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Abstract. We define “weighted multiplicative presheaves” and observe that

there are several weighted multiplicative presheaves that give rise to motivic

cohomology. By neglect of structure, weighted multiplicative presheaves give
symmetric monoids of presheaves. We conjecture that a suitable stabilization

of one of the symmetric monoids of motivic cochain presheaves has an action

of a caterad of presheaves of acyclic cochain complexes, and we give some
fragmentary evidence. This is a snapshot of work in progress.
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Introduction

The first four sections set the stage for discussion of a conjecture about the
multiplicative structure of motivic cochain complexes. In §1, we define the notion
of a “weighted multiplicative presheaf”, abbreviated WMP. This notion codifies
formal structures that appear naturally in motivic cohomology and presumably
elsewhere in algebraic geometry. We observe that WMP’s determine symmetric
monoids of presheaves, as defined in [11, 1.3], by neglect of structure.

In §§2–4, we give an outline summary of some of the constructions of motivic co-
homology developed in [13, 17] and state the basic comparison theorems that relate
them to each other and to Bloch’s higher Chow complexes. There is a labyrinth
of definitions and comparisons in this area, and we shall just give a brief summary
overview with emphasis on product structures. The now standard construction is
given in §2, a variant form of this construction is given in §3, and another con-
struction is given in §4. There result three symmetric monoids of presheaves that
give rise to motivic cohomology after cohomological reindexing and shifts of grad-
ing. All are sheaves in the Zariski topology, and they are quasi-isomorphic. For
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one of these motivic cochain complexes, there is a Mayer-Vietoris or cohomolog-
ical descent theorem that says that hypercohomology can generally be computed
as the naive cohomology of the cochains on the global sections. For the others,
hypercohomology is essential.

Motivic cohomology is a bigraded algebra, as is the homology of any symmetric
monoid of presheaves (see Corollary 1.7). Moreover, as Voevodsky proved [13, 15.9],
it is commutative in the appropriate graded sense. This sets the stage. We want
to understand the commutativity as a consequence of some conceptual internal
structure on the motivic cochains. The paradigm is that the commutativity of the
cohomology of spaces is just a first algebraic implication of the action of an acyclic
operad on singular cochains. That action gives rise to Steenrod operations, among
other implications. Similarly, the commutativity of motivic cohomology should be
a first algebraic implication of analogous structure on motivic cochains that leads
to Steenrod operations.

Originally, it was expected that the appropriate conceptual framework would
involve an action of an acyclic operad on motivic cochains, which would imply that
the motivic cochain complex is an E∞ algebra. This seems especially plausible since
Kriz and May proved some years ago [7, II§6] that Bloch’s higher Chow cochain
complexes [2, 3], which have partially defined commutative products, are quasi-
isomorphic to E∞ algebras. However, analysis of the definitions and comparison
with Voevodsky’s Steenrod operations leads us to believe that the caterad algebras
of [11] are likely to provide a more appropriate structural framework, and it is
the purpose of this note to explain that intuition. If the intuition is correct, it
will result in much more algebraic structure than the expected operad action could
provide. In §5 and §6, we give some idea of what should be involved in proving our
conjecture that there is an acyclic caterad that acts on a suitably stabilized version
of one of the motivic cochain complexes.

In §7, we speculate on Steenrod operations. We do not understand the situation.
It seems that if our conjecture is right, it would give different families of operations
than those developed by Voevodsky and used in his proof of the Milnor conjecture
[14, 15]. In algebraic topology, one can obtain Steenrod operations either from an
action of an acyclic operad on singular cochains or by inspection of the effect of the
map

BΣp ×X = EΣp ×Σp
X −→ EΣp ×Σp

Xp

on mod p cohomology, where Σp is the symmetric group and the map is induced by
the diagonal X −→ Xp. The operations agree up to sign by a direct comparison of
definitions (e.g. [8, p. 206]). Voevodsky’s definition of Steenrod operations proceeds
by analogy with the second definition. Our definitions pursue the first definition,
and it appears that it may give different operations.

May thanks Spencer Bloch, Mike Mandell, Fabien Morel, Madhav Nori, Vladimir
Voevodsky, and Chuck Weibel for conversations and e-mails that helped him sort
out what little he knows about this area of mathematics. His attempts to under-
stand Joshua’s unsuccessful attempt [6] at a motivic operad action led him to the
original formulation of the conjecture here. He posted a first version of this note
on his web page December 25, 2003. Guillou found a mistake in a parenthetical,
but motivating, example (now deleted) and collaborated on working out the more
precise and plausible version of the original conjecture described in §5 and §6.
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1. Weighted multiplicative presheaves

Let S denote the category Sm/k of smooth separated schemes of finite type over
a field k. Let Z denote the constant Abelian presheaf at Z. Recall from [11, 1.2]
that a symmetric sequence F in any category C is just a sequence of objects F (q)
with (left) actions by the symmetric group Σq. We write F (σ) for the action of
σ ∈ Σq. When C is symmetric monoidal with unit object κ, we have the notion of
a symmetric monoid F in C [11, 1.3]. It is a symmetric sequence F together with
a unit λ : κ −→ F (0) and pairings φ = φq,r : F (q) ⊗ F (r) −→ F (q + r) such that
the evident unit, associativity, and commutativity diagrams commute. In presheaf
contexts, these arise naturally from the following structure.

Definition 1.1. A weighted multiplicative presheaf F on S (or any other site)
is a symmetric sequence of Abelian presheaves on S together with a unit map
λ : Z −→ F (0), where Z is the constant presheaf at Z, and “external” pairings

φ = φq,r : F (q)(U)⊗F (r)(V ) −→ F (q + r)(U × V )

of Abelian groups for schemes U and V in S which satisfy the following properties.
(i) The map φq,r is Σq × Σr-equivariant.
(ii) The following unit diagrams commute.

F (q)(U)⊗ Z

id⊗λ

��

F (q)(U)

F (πU )

��
F (q)(U)⊗F (0)(V )

φ
// F (q)(U × V )

Z⊗F (q)(V )

λ⊗id

��

F (q)(V )

F (πV )

��
F (0)(U)⊗F (q)(V )

φ
// F (q)(U × V )

(iii) The following associativity diagrams commute.

F (p)(U)⊗F (q)(V )⊗F (r)(W )
φ⊗id //

id⊗φ

��

F (p + q)(U × V )⊗F (r)(W )

φ

��
F (p)(U)⊗F (q + r)(V ×W )

φ
// F (p + q + r)(U × V ×W )

(iv) The following commutativity diagrams commute.

F (q)(U)⊗F (r)(V )
φ //

τ

��

F (q + r)(U × V )

F (τq,r)F (q+r)(t)

��
F (r)(V )⊗F (q)(U)

φ
// F (q + r)(V × U).

On the left, τ(x ⊗ y) = y ⊗ x. On the right, t : U × V −→ V × U is the
transposition. Since F (τq,r) is natural,

F (τq,r)F (q + r)(t) = F (q + r)(t)F (τq,r).

We generally abbreviate weighted multiplicative presheaf to “WMP”. The “weight”
q will keep track of bigrading when we pass to homology.

The category AbPre(S ) of Abelian presheaves is symmetric monoidal with re-
spect to the diagonal or “internal” tensor product specified by

(F ⊗ G )(U) = F (U)⊗ G (U).
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We also have the “external” tensor product F � G specified by

(F � G )(U × V ) = F (U)⊗ G (V ).

It is a presheaf defined on S × S . Similarly, for a presheaf F , the F (U × V )
specify a presheaf, denoted F ◦×, on S ×S . The pairings φ of a WMP are maps
F (q) � F (r) −→ F (q + r) ◦ × of presheaves on S ×S .

Write 4 for the diagonal maps of objects of S . The “external pairings” φ of
a WMP F pull back along maps F (4) to give “internal pairings”, which we also
denote by φ:

(1.2) φ : F (q)(U)⊗F (r)(U) −→ F (q + r)(U).

These give a map F (q)⊗F (r) −→ F (q + r) of presheaves on S . Comparing the
definition of a WMP with the definition of a symmetric monoid in AbPre(S ), as
given in [11, 1.3], we have the following observation.

Proposition 1.3. By pullback along diagonal maps, a WMP internalizes to a
symmetric monoid in AbPre(S ).

Remark 1.4. Explicitly, after setting the variable schemes equal and using the maps
F (4), the unit, associativity, and commutativity diagrams in the definition of a
WMP transform to the following commutative diagrams.

F (q)(U)⊗ Z

id⊗λ

�� QQQQQQQQQQQQQ

QQQQQQQQQQQQQ

F (q)(U)⊗F (0)(U)
φ

// F (q)(U)

Z⊗F (q)(U)

λ⊗id

�� QQQQQQQQQQQQQ

QQQQQQQQQQQQQ

F (0)(U)⊗F (q)(U)
φ

// F (q)(U)

F (p)(U)⊗F (q)(U)⊗F (r)(U)
φ⊗id //

id⊗φ

��

F (p + q)(U)⊗F (r)(U)

φ

��
F (p)(U)⊗F (q + r)(U)

φ
// F (p + q + r)(U)

F (q)(U)⊗F (r)(U)
φ //

τ

��

F (q + r)(U)

F (τq,r)

��
F (r)(U)⊗F (q)(U)

φ
// F (q + r)(U)

The transposition (of U and V ) has disappeared on the right, since t4 = 4, but
F (τq,r) remains. This is the source of noncommutativity in this situation.

Our immediate goal is to explain the relevance of WMP’s to motivic cohomology.
Recall from [10, §6] that we have the composite “singular” chain complex functor
C∗ = K ◦ (−)• from presheaves of Abelian groups to presheaves of chain complexes.
We shall also write C∗ for its composite with the free Abelian group functor Z
from presheaves of sets to presheaves of Abelian groups. As explained in [10, 1.4,
6.2], the functors (−)•, K, Z, and therefore C∗ (in both senses) are lax symmetric
monoidal. For a smooth scheme X and an Abelian group A, we write

C∗(F (X), A) = C∗(F )(X)⊗A.
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Definition 1.5. For a smooth scheme X, an Abelian presheaf F , and an Abelian
group A, let hp(X, F ⊗ A) denote the homology group in degree p of the chain
complex C∗(F (X), A). Delete A from the notation when A = Z.

The use of lower case h rather than upper case H is suggested by [17, IV§8].
It is meant to emphasize that we are just looking naively at the homology of the
global sections functor and not taking any topology on S into account.

Since C∗ is a lax symmetric monoidal functor, it preserves symmetric monoids.

Proposition 1.6. A symmetric monoid F of Abelian presheaves determines a
symmetric monoid F• of presheaves of simplicial Abelian groups and a symmetric
monoid C∗(F ) of presheaves of chain complexes.

Corollary 1.7. Let F be a symmetric monoid of Abelian presheaves and R be a
commutative ring. Then the groups h∗(X, F ⊗ R) assemble into a bigraded ring
with products

hp(X, F (q)⊗R)⊗ hp′(X, F (r)⊗R) −→ hp+p′(X, F (q + r)⊗R).

Remark 1.8. The product is made explicit in [10, 6.5]. Note that, because of
F (τq,r) in the commutativity diagram, there is nothing in the definitions to ensure
that this ring is (graded) commutative; if it were, the expected sign would be
(−1)pp′ , independent of the weight grading. To see how real the non-commutativity
is in general, take any Abelian presheaf F and consider the free “tensor algebra”
symmetric monoid T (F ) in AbPre(S ) given by [11, 1.5].

2. The standard motivic cochain complex

In this and the following two sections, we briefly review the definitions of cochain
presheaves that define motivic cohomology. In fact, we define three symmetric
monoids of Abelian presheaves that give rise to motivic cohomology. We follow
[13, 17], where details may be found, and we largely adhere to the notations of
those sources.

We first review the category SmCor/k of smooth correspondences over k, which
is also denoted Cork. We abbreviate notation by writing S C for this category. It
is an additive symmetric monoidal category with the same objects as S .

For smooth schemes U and V , S C (U, V ) is the free Abelian group generated
by the closed integral subschemes Z ⊂ U × V that are finite and surjective over a
component of U ; via the projections, we think of Z as a diagram U ←− Z −→ V .
The elements of S C (U, V ) are called finite cycles or finite correspondences, and
the Z are called elementary cycles or elementary correspondences. As explained
in [13, 1.4–1.7], pushforward along p : U × V ×W −→ U ×W of the intersection
Z ×W ∩ U × Z ′ gives a well-defined finite cycle Z ′ ◦ Z associated to elementary
cycles Z ′ and Z, and this specifies the composition pairing

S C (V,W )⊗S C (U, V ) −→ S C (U,W ).

We have a functor Gr: S −→ S C that is the identity on objects and sends a
map of schemes to its graph. Since we are ignoring that the morphism sets of S C
are Abelian groups, we are implicitly applying the forgetful functor from Abelian
groups to sets on the right, and we often prefer to regard Gr equivalently as an
additive functor ZS −→ S C between additive categories, where ZS is obtained
by applying the free Abelian group functor to the morphism sets of S .
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The product for the symmetric monoidal structure on S C is given on objects
by the cartesian product of schemes and has unit ∗ = Spec(k). On morphisms, it
is given by the pairing

(2.1) φ : S C (U, V )⊗S C (U ′, V ′) −→ S C (U × U ′, V × V ′)

specified on elementary cycles by φ(Z⊗Z ′) = Z×Z ′. The functor Gr: ZS −→ S C
is strong symmetric monoidal, where the product

φ : ZS (U, V )⊗ ZS (U ′, V ′) ∼= Z(S (U, V )×S (U ′, V ′)) −→ ZS (U × U ′, V × V ′)

is induced by the cartesian product pairing on S . The naturality condition Gr◦φ =
φ ◦ (Gr⊗Gr) on morphisms is easily checked.

Additive Abelian presheaves defined on the category S C are called presheaves
with transfers, and we let PS T denote the category of presheaves with transfers.
It is an Abelian category with enough projectives and injectives. Presheaves with
transfers restrict to Abelian presheaves on S . Each smooth scheme X represents
a projective presheaf with transfers, which is denoted Ztr(X). Thus

(2.2) Ztr(X)(U) = S C (U,X).

The pairing (2.1) can be rewritten as a pairing

(2.3) φ : Ztr(X)(U)⊗ Ztr(Y )(V ) −→ Ztr(X × Y )(U × V ).

An essential point is that Ztr(X) is a sheaf in the Zariski topology for all X. In par-
ticular, when X = ∗, this presheaf with transfers is the Zariski sheaf ZZar. Sheafi-
fication λ : Z −→ ZZar will later provide the unit maps required for our WMP’s.

Following [13, 2.10], for based schemes X and Y with basepoints x and y, we
mimic topology by defining Ztr(X ∧ Y ) to be the presheaf with transfers

Coker(ZtrX ⊕ ZtrY −→ Ztr(X × Y )),

where the maps are induced by y −→ Y and x −→ X. This operation is associative
and can be iterated. While Ztr(X ∧ Y ) is not a represented presheaf, since X ∧ Y
is not a scheme, it is still a projective object of PS T . The pairing (2.3) induces
a pairing

(2.4) φ : Ztr(X)(U)⊗ Ztr(Y )(V ) −→ Ztr(X ∧ Y )(U × V ).

For later use, we indicate a slightly different way of thinking about Ztr. We
can view Ztr as an additive functor S C −→ PS T or, by restriction along Gr,
as an additive functor ZS −→ PS T . Any Abelian presheaf X is a “weighted”
colimit of representables, in the sense that evaluation maps induce isomorphisms∫ S ZS (V,U) ⊗ X(U) ∼= X(V ) for V ∈ S . By commutation with weighted col-
imits (that is, with tensors by Abelian groups and ordinary colimits), of which the
displayed coend is an example, we can extend this restriction to an additive functor

(2.5) Ztr : AbPre(S ) −→PS T .

This functor is left adjoint to the forgetful functor

(2.6) U : PS T −→ AbPre(S )

that sends presheaves with transfers to Abelian presheaves by restriction along
Gr: S −→ S C . In particular, U forgets that presheaves with transfers are additive
functors on an additive category.
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The multiplicative group scheme Gm = A−{0} has the basepoint 1, and we have
presheaves with transfers Ztr(G∧q

m ); by convention, Ztr(G∧0
m ) = ZZar. The pairings

(2.4) induce pairings

(2.7) φ : Ztr(G∧q
m )(U)⊗ Ztr(G∧r

m )(V ) −→ Ztr(G∧q+r
m )(U × V ).

Proposition 2.8. Define F (q) = UZtr(G∧q
m ). Then the F (q) and the pairings φ

specify a weighted multiplicative presheaf F .

The essential point is that we must take the permutations on the smash powers
G∧q

m into account to correctly formulate the commutativity diagram. We take the
following fundamental definition from [13, 3.1].

Definition 2.9. For q ≥ 0, define the standard motivic complex Z(q) to be the
complex of presheaves with transfers

Z(q) = C∗(Ztr(G∧q
m ))[−q].

Regrading cohomologically, this gives a bounded above cochain complex with

(2.10) Z(q)p = Cq−p(Ztr(G∧q
m )).

Pedantically, the chain functor C∗ specifies a chain functor from PS T to the
category of chain complexes of presheaves with transfer, and we have the relation
UC∗ = C∗U, so that UC∗(Ztr(G∧q

m )) = C∗(F (q)). Each Z(q) is a complex of Zariski
sheaves of free Abelian groups, hence, for any Abelian group A, A(q) = Z(q) ⊗ A
is also a complex of Zariski sheaves. The same holds after restriction to the small
Zariski site of any smooth scheme X.

Definition 2.11. The motivic cohomology groups Hp,q(X, A) of smooth schemes
X with coefficients in Abelian groups A are the hypercohomology groups of the
motivic complexes A(q) with respective to the Zariski topology:

Hp,q(X, A) = Hp
Zar(X, A(q)).

We can also define the naive homology of C∗(F (q)), as in the previous section,
and regrade it appropriately. We thus obtain groups

(2.12) hp,q(X, A) = hq−p(C∗(UZtr(G∧q
m )(X), A)) = hq−p(C∗(F (q)(X), A)).

If R is a commutative ring, h∗,∗(X, R) is a bigraded ring. We have a natural ring
map from this naive motivic cohomology ring to the genuine motivic cohomology
ring H∗,∗(X, R), but there is no reason to expect it to be an isomorphism.

Remark 2.13. The naive product structure of Corollary 1.7 agrees with the product
specified in [13, 3.10]. It follows that the induced products in hypercohomology
agree.

3. A variant of the standard motivic complex

Voevodsky’s work gives an implicit variant of the the standard motivic complex
that fits well into our point of view. We describe it here. In [13, §8], Voevodsky
defines a tensor product ⊗tr on the category PS T such that

Ztr : AbPre(S ) −→PS T

is symmetric monoidal. The definition of ⊗tr starts with

ZtrX ⊗tr Ztr(Y ) = Ztr(X × Y )
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for X, Y ∈ S and extends from there to general presheaves with transfer by passage
to colimits. The forgetful functor U : PS T −→ AbPre(S ) is lax symmetric
monoidal [13, 8.9]. Indeed, taking U = V in (2.3) and pulling back along the
diagonal of U , we obtain a natural map

φ : Ztr(X)(U)⊗ Ztr(Y )(U) −→ Ztr(X × Y )(U)

that specifies

φ : UZtr(X)⊗ UZtr(Y ) −→ U(ZtrX ⊗tr Ztr(Y )).

Similar definitions and observations apply starting with based schemes (X, x). Here
we define Ztr(X, x) = Ztr(X)/Ztr(x) and find that

Ztr(X, x)⊗tr Ztr(Y, y)) ∼= Ztr((X, x) ∧ (Y, y)).

Formally, the category AbPreS∗ of based presheaves is symmetric monoidal under
the smash product, and Ztr is strong symmetric monoidal.

Definition 3.1. Define a symmetric monoid FV in PreS∗ by letting FV (q) be
Aq/Aq − 0 with its evident Σq-action and letting the product FV (q) ∧ FV (r) −→
FV (q + r) be induced from the identification Aq × Ar = Aq+r. Applying Ztr to
FV , we obtain a symmetric monoid in PS T ; applying U to that, we obtain a
symmetric monoid FV in AbPreS .

Definition 3.2. For q ≥ 0, define the variant motivic complex ZV (q) to be the
complex of presheaves with transfers

ZV (q) = C∗(Ztr(F (q)))[−2q].

Regrading cohomologically, this gives a bounded above cochain complex with

(3.3) ZV (q)p = C2q−p(Ztr(F (q))).

We have the following basic comparison theorem of [13, 15.2].

Theorem 3.4. If k is perfect, the motivic complexes Z(q) and ZV (q) are quasi-
isomorphic.

Remark 3.5. A diagram chase shows that the products on these motivic complexes
give rise to the same products on motivic cohomology. In [13, 15.9], the product
Hp,q ⊗ Hp′,r −→ Hp+p′,q+r is proven to be commutative, with the usual sign
(−1)pp′ . The proof goes by showing that, for σ ∈ Σq, the automorphism FV (σ)
of FV (q) induces the identity map on homology. This implies that the homology
ring of Corollary 1.7 is commutative, and a check of the signs introduced by the
grading shifts then shows that the cohomology ring is also commutative.

Remark 3.6. After sheafification in the Nisnevich (or Zariski) topology, FV (q) is
equivalent to T∧q, where T = A1/A1 − 0.

4. The Suslin-Friedlander motivic cochain complex

We next recall the Suslin-Friedlander motivic cochain complex, denoted ZSF (q),
from [13, §16]. For a scheme X of finite type over k, we define an Abelian presheaf
Zeq(X) on S , denoted zequi(X, 0) in [13, 17], by letting Zeq(X)(U) be the free
Abelian group generated by the closed irreducible subvarieties Z of U ×X which
are quasi-finite and dominant over a component of U ; see [13, 16.1]. It contains
Ztr(X) as a subsheaf, and the two are equal if X is projective. Again, Zeq(X) is a
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sheaf in the Zariski topology, and it admits transfers that make it a presheaf with
transfers.

Definition 4.1. Define ZSF (q) by letting

ZSF (q) = C∗(ZeqAq)[−2q].

Regrading cohomologically, this gives a bounded above cochain complex with

(4.2) ZSF (q)(X)p = C2q−p(Zeq(Aq)(X)).

For an Abelian group A, let ASF = ZSF ⊗A.

A major theorem of Voevodsky [16] (or [13, 16.7]) reads as follows.

Theorem 4.3. There is a zigzag of quasi-isomorphisms in the Zariski topology

Z(q) ' ZSF (q).

Therefore Hp,q(X, A) = Hp
Zar(X, A(q)) ∼= Hp

Zar(X, ASF (q)).

We can again define the concomitant naive motivic cohomology groups

(4.4) hp,q
SF (X, A) = h2q−p(C∗(Zeq(Aq)(X), A)) = h2q−p(C∗(FSF (q)(X), A)).

In contrast to the situation in the previous sections, another major theorem, due
to Friedlander and Voevodsky [17, 4.8.1], gives the following result.

Theorem 4.5. If k satisfies resolution of singularities and X is quasi-projective,
then

hp,q
SF (X, A) ∼= Hp

Zar(X, ASF (q)).

Remark 4.6. We do not know whether or not the more recent techniques of [13]
suffice to prove this result without using resolution of singularities. There is an
analogous cohomological descent result there, namely [13, 19.12], which does not
rely on resolution of singularities, but it applies to Bloch’s higher Chow complexes
rather than to the motivic cochain complexes ZSF (q).

Just as for Ztr, taking cartesian products of sub-varieties gives a pairing

(4.7) φ : Zeq(X)(U)⊗ Zeq(Y )(V ) −→ Zeq(X × Y )(U × V ).

Since Aq × Ar = Aq+r, the pairing (4.7) specializes to a pairing

(4.8) φ : Zeq(Aq)(U)⊗ Zeq(Ar)(V ) −→ Zeq(Aq+r)(U × V ).

This leads to the Suslin-Friedlander analogue of Proposition 2.8.

Proposition 4.9. Define FSF (q) = UZeq(Aq). Then the FSF (q) and the pairings
φ specify a weighted multiplicative presheaf FSF .

Theorems of Voevodsky, Friedlander, and Suslin ([17], [13, 19.1], [5]) give the
following comparison between motivic cohomology and Bloch’s higher Chow groups
CHq(X, 2q − p) [2, 3].

Theorem 4.10. For any smooth scheme X,

Hp
Zar(X, ZSF (q)) ∼= CHq(X, 2q − p).

Remark 4.11. It is natural to ask which of these isomorphisms preserve products.
Weibel [18] has shown that the isomorphism of Theorem 4.10 preserves products,
and he has compared these products with several other relevant products. Although
this does not seem to be made explicit in the literature, it is implicit in the proof
of Theorem 4.3 that the isomorphism there also preserves products.
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5. Towards caterad actions

This sets the context. We defined caterads and algebras over caterads in [11],
and our conjecture is that there is an acyclic caterad A in AbPre(S ) that acts on
a kind of stabilization of the symmetric monoid FV . One could ask instead for an
analogous action starting from the symmetric monoid obtained from the WMP F
or the WMP FSF .

Example 5.1. Since Ztr(G∧q
m ) ∼= Ztr(Gm)⊗

trq, the endomorphism caterad
End(Ztr(Gm)) acts on the tensor algebra symmetric monoid TZtr(Gm) in PS T
(see [11, 1.5]). Thus, since U is lax symmetric monoidal, the caterad UEnd(Ztr(Gm))
in AbPre(S ) acts on the symmetric monoid associated to the WMP F .

However, we do not see how to go from this example to an action of an acyclic
caterad, and observations on grading in §7 seem to indicate that FV is more ap-
propriate than F for this purpose. Note that Ztr(X) is covariantly functorial on X,
whereas Zeq(X) is only covariantly functorial on proper morphisms, such as closed
immersions [17, 3.6.2 in Ch.2]. This suggests that FV might be simpler to work
with than FSF , but we will find it convenient to think about closed immersions in
any case. There is another reason that FV might be more convenient, namely the
fact that it arises by application of the functor Ztr(X) to the symmetric monoid
FV in PreS∗, as explained in Definition 3.1.

If we can obtain an action of a caterad A on (a stabilization of) FV , then, since
the chain functor C∗ is lax symmetric monoidal, the caterad C∗(A ) in the category
ChPre(S ) of presheaves of chain complexes will act on C∗(FV ). If A (q, q) is
homologically connected, in the sense that any two maps Z −→ A (q, q) induce
the same map on homology, it will follow that FV (σ) induces the identity map on
homology, where σ = τ1,1 is the transpostion, and this will give a cateradic proof
that motivic cohomology is commutative. Higher homological connectivity of the
A (q, r) will induce further structure on motivic cohomology.

We describe a sensible starting point by giving an action of a caterad, the unstable
linear inclusions caterad I in S , on the symmetric monoid FV in PreS∗. The
action is given by maps of presheaves

I(p, q)+ ∧ FV (p) −→ FV (q).

In fact, we take I(p, q) to be the classical Stiefel variety Vp(q). Its k-points are
p-tuples of linearly independent vectors in Aq, and we have a principal GLp-bundle
Vp(Aq) −→ Grp(Aq) for each p and q. For example, I(p, p) = GLp and I(1, q) =
Aq − 0. Adjoining disjoint basepoints, we obtain a caterad in PreS∗.

Although these constructions are familiar, we give some details to make clear
how they fit into our cateradic context. We start with an explicit affine cover
for Vp(Aq). For each subset I ⊆ {1, 2, . . . , q} of cardinality p, let UI be the open
subscheme

UI = Spec k

[
x11, x12, . . . , xqp,

1
detI

]
of Aqp, where detI is the Ith p × p minor of the q × p matrix (xij). We see that
each UI is isomorphic to Glp ×Ap(q−p). The UI ’s glue together in the obvious way
to give the scheme Vp(Aq). Note that Vp(Aq) = ∅ for q < p, Vp(Ap) = GLp, and
V1(Aq) = Aq − 0.
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This explicit affine cover allows us to write down explicit maps

ϕ : Vp(Aq)× Ap −→ Aq.

We do this for each I ⊆ {1, 2, . . . , q} of cardinality p. We define

ϕI : Spec k

[
x11, x12, . . . , xqp,

1
detI

]
× Spec k[y1, . . . , yp] −→ Spec k[z1, . . . , zq]

by
zi 7→

∑
j

xij ⊗ yj .

The ϕI ’s patch together to define ϕ : Vp(Aq)× Ap −→ Aq. The restriction of ϕ to
Vp(Aq)× Ap − 0 factors through Aq − 0, and induces the desired map

Vp(Aq)+ ∧ Ap/(Ap − 0) −→ Aq/(Aq − 0).

We must check that the I(p, q) = Vp(Aq) determine a caterad. The unit map
η : ∗ = Spec k −→ GLp is given by the identity matrix. The composition morphisms

µ : Vq(Ar)× Vp(Aq) −→ Vp(Ar)

are given by matrix multiplication. The composition is then unital and associative.
The underlying hom sets are given by the k-points, that is the classical Stiefel
varieties over k. The homomorphism Σq −→ GLq is given by the usual embedding
as the Weyl subgroup. Finally, the product on morphisms

φ : Vq(Ar)× Vq′(Ar′) −→ Vq+q′(Ar+r′)

is given by block sum of matrices. It is easily checked that these maps satisfy the
compatibility conditions required of a caterad and that the maps ϕ define an action
of I on FV .

6. The stable linear inclusions caterad

Fix p, q, m, and n. We have a map (Am)q −→ (Am+1)q given by including via the
first m coordinates on each factor. This induces a map Vpn(Aqm) −→ Vpn(Aq(m+1)),
and so we can form

colimm Vpn(Aqm).

Also, precomposing with analogous maps Apn −→ Ap(n+1) gives maps

colimm Vp(n+1)(Aqm) −→ colimm Vpn(Aqm).

We set
L(p, q) = limncolimmVpn(Aqm).

This is meant to be reminiscent of the linear isometries caterad in topology, whose
(p, q)th space L (p, q) is the space of linear isometries (R∞)p −→ (R∞)q.

As in the topological situation, the L(p, q)’s fit together to form a caterad in
PreS . The unit map η : ∗ −→ L(p, p) is obtained by passage to colimits and limits
from the maps ∗ −→ Vpn(Apn) given by the identity matrix in Vpn(Apn) = GLpn

The composition maps

µ : L(q, r)× L(p, q) −→ L(p, r),

that is,

(limn colimm Vqn(Arm))× (limn′ colimm′ Vpn′(Aqm′
)) −→ limi colimj Vpi(Arj),
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are obtained from the composition maps

Vqm′(Arm)× Vpi(Aqm′
) −→ Vpi(Arm)

by passage to colimits and limits. The verification that this works is routine, using
that finite limits commute with filtered colimits. As in the unstable case, the
homomorphism Σp ↪→ L(p, p)) is obtained from the embedding Σp ↪→ GLp, and
the product

φ : L(q, r)× L(q′, r′) −→ L(q + q′, r + r′)

is induced from block sum of matrices.
Moreover, we have the following standard lemma.

Lemma 6.1. Each L(p, q) with q > 0 is A1-contractible.

Proof. We need some notation. Fix some γ ∈ L(p, q)(k). Let s : ∗ −→ L(q, q) be
the map that picks out the odd-numbered elements of the basis. More precisely,
for fixed n we let

sn : ∗ −→ Vqn(Aq2n) −→ colimm Vqn(Aq2m)

be the map that picks out the n odd coordinates in each factor of A2n, and these
determine a map s as desired. Similarly, let r : ∗ −→ L(q, q) pick out the even
coordinates.

We define a path h1 : A1 −→ L(q, q) by h1(t) = ts + (1− t)id. Let i1, i2 : ∗ −→
L(p, 2p) be the maps that pick out the first and last p copies of An in A2pn and let
β : ∗ −→ L(2q, q) be the map which applies r to the first summand and s to the
second. We define a path h2 : A1 −→ L(p, 2p) by h2(t) = ti1 + (1− t)i2.

Now we define H1 : A1 × L(p, q) −→ L(p, q) to be the composite µ ◦ (h1, id).
Finally, we define H2 : L(p, q)× A1 −→ L(p, q) to be the composite

L(p, q)× A1 id×h2−−−−→ L(p, q)× L(p, 2p) ∼= ∗ × L(p, q)× L(p, 2p)
γ×id×id−−−−−→ L(p, q)× L(p, q)× L(p, 2p)

φ×id−−−→ L(2p, 2q)× L(p, 2p)
µ−→ L(p, 2q)

β∗−→ L(p, q)

H1 gives a homotopy id ' s∗ and H2 gives a homotopy from s∗ to the constant
function at r ◦ γ. �

This acyclic caterad is not directly useful to us since L(p, q)+ does not act on
our symmetric monoid F . It does act on a naive stabilization of F , namely the
symmetric monoid given by

stF (p) = colimn Apn/(Apn − 0),

but again this does not seem to be of much use. Rather, we conjecture that, at least
after passage to motivic cochain complexes, there is a stabilization that is related
to the cancellation theorem and that gives motivic cochains with an action of the
chain caterad L = C∗UGrL.
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7. Steenrod operations?

We start with an observation about the construction of Steenrod like operations.
Let A be any caterad in AbPre(S ) and let F be any algebra over A . By [11, 4.5],
for any q and r we have Σ`-equivariant structure maps

(7.1) C∗(A (q`, r))⊗ C∗(F (q))` −→ C∗(F (r)).

Let ` be a prime and reduce everything mod `. If C∗(A (q`, r)) is acyclic, so that
its homology (on each smooth scheme X) is F` concentrated in degree zero, we can
crudely apply elementary homological algebra to map any F`[Σ`]-free resolution W
of F` into C∗(A (q`, r)), one X at a time. The result will be natural up to chain
homotopy. We obtain chain maps

W ⊗F`[Σ`] C∗(F (q))` −→ C∗(A (q`, r))⊗F`[Σ`] C∗(F (q))` −→ C∗(F (r))

which induce maps of homology presheaves. Such chain maps induce Steenrod like
operations, as is explained in detail in [8], which gives methods for studying their
properties. As explained in [8, 2.2] (where the operations are denoted Ps), there
result operations

Qs : hn(X, F (q)⊗ F`) −→ hn+2s(`−1)(X, F (r)⊗ F`)

when ` > 2 and similar operations Qs of degree s when ` = 2. These operations
are defined for all integers s, but they are zero if ` > 2 and s < 2n or if ` = 2 and
s < n. When regrading cohomologically, one usually writes P s = Q−s, but to avoid
confusion we shall instead write Rs = Q−s.

Recall that Voevodsky [14, 15] constructed Steenrod operations

P i : Hp,q(X; F`) −→ Hp+2i(`−1),q+i(`−1),

denoted Sq2i if ` = 2.

Remark 7.2. Suppose for speculative purposes that we have an acyclic caterad
action on either F or FV (or FSF which has the same grading conventions).
Then passage to hypercohomology and inspection of the cohomological regrading
would give operations as follows. For F , we would have operations

Rs : Hp,q(X; F`) −→ Hp+r−q+2s(`−1),r(X; F`).

Setting r = q + i(`− 1), these would be operations

Rs : Hp,q(X; F`) −→ Hp+(i+2s)(`−1),q+i(`−1)(X; F`).

To retrieve Voevodsky’s operations, we would have to have 2s = i, which of course
is impossible if i is odd. For FV , we would have operations

Rs : Hp,q(X; F`) −→ Hp+2r−2q+2s(`−1),r(X; F`).

Setting r = q + i(`− 1), these would be operations

Rs : Hp,q(X; F`) −→ Hp+(2i+2s)(`−1),q+i(`−1)(X; F`).

The only dimensional candidates for Voevodsky’s operations occur when s = 0, but
then the Cartan formula for the Rs looks quite different from the Cartan formula
for Voevodsky’s operations.
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For comparison, the originally expected E∞ operad action, of the sort obtained
for Bloch’s higher Chow complexes in [7], would give us Σ`-equivariant maps

(7.3) O(`)⊗ C∗(FSF (q))` −→ C∗(FSF (q`)),

where O(`) is Σ`-free and acyclic. Such maps would give Steenrod operations

P i
B : Hp,q(X, F`) −→ Hp+2i(`−1),q`(X, F`)

if ` > 2 and Sqi
B of bidegree (i, q) if ` = 2 that satisfy all of the usual properties.

Using Theorem 4.10, the work of [7] already gives us such operations; see [7, I.7.2].1

Operations of this sort would arise from the part r = q` of an action by an acyclic
caterad. Observe that these operations and Voevodsky’s operations only overlap in
the case i = q, and even there no comparison has been proven.
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1In the cited result, s ≥ 0 should read s ∈ Z and the first Adem relation should read

QtQs =
X

i

(−1)t+i(pi,−t, t− (p− 1)s− i− 1)Qs+t−iQi.


