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Abstract. We collect in one place a variety of known and folklore re-
sults in enriched model category theory and add a few new twists. The
central theme is a general procedure for constructing a Quillen adjunc-
tion, often a Quillen equivalence, between a given V -model category
and a category of enriched presheaves in V , where V is any good en-
riching category. For example, we rederive the result of Schwede and
Shipley that reasonable stable model categories are Quillen equivalent
to presheaf categories of spectra (alias categories of module spectra)
under more general hypotheses. The technical improvements and mod-
ifications of general model categorical results given here are applied to
equivariant contexts in the sequels [13, 14], where we indicate various
directions of application.
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Introduction

The categories that occur in nature have both hom sets and enriched hom
objects that live in some other, related category. Technically, the first cate-
gory is “enriched” in the second. In topology, the enrichment is often given
simply as a topology on the set of maps between a pair of objects, and its
use is second nature. In algebra, enrichment in abelian groups is similarly
familiar in the context of additive and Abelian categories. In homologi-
cal algebra, this becomes enrichment in chain complexes, and the enriched
categories go under the name of DG-categories.

Quillen’s model category theory encodes homotopical algebra in general
categories. In and of itself, it concerns just the underlying category, but the
relationship with the enrichment is of fundamental importance in nearly all
of the applications.

The literature of model category theory largely focuses on enrichment in
the category of simplicial sets and related categories with a simplicial flavor.
Although there are significant technical advantages to working simplicially,
as we shall see, the main reason for this is nevertheless perhaps more histor-
ical than mathematical. Simplicial enrichment often occurs naturally, but
it is also often arranged artificially, replacing a different naturally occurring
enrichment with a simplicial one. This is very natural if one’s focus is on,
for example, categories of enriched categories and all-embracing generality.
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It is not very natural if one’s focus is on analysis of, or calculations in, a
particular model category that comes with its own intrinsic enrichment.

The focus on simplicial enrichment gives a simplicial flavor to the lit-
erature that perhaps impedes the wider dissemination of model theoretic
techniques. For example, it can hardly be expected that those in repre-
sentation theory and other areas that deal naturally with DG-categories
will read much of the simplicially oriented model category literature, even
though it is directly relevant to their work.

Even in topology, it usually serves no mathematical purpose to enrich
simplicially in situations in equivariant, parametrized, and classical homo-
topy theory that arise in nature with topological enrichments. We recall
a nice joke of John Baez when given a simplicial answer to a topological
question.

“The folklore is fine as long as we really can interchange topological spaces and simpli-
cial sets.

Otherwise it’s a bit like this:

‘It doesn’t matter if you take a cheese sandwich or a ham sandwich; they’re equally
good.’

‘Okay, I’ll take a ham sandwich.’
‘No! Take a cheese sandwich - they’re equally good.’

One becomes suspicious. . . ”

Technically, however, there is very good reason for focusing on simpli-
cial enrichment: simplicity. The model category of simplicial sets enjoys
special properties that allow general statements about simplicially enriched
model categories, unencumbered by annoying added and hard-to-remember
hypotheses that are necessary when enriching in a category V that does
not satisfy these properties. Lurie [23, A.3.2.16] defined the notion of an
“excellent” enriching category and restricted to those in his treatment [23,
A.3.3] of diagram categories. In effect, that definition encodes the relevant
special properties of simplicial sets. None of the topological and few of the
algebraic examples of interest to us are excellent. These properties pre-
clude other desirable properties. For example, in algebra and topology it is
very often helpful to work with enriching categories in which all objects are
fibrant, whereas every object is cofibrant in an excellent enriching category.

While we also have explicit questions in mind, one of our goals is to
summarize and explain some of how model category theory works in general
in enriched contexts, adding a number of technical refinements that we need
in the sequels [13, 14]1 and could not find in the literature. Many of our
results appear in one form or another in the standard category theory sources
(especially Kelly [20] and Borceux [2]) and in the model theoretic work
of Dugger, Hovey, Lurie, Schwede, and Shipley [5, 6, 16, 23, 34, 35, 36].
Although the latter papers largely focus on simplicial contexts, they contain
the original versions and forerunners of many of our results.

1The paper [14] is logically a sequel to this paper, although it was published earlier.
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Cataloging the technical hypotheses needed to work with a general V is
tedious and makes for tedious reading. To get to more interesting things first,
we follow a referee’s suggestion and work backwards. We recall background
material that gives the basic framework at the end. Thus we discuss enriched
model categories, called V -model categories (see Definition 4.23), in general
in Section 4 and we discuss enriched diagram categories in Section 5.1. The
rest of Section 5 gives relevant categorical addenda not used earlier. Thus
Section 5.2 and Section 5.3 describe ways of constructing maps from small
V -categories into full V -subcategories of V or, more generally, M , and
Section 5.4 discusses prospects for multiplicative elaborations of our results.

Our main focus is the comparison between given enriched categories and
related categories of enriched presheaves. We are especially interested in
examples where, in contrast to modules over a commutative monoid in V ,
the model category M requires more than one “generator”, as is typical
of equivariant contexts [13, 14]. We shall see in [14] that the notion of
“equivariant contexts” admits a considerably broader interpretation than
just the study of group actions.

We will discuss answers to the following questions in general terms in
Section 1. They are natural variants on the theme of understanding the
relationship between model categories in general and model categories of
enriched presheaves. When V is the category sSet of simplicial sets, a
version of the first question was addressed by Dwyer and Kan [9]. Again
when V = sSet, a question related to the second was addressed by Dugger
[3, 4]. When V is the category ΣS of symmetric spectra, the third question
was addressed by Schwede and Shipley [35]. In the DG setting, an instance
of the third question was addressed by Dugger and Shipley [7, §7].

In all four questions, D denotes a small V -category. The only model
structure on presheaf categories that concerns us in these questions is the
projective level model structure induced from a given model structure on V :
a map f : X −→ Y of presheaves is a weak equivalence or fibration if and
only if fd : Xd −→ Yd is a weak equivalence or fibration for each object d of
D ; the cofibrations are the maps that satisfy the left lifting property (LLP)
with respect to the acyclic fibrations. There is an evident dual notion of
an injective model structure, but that will not concern us here. We call the
projective level model structure the level model structure in this paper.

Question 0.1. Suppose that M is a V -category and δ : D −→M is a V -
functor. When can one use δ to define a V -model structure on M such that
M is Quillen equivalent to the V -model category Pre(D ,V ) of enriched
presheaves Dop −→ V ?

Question 0.2. Suppose that M is a V -model category. When is M Quillen
equivalent to Pre(D ,V ), where D is the full V -subcategory of M given by
some well-chosen set of objects d ∈M ?
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Question 0.3. Suppose that M is a V -model category, where V is a stable
model category. When is M Quillen equivalent to Pre(D ,V ), where D is
the full V -subcategory of M given by some well-chosen set of objects d ∈M ?

Question 0.4. More generally, we can ask Questions 0.2 and 0.3, but seek-
ing a Quillen equivalence between M and Pre(D ,V ) for some V -functor
δ : D −→M , not necessarily the inclusion of a full V -subcategory.

Our answer to Question 0.3 is a variant of a theorem of Schwede and
Shipley [35]. Together with our discussion here of changes of D in answer
to Question 0.4, it will play a central role in the sequel [13], where we give a
convenient presheaf model for the category of G-spectra for any finite group
G. We are also interested in Question 0.4 since we shall see in [14] that
there are interesting V -model categories M that are Quillen equivalent to
presheaf categories Pre(D ,V ), where D is not a full subcategory of M .

We return to the general theory in Sections 2 and 3, where we give a vari-
ety of results that show how to change D , M , and V without changing the
Quillen equivalence class of the model categories we are interested in. Many
of these results are technical variants or generalizations (or sometimes just
helpful specializations) of results of Dugger, Hovey, Schwede, and Shipley
[5, 6, 16, 34, 35, 36]. Some of these results are needed in [13, 14] and others
are not, but we feel that a reasonably thorough compendium in one place
may well be a service to others. The results in this direction are scattered
in the literature, and they are important in applications of model category
theory in a variety of contexts. The new notion of a tensored adjoint pair in
Section 3.4 is implicit but not explicit in the literature and captures a com-
monly occurring phenomenon of enriched adjunction. The new notions of
weakly unital V -categories and presheaves in Section 3.5 describe a phenom-
enon that appears categorically when the unit I of the symmetric monoidal
model category V is not cofibrant and appears topologically in connection
with Atiyah duality, as we will explain in [13].

The basic idea is that V is in practice a well understood model category, as
are presheaf categories with values in V . Modelling a general model category
M in terms of such a presheaf category, with its elementary levelwise model
structure, can be very useful in practice, as many papers in the literature
make clear. It is important to the applications to understand exactly what
is needed for such modelling and how one can vary the model. We were
led to our general questions by specific topological applications [13, 14], but
there are many disparate contexts where they are of interest.

Our focus is on what all these contexts have in common, and we shall try
to make clear exactly where generalities must give way to context-specific
proofs. For applications, we want D to be as concrete as possible, something
given or constructed in a way that makes it potentially useful for calculation
rather than just theory. Towards this end, we find it essential to work
with given enrichments in naturally occurring categories V , rather than
modifying V for greater theoretical convenience.
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The reader is assumed to be familiar with basic model category theory,
as in [15, 16, 28]. The last of these is the most recent textbook source. It
was written at the same time as the first draft of this paper, which can be
viewed as a natural sequel to the basics of enriched model category theory
as presented there. We give full details or precise references on everything
we use that is not in [28].

It is a pleasure to thank an anonymous referee for an especially helpful
report. This work was partially supported by Simons Collaboration Grant
No. 282316 held by the first author.

1. Comparisons between model categories M and Pre(D, V )

1.1. Standing assumptions on V , M , and D. We fix assumptions here.
We will fill in background and comment on our choices of assumptions and
notations in Sections 4 and 5.1.

Throughout this paper, V will be a bicomplete closed symmetric monoidal
category that is also a cofibrantly generated and proper monoidal model
category (as specified in [16, 4.2.6], [15, 11.1.2], or [28, 16.4.7]; see Defini-
tion 4.23 below). While it is sensible to require V to be proper, we shall
not make essential use of that assumption in this paper. We write V ⊗W
or V ⊗V W for the product and V (V,W ) for the internal hom in V , and
we write V (V,W ) for the set of morphisms V −→ W in V . We let I de-
note the unit object of V . We do not assume that I is cofibrant, and we
do not assume the monoid axiom (see Definition 4.26). We assume given
fixed preferred sets I of generating cofibrations and J of generating acyclic
cofibrations for V .

We assume familiarity with the definitions of enriched categories, enriched
functors, and enriched natural transformations [2, 20]. A brief elementary
account is given in [28, Ch. 16], and we give some review in Sections 4
and 5.1. We refer to these as V -categories, V -functors, and V -natural
transformations.

Throughout this paper, M will be a bicomplete V -category. We ex-
plain the bicompleteness assumption in Section 4.1. We let M (M,N) de-
note the enriched hom object in V between objects M and N of M . We
write M V (M,N) when considering changes of enriching category. We write
M (M,N) for the set of morphisms M −→ N in the underlying category of
M . By definition,

M (M,N) = V (I,M (M,N)). (1.1)

Bicompleteness includes having tensors and cotensors, which we denote by

M � V and F (V,M)

for M ∈M and V ∈ V ; (4.5) gives the defining adjunctions for these objects
of M .

We regard the underlying category as part of the structure of M . Philo-
sophically, if we think of the underlying category as the primary structure,
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we think of “enriched” as an adjective modifying the term category. If we
think of the entire structure as fundamental, we think of “enriched category”
as a noun (see [28] and Remark 4.11).

In fact, when thinking of it as a noun, it can sometimes be helpful to
think of the underlying category as implicit and unimportant. For example,
when considering the domain categories D of presheaf categories, we are
never interested in the underlying category of D and in fact the underlying
category is best ignored. One can then think of the enrichment as specifying
a V -category, with morphism objects M (M,N) in V , unit morphisms
I −→ M (N,N) in V , and a unital and associative composition law in V ,
but with no mention of underlying maps despite their implicit definition in
(1.1).

We fix a small V -category D . We then have the category Pre(D ,V ) of
V -functors X : Dop −→ V and V -natural transformations; we call X an
enriched presheaf.

We write Xd for the object of V that X assigns to an object d of D . Then
X is given by maps

X(d, e) : D(d, e) −→ V (Xe, Xd)

in V . Maps f : X −→ Y of presheaves are given by maps fd : Xd −→ Yd in
V that make the appropriate diagrams commute; see (4.30).

Remark 1.2. As we explain in Section 5.1, Pre(D ,V ) is itself the under-
lying category of a V -category. We write Pre(D ,V )(M,N) for the hom
object in V of morphisms of presheaves M −→ N . It is an equalizer dis-
played in greater generality in (5.1).

The Yoneda embedding Y : D −→ Pre(D ,V ) plays an important role in
the theory.

Definition 1.3. For d ∈ D , Y(d) denotes the presheaf in V represented by
d, so that

Y(d)e = D(e, d);

Y is the object function of a V -functor Y : D −→ Pre(D ,V ). Thus

Y : D(d, d′) −→ Pre(D ,V )(Y(d),Y(d′))

is a map in V for each pair of objects d, d′ of D .

The classical Yoneda lemma generalizes to an enriched Yoneda lemma
[2, 6.3.5] identifying enriched natural transformations out of represented
enriched functors. We have defined Pre(D ,V ), but we need notation for
more general functor categories.

Definition 1.4. Denote by Fun(Dop,M ) the category with objects the
V -functors Dop −→ M and morphisms the V -natural transformations. In
particular, taking M = V ,

Fun(Dop,V ) = Pre(D ,V ).
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Again, as we explain in Section 5.1, Fun(Dop,M ) is bicomplete and is
the underlying category of a V -category, with hom objects displayed as
equalizers in (5.1).

Definition 1.5. Let evd : Fun(Dop,M ) −→ M denote the dth object V -
functor, which sends X to Xd. Let Fd : M −→ Fun(Dop,M ) be the V -
functor defined on objects by FdM = M � Y(d), so that

(FdM)e = M �D(e, d).

We discuss V -adjunctions in Section 4.1 and explain the following result
in Section 5.1.

Proposition 1.6. The pair (Fd, evd) is a V -adjunction between M and
Fun(Dop,M ).

Remark 1.7. Dually, we have the V -functor Gd : M −→ Fun(D ,M ) de-
fined by GdM = F (Y(d),M), and (evd, Gd) is a V -adjunction between M
and Fun(D ,M ).

1.2. The categorical context for the comparisons. Under mild as-
sumptions, discussed in Section 4.4, the levelwise weak equivalences and
fibrations determine a model structure on Pre(D ,V ). This is usually ver-
ified by Theorem 4.32, and it often holds for any D by Remark 4.35. We
assume throughout that all of our presheaf categories Pre(D ,V ) are such
model categories. Presheaf model categories of this sort are the starting
point for a great deal of work in many directions. In particular, they give
the starting point for several constructions of the stable homotopy category
and for Voevodsky’s homotopical approach to algebraic geometry. In these
applications, the level model structure is just a step on the way towards the
definition of a more sophisticated model structure, but we are interested in
applications in which the level model structure is itself the one of interest.

We have so far assumed no relationship between D and M , and in practice
one encounters different interesting contexts. We are especially interested
in the restricted kind of V -categories D that are given by full embeddings
D ⊂M , but we shall see in [13, 14] that it is worth working more generally
with a fixed V -functor δ : D −→M as starting point. We set up the relevant
formal context before returning to model theoretic considerations.

Notation 1.8. We fix a small V -category D and a V -functor δ : D −→M ,
writing (D , δ) for the pair. As a case of particular interest, for a fixed set
D (or DM ) of objects of M , we let D also denote the full V -subcategory of
M with object set D , and we then implicitly take δ to be the inclusion.

We wish to compare M with Pre(D ,V ). There are two relevant frame-
works. In one, D is given a priori, independently of M , and M is defined in
terms of D and V . In the other, M is given a priori and D is defined in terms
of M . Either way, we have a V -adjunction relating M and Pre(D ,V ).
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Definition 1.9. Define a V -functor U : M −→ Pre(D ,V ) by letting U(M)
be the V -functor represented by M , so that U(M)d = M (δd,M). The
evaluation maps of this presheaf are

M (δe,M)⊗D(d, e)
id⊗δ //M (δe,M)⊗M (δd, δe)

◦ //M (δd,M).

When δ is a full embedding, U extends the Yoneda embedding: U ◦ δ = Y.

Proposition 1.10. The V -functor U has the left V -adjoint T defined by
TX = X �D δ.

Proof. This is an example of a tensor product of functors as specified in
(5.2). It should be thought of as the extension of X from D to M . The
V -adjunction

M (TX,M) ∼= Pre(D ,V )(X,UM)

is a special case of (5.4). �

We will be studying when (T,U) is a Quillen equivalence of model cate-
gories and we record helpful observations about the unit η : Id −→ UT and
counit ε : TU −→ Id of the adjunction (T,U). We are interested in applying
η to X = FdV ∈ Pre(D ,V ) and ε to d ∈ D when D is a full subcategory of
M . Remember that FdV = Y(d)� V .

Lemma 1.11. Let d ∈ D and V ∈ V . Then T(FdV ) is naturally isomorphic
to δd� V . When evaluated at e ∈ D ,

η : Y(d)� V = FdV −→ UT(FdV ) ∼= U(δd� V ) (1.12)

is the map

D(e, d)⊗ V δ⊗id //M (δe, δd)⊗ V ω //M (δe, δd� V ),

where ω is the natural map of ( 4.10). Therefore, if δ : D −→ M is the
inclusion of a full subcategory and V = I, then η : D(e, d) −→ M (e, d) is
the identity map and ε : TU(d) = TY(d)→ d is an isomorphism.

Proof. For the first statement, for any M ∈M we have

M (T(Y(d)� V ),M) ∼= Pre(D ,V )(Y(d)� V,U(M))
∼= V (V,Pre(D ,V )(Y(d),U(M)))
∼= V (V,M (δd,M))
∼= M (δd� V,M),

by adjunction, two uses of (4.5) below, and the definition of tensors. By the
enriched Yoneda lemma, this implies T(Y(d)�V ) ∼= δd�V . The description
of η follows by inspection, and the last statement holds since ω = id when
V = I. �
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Remark 1.13. There is a canonical factorization of the pair (D , δ). We take
DM to be the full V -subcategory of M with objects the δd. Then δ factors as
the composite of a V -functor δ : D −→ DM and the inclusion ι : DM ⊂M .
The V -adjunction (T,U) factors as the composite of V -adjunctions

δ! : Pre(D ,V ) � Pre(DM ,V ) : δ∗ and T : Pre(DM ,V ) � M : U
(see Proposition 2.4 below). As suggested by the notation, the same D can
relate to different categories M . However, the composite Quillen adjunction
can be a Quillen equivalence even though neither of the displayed Quillen
adjunctions is so. An interesting class of examples is given in [14].

1.3. When does (D, δ) induce an equivalent model structure on
M? With the details of context in hand, we return to the questions in the
introduction. Letting M be a bicomplete V -category, we repeat the first
question. Here we start with a model category Pre(D ,V ) of presheaves
and try to create a Quillen equivalent model structure on M . Here and in
the later questions, we are interested in Quillen V -adjunctions and Quillen
V -equivalences, as defined in Definition 4.29.

Question 1.14. For which δ : D −→M can one define a V -model structure
on M such that M is Quillen equivalent to Pre(D ,V )?

Perhaps more sensibly, we can first ask this question for full embeddings
corresponding to chosen sets of objects of M and then look for more cal-
culable smaller categories D , using Remark 1.13 to break the question into
two steps.

An early topological example where Question 1.14 has a positive answer is
that of G-spaces (Piacenza [33], [26, Ch. VI]), which we recall and generalize
in [14].

The general answer to Question 1.14 starts from a model structure on M
defined in terms of D , which we call the D-model structure. Recall that
(UM)d = M(δd,M).

Definition 1.15. Recall our standing assumption that Pre(D ,V ) has the
level model structure of Definition 4.31, which specifies sets FI and FJ
of generating cofibrations and generating acyclic cofibrations. A morphism
f : M −→ N in M is a D-equivalence or D-fibration if Ufd is a weak
equivalence or fibration in V for all d ∈ D ; f is a D-cofibration if it satisfies
the LLP with respect to the D-acyclic D-fibrations. Define TFI and TFJ
to be the sets of maps in M obtained by applying T to FI and FJ .

We assume familiarity with the small object argument (e.g. [28, §15.1]).

Theorem 1.16. If TFI and TFJ satisfy the small object argument and
TFJ satisfies the acyclicity condition for the D-equivalences, then M is a
cofibrantly generated V -model category under the D-classes of maps, and
(T,U) is a Quillen V -adjunction. It is a Quillen V -equivalence if and only
if the unit map η : X −→ UTX is a weak equivalence in Pre(D ,V ) for all
cofibrant objects X.
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Proof. As in [15, 11.3.2], M inherits its V -model structure from Pre(D ,V ),
via Theorem 4.16. Since U creates the D-equivalences and D-fibrations in
M , (T,U) is a Quillen V -adjunction. The last statement holds by [16,
1.3.16] or [28, 16.2.3]. �

Remark 1.17. By adjunction, the smallness condition required for the
small object argument holds if the domains of maps in I or J are small
with respect to the maps M (δd,A) −→ M (δd,X), where A −→ X is a
TFI or TFJ cell object in M . This condition is usually easy to check
in practice, and it holds in general when M is locally presentable. The
acyclicity condition (defined in Definition 4.13) holds if and only if U car-
ries relative TFJ -cell complexes to level equivalences, so it is obvious what
must be proven. However, the details of proof can vary considerably from
one context to another.

Remark 1.18. Since V is right proper and the right adjoints M (δd,−)
preserve pullbacks, it is clear that M is right proper. It is not clear that M
is left proper. Since we have assumed that V is left proper, M is left proper
provided that, for a cofibration M −→ N and a weak equivalence M −→ Q,
the maps

M (δd,M) −→M (δd,N)

are cofibrations in V and the canonical maps

M (δd,N) ∪M (δd,M) M (δd,Q) −→M (δd,N ∪M Q)

are weak equivalences in V . In topological situations, left properness can
often be shown in situations where it is not obviously to be expected; see
[25, 6.5] or [29, 5.5.1], for example.

Remark 1.19. To prove that η : X −→ UTX is a weak equivalence when X
is cofibrant, one may assume that X is an FI-cell complex. When X = FdV ,
the maps

ω : M (e, d)⊗ V −→M (e, d� V )

of (4.10) that appear in our description of η in Lemma 1.11 are usually quite
explicit, and sometimes even isomorphisms, and one first checks that they
are weak equivalences when V is the source or target of a map in I. One
then uses that cell complexes are built up as (transfinite) sequential colimits
of pushouts of coproducts of maps in FI. There are two considerations in
play. First, one needs V to be sufficiently well behaved that the relevant
colimits preserve weak equivalences. Second, one needs M and D to be
sufficiently well behaved that the right adjoint U preserves the relevant cat-
egorical colimits, at least up to weak equivalence. Formally, if X is a relevant
categorical colimit, colimXs say, then η : Xd −→M (δd,TX) factors as the
composite

colim(Xs)d −→ colim M (δd,TXs) −→M (δd, colimTXs),
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and a sensible strategy is to prove that these two maps are each weak equiv-
alences, the first as a colimit of weak equivalences in V and the second by
a preservation of colimits result for U. Suitable compactness (or smallness)
of the objects d can reduce the problem to the pushout case, which can be
dealt with using an appropriate version of the gluing lemma asserting that
a pushout of weak equivalences is a weak equivalence. We prefer not to give
a formal axiomatization since the relevant verifications can be technically
quite different in different contexts.

1.4. When is a given model category M equivalent to some presheaf
category? We are more interested in Question 0.2 from the introduction,
which we repeat. Changing focus, we now start with a given model structure
on M .

Question 1.20. Suppose that M is a V -model category. When is M
Quillen equivalent to Pre(D ,V ), where D = DM is the full sub V -category
of M given by some well-chosen set of objects d ∈M ?

Assumptions 1.21. Since we want M (d, e) to be homotopically meaning-
ful, we require henceforward that the objects of our full subcategory D be
bifibrant. As usual, we also assume that Pre(D ,V ) has the level model
structure of Section 4.4.

The following invariance result helps motivate the assumption that the
objects of D be bifibrant.

Lemma 1.22. Let M be a V -model category, let M and M ′ be cofibrant
objects of M , and let N and N ′ be fibrant objects of M . If ζ : M −→ M ′

and ξ : N −→ N ′ are weak equivalences in M , then the induced maps

ζ∗ : M (M ′, N) −→M (M,N) and ξ∗ : M (M,N) −→M (M,N ′)

are weak equivalences in V .

Proof. We prove the result for ξ∗. The proof for ζ∗ is dual. Consider the
functor M (M,−) from M to V . By Ken Brown’s lemma ([16, 1.1.12] or [28,
14.2.9]) and our assumption that N and N ′ are fibrant, it suffices to prove
that ξ∗ is a weak equivalence when ξ is an acyclic fibration. If V −→ W is
a cofibration in V , then M � V −→M �W is a cofibration in M since M
is cofibrant and M is a V -model category. Therefore the adjunction (4.5)
that defines � implies that if ξ is an acyclic fibration in M , then ξ∗ is an
acyclic fibration in V and thus a weak equivalence in V . �

Question 1.20 does not seem to have been asked before in quite this form
and level of generality. Working simplicially, Dugger [4] studied a related
question, asking when a given model category is Quillen equivalent to some
localization of a presheaf category. He called such an equivalence a “pre-
sentation” of a model category, viewing the localization as specifying the
relations. That is an interesting point of view for theoretical purposes, since
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the result can be used to deduce formal properties of M from formal prop-
erties of presheaf categories and localization. However, the relevant domain
categories D are not intended to be small and calculationally accessible.

Working simplicially with stable model categories enriched over symmet-
ric spectra, Schwede and Shipley made an extensive study of essentially this
question in a series of papers, starting with [35]. The question is much
simpler to answer stably than in general, and we shall return to this in
Section 1.5.

Of course, if the given model structure on M is a D-model structure, as
in Theorem 1.16, then nothing more need be said. However, when that is
not the case, the answer is not obvious. We offer a general approach to the
question. The following starting point is immediate from the definitions and
Assumptions 1.21.

Proposition 1.23. (T,U) is a Quillen adjunction between the V -model
categories M and Pre(D ,V ).

Proof. Applied to the cofibrations ∅ −→ d given by our assumption that
the objects of D are cofibrant, the definition of a V -model structure implies
that if p : E −→ B is a fibration or acyclic fibration in M , then the induced
map p∗ : M (d,E) −→M (d,B) is a fibration or acyclic fibration in V . �

As with any Quillen adjunction, (T,U) is a Quillen equivalence if and
only if it induces an adjoint equivalence of homotopy categories. Clearly, we
cannot expect this to hold unless the D-equivalences are closely related to
the class W of weak equivalences in the given model structure on M .

Definition 1.24. Let D be a set of objects of M satisfying Assump-
tions 1.21.

(i) Say that D is a reflecting set if U reflects weak equivalences between
fibrant objects of M ; this means that if M and N are fibrant and
f : M −→ N is a map in M such that Uf is a weak equivalence, then
f is a weak equivalence.

(ii) Say that D is a creating set if U creates the weak equivalences in M ;
this means that a map f : M −→ N in M is a weak equivalence if
and only if Uf is a weak equivalence, so that W coincides with the
D-equivalences.

Remark 1.25. Since the functor U preserves acyclic fibrations between
fibrant objects, it preserves weak equivalences between fibrant objects ([16,
1.1.12] or [28, 14.2.9]). Therefore, if D is a reflecting set, then U creates the
weak equivalences between the fibrant objects of M .

Observe that Theorem 1.16 requires D to be a creating set. However,
when one starts with a given model structure on M , there are many exam-
ples where no reasonably small set D creates all of the weak equivalences in
M , rather than just those between fibrant objects. On the other hand, in
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many algebraic and topological situations all objects are fibrant, and then
there is no distinction. By [16, 1.3.16] or [28, 16.2.3], we have the following
criteria for (T,U) to be a Quillen equivalence.

Theorem 1.26. Let M be a V -model category and D ⊂M be a small full
subcategory such that Assumptions 1.21 are satisfied.

(i) (T,U) is a Quillen equivalence if and only if D is a reflecting set and
the composite

X
η //UTX Uλ //URTX

is a weak equivalence in Pre(D ,V ) for every cofibrant object X. Here
η is the unit of the adjunction and λ : Id −→ R is a fibrant replacement
functor in M .

(ii) When D is a creating set, (T,U) is a Quillen equivalence if and only
if the map η : X −→ UTX is a weak equivalence for every cofibrant X.

Thus M can only be Quillen equivalent to the presheaf category Pre(D ,V )
when D is a reflecting set. In outline, the verification of (i) or (ii) of Theo-
rem 1.26 proceeds along much the same lines as in Remark 1.19, and again
we see little point in an axiomatization. Whether or not the conclusion
holds, we have the following observation.

Proposition 1.27. Let D be a creating set of objects of M such that M is
a D-model category, as in Theorem 1.16. Then the identity functor on M
is a left Quillen equivalence from the D-model structure on M to the given
model structure, and (T,U) is a Quillen equivalence with respect to one of
these model structures if and only if it is a Quillen equivalence with respect
to the other.

Proof. The weak equivalences of the two model structures on M are the
same, and since T is a Quillen left adjoint for both model structures, the
relative TFJ –cell complexes are acyclic cofibrations in both. Their retracts
give all of the D-cofibrations, but perhaps only some of the cofibrations in
the given model structure, which therefore might have more fibrations and
so also more acyclic fibrations. �

A general difficulty in using a composite such as that in Theorem 1.26(i)
to prove a Quillen equivalence is that the fibrant approximation R is almost
never a V -functor and need not behave well with respect to colimits. The
following observation is relevant (and so is Baez’s joke).

Remark 1.28. In topological situations, one often encounters Quillen equiv-
alent model categories M and N with different advantageous features. Thus
suppose that (F,G) is a Quillen equivalence M −→ N such that M but not
necessarily N is a V -model category and every object of N is fibrant. Let
X be a cofibrant object of Pre(D ,V ), as in Theorem 1.26(i), and consider
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the diagram

X
η //

$$

UTX Uλ //

Uζ
��

URTX

Uζ'
��

UGFTX '
UGFλ

// UGFRTX,

where ζ is the unit of (F,G). The arrows labeled ' are weak equivalences
because RTX is bifibrant in M and GFRTX is fibrant in M . Therefore the
top composite is a weak equivalence, as desired, if and only if the diagonal
arrow Uζ ◦ η is a weak equivalence. In effect, GFTX is a fibrant approxima-
tion of TX, eliminating the need to consider R. It can happen that G has
better behavior on colimits than R does, and this can simplify the required
verifications.

Example 1.29. The scenario of Remark 1.28 plays out in the theory of
G-spectra for finite groups G. We can take V to be orthogonal spectra
[25], D to be the spectral Burnside category of [13], M to be orthogonal G-
spectra [24], and N to be Lewis-May G-spectra [22] (or SG-modules [11]).
Here GFTX gives a functorial fibrant approximation of cofibrant presheaves
X. The Lewis-May G-spectrum FTX has zeroth G-space an infinite loop
G-space with a wealth of internal structure that is invisible to RTX.

1.5. Stable model categories are categories of module spectra. In
[35], which has the same title as this section, Schwede and Shipley define a
“spectral category” to be a small category enriched in the category ΣS of
symmetric spectra, and they understand a “category of module spectra” to
be a presheaf category of the form Pre(D ,ΣS ) for some spectral category
D . Up to notation, their context is the same as the context of our Sections
1.1 and 1.2, but restricted to V = ΣS . In particular, they give an answer
to that case of Question 0.3, which we repeat.

Question 1.30. Suppose that M is a V -model category, where V is a stable
model category. When is M Quillen equivalent to Pre(D ,V ), where D is
the full V -subcategory of M given by some well-chosen set of objects d ∈M ?

To say that V is stable just means that V is pointed and that the suspen-
sion functor Σ on HoV is an equivalence. It follows that HoV is triangulated
[16, §7.2]. It also follows that any V -model category M is again stable and
therefore HoM is triangulated. This holds since the suspension functor Σ
on HoM is equivalent to the derived tensor with the invertible object ΣI of
HoV .

We here reconsider the work of Schwede and Shipley [35] and the later
related work of Dugger [5] from our perspective. Schwede and Shipley start
with a stable model category M . They do not assume that it is a ΣS -
model category (which they call a “spectral model category”) and they are
not concerned with any other enrichment that M might have. Under appro-
priate hypotheses on M , Hovey [16] defined the category ΣM of symmetric
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spectra in M and proved both that it is a ΣS -model category and that
it is Quillen equivalent to M [16, 8.11, 9.1]. Under significantly weaker
hypotheses on M , Dugger [5, 5.5] observed that an application of his ear-
lier work on presentations of model categories [4] implies that M is Quillen
equivalent to a model category N that satisfies the hypotheses needed for
Hovey’s results.

By the main result of Schwede and Shipley, [35, 3.9.3], when M and
hence N has a compact set of generators (see Definition 1.31 below), ΣN
is Quillen equivalent to a presheaf category Pre(E ,ΣS ) for a full ΣS -
subcategory E of ΣN . Dugger proves that one can pull back the ΣS -
enrichment of ΣN along the two Quillen equivalences to obtain a ΣS -model
category structure on M itself. Pulling back E gives a full ΣS -subcategory
D of M such that M is Quillen equivalent to Pre(D ,ΣS ). In a sequel to
[35], Schwede and Shipley [36] show that the conclusion can be transported
along changes of V to any of the other standard modern model categories
of spectra.

However, stable model categories M often appear in nature as V -enriched
in an appropriate stable category V other than ΣS , and we shall work
from that starting point. It is then natural to model M by presheaves with
values in V , starting with an appropriate full V -subcategory D of M . We
are especially interested in finding explicit simplified models for D . For that
purpose, it is most convenient to work directly with the given enrichment
on M , not on some enriched category Quillen equivalent to M . That is a
central point of the sequel [13], where we give a convenient presheaf model
for the category of G-spectra when G is a finite group.

Philosophically, it seems to us that when one starts with a nice V -enriched
model category M , there is little if any gain in switching from V to ΣS or to
any other preconceived choice. In fact, with the switch, it is not obvious how
to compare an intrinsic V -category D living in M to the associated spectral
category living in ΣM . When V is ΣS itself, this point is addressed in [35,
A.2.4], and it is addressed more generally in [5, 6]. We shall turn to the study
of comparisons of this sort in Sections 2 and 3. However, it seems sensible to
avoid unnecessary comparisons by working with given enrichments whenever
possible.

This perspective allows us to avoid the particular technology of symmetric
spectra, which is at the technical heart of [35] and [5]. A price is a loss
of generality, since we ignore the problem of how to enrich a given stable
model category if it does not happen to come in nature with a suitable
enrichment: as our sketch above indicates, that problem is a major focus of
[5, 35]. However, the examples we care about all do come with a suitable
enrichment. A gain, perhaps, is brevity of exposition.

In any context, as already said, working stably makes it easier to prove
Quillen equivalences. We give a V -analogue of [35, Thm 3.3.3(iii)] after some
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recollections about triangulated categories that explain how such arguments
work in general.

Definition 1.31. Let A be a triangulated category with coproducts. An
object X of A is compact if the natural map ⊕A (X,Yi) −→ A (X,qYi) is
an isomorphism for every set of objects Yi. A set D of objects generates A
as a triangulated category if a map f : X −→ Y is an isomorphism if and
only if f∗ : A (d,X)∗ −→ A (d, Y )∗ is an isomorphism for all d ∈ D . We
write A (−,−) and A (−,−)∗ for the maps and graded maps in A . We use
graded maps so that generating sets need not be closed under Σ. We say
that D is compact if each d ∈ D is compact.

We emphasize the distinction between generating sets in triangulated cat-
egories and the sets of domains (or cofibers) of generating sets of cofibrations
in model categories. The former generating sets can be much smaller. For
example, in a good model category of spectra, one must use all spheres Sn

to obtain a generating set of cofibrations, but a generating set for the ho-
motopy category need only contain S = S0. The difference is much more
striking for parametrized spectra [29, 13.1.16].

The following result is due to Neeman [32, 3.2]. Recall that a localizing
subcategory of a triangulated category is a sub triangulated category that
is closed under coproducts; it is necessarily also closed under isomorphisms.

Lemma 1.32. The smallest localizing subcategory of A that contains a
compact generating set D is A itself.

This result is used in tandem with the following one to prove equivalences.

Lemma 1.33. Let E,F : A −→ B be exact and coproduct-preserving func-
tors between triangulated categories and let φ : E −→ F be a natural trans-
formation that commutes with Σ. Then the full subcategory of A consisting
of those objects X for which φ is an isomorphism is localizing.

When proving adjoint equivalences, the exact and coproduct-preserving
hypotheses in the previous result are dealt with using the following observa-
tions (see [31, 3.9 and 5.1] and [12, 7.4]). Of course, a left adjoint obviously
preserves coproducts.

Lemma 1.34. Let (L,R) be an adjunction between triangulated categories
A and B. Then L is exact if and only if R is exact. Assume that L is ad-
ditive and A has a compact set of generators D . If R preserves coproducts,
then L preserves compact objects. Conversely, if L(d) is compact for d ∈ D ,
then R preserves coproducts.

Returning to our model theoretic context, let D be any small V -category,
not necessarily related to any given M . To apply the results above, we need
a compact generating set in HoPre(D ,V ), and for that we need a compact
generating set in HoV . It is often the case in applications that the unit
object I is itself a compact generating set, but it is harmless to start out
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more generally. We have in mind equivariant applications where that would
fail.

Lemma 1.35. Let HoV have a compact generating set C and define FC to
be the set of objects Fdc ∈ HoPre(D ,V ), where c ∈ C and d ∈ D . Assume
either that cofibrant presheaves are levelwise cofibrant or that any coproduct
of weak equivalences in V is a weak equivalence. Then FC is a compact
generating set.

Proof. Since this is a statement about homotopy categories, we may assume
without loss of generality that each c ∈ C is cofibrant in V . Since the weak
equivalences and fibrations in Pre(D ,V ) are defined levelwise, they are
preserved by evd. Therefore (Fd, evd) is a Quillen adjunction, hence the
adjunction passes to homotopy categories. Since coproducts in Pre(D ,V )
are defined levelwise, they commute with evd. Therefore the map

⊕i HoPre(D ,V )(Fdc, Yi) −→ HoPre(D ,V )(Fdc,qi Yi)

can be identified by adjunction with the isomorphism

⊕i HoV (c, evdYi) −→ HoV (c,qi evdYi),

where the Yi are bifibrant presheaves. The identification of sources is imme-
diate. For the identification of targets, either of our alternative assumptions
ensures that the coproduct qevdYi in V represents the derived coproduct
qevdYi in HoV . Since the functors evd create the weak equivalences in
Pre(D ,V ), it is also clear by adjunction that FC generates HoPre(D ,V )
since C generates HoV . �

By Proposition 1.6, if C = {I}, then FC can be identified with {Y(d)}.
Switching context from the previous section by replacing reflecting sets by
generating sets, we have the following result. When V is the category of
symmetric spectra, it is Schwede and Shipley’s result [35, 3.9.3(iii)]. We
emphasize for use in the sequel [13] that our general version can apply even
when I is not cofibrant and V does not satisfy the monoid axiom. We fix a
cofibrant approximation QI −→ I.

Theorem 1.36. Let M be a V -model category, where V is stable and {I}
is a compact generating set in HoV . Let D be a full V -subcategory of bi-
fibrant objects of M such that Pre(D ,V ) is a model category and the set
of objects of D is a compact generating set in HoM . Assume the following
two conditions.

(i) Either I is cofibrant in V or every object of M is fibrant and the
induced map FdQI −→ FdI is a weak equivalence for each d ∈ D .

(ii) Either cofibrant presheaves are level cofibrant or coproducts of weak
equivalences in V are weak equivalences.

Then (T,U) is a Quillen equivalence between Pre(D ,V ) and M .
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Proof. In view of what we have already proven, it only remains to show
that the derived adjunction (T,U) on homotopy categories is an adjoint
equivalence. The distinguished triangles in HoM and HoPre(D ,V ) are
generated by the cofibrations in the underlying model categories. Since T
preserves cofibrations, its derived functor is exact, and so is the derived
functor of U. We claim that Lemma 1.34 applies to show that U preserves
coproducts. By Lemma 1.35 and hypothesis, {FdI} is a compact set of
generators for HoPre(D ,V ). To prove the claim, we must show that {TFdI}
is a compact set of generators for HoM . It suffices to show that TFdI ∼= d in
HoM , and Lemma 1.11 gives that TFdI ∼= d in M . If I is cofibrant, this is
an isomorphism between cofibrant objects of M . If not, the unit axiom for
the V -model category M gives that the induced map d�QI −→ d� I ∼= d
is a weak equivalence for d ∈ D . Since TFdV ∼= d � V for V ∈ V , this
is a weak equivalence TFdQI −→ TFdI. Either way, we have the required
isomorphism in HoM .

Now, in view of Lemmas 1.32, 1.33, and 1.35, we need only show that
the isomorphisms η : FdI −→ UTFdI in Pre(D ,V ) and ε : TUd −→ d in M
given in Lemma 1.11 imply that their derived maps are isomorphisms in
the respective homotopy categories HoPre(D ,V ) and HoM . Assume first
that I is cofibrant. Then the former implication is immediate and, since
U(d) = Fd(I) is cofibrant, so is the latter.

Thus assume that I is not cofibrant. Then to obtain η on the homotopy
category HoPre(D ,V ), we must replace I by QI before applying the map
η in V . By (1.12), when we apply η : Id −→ UT to FdV for V ∈ V and
evaluate at e, we get a natural map

η : D(e, d)⊗ V = M (e, d)⊗ V //M (e, d� V )

that is an isomorphism when V = I. We must show that it is a weak
equivalence when V = QI. To see this, observe that we have a commutative
square

M (e, d)⊗QI
η //

��

M (e, d�QI)

��
M (e, d)⊗ I η

//M (e, d� I)

The left vertical arrow is a weak equivalence by assumption. The right
vertical arrow is a weak equivalence by Lemma 1.22 and our assumption
that all objects of M are fibrant. Therefore η is a weak equivalence when
V = QI. Similarly, to pass to the homotopy category HoM , we must
replace U(d) = Fd(I) by a cofibrant approximation before applying ε in
M . By assumption, FdQI −→ FdI is such a cofibrant approximation. Up to
isomorphism, T takes this map to the weak equivalence d�QI −→ d�I ∼= d,
and the conclusion follows. �
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Remark 1.37. As discussed in Section 4.5, it is possible that Theorem 4.37
below can be used to replace V by a Quillen equivalent model category Ṽ
in which I is cofibrant, so that (i) holds automatically.

Remark 1.38. Since the functor Fd is strong symmetric monoidal, the
assumption that FdQI −→ FdI is a weak equivalence says that (Fd, evd) is
a monoidal Quillen adjunction in the sense of Definition 3.7 below. The
assumption holds by the unit axiom for the V -model category M if the
objects D(d, e) are cofibrant in V .

Remark 1.39. More generally, if HoV has a compact generating set C ,
then Theorem 1.36 will hold as stated provided that η : Fdc −→ UTFdc is
an isomorphism in HoPre(D ,V ) for all c ∈ C .

Remark 1.40. When M has both the given model structure and the D-
model structure as in Theorem 1.16, where the objects of D form a creating
set in M , then the identity functor of M is a Quillen equivalence from the
D-model structure to the given model structure on M , by Proposition 1.27.
In practice, the creating set hypothesis never applies when working in a sim-
plicial context, but it can apply when working in topological or homological
contexts.

Thus the crux of the answer to Question 1.30 about stable model cate-
gories is to identify appropriate compact generating sets in M . The utility
of the answer depends on understanding the associated hom objects, with
their composition, in V .

2. Changing the categories D and M , keeping V fixed

We return to the general theory and consider when we can change D , keep-
ing V fixed, without changing the Quillen equivalence class of Pre(D ,V ).
This is crucial to the sequel [13]. We allow V also to change in the next
section. Together with our standing assumptions on V and M from Sec-
tion 1.1, we assume once and for all that all categories in this section and
the next satisfy the hypotheses of Theorem 4.32. This ensures that all of our
presheaf categories Pre(D ,V ), and Fun(Dop,M ) are cofibrantly generated
V -model categories. We will not repeat this standing assumption.

2.1. Changing D. In applications, especially in the sequel [13], we are
especially interested in changing a given diagram category D to a more cal-
culable equivalent. We might also be interested in changing the V -category
M to a Quillen equivalent V -category N , with D fixed, but the way that
change works is evident from our levelwise definitions.

Proposition 2.1. For a V -functor ξ : M −→ N and any small V -category
D , there is an induced V -functor ξ∗ : Fun(Dop,M ) −→ Fun(Dop,N ), and
it induces an equivalence of homotopy categories if ξ does so. A Quillen
adjunction or Quillen equivalence between M and N induces a Quillen
adjunction or Quillen equivalence between Fun(Dop,M ) and Fun(Dop,N ).
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We have several easy observations about changing D , with M fixed. Be-
fore returning to model categories, we record a categorical observation. In
the rest of this section, M is any V -category, but our main interest is in the
case M = V .

Lemma 2.2. Let ν : D −→ E be a V -functor and M be a V -category. Then
there is a V -adjunction (ν!, ν

∗) between Fun(Dop,M ) and Fun(E op,M ).

Proof. The V -functor ν∗ restricts a presheaf Y on E to the presheaf Y ◦ ν
on D . Its left adjoint ν! sends a presheaf X on D to its left Kan extension, or
prolongation, along ν (e.g. [25, 23.1]). Explicitly, (ν!X)e = X ⊗D νe, where
νe : D −→ V is given on objects by νe(d) = E (e, νd) and on hom objects by
the adjoints of the composites

D(d, d′)⊗ E (e, νd)
ν⊗id //E (νd, νd′)⊗ E (e, νd)

◦ //E (e, νd′).

The tensor product of functors is recalled in (5.2). �

Definition 2.3. Let ν : D −→ E be a V -functor and let M be a V -model
category.

(i) ν is weakly full and faithful if each ν : D(d, d′) −→ E (νd, νd′) is a weak
equivalence in V .

(ii) ν is essentially surjective if each object e ∈ E is isomorphic (in the
underlying category of E ) to an object νd for some d ∈ D .

(iii) ν is a weak equivalence if it is weakly full and faithful and essentially
surjective.

(iv) ν is an M -weak equivalence if

ν � id : D(d, d′)�M −→ E (νd, νd′)�M
is a weak equivalence in M for all cofibrant M and ν is essentially
surjective.

Proposition 2.4. Let ν : D −→ E be a V -functor and let M be a V -
model category. Then (ν!, ν

∗) is a Quillen adjunction, and it is a Quillen
equivalence if ν is an M -weak equivalence.

Proof. We have a Quillen adjunction since ν∗ preserves (level) fibrations
and weak equivalences. By [16, 1.3.16] or [28, 16.2.3], to show that (ν!, ν

∗)
is a Quillen equivalence, it suffices to show that ν∗ creates the weak equiva-
lences in Fun(Dop,M ) and that η : X −→ ν∗ν!X is a weak equivalence when
X is cofibrant. When ν is essentially surjective, easy diagram chases show
that ν∗ creates the fibrations and weak equivalences of Fun(Dop,M ). Com-
paring composites of left adjoints, ν!Fd is the left adjoint Fνd of evd ◦ ν∗,
and η : X −→ ν∗ν!X is given on objects X = FdM by maps of the form
that we require to be weak equivalences when ν is an M -weak equivalence.
The functor ν∗ preserves colimits, since these are defined levelwise, and the
relevant colimits (those used to construct cell objects) preserve weak equiv-
alences. Therefore η is a weak equivalence when X is cofibrant. �
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Remark 2.5. Let D ⊂ E be sets of bifibrant objects in M and ν : D −→ E
be the corresponding inclusion of full V -subcategories of M . If D is a
reflecting or creating set of objects in the sense of Definition 1.24 or if D is
a generating set in the sense of Definition 1.31, then so is E . Therefore, if
Theorem 1.26 or Theorem 1.36 applies to prove that U : M −→ Pre(D ,V )
is a right Quillen equivalence, then the same result also applies to prove that
U : M −→ Pre(E ,V ) is a right Quillen equivalence. Since ν∗U = U, this
implies that ν∗ : Pre(E ,V ) −→ Pre(D ,V ) is a Quillen equivalence, even
though the “essentially surjective” hypothesis in Proposition 2.4 generally
fails in this situation.

2.2. Quasi-equivalences and changes of D. Here we describe a Morita
type criterion for when two V -categories D and E are connected by a zigzag
of weak equivalences. This generalizes work along the same lines of Keller
[19], Schwede and Shipley [35], and Dugger [5], which deal with particular
enriching categories, and we make no claim to originality. It can be used in
tandem with Proposition 2.4 to obtain zigzags of weak equivalences between
categories of presheaves.

Recall (cf. Section 4.1) that we have the V -product Dop⊗E between the
V -categories Dop and E . The objects of Pre(Dop ⊗ E ,V ) are often called
“distributors” in the categorical literature, but we follow [35] and call them
(D ,E )-bimodules. Thus a (D ,E )-bimodule F is a contravariant V -functor
Dop ⊗ E −→ V . It is convenient to write the action of D on the left (since
it is covariant) and the action of E on the right. We write F (d, e) for the
object in V that F assigns to the object (d, e). The definition encodes three
associativity diagrams

D(e, f)⊗D(d, e)⊗F (c, d) //

��

D(d, f)⊗F (c, d)

��
D(e, f)⊗F (c, e) // F (c, f)

D(e, f)⊗F (d, e)⊗ E (c, d) //

��

F (d, f)⊗ E (c, d)

��
D(e, f)⊗F (c, e) // F (c, f)

F (e, f)⊗ E (d, e)⊗ E (c, d) //

��

F (d, f)⊗ E (c, d)

��
F (e, f)⊗ E (c, e) // F (c, f)
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and two unit diagrams

I⊗F (c, d) //

∼= ((

D(d, d)⊗F (c, d)

��
F (c, d)

F (d, e)⊗ I //

∼= ((

F (d, e)⊗ E (d, d)

��
F (d, e).

The following definition and proposition are adapted from work of Schwede
and Shipley [35]; see also [5]. They encode and exploit two further unit con-
ditions.

Definition 2.6. Let D and E have the same sets of objects, denoted O.
Define a quasi-equivalence between D and E to be a (D ,E )-bimodule F
together with a map ζd : I −→ F (d,d) for each d ∈ O such that for all pairs
(d, e) ∈ O, the maps

(ζd)
∗ : D(d, e) −→ F (d, e) and (ζe)∗ : E (d, e) −→ F (d, e) (2.7)

in V given by composition with ζd and ζe are weak equivalences. Given F
and the maps ζd, define a new V -category G (F , ζ) with object set O by
letting G (F , ζ)(d, e) be the pullback in V displayed in the diagram

G (F , ζ)(d, e) //

��

E (d, e)

(ζe)∗
��

D(d, e)
(ζd)

∗
// F (d, e)

(2.8)

Its units and composition are induced from those of D and E and the bi-
module structure on F by use of the universal property of pullbacks. The
unlabelled arrows specify V -functors

G (F , ζ) −→ D and G (F , ζ) −→ E . (2.9)

Proposition 2.10. Assume that the unit I is cofibrant in V . If D and E
are quasi-equivalent, then there is a chain of weak equivalences connecting
D and E .

Proof. Choose a quasi-equivalence (F , ζ). If either all (ζd)
∗ or all (ζe)∗ are

acyclic fibrations, then all four arrows in (2.8) are weak equivalences and
(2.9) displays a zigzag of weak equivalences between D and E . We shall
reduce the general case to two applications of this special case. Observe
that by taking a fibrant replacement in the category Pre(Dop ⊗ E ,V ), we
may assume without loss of generality that our given (D ,E )-bimodule F is
fibrant, so that each F (d, e) is fibrant in V .

For fixed e, the adjoint of the right action of E on F gives maps

E (d, d′) −→ V (F (d′, e),F (d, e))

that allow us to view the functor F(e)d = F (d, e) as an object of Pre(E ,V );
it is fibrant since each F (d, e) is fibrant in V . Fixing e and letting d vary,
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the maps (ζe)∗ of (2.7) specify a map Y(e) −→ F(e) in V E . By hypoth-
esis, this map is a level weak equivalence, and it is thus a weak equiva-
lence in Pre(E ,V ). Factor it as the composite of an acyclic cofibration
ι(e) : Y(e) −→ X(e) and a fibration ρ(e) : X(e) −→ F(e). Then ρ(e) is
acyclic by the two out of three property. By Remark 4.33, our assump-
tion that I is cofibrant implies that Y(e) and therefore X(e) is cofibrant in
V E , and X(e) is fibrant since F(e) is fibrant. Let End(X) denote the full
subcategory of Pre(E ,V ) whose objects are the bifibrant presheaves X(e).

Now use (5.1) to define

Y (d, e) = Pre(E ,V )(Y(d), X(e)) ∼= X(e)d,

where the isomorphism is given by the enriched Yoneda lemma, and

Z (d, e) = Pre(E ,V )(X(d),F(e)).

Composition in Pre(E ,V ) gives a left action of End(X) on Y and a right
action of End(X) on Z . Evaluation

Pre(E ,V )(Y(d), X(e))⊗ Y(d) −→ X(e)

gives a right action of E on Y . The action of D on F gives maps

D(e, f) −→ Pre(E ,V )(F(e),F(f)),

and these together with composition in Pre(E ,V ) give a left action of D on
Z . These actions make Y an (End(X),E )-bimodule and Z a (D ,End(X))-
bimodule. We may view the weak equivalences ι(e) as maps ιe : I −→ Y (e, e)
and the weak equivalences ρ(e) as maps ρe : I −→ Z (e, e). We claim that
(Y , ι) and (Z , ρ) are quasi-equivalences to which the acyclic fibration special
case applies, giving a zigzag of weak equivalences

E G (Y , ι)oo //End(X) G (Z , ρ)oo //D . (2.11)

The maps

(ι)∗ : Y(e)d = E (d, e) −→ Y (d, e) = V E (Y(d), X(e)) ∼= X(e)d

are the weak equivalences ι : Y(e)d −→ X(e)d. The maps

(ιd)
∗ : V E (X(d), X(e)) −→ V E (Y(d), X(e))

are acyclic fibrations since ιd is an acyclic cofibration and X(e) is fibrant.
This gives the first two weak equivalences in the zigzag (2.11). The maps

(ρd)
∗ : Y(e)d = D(d, e) −→ Z (d, e) = V E (X(d),F(e))

are weak equivalences since their composites with the maps

(ιd)
∗ : V E (X(d),F(e)) −→ V E (Y(d),F(e)) ∼= F(e)d

are the original weak equivalences (ζd)
∗. The maps

(ρe)∗ : V E (X(d), X(e)) −→ V E (X(d),F(e))

are acyclic fibrations since ρe is an acyclic fibration and X(d) is cofibrant.
This gives the second two weak equivalences in the zigzag (2.11). �
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Remark 2.12. The assumption that I is cofibrant is only used to ensure
that the represented presheaves Y(e) are cofibrant. If we know that in some
other way, we do not need the assumption. Since the hypotheses and con-
clusion only involve the weak equivalences in V , not the rest of its model
structure, we can replace the model structure on V by the Quillen equiva-
lent model structure Ṽ of Theorem 4.37 below, in which I is cofibrant, to
eliminate the assumption. As discussed in Section 4.5, this entails checking
that all presheaf categories in sight still have the level model structure of
Theorem 4.32, as in our standing assumption.

2.3. Changing full subcategories of Quillen equivalent model cat-
egories. We show here how to obtain quasi-equivalences between full sub-
categories of Quillen equivalent V -model categories M and N . Lemma 1.22
implies the following invariance statement.

Lemma 2.13. Let (T,U) be a Quillen V -equivalence between V -model cat-
egories M and N . Let {Md} be a set of bifibrant objects of M and {Nd} be
a set of bifibrant objects of N with the same indexing set O. Suppose given
weak equivalences ζd : TMd −→ Nd for all d. Let D and E be the full subcat-
egories of M and N with objects {Md} and {Nd}. Then the V -categories
D and E are quasi-equivalent.

Proof. Define

F (d, e) = N (TMd, Ne) ∼= M (Md,UNe).

Composition in N and M gives F an (E ,D)-bimodule structure. The
given weak equivalences ζd are maps ζd : I −→ F (d, d), and we also write ζd
for the adjoint weak equivalences Md −→ UNd. By Lemma 1.22, the maps

(ζd)
∗ : N (Nd, Ne) −→ N (TMd, Ne)

and

M (Md,UNe)←−M (Md,Me) : (ζe)∗

are weak equivalences since the sources are cofibrant and the targets are
fibrant. �

The case M = N is of particular interest.

Corollary 2.14. If {Md} and {Nd} are two sets of bifibrant objects of
M such that Md is weakly equivalent to Nd for each d, then the full V -
subcategories of M with object sets {Md} and {Nd} are quasi-equivalent.

Unlike Proposition 2.10, these results do not assume that I is cofibrant.
In our applications in the sequel [13], we can apply Proposition 2.10 to con-
vert the resulting quasi-equivalences to weak equivalences to which Propo-
sition 2.4 can be applied to obtain M -weak equivalences between functor
categories. We indicate how this works and why we have no need for Re-
mark 2.12 to make such applications rigorous.
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Remark 2.15. In stable homotopy theory, we encounter model categories
V and V+ with the same underlying symmetric monoidal category and the
same weak equivalences such that the identity functor V+ −→ V is a left
Quillen equivalence. The unit object I is cofibrant in V but not in V+.
We also encounter interesting V -enriched categories M that are V+-model
categories but not V -model categories. Since the weak equivalences in V
and V+ are the same, we can apply Lemma 2.13 to V+-model categories
to obtain quasi-equivalences. These quasi-equivalences can then be fed into
Propositions 2.4 and 2.10, using the model category V with cofibrant unit.
Theorem 4.37 (see also Remark 4.39) gives an intermediate model structure

Ṽ+ to which Remark 2.12 applies, but the logic of our applications has no
need for it.

2.4. The model category V O-Cat. As a preliminary to change results
for V and D in the next section, we need a model category of domain V -
categories for categories of presheaves in V . In this section, all domain
V -categories D have the same set of objects O. This simplifying restriction
is not essential (compare [1, 23, 38]) but is convenient for our purposes. Let
V O-Cat be the category of V -categories with object set O and V -functors
that are the identity on objects. The following result is [35, 6.3], and we
just sketch the proof. Recall our standing hypothesis that V is a cofibrantly
generated monoidal model category (Section 1.1 and Definition 4.23). For
simplicity of exposition, we assume further that V satisfies the monoid ax-
iom Definition 4.26; as in Remark 4.35, less stringent hypotheses suffice.
Similarly, we might weaken the unit hypothesis as in Remarks 1.37 and
2.12.

Theorem 2.16. The category V O-Cat is a cofibrantly generated model cat-
egory in which a map α : D −→ E is a weak equivalence or fibration if each
α : D(d, e) −→ E (d, e) is a weak equivalence or fibration in V ; α is a cofi-
bration if it satisfies the LLP with respect to the acyclic fibrations. If α
is a cofibration and either I or each D(d, e) is cofibrant in V , then each
α : D(d, e) −→ E (d, e) is a cofibration.

Sketch proof. Define the category V O-Graph to be the product of copies
of V indexed on the set O×O. Thus an object is a set {C (d, e)} of objects
of V . As a product of model categories, V O-Graph is a model category. A
map is a weak equivalence, fibration or cofibration if each of its components
is so. Say that C is concentrated at (d, e) if C (d′, e′) = φ, the initial object,
for (d′, e′) 6= (d, e). For V ∈ V , write V (d, e) for the graph concentrated
at (d, e) with value V there. The model category V O-Graph is cofibrantly
generated. Its generating cofibrations and acyclic cofibrations are the maps
α(d, e) : V (d, e) −→W (d, e) specified by generating cofibrations or generat-
ing acyclic cofibrations V −→W in V .

The category V O-Graph is monoidal with product denoted �. The (d, e)th

object of D�E is the coproduct over c ∈ O of E (c, e) ⊗ D(d, c). The unit
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object is the V O-graph I with I(d, d) = I and I(d, e) = φ if d 6= e. The
category V O-Cat is the category of monoids in V O-Graph, hence there is a
forgetful functor

U : V O-Cat −→ V O-Graph

This functor has a left adjoint F that constructs the free V O-Cat generated
by a V O-Graph C . The construction is analogous to the construction of
a tensor algebra. The V -category FC is the coproduct of its homogeneous
parts FpC of “degree p monomials”. Explicitly, F0C = I[O] = q I(d, d),
(F1C )(d, e) = C (d, e), and, for p > 1,

(FpC )(d, e) =
∐
(di)

C (dp−1, e)⊗ C (dp−2, dp−1)⊗ · · · ⊗ C (d1, d2)⊗ C (d, d1).

The unit map I −→ F(d, d) is the identity map I −→ I(d, d) ⊂ (FC )(d, d).
The composition is given by the evident ⊗-juxtaposition maps.

The generating cofibrations and acyclic cofibrations are obtained by ap-
plying F to the generating cofibrations and acyclic cofibrations of V O-Graph.
A standard implication of Theorem 4.16 applies to the adjunction (F,U).
The assumed applicability of the small object argument to the generating
cofibrations and acyclic cofibrations in V implies its applicability to the gen-
erating cofibrations and acyclic cofibrations in V O-Cat, and condition (ii) of
Theorem 4.16 is a formal consequence of its analogue for V O-Graph. Thus
to prove the model axioms it remains only to verify the acyclicity condition
(i). The relevent cell complexes are defined using coproducts, pushouts,
and sequential colimits in V O-Cat, and the monoid axiom (or an analogous
result under weaker hypotheses) is used to prove that. The details are es-
sentially the same as in the one object case, which is treated in [34, 6.2],
with objects D(d, e) replacing copies of a monoid in V in the argument. The
proof relies on combinatorial analysis of the relevant pushouts. As noted in
the proof of [36, 6.3], there is a slight caveat to account for the fact that [34,
6.2] worked with a symmetric monoidal category, whereas the product � on
V O-Graph is not symmetric. However, the levelwise definition of the model
structure on V O-Graph allows use of the symmetry in V at the relevant
place in the proof. �

3. Changing the categories V , D , and M

Let us return to Baez’s joke and compare simplicial and topological en-
richments, among other things. Throughout this section, we consider an
adjunction

V
T // W
U
oo (3.1)

between symmetric monoidal categories V and W . We work categorically
until otherwise specified, ignoring model categorical structure. We also ig-
nore presheaf categories for the moment.
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Consider a V -category M and a W -category N . Remember the dis-
tinction between thinking of the term “enriched category” as a noun and
thinking of “enriched” as an adjective modifying “category”. From the
former point of view, we can try to define a V -category UN by setting
UN (X,Y ) = UN (X,Y ), where X,Y ∈ N , and we can try to define a
W -category TM by setting TM (X,Y ) = TM (X,Y ), where X,Y ∈ M .
Of course, our attempts fail to give unit and composition laws unless the
functors U and T are sufficiently monoidal, but if they are then this can
work in either direction.

However, if we think of “enriched category” as a noun, then we think
of the underlying categories M and N as fixed and given. To have our
attempts work without changing the underlying category, we would have to
have isomorphisms

V (I,UN (X,Y )) ∼= W (J,N (X,Y ))

or

W (J,TM (X,Y )) ∼= V (I,M (X,Y ))

where I and J are the units of V and W . The latter is not plausible, but
the former holds by the adjunction provided that TI ∼= J. We conclude that
it is reasonable to transfer enrichment along a right adjoint but not along a
left adjoint.

In particular, if T is geometric realization sSet −→ U and U is the to-
tal singular complex functor, both of which are strong symmetric monoidal
with respect to cartesian product, then TI ∼= J (a point) and we can pull
back topological enrichment to simplicial enrichment without changing the
underlying category, but not the other way around. This justifies preferring
simplicial enrichment to topological enrichment and should allay Baez’s sus-
picion. Nevertheless, it is sensible to use topological enrichment when that
is what appears naturally.

3.1. Changing the enriching category V . We describe the categorical
relationship between adjunctions and enriched categories in more detail.
The following result is due to Eilenberg and Kelly [10, 6.3]. Recall that
T : V −→ W is lax symmetric monoidal if we have a map ν : J −→ TI and
a natural map

ω : TV ⊗ TV ′ −→ T(V ⊗ V ′)
that are compatible with the coherence data (unit, associativity, and sym-
metry isomorphisms); T is op-lax monoidal if the arrows point the other
way, and T is strong symmetric monoidal if ν is an isomorphism and ω is
a natural isomorphism. We are assuming that T has a right adjoint U. If
U is lax symmetric monoidal, then T is op-lax symmetric monoidal via the
adjoints of I −→ UJ and the natural composite

V ⊗ V ′ //UTV ⊗ UTV ′ −→ U(TV ⊗ TV ′).
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The dual also holds. It follows that if T is strong symmetric monoidal, then
U is lax symmetric monoidal.

Proposition 3.2. Let N be a bicomplete W -category. Assume that U is
lax symmetric monoidal and the adjoint TI −→ J of the unit comparison
map I −→ UJ is an isomorphism. Letting

M (M,N) = UN (M,N),

we obtain a V -category M with the same underlying category as N . If, fur-
ther, T is strong symmetric monoidal, then M is a bicomplete V -category2

with

M � V = M � T(V ) and F (V,M) = F (TV,M).

Proof. Using the product comparison map

UN (M,N)⊗ UN (L,M) −→ U(N (M,N)⊗N (L,M)),

we see that the composition functors for N induce composition functors
for M . The composites of the unit comparison map and the unit maps
J −→ N (M,M) in W induce unit maps I −→M (M,M) in V . As we have
implicitly noted, this much makes sense even without the adjoint T and
would apply equally well with the roles of U and T reversed; our hypotheses
ensure that the underlying categories of N and M are the same.

Now assume that T is strong symmetric monoidal. For each V ∈ V and
W ∈ W , a Yoneda argument provides an isomorphism

V (V,UW ) ∼= UW (TV,W )

that makes the pair of V -functors (T,U) into a V -adjoint pair (4.3). In
particular, this gives an isomorphism

V (V,UN (M,N)) ∼= UW (TV,N (M,N)).

By the adjunctions that define W -tensors and W -cotensors in N , this gives
natural isomorphisms

UN (M � TV,N) ∼= V (V,UN (M,N)) ∼= UN (M,F (TV, Y ))

which imply the claimed identification of V -tensors and V -cotensors in M .
�

Example 3.3. As observed in Remark 4.36, we have a strong monoidal
functor I[−] : Set→ V . It is left adjoint to V (I,−) : V → Set. The change
of enrichment given by Proposition 3.2 produces the underlying category of
a V -category.

2If the functor V (I,−) : V −→ Set is conservative (reflects isomorphisms), as holds
for example when V = Modk, then M becomes a bicomplete V -category without the
assumption that T is strong symmetric monoidal.
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Example 3.4. Consider the adjunction

sSet
T // U ,
S
oo

where T and S are the geometric realization and total singular complex func-
tors. Since T and S are strong symmetric monoidal, Proposition 3.2 shows
that any category enriched and bitensored over U is canonically enriched
and bitensored over sSet.

Remark 3.5. In (4.3), we consider enriched adjunctions between categories
both enriched over a fixed V . One can ask what it should mean for the
adjunction (3.1) to be enriched. A reasonable answer is that there should
be unit and counit maps

V (V, V ′) −→ V (UTV,UTV ′) and W (TUW,TUW ′) −→ W (W,W ′)

in V and W , respectively. However, this fails for Example 3.4 since the
function

U (TSX,TSY ) −→ U (X,Y )

induced by the counit is not continuous.

Proposition 3.2 is relevant to many contexts in which we use two related
enrichments simultaneously. Such double enrichment is intrinsic to equivari-
ant theory, as we see in [14], and to the relationship between spectra and
spaces.

Example 3.6. Let T be the closed symmetric monoidal category of non-
degenerately based spaces in U and let S be some good closed symmetric
monoidal category of spectra, such as the categories of symmetric or orthog-
onal spectra. While interpretations vary with the choice of S , we always
have a zeroth space (or zeroth simplicial set) functor, which we denote by
ev0. It has a left adjoint, which we denote by F0. We might also write
F0 = Σ∞ and ev0 = Ω∞, but homotopical understanding requires fibrant
and/or cofibrant approximation, depending on the choice of S . We assume
that F0 is strong symmetric monoidal, as holds for symmetric and orthogo-
nal spectra [25, 1.8]. By Proposition 3.2, S is then enriched over T as well
as over itself. The based space S (X,Y ) of maps X −→ Y is

S (X,Y ) = ev0(S (X,Y )).

Returning to model category theory, suppose that we are in the situation
of Proposition 3.2 and that V and W are monoidal model categories and M
is a W -model category. It is natural to ask under what conditions on the
adjunction (T,U) the resulting V -category M becomes a V -model category.
Recall the following definition from [16, 4.2.16].

Definition 3.7. A monoidal Quillen adjunction (T,U) between symmetric
monoidal model categies is a Quillen adjunction in which the left adjoint
T is strong symmetric monoidal and the map T(QI) → T(I) is a weak
equivalence.
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The following result is essentially the same as [5, A.5] (except that the
compatibility of T with a cofibrant replacement of I is not mentioned there).

Proposition 3.8. Let V
T // W
U
oo be a monoidal Quillen adjunction be-

tween symmetric monoidal model categories. Suppose that M is a W -model
category. Then the enrichment of M in V of Proposition 3.2 makes M into
a V -model category.

Corollary 3.9. Any topological model category has a canonical structure of
a simplicial model category.

3.2. Categorical changes of V and D. Still considering the adjunction
(3.1), we now assume that T is strong symmetric monoidal and therefore U
is lax symmetric monoidal. We consider changes of presheaf categories in
this context, working categorically in this section and model categorically in
the next. We need some elementary formal structure that relates categories
of presheaves whose domain V -categories or W -categories have a common
fixed object set O = {d}. To see that the formal structure really is elemen-
tary, it is helpful to think of V and W as the categories of modules over
commutative rings R and S, and consider base change functors associated
to a ring homomorphism φ : R −→ S. To ease the translation, think of
presheaves Dop −→ V as right D-modules and covariant functors D −→ V
as left D-modules. This point of view was used already in Section 2. We
use the categories introduced in Section 2.4.

We have two adjunctions induced by (3.1). The first is obvious, namely

V O-Cat
T // W O-Cat.
U
oo (3.10)

The functors T and U are obtained by applying the functors T and U of
(3.1) to morphism objects of V O-categories and W O-categories. Since T
and U are lax symmetric monoidal, they preserve composition.

The second is a little less obvious. Consider D ∈ V O-Cat and E ∈ W O-
Cat and let φ : D −→ UE be a map of V -categories; equivalently, we could
start with the adjoint φ̃ : TD −→ E . We then have an induced adjunction

Pre(D ,V )
Tφ // Pre(E ,W ).
Uφ
oo (3.11)

To see this, let X ∈ Pre(D ,V ) and Y ∈ Pre(E ,W ) be presheaves. The
presheaf UφY : Dop −→ V is defined via the adjoints of the following maps
in V .

D(d, e)⊗V UYe
φ⊗id //UE (d, e)⊗V UYe //U(E (d, e)⊗W Ye) //UYd.

The presheaf TφX : E op −→ W is obtained by an extension of scalars that
can be written conceptually as TX ⊗TD Y. To make sense of this, recall
that we have the represented presheaves Y(e) such that Y(e)d = E (d, e). As
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e-varies, these define a covariant W -functor Y : E −→ Pre(E ,W ). Pull this
back via φ to obtain a covariant W -functor TD −→ Pre(E ,W ). The tensor
product TX ⊗TD Y ≡ TφX is the coequalizer∐

d,e TXe ⊗W TD(d, e)⊗W Y(d) ////
∐
d TXd ⊗W Y(d) //TX ⊗TD Y

where the parellel arrows are given by the functors TX and Y. Composition
on the right makes this a contravariant functor E −→ W .

There are two evident special cases, which are treated in [6, App A]. The
first is obtained by starting with E and taking φ to be id: UE −→ UE . This
gives an adjunction

Pre(UE ,V )
T // Pre(E ,W ).
U
oo (3.12)

The second is obtained by starting with D and taking φ to be the unit map
η : D −→ UTD . This gives an adjunction

Pre(D ,V )
Tη // Pre(TD ,W ).
Uη
oo (3.13)

The adjunction (3.11) factors as the composite of the adjunction (3.12) and
an adjunction of the form (φ!, φ

∗):

Pre(D ,V )
φ! //Pre(UE ,V )

T //
φ∗
oo Pre(E ,W ).

U
oo (3.14)

This holds since the right adjoints in (3.11) and (3.14) are easily seen to be
the same.

3.3. Model categorical changes of V and D. We want a result to the
effect that if (T,U) in (3.1) is a Quillen equivalence, then for any weak
equivalence φ : D −→ UE , (Tφ,Uφ) in (3.11) is also a Quillen equivalence.
As in Remark 2.15, we set up a general context that will be encountered
in the sequel [13]; it is a variant of the context of [36, §6]. We assume
that the identity functor is a left Quillen equivalence V+ −→ V for two
model structures on V with the same weak equivalences, where the unit I is
cofibrant in V but not necessarily in V+. Similarly, we assume that V but
not necessarily V+ satisfies the monoid axiom. We do not assume that W
satisfies the monoid axiom, but we do assume that all presheaf categories
Pre(E ,W ) are model categories and all weak equivalences E −→ E ′ in sight
are W -weak equivalences in the sense of Definition 2.3(iv).

Categorically, the adjunction (3.1) is independent of model structures.
However, we assume that

V+
T //W
U
oo . (3.15)

is a Quillen equivalence in which U creates the weak equivalences in V and
that the unit η : V −→ UTV of the adjunction is a weak equivalence for all
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cofibrant V in V (not just in V+). With the level model structures that we
are considering, the right adjoint Uφ in the adjunction

Pre(D ,V )+
Tφ // Pre(E ,W )
Uφ
oo (3.16)

then creates the weak equivalences and fibrations in Pre(E ,W ), so that
(3.16) is again a Quillen adjunction. With these assumptions, we have the
following variant of theorems in [6, 36].

Theorem 3.17. If the joint pair (T,U) in ( 3.15) is a Quillen equivalence
and φ : D −→ UE is a weak equivalence, then (Tφ,Uφ) in ( 3.16) is a Quillen
equivalence.

Proof. We have a factorization of (3.16) as in (3.14), and (φ!, φ
∗) is a Quillen

equivalence by Proposition 2.4. Therefore it suffices to consider the special
case when φ = id: UE −→ UE .

Let γ : QUE −→ UE be a cofibrant approximation in the model structure
on V O-Cat of Theorem 2.16. Since I is cofibrant in V , each QUE (d, e) is cofi-
brant and thus, by assumption, each map η : QUE (d, e) −→ UTQUE (d, e) is
a weak equivalence. Let γ̃ : TQUE −→ E be the adjoint of γ obtained from
the adjunction (3.10). Since the weak equivalence γ is the composite

QUE
η //UTQUE

Uγ̃ //UE

and η is a weak equivalence, Uγ̃ is a weak equivalence by the two out of three
property. Since U creates the weak equivalences, γ̃ is a weak equivalence.

The identity Uγ̃ ◦ η = γ leads to a commutative square of right Quillen
adjoints

Pre(E ,W )

U
��

γ̃∗ // Pre(TQUE ,W )

Uη
��

Pre(UE ),V+)
γ∗
// Pre(QUE ,V+).

By Proposition 2.4, the horizontal arrows are the right adjoints of Quillen
equivalences. Therefore it suffices to prove that the right vertical arrow is
the right adjoint of a Quillen equivalence.

To see this, start more generally with a cofibrant object D in V O-Cat
and consider the Quillen adjunction

Pre(D ,V+)
Tη // Pre(TD ,W )
Uη
oo (3.18)

It suffices to prove that the unit X −→ UηTηX is a weak equivalence for
any cofibrant X in Pre(D ,V+). Since X is also cofibrant in Pre(D ,V ) and
each D(d, e) is cofibrant in V , each Xd is cofibrant in V by Theorem 4.32.
Our assumption that η : V −→ UTV is a weak equivalence for all cofibrant
V gives the conclusion. �
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3.4. Tensored adjoint pairs and changes of V , D, and M . We are
interested in model categories that have approximations as presheaf cate-
gories, so we naturally want to consider situations where, in addition to the
adjunction (3.1) between V and W , we have a V -category M , a W -category
N , and an adjunction

M
J //N
K
oo (3.19)

that is suitably compatible with (3.1). In view of our standing assump-
tion that T is strong symmetric monoidal and therefore U is lax symmetric
monoidal, the following definition seems reasonable. It covers the situations
of most interest to us, but the notion of “adjoint module” introduced by
Dugger and Shipley [6, §§3,4] gives the appropriate generalization in which
it is only assumed that U is lax symmetric monoidal. Recall the isomor-
phisms of (4.8).

Definition 3.20. The adjunction (J,K) is tensored over the adjunction
(T,U) if there is a natural isomorphism

JX � TV ∼= J(X � V ) (3.21)

such that the following coherence diagrams of isomorphisms commute for
X ∈M and V, V ′ ∈ V .

JX

��

// J(X � IV )

JX � IW
// JX � TIV

OO

(JX � TV )� TV ′ //

��

J(X � V )� TV ′ // J((X � V )� V ′)

��
JX � (TV ⊗ TV ′) // JX � T(V ⊗ V ′) // J(X � (V ⊗ V ′)).

The definition implies an enriched version of the adjunction (J,K).

Lemma 3.22. If (J,K) is tensored over (T,U), then there is a natural
isomorphism

UN (JX,Y ) ∼= M (X,KY )

in V , where X ∈M and Y ∈ N .

Proof. For V ∈ V , we have the sequence of natural isomorphisms

V (V,UN (JX,Y ) ∼= W (TV,N (JX,Y ))
∼= N (JX � TV, Y )
∼= N (J(X � V ), Y )
∼= M (X � V,KY )
∼= V (V,M (X,KY ).
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The conclusion follows from the Yoneda lemma. �

We are interested in comparing the presheaf categories Pre(D ,V ) and
Pre(E ,W ), where D and E are full categories of bifibrant objects that
correspond under a Quillen equivalence between M and N . In the context
of Section 3.3, we can change V to V+. The following results then combine
with Remark 2.15 and Theorem 3.17 to give such a comparison.

Theorem 3.23. Let (J,K) be tensored over (T,U), where (J,K) is a Quillen
equivalence. Let E be a small full W -subcategory of bifibrant objects of N .
Then UE is quasi-equivalent to the small full V -subcategory D of M with
bifibrant objects the QKY for Y ∈ E , where Q is a cofibrant approximation
functor in M .

Proof. We define a (UE ,D)-bimodule F . Let X,Y, Z ∈ E . Define

F (X,Y ) = M (QKX,KY ).

The right action of D is given by composition

M (QKY,KZ)⊗M (QKX,QKY ) −→M (QKX,KZ).

The counit JK −→ Id of the adjunction gives a natural map

UN (X,Y ) −→ UN (JKX,Y ) ∼= M (KX,KY ).

The left action of UE is given by the composite

UN (Y,Z)⊗M (QKX,KY ) −→ M (KY,KZ)⊗M (QKX,KY )

−→ M (QKX,KZ).

Using the coherence diagrams in Definition 3.20, a lengthy but routine check
shows that the diagrams that are required to commute in Section 2.2 do in
fact commute. Define ζX : I −→ F (X,X) to be the composite

I −→M (QKX,QKX) −→M (QKX,KX)

induced by the weak equivalence QKX −→ KX. By the naturality square

UN (JKX,Y )
∼= //

��

M (KX,KY )

��
UN (JQKX,Y ) ∼=

//M (QKX,KY )

the map
(ζX)∗ : UN (X,Y ) −→M (QKX,KY )

is the composite

UN (X,Y ) −→ UN (JKX,Y ) −→ UN (JQKX,Y ) ∼= M (QKX,KY ).

Since (J,K) is a Quillen equivalence, the composite JQKX −→ JKX −→ X
is a weak equivalence, hence (ζX)∗ is a weak equivalence by Lemma 1.22.
The map

(ζY )∗ : M (QKX,QKY ) −→M (QKX,KY )



72 BERTRAND J. GUILLOU AND J. PETER MAY

is also a weak equivalence by Lemma 1.22. �

Corollary 3.24. With the hypotheses of Theorem 3.23, let D be a small
full V -subcategory of bifibrant objects of M . Then D is quasi-equivalent to
UE , where E is the small full W -subcategory of N with bifibrant objects the
RJX for X ∈ D , where R is a fibrant approximation functor in N .

Proof. By Theorem 3.23, UE is quasi-equivalent to D ′, where D ′ is the full
V -subcategory of M with objects the QKRJX, and of course QKRJX is
weakly equivalent to X. The conclusion follows from Corollary 2.14. �

3.5. Weakly unital V -categories and presheaves. In the sequel [13],
we shall encounter a topologically motivated variant of presheaf categories.
Despite the results of the previous section, which show how to compare
full enriched subcategories D of categories M with differing enriching cat-
egories V , the choice of V can significantly affect the mathematics when
seeking simplified equivalents of full subcategories of V -categories M . We
often want the objects of D to be cofibrant but, when I is not cofibrant in
V , that desideratum can conflict with the requirement that D have strict
units given by maps I −→ D(d, d) in V . We shall encounter domains D
for presheaf categories in which D is not quite a category since a chosen
cofibrant approximation QI rather than I itself demands to be treated as
if it were a unit object. The examples start with a given fixed M but are
not full V -subcategories of M . Retaining our standing assumptions on V ,
we conceptualize the situation with the following definitions. We fix a weak
equivalence γ : QI −→ I, not necessarily a fibration.

Definition 3.25. Fix a V -model category M and a set O = {d} of objects
of M . A weakly unital V -category D with object set O consists of objects
D(d, e) of V for d, e ∈ O, an associative pairing D(d, e)⊗D(c, d) −→ D(c, e),
and, for each d ∈ O, a map ηd : QI −→ D(d, d) and a weak equivalence
ξd : d −→ d in M that induces weak equivalences

ξ∗d : D(d, e) −→ D(d, e) and ξd∗ : D(c, d) −→ D(c, d)

for all c, e ∈ O. The diagrams

D(d, e)⊗QI
id⊗ηd //

ξ∗d⊗γ
��

D(d, e)⊗D(d, d)

◦
��

D(d, e)⊗ I ∼=
// D(d, e).

and

QI⊗D(c, d)
ηd⊗id//

γ⊗ξd∗
��

D(d, d)⊗D(c, d)

◦
��

I⊗D(c, d) ∼=
// D(c, d)
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must commute. A weakly unital D-presheaf is a V -functor X : Dop −→ V
defined as usual, except that the unital property requires commutativity of
the following diagrams for d ∈ O.

QI
ηd //

γ

��

D(d, d)

X
��

I
ξ∗d

// V (Xd, Xd).

Here the bottom arrow is adjoint to the map X(ξd) : Xd −→ Xd. We write
Pre(D ,V ) for the category of weakly unital presheaves. The morphisms are
the V -natural transformations, the definition of which requires no change.

Remark 3.26. A V -category D may be viewed as a weakly unital V -
category D ′ by taking ηd = η ◦ γ, where η : I −→ D(d, d) is the given unit,
and taking ξd = id. Then any D-presheaf can be viewed as a D ′-presheaf.
In principle, D ′-presheaves are slightly more general, since it is possible for
the last diagram to commute even though the composites

I
η //D(d, d)

X //V (Xd, Xd)

are not the canonical unit maps η. However, this cannot happen if γ is an
epimorphism in V , in which case the categories Pre(D ,V ) and Pre(D ′,V )
are identical.

Virtually everything that we have proven when I is not cofibrant applies
with minor changes to weakly unital presheaf categories.

4. Appendix: Enriched model categories

4.1. Remarks on enriched categories. The assumption that the sym-
metric monoidal category V is closed ensures that we have an adjunction

V (V ⊗W,Z) ∼= V (V,V (W,Z)) (4.1)

of set-valued functors and also a V -adjunction

V (V ⊗W,Z) ∼= V (V,V (W,Z)) (4.2)

of V -valued functors.
In general, a V -adjunction

N
T //M
U
oo

between V -functors T and U is given by a binatural isomorphism

M (TN,M) ∼= N (N,UM) (4.3)

in V . Applying V (I,−), it induces an adjunction M (TN,M) ∼= N (N,UM)
on underlying categories. One characterization is that a V -functor T has
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a right V -adjoint if and only if T preserves tensors (see below) and its un-
derlying functor has a right adjoint in the usual set-based sense [2, II.6.7.6].
The dual characterization holds for the existence of a left adjoint to U. We
gave a generalization of the notion of an enriched adjunction that allows for
a change of V in Section 3.4.

The assumption that M is bicomplete means that M has all weighted
limits and colimits [20]. Equivalently, M is bicomplete in the usual set-based
sense, and M has tensors M � V and cotensors F (V,M).

Remark 4.4. These notations are not standard. The standard notation for
� is ⊗, with obvious ambiguity. The usual notation for F (V,M) is [V,M ]
or MV , neither of which seems entirely standard or entirely satisfactory.

The V -product ⊗ between V -categories M and N has objects the pairs
of objects (M,N) and has hom objects in V

M ⊗N ((M,N), (M ′, N ′)) = M (M,M ′)⊗N (N,N ′),

with units and composition induced in the evident way from those of M
and N . By definition, tensors and cotensors are given by V -bifunctors

� : M ⊗ V −→M and F : V op ⊗M −→M

that take part in V -adjunctions

M (M � V,N) ∼= V (V,M (M,N)) ∼= M (M,F (V,N)). (4.5)

We often write tensors as V �M instead of M � V . In principle, since
tensors are defined by a universal property and are therefore only defined
up to isomorphism, there is no logical preference. However, in practice, we
usually have explicit canonical constructions which differ by an interchange
isomorphism. When M = V , we have the tensors and cotensors

V �W = V ⊗W and F (V,W ) = V (V,W ).

While (4.5) is the correct categorical definition [2, 20], one sometimes sees
the definition given in the unenriched sense of ordinary adjunctions

M (M � V,N) ∼= V (V,M (M,N)) ∼= M (M,F (V,N)). (4.6)

These follow by applying the functor V (I,−) to the adjunctions in (4.5).
There is a partial converse to this implication. It is surely known, but we
have not seen it in the literature.

Lemma 4.7. Assume that we have the first of the ordinary adjunctions
( 4.6). Then we have the first of the enriched adjunctions ( 4.5) if and only
if we have a natural isomorphism

(M � V )�W ∼= M � (V ⊗W ). (4.8)

Dually, assume that we have the second of the ordinary adjunctions ( 4.6).
Then we have the second of the enriched adjunctions ( 4.5) if and only if we
have a natural isomorphism

F (V, F (W,M)) ∼= F (V ⊗W,M). (4.9)
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Proof. For objects N of M , we have natural isomorphisms

M ((M � V )�W,N) ∼= V (W,M (M � V,N))

and

M (M � (V ⊗W ), N) ∼= V (V ⊗W,M (M,N)) ∼= V (W,V (V,M (M,N))).

The first statement follows from the Yoneda lemma. The proof of the second
statement is dual. �

Since we take (4.5) as a standing assumption, we have the isomorphisms
(4.6), (4.8), (4.9). We have used some other standard maps and isomor-
phisms without comment. In particular, there is a natural map, sometimes
an isomorphism,

ω : M (M,N)⊗ V −→M (M,N � V ). (4.10)

This map in V is adjoint to the map in M given by the evident evaluation
map

M � (M (M,N)⊗ V ) ∼= (M �M (M,N))� V −→ N � V.

Remark 4.11. In the categorical literature, it is standard to let M0 de-
note the underlying category of an enriched category M . Then M0(M,N)
denotes a morphism set of M0 and M (M,N) denotes a hom object in V .
This notation is logical, but its conflict with standard practice in the rest
of mathematics is obtrusive. We therefore use notation closer to that of the
topological and model categorical literature.

4.2. Remarks on cofibrantly generated model categories.

Remark 4.12. Although we have used the standard phrase “cofibrantly
generated”, we more often have in mind “compactly generated” model cat-
egories. Compact generation, when applicable, allows one to use ordinary
sequential cell complexes, without recourse to distracting transfinite con-
siderations. The cell objects are then very much closer to the applications
and intuitions than are the transfinite cell objects that are standard in the
model category literature. Full details of this variant are in [28]; see also
[29]. The point is that the standard enriching categories V are compactly
generated, and so are their associated presheaf categories Pre(D ,V ). Ex-
amples of compactly generated V include simplicial sets, topological spaces,
spectra (symmetric, orthogonal, or S-modules), and chain complexes over
commutative rings.

We sometimes write IM and JM for given sets of generators for the cofi-
brations and acyclic cofibrations of a cofibrantly generated model category
M . We delete the subscript when M = V . We recall one of the vari-
ants of the standard characterization of such model categories ([15, 11.3.1],
[28, 15.2.3], [29, 4.5.6]). The latter two sources include details of the com-
pactly generated variant. As said before, we assume familiarity with the
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small object argument. It applies to the construction of both compactly
and cofibrantly generated model categories, more simply for the former.

Recall that, for a set of maps I, a relative I-cell complex is a map A −→ X
such that X is a possibly transfinite colimit of objects Xi starting with
X0 = A. For a limit ordinal β, Xβ = colimα<β Xα. For a successor ordinal
α + 1, Xα+1 is the pushout of a coproduct (of restricted size) of maps in I
along a map from the domain of the coproduct into Xα. (Some standard
sources reindex so that only one cell is attached at each stage, but there
is no mathematical point in doing so and in fact that loses naturality; see
[28].) In the compact variant, we place no restrictions on the cardinality of
the coproducts and only use countable sequences {Xi}.

Definition 4.13. A subcategory W of a category M is a category of weak
equivalences if it contains all isomorphisms, is closed under retracts, and
satisfies the two out of three property. A set J of maps in W satisfies the
acyclicity condition if every relative J -cell complex A −→ X is in W .

Remark 4.14. The acyclicity condition captures the crucial point in prov-
ing the model axioms. In practice, since coproducts and sequential colimits
generally preserve weak equivalences, the proof that a given set J satisfies it
boils down to showing that a pushout of a map in J is in W . The verification
may be technically different in different contexts. In topological situations,
a general discussion and precise axiomatizations of how this property can be
verified are given in [29, 4.5.8, 5.46], which apply to all topological situations
the authors have encountered.

Write K� for the class of maps in M that satisfy the right lifting property
(RLP) with respect to a class of maps K. Dually, write �K for the class of
maps in M that satisfy the left lifting property (LLP) with respect to K.

Remark 4.15. Let (W ,C ,F ) be a model structure on M . Then

F = (W ∩ C )� and W ∩F = C �

or equivalently

C = �(W ∩F ) and W ∩ C = �F .

Therefore C and C ∩W must be saturated, that is, closed under pushouts,
transfinite colimits, and retracts. In particular, any subset J of W satis-
fies the acyclicity condition. No matter how one proves the model axioms,
getting at the saturation of W ∩ C is the essential point. Identifying a
convenient subset of W satisfying the acyclicity condition often works most
simply.

Theorem 4.16. Let W be a subcategory of weak equivalences in a bicom-
plete category M and let I and J be sets of maps which permit the small
object argument. Then M is a cofibrantly generated model category with
generating cofibrations I and generating acyclic cofibrations J if and only
if the following two conditions hold.
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(i) J satisfies the acyclicity condition.
(ii) I� = W ∩ J �.

In words (ii) says that a map has the RLP with respect to I if and only if
it is in W and has the RLP with respect to J . It leads to the conclusion that
C � = W ∩F . Its verification is often formal, as in the following remark.

Remark 4.17. The generating cofibrations and acyclic cofibrations I and
J of the enriching categories V that we are interested in satisfy conditions
(i) and (ii). We construct new model categories by applying a left adjoint
F : V −→M to obtain generating sets FI and FJ in M . Then condition
(ii) is inherited by adjunction from V , and the adjunction reduces the small
object argument hypothesis to a smallness condition in V that is usually
easy to verify. Therefore only (i) needs proof.

Remark 4.18. There are many variants of Theorem 4.16. In some recent
work, the cofibrantly generated model category M is assumed to be locally
presentable, and then M is said to be a combinatorial model category. This
ensures that there are no set theoretical issues with the small object argu-
ment, and it allows alternative recognition criteria in which J is not given
a priori; see for example [23, §A.2.6]. However, in one variant [23, A.2.6.8],
it is assumed a priori that classes C and W are given such that W ∩ C is
saturated. In another [23, A.2.6.13], conditions are formulated that imply
directly that W is closed under pushouts by cofibrations. It seems unlikely
to us that the conditions required of W (especially [23, A.2.6.10(4)]) hold in
the examples we are most interested in.

4.3. Remarks on enriched model categories. Let M be a model cate-
gory and a V -category. The weak equivalences, fibrations, and cofibrations
live in the underlying category of M .

Definition 4.19. We say that M is a V -model category if the map

M (i∗, p∗) : M (X,E) −→M (A,E)×M (A,B) M (X,B) (4.20)

induced by a cofibration i : A −→ X and fibration p : E −→ B in M is
a fibration in V which is a weak equivalence if either i or p is a weak
equivalence.

The relationship of (4.20) with lifting properties should be clear. By
adjunction, as in [16, 4.2.2] or [28, 16.4.5], the following two conditions are
each equivalent to the properties required of (4.20). First, for a cofibration
i : A −→ X in V and a cofibration j : B −→ Y in M , the pushout product

i�j : A� Y ∪A�B X �B −→ X � Y (4.21)

is a cofibration in M which is a weak equivalence if either i or j is a weak
equivalence. Second, for a cofibration i : A −→ X in V and a fibration
p : E −→ B in M , the induced map

F (i∗, p∗) : F (X,E) −→ F (A,E)×F (A,B) F (X,B) (4.22)
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is a fibration in M which is a weak equivalence if either i or p is a weak
equivalence.

Definition 4.23. The model structure on V is said to be monoidal if the
equivalent conditions (4.20), (4.21), and (4.22) hold when M = V and if
the unit axiom holds: if q : QI −→ I is a cofibrant approximation, then the
map V ⊗ QI −→ V ⊗ I ∼= V induced by q is a weak equivalence for all
cofibrant objects V ∈ V . When V is monoidal, we say that a V -category
M is a V -model category if (4.20), (4.21), and (4.22) hold and the map
M �QI −→M � I ∼= M induced by a cofibrant approximation q : QI −→ I
is a weak equivalence for all cofibrant objects M ∈M .

Remark 4.24. By a cofibrant approximation, we mean a weak equivalence,
not necessarily a fibration, with cofibrant domain. If the unit axiom holds
for any one given cofibrant approximation q : QI −→ I, then it holds for all
cofibrant approximations.

When M is a V -model category, the homotopy category HoM is enriched
over HoV , with HoM (M,N) represented by the object M (M,N) of V
when M and N are bifibrant (cofibrant and fibrant). We write [M,N ]M for
the hom sets in HoM , and similarly for V . We then have

[M,N ]M = [I, HoM (M,N)]V . (4.25)

The additional unit assumptions of Definition 4.23 are necessary for the
proof. A thorough exposition using the notion of a semicofibrant object to
weaken hypotheses is given by Lewis and Mandell [21]. Their paper gives a
comprehensive treatment of passage from enriched model categories to their
homotopy categories in a context closely related to ours, but with different
emphases. It focuses on module categories over a commutative monoid A in
V . If we regard A as a V -category with a single object, then the category of
right A-modules can be identified with Pre(A,V ), and many of their results
generalize to our setting.

It is worth emphasizing what we have not required of V and M . We
have not required that the unit of V be cofibrant. That holds in some but
not all of the most commonly used enriching categories. It is important to
know when it is needed and when not, and we have been careful to show
the places where it comes into play. We return to this point in Section 4.5.
We have also not required V to satisfy the monoid axiom. We recall it and
formulate its analogue for V -categories, which we have also not required.

Definition 4.26. The monoidal model category V satisfies the monoid
axiom if all maps in V that are obtained as pushouts or filtered colimits of
maps of the form id⊗ i : U ⊗ V −→ U ⊗W , where i : V −→W is an acyclic
cofibration in V , are weak equivalences.

Definition 4.27. Let M be a V -model category and D be a small V -
category. Then M satisfies the tensor axiom if the following conditions (i)
and (ii) hold, and M satisfies the D-tensor axiom if (iii) holds.
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(i) All maps in M that are obtained as pushouts or filtered colimits of
maps of the form id� i : M � V −→M �W , where i : V −→W is an
acyclic cofibration in V , are weak equivalences.

(ii) All maps in M that are obtained as pushouts or filtered colimits of
maps of the form i� id : M � V −→ N � V , where i : M −→ N is an
acyclic cofibration in M , are weak equivalences.

(iii) All maps in M that are obtained as pushouts or filtered colimits of
maps of the form i�id : M�D(d, e) −→ N�D(d, e), where i : M −→ N
is an acyclic cofibration in M , are weak equivalences.

Remark 4.28. As observed in [34, 3.4], the monoid axiom holds if all
objects of V are cofibrant. However, it often holds even when that fails. By
the same argument, part (i) of the tensor axiom holds if all objects of M
are cofibrant and part (ii) holds if all objects of V are cofibrant. Restricting
to D , (iii) holds if all D(d, e) are cofibrant. This gives an advantage to
enriching in simplicial sets, but again, these conditions often hold when not
all objects are cofibrant.

We recalled the characterization of enriched adjunctions in Section 4.1.
Model categorically, we are interested in Quillen V -adjunctions.

Definition 4.29. A Quillen V -adjunction is a V -adjunction such that the
induced adjunction on underlying model categories is a Quillen adjunction in
the usual sense. (In [16, 4.2.18], the left adjoint T is then called a V -Quillen
functor.) A Quillen V -equivalence is a Quillen V -adjunction such that the
induced adjunction on underlying model categories is a Quillen equivalence
in the usual sense.

4.4. The level model structure on presheaf categories. For a small
V -category D and any V -category M , Fun(Dop,M ) denotes the category
of V -functors D −→M and V -natural transformations. When M = V we
use the alternative notation Pre(D ,V ) = Fun(Dop,V ). Good references
for the general structure of such categories are [2, 6, 36, 37], and we shall say
more in Section 5.1. We write Fun(Dop,M )(X,Y ) and Pre(D ,V )(X,Y )
for morphism sets in these categories.

We remind the reader that we have no interest in the underlying category
of D . It is standard, especially in additive situations, to think of a small V -
category D as a kind of categorical “ring with many objects” and to think of
(contravariant) V -functors defined on D as (right) D-modules. Many ideas
and proofs become more transparent when first translated to the language
of rings and modules.

Let X be an object of Fun(Dop,M ). Writing d 7→ Xd, X is given by
maps

X(d, e) : D(d, e) −→M (Xe, Xd)
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in V . The V -natural transformations f : X −→ Y are given by maps
fd : Xd −→ Yd in M such that the following diagrams commute in V .

D(d, e)
X //

Y
��

M (Xe, Xd)

(fd)∗
��

M (Ye, Yd)
(fe)∗

//M (Xe, Yd).

(4.30)

The category Fun(Dop,M ) is the underlying category of a V -category,
as we shall explain in Section 5.1, where we say more about the relevant en-
riched category theory. We focus here on the model categories of presheaves
relevant to this paper.

Definition 4.31. Let M be a cofibrantly generated V -model category. A
map f : X −→ Y in Fun(Dop,M ) is a level weak equivalence or level fi-
bration if each map fd : Xd −→ Yd is a weak equivalence or fibration in M .
Recall the functors Fd : M −→ Fun(Dop,M ) from Definition 1.5 and define
FIM and FJM to be the sets of all maps Fdi and Fdj in Fun(Dop,M ),
where d ∈ D , i ∈ IM , and j ∈ JM .

Theorem 4.32. If FIM and FJM admit the small object argument and
FJM satisfies the acyclicity condition, then Fun(Dop,M ) is a cofibrantly
generated V -model category under the level weak equivalences and level fibra-
tions; the sets FIM and FJM are the generating cofibrations and generating
acyclic cofibrations. If M is proper, then so is Fun(Dop,M ). The adjunc-
tions (Fd, evd) are Quillen adjunctions. If the functors D(e, d)�(−) preserve
cofibrations, then cofibrations in Fun(Dop,M ) are level cofibrations, hence
cofibrant objects are level cofibrant.

Proof. We have assumed the smallness condition and condition (i) of The-
orem 4.16, and condition (ii) is inherited by adjunction from M . Since
pushouts, pullbacks, and weak equivalences are defined levelwise, the presheaf
category Fun(Dop,M ) is proper when M is. To see that Fun(Dop,M ) is a
V -model category, it suffices to verify the pushout product characterization
(4.21) of V -model categories, and this follows by adjunction from the fact
that M is a V -model category. By definition, the functors evd preserve
fibrations and weak equivalences. For the last statement, we may as well
replace D by Dop and consider the model structure on Fun(D ,M ). By
Remark 1.7, its evaluation functor evd has right adjoint Gd = F (Y(d),−).
The adjunction (4.5) implies that the functors Gd preserve acyclic fibrations
when the functors D(e, d) � (−) preserve cofibrations. In turn, when that
holds the functors evd preserve cofibrations. �

Remark 4.33. By adjunction, since acyclic fibrations are level acyclic fi-
brations, if i : M −→ N is a cofibration in M then Fdi : FdM −→ FdN is
a cofibration in Fun(Dop,M ) for any d ∈ D . Therefore, if M is cofibrant,
then each FdM is cofibrant. In particular, if M = V and I is cofibrant,
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then each represented presheaf Y(d) is cofibrant in Pre(D ,V ). This need
not hold in general, and that gives one reason for preferring to enrich in
monoidal categories V with a cofibrant unit object. As discussed in Sec-
tion 4.5 below, one might be able to use Theorem 4.37 to arrange this.

Remark 4.34. By adjunction, the smallness condition on FIM and FJM

means that the domains of maps i ∈ IM and j ∈ JM are small with re-
spect to the level maps Ad −→ Xd of a relative FIM or FJM cell complex
A −→ X in Fun(Dop,M ). This means that, in the arrow category of M ,
a map from a generating cofibration or acyclic cofibration into the level-
wise colimit obtained from a relative cell complex factors through one of its
terms. In practice, for example when M = V is any of the usual compactly
generated enriching categories, such as those listed in Remark 4.12, this
condition holds trivially. In topological situations, it often follows from the
compactness of the domains of maps in IM and JM . In algebraic situations,
the compactness is often even simpler since the relevant domains are free on
a single generator. We generally ignore the smallness condition, since it is
not a serious issue in our context.

Remark 4.35. The acyclicity condition has more substance, but it also
usually holds in practice. It clearly holds if M satisfies the D-tensor axiom.
In particular, it holds if the functors D(e, d) � (−) on M are Quillen left
adjoints or if all D(d, e) are cofibrant in V . It holds for any D if M satisfies
condition (ii) of the tensor axiom.

When the monoid axiom holds, Theorem 4.32 for M = V is [36, 6.1]; see
also [36, 7.2] for stable situations. In topological situations, Theorem 4.32
often applies even when the D(d, e) are not cofibrant, the monoid axiom
fails for V , and the functors D(d, e) � (−) do not preserve level acyclic
cofibrations. As noted earlier, axiomatizations of exactly what is needed to
ensure this are given in [29, 4.5.8, 5.4.6], which apply to all situations we have
encountered. An essential point is that in topology, and also in homological
algebra, one has both classical cofibrations (HEP) and the cofibrations of
the Quillen model structure, and one can exploit the more general classical
cofibrations to check the acyclicity condition.

Remark 4.36. One sometimes starts with a plain unenriched category C
rather than an enriched category D . To relate this to the enriched context,
let D = I[C ] be the V -category with the same object set as C and with
morphism objects I[C (d, e)]. The composition is induced from that of C .
If I is cofibrant in V , then I[S] is cofibrant for all sets S and the acyclicity
condition holds for I[C ] and any V -model category M . Using that the tensor
I[S]�V is the coproduct of copies of V indexed by the elements of S, we see
that the ordinary category Fun(C op,M ) of unenriched presheaves in M is
isomorphic to the underlying category of the V -category Fun(Dop,M ).

In model category theory, diagram categories with discrete domain cat-
egories C are often used to study homotopy limits and colimits [8, 15, 16].
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Shulman [37] has given a study of enriched homotopy limits and colimits in
V -model categories M , starting in the same general framework in which we
are working.

4.5. How and when to make the unit cofibrant? The unit I of V may
or may not be cofibrant in the model structure we start with on V , but the
unit axiom of Definition 4.23 holds in all cases of interest. Often there is
some cofibrant approximation q : QI −→ I such that

id⊗ q : V ⊗QI −→ V ⊗ I ∼= V

is a weak equivalence for all objects V ∈ V , not just the cofibrant ones. We
then say that the very strong unit axiom holds. As proven in [30, Corol-
lary 9], this condition holds for any cofibrant approximation q if tensoring
with a cofibrant object preserves weak equivalences, which is often the case.
Thus assuming the very strong unit axiom is scarcely more restrictive than
assuming the unit axiom.

This axiom is closely related to the theory of semicofibrant objects devel-
oped by Lewis and Mandell [21]. Long after the first posted draft of this
paper appeared, Muro wrote an illuminating paper [30] in which he proved
the following result. He does not assume that the monoidal structure on V
is symmetric, but we do assume that.

Theorem 4.37 (Muro). Let V be either a combinatorial or a cofibrantly
generated monoidal model category satisfying the very strong unit axiom.
Then there is a combinatorial or cofibrantly generated monoidal model struc-
ture, denoted Ṽ , on the underlying category of V which has the same weak
equivalences as V and in which the unit object is cofibrant. The identify
functor on V is a left Quillen equivalence from V to Ṽ . If V satisfies the
monoid axiom, then so does Ṽ . If V is left or right proper, then so is Ṽ .

Thus Ṽ has more cofibrations and therefore fewer fibrations than V . In
the combinatorial case, the acyclic fibrations of V are the surjective acyclic
fibrations of V . In the cofibrantly generated case, the generating cofibrations
are obtained by adding the morphism ∅ → I to the generating cofibrations of
V , and the generating acyclic cofibrations are obtained by adding a certain
well-chosen acyclic cofibration between cofibrant approximations of I to the
generating acyclic cofibrations of V .

Remark 4.38. This result raises some questions that we have not tried to
answer. First, under what conditions on M is it true that a V -model struc-
ture on M is necessarily a Ṽ -model structure? It is clear from the definitions
that a Ṽ -model structure is necessarily a V -model structure. When M is a
cofibrantly generated Ṽ -model category, Theorem 4.32 applies to show that
presheaf categories with values in M are also Ṽ -model categories. It seems
plausible that many of our model theoretic results that assume that I is
cofibrant work without the unit assumption, by replacing V by Ṽ in their
proofs.
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The cofibrancy of unit condition is related to the categorical fact that the
automorphism group of the unit object of a symmetric monoidal category
is commutative. In stable homotopy theory at least, that in effect forces
interest in examples where the unit is not cofibrant.

Remark 4.39. In the category V of S-modules [11], the unit is not cofibrant
and every object is fibrant. For reasons explained in [27, Remark 11.2], we
cannot hope to make the unit cofibrant and keep the property that every
object is fibrant; compare [30, Example 6]. In the categories V of symmetric
and orthogonal spectra, the unit is cofibrant and, to deal with commutative
monoids, it is essential to change the given model category to a “positive”
model structure V+ in which the unit is not cofibrant. Such situations
are alluded to in Remark 2.15. Applying Theorem 4.37 to V+ results in a
model structure that interpolates between V and V+: there are left Quillen

equivalences V+ −→ Ṽ+ −→ V ; compare [30, Examples 2, 5].

Theorem 4.37 does not change the need for the weakly unital V -categories
of Section 3.5 since those address categorical rather than just model theoretic
issues.

5. Appendix: Enriched presheaf categories

5.1. Categories of enriched presheaves. We record some categorical
observations about categories Fun(Dop,M ) of enriched presheaves. Re-
member that Pre(D ,V ) = Fun(Dop,V ). We ignore model structures in
this section, so we only assume that V is a bicomplete closed symmetric
monoidal category and M is a bicomplete V -category. Then Fun(Dop,M )
is a V -category. The enriched hom Fun(Dop,M )(X,Y ) is the equalizer in
V displayed in the diagram

Fun(Dop,M )(X,Y ) //
∏
d M (Xd, Yd)

//
//
∏
d,e M (D(e, d)�Xd, Ye).

(5.1)
The parallel arrows are defined using the evaluation maps

D(e, d)�Xd −→ Xe and D(e, d)� Yd −→ Ye

of the V -functors X and Y , in the latter case after composition with

D(e, d)� (−) : M (Xd, Yd) −→M (D(e, d)�Xd,D(e, d)� Yd).
The V -category Fun(Dop,M ) is bicomplete, with colimits, limits, tensors
and cotensors defined in the evident objectwise fashion; in particular,

(X � V )d = Xd � V and F (V,X)d = F (V,Xd).

For clarity below, the reader should notice the evident identifications

Fun(Dop,M op) ∼= Fun(D ,M )op

and hence

Fun(D ,M op) ∼= Fun(Dop,M )op.
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Applied levelwise, the tensors (−) � M : V −→ M and the cotensors
F (−,M) : V op −→M for varying M induce V -functors

� : Fun(Dop,V )⊗M −→ Fun(Dop,M )

and

F : Fun(Dop,V )⊗M −→ Fun(D ,M).

Similarly, the functors M (M,−) and M (−,M) induce V -functors, denoted
M (−,−),

M op⊗F (Dop,M ) −→ Fun(Dop,V ) and Fun(Dop,M )⊗M −→ Fun(D ,V ).

Now let

X ∈ Fun(Dop,V ), Y ∈ Fun(Dop,M ), and Z ∈ Fun(D ,M).

The categorical tensor product (specializing left Kan extension) of the con-
travariant functor X and the covariant functor Z on D gives the object
X �D Z ∈M displayed in the coequalizer diagram∐

d,eXe ⊗D(d, e)� Zd
//
//
∐
dXd � Zd //X �D Z. (5.2)

The parallel arrows are defined using the evaluation maps of X and Z and
the isomorphism (4.8). Similarly, the categorical hom of the contravariant
functors X and Y gives the object FD(X,Y ) ∈M displayed in the analogous
equalizer diagram

FD(X,Y ) //
∏
d F (Xd, Yd)

//
//
∏
d,e F (D(e, d)⊗Xd, Ye). (5.3)

With these constructions, we have adjunctions analogous to those of (4.5):

M (X �D Z,M) ∼= Fun(Dop,V )(X,M (Z,M)) ∼= Fun(D ,M )(Z,F (X,M))
(5.4)

and

Fun(Dop,M )(X�M,Y ) ∼= Fun(Dop,V )(X,M (M,Y )) ∼= M (M,FD(X,Y )).
(5.5)

Applying V (I,−), there result ordinary adjunctions, with hom sets replacing
hom objects in V , that are analogous to those displayed in (4.6).

The proofs of the adjunctions in Proposition 1.6 and Remark 1.7 are now
immediate. By (5.5) and the enriched Yoneda lemma, we have

Fun(Dop,M )(FdM,Y ) ∼= Fun(Dop,V )(Y(d),M (M,Y ))
∼= M (M,Yd) = M (M, evd(Y )).

Dually, by (5.4) and the enriched Yoneda lemma, we have

Fun(D ,M )(Z,GdM) ∼= Fun(Dop,V )(Y(d),M (Z,M))
∼= M (Zd,M) = M (evd(Z),M).

Since limits, colimits, tensors, and cotensors in Fun(Dop,M ) are defined
levelwise, the functors evd preserve all of these, and so do their adjoints Fd
and Gd.



ENRICHED MODEL CATEGORIES AND PRESHEAF CATEGORIES 85

5.2. Constructing V -categories over a full subcategory of V . In the
sequel [13] we are especially interested in finding calculationally accessible
domain V -categories C for categories of presheaves V C that are equivalent
to categories of presheaves Pre(D ,V ), where D is a well-chosen full V -
subcategory of an ambient V -category M . Of course, for that purpose
we are not at all concerned with the underlying categories of C and D .
In Section 5.3, we shall give a theoretical description of all such V -maps
C −→ D , where D is preassigned.

Here we restrict attention to M = V and give a simple general way of
constructing a V -map γ : C −→ D where C is a small V -category and D is
a full V -subcategory of V whose objects are specified in terms of C . Despite
its simplicity, this example will play a key role in the sequel [13].

Construction 5.6. Fix an object e ∈ C . In the applications, e is a distin-
guished object with favorable properties. Let D be the full V -subcategory
of V whose objects are the C (e, c) for c ∈ C . We define a V -functor
γ : C −→ D such that γ(c) = C (e, c) on objects. The map

γ : C (b, c) −→ D(b, c) = V (C (e, b),C (e, c))

in V is the adjoint of the composition

◦ : C (b, c)⊗ C (e, b) −→ C (e, c).

The diagrams

I
η

||

η

''
C (c, c) γ

// V (C (e, c),C (e, c))

and

C (b, c)⊗ C (a, b)
γ⊗γ //

◦
��

V (C (e, b),C (e, c))⊗ V (C (e, a),C (e, b))

◦
��

C (a, c) γ
// V (C (e, a),C (e, c))

commute since their adjoints

I⊗ C (e, c)
η⊗id

vv

∼=

&&
C (c, c)⊗ C (e, c) ◦

// C (e, c)
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and

C (b, c)⊗ C (a, b)⊗ C (e, a)
id⊗◦ //

◦⊗id
��

C (b, c)⊗ C (e, b)

◦
��

C (a, b)⊗ C (e, a) ◦
// C (a, c)

commute. To see that the last diagram is adjoint to the second, observe
that

γ ⊗ γ = (γ ⊗ id) ◦ (id⊗ γ).

Remark 5.7. When C is a symmetric monoidal V -category with unit object
e and product �, the composite γ : C −→ D ⊂ V is a lax symmetric
monoidal V -functor. The data showing this are the unit map

I −→ C (e, e) = γ(e)

and the product map

� : γ(b)⊗ γ(c) = C (e, b)⊗ C (e, c) −→ C (e, b�c) = γ(b�c),

where we have used the canonical isomorphism e�e ∼= e.

5.3. Characterizing V -categories over a full subcategory of M . We
use the first adjunction of (4.5) to characterize the V -categories γ : C −→ D
over any full V -subcategory D of a V -category M . Technically, we do not
assume that M is bicomplete, but we do assume the adjunction, so that we
have tensors; we write them as V �M . Let V -Cat/D be the category whose
objects are the V -functors γ : C −→ D that are the identity on objects and
whose morphisms are the V -functors α : C −→ C ′ such that γ′ ◦ α = γ.

Consider the following data.

(i) For each pair (d, e) of objects of D , an object C (d, e) of V and an
“evaluation map” ε : C (d, e)� d −→ e in M with adjoint map (in V )

γ : C (d, e) −→ D(d, e) = M (d, e).

We require the following associativity diagram to commute for all
(b, c, d, e) ∈ D .

(C (d, e)⊗ C (c, d)⊗ C (b, c))� b

(µ⊗id)�id
��

(id⊗µ)�id // (C (d, e)⊗ (C (b, d))� b
∼=
��

(C (c, e)⊗ C (b, c))� b
∼=
��

C (d, e)� (C (b, d)� b)

id�ε
��

C (c, e)� (C (b, c)� b)

id�ε
��

C (d, e)� d

ε

��
C (c, e)� c ε

// e
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Diagram chasing then shows that, under the canonical isomorphism of
their sources, the composites in the diagram agree with the following
composite of evaluation maps.

C (d, e)�C (c, d)�C (b, c)�b −→ C (d, e)�C (c, d)�c −→ C (d, e)�d −→ e.

(ii) For each object d of D a “unit map” η : I −→ C (d, d) in V such that
the following diagram commutes.

I� d
η�id

xx

∼=

!!
C (d, d)� d ε

// d

Using the isomorphism (4.8), which depends on having the enriched
adjunction (4.5) in M , we define composition maps

µ : C (d, e)⊗ C (c, d) −→ C (c, e)

in V as the adjoints of the following composites of evaluation maps in
M .

(C (d, e)⊗ C (c, d))� c ∼= C (d, e)� (C (c, d)� c) id�ε //C (d, e)� d ε //e.

Proposition 5.8. There is an isomorphism between V -Cat/D and the cat-
egory whose objects consist of the data specified in (i) and (ii) above and
whose morphisms α : C −→ C ′ are given by maps α : C (d, e) −→ C ′(d, e)
such that the following diagrams commute (in M and V respectively).

C (d, e)� d

ε
%%

α�id // C ′(c, d)� e

ε′
yy

e

and I
η

||

η′

""
C (d, d) α

// C ′(d, d)

Proof. For an object C of the category defined in the statement we easily
verify from the given data that C is a V -category with the specified unit and
composition maps and that the maps γ together with the identity function on
objects give a V -functor C −→ D . Conversely, for a V -functor γ : C −→ D
that is the identity on objects, we obtain data as in (i) and (ii) by use of
the adjunction (4.5). This correspondence between objects carries over to a
correspondence between morphisms. �

5.4. Remarks on multiplicative structures. Our results in this paper,
like nearly all of the results in the literature on replacing given model cat-
egories by equivalent presheaf categories, ignores any given multiplicative
structure on M . The following observations give a starting point for a study
of products, but we shall not pursue this further here. There are several
problems. For starters, the hypotheses in the following remark are natural
categorically, but they are seldom satisfied in the applications. Moreover,
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the assumption here that δ is op-lax clashes with the conclusion that γ is
lax in Remark 5.7. In practice, it cannot be expected that either is strong
symmetric monoidal.

Remark 5.9. Suppose that D is symmetric V -monoidal with product ⊕
and unit object e. Then Pre(D ,V ) is symmetric V -monoidal with prod-
uct ⊗ and unit object Y(e). For X and Y in Pre(D ,V ), we have the
evident external product ⊗̄ : D ⊗ D −→ V , which is given on objects by
(X⊗̄Y )(b, c) = X(b)⊗Y (c), and left Kan extension along ⊕ gives the prod-
uct X ⊗ Y ∈ Pre(D ,V ). It is characterized by the V -adjunction

Pre(D ,V )(X ⊗ Y,Z) ∼= Pre(D ⊗D ,V )(X⊗̄Y, Z ◦ ⊕).

Remark 5.10. Now suppose further that M is symmetric V -monoidal with
product � and unit object J and that the V -functor δ : D −→M is op-lax
symmetric V -monoidal, so that we are given a map ζ : δe −→ J in M and
a natural V -map

ψ : δ(c⊕ d) −→ δc�δd.

Then the functor U : M −→ Pre(D ,V ) is lax symmetric monoidal and
therefore its left adjoint T is op-lax symmetric monoidal. The data showing
this are a unit map η : Y(e) −→ UJ in Pre(D ,V ) and a natural V -map
φ : UM ⊗ UN −→ U(M�N). Recall that (UM)(d) = M (δd,M). The map
η is given by the composite maps

Y(e)(d) = D(d, e) −→M (δd, δe) −→M (δd,J)

induced by δ and ζ. The natural V -map φ is adjoint to the natural V -map

UM⊗̄UN −→ U(M�N) ◦ ⊕

given by the composite maps

M (δc,M)⊗M (δd,N) −→M (δc�δd,M�N) −→M (δ(c⊕ d),M�N)

induced by � and φ.
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(1994), no. 1, 63–102. MR1258406, Zbl 0799.18007, doi: 10.24033/asens.1689. 58

[20] Kelly, Gregory M. Basic concepts of enriched category theory. London Mathemat-
ical Society Lecture Note Series, 64. Cambridge University Press, Cambridge-New
York, 1982. 245 pp. ISBN: 0-521-28702-2. MR0651714, Zbl 0478.18005. 39, 42, 74

http://www.ams.org/mathscinet-getitem?mr=2205213
http://www.emis.de/cgi-bin/MATH-item?1084.55011
http://arXiv.org/abs/math/0502006
http://dx.doi.org/10.4310/HHA.2006.v8.n1.a1
http://www.ams.org/mathscinet-getitem?mr=2342167
http://www.emis.de/cgi-bin/MATH-item?1125.18007
http://arXiv.org/abs/math/0602107
http://www.ams.org/mathscinet-getitem?mr=2085176
http://www.emis.de/cgi-bin/MATH-item?1056.19002
http://arXiv.org/abs/math/0209084
http://dx.doi.org/10.1215/S0012-7094-04-12435-2
http://www.ams.org/mathscinet-getitem?mr=2102294
http://www.emis.de/cgi-bin/MATH-item?1072.18012
http://dx.doi.org/10.1090/surv/113
http://www.ams.org/mathscinet-getitem?mr=0749528
http://www.emis.de/cgi-bin/MATH-item?0555.55019
http://www.emis.de/cgi-bin/MATH-item?0555.55019
http://dx.doi.org/10.1016/1385-7258(84)90016-7
http://www.ams.org/mathscinet-getitem?mr=0225841
http://www.emis.de/cgi-bin/MATH-item?0192.10604
http://dx.doi.org/10.1007/978-3-642-99902-4
http://www.ams.org/mathscinet-getitem?mr=1417719
http://www.emis.de/cgi-bin/MATH-item?0894.55001
http://dx.doi.org/10.1090/surv/047
http://www.ams.org/mathscinet-getitem?mr=1988072
http://www.emis.de/cgi-bin/MATH-item?1042.18008
http://arXiv.org/abs/math/0206079
http://arXiv.org/abs/1110.3571
http://www.ams.org/mathscinet-getitem?mr=3866776
http://www.emis.de/cgi-bin/MATH-item?1409.55011
http://arXiv.org/abs/1307.4488
http://dx.doi.org/10.4310/HHA.2019.v21.n1.a10
http://www.ams.org/mathscinet-getitem?mr=1944041
http://www.emis.de/cgi-bin/MATH-item?1017.55001
http://dx.doi.org/10.1090/surv/099
http://www.ams.org/mathscinet-getitem?mr=1650134
http://www.emis.de/cgi-bin/MATH-item?0909.55001
http://dx.doi.org/10.1090/surv/063
http://www.ams.org/mathscinet-getitem?mr=1860878
http://www.emis.de/cgi-bin/MATH-item?1008.55006
http://arXiv.org/abs/math/0004051
http://dx.doi.org/10.1016/S0022-4049(00)00172-9
http://www.ams.org/mathscinet-getitem?mr=1695653
http://www.emis.de/cgi-bin/MATH-item?0931.55006
http://arXiv.org/abs/math/9801077
http://dx.doi.org/10.1090/S0894-0347-99-00320-3
http://www.ams.org/mathscinet-getitem?mr=1258406
http://www.emis.de/cgi-bin/MATH-item?0799.18007
http://dx.doi.org/10.24033/asens.1689
http://www.ams.org/mathscinet-getitem?mr=0651714
http://www.emis.de/cgi-bin/MATH-item?0478.18005


90 BERTRAND J. GUILLOU AND J. PETER MAY

[21] Lewis, L. Gaunce, Jr.; Mandell, Michael A. Modules in monoidal model
categories. J. Pure Appl. Algebra. 210 (2007), no. 2, 395–421. MR2320005, Zbl
1123.18010, arXiv:math/0606275, doi: 10.1016/j.jpaa.2006.10.002. 78, 82

[22] Lewis, L. Gaunce, Jr.; May, J. Peter; Steinberger, Mark. Equivariant stable
homotopy theory. With contributions by J. E. McClure. Lecture Notes in Mathemat-
ics, 1213. Springer-Verlag, Berlin, 1986. x+538 pp. ISBN: 3-540-16820-6. MR0866482,
Zbl 0611.55001, doi: 10.1007/BFb0075778. 51

[23] Lurie, Jacob. Higher topos theory. Annals of Mathematical Studies, 170.
Princeton University Press, Princeton, NJ, 2009. xviii+925 pp. ISBN: 978-0-
691-14049-0; 0-691-14049-9. MR2522659, Zbl 1175.18001, arXiv:math/0608040,
doi: 10.1515/9781400830558. 39, 62, 77

[24] Mandell, Michael A.; May, J. P. Equivariant orthogonal spectra and S-modules.
Mem. Amer. Math. Soc. 159 (2002), no. 755, x+108 pp. MR1922205, Zbl 1025.55002,
doi: 10.1090/memo/0755 51

[25] Mandell, Michael A.; May, J. P.; Schwede, Stefan; Shipley, Brooke. Model
categories of diagram spectra. Proc. London Math. Soc. (3) 82 (2001), no. 2, 441–512.
MR1806878, Zbl 1017.55004, doi: 10.1112/S0024611501012692. 47, 51, 57, 66

[26] May, J. P. Equivariant homotopy and cohomology theory. CBMS Regional
Conference Series in Mathematics, 91. American Mathematical Society, Provi-
dence, RI, 1996. xiv+366 pp. ISBN: 0-8218-0319-0. MR1413302, Zbl 0890.55001,
doi: 10.1090/cbms/091. 46

[27] May, J. P. What precisely are E∞ ring spaces and E∞ ring spectra? New topologi-
cal contexts for Galois theory and algebraic geometry (BIRS 2008), 215–282. Geom.
Topol. Monogr., 16. Geom. Topol. Publ., Coventry, 2009. MR2544391, Zbl 1228.55010,
arXiv:0903.2813, doi: 10.2140/gtm.2009.16.215. 83

[28] May, J. P.; Ponto, Kate. More concise algebraic topology. Localization, comple-
tion, and model categories. Chicago Lectures in Mathematics. University of Chicago
Press, Chicago, IL, 2012. xxviii+514 pp. ISBN: 978-0-226-51178-8; 0-226-51178-2.
MR2884233, Zbl 1249.55001, doi: 10.7208/chicago/9780226511795.001.0001. 42, 43,
46, 47, 48, 49, 50, 57, 75, 76, 77

[29] May, J. P.; Sigurdsson, J. Parametrized homotopy theory. Mathematical Sur-
veys and Monographs, 132. American Mathematical Society, Providence, RI, 2006.
x+441 pp. ISBN: 978-0-8218-3922-5; 0-8218-3922-5. MR2271789, Zbl 1119.55001,
doi: 10.1090/surv/132. 47, 53, 75, 76, 81

[30] Muro, Fernando. On the unit of a monoidal model category. Topol-
ogy Appl. 191 (2015), 37–47. MR3361052, Zbl 1329.55007, arXiv:1411.1349,
doi: 10.1016/j.topol.2015.05.006. 82, 83

[31] Neeman, Amnon. Stable homotopy as a triangulated functor. Invent. Math. 109
(1992), no. 1, 17–40. MR1168363, Zbl 0793.55007, doi: 10.1007/BF01232016. 53

[32] Neeman, Amnon. The Grothendieck duality theorem via Bousfield’s techniques and
Brown representability. J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR1308405,
Zbl 0864.14008, doi: 10.1090/S0894-0347-96-00174-9. 53

[33] Piacenza, Robert J. Homotopy theory of diagrams and CW -complexes over a
category. Canad. J. Math. 43 (1991), no. 4, 814–824. MR1127031, Zbl 0758.55015,
doi: 10.4153/CJM-1991-046-3. 46

[34] Schwede, Stefan; Shipley, Brooke. Algebras and modules in monoidal model
categories. Proc. London Math. Soc. (3) 80 (2000), no. 2, 491-511. MR1734325, Zbl
1026.18004, arXiv:math/9801082, doi: 10.1112/S002461150001220X. 39, 41, 63, 79

[35] Schwede, Stefan; Shipley, Brooke. Stable model categories are categories
of modules. Topology 42 (2003), no. 1, 103–153. MR1928647, Zbl 1013.55005,
doi: 10.1016/S0040-9383(02)00006-X. 39, 40, 41, 49, 51, 52, 54, 58, 59, 62

http://www.ams.org/mathscinet-getitem?mr=2320005
http://www.emis.de/cgi-bin/MATH-item?1123.18010
http://www.emis.de/cgi-bin/MATH-item?1123.18010
http://arXiv.org/abs/math/0606275
http://dx.doi.org/10.1016/j.jpaa.2006.10.002
http://www.ams.org/mathscinet-getitem?mr=0866482
http://www.emis.de/cgi-bin/MATH-item?0611.55001
http://dx.doi.org/10.1007/BFb0075778
http://www.ams.org/mathscinet-getitem?mr=2522659
http://www.emis.de/cgi-bin/MATH-item?1175.18001
http://arXiv.org/abs/math/0608040
http://dx.doi.org/10.1515/9781400830558
http://www.ams.org/mathscinet-getitem?mr=1922205
http://www.emis.de/cgi-bin/MATH-item?1025.55002
http://dx.doi.org/10.1090/memo/0755
http://www.ams.org/mathscinet-getitem?mr=1806878
http://www.emis.de/cgi-bin/MATH-item?1017.55004
http://dx.doi.org/10.1112/S0024611501012692
http://www.ams.org/mathscinet-getitem?mr=1413302
http://www.emis.de/cgi-bin/MATH-item?0890.55001
http://dx.doi.org/10.1090/cbms/091
http://www.ams.org/mathscinet-getitem?mr=2544391
http://www.emis.de/cgi-bin/MATH-item?1228.55010
http://arXiv.org/abs/0903.2813
http://dx.doi.org/10.2140/gtm.2009.16.215
http://www.ams.org/mathscinet-getitem?mr=2884233
http://www.emis.de/cgi-bin/MATH-item?1249.55001
http://dx.doi.org/10.7208/chicago/9780226511795.001.0001
http://www.ams.org/mathscinet-getitem?mr=2271789
http://www.emis.de/cgi-bin/MATH-item?1119.55001
http://dx.doi.org/10.1090/surv/132
http://www.ams.org/mathscinet-getitem?mr=3361052
http://www.emis.de/cgi-bin/MATH-item?1329.55007
http://arXiv.org/abs/1411.1349
http://dx.doi.org/10.1016/j.topol.2015.05.006
http://www.ams.org/mathscinet-getitem?mr=1168363
http://www.emis.de/cgi-bin/MATH-item?0793.55007
http://dx.doi.org/10.1007/BF01232016
http://www.ams.org/mathscinet-getitem?mr=1308405
http://www.emis.de/cgi-bin/MATH-item?0864.14008
http://dx.doi.org/10.1090/S0894-0347-96-00174-9
http://www.ams.org/mathscinet-getitem?mr=1127031
http://www.emis.de/cgi-bin/MATH-item?0758.55015
http://dx.doi.org/10.4153/CJM-1991-046-3
http://www.ams.org/mathscinet-getitem?mr=1734325
http://www.emis.de/cgi-bin/MATH-item?1026.18004
http://www.emis.de/cgi-bin/MATH-item?1026.18004
http://arXiv.org/abs/math/9801082
http://dx.doi.org/10.1112/S002461150001220X
http://www.ams.org/mathscinet-getitem?mr=1928647
http://www.emis.de/cgi-bin/MATH-item?1013.55005
http://dx.doi.org/10.1016/S0040-9383(02)00006-X


ENRICHED MODEL CATEGORIES AND PRESHEAF CATEGORIES 91

[36] Schwede, Stefan; Shipley, Brooke. Equivalences of monoidal model cate-
gories. Algebr. Geom. Topol. 3 (2003), 287–334. MR1997322, Zbl 1028.55013,
arXiv:math/0209342, doi: 10.2140/agt.2003.3.287. 39, 41, 52, 63, 68, 69, 79, 81

[37] Shulman, Michael. Homotopy limits and colimits and enriched homotopy theory.
arXiv:math.AT/0610194. 79, 82

[38] Stanculescu, Alexandru E. Constructing model categories with prescribed fibrant
objects. Theory Appl. Categ. 29 (2014), no. 23, 635–653. MR3274498, Zbl 1302.18016,
arXiv:1208.6005. 62

(Bertrand J. Guillou) Department of Mathematics, University of Kentucky, Lex-
ington, KY 40506, USA
bertguillou@uky.edu

(J. Peter May) Department of Mathematics, The University of Chicago, Chicago,
IL 60637, USA
may@math.uchicago.edu

This paper is available via http://nyjm.albany.edu/j/2020/26-3.html.

http://www.ams.org/mathscinet-getitem?mr=1997322
http://www.emis.de/cgi-bin/MATH-item?1028.55013
http://arXiv.org/abs/math/0209342
http://dx.doi.org/10.2140/agt.2003.3.287
http://arXiv.org/abs/math.AT/0610194
http://www.ams.org/mathscinet-getitem?mr=3274498
http://www.emis.de/cgi-bin/MATH-item?1302.18016
http://arXiv.org/abs/1208.6005
mailto:bertguillou@uky.edu
mailto:may@math.uchicago.edu
http://nyjm.albany.edu/j/2020/26-3.html

	Introduction
	1. Comparisons between model categories M and Pre (D,V)
	1.1. Standing assumptions on V, M, and D
	1.2. The categorical context for the comparisons
	1.3. When does (D,) induce an equivalent model structure on M?
	1.4. When is a given model category M equivalent to some presheaf category?
	1.5. Stable model categories are categories of module spectra

	2. Changing the categories D and M, keeping V fixed
	2.1. Changing D
	2.2. Quasi-equivalences and changes of D
	2.3. Changing full subcategories of Quillen equivalent model categories
	2.4. The model category VO-Cat

	3. Changing the categories V, D, and M
	3.1. Changing the enriching category V
	3.2. Categorical changes of V and D
	3.3. Model categorical changes of V and D
	3.4. Tensored adjoint pairs and changes of V, D, and M
	3.5. Weakly unital V-categories and presheaves

	4. Appendix: Enriched model categories
	4.1. Remarks on enriched categories
	4.2. Remarks on cofibrantly generated model categories
	4.3. Remarks on enriched model categories
	4.4. The level model structure on presheaf categories
	4.5. How and when to make the unit cofibrant?

	5. Appendix: Enriched presheaf categories
	5.1. Categories of enriched presheaves
	5.2. Constructing V-categories over a full subcategory of V
	5.3. Characterizing V-categories over a full subcategory of M
	5.4. Remarks on multiplicative structures

	References

