦ g̃ and covers any homotopy
from ε ◦ g to the identity; H exists since ΓE −→ X satisfies the S-CHP.

Finally, to consider ΦΨ(f), f : X −→ B(S , F ,B), we consider the diagram

X

f

²²

ΦΨ(f)

**
B(Pf−1ΓB(∗, F , E ),F , B)ε

oo
q

//

B(Pf̃ ,id,id)

²²

BF

BF B(PΓB(∗, F , E ),F , B)
q

//
ε

oo BF .

We have already noted that the arrows ε are weak G-equivalences. The maps q are
G-quasifibrations, and we claim that the fibers of the bottom map q are (nonequiv-
ariantly) weakly contractible. It follows that q is also a weak G-equivalence; there
is no problem of equivariance since G acts only on B. By the G-Whitehead the-
orem, the two weak G-equivalences of the bottom row induce automorphisms of
represented functors on G-CW complexes. We conclude from the diagram that the
composite ΦΨ is an automorphism of the functor [X, BF ]G, as required.

To see that the fibers of the bottom map q are weakly contractible, observe first
that PΓE(α) is weakly equivalent to PE(α) for any S-quasifibration p : E −→ X.
Observe next that there is an identification

(PB(Y , F ,E ))(α) ∼= B(Y , F ,E [α])

for any object α of F and any Y ; we have observed that the right side is equivalent
to Y (α). Taking Y to be the trivial functor ∗, we see that (PB(∗, F , E ))(α) is
contractible. This implies the conclusion. ¤

24. Moore loops and the classification of representations

In this slightly digressive final section, we prove an analogue of Theorem 21.2
for representations of fundamental groupoids. Contrary to our previous conven-
tions, unless otherwise specified we let G be any topological group, not necessarily
compact Lie, here. Fix a groupoid R over OG. We may as well assume that R is
skeletal. Recall the definition of a representation from Definition 7.1 and restrict
attention to representations R : ΠGX −→ R. We say that two such representations
R and R′ are isomorphic if there is an isomorphism φ : R −→ R′ over OG. In terms
of the definition of a map of representations in Definition 7.1, we are requiring the
functor on the domain category ΠGX of R and R′ to be the identity. The following
result generalizes [2, 3.8]. Rigorously, we should only claim it as a conjecture since,
except in the discrete case, we have not filled in the details of one step of the proof
(see Lemma 24.8 below).

Theorem 24.1. The G-space BR classifies representations of ΠGX in R. That
is, for G-CW complexes X, [X,BR]G is in natural bijective correspondence with
the set of isomorphism classes of representations R : ΠGX −→ R.

When G is compact Lie, we have a G-map Bω : BVG(n) −→ BVG(n), and simi-
larly for topological G-bundles and spherical G-fibrations. The following expected
comparison is checked by comparing the proofs of Theorems 21.2 and 24.1.
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Corollary 24.2. The G-map Bω : BVG(n) −→ BVG(n) represents the natural
transformation that sends a G-n-plane bundle p : E −→ B to the representation
p∗ : ΠGB −→ VG(n). The G-maps

Bω : BTopG(n) −→ BTopG(n) and Bω : BFG(n) −→ BFG(n)

represent the analogous natural transformations on topological G-bundles and spher-
ical G-fibrations.

We shall use the Moore loop category of X to prove Theorem 24.1. This category
is related to ΠGX as VG(n) is related to VG(n) and is of independent interest.

Definition 24.3. Let X be a G-space. The Moore loop category ΛGX is the
category whose objects are the G-maps x : G/H −→ X and whose morphisms
x −→ y, y : G/K −→ X, are the triples (λ, r, α), where α : G/H −→ G/K is a
G-map, r ≥ 0 is a real number, and λ : G/H × [0, r] −→ X is a path of length
r from x to y ◦ α in XH . Composition is induced by concatenation of paths and
addition of real numbers; paths of length zero give identity morphisms. Regard
paths as defined on [0,∞] by letting them be constant on [r,∞] and topologize the
set of maps x −→ y as a subspace of the space of maps [0,∞] −→ XH . Thus the
space of self-maps of an object x over the identity map of G/H is the Moore loop
space Λ(XH , x). Let π : ΛGX −→ OG be the functor given by π(x) = G/H and
π(ω, α) = α.

Again, the functor π is continuous. We have used paths of varying length to
obtain a category, but this makes the construction of a functor ω : ΛGX −→ ΠGX
awkward, especially in view of the use of paths of length zero. One way to proceed
is to first extend paths of length r to paths on [−1, r] that are constant on [−1, 0],
next to use the evident linear isomorphisms [−1, r] −→ [0, 1] to rescale paths to
paths defined on [0, 1], and finally to pass to equivalence classes of paths. This
gives a continuous functor ω, and it induces a G-map Bω : BΛGX −→ BΠGX.

Remark 24.4. A quite different topologization of ΛGX is studied in [24]. It is used
to construct a G-map f : X −→ Y , where Y is a kind of “K(ΠGX, 1)”, namely a
G-space Y such that f∗ : ΠGX −→ ΠGY is an equivalence of categories and each
component of each Y H is a K(π, 1).

The proof of Theorem 24.1 will be a direct application of two basic results about
Moore loop categories. The first generalizes the classical nonequivariant weak equiv-
alence X ' BΛX for connected spaces X [21, 14.3].

Proposition 24.5. For G-spaces X, there is a natural weak G-equivalence between
X and BΛGX. When X is a G-CW complex, there is a weak G-equivalence ζ :
X −→ BΛGX that is natural up to G-homotopy. If G is a compact Lie group, ζ is
a G-homotopy equivalence.

Proof. Nonequivariantly, the Moore path space PX = P (X, x) has a right action
of the Moore loop space ΛX = Λ(X,x) and, when X is path connected, there is a
natural weak equivalence

X B(PX, ΛX, ∗)εoo q //B(∗,ΛX, ∗) = BΛX.

Here ε is induced by the endpoint evaluation map p : PX −→ X and q is induced
by the trivial map PX −→ ∗. The equivariant generalization is precisely parallel.
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There is a contravariant Moore path functor PGX : ΛGX −→ U . For an object
x : G/H −→ X of ΛGX, PGX(x) is the Moore path space P (XH , x), points of
which may be viewed as G-maps G/H× [0,∞] −→ X. For a map (λ, r, α) : x −→ y,
y : G/K −→ X, and a path (µ, s) ∈ P (XK , y),

PGX(λ, r, α)(µ, s) = ((µ ◦ α) · λ, r + s) ∈ P (XH , x).

We construct a natural weak G-equivalence

X B(PGX, ΛGX)εoo q //B(∗, ΛGX) = BΛGX.

The G-maps PGX(x)×G/H −→ X given by evaluation of paths at cosets gH and
end-point evaluation give rise to a G-map PGX ⊗ΛGX ι ◦ π −→ X that induces the
G-map ε. The natural map from PGX to the trivial functor ∗ induces the G-map
q. Since the map PGX −→ ∗ is a spacewise equivalence, q is a weak G-equivalence.
We must show that ε is a weak G-equivalence. This means that the H-fixed map

εH : B(PGX, ΛGX)H −→ XH

is a weak equivalence for any G-space X and any H ⊂ G. Recall that

B(PGX, ΛGX)H = B(PGX, ΛGX, OG(G/H, π(−)))

and consider the following diagram:
∐
[x]

Λ(XH , x)

²²

∐
[x]

Λ(XH , x)

²²∐
[x]

B(PGX, ΛGX, ΛGX(x,−)) ' //

²²

∐
[x]

P (XH , x)

²²
B(PGX, ΛGX, OG(G/H, π(−))) εH

// XH .

The disjoint unions are taken over the isomorphism classes of objects in the fiber
(ΛGX)G/H over G/H, or equivalently over the components of XH . It is stan-
dard that the right column is a fibration, and the left column is a quasifibration
by the argument of [21, 7.6]. By another standard argument [21, 7.5], the space
B(PGX, ΛGX, ΛGX(x,−)) is contractible, and so is P (XH , x). This implies that
εH is a weak equivalence.

When X is a G-CW complex, the composite of ε and a G-CW approximation
γ : ΓB(PGX, ΛGX) −→ B(PGX, ΛGX) is a G-homotopy equivalence. Choosing
an inverse and composing with q ◦ γ, we obtain the required weak G-equivalence
ζ : X −→ BΛGX. If G is a compact Lie group, results of Waner [28] imply that
BΛGX has the homotopy type of a G-CW complex, so that ζ is a G-homotopy
equivalence by the G-Whitehead theorem. ¤

The second basic result about the Moore loop category generalizes the discrete
special case of the classical nonequivariant weak equivalence G ' ΩBG for topo-
logical groups G [21, 8.7].

Proposition 24.6. Let π : R −→ OG be a groupoid over OG. Then there is an
equivalence ξ : ΠGBR −→ R of groupoids over OG, natural up to isomorphism
over OG.
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Proof. We mimic the nonequivariant argument in [21, 8.7]. We define a natural
equivalence µ : R → ΠBR over OG and let ξ be any chosen inverse to µ. Note
that we are working here with our original fundamental groupoid ΠGBR based on
paths of length one. The G-space of zero simplices of BR is the disjoint union
over objects x ∈ R of the orbit G-spaces G/H, where π(x) = G/H. We let µ(x)
be the point 1x ≡ eH in the orbit corresponding to x. Writing 1 for the unique
point in the standard 0-simplex, we can write µ(x) = | ∗ [ ]1x; 1|. Write (t, 1 − t),
0 ≤ t ≤ 1, for the points in the standard 1-simplex. If ω : x −→ y is a morphism
of R with π(ω) = α : G/H −→ G/K, let µ(ω) be the homotopy class of the path
t 7→ | ∗ [ω]1x; (t, 1 − t)| from µ(x) to µ(y) ◦ α. This is a morphism in ΠGBR. We
see that µ is a functor by using the way in which 2-simplices in BR are attached
to the 1-skeleton.

To show that µ is an equivalence of groupoids over OG, it suffices to show that

(24.7) µ : R(x, y) −→ ΠGBR(µ(x), µ(y))

is a homeomorphism for each pair of objects x and y of R. We believe that the
following lemma holds in general, but our proof is only complete when G is discrete.

Lemma 24.8. π(R(x, y)) = π(ΠGBR(µ(x), µ(y))) in OG(π(x), π(y)).

Proof. Since π ◦ µ = π, π(R(x, y)) ⊂ π(ΠGBR(µ(x), µ(y))). Let π(x) = G/H and
fix α : π(x) −→ π(y). We must show that if there is a path in (BR)H that connects
µ(x) to µ(y) ◦α, then there is a map ω : x −→ y in R such that π(ω) = α. Using a
cellular approximation argument, if there is such a path, then it can be deformed
to a path in the simplicial 1-skeleton of (BR)H . If G is discrete, this skeleton is a
graph, and paths in it are equivalent to reduced finite edge paths. The edges are of
the form µ(ν) or µ(ν)−1 for morphisms ν of R. Using source lifting and divisibility,
we can deduce the result by induction on the number of edges. We believe that the
covering property of Definition 5.1(i) can be used to adapt the argument to general
topological groups G, but we have not worked out the details. ¤

In view of the lemma and Proposition 5.4, to prove that the map µ of (24.7) is
a homeomorphism in general, it suffices to prove that, for each object x of R, the
restriction of µ to a map

AutR(x) −→ AutΠGBR(µ(x))

of discrete groups is a bijection and thus an isomorphism. Consider the diagram

Aut(x)
ζ //

²²

ΩB(∗, R, πR(x,−))

²²
B(∗, R,R(x,−)) ν //

²²

PB(∗, R, πR(x,−))

²²
B(∗, R, πR(x,−)) B(∗, R, πR(x,−)).

The (ordinary) loop and path spaces on the right use paths based at µ(x), and the
group of components of the displayed loop space is AutΠGBR(µ(x)). The maps ζ
and ν are defined by ζ(ω)(t) = | ∗ [ω]1ω(0); (t, 1− t)| and

ν(| ∗ [ωn, . . . , ω1]ω0; u|)(t) = | ∗ [ωn, . . . , ω1, ω0]1ω0(0); (tu, 1− t)|,
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where u ∈ ∆n. The right column of the diagram is a fibration, and the left column
is a quasifibration, as in [21, 7.6]. Both total spaces are contractible, so ζ is a weak
equivalence. This implies that µ = π0(ζ) : AutR(x) → AutΠGB(µ(x)) is a bijection,
as required. ¤

Proof of Theorem 24.1. We define inverse isomorphisms Ψ and Φ between the two
functors of X in the statement. A G-map f : X −→ BR induces the representation
Ψ(f) specified as the composite

ΠGX
f∗ //ΠGBR

ξ //R.

A representation R : ΠGX −→ R induces the G-map Φ(R) specified as the com-
posite

X
ζ //BΠGX

BR //BR.

By the definitions and the naturality of ξ,

ΨΦ(R) = ξ ◦BR∗ ◦ ζ∗ = R ◦ ξ ◦ ζ∗.

This representation is isomorphic to R since ξ ◦ ζ∗ : ΠGX −→ ΠGX is isomorphic
over OG to the identity functor. Therefore ΨΦ is the identity functor. Similarly,
by the naturality of ζ,

ΦΨ(f) = Bξ ◦Bf∗ ◦ ζ = Bξ ◦ ζ ◦ f.

Since ξ is an isomorphism over OG, Bξ is a weak G-equivalence, as is ζ. Therefore
Bξ ◦ ζ : BR −→ BR is a weak G-equivalence and the composite ΦΨ is an auto-
morphism. It follows formally that this automorphism must be the identity. ¤
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[15] A. Grothendieck. Rêvetements étale et groupe fondemental [SGA1]. Lecture Notes in Math.
224, Springer-Verlag. 1971.

[16] R. Lashof and J.P. May. Generalized equivariant bundles. Bull. Soc. Math. Belgique 38 (1986),
265–271.

[17] R. Lashof and M. Rothenberg, G-smoothing theory, Proc. Symp. Pure Math. 32 Part I, Amer.
Math. Soc. (1978), 211–266.

[18] L.G. Lewis, J.P. May, and M. Steinberger (with contributions by J.E. McClure). Equivariant
stable homotopy theory. Springer Lecture Notes in Mathematics Vol. 1213. 1986.

[19] S. MacLane. Categories for the working mathematician. Second edition. Springer-Verlag.
1998.

[20] M. Mandell and J.P. May. Equivariant orthogonal spectra. Memoirs Amer. Math. Soc. To
appear.

[21] J.P. May. Classifying spaces and fibrations. Memoirs Amer. Math. Soc. 155 (1972).
[22] J.P. May. (with contributions by F. Quinn, N. Ray, and J. Tornehave). E∞ ring spaces and

E∞ ring spectra. Lecture Notes in Mathematics Vol. 577. Springer-Verlag 1977.
[23] J.P. May Weak equivalences and quasifibrations, Lecture Notes in Mathematics Vol. 1425,

Springer-Verlag 1990, 91–101.
[24] J.P. May. G-spaces and fundamental groupoids. Appendix to “An equivariant Novikov con-

jecture” by J. Rosenberg and S. Weinberger. Journal of K-theory 4 (1990), 50–53.
[25] J.P. May. Equivariant orientations and Thom isomorphisms. In Tel Aviv Topology Confer-

ence: Rothenberg Festschrift. Contemporary Mathematics Vol 231, 1999, 227-243.
[26] R.J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canadian

J. Math. 43(1991), 814–824.
[27] P. Traczyk, On the G-homotopy equivalence of spheres of representations, Math. Z. 161

(1978), 257–261.
[28] S. Waner. Equivariant homotopy theory and Milnor’s theorem. Trans. Amer. Math. Soc. 258

(1980), 351–368.
[29] S. Waner. Equivariant classifying spaces and fibrations. Trans. Amer. Math. Soc. 258 (1980),

385–405.
[30] S. Waner. Classification of oriented equivariant spherical fibrations. Trans. Amer. Math. Soc.

271 (1982), 313–323.
[31] S. Waner. Equivariant orientation theory. Preprint, Hofstra University (1986).

Department of Mathematics, 103 Hofstra University, Hempstead, NY 11549
E-mail address: Steven.R.Costenoble@Hofstra.edu

Department of Mathematics, University of Chicago, Chicago, IL 60637
E-mail address: may@uchicago.edu

Department of Mathematics, 103 Hofstra University, Hempstead, NY 11549
E-mail address: matszw@hofstra.edu


