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Abstract. I define “symmetric monoids”, and “caterads” in a closed sym-

metric monoidal category, and I define what it means for a symmetric monoid

to be an algebra over a caterad. These notions codify formal structure that
appears in motivic cohomology and should be of more general interest.
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Introduction

The purpose of this note is to advertise some elementary categorical definitions
that describe frequently encountered types of mathematical structures. In particu-
lar, I define categorical analogues of operads that I call “caterads” and others call
“props” or “PROP’s”, together with algebras over them. In fact, caterads special-
ize to both the PROP’s and the PACT’s that were defined originally by Adams
and Mac Lane [12]. However, even for these specializations, our algebras over cat-
erads are more general structures than they had in mind and are quite different
philosophically. It is these generalized algebras that I want to advertise here.

In the work of Adams and Mac Lane, and in later work, what we call caterads are
thought of as encoding operations on an object, say a space or a chain complex, that
have many inputs and many outputs. The applications that we envisage dictate a
different perspective and a reanalysis of the structure that is encoded by caterads.
The new philosophy arose in my efforts [20] to understand the formal structure
that is enjoyed by the motivic cochain complexes that define motivic cohomology
in the work of Voevodsky, Suslin, and Friedlander [22, 23]. The disparity between
the appropriate general context and the specifics relevant to that theory led me to
separate out the categorical framework in this short, content free, note.

We define symmetric sequences and symmetric monoids in §1, caterads in §2,
and algebras over caterads in §3. We compare caterads to operads in §4, where we
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explain some of the relevant structure that is implied by an action of a caterad. We
describe the hybrid notion of a catoperad in §5. It is relevant to hypercohomology.

We observe in §6 that symmetric monoids are equivalent to commutative monoids
in the category of symmetric sequences, endowed with a suitable symmetric mon-
oidal structure. However, the word “commutative” must be taken with a grain of
salt. For example, as we shall see, tensor algebras give rise to commutative monoids
in the category of symmetric sequences of vector spaces. Nevertheless, this idea of
commutativity is important in recent work in stable homotopy theory [9, 15].

I thank Bertrand Guillou for a careful reading and several corrections.

1. Symmetric sequences and symmetric monoids

Recall that a permutative category P is a category with a strictly associative
and unital product and a natural commutativity isomorphism τ satisfying the usual
coherence axioms [13, XI§1]. In other words, P is a strictly associative and unital
symmetric monoidal category. The standard skeleton of the category of finite sets
and isomorphisms is a permutative category Σ.

Definition 1.1. Let Σ be the category whose objects are the sets q = {1, . . . , q}
and whose morphisms are the symmetric groups. Thus there are no morphisms
q −→ r unless q = r, and Σ(q,q) is the symmetric group Σq (or id0 if q = 0). This
category is permutative under concatenation of sets, (q, r) 7→ q + r, and block
sum of permutations Σq × Σr −→ Σq+r, with 0 as unit and with commutativity
isomorphism τ given by the block transpositions τq,r ∈ Σq+r.

Definition 1.2. A (left) symmetric sequence in a category C is a covariant functor
F : Σ −→ C , and a map of symmetric sequences is a natural transformation. We
write F (q) for the value of F on q and F (σ) for the value of F on a permutation
σ ∈ Σq. Thus F is just a sequence of objects F (q) with left actions by Σq, the
covariance dictating left rather than right actions. A right symmetric sequence in
C is a contravariant functor Σ −→ C .

Such objects appear throughout mathematics. They underly operads, in which
context they are often called “collections”, and they play a serious role in stable
homotopy theory, where symmetric sequences of simplicial sets (or spaces) are the
starting point for Jeff Smith’s notion of a symmetric spectrum [9]; see also [15].

Now assume that the category C is symmetric monoidal with product ⊗, unit
object κ, and commutativity isomorphism τ . As usual, we think of the unit and
associativity isomorphisms of C as less essential, treating them by abuse as if they
were identity maps. When C is permutative, they are identity maps.

Definition 1.3. A symmetric monoid in C is a symmetric sequence F that is a lax
symmetric monoidal functor. This means that there is a unit map λ : κ −→ F (0)
and (Σq × Σr)-equivariant product maps

φ : F (q)⊗ F (r) −→ F (q + r)
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such that the evident unit, associativity, and commutativity diagrams commute
(strictly, not just up to isomorphism). We display the last of these.

F (q)⊗ F (r)

τ

��

φ // F (q + r)

F (τq,r)

��
F (r)⊗ F (q)

φ
// F (q + r)

We say that F is reduced if F (0) = κ and λ is the identity map. A map α : F −→ G
of symmetric monoids is a symmetric monoidal natural transformation; that is, α
must commute with the unit and product maps for F and G, in the strict sense
that α ◦ λF = λG and α ◦ φF = φG ◦ (α⊗ α).

Tensor algebras provide perhaps the most familiar examples.

Example 1.4. Let C be the category of vector spaces over a field k. Regard the
tensor algebra T (X) on a vector space X as graded, letting T (X)(q) be the q-fold
tensor power Xq, with Σq acting by permutations of factors. The unit of T (X) is
given by k = T (X)(0). The product T (X)(q) ⊗ T (X)(r) −→ T (X)(q + r) gives
T (X) a structure of reduced symmetric monoid in C .

This example generalizes to construct free symmetric monoids.

Definition 1.5. For an object X in the symmetric monoidal category C , define
the free symmetric monoid T (X) by letting T (X)(q) be the q-fold ⊗-power Xq,
with Σq acting by permutations. By convention, the 0th power of X is κ and
T (X) is reduced. The product T (X)(q)⊗ T (X)(r) −→ T (X)(q + r) is the evident
juxtaposition isomorphism.

Lemma 1.6. For a symmetric monoid F and a map f : X −→ F (1) in C , there
is a unique map f̃ : T (X) −→ F of symmetric monoids such that f̃(1) = f .

2. Caterads

For purposes of motivation, assume that our given symmetric monoidal category
C is closed, with internal hom functor Hom. We then have the adjunction

(2.1) Hom(X ⊗ Y, Z) ∼= Hom(X,Hom(Y, Z))

with evaluation map

(2.2) ε : Hom(X,Y )⊗X −→ Y.

We also have the composition pairing

(2.3) µ : Hom(Y,Z)⊗Hom(X,Y ) −→ Hom(X,Z)

and the ⊗-product pairing

(2.4) φ : Hom(X,Y )⊗Hom(X ′, Y ′) −→ Hom(X ⊗X ′, Y ⊗ Y ′).

All of this structure is given by maps in C . Now consider the situation in which
all objects that appear in any of the last three displays are ⊗-powers of a given
object X of C . The structure on the set of objects Hom(Xq, Xr) of C that is
given by permutations and by (2.3) and (2.4) provides the model for the definition
of a caterad. Then T (X) and the action maps of (2.2) provide the model for the
definition of an algebra over a caterad. In these examples, all of the structure comes
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from the symmetric monoidal structure and the adjunction (2.1). However, similar
structure often arises in situations where the caterad and the symmetric monoid
on which it acts are not so intimately intertwined. The definitions in this section
and the next codify the structure seen in such situations.

The definitions are most clearly and succinctly expressed in the language of
enriched category theory. However, I will unpack exactly what they mean for the
reader who may not be familiar with that language, providing something of an
introduction to it. Standard references are [4, 7, 10].

Definition 2.5. A caterad in C is an enriched permutative category A over C
together with a permutative functor ι from Σ to the underlying category A0 that is
a bijection on objects. A map ψ : A −→ B of caterads is an enriched permutative
functor such that ψ ◦ ιA = ιB.

We proceed to unpack this definition. Since ι is a bijection on objects, A has
object set {q | q ≥ 0}. To say that A is a category enriched over C is to say that
there are morphism objects A (q, r) in C and identity and composition morphisms

idq : κ −→ A (q, q)

µ : A (q, r)⊗A (p, q) −→ A (p, r)

in C that satisfy the evident unit and associativity laws. The hom sets of the
underlying category A0 are specified by

A0(q, r) = C (κ,A (q, r)).

The elements of these sets can be manipulated just like morphisms in an ordinary
category. For example, for maps f : κ −→ A (p, q) and g : κ −→ A (r, s) in C , the
induced map

A (f, g) : A (q, r) −→ A (p, s)

in C is defined as the composite displayed in the commutative diagram

A (q, r)
(unit iso)

A (f,g)

��

κ⊗A (q, r)⊗ κ

g⊗id⊗f

��
A (p, s) A (r, s)⊗A (q, r)⊗A (p, q).

µoo

For each q, we have a homomorphism ι mapping the group Σq into the monoid
A0(q, q), and ι(1) = idq. We often omit ι from the notation, regarding permutations
as elements of hom sets. For τ ∈ Σr and σ ∈ Σq, we have the induced map

A (τ, σ) : A (q, r) −→ A (q, r).

Since the functor ι is permutative, the product on the enriched permutative
category A is given on objects by (q, r) 7→ q + r. The identity object is 0 and the
commutativity isomorphism τq,r : κ −→ A (q+r, q+r) is the map ι(τq,r) in C . The
product is given on morphisms by a strictly associative and unital system of maps

φ : A (q, r)⊗A (q′, r′) −→ A (q + q′, r + r′)

in C . When q = r and q′ = r′, φ restricts along ι to block sum on permuta-
tions. These maps specify an enriched bifunctor φ, which means that the following
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diagrams commute in C .

A (q, r)⊗A (p, q)⊗A (q′, r′)⊗A (p′, q′)

(φ⊗φ)(id⊗τ⊗id)

��

µ⊗µ // A (p, r)⊗A (p′, r′)

φ

��
A (q + q′, r + r′)⊗A (p+ p′, q + q′)

µ // A (p+ p′, r + r′)

The enriched naturality of the commutativity isomorphism means that the following
diagrams commute in C .

A (q, r)⊗A (q′, r′)

τ

��

φ // A (q + q′, r + r′)

A (τq′,q,τr,r′ )

��
A (q′, r′)⊗A (q, r)

φ // A (q′ + q, r′ + r)

A map ψ : A −→ B consists of maps ψ : A (r, q) −→ B(r, q) in C that commute
with all structure in sight. This completes our unpacking of Definition 2.5.

The portmanteau1 word “caterad” is meant to bring to mind both category and
operad, just as the portmanteau word “operad” was meant to bring to mind both
operation and monad. See Lewis Carroll [6, Ch.VI] for a philosophical discussion.
However, the reader may prefer one of the existing acronyms.

Remark 2.6. Adams and Mac Lane defined PROP’s (PROduct and Permutation
categories) and PACT’s (which have Permutations, Addition, Composition, and
Tensor product) well before enriched category had been developed [12]. Caterads
in the category of sets are almost exactly PROP’s, and caterads in the category of
chain complexes are almost exactly PACT’s. Adams and Mac Lane insisted that
ι be an inclusion and they omitted the unit condition for ⊗ on morphisms, but
otherwise their definitions agree with these cases of ours. Similarly, caterads of
spaces are essentially the topological PROP’s used by Boardman and Vogt [1, 2].

The following promised example is paradigmatic.

Definition 2.7. For an object X of C , define the endomorphism caterad E (X) in
C by letting E (X)(q, r) = Hom(Xq, Xr), where Xq denotes the q-fold ⊗-power,
and letting ι(σ) be the permutation σ of Xq obtained from the commutativity
isomorphism in C . The required composition µ and pairing φ are obtained by
specialization of (2.3) and (2.4).

Warning 2.8. Clearly, we can rewrite

E (X)(q, r) = Hom(T (X)(q), T (X)(r)).

It is tempting to replace the symmetric monoid T (X) by any symmetric monoid F
and to try to define a similar endomorphism caterad E (F ). This fails due to the
contravariance of Hom in the first variable. That is, we cannot compose the φ of
(2.4) with application of Hom to the φ that define the product on F , since the latter
only makes sense when the maps φ : F (q)⊗ F (r) −→ F (q + r) are isomorphisms.

Because we have not insisted that ι : Σ −→ A be an inclusion in our definition
of a caterad, we have the following elementary example of a caterad in any C .

1“You see it’s like a portmanteau – there are two meanings packed up into one word” [6].
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Definition 2.9. The commutativity caterad in C , denoted either N or C om, has
C om(p, q) = κ, with all structure given by identity maps.

We also have endomorphism caterads of functors, which are defined analogously
to the endomorphism operads of functors specified in [19, 2.3].

Construction 2.10. Let D be a small category and Λ: D −→ C be a covariant
functor. Define the endomorphism caterad End(Λ) in C by setting

End(Λ)(q, r) = HomD(Λr,Λq).

The permutations σ : κ −→ HomD(Λq,Λq) are adjoint to the permutations of the
power functors Λq, the composition µ is obtained from (2.3), after transposition,
and the product φ is obtained from the product (2.4).

As in [19, 3.1], we have the following example. It is a modern version of a PACT
that Adams and Mac Lane had in mind in their unpublished work.

Definition 2.11. The Eilenberg–Zilber caterad Z in the category ChMR of chain
complexes over a commutative ring R is the endomorphism caterad of the normal-
ized chain complex functor Λ = C∗(∆•, R) on ∆.

As observed after [19, 3.1] in the context of operads, we have an augmentation
ε : Z −→ C om. The theory of acyclic models [8] implies the analogue of [19, 3.2].

Proposition 2.12. Each ε : Z (p, q) −→ C om(p, q) is a quasi-isomorphism.

3. Algebras over caterads

Definition 3.1. Let A be a caterad in C . An algebra F over A is a symmetric
monoid F in C and an enriched product-preserving functor F : A −→ C that
restricts along ι : Σ −→ A0 to the symmetric sequence F : Σ −→ C .

We need to unpack this definition too. The enriched functor F is given by
evaluation maps

ε : A (q, r)⊗ F (q) −→ F (r)

in C such that the following diagrams commute in C .

κ⊗ F (q)

idq ⊗ id

�� MMMMMMMMMMM

MMMMMMMMMMM

A (q, q)⊗ F (q)
ε

// F (q)

A (q, r)⊗A (p, q)⊗ F (p)
µ⊗id //

id⊗ε

��

A (p, r)⊗ F (p)

ε

��
A (q, r)⊗ F (q)

ε
// F (r)

To say that F is product-preserving is to say that the following diagrams commute.

A (q, r)⊗A (q′, r′)⊗ F (q)⊗ F (q′)

(ε⊗ε)(id⊗τ⊗id)

��

φ⊗φ // A (q + q′, r + r′)⊗ F (q + q′)

ε

��
F (r)⊗ F (r′)

φ
// F (r + r′)
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To say that F restricts along ι to the given symmetric sequence F is to say that
the following diagram commutes for σ ∈ Σq; it is the unit diagram when σ = idq.

κ⊗ F (q)

ι(σ)⊗id

��

F (q)

F (σ)

��
A (q, q)⊗ F (q)

ε
// F (q)

As is easily checked, this implies the following general equivariance lemma.

Lemma 3.2. The following diagram commutes, where σ ∈ Σq and τ ∈ Σr.

A (q, r)⊗ F (q)
A (σ,τ)⊗F (σ−1)//

ε

��

A (q, r)⊗ F (q)

ε

��
F (r)

F (τ)
// F (r)

Remark 3.3. The A (0, r) form a symmetric monoid with unit id0 and product φ,
and the composites

ε ◦ (id⊗ λ) : A (0, r) ∼= A (0, r)⊗ κ −→ A (0, r)⊗ F (0) −→ F (r)

specify a map of symmetric monoids.

We have the promised paradigmatic example and a related observation.

Lemma 3.4. The free symmetric monoid T (X) is an algebra over E (X).

Proof. The identity map of the caterad E (X) transforms under the adjunction (2.1)
to the required action. �

Lemma 3.5. In adjoint form, an action of a caterad A on T (X) is a morphism
of caterads A −→ E (X). We then say that A acts on X, rather than on T (X).

We can now explain the philosophy behind our definitions. In most, if not all,
existing work that employs operads, PROP’s, or PACT’s, the purpose has been to
define and study algebraic structure on an object X of C , and the only underlying
symmetric monoids considered were of the form T (X). The idea has been to think
of A (q, r) as codifying operations on X with q inputs and r outputs. That is not
our point of view here or in the sequel [20].

Rather, we are interested in symmetric monoids F , regarded as graded (or
weighted) objects {F (q)}, that are not of the restricted form T (X). We regard
the A (q, r) as specifying internal structure that maps the part of F in grading q to
the part of F in grading r. Note that A (q, r) should be assigned grading r − q, so
that the action ε is homogeneous. This point of view feels very different from the
operational one. Warning 2.8 highlights a reason that the greater generality of our
definitions is genuinely different mathematically.

Just as for operads and their algebras, a major reason for wanting a definition
of caterads and their algebras that applies in any symmetric monoidal category
C is to have functoriality in C . As in the theory of operads, that allows one to
transfer structure from one context to another, typically from topology or geometry
to homological algebra.
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Proposition 3.6. Let Φ: C −→ C ′ be a lax symmetric monoidal functor. If A is
a caterad in C , then ΦA is a caterad in C ′. If F is an A -algebra, then ΦF is a
ΦA -algebra.

Proof. Since Φ is lax symmetric monoidal, we are given a map κC ′ −→ ΦκC in C ′

and a natural map ΦX ⊗C ′ ΦY −→ Φ(X ∧C Y ) in C ′. These need not be isomor-
phisms, but they commute strictly with the unit, associativity, and commutativity
isomorphisms of C and C ′. Since the definitions of caterads and their algebras are
given solely in terms of the symmetric monoidal structure on C , it is clear how to
define induced structures after application of Φ. �

Remark 3.7. Although the examples we have given rely on Hom in C , the definitions
of caterads and their algebras depend only on the symmetric monoidal structure
and do not require an internal hom functor.

4. Some comparisons between operads and caterads

The definition of an operad deliberately sacrifices generality by focusing on those
algebraic structures that can be defined in terms of operations with only one output
(see [18] for more discussion of this choice). The sacrifice in generality results in
a gain of simplicity that has proven its value in a variety of contexts. A complete
analysis of the relationship between operads and caterads is complicated by the
wealth of internal structure that is present in caterads.

The gain in simplicity is especially apparent when one tries to construct algebras
over caterads. This is generally a quite difficult undertaking. For example, as we
saw in [19], it is very easy to construct actions of the Eilenberg-Zilber operad.
However, it is very hard to construct actions of the Eilenberg-Zilber caterad. In
fact, historically, as both Adams and Mac Lane told me, the main reason that their
extensive collaboration on PACT’s did not result in published work was their failure
to construct the algebras over PACT’s that they had hoped for.

For a caterad A we have the following composite structural maps γ, where
p = p1 + · · ·+ pk and q = q1 + · · ·+ qk.
(4.1)

γ : A (q, r)⊗A (p1, q1)⊗ · · · ⊗A (pk, qk)
id⊗φ //A (q, r)⊗A (p, q)

µ //A (p, r)

When k = 1, these maps reduce to the composition µ, and when q = r and we
restrict along idq, these maps with k = 2 reduce to φ. Therefore caterads could be
defined in terms of these maps together with commutative equivariance, unit, and
associativity diagrams relating them.

Similarly, if A acts on F , we have the following composite action maps θ, where
q = q1 + · · ·+ qk.

(4.2) θ : A (q, r)⊗ F (q1)⊗ · · · ⊗ F (qk)
id∧φ //A (q, r)⊗ F (q) ε //F (r)

When k = 1, these maps reduce to the evaluation ε, and when q = r and we restrict
along idq, these maps with k = 2 reduce to φ. Therefore actions can be defined in
terms of these maps together with suitable commutative diagrams relating them.

This looks just like the definitions of an operad and of an action by an operad
[16, 17]. When q1 = · · · = qk = 1 = r, the maps γ of (4.1) are the structure maps
of an operad A1 = {A (k, 1)} and the maps θ of (4.2) specify an action of A1 on
F (1). In the case of PROP’s, it is known, although not conveniently documented,
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that all operads arise from caterads in this way; see [2, 2.43] or [21, 4.1]. The proof
adapts to prove that this holds for operads in C when the ambient category C is
cocomplete. However, quite different caterads can give rise to the same operad A1.

Parenthetically, we note that the study of caterads simplifies considerably when
the ambient symmetric monoidal category C is cartesian monoidal, as in the case of
(topological) PROP’s. In the literature, PROP’s are usually studied in relationship
with Lawvere’s theories [11], and the latter only make sense in cartesian monoidal
categories. Projections on coordinates play a major role in the study of PROP’s.

There are many further operads and operad like structures hiding in a caterad.
For example, taking q1 = · · · = qk = r and renaming it q, the maps γ of (4.1) are the
structural maps of an operad Aq = {A (qk, q)}, where we use block permutations to
give the required action of Σk on A (qk, q). If F is an A -algebra, then the operad
Aq acts on F (q) via the maps θ : A (qk, q) ⊗ F (q)k −→ F (q) of (4.2). When we
take the point of view that A (q, r) parametrizes operations with q inputs and r
outputs on an A -algebra T (X), these operad actions for q > 1 are not terribly
interesting. However, when we take the point of view that A (q, r) parametrizes
relations between grading q and grading r on a general A -algebra F , these actions
may be of real interest. They describe internal structure in grading q.

The maps ε : A (q, q) ⊗ F (q) −→ F (q) give the “degree zero” part of an action
by a caterad. They fit together to give a different operad like situation defined in
terms of the structural maps

(4.3) γ : A (qj, qj)⊗A (qj1, qj1)⊗ · · · ⊗A (qjk, qjk) −→ A (qj, qj)

and the action maps

(4.4) θ : A (qj, qj)⊗ F (qj1)⊗ · · · ⊗ F (qjk) −→ F (qj),

where j = j1 + · · · jk.
The following consequence of Lemma 3.2 is inserted for quotation in [20].

Lemma 4.5. Let F be an A -algebra. Let σ ∈ Σ` act on the object q` of Σ by
permutation of blocks. Then the following diagram commutes.

A (q`, r)⊗ F (q)`

θ
''NNNNNNNNNNN

A (σ,id)⊗σ−1

// A (q`, r)⊗ F (q)`

θwwppppppppppp

F (r)

That is, θ is Σ`-equivariant, where Σ` acts trivially on F (r).

When ` is a prime, C is the category of mod ` chain complexes, and A (q`, r) is
acyclic, this allows use of these action maps to define Steenrod type operations.

5. Catoperads and hypercohomology

Riddle: What do you get when you cross a caterad with an operad?
Answer: A “catoperad”.

Alas, this feeble joke is meant quite literally, as the following example makes clear.

Example 5.1. Let A be a caterad in C and let Z be an operad in C . Define the
product “catoperad” B = A ⊗Z by letting

B(q, r; k) = A (q, r)⊗Z (k).
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If q = q1 + · · ·+ qj , p = p1 + · · ·+ pj and j = j1 + · · ·+ jk, the structure maps

γ : B(q, r; k)⊗B(p1, q1; j1)⊗ · · · ⊗B(pk, qk; jk) −→ B(p, r; j)

are obtained by first shuffling factors so that the factors from A are at the left and
the factors from Z are at the right and then applying γ ⊗ γ.

The relevance of this example is that, after making the definitions precise, we ex-
pect to have naturally occurring examples of algebras over catoperads in the context
of the hypercohomology groups that define motivic cohomology [20]. Fortunately,
at least under resolution of singularities and restriction to quasi-projective schemes,
the passage to hypercohomology and thus the need to take our riddle seriously dis-
appear, so we shall be brief.

We return to the context of [19, 5.8], but using the generalization of the Čech
construction of [19, 4.1–4.3] to covers U of an object X in a site S , as in [19,
5.10]. In [19, 5.8], we started with a presheaf of algebras over an operad. However,
in [20], we will start with a sheaf of algebras over a caterad A . Let Z be the
Eilenberg-Zilber operad [19, 3.1]. After completing the definition of a catoperad
and defining algebras over them, we will have the following analogue of [19, 5.8].
Recall the composite structure maps θ of (4.2).

Theorem 5.2. Let A be a caterad and let F be a sheaf of A -algebras on a site
S . Then Č

∗
(U ,F ) and Č

∗
(X,F ) are A ⊗Z -algebras. The action maps

θ : A (q, r)⊗Z (k)⊗ Č
∗
(U ,F (q1))⊗ · · · ⊗ Č

∗
(U ,F (qk)) −→ Č

∗
(U ,F (r)),

where q = q1 + · · · + qk, are defined in terms of the action maps θ of F as the
composites

A (q, r)⊗Hom∆(Λ,Λk)⊗Hom∆(Λ,F (q1)•U )⊗ · · · ⊗Hom∆(Λ,F (qk)•U )

id⊗ξ

��
A (q, r)⊗Hom∆(Λ,F (q1)•U ⊗ · · · ⊗F (qk)•U )

ζ

��
Hom∆(Λ,A (q, r)⊗F (q1)•U ⊗ · · · ⊗F (qk)•U )

Hom∆(id,θ)

��
Hom∆(Λ,F (r)•U ).

Here ξ is an Eilenberg-Zilber map provided by [19, 2.6] and ζ is the evident map
moving the tensor factor inside Hom, as in [19, 5.7].

We shall not carry out the implicit development of definitions, thus leaving an
honest answer to the riddle to the reader. The point is that the equivariance, unit,
and associativity diagrams that enter into the definitions of operads, caterads, and
their algebras imply corresponding diagrams relating the structure maps displayed
in Example 5.1 and the action maps displayed in Theorem 5.2. The missing defi-
nitions are given by abstracting the diagrams. Since we have no further examples
in mind, we desist. The essential point is that algebraic structure implied by the
operad and caterad actions will carry over appropriately to hypercohomology.
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6. Some structure on diagram categories DC

We return to the context of §§1–2. We again let C be a closed symmetric
monoidal category, but we now assume further that C is complete and cocomplete.
For example, C might be the category of presheaves on a site S . We let D be any
small category. For present purposes, we have in mind D = Σ. Let DC denote
the category of covariant functors D −→ C and natural transformations. We are
thinking of DC as the category of D-shaped diagrams, abbreviated D-diagrams,
in C . We can also think of it as the category of presheaves on Dop with values
in C . There is a great deal of structure on this category, some of which seems
distracting when trying to understand motivic cochains. However, the structure is
there, and it is useful for other purposes and in other contexts. Of course, since C
is complete, DC is cartesian monoidal [3, 2.15.2]. At least when C is the category
of sets, DC also has accompanying hom’s that make it closed cartesian monoidal,
as in [4, 2.3.4]. However, that is not the product structure that we have in mind.

For D-diagrams F and G, we have an external product

� : DC ×DC −→ (D ×D)C .

It is defined by
(F �G)(d, e) = F (d)⊗G(e).

Since C is complete, we have the internal hom HomD(F,G) in C , which is defined
in [19, 2.1] in terms of equalizers between products of internal hom’s in C . We use
this internal hom to obtain an external hom functor

Hom� : (DC )op × (D ×D)C −→ DC

to accompany the external product �. It is defined by

Hom�(G,K)(d) = HomD(G,K〈d〉)
for G in DC and K in (D×D)C , where K〈d〉(e) = K(d, e). We have the adjunction

(6.1) (D ×D)C (F �G,K) ∼= DC (F,Hom�(G,K)).

Now assume that D is symmetric monoidal, with product ⊕ and unit object 0.
Then the diagram category DC has a closed symmetric monoidal structure, with
product and internal hom that we shall write � and Hom�. The unit object, which
we call κ0, sends 0 to κ and sends all other d to the zero object in C (the coproduct
of the empty set of objects). Since C has colimits, there is a left Kan extension
functor that assigns a product D-diagram F � G to D-diagrams F and G. It is
characterized by the universal property that, for a D-diagram H,

(6.2) DC (F �G,H) ∼= (D ×D)C (F �G,H ◦ ⊕);

see [5] or, in variant versions, [15, 21.4] or [14, I.2.11] for details of the general
definition. In the case D = Σ, we shall shortly display the product � explicitly.

The internal hom Hom� is defined by

(6.3) Hom�(G,H) = Hom�(G,H ◦ ⊕).

The adjunctions (6.1) and (6.2) directly imply the adjunction

(6.4) DC (F �G,H) ∼= DC (F,Hom�(G,H)).

In turn, by a standard Yoneda lemma argument, this implies the adjunction

(6.5) Hom�(F �G,H) ∼= Hom�(F,Hom�(G,H)),
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which has an evaluation map

(6.6) ε : Hom�(X,Y )�X −→ Y.

With the usual categorical specification of their adjoints, the adjunction (6.5) gives
rise to a composition pairing

(6.7) µ : Hom�(G,H)�Hom�(F,G) −→ Hom�(F,H)

and a �-product pairing

(6.8) φ : Hom�(X,Y )�Hom�(X ′, Y ′) −→ Hom�(X �X ′, Y � Y ′).

The formal structure given by (6.5)–(6.8) is an example of the general formal
structure recalled in (2.1)–(2.4). Using this structure, we have endomorphism cat-
erads just as in §2. In particular, we have an endomorphism caterad End(Λ) in DC
for any covariant functor Λ: D −→ C , as in Construction 2.10. It is unclear to me
whether or not such caterads (or operads) or their variants available when C is a
presheaf category have a useful role to play in the context of motivic cohomology.

Specializing to the case D = Σ, we display the product �. Let κ[Σq] denote the
“C -group ring” of Σq; it is the coproduct of copies of κ indexed by permutations
in Σq. Using coequalizers to define orbits, F �G is specified explicitly by

(6.9) (F �G)(s) =
∐

q+r=s

κ[Σs]⊗Σq×Σr
(F (q)⊗G(r)).

The commutativity isomorphism in this case is induced from the maps

τq,r ⊗ τ : κ[Σq+r]⊗ F (q)⊗G(r) −→ κ[Σq+r]⊗G(r)⊗ F (q).

Proposition 6.10. The categories of symmetric monoids in C and of commutative
monoids in ΣC are isomorphic.

Proof. Let F be a symmetric sequence. If F is a symmetric monoid, its product
maps φ : F (q)⊗F (r) −→ F (q+ r) specify an external product φ : F �F −→ F ◦⊕,
which is a map of (Σ× Σ)-diagrams. Under the isomorphism

ΣC (F � F, F ) ∼= (Σ× Σ)C (F � F, F ◦ ⊕),

this product internalizes to a product F � F −→ F that gives F a structure of
commutative monoid in ΣC . Conversely, the product F�F −→ F of a commutative
monoid in ΣC externalizes to a product F � F −→ F ◦ ⊕ that gives F a structure
of symmetric monoid. �

Applied to symmetric sequences of simplicial sets, these definitions are the start-
ing point for Smith’s definitions [9] of the smash product of symmetric spectra and
of symmetric ring spectra. It is curious that, after passing from symmetric se-
quences to symmetric spectra, the “commutativity” of commutative monoids with
respect to the product � can be taken seriously in that situation, whereas the oppo-
site would seem to be true intuitively. Indeed, as promised, we return to Example
1.4 and explain in what sense tensor algebras are commutative monoids.

Example 6.11. The product (6.9) on symmetric sequences of vector spaces over
a field k is given by inducting up representations of Σq × Σr to representations
of Σq+r. Here the commutative monoid in ΣC associated to the tensor algebra
symmetric monoid T (X) is defined by the evident maps

k[Σq+r]⊗Σq×Σr
Xq ⊗Xr −→ Xq+r
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from the induced representations of tensor products Xq ⊗Xr of power representa-
tions Xq and Xr of the vector space X to the power representation Xq+r.
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