MODELS OF G-SPECTRA AS PRESHEAVES OF SPECTRA

BERTRAND GUILLOU AND J.P. MAY

Abstract. Let G be a finite group. We give Quillen equivalent models for the category of G-spectra as categories of spectrally enriched functors from explicitly described domain categories to nonequivariant spectra. Our preferred model is based on equivariant infinite loop space theory applied to elementary categorical data. It recasts equivariant stable homotopy theory in terms of point-set level categories of G-spans and nonequivariant spectra. We also give a more topologically grounded model based on equivariant Atiyah duality.

Contents

Introduction 2
1. The \mathcal{I}-category $G\mathcal{A}$ and the \mathcal{I}_G-category \mathcal{A}_G 3
1.1. The bicategory $G\mathcal{E}$ of G-spans 4
1.2. The precise statement of the main theorem 7
1.3. The G-bicategory \mathcal{E}_G of spans: intuitive definition 8
1.4. The G-bicategory \mathcal{E}_G of spans: working definition 9
1.5. The categorical duality maps 13
2. The proof of the main theorem 16
2.1. The equivariant approach to Theorem 1.13 16
2.2. Results from equivariant infinite loop space theory 17
2.3. The self-duality of $\Sigma_+^G((A_+))$ 20
2.4. The proof that \mathcal{A}_G is equivalent to \mathcal{D}_G 21
2.5. Identifications of suspension G-spectra and of tensors with spectra 24
3. Atiyah duality for finite G-sets 26
3.1. The categories $G\mathcal{Z}$, $G\mathcal{D}$, and \mathcal{D}_G 26
3.2. Space level Atiyah duality for finite G-sets 27
3.3. The weakly unital categories $G\mathcal{B}$ and \mathcal{B}_G 29
3.4. The category of presheaves with domain $G\mathcal{B}$ 31
4. Appendix: Enriched model categories of G-spectra 31
4.1. Presheaf models for categories of G-spectra 31
4.2. Comparison of presheaf models of G-spectra 33
4.3. Suspension spectra and fibrant replacement functors in $G\mathcal{I}$ 34
4.4. Suspension spectra and smash products in $G\mathcal{Z}$ 34
5. Appendix: Whiskering $G\mathcal{E}$ to obtain strict unit 1-cells 36
References 37

Date: July 7, 2018.
Introduction

The equivariant stable homotopy category is of fundamental importance in algebraic topology. It is the natural home in which to study equivariant stable homotopy theory, a subject that has powerful and unexpected nonequivariant applications. For recent examples, it plays a central role in the solution of the Kervaire invariant problem by Hill, Hopkins, and Ravenel, it is central to calculations of topological cyclic homology and therefore to calculations in algebraic K-theory made by Angeltveit, Gerhardt, Hesselholt, Lindenstrauss, Madsen, and others, and it plays an interesting role by analogy and comparison in the work of Voevodsky and others in motivic stable homotopy theory. It is also of great intrinsic interest.

Setting up the equivariant stable homotopy category with its attendant model structures takes a fair amount of work. The first version was due to Lewis and May [20] and more modern versions that we shall start from are given in Mandell and May [23]. A result of Schwede and Shipley [36], reproven in [8], asserts that any stable model category \mathcal{M} is equivalent to a category $\text{Pre}(\mathcal{D}, \mathcal{S})$ of spectrally enriched presheaves with values in a chosen category \mathcal{S} of spectra. However, the domain \mathcal{S}-category \mathcal{D} is a full \mathcal{S}-subcategory of \mathcal{M} and typically is as inexplicit and mysterious as \mathcal{M} itself. From the point of view of applications and calculations, this is therefore only a starting point. One wants a more concrete understanding of the category \mathcal{D}. We shall give explicit equivalents to the domain category \mathcal{D} in the case when $\mathcal{M} = G\mathcal{S}$ is the category of G-spectra for a finite group G, and we fix a finite group G throughout.

We shall define an \mathcal{S}-category (or spectral category) $G\mathcal{A}$ by applying a suitable infinite loop space machine to simply defined categories of finite G-sets. The spectral category $G\mathcal{A}$ is a spectrally enriched version of the Burnside category of G. We shall prove the following result.

Theorem 0.1 (Main theorem). There is a zig-zag of Quillen equivalences

$$G\mathcal{A} \simeq \text{Pre}(G\mathcal{A}, \mathcal{S})$$

relating the category of G-spectra to the category of spectrally enriched contravariant functors $G\mathcal{A} \rightarrow \mathcal{S}$.

As usual, we call such functors presheaves. We reemphasize the simplicity of our spectral category $G\mathcal{A}$: no prior knowledge of G-spectra is required to define it.

We give a precise description of the relevant categorical input and restate the main theorem more precisely in §1. The central point of the proof is to use equivariant infinite loop space theory to construct the spectral category $G\mathcal{A}$ from elementary categories of finite G-sets. We prove our main theorem in §2, using the equivariant Barratt-Priddy-Quillen (BPQ) theorem to compare $G\mathcal{A}$ to the spectral category $G\mathcal{D}$ given by the suspension $\Sigma^\infty_G(A_+)$ of based finite G-sets A_+, which is a standard choice for application of the theorem of Schwede and Shipley to $G\mathcal{D}$. The classical Burnside category of isomorphism classes of spans of finite G-sets leads to a calculation of the homotopy category $\text{Ho}G\mathcal{D}$ (see Theorem 1.11 below), and $G\mathcal{A}$ starts from the bicategory of such spans, in which isomorphisms of spans give the 2-cells.

Intuitively, Mackey functors can be viewed as functors from $\text{Ho}G\mathcal{D}$ to abelian groups, and the result of Schwede and Shipley says that G-spectra can be viewed as functors from $G\mathcal{D}$ to spectra. We are lifting the standard purely algebraic
understanding of Mackey functors to obtain an analogous algebraic understanding of G-spectra as functors from $G\mathcal{A}$ to spectra. Thus the slogan is that G-spectra are spectral Mackey functors.

It is crucial to our work that the G-spectra $\Sigma_\infty^G(A_\wedge)$ are self-dual. Our original proof took this as a special case of equivariant Atiyah duality (§3.2), thinking of A as a trivial example of a smooth closed G-manifold. We later found a direct categorical proof (§2.3) of this duality based on equivariant infinite loop space theory and the equivariant BPQ theorem. This allows us to give an illuminating new proof of the required self-duality as we go along. We give an alternative model for the category of G-spectra in terms of classical Atiyah duality in §3. An appendix, §4 provides some background on the two model categories of G-spectra used here, equivariant orthogonal spectra and equivariant S-modules, and describes and compares the specialization of [8] to those categories that provides the starting point for our work.

We take what we need from equivariant infinite loop space theory as a black box in this paper. The additive and multiplicative space level theories are worked out in [32] and [11], respectively. The generalization from space level to category level input is based on general (and not necessarily equivariant) categorical coherence theory that is worked out in [12, 13, 14]. What is needed for this paper is a small part of the full story and is put together in a relatively short companion paper [15].

We thank a diligent referee for demanding a reorganization of our original paper. We also thank Angelica Osorno and Inna Zakharevich for very helpful comments, and we especially thank Osorno and Anna Marie Bohmann for catching an error in the handling of pairings in earlier versions of this work. That error is one reason for the very long delay in the publication of this paper, which was first posted on ArXiv several years ago, on August 21, 2011. The delay is no fault of this journal.

In the interim, we teamed with Osorno and Mona Merling to fully work out the relevant infinite loop space theory, which turned out to be both surprisingly demanding and unexpectedly interesting. Also in the interim, Bohmann and Osorno [2] made concrete applications of this paper for the construction of genuine G-spectra from categorical input data. A small error in their paper is corrected in the short appendix, §5, of this paper. Further applications to the concrete construction of genuine G-spectra are in development in their work and in work of Cary Malkiewich and Merling [22]. We also note that Clark Barwick [1], inspired by our work, has given an abstract infinity categorical variant of our main result. During the delay, Jonathan Rubin combed through our draft and caught a great many errors of detail and infelicities. Needless to say, we are responsible for all that remain.

This work was partially supported by Simons Collaboration Grant No. 282316 held by the first author.

1. The \mathcal{I}-category $G\mathcal{A}$ and the $G\mathcal{A}$-category S^G

In this paper, \mathcal{I} denotes the category of (nonequivariant) orthogonal spectra. See §4 for some discussion of the comparison between models of G-spectra. We first define the \mathcal{I}-category $G\mathcal{A}$ and restate our main theorem. We shall avoid categorical apparatus, but conceptually $G\mathcal{A}$ can be viewed as obtained by applying a nonequivariant infinite loop space machine K to a category $G\mathcal{s}$ “enriched in

\[\text{We are grateful to Angelica Osorno for helping us discover and fix this error.}\]
The term in quotes can be made categorically precise [7, 16, 35], but we shall use it just as an informal slogan since no real categorical background is necessary to our work here: we shall give direct elementary definitions of the examples we use, and they do satisfy the axioms specified in the cited sources. We then define a G-category \mathcal{E}_G “enriched in permutative G-categories”, from which \mathcal{E}_G is obtain by passage to G-fixed subcategories. Finally, we outline the proof of the main theorem, which is obtained by applying an equivariant infinite loop space machine K_G to \mathcal{E}_G.

1.1. The bicategory $G\mathcal{E}$ of G-spans. In any category \mathcal{C} with pullbacks, the bicategory of spans in \mathcal{C} has 0-cells the objects of \mathcal{C}. The 1-cells and 2-cells $A \to B$ are the diagrams

$$B \leftarrow D \rightarrow A \quad \text{and} \quad B \leftarrow E \rightarrow A.$$

Composites of 1-cells are given by (chosen) pullbacks

$$C \leftarrow E \rightarrow F \rightarrow D \rightarrow A.$$

The identity 1-cells are the diagrams $A \leftarrow A \rightarrow A$. The associativity and unit constraints are determined by the universal property of pullbacks. Observe that the 1-cells $A \to B$ can just as well be viewed as objects over $B \times A$. Viewed this way, the identity 1-cells are given by the diagonal maps $A \to A \times A$.

Our starting point is the bicategory of spans of finite G-sets. Here the disjoint union of G-sets over $B \times A$ gives us a symmetric monoidal structure on the category of 1-cells and 2-cells $A \to B$ for each pair (A, B). We can think of the bicategory of spans as a category “enriched in the category of symmetric monoidal categories”.

Again, the notion in quotes does not make obvious mathematical sense since there is no obvious monoidal structure on the category of symmetric monoidal categories, but category theory due to the first author [7] (see also [16, 35]) explains what these objects are and how to rigidify them to categories enriched in permutative categories.

We repeat that we have no need to go into such categorical detail. Rather than apply such category theory, we give a direct elementary construction of a strict structure that is equivalent to the intuitive notion of the category “enriched in symmetric monoidal categories” of spans of finite G-sets. We first define a bipermutative category $G\mathcal{E}(1)$ that is equivalent to the symmetric bimonoidal category of finite G-sets.

Definition 1.3. Any finite G-set is isomorphic to one of the form $A = (\mathbf{n}, \alpha)$, where $\mathbf{n} = \{1, \cdots, n\}$, α is a homomorphism $G \to \Sigma_n$, and G acts on \mathbf{n} by

2 A permutative category is a symmetric strict monoidal category.

3 In general, we understand a G-category to be a category internal and not just enriched in G-sets, meaning that G can act on both objects and morphisms.
g \cdot i = \alpha(g)(i) \text{ for } 1 \leq i \leq n. \text{ We understand finite } G\text{-sets to be of this restricted form from now on. A } G\text{-map } f: (m, \alpha) \to (n, \beta) \text{ is a function } f: m \to n \text{ such that } f \circ \alpha(g) = \beta(g) \circ f \text{ for } g \in G. \text{ The morphisms of } G\mathcal{E}(1) \text{ are the isomorphisms } (m, \alpha) \to (n, \beta) \text{ of } G\text{-sets.}

The disjoint union \(\bigoplus\) of finite \(G\text{-sets} D = (s, \sigma) \text{ and } E = (t, \tau) \text{ is } (s + t, \sigma + \tau),\) with \(\sigma + \tau\) being the evident block sum \(G \to \Sigma_{s+t}.\) With the evident commutativity isomorphism, this gives the permutative category \(G\mathcal{E}(1)\) of finite \(G\text{-sets};\) the empty finite \(G\text{-set} \) is the unit for \(\Pi.\) To define the cartesian product, for each \(s\) and \(t\) let \(\lambda_{s,t}: st \to s \times t\) denote the lexicographic ordering. Then \(D \times E\) is \((st, \sigma \otimes \tau)\) where \(\sigma \otimes \tau\) is the permutation

\[
\begin{align*}
st \xrightarrow{\lambda_{s,t}} s \times t & \xrightarrow{\sigma \otimes \tau} s \times t \xrightarrow{\lambda_{t,s}^{-1}} st.
\end{align*}
\]

There is again an evident commutativity isomorphism, and \(\Pi \text{ and } \times \text{ give } G\mathcal{E}(\ast)\) a structure of bipermutative category in the sense of [30]; the multiplicative unit is the trivial \(G\text{-set} \) \(1 = (1, \varepsilon),\) where \(\varepsilon(g) = 1 \text{ for } g \in G.\)

As we will need it later, we also introduce the reordering permutation \(\tau_{s,t} \in \Sigma_{st},\) defined as the composition

\[
\begin{align*}
st \xrightarrow{\lambda_{s,t}} s \times t & \xrightarrow{\sigma \otimes \tau} t \times s \xrightarrow{\lambda_{t,s}^{-1}} ts = st.
\end{align*}
\]

We may view \(G\mathcal{E}(1)\) as the category of finite \(G\text{-sets} \) over the one point \(G\text{-set} \) \(1,\) and we generalize the definition as follows.

Definition 1.4. For a finite \(G\text{-set} \) \(A,\) we define a permutative category \(G\mathcal{E}(A)\) of finite \(G\text{-sets} \) over \(A.\) The objects of \(G\mathcal{E}(A)\) are the \(G\text{-maps} p: D \to A.\) The morphisms \(p \to q, q: E \to A,\) are the \(G\text{-isomorphisms} f: D \to E\) such that \(q \circ f = p.\) Disjoint union of \(G\text{-sets} \) over \(A\) gives \(G\mathcal{E}(A)\) a structure of permutative category; its unit is the empty set over \(A.\) When \(A = 1, G\mathcal{E}(A)\) is the ("additive") permutative category of the previous definition.

Remark 1.5. There is also a product \(\times: G\mathcal{E}(A) \times G\mathcal{E}(B) \to G\mathcal{E}(A \times B).\) It takes \((D, E) \to D \times E,\) where \(D \) and \(E\) are finite \(G\text{-sets} \) over \(A \) and \(B,\) respectively. This product is also strictly associative and unital, with unit the unit of \(G\mathcal{E}(1),\) and it has an evident commutativity isomorphism. Restriction to the object \(1\) gives the "multiplicative" permutative category of Definition 1.3. This product distributes over \(\Pi\) and almost makes the enriched category \(G\mathcal{E}\) of the next definition into a "category enriched in permutative categories", in the sense defined in [7]. There is no obvious sense since the category of permutative categories is not monoidal. The "almost" refers to the fact that the category we define does not have a strict unit, a problem that was encountered in [2] and is fixed in §5 below.

Definition 1.6. We define a bicategory \(G\mathcal{E}\) with a permutative category of hom objects for each pair of objects as follows. The 0-cells of \(G\mathcal{E}\) are the finite \(G\text{-sets},\) which may be thought of as the categories \(G\mathcal{E}(A).\) The permutative category \(G\mathcal{E}(A, B)\) of 1-cells and 2-cells \(A \to B\) is \(G\mathcal{E}(B \times A),\) as defined in Definition 1.4. The 1-cells are thought of as spans and the 2-cells as isomorphisms of spans. The composition

\[
o: G\mathcal{E}(B, C) \times G\mathcal{E}(A, B) \to G\mathcal{E}(A, C)
\]

is defined via pullbacks, as in the diagram (1.2). The diagonal map \(\Delta_A: A \to A \times A\) serves as a unit 1-cell. Precisely, following [2, 7.2], we choose the pullback \(F\)
in (1.2) to be the sub \(G\)-set of \(E \times D\), ordered lexicographically, consisting of the elements \((e, d)\) such that \(d\) and \(e\) map to the same element of \(B\).

Remark 1.7. This bicategory is almost a 2-category. The composition of spans is strictly associative, but if \(|A| \geq 2\) then \(\Delta_A : A \to A \times A\) acts as a strict unit only on the right and so should be called a pseudo-unit 1-cell. The point is that with our chosen model for the pullback, the left map in the span composition

\[
\begin{array}{ccc}
P_1 & \Delta_B \circ E & P_2 \\
P_1 & \Delta_B \circ E & P_2 \\
B & f & E \\
B & f & E \\
\end{array}
\]

must be order-preserving. Therefore, if \(f\) is not order-preserving, then \(\Delta_B \circ E \neq E\). However, in view of the evident commutative diagram

\[
\begin{array}{ccc}
P_1 & \Delta_B \circ E & P_2 \\
P_1 & \Delta_B \circ E & P_2 \\
B & f & E \\
B & f & E \\
\end{array}
\]

the function \(p_2\) specifies a reordering isomorphism of spans

\[
\Delta_B \circ E \xrightarrow{\ell_{B,E}} E
\]

In §5, we show how to whisker the pseudo-unit 1-cells to obtain an equivalent construction \(G\mathcal{E}'\) that still has a strictly associative composition but now has strict two-sided unit 1-cells. The construction is closely analogous to the usual whiskering of a degenerate basepoint in a space to obtain a nondegenerate basepoint. While we give precise details where needed, replacing \(G\mathcal{E}\) by \(G\mathcal{E}'\) is a minor quibble.

Remark 1.9. We are suppressing some categorical details that are irrelevant to our work. The composition distributes over coproducts, and it should be defined on a “tensor product” rather than a cartesian product of permutative categories. Such a tensor product does in fact exist [16], but we shall not use the relevant category theory. Rather we will change notation to \(\wedge\) since the composition is a pairing that gives rise to a pairing defined on the smash product of the spectra constructed from \(G\mathcal{E}(B, C)\) and \(G\mathcal{E}(A, B)\). The passage from pairings of permutative categories to pairings of spectra has a checkered history even nonequivariantly,\(^4\) and it is here that a mistake occurred in earlier versions of this paper. As explained in [15], categorical strictification and the full development of multiplicative equivariant infinite loop space theory resolve the relevant issues.

Remark 1.10. It is helpful to observe that the composition just defined can be viewed as a composite of maps of finite \(G\)-sets induced contravariantly and covariantly by the maps of finite \(G\)-sets

\[
\begin{array}{ccc}
C \times B \times B \times A & \xrightarrow{\text{id} \times \Delta \times \text{id}} & C \times B \times A \\
\end{array}
\]

where \(\pi : C \times B \times A \to C \times A\) is the projection.

\(^4\)That starts from [27], which is modernized, corrected, and generalized in [15].
Before beginning work, we recall an old result that motivated this paper. The category \([G\mathcal{E}]\) of \(G\)-spans is obtained from the bicategory \(G\mathcal{E}\) of \(G\)-spans by identifying spans from \(A\) to \(B\) if there is an isomorphism between them. Composition is again by pullbacks. We add spans from \(A\) to \(B\) by taking disjoint unions, and that gives the morphism set \([G\mathcal{E}](A, B)\) a structure of abelian monoid. We apply the Grothendieck construction to obtain an abelian group of morphisms \(A \to B\). This gives an additive category \(\mathcal{A}[G\mathcal{E}]\). The following result is [20, V.9.6]. Let \(\text{Ho}\mathcal{D}\) denote the full subcategory of the homotopy category \(\text{Ho}\mathcal{G}\mathcal{I}\) of \(G\)-spectra whose objects are the \(G\)-spectra \(\Sigma^\infty_G(A_+)\), where \(A\) runs over the finite \(G\)-sets.

Theorem 1.11. The categories \(\text{Ho}\mathcal{G}\mathcal{D}\) and \(\mathcal{A}[G\mathcal{E}]\) are isomorphic.

1.2. **The precise statement of the main theorem.** Infinite loop space theory associates a spectrum \(\mathbb{K}\mathcal{A}\) to a permutative category \(\mathcal{A}\). There are several machines available and all are equivalent [29]. Since it is especially convenient for the equivariant generalization, we require \(\mathbb{K}\) to take values in orthogonal spectra [24], but symmetric spectra would also work. As in the axiomatization of [29], we require \(\mathbb{K}\) to take values in \(\Omega\)-spectra and we require a natural group completion \(\eta: B\mathcal{A} \to (\mathbb{K}\mathcal{A})_0\). The objects \(a \in \mathcal{A}\) are the vertices of the nerve of \(\mathcal{A}\) and are thus points of \(B\mathcal{A}\) hence, via \(\eta\), points of \((\mathbb{K}\mathcal{A})_0\). Therefore each \(a\) determines a map \(S \to \mathbb{K}\mathcal{A}\), where \(S\) is the sphere spectrum.

Since \(\mathcal{I}\) is closed symmetric monoidal under the smash product, it makes sense to enrich categories in \(\mathcal{I}\). Our preferred version of spectral categories is categories enriched in \(\mathcal{I}\), abbreviated \(\mathcal{I}\)-categories. Model theoretically, \(\mathcal{I}\) is a particularly nice enriching category since its unit \(S\) is cofibrant in the stable model structure and \(\mathcal{I}\) satisfies the monoid axiom [24, 12.5].

When a spectral category \(\mathcal{D}\) is used as the domain category of a presheaf category, the objects and maps of the underlying category are unimportant. The important data are the morphism spectra \(\mathcal{D}(A, B)\), the unit maps \(S \to \mathcal{D}(A, A)\), and the composition maps
\[
\mathcal{D}(B, C) \wedge \mathcal{D}(A, B) \to \mathcal{D}(A, C).
\]
The presheaves \(\mathcal{D}^{\text{op}} \to \mathcal{I}\) can be thought of as (right) \(\mathcal{D}\)-modules.

Definition 1.12. We define a spectral category \(G\mathcal{A}\). Its objects are the finite \(G\)-sets \(A\), which may be viewed as the spectra \(\mathbb{K}\mathcal{A}(A)\). Its morphism spectra \(G\mathcal{A}(A, B)\) are the spectra \(\mathbb{K}G\mathcal{E}'(A, B)\). Its unit maps \(S \to G\mathcal{A}(A, A)\) are induced by the points \(I_A \in G\mathcal{E}'(A, A)\) and its composition
\[
G\mathcal{A}(B, C) \wedge G\mathcal{A}(A, B) \to G\mathcal{A}(A, C)
\]
is induced by composition in \(G\mathcal{E}'\).

As written, the definition makes little sense: to make the word “induced” meaningful requires properties of the infinite loop space machine \(\mathbb{K}\) that we will spell out in §2.2. Once this is done, we will have the presheaf category \(\text{Pre}(G\mathcal{A}, \mathcal{I})\) of \(\mathcal{I}\)-functors \((G\mathcal{A})^{\text{op}} \to \mathcal{I}\) and and \(\mathcal{I}\)-natural transformations. As shown for example in [8], it is a cofibrantly generated model category enriched in \(\mathcal{I}\), or an \(\mathcal{I}\)-model category for short. As shown in [23], the category \(G\mathcal{I}\) of (genuine) orthogonal \(G\)-spectra is also an \(\mathcal{I}\)-model category. Our main theorem can be restated as follows.

Theorem 1.13 (Main theorem). There is a zigzag of enriched Quillen equivalences connecting the \(\mathcal{I}\)-model categories \(G\mathcal{I}\) and \(\text{Pre}(G\mathcal{A}, \mathcal{I})\).
Therefore G-spectra can be thought of as constructed from the very elementary category $G\mathcal{E}$ enriched in permutative categories, ordinary nonequivariant spectra, and the black box of infinite loop space theory. The following reassuring result falls out of the proof. Let $\mathcal{O}r\mathcal{b}$ denote the orbit category of G. For a G-spectrum X, passage to H-fixed point spectra for $H \subset G$ defines a functor $X^\bullet : \mathcal{O}r\mathcal{b}^{op} \to \mathcal{S}$. Analogously, a presheaf $Y \in \text{Pre}(G\mathcal{A}, \mathcal{S})$ restricts to a functor $\mathcal{O}r\mathcal{b}^{op} \to \mathcal{S}$.

Corollary 1.14. The zigzag of equivalences induces a natural zigzag of equivalences between the fixed point orbit functor on G-spectra and the restriction to orbits of presheaves.

Thus, if X is a fibrant G-spectrum that corresponds to the presheaf Y, then X^H is equivalent to $Y(G/H)$.

Remark 1.15. For any n, the homotopy groups $\pi_n(X^H)$ define a Mackey functor, and so do the homotopy groups $\pi_n(Y(G/H))$. The corollary implies an isomorphism between these Mackey functors.

Remark 1.16. There are several missing ingredients needed for a fully satisfactory theory. To avoid undue length, we will not prove the analogue of Corollary 1.14 for geometric fixed points and we shall not treat change of group functors. We do not believe there are any essential difficulties. However, more importantly, we have not described the behavior of smash products under the equivalences of Theorem 1.13. This problem deserves study both in our work and in related work of others. The obvious guess is that the zigzag connecting it to $G\mathcal{S}$ is a zigzag of symmetric monoidal Quillen equivalences. We see how the problem can be attacked, but we believe that the obvious guess is wrong. We intend to return to this question elsewhere.

Remark 1.17. Much of what we do applies to G-spectra indexed on an incomplete universe, although we have not thought through full details. We must then restrict attention to those finite G-sets A that embed in the given universe, so that Atiyah duality applies to the orbit G-spectra $\Sigma^\infty_G(A_+)$. By [19], duality fails for orbits that do not embed in the universe. To mesh with the notion of generators for a stable model category, the weak equivalences must then be defined in terms of the homotopy groups of H-fixed point spectra for those H such that G/H embeds in the given universe. Corollary 1.14 would have to be restricted similarly.

1.3. **The G-bicategory \mathcal{E}_G of spans: intuitive definition.** Everything we do depends on first working equivariantly and then passing to fixed points. We fix some generic notations. For a category \mathcal{C}, let $G\mathcal{C}$ be the category of G-objects in \mathcal{C} and G-maps between them. Let \mathcal{E}_G be the G-category of G-objects and nonequivariant maps, with G acting on morphisms by conjugation. The two categories are related conceptually by $G\mathcal{C} = (\mathcal{E}_G)^G$. The objects, being G-objects, are already G-fixed; we apply the G-fixed point functor to hom sets. More generally, we can start with a category \mathcal{C} with actions by G on its objects and again define a category $G\mathcal{C}$ of G-maps and a G-category \mathcal{E}_G with G-fixed category $G\mathcal{C}$. The reader may prefer to think of $G\mathcal{C}$ as a category enriched in G-categories, with enriched hom objects the G-categories $\mathcal{E}_G(A,B)$ for G-objects A and B.

We apply this framework to the category of finite G-sets. We have already defined the G-fixed bicategory $G\mathcal{E}$, and we shall give two definitions of G-categories \mathcal{E}_G.
Definition 1.18. We define a G-category $\mathcal{E}_G^U(A)$. The objects of $\mathcal{E}_G^U(A)$ are the nonequivariant maps $p: D \to A$, where A is a finite G-set and D is a finite subset of U. The morphisms $f: p \to q$, $q: E \to A$, are the bijections $f: D \to E$ such that $q \circ f = p$. The group G acts on objects and morphisms by sending D to gD and sending a bijection $f: D \to E$ over A to the bijection $gf: gD \to gE$ over A given by $(gf)(gd) = g(f(d))$.

Definition 1.19. We define a bicategory \mathcal{E}_G^U with objects the finite G-sets and with G-categories of morphisms between objects given by $\mathcal{E}_G^U(A,B) = \mathcal{E}_G^U(B \times A)$. Thinking of the objects of $\mathcal{E}_G^U(A,B)$ as nonequivariant spans $B \leftarrow D \rightarrow A$, composition and units are defined as in Definition 1.6.

Observe that taking disjoint unions of finite sets over A will not keep us in U and is thus not well-defined. Therefore the $\mathcal{E}_G^U(A)$ are not even symmetric monoidal (let alone permutative) G-categories in the naive sense of symmetric monoidal categories with G acting compatibly on all data.

1.4. The G-bicategory \mathcal{E}_G of spans: working definition. We shall work with a less intuitive definition of \mathcal{E}_G, one that solves the problem of disjoint unions by avoiding any explicit use of them. It uses an especially convenient E_∞ operad of G-categories, denoted \mathcal{P}_G. We recall it from [9], where we define a genuine permutative G-category to be an algebra over \mathcal{P}_G. More generally, in [12] we define a genuine symmetric monoidal G-category to be a pseudoalgebra over \mathcal{P}_G, but we will not need that notion here. Such pseudoalgebras provide input for an equivariant infinite loop space machine.

To define \mathcal{P}_G, we apply our general point of view on equivariant categories to the category $\mathcal{C}at$ of small categories. Thus, for G-categories \mathcal{A} and \mathcal{B}, let $\mathcal{C}at_G(\mathcal{A}, \mathcal{B})$ be the G-category of functors $\mathcal{A} \to \mathcal{B}$ and natural transformations, with G acting by conjugation, and let $G\mathcal{C}at(\mathcal{A}, \mathcal{B}) = \mathcal{C}at_G(\mathcal{A}, \mathcal{B})^G$ be the category of G-functors and G-natural transformations.

Definition 1.20. Let $\mathcal{E}G$ be the groupoid\footnote{While $\mathcal{E}G$ is isomorphic as a G-category to the translation category of G, the action of G on that category is defined differently, as is explained in [10, Lemma 1.7]. Our $\mathcal{E}G$ is the chaotic category of G, often denoted G.} with object set G and a unique morphism, denoted (h,k), from k to h for each pair of objects. Let G act from the right on $\mathcal{E}G$ by $h \cdot g = hg$ on objects and $(h,k) \cdot g = (hg,kg)$ on morphisms. The objects of $\mathcal{E}G$ are the finite G-sets $A = (n,\alpha)$, regarded as discrete (identity morphisms only) G-categories. Define $\mathcal{P}(j) = \mathcal{E}G_j$; this is the jth category of an E_∞ operad of categories whose algebras are the permutative categories [28]. Define $\mathcal{P}_G(j)$ to be the G-category $\mathcal{C}at_G(\mathcal{E}G, \mathcal{E}G_j) = \mathcal{C}at_G(\mathcal{E}G, \mathcal{P}(j))$.}
Here G acts trivially on $E\Sigma_j$. The left action of G on $P_G(j)$ is induced by the right action of G on EG, and the right action of Σ_j is induced by the right action of Σ_j on $E\Sigma_j$. The functor $\text{Cat}_{G}(EG, -)$ is product preserving and the operad structure maps are induced from those of P. We interpret $P(0)$ and $P_G(0)$ to be trivial categories; $P_G(1)$ is also trivial, with unique object denoted id.

Definition 1.21. Regard a finite G-set A as a discrete G-category (identity morphisms only). Define the G-category $E_G(A)$ by

\[
E_G(A) = \prod_{n \geq 0} P_G(n) \times_{\Sigma_n} A^n = (\prod_{n \geq 1} P_G(n) \times_{\Sigma_n} A^n)_+.
\]

We interpret the term with $n = 0$ to be a trivial base category \ast, which explains the second equality, and we identify the term with $n = 1$ with A.

The following result is neither obvious nor difficult. It is proven in [9, Theorem 5.5], where it is one ingredient in a categorical proof of the tom Dieck splitting theorem.

Theorem 1.23. The G-fixed permutative category $E_G(A)^G$ is naturally isomorphic to the permutative category $E(A)$ of Definition 1.4.

The starting point of the proof is the observation that a functor $E_G \rightarrow E\Sigma_n$ is uniquely determined by its object function $G \rightarrow \Sigma_n$. In particular, for a finite G-set $B = (n, \beta)$ we may view the group homomorphism $\beta: G \rightarrow \Sigma_n$ as an object of the category $P_G(n)$. With a little care, we see that a G-fixed object $(\beta; a_1, \ldots, a_n)$ of $P_G(n) \times_{\Sigma_n} A^n$ can be interpreted as a G-map $B \rightarrow A$ and that all finite G-sets over A are of this form.

Remark 1.24. Conceptually, Definition 1.21 hides an important identification and extension of functoriality. A priori, $E_G(A)$ appears to be a functor on unbased finite G-sets, but an alternative reformulation is

\[
E_G(A) = P_G(A_+^*)
\]

which exhibits E_G as a functor on based finite G-sets A_+. Here P_G is the monad in the category of based G-categories whose algebras are the same as the P_G-algebras. Thus $P_G(A_+)$ is the free P_G-algebra (= genuine permutative G-category) generated by A_+, with unit given by the disjoint trivial base category added to A.

We need to be more precise about this identification and extended functoriality.

Definition 1.26. Define Λ to be the category of finite based sets n and injections. Formally, $P_G(A_+)$ is the categorical tensor product $P_G \otimes_{\Lambda} A_+^*$, where A_+^* sends n to A_+^n. We make this concrete. Since $P_G(0) = \ast$, there is a degeneracy G-functor $\sigma^*_i: P_G(n) \rightarrow P_G(n-1)$ associated to the ordered inclusion $\sigma_i: n - 1 \rightarrow n$ that misses i. As in [26, 2.3], if γ is the structural map of the operad and $\nu \in P_G(n)$, then

\[
\sigma^*_i(\nu) = \gamma(\nu; \text{id}^{i-1}, \ast, \text{id}^{n-i}).
\]

If $a_i = \ast$, then $(\nu; a_1, \ldots, a_n)$ must be identified with $(\sigma^*_i(\nu); a_1, \ldots, \hat{a}_i, \ldots, a_n)$, where \hat{a}_i means delete a_i. Any injection $\sigma: m \rightarrow n$, not necessarily ordered, is a composite of such σ_i and a unique permutation $\rho \in \Sigma_m$. This determines $\sigma^*: P_G(n) \rightarrow P_G(m)$, making P_G a contravariant functor on Λ. Define $\sigma_\ast: A_+^m \rightarrow$
A^*_n, by first applying ρ and then inserting the basepoint in the jth slot when j is not in the image of σ, making A^*_n a covariant functor on Λ. Concretely,

$$P_G(A_+) = \prod_{n \geq 0} (P_G(n) \times_{\Sigma_n} A^*_n) / \sim$$

where \sim is given by $(\sigma^* \mu; a) \sim (\mu; \sigma a)$ for $\mu \in P_G(n)$ and $a \in A^*_n$.

Definition 1.28. For a based G-map $f: A_+ \to B_+$, define a functor

$$f_*: \mathcal{E}_G(A) \to \mathcal{E}_G(B)$$

by taking the disjoint union over n of the functors id $\times_{\Sigma_n} f^n$. This only uses (1.22) when $f^{-1}(\ast) = \ast$. In general, however, the specification of f_* depends on the functoriality of P on based maps of (1.25) and thus on the basepoint identifications of (1.27). In particular, if $i: A \to B$ is an inclusion of unbased finite G-sets, define an associated retraction $r: B_+ \to A_+$ of based finite G-sets by setting $ri(a) = a$ and $r(b) = \ast$ if $b \notin \text{im}(A)$. Then define\(^7\)

$$i^* = r_*: \mathcal{E}_G(B) \to \mathcal{E}_G(A).$$

By Remark 2.21 below, we may think of i^* as the dual of i.

The following definition gives the G-category analogue of Definition 1.6. It specifies a G-category (almost) “enriched in permutative G-categories”.

Definition 1.29. We define a G-bicategory \mathcal{E}_G with a permutative G-category of hom objects for each pair of objects as follows. The 0-cells of \mathcal{E}_G are the finite G-sets A, which may be thought of as the G-categories $\mathcal{E}_G(A)$. The permutative G-category $\mathcal{E}_G(A, B)$ of 1-cells and 2-cells $A \to B$ is $\mathcal{E}_G(B \times A)$, as defined in Definition 1.21. The composition

$$\circ: \mathcal{E}_G(B, C) \times \mathcal{E}_G(A, B) \to \mathcal{E}_G(A, C)$$

is given by the following composite. Its first map ω is a pairing of free P_G-algebras that will be made precise in Definition 1.33. Its second and third maps are specializations of the contravariant functoriality of \mathcal{E}_G on inclusions and its covariant functoriality on surjections, as is made precise in Definition 1.28.

$$\begin{array}{ccc}
\mathcal{E}_G(C \times B) \land \mathcal{E}_G(B \times A) & \to & \mathcal{E}_G(C \times A), \\
\omega \downarrow & & \downarrow \pi_1 \\
\mathcal{E}_G(C \times B \times B \times A) & \xrightarrow{(\text{id} \times \Delta \times \text{id})^*} & \mathcal{E}_G(C \times B \times A)
\end{array}$$

This composition is strictly associative. With $A = (n, \alpha)$, $\mathcal{E}_G(A, A)$ has a pseudo-unit 1 cell

$$\Delta_A = (\alpha; \Delta_A) \in \mathcal{E}_G(A \times A) = P_G(n) \times_{\Sigma_n} (A \times A)^n$$

where

$$\Delta_A = ((1, 1), \cdots, (n, n)) \in (A \times A)^n.$$

It is a strict right unit, but it is not a strict left unit (see Remark 1.34 below).

\(^6\)With the intuitive version of \mathcal{E}_G, $f_*: \mathcal{E}_G(A) \to \mathcal{E}_G(B)$ is then just the pushforward functor obtained by composing maps over A with f.

\(^7\)With the intuitive version of \mathcal{E}_G, $i^*: \mathcal{E}_G(B) \to \mathcal{E}_G(A)$ is just the functor obtained by using i to pull back maps over B to maps over A.
To rectify to obtain a strict unit, we need whiskered G-categories \mathcal{E}_G' analogous to the whiskered categories $G\mathcal{E}'$, and we define them in §5. They are defined in such a way that Theorem 1.23 has the following corollary by direct comparison of definitions.

Corollary 1.31. The G-fixed category $(\mathcal{E}_G')^G$ enriched in permutative categories is isomorphic to the category $G\mathcal{E}'$ enriched in permutative categories.

We shall place the following ad hoc definition of the pairing ω required in Definition 1.29 in a general multicategorical context in [15]. We first comment on its domain; compare Remark 1.9.

Remark 1.32. We can define the smash product of based G-categories in the same way as the smash product of based G-spaces (see [6, Lemma 4.20]). We are most interested in examples of the form \mathcal{A}_+ and \mathcal{B}_+ for unbased G-categories \mathcal{A} and \mathcal{B}, and then $\mathcal{A}_+ \otimes \mathcal{B}_+$ can be identified with $(\mathcal{A} \times \mathcal{B})_+$. In particular,

$$
(\prod_{m \geq 1} \mathcal{P}_G(m) \times_{\Sigma_m} A^m)_+ \otimes (\prod_{n \geq 1} \mathcal{P}_G(n) \times_{\Sigma_n} B^n)_+
$$

is isomorphic to

$$
(\prod_{m \geq 1, n \geq 1} \mathcal{P}_G(m) \times \mathcal{P}_G(n) \times_{\Sigma_m \times \Sigma_n} A^m \times B^n)_+.
$$

We do not claim that this is a \mathcal{P}_G-category, but the equivariant infinite loop space machine [15] nevertheless constructs from it the smash product of the G-spectra constructed from $\mathcal{E}_G(A)$ and $\mathcal{E}_G(B)$.

Definition 1.33. The homomorphism $\otimes : \Sigma_m \times \Sigma_n \to \Sigma_{mn}$ defined using lexicographic ordering in Definition 1.3 is the object function of a functor

$$
\mathcal{E}_{\Sigma m} \times \mathcal{E}_{\Sigma n} \to \mathcal{E}_{\Sigma_{mn}}.
$$

Applying the functor $\mathcal{C}at_G(\mathcal{E}_G, -)$, we obtain pairings

$$
\otimes : \mathcal{P}_G(m) \times \mathcal{P}_G(n) \to \mathcal{P}_G(mn);
$$

on objects of \mathcal{E}_G, $(\mu \otimes \nu)(g) = \mu(g) \otimes \nu(g)$. For G-sets A and B, we have the injection

$$
\boxtimes : A^m \times B^n \to (A \times B)^mn
$$

that sends $(a_1, \ldots, a_m) \times (b_1, \ldots, b_n)$ to the set of pairs (a_i, b_j), ordered lexicographically. Combining, there result functors

$$
\omega_{m,n} : (\mathcal{P}_G(m) \times_{\Sigma_m} A^m) \times (\mathcal{P}_G(n) \times_{\Sigma_n} B^n) \to \mathcal{P}_G(mn) \times_{\Sigma_{mn}} (A \times B)^mn,
$$

$$
\omega_{m,n}(\mu, a) \otimes (\nu, b) = (\mu \otimes \nu, a \boxtimes b).
$$

Distributing products over disjoint unions, these specify pairings of G-categories

$$
\omega : \mathcal{E}_G(A) \otimes \mathcal{E}_G(B) \to \mathcal{E}_G(A \times B).
$$

Remark 1.34. The associativity of the composition \circ defined in Definition 1.29 is an easy diagram chase, starting from the associativity of the pairing on \mathcal{P}_G. We illustrate how Definition 1.28 works by considering composites with the pseudo-unit objects Δ_A. Let E be a 1-cell in $\mathcal{E}_G(A, B)$ and choose an object

$$(\mu; (b_1, a_1), \ldots, (b_m, a_m)) \in \mathcal{P}_G(m) \times_{\Sigma_m} (B \times A)^m$$

in the orbit E.

We first prove that $E \circ \Delta_A = E$. Take $A = (\mathbf{n}, \alpha)$. Then the object

$$\mu \otimes \alpha; ((b_1, a_1, j, j)) \in \mathcal{P}_G(\mathbf{m}n) \times \Sigma_{mn} (B \times A \times A)^{mn}$$

is in the orbit $\omega(E, \Delta_A)$. The ordering of the four-tuples is lexicographic on i and j. The four-tuple (b_1, a_1, j, j) is in the image of $\text{id} \times \Delta \times \text{id}$ if and only if $a_1 = j$. The r corresponding to this inclusion maps all other (b_1, a_1, j, j) to the basepoint. Applying π_{1} we arrive at

$$\sigma_\ast((b_1, a_1), \cdots, (b_m, a_m)) \in (B \times A)^{mn},$$

where $\sigma: \mathbf{m} \to \mathbf{mm}$ is the ordered injection that sends i to $\lambda_{m,n}^{-1}(i, a_i)$. Therefore

$$E \circ \Delta_A = (\mu \otimes \alpha; \sigma_\ast((b_1, a_1), \cdots, (b_m, a_m))) = (\sigma^\ast(\mu \otimes \alpha); (b_1, a_1), \cdots, (b_m, a_m)).$$

Since σ^\ast reverses the lexicographic ordering used to define $\mu \otimes \alpha$, we have the reduction $\sigma^\ast(\mu \otimes \alpha) = \mu$.

Now take $B = (\mathbf{p}, \beta)$ and consider $\Delta_B \circ E$. Then the object

$$(\beta \otimes \mu; (k, k, b_1, a_1)) \in \mathcal{P}_G(pmn) \times \Sigma_{pm} (B \times B \times B \times A)^{pm}$$

is in the orbit $\omega(B, E)$. The ordering of the four-tuples is lexicographic on k and i. The four-tuple (k, b_1, a_1) is in the image of $\text{id} \times \Delta \times \text{id}$ if and only if $k = b_1$. The r corresponding to this inclusion maps all other (k, b_1, a_1) to the basepoint. Applying π_{1} we arrive at

$$\tau_\ast((b_1, a_1), \cdots, (b_m, a_m)) \in (B \times A)^{pm},$$

where $\tau: \mathbf{m} \to \mathbf{pm}$ is the injection that sends i to $\lambda_{p,m}^{-1}(b_1, i)$. But now the injection τ is not ordered, although it becomes so after composition with some $\rho \in \Sigma_m$. We have

$$\Delta_B \circ E = (\beta \otimes \mu, \tau_\ast((b_1, a_1), \cdots, (b_m, a_m))) = (\tau^\ast(\beta \otimes \mu); (b_1, a_1), \cdots, (b_m, a_m)),$$

but $\tau^\ast(\beta \otimes \mu)$ is not equal to μ. We define

$$(1.35) \quad \ell_{B,E}: \Delta_B \circ E \longrightarrow E$$

to be the 2-cell induced by the (unique) morphism $\tau^\ast(\beta \otimes \mu) \to \mu$ in $\mathcal{P}_G(m)$. The structure \mathcal{E}_G is only a bicategory, while \mathcal{E}'_G defined in §5 is a strict 2-category. The inclusion $\mathcal{E}_G \to \mathcal{E}'_G$ is a pseudofunctor with unit constraint given by ζ. In [14], the category of \mathcal{P}_G-algebras is the underlying category of a multicategory Mult(\mathcal{P}_G).

The composition functors in both \mathcal{E}_G and \mathcal{E}'_G are examples of bilinear maps in the multicategorical sense.

1.5. The categorical duality maps. Since various specializations are central to our work, we briefly recall how duality works categorically, following [20, III 3] for example. We then define maps of \mathcal{P}_G-algebras that will lead in §2.5 to the proof that the objects of $G\mathcal{A}$ are self-dual.

Let \mathcal{V} be a closed symmetric monoidal category with product \wedge, unit S, and hom objects $F(X,Y)$; write $DX = F(X, S)$. A pair of objects (X,Y) in \mathcal{V} is a dual pair if there are maps $\eta: S \to X \wedge Y$ and $\varepsilon: Y \wedge X \to S$ such that the composites

$X \cong S \wedge X \xrightarrow{\eta \wedge \text{id}} X \wedge Y \wedge X \xrightarrow{\text{id} \wedge \varepsilon} X \wedge S \cong X$

$Y \cong Y \wedge S \xrightarrow{\text{id} \wedge \eta} Y \wedge X \wedge Y \xrightarrow{\varepsilon \wedge \text{id}} S \wedge Y \cong Y$
are identity maps. For any such pair, the adjoint $\bar{\varepsilon}: Y \to DX$ of ε is an isomorphism. When (X,Y) and (X',Y') are dual pairs, the dual of a map $f: X \to X'$ is the composite

$$Y' \cong Y' \wedge S_G \xrightarrow{id \wedge \eta} Y' \wedge X \wedge Y \xrightarrow{id \wedge f \wedge \varepsilon} X' \wedge X \wedge Y \xrightarrow{\varepsilon \wedge id} S_G \wedge Y \cong Y.$$

(1.36)

For any pair of objects X and Y, we have a natural map

$$\zeta: Y \wedge DX = Y \wedge F(X,S) \to F(X,Y)$$

in \mathcal{Y}, namely the adjoint of

$$\text{id} \wedge \varepsilon: Y \wedge DX \wedge X \to Y \wedge S \cong Y,$$

where ε is the evident evaluation map. The map ζ is an isomorphism when either X or Y is dualizable [20, III.1.3]. When X is self-dual and Y is arbitrary, we have the composite isomorphism

$$\delta = \zeta \circ (\text{id} \wedge \varepsilon): Y \wedge X \to Y \wedge DX \to F(X,Y).$$

(1.37)

This map in various categories will play an important role in our work.

There are two maps of \mathcal{P}_G-algebras that are central to duality and therefore to everything we do. Let $S^0 = \{*,1\}$, where $*$ is the basepoint and 1 is not. We think of S^0 as 1_+, where 1 is the one-point G-set. In line with this convention, we also think of 1 as a trivial category with object 1. Remember that $\mathcal{E}_G(A) = \mathcal{P}_G(A_+)$ is the free \mathcal{P}_G-algebra generated by A_+, where we view finite G-sets as categories with only identity morphisms. We have already seen the first map implicitly.

Definition 1.39. For a finite G-set $A = (n, \alpha)$, define based G-maps

$$\varepsilon: (A \times A)_+ \to S^0, \quad r: (A \times A)_+ \to A_+ \quad \text{and} \quad \pi: A_+ \to S^0$$

by $r(a,b) = *$ if $a \neq b$ and $r(a,a) = a$, $\pi(a) = 1$, and $\varepsilon = \pi \circ r$, so that $\varepsilon(a,b) = *$ if $a \neq b$ and $\varepsilon(a,a) = 1$. Note that $r \circ \Delta = \text{id}$ and that ε is just an example of a Kronecker δ-function. We agree to again write ε for the induced map of \mathcal{P}_G-algebras

$$\varepsilon = \mathcal{E}_G \varepsilon: \mathcal{E}_G(A \times A) \to \mathcal{E}_G(1).$$

Definition 1.40. For a finite G-set $A = (n, \alpha)$, regard the object $\Delta_A \in \mathcal{E}_G(A \times A)$ as the map of G-categories $i_A: 1 \to \mathcal{E}_G(A \times A)$ that sends the object 1 of the trivial category to the object Δ_A. By freeness, there results a map of \mathcal{P}_G-algebras

$$\eta: \mathcal{E}_G(1) \to \mathcal{E}_G(A \times A).$$

Explicitly,\(^8\) η is the disjoint union over m of the maps

$$\mathcal{P}_G(m) \times_{\Sigma_m} 1^m \to \mathcal{P}_G(mn) \times_{\Sigma_m} (A \times A)^{mn}$$

given by

$$\eta(\mu, 1^m) = (\mu \otimes \alpha; (\Delta_A)^m).$$

The following categorical observation will lead to our proof in §2.3 that the G-spectra $\Sigma_G^\infty(A_+)$ are self-dual. Since care of basepoints is crucial, we use the alternative notation $\mathcal{P}_G(A_+)$. Remember that $(A \times A)_+$ can be identified with $A_+ \wedge A_+$. We identify $1_+ \wedge A_+$ and $A_+ \wedge 1_+$ with A_+ at the bottom center of our diagrams.

\(^8\)This uses that $\gamma(\mu; \alpha^n) = \mu \otimes \alpha$, where $\gamma: \mathcal{P}_G(m) \times \mathcal{P}_G(n)^m \to \mathcal{P}_G(mn)$, as explained in [14, §1].
Proposition 1.41. In the diagrams below, square (1) commutes up to isomorphism, and the other three squares commute on the nose.

\[
\begin{align*}
\mathbb{P}_G(A_+ \land A_+) \land \mathbb{P}_G(A_+) & \xrightarrow{\varpi} \mathbb{P}_G(A_+ \land A_+ \land A_+) \xleftarrow{\varpi} \mathbb{P}_G(A_+) \land \mathbb{P}_G(A_+ \land A_+) \\
\mathbb{P}_G(1_+) \land \mathbb{P}_G(A_+) & \xrightarrow{\omega} \mathbb{P}_G(A_+) \xleftarrow{\omega} \mathbb{P}_G(A_+) \land \mathbb{P}_G(1_+) \\
\mathbb{P}_G(A_+) \land \mathbb{P}_G(A_+ \land A_+) & \xrightarrow{\varpi} \mathbb{P}_G(A_+ \land A_+ \land A_+) \xleftarrow{\varpi} \mathbb{P}_G(A_+) \land \mathbb{P}_G(A_+) \\
\mathbb{P}_G(1_+) \land \mathbb{P}_G(A_+) & \xrightarrow{\omega} \mathbb{P}_G(A_+) \xleftarrow{\omega} \mathbb{P}_G(A_+) \land \mathbb{P}_G(1_+)
\end{align*}
\]

Proof. In the right vertical arrows, \(\varepsilon \) means \(\mathbb{P}_G(\varepsilon) \). Both right squares are naturality diagrams, so it remains to consider the squares on the left. The difference between squares (1) and (2) is closely analogous to the difference between left and right composition with \(\Delta_A \) explained in Remark 1.34. Let \(A = (n, \alpha) \) and let \((\mu, 1^m) \in \mathcal{P}(m) \times \Sigma_m 1^m \) and \((\nu, a) \in \mathcal{P}(q) \times \Sigma_A A^q \). We consider square (2) first, paying close attention to the order in which variables appear.

By Definitions 1.33 and 1.40,

\[
\omega((\nu, a), (\mu, 1^m)) = (\nu \otimes \mu, a \boxtimes 1^m) \in \mathcal{P}(qm) \times A^{qm}
\]

and

\[
\omega \circ (\text{id} \land \eta)((\nu, a), (\mu, 1^m)) = (\nu \otimes \mu \land \alpha; a \boxleft (\Delta_A)^m) \in \mathcal{P}_G(qm) \times \Sigma_{qm} (A^3)^{qm}.
\]

Identifying \(qm \) with \(q \times m \) lexicographically, the \((k, i)\)th coordinate of \(a \boxtimes 1^m \) is \(a_k \).

Identifying \(qmn \) with \(q \times m \times n \) lexicographically, the \((k, j, i)\)th coordinate of \(a \boxleft (\Delta_A)^m \) is \((a_k, i, i)\).

By Definition 1.39, \(\varepsilon \land \text{id} \) sends this coordinate to the basepoint unless \(a_k = i \), when it sends it to \(i \). Noticing the agreement of lexicographic orderings, we see as in Remark 1.34 that the injection \(\sigma: qm \rightarrow qmn \) such that

\[
\sigma_*(a \boxtimes 1^m) = (\varepsilon \land \text{id})_*(a \boxleft (\Delta_A)^m)
\]

is ordered and satisfies \(\sigma^*(\nu \otimes \mu \land \alpha) = \nu \otimes \mu \).

Now consider square (1). By Definitions 1.33 and 1.40,

\[
\omega((\mu, 1^m), (\nu, a)) = (\mu \otimes \nu, 1^m \boxtimes a) \in \mathcal{P}(mq) \times \Sigma_{mq} A^{mq}
\]

and

\[
\omega \circ (\eta \land \text{id})((\mu, 1^m), (\nu, a)) = (\gamma(\mu; \alpha^n) \otimes \nu; (\Delta_A)^m \boxtimes a) \in \mathcal{P}_G(mq) \times \Sigma_{mq} (A^3)^{mq}.
\]

Identifying \(mq \) with \(m \times q \) lexicographically, the \((i, k)\)th coordinate of \(1^m \boxtimes a \) is \(a_k \).

Identifying \(mnn \) with \(m \times n \times q \) lexicographically, the \((i, j, k)\)th coordinate of \((\Delta_A)^m \boxtimes a \) is \((j, j, a_k)\). By Definition 1.39, \(\eta \land \varepsilon \) sends this coordinate to the basepoint unless \(j = a_k \), when it sends it to \(j \). Here the injection \(\tau: mnn \rightarrow mnn \) such that

\[
\tau(1^m \boxtimes a) = (\text{id} \land \varepsilon)_*((\Delta_A)^m \boxtimes a)
\]

is not ordered, although it becomes so after composition with some \(\rho \in \Sigma_{mq} \), and \(\tau^*(\mu \otimes \alpha \otimes \nu) \) is not equal to \(\mu \otimes \nu \) in \(\mathcal{P}_G(mq) \). As in Remark 1.34, there is a unique 2-cell, necessarily an isomorphism,

\[
\vartheta: (\mu \otimes \nu) \Rightarrow \tau^*(\mu \otimes \alpha \otimes \nu)
\]
in $\mathcal{P}_G(mq)$. As the input varies, the 2-cells

$$(\vartheta, \text{id}): (\mu \otimes \nu; 1^m \boxtimes a) \implies (\tau^*(\mu \otimes \alpha \otimes \nu), 1^m \boxtimes a)$$

specify the 2-natural isomorphism \Rightarrow in the square (1).

\[\square \]

2. The proof of the main theorem

2.1. The equivariant approach to Theorem 1.13. As we explain in [15], following [9], equivariant infinite loop space theory associates an orthogonal G-spectrum $\mathbb{K}_G \mathcal{E}_G$ to a genuine permutative (or more generally genuine symmetric monoidal) G-category \mathcal{C}_G. The 0th space of $\mathbb{K}_G \mathcal{E}_G$ is an equivariant group completion of the classifying G-space $B\mathcal{E}_G$. The category $G\mathcal{I}$ of orthogonal G-spectra is the G-fixed category of a G-category \mathcal{I}_G of G-spectra and non-equivariant maps with the same objects as \mathcal{I}_G and with G acting by conjugation on morphisms. Applying the functor \mathbb{K}_G to E_G, we obtain the following equivariant analogue of Definition 1.12.

Definition 2.1. We define a G-spectral category, or \mathcal{A}_G. Its objects are the finite G-sets A, which may be viewed as the G-spectra $\mathbb{K}_G E_G(A)$. Its morphism G-spectra $\mathcal{A}_G(A,B)$ are the $\mathbb{K}_G \mathcal{E}_G'(B \times A)$. Its unit G-maps $S_G \to \mathcal{A}_G(A,A)$ are induced by the points $I_A \in G\mathcal{E}'(A,A)$ (see §5) and its composition G-maps $\mathcal{A}_G(B,C) \land \mathcal{A}_G(A,B) \to \mathcal{A}_G(A,C)$ are induced by composition in \mathcal{E}_G.

Again, as written, the definition makes little sense: to make the word “induced” meaningful requires properties of the equivariant infinite loop space machine \mathbb{K}_G that we will spell out in §2.2. This depends on having a functor that takes pairings (alias bilinear maps) of free \mathcal{P}_G-algebras to pairings of G-spectra.

The equivariant and non-equivariant infinite loop space functors are related by the following result.

Theorem 2.2 ([9]). There is a natural equivalence of spectra

$$\iota: \mathbb{K}(G\mathcal{E}) \to (\mathbb{K}_G \mathcal{E}_G)^G$$

for permutative G-categories \mathcal{C}_G with G-fixed permutative categories $G\mathcal{E}'$.

In view of Corollary 1.31, there results an equivalence of \mathcal{I}-categories

$$G\mathcal{I} \overset{\simeq}{\to} (\mathcal{A}_G)^G.$$

The proof of Theorem 1.13 goes as follows. We start with the following specialization of a general result about stable model categories; it is discussed in §4.1. The essential point is that the collection $\{\Sigma^\infty_G A_+\}$ is a set of generators for $\text{Ho}G\mathcal{I}$.

9The papers from around 1990, such as [4, 37] are not adequate, in part because genuine permutative G-categories were not explicitly defined and the group completion property was not worked out rigorously, but more substantially because a symmetric monoidal category of G-spectra had not yet been discovered. A key feature of the version of the Segal machine [11] used in our proofs is that it is given by a symmetric monoidal functor, a claim that would not have made sense in 1990.
Theorem 2.3. Let \(G \mathcal{D} \) be the full \(\mathcal{I} \)-subcategory of \(G \mathcal{I} \) whose objects are fibrant approximations of the suspension \(G \)-spectra \(\Sigma^\infty_G(A_+) \), where \(A \) runs through the finite \(G \)-sets. Then there is an enriched Quillen adjunction

\[
\text{Pre}(G \mathcal{D}, \mathcal{I}) \xrightarrow{T} G \mathcal{I},
\]

and it is a Quillen equivalence.

Here \(G \mathcal{D} \) is isomorphic to \((\mathcal{D}_G)^G \), where \(\mathcal{D}_G \) is a full \(\mathcal{I}_G \)-subcategory \(\mathcal{D}_G \) of \(\mathcal{I}_G \).

Theorem 2.4 (Equivariant version of the main theorem). There is a zigzag of weak equivalences connecting the \(\mathcal{I}_G \)-categories \(\mathcal{A}_G \) and \(G \mathcal{D} \).

A weak equivalence between \(\mathcal{I}_G \)-categories with the same object sets is just an \(\mathcal{I}_G \)-functor that induces weak equivalences on morphism \(G \)-spectra. On passage to \(G \)-fixed categories, this equivariant zigzag induces a zigzag of weak \(\mathcal{I} \)-equivalences connecting the \(\mathcal{I} \)-categories \(G \mathcal{A} \) and \(G \mathcal{D} \). In turn, by [8, 2.4], this zigzag induces a zigzag of Quillen equivalences between \(\text{Pre}(G \mathcal{A}, \mathcal{I}) \) and \(\text{Pre}(G \mathcal{D}, \mathcal{I}) \). Since \(\text{Pre}(G \mathcal{D}, \mathcal{I}) \) is Quillen equivalent to \(G \mathcal{I} \), it follows that Theorem 2.4 implies Theorem 1.13.

Remark 2.5. The functor \(U \) sends \(G/H \) to \(F_G(\Sigma^\infty_G G/H, X)^G \cong X^H \). Keeping that fact in mind shows why Corollary 1.14 follows from the proof of Theorem 1.13.

To understand \(G \mathcal{I} \) as an \(\mathcal{I} \)-category, we must first understand \(\mathcal{I}_G \) as an \(\mathcal{I}_G \)-category. That is, to understand the \(G \)-fixed spectra \(F_G(X,Y)^G \), we must first understand the function \(G \)-spectra \(F_G(X,Y) \). Using infinite loop space theory to model function spectra implicitly raises a conceptual issue: there is no known infinite loop space machine that knows about function spectra. That is, given input data \(X \) and \(Y \) (permutative \(G \)-categories, \(E_\infty \)-\(G \)-spaces, \(\Gamma \)-\(G \)-spaces, etc) for an infinite loop space machine \(\mathcal{K}_G \), we do not know what input data will have as output the function \(G \)-spectra \(F_G(\mathcal{K}_G X, \mathcal{K}_G Y) \). The problem does not even make sense as just stated because the output \(G \)-spectra \(\mathcal{K}_G X \) are always connective, whereas \(F_G(\mathcal{K}_G X, \mathcal{K}_G Y) \) is generally not. The most that one could hope for in general is to detect the connective cover of \(F(\mathcal{K}_G X, \mathcal{K}_G Y) \). In our case, the relevant function \(G \)-spectra are connective since the suspension \(G \)-spectra \(\Sigma^\infty_G(A_+) \) are self-dual, as we shall reprove in §2.3.

2.2. Results from equivariant infinite loop space theory. The proof of Theorem 2.4 is the heart of this paper, and of course it depends on equivariant infinite loop space theory and in particular on the relationship between the \(G \)-spectra \(\mathcal{A}_G(A) = \mathcal{K}_G \mathcal{A}_G(A) \) and the suspension \(G \)-spectra \(\Sigma^\infty_G(A_+) \). We collect the results that we need from [15] in this section. We warn the skeptical reader that the results of this paper depend fundamentally on Theorems 2.6 and 2.8. However, the proofs of those results require work far afield from the applications in this paper.

In fact, Theorem 2.4 is an application of a categorical version of the equivariant Barratt-Pridgy-Quillen (BPQ) theorem for the identification of suspension \(G \)-spectra.\(^{11}\) We state the theorem in full generality before restricting attention to finite \(G \)-sets. We shall find use for the full generality in §2.5.

\(^{10}\)A more general definition is given in [8, 2.3].

\(^{11}\)For \(\mathcal{A} = \ast \), Carlsson [3, p.6] mentions a space level version of the BPQ theorem. Shimakawa [37, p. 242] states and gives a sketch proof of a \(G \)-spectrum level version.
Recall from Remark 1.24 that $E_G(A)$ can be identified with the category $\mathcal{P}_G(A_+)$, where \mathcal{P}_G is the free \mathcal{P}_G-category functor on based G-categories. The functor \mathcal{P}_G applies equally well to based topological G-categories.

We view a based G-space X as a topological G-category that is discrete in the categorical sense: its morphism and object G-spaces are both X, and its source, target, identity, and composition maps are all the identity map of X. Thus we have the topological \mathcal{P}_G-category $\mathcal{P}_G(X)$. The geometric realization of its nerve is the free E_∞ G-space generated by X.

Henceforward, we use the term stable equivalence, rather than weak equivalence, for the weak equivalences in our model categories of spectra and G-spectra. We are only interested in the following results for based G-spaces of the form X_+, but we state the slightly more general version that holds for all based G-spaces. It holds by [9, Theorems 6.1 and 6.2].

Theorem 2.6 (Equivariant Barratt-Priddy-Quillen Theorem). For based G-spaces X, there is a natural stable equivalence

$$\alpha: \Sigma_G^\infty X \longrightarrow \mathbb{K}_G \mathcal{P}_G(X).$$

Of course, the naturality statement says that the following diagram commutes for a map $f: X \longrightarrow Y$ of based G-spaces.

\[
\begin{array}{ccc}
\Sigma_G^\infty X & \xrightarrow{\alpha} & \mathbb{K}_G \mathcal{P}_G(X) \\
\Sigma_G^\infty f & \downarrow & \downarrow \mathbb{K}_G \mathcal{P}_G(f) \\
\Sigma_G^\infty Y & \xrightarrow{\alpha} & \mathbb{K}_G \mathcal{P}_G(Y)
\end{array}
\]

In order to produce our spectral category \mathcal{A}_G, it is essential that we have a machine with good multiplicative properties. The following result, which is proven in [15], gives far more than we need. As explained there, we have a multicategory $\text{Mult}_{st}(\mathcal{P}_G)$ of strict \mathcal{P}_G-algebras; it is a submulticategory of a multicategory $\text{Mult}(\mathcal{P}_G)$ of \mathcal{P}_G-pseudoalgebras, but its multilinear maps require \mathcal{P}_G-pseudomaps despite the restriction to strict \mathcal{P}_G-algebras as objects. We also have the multicategory $\text{Mult}(\mathcal{S}_G)$ associated to the symmetric monoidal category of orthogonal G-spectra under the smash product.

Theorem 2.8. [15] \mathbb{K}_G extends to a multifunctor

$$\mathbb{K}_G : \text{Mult}(\mathcal{P}_G) \longrightarrow \text{Mult}(\mathcal{S}_G).$$

Remark 2.9. At one place in the duality proof of §2.3 below, we use from [15] that \mathbb{K}_G converts 2-cells, such as ϑ in Proposition 1.41, to homotopies between maps of G-spectra.

We have a more down to earth corollary that relates α to smash products and, together with accompanying associativity and unit conditions, gives all that we really need. Observe that the pairing ω of Definition 1.33 generalizes to give a natural pairing

$$\omega: \mathcal{P}_G(X_+) \wedge \mathcal{P}_G(Y_+) \longrightarrow \mathcal{P}_G(X_+ \wedge Y_+)$$

for unbased G-spaces X and Y.

\[\text{We understand a topological } G\text{-category to mean an internal category in the category of } G\text{-spaces.}\]
Theorem 2.10. The pairing ω induces a natural stable equivalence

$$\wedge : \mathbb{K}_G \mathbb{P}_G(X_+) \wedge \mathbb{K}_G \mathbb{P}_G(Y_+) \to \mathbb{K}_G \mathbb{P}_G(X_+ \wedge Y_+)$$

such that the following diagram commutes.

$$\begin{array}{c}
\Sigma^\infty_G X_+ \wedge \Sigma^\infty_G Y_+ \\
\wedge \\
\Sigma^\infty_G (X_+ \wedge Y_+) \xrightarrow{\alpha} \mathbb{K}_G \mathbb{P}_G(X_+ \wedge Y_+)
\end{array}$$

Proof. By [15], the functor $\omega : \mathbb{P}_G(X_+) \wedge \mathbb{P}_G(Y_+) \to \mathbb{P}_G(X_+ \wedge Y_+)$ is bilinear, so that the multifunctor \mathbb{K}_G produces the natural pairing of G-spectra. \square

The left map \wedge in (2.11) is a canonical natural isomorphism, and this diagram says that the natural map α is lax monoidal. The result that we need to prove Theorem 2.4 is an immediate specialization.

Theorem 2.12. For finite G-sets A, there is a monoidal natural stable equivalence $\alpha : \Sigma^\infty_G (A_+) \to \mathbb{K}_G \mathbb{S}_G(A)$.

Identifying $A_+ \wedge B_+$ with $(A \times B)_+$, (2.11) specializes to the commutative diagram

$$\begin{array}{c}
\Sigma^\infty_G (A_+ \wedge B_+) \\
\wedge \\
\Sigma^\infty_G (A \times B)_+ \xrightarrow{\alpha} \mathbb{K}_G \mathbb{S}_G(A \times B).
\end{array}$$

We restate the naturality of α with respect to G-maps $f : A \to B$ in the diagram

$$\begin{array}{c}
\Sigma^\infty_G (A_+ \wedge \Sigma^\infty_G (B_+)) \xrightarrow{\alpha \wedge \alpha} \mathbb{K}_G \mathbb{S}_G(A) \wedge \mathbb{K}_G \mathbb{S}_G(B)
\end{array}$$

If $i : A \to B$ is an inclusion with retraction $r : B_+ \to A_+$, we have the induced map of G-spectra $\mathbb{K}_G i^* = \mathbb{K}_G r_! : \mathbb{K}_G \mathbb{S}_G(B) \to \mathbb{K}_G \mathbb{S}_G(A)$, and (2.14) specializes to

$$\begin{array}{c}
\Sigma^\infty_G (B_+) \xrightarrow{\alpha} \mathbb{K}_G \mathbb{S}_G(B)
\end{array}$$

By Remark 2.21 below, we may identify $\mathbb{K}_G i^*$ as the dual of $\mathbb{K}_G i$ and thus $\Sigma^\infty_G r$ as the dual of $\Sigma^\infty_G i_+$.

We combine these diagrams to construct those that we need to prove Theorem 2.4. Let A, B, and C be finite G-sets and recall Definition 1.29.
Proposition 2.16. The following diagram of G-spectra commutes.

\[(2.17) \quad \Sigma^\infty_G(C \times B) \wedge \Sigma^\infty_G(B \times A) \xrightarrow{\alpha \wedge \alpha} K_G \sigma_G(C \times B) \wedge K_G \sigma_G(B \times A) \]

\[
\begin{array}{ccc}
\Sigma^\infty(C \times B \times B) & \xrightarrow{\alpha} & K_G \sigma_G(C \times B) \\
\downarrow & & \downarrow \\
\Sigma^\infty(C \times B \times A) & \xrightarrow{\alpha} & K_G \sigma_G(C \times B) \\
\end{array}
\]

Here r is the retraction which sends the complement of the image of $\text{id} \times \Delta \times \text{id}$ to the basepoint.

The diagram (2.17) relates the composition pairing of the S_G-category \mathcal{A}_G to remarkably simple and explicit maps between suspension G-spectra. In fact, recalling Definition 1.39 and again writing $\varepsilon = \Sigma^\infty \varepsilon$, we see that the left vertical composite in (2.17) can be identified with $\text{id} \wedge \varepsilon \wedge \text{id}$. We have proven the following result, where we abuse notation by writing α for the composite

$\Sigma^\infty_G(B \times A) \xrightarrow{\alpha} K_G \sigma_G(B \times A) \xrightarrow{\alpha} K_G \sigma'_G(B \times A)$.

Theorem 2.18. The following diagram of G-spectra commutes in $HoG\mathcal{S}$.

\[\Sigma^\infty_G(C) \wedge \Sigma^\infty_G(B) \wedge \Sigma^\infty_G(A) \xrightarrow{\alpha \wedge \alpha \wedge \alpha} \mathcal{A}_G(C, B) \wedge \mathcal{A}_G(A, B) \]

2.3. The self-duality of $\Sigma^\infty_G(A)$. Let A be a finite G-set and write $\mathbb{A} = \Sigma^\infty_G(A)$ for brevity of notation. As recalled in §1.5, we must define maps $\eta: S_G \xrightarrow{\eta} \mathbb{A} \wedge \mathbb{A}$ and $\varepsilon: \mathbb{A} \wedge \mathbb{A} \xrightarrow{\varepsilon} S_G$ in the stable homotopy category $HoG\mathcal{S}$ such that the composites

\[(2.19) \quad \mathbb{A} \xrightarrow{\eta \wedge \text{id}} \mathbb{A} \wedge \mathbb{A} \wedge \mathbb{A} \wedge \mathbb{A} \wedge \mathbb{A} \quad \text{and} \quad \mathbb{A} \xrightarrow{\text{id} \wedge \varepsilon} \mathbb{A} \wedge \mathbb{A} \wedge \mathbb{A} \wedge \mathbb{A} \wedge \mathbb{A} \]

are the identity map in $HoG\mathcal{S}$. Using the stable equivalence α and the definitions of η and ε from Definitions 1.39 and 1.40, we let η and ε be the composites

$S_G \xrightarrow{\alpha} K_G \sigma'_G(1) \xrightarrow{K_G \eta} K_G \sigma'_G(A \times A) \xrightarrow{\alpha} \Sigma^\infty_G(A \times A) \xrightarrow{\alpha} \mathbb{A} \wedge \mathbb{A}$

and

$\mathbb{A} \wedge \mathbb{A} \cong \Sigma^\infty_G(A \times A) \xrightarrow{\alpha} K_G \sigma'_G(A \times A) \xrightarrow{K_G \varepsilon} K_G \sigma'_G(1) \xrightarrow{\alpha} S_G$.

The following commutative diagram proves that the first composite in (2.19) is the
identity map in \(\mathrm{HoG} \mathcal{F} \); the second is dealt with similarly. We abbreviate notation
by setting \(\mathcal{G} A = K G E_G (A) \). Remember that \(E_G (A) = P G (A_+) \). The center two
squares are derived by use of the diagrams from Proposition 1.41.

Given Theorem 2.12, it is trivial that the outer parts of the diagram commute.
The right central diagram is just a naturality diagram, as in Proposition 1.41. The
left central diagram commutes up to homotopy by that result and Remark 2.9.

Specializing general observations about duality recalled in \(\S 1.5 \), we have the
following corollary. This homotopical input is the crux of the proof of Theorem 2.4.

Corollary 2.20. For finite \(G \)-sets \(A \) and \(B \), the canonical map
\[
\delta = \zeta \circ (\text{id} \wedge \tilde{\varepsilon}) : B \wedge A \longrightarrow B \wedge D \wedge \longrightarrow F_G (A, B)
\]
of (1.38) is a stable equivalence.

We insert a mild digression concerning the identification of some of our maps.

Remark 2.21. For an inclusion \(i : A \longrightarrow B \) of finite \(G \)-sets, (1.36) and the precise
constructions of \(\eta \) and \(\varepsilon \) starting from Definitions 1.39 and 1.40 imply that the dual
of \(i \) is the map \(B \longrightarrow A \) induced by the evident retraction \(r : B_+ \longrightarrow A_+ \). A \(G \)-map
\(\pi : G/H \longrightarrow G/K \) is a bundle, and the dual of \(\Sigma^\infty \pi_+ \) is the associated transfer
map (see e.g. [20, IV.pp 182 and 192]). It can be identified explicitly by a similar
(but not especially illuminating) inspection of definitions.

2.4. **The proof that \(\mathcal{G} \) is equivalent to \(\mathcal{D}_G \).** We will have to chase large
diagrams, and we again abbreviate notations by writing
\[
A = \Sigma^\infty_G (A_+), \quad B = \Sigma^\infty_G (B_+), \quad \text{and} \quad C = \Sigma^\infty_G (C_+)
\]
for finite \(G \)-sets \(A, B, \) and \(C \). We also abbreviate notation by writing
\[
\mathcal{G} (A) = \mathcal{G} (*, A).
\]
It is the \(G \)-spectrum \(\mathcal{G} (A) = E_G E_G (A) \), which is equivalent to \(A \) by Theorem 2.12.
Remember that we are free to choose any bifibrant equivalents of the \(G \)-spectra \(A \)
as the objects of \(\mathcal{D}_G \).
Proof of Theorem 2.4. We use model categorical arguments, and we work with the stable model structure on $G\mathcal{F}$. We use [8, §2.4] to obtain a model structure on the category $G\mathcal{F}-\mathsf{Cat}$ of $G\mathcal{F}$-categories with the same object set \emptyset as $G\mathcal{E}$. We emphasize that this is a model structure on a category of categories. Maps are weak equivalences or fibrations if they induce weak equivalences or fibrations on hom objects in $G\mathcal{F}$. Here the nature of the objects is irrelevant; we are concerned with $G\mathcal{F}$-categories with one object for each finite G-set A.

Let $\lambda: Q\mathcal{A}_G \to \mathcal{A}_G$ be a cofibrant approximation of \mathcal{A}_G. By [8, 2.16], since S_G is cofibrant in the stable model structure each morphism G-spectrum $Q\mathcal{A}_G(A, B)$ is cofibrant in $G\mathcal{F}$. The maps $\lambda: Q\mathcal{A}_G(A, B) \to \mathcal{A}_G(A, B)$ are stable acyclic fibrations. Digressively, since the $\mathcal{A}_G(A, B)$ are fibrant in the positive stable model structure, that is also true of the $Q\mathcal{A}_G(A, B)$; we will use this fact later, in §2.5.

Let $\rho: Q\mathcal{A}_G \to RQ\mathcal{A}_G$ be a fibrant approximation of $Q\mathcal{A}_G$. The morphism G-spectra $RQ\mathcal{A}_G(A, B)$ are then bifibrant in the stable model structure. Therefore $RQ\mathcal{A}_G(A)$ is bifibrant for each A, and it is stably equivalent to \mathcal{A}. We take the $RQ\mathcal{A}_G(A)$ as the bifibrant approximations of the \mathcal{A} that we use to define the full $G\mathcal{F}$-subcategory \mathcal{D}_G of $G\mathcal{F}$.

We define \mathcal{C}_G to be the full $G\mathcal{F}$-subcategory of $G\mathcal{F}$ with objects the $Q\mathcal{A}_G(A)$. To abbreviate notation, we agree to write

$$Q\mathcal{A}_G(*, A) = Q\mathcal{A}_G A \quad \text{and} \quad RQ\mathcal{A}_G(*, A) = RQ\mathcal{A}_G A.$$

With our notational conventions, it is consistent to write $Q\mathcal{A}_G(B \times A) = Q\mathcal{A}_G(A, B)$.

For finite G-sets A and B, let

$$\beta: Q\mathcal{A}_G(A, B) \to \mathcal{C}_G(A, B) = F_G(Q\mathcal{A}_G A, Q\mathcal{A}_G B)$$

be the adjoint of the composition map

$$\circ: Q\mathcal{A}_G(A, B) \land Q\mathcal{A}_G A \to Q\mathcal{A}_G B$$

and let

$$\gamma: RQ\mathcal{A}_G(A, B) \to \mathcal{D}_G(A, B) = F_G(RQ\mathcal{A}_G A, RQ\mathcal{A}_G B)$$

be the adjoint of the composition map

$$\circ: RQ\mathcal{A}_G(A, B) \land RQ\mathcal{A}_G A \to RQ\mathcal{A}_G B.$$

By [8, 5.6], these define $G\mathcal{F}$-functors

$$\beta: Q\mathcal{A}_G \to \mathcal{C}_G \quad \text{and} \quad \gamma: RQ\mathcal{A}_G \to \mathcal{D}_G.$$

It suffices to prove that each of the maps γ is a stable equivalence. For each finite G-set A, $\mathcal{A}G$ is cofibrant and $\lambda: Q\mathcal{A}_G A \to \mathcal{A}_G A$ is an acyclic fibration in the stable model structure on $G\mathcal{F}$. Therefore there is a map $\mu: \mathcal{A} \to Q\mathcal{A}_G A$ such that the diagram

$$\begin{array}{ccc}
Q\mathcal{A}_G A \\
\mu \downarrow \\
\mathcal{A} \xrightarrow{\alpha} \mathcal{A}_G A
\end{array}$$

commutes. Since α and λ are stable equivalences, so is μ. In the same way, we get a stable equivalence $\mu: B \land \mathcal{A} \to Q\mathcal{A}_G(A, B)$.

For the remainder of the proof, we work in the homotopy category $HoG\mathcal{F}$. In particular, the distinction between $K_G\mathcal{E}_G$ and $K_G\mathcal{E}_G'$ vanishes. We claim that the following diagram of G-spectra commutes in $HoG\mathcal{F}$. Indeed, modulo inversion of
maps which are stable equivalences, it commutes on the nose. As before, we identify
\(B \wedge A = \Sigma^\infty G (B \wedge \Sigma^\infty A) \) with \(\Sigma^\infty (B \times A) \).

\[
\begin{array}{ccc}
RQ \mathcal{A}_G (A, B) & \xrightarrow{\gamma} & F_G (RQ \mathcal{A}_G A, RQ \mathcal{A}_G B) \\
\rho \simeq & & F_G (\mathcal{A}_G (A, B), RQ \mathcal{A}_G B) \\
Q \mathcal{A}_G (A, B) & \xrightarrow{\beta} & F_G (Q \mathcal{A}_G A, Q \mathcal{A}_G B) \\
\mu \simeq & & F_G (\mathcal{A}_G (A, B), Q \mathcal{A}_G B) \\
B \wedge A & \xrightarrow{\delta} & F_G (\mathcal{A}_G (A, B), B) \\
\end{array}
\]

The map \(\delta \) is the stable equivalence of Corollary 2.20. The maps \(\mu \) and \(\rho \) are also stable equivalences. The maps \(F_G (\rho, \text{id}) \) and \(F_G (\mu, \text{id}) \) that are labeled \(\simeq \) are stable equivalences by [8, 1.22] since \(\rho \) and \(\mu \) are maps between cofibrant objects and \(RQ \mathcal{A}_G B \) is fibrant. The maps \(F_G (\text{id}, \mu) \) and \(F_G (\text{id}, \rho) \) that are labeled \(\simeq \) are stable equivalences by [23, III.3.9], which shows that the functor \(F_G (\mathcal{A}_G, -) \) preserves stable equivalences. Provided that the diagram commutes, it follows that \(\gamma \) is a stable equivalence since all of the other outer arrows of the diagram are stable equivalences.

The top pentagon commutes since \(\rho \) is a map of spectral categories, and both composites on the right give \(F_G (\mu, \rho) \). It therefore remains to consider the lower pentagon. To prove that the diagram commutes in \(\text{Ho}G \mathcal{S} \), we consider its adjoint, which is displayed as the outer rectangle of the diagram below. Here we have inserted the map \(\circ : \mathcal{A}_G (A, B) \wedge \mathcal{A}_G A \to \mathcal{A}_G B \) and wrong way arrows into its source and target for purposes of proof.

\[
\begin{array}{ccc}
Q \mathcal{A}_G (A, B) \wedge Q \mathcal{A}_G A & \xrightarrow{\circ} & Q \mathcal{A}_G B \\
\mu \wedge \mu & \xrightarrow{\lambda \wedge \lambda} & \mathcal{A}_G (A, B) \wedge \mathcal{A}_G A \\
\alpha \wedge \alpha & \xrightarrow{\mu} & \mathcal{A}_G (A, B) \\
B \wedge A \wedge A & \xrightarrow{id \wedge \Sigma^\infty \epsilon} & B \\
\end{array}
\]

Since \(\lambda \) is a map of \(G \mathcal{S} \)-categories, it is apparent that all parts of the diagram commute except for the bottom trapezoid. Taking \((A, B, C) = (*, A, B) \) in Theorem 2.18, we see that the trapezoid commutes. Since the wrong way map \(\lambda \) is a stable equivalence and can be inverted upon passage to the homotopy category, this diagram and its adjoint commute there.
2.5. Identifications of suspension G-spectra and of tensors with spectra.

We expand the adjoint \mathcal{I}-equivalences in Theorem 1.13 more explicitly as follows.

\[
\begin{align*}
 G\mathcal{I} &\xrightarrow{\eta} \text{Pre}(G\mathcal{I}, \mathcal{I}) &\xrightarrow{\eta} \text{Pre}((\text{RQ} G\mathcal{I})^G, \mathcal{I}) \\
\end{align*}
\]

The map $\iota : G\mathcal{I} \to (G\mathcal{I})^G$ is the equivalence of Theorem 2.2. Before passage to G-fixed points, the proof in §2.4 gives stable equivalences of \mathcal{I}-categories

\[
\rho : \text{RQ} G\mathcal{I} \to \text{RQ}(G\mathcal{I})^G, \quad \gamma : \text{RQ} G\mathcal{I} \to \mathcal{I}, \quad \lambda : \text{RQ} G\mathcal{I} \to G\mathcal{I},
\]

and these maps give stable equivalences of \mathcal{I}-categories after passage to fixed points.

For a finite G-set B, $\Sigma^\infty_G B_+$ corresponds under this zigzag to the presheaf B that sends A to $G\mathcal{I}(A, B)$. This is almost a tautology since, for $E \in G\mathcal{I}$, $\cup(E)$ is the presheaf represented by E, while $G\mathcal{I}(-, B)$ is the functor represented by B. In the proof of Theorem 2.4, we chose the bifibrant approximation of $\Sigma^\infty_G B_+$ in $G\mathcal{I}$ to be $\text{RQ} G\mathcal{I}(B)$. With B fixed, that proof shows that γ gives an equivalence of presheaves

\[
\text{RQ} G\mathcal{I}(-, B) \to \gamma^\ast \cup \text{RQ} G\mathcal{I}(B)
\]

(both passage to G-fixed points). The functors ρ^\ast and $\lambda^!$ and the isomorphism $\iota^!$ preserve representable functors, and therefore $\iota^! \lambda^! \rho^\ast \gamma^\ast \text{RQ} G\mathcal{I}(-, B) \simeq \mathbb{K}_G G\mathcal{I}(-, B)$.

This observation can be generalized from finite based G-sets B_+ to arbitrary based G-spaces X. To see this, we mix general based G-spaces X with finite based G-sets A_+ to obtain a functorial construction of a presheaf $\text{Pr}_G(X)$.

Definition 2.23. Define a presheaf $\text{Pr}_G(X) : (G\mathcal{I})^\op \to \mathcal{I}$ by letting

\[
\text{Pr}_G(X)(A) = \mathbb{K}_G \mathbb{F}_G(X \wedge A_+).
\]

The contravariant functoriality map

\[
\text{Pr}_G(X) : \mathcal{I}(A, B) \to F_G(\text{Pr}_G(X)(B), \text{Pr}_G(X)(A))
\]

is the composite of the retraction $\mathcal{I}(A, B) = \mathbb{K}_G G\mathcal{I}^\ast(A, B) \to \mathbb{K}_G G\mathcal{I}(B \times A)$ with the adjoint of the right vertical composite in the commutative diagram

\[
\begin{align*}
\Sigma^\infty_G (X \wedge B_+) \wedge \Sigma^\infty_G (B_+ \wedge A_+) &\xrightarrow{\alpha \wedge \alpha} \mathbb{K}_G \mathbb{F}_G(X \wedge B_+) \wedge \mathbb{K}_G \mathbb{F}_G(B_+ \wedge A_+) \\
\Sigma^\infty_G (X \wedge B_+) \wedge B_+ \wedge A_+ &\xrightarrow{\alpha} \mathbb{K}_G \mathbb{F}_G(X \wedge B_+ \wedge B_+ \wedge A_+) \\
\Sigma^\infty_G X \wedge B_+ \wedge A_+ &\xrightarrow{\alpha} \mathbb{K}_G \mathbb{F}_G(X \wedge B_+ \wedge A_+) \\
\Sigma^\infty_G X \wedge A_+ &\xrightarrow{\alpha} \mathbb{K}_G \mathbb{F}_G(X \wedge A_+).
\end{align*}
\]
Here \(r \) is the evident left inverse of \(\id \land \Delta \land \id \) and \(\pi \) is the projection. The diagram commutes by the same concatenation of commutative diagrams as in Proposition 2.16. Note that there is no need to whisker the \(G \)-categories \(\mathbb{F}_G(X \land A_+) \) in order to get a strict functor. The spans in \(\mathbb{F}_G(X \land A_+) \) are only composed on the right with spans in \(R \mathcal{A}_G \) in this construction, and the \(\Delta_B \) were already strict units on the right. Therefore use of the retraction does not destroy functoriality.

Theorem 2.25. Let \(X \) be a based \(G \)-space. Under our zigzag of equivalences, \(\Sigma^\infty_\infty X \) corresponds naturally to the presheaf \((\Pr_G(X))^G\) that sends \(A \) to \(\mathbb{K}(\mathbb{F}_G(X \land A_+))^G \).

Proof. Note that \(\mathbb{K}_G \mathbb{F}_G(X \land A_+) \) is no longer a representable presheaf. We again work with \(G \)-spectra and obtain the conclusion after passage to \(G \)-fixed spectra. According to Theorem 2.6, we may replace \(\Sigma^\infty_\infty X \) by the positive fibrant \(G \)-spectrum \(\mathbb{K}_G \mathbb{F}_G(X) \), which we abbreviate to \(R \mathcal{A}_G(X) \) by a slight abuse of notation. After this replacement, the presheaf \(\mathbb{U}(\Sigma^\infty_\infty X) \) may be computed as

\[
\mathbb{U}(\Sigma^\infty_\infty X)(A) = F_G(RQ \mathcal{A}_G(A), \mathcal{A}_G(X)).
\]

Therefore, following the chain of (2.22), we may compute \(\rho^* \gamma^* \mathbb{U}(\Sigma^\infty_\infty X) \) as

\[
\rho^* \gamma^* \mathbb{U}(\Sigma^\infty_\infty X) \simeq F_G(Q \mathcal{A}_G(-), \mathcal{A}_G(X)).
\]

Replacing \((B, A)\) by \((A, 1)\) in (2.24) and recalling that \(1_+ = S^0 \), the right column gives the second map in the composite

\[
(2.26) \quad \Pr_G(X)(A) \land Q \mathcal{A}_G(A) \xrightarrow{\id \land \lambda} \Pr_G(X)(A) \land \mathcal{A}_G(A) \xrightarrow{\circ} \Pr_G(X)(1).
\]

Its target is the \(G \)-spectrum \(R \mathcal{A}_G(X) \), and its adjoint gives a map of presheaves

\[
(2.27) \quad \lambda^* \Pr_G(X) \longrightarrow F_G(Q \mathcal{A}_G(-), \mathcal{A}_G(X))
\]

with domain \(Q \mathcal{A}_G \). It remains to show that this map is an equivalence. To compute the adjoint (2.27), observe that (2.26) is the top horizontal composite in the diagram

\[
\begin{array}{ccc}
\Pr_G(X)(A) \land Q \mathcal{A}_G(A) & \xrightarrow{\id \land \lambda} & \Pr_G(X)(A) \land \mathcal{A}_G(A) \\
\downarrow \alpha \land \id & & \downarrow \id \land \alpha \\
\Sigma^\infty_\infty(X \land A_+) \land Q \mathcal{A}_G(A) & \xrightarrow{\circ} & \Pr_G(X)(A) \land \Sigma^\infty_\infty A_+ \\
\downarrow \id \land \mu & & \downarrow \id \land \alpha \\
\Sigma^\infty_\infty(X \land A_+) \land \Sigma^\infty_\infty A_+ & \xrightarrow{\tau} & \Sigma^\infty_\infty X \land \Sigma^\infty_\infty A_+ \\
& & \downarrow \id \land \pi \\
& & \Sigma^\infty_\infty X.
\end{array}
\]

The left pentagon commutes since \(\lambda \circ \mu = \alpha \) and the right pentagon is a special case of (2.24). Therefore the map (2.27) is the top horizontal composite in the diagram

\[
\begin{array}{ccc}
\mathcal{G}_G(X)(A) & \longrightarrow & F_G(\mathcal{A}_G(A), \mathcal{A}_G(X)) \\
\downarrow \alpha & & \downarrow F_G(\mathcal{A}_G(A), \mathcal{A}_G(X)) \\
\Sigma^\infty_\infty(X \land A_+) & \xrightarrow{\delta} & F_G(\Sigma^\infty_\infty A_+, \Sigma^\infty_\infty X) \\
\downarrow \delta & & \downarrow F_G(\Sigma^\infty_\infty A_+, \mathcal{A}_G(X)) \\
& & \downarrow F_G(\mu, \id) \\
& & \Sigma^\infty_\infty(X \land A_+) \\
\end{array}
\]

The map \(\alpha \) is a stable equivalence by Theorem 2.6. The map \(\delta \) is the stable equivalence of (1.38). The map \(F_G(\id, \alpha) \) is a stable equivalence by [23, III.3.9]. Finally, the map \(F_G(\mu, \id) \) is a stable equivalence by [8, 1.22]. \(\square \)
There is another visible identification. The category $G\mathcal{I}$ and our presheaf categories are \mathcal{I}-complete, so that they have tensors and cotensors over \mathcal{I} (see [8, §5.1]). It is formal that the left adjoint of an \mathcal{I}-adjunction preserves tensors and the right adjoint preserves cotensors. A quick chase of our zigzag of Quillen \mathcal{I}-equivalences gives the following conclusion.

Theorem 2.28. For G-spectra Y and spectra X, if Y corresponds to a presheaf $\mathcal{P}Y$ under our zigzag of weak equivalences, then the tensor $Y \odot X$ corresponds to the tensor $\mathcal{P}Y \odot X$.

3. Atiyah Duality for Finite G-sets

It is illuminating to see that we can come very close to constructing an alternative model for the spectrally enriched category $G\mathcal{D}$ just by applying the suspension G-spectrum functor Σ_G^∞ to the category of based finite G-sets and G-maps and then passing to G-fixed points. This is based on a close inspection of classical Atiyah duality specialized to finite G-sets. However, it depends on working in the alternative category $G\mathcal{Z}$ of S_G-modules [5, 23] rather than in the category $G\mathcal{I}$ of orthogonal G-spectra. Because every object of $G\mathcal{Z}$ is fibrant and its suspension G-spectra are easily understood, it is considerably more convenient than $G\mathcal{I}$ for comparison with space level constructions. This leads us to a variant, Theorem 3.20, of Theorem 0.1 that does not invoke infinite loop space theory. It is more topological and less categorical, and it best captures the geometric intuition behind our results. It is also more elementary.

3.1. The categories $G\mathcal{Z}$, $G\mathcal{D}$, and \mathcal{P}_G

Relevant background about $G\mathcal{Z}$ appears in §4.4, and we just give a minimum of notation here. In analogy with Theorem 2.3, we have the following specialization of the same general result about stable model categories. It is discussed in §4.1.

Theorem 3.1. Let $G\mathcal{D}$ be the full \mathcal{Z}-subcategory of $G\mathcal{Z}$ whose objects are cofibrant approximations of the suspension G-spectra $\Sigma_G^\infty(A_+)$, where A runs through the finite G-sets. Then there is an enriched Quillen adjunction

$$\text{Pre}(G\mathcal{D}, \mathcal{Z}) \xrightarrow{T} G\mathcal{Z},$$

and it is a Quillen equivalence.

Here $G\mathcal{D}$ is isomorphic to $(\mathcal{D}_G)^G$, where \mathcal{D}_G is a full \mathcal{Z}_G-subcategory of \mathcal{D}_G. All objects of $G\mathcal{Z}$ are fibrant, and we need to choose cofibrant approximations of the $\Sigma_G^\infty(A_+)$. The construction of $G\mathcal{Z}$ starts from the Lewis-May category $G\mathcal{P}$ of G-spectra, and S_G-modules are G-spectra with additional structure. We have an elementary suspension G-spectrum functor $\Sigma_G^\infty: G\mathcal{I} \rightarrow G\mathcal{P}$. Viewing Σ_G^∞ as a functor $G\mathcal{I} \rightarrow G\mathcal{Z}$, it is strong symmetric monoidal. However, the $\Sigma_G^\infty X$ are not cofibrant. As explained in section 4.4 below, there is a left Quillen equivalence $F: G\mathcal{P} \rightarrow G\mathcal{Z}$ such that the composite $\Sigma_G^\infty = F \circ \Sigma_G^\infty$ takes based G-CW complexes X, such as A_+ for a finite G-set A, to cofibrant S_G-modules. Therefore Σ_G^∞ may be viewed as a cofibrant replacement functor for Σ_G^∞. In particular, we write $S_G = \Sigma_G S^0$ and have a cofibrant approximation $\gamma: S_G \rightarrow S_G$ of the unit object S_G. Moreover, the cofibrant approximation $\Sigma_G^\infty(A_+)$ is isomorphic over $\Sigma_G^\infty(A_+)$ to $S_G \wedge \Sigma_G^\infty(A_+)$.

As before, we consider finite G-sets A, B, and C, but we now agree to write

$$A = \Sigma_G^\infty A_+, \quad B = \Sigma_G^\infty B_+, \quad \text{and} \quad C = \Sigma_G^\infty C_+.$$

The A are bifibrant objects of $G \mathcal{Z}$ and we let $G \mathcal{P}$ and $G \mathcal{D}$ be the full subcategories of $G \mathcal{Z}$ and \mathcal{Z}_G whose objects are the S_G-modules A, where A runs over the finite G-sets. Then $G \mathcal{D}$ is enriched in $G \mathcal{Z}$ and $G \mathcal{P} = (G \mathcal{D})^G$ is enriched in the category \mathcal{Z} of S-modules. The functor Σ_G^∞ is almost strong symmetric monoidal. Precisely, by Proposition 4.9 below, there is a natural isomorphism

$$\langle 3.2 \rangle \quad A \wedge B \cong S_G \wedge \Sigma_G^\infty (A \times B)_+$$

with appropriate coherence properties with respect to associativity and commutativity. Since S_G is the unit for the smash product, we can compose with

$$\gamma \wedge \text{id}: S_G \wedge \Sigma_G^\infty (A \times B)_+ \to \Sigma_G^\infty (A \wedge B)_+$$

to give a pairing as if Σ_G^∞ were a lax symmetric monoidal functor. However, the map $\gamma: S_G \to S_G$ points the wrong way for the unit map of such a functor.

3.2. Space level Atiyah duality for finite G-sets.

To lift the self-duality of $\text{Ho}G \mathcal{D}$ to obtain a new model for $G \mathcal{D}$, we need representatives in $G \mathcal{Z}$ for the maps

$$\eta: S_G \to A \wedge A \quad \text{and} \quad \varepsilon: A \wedge A \to S_G$$

in $\text{Ho}G \mathcal{Z}$ that express the duality there. The map ε is induced from the elementary map ε of Definition 1.39. The observation that it plays a key role in Atiyah duality seems to be new. The definition of η requires desuspension by representation spheres.

Let A be a finite G-set and let $V = \mathbb{R}[A]$ be the real representation generated by A, with its standard inner product, so that $|a| = 1$ for $a \in A$. Since we are working on the space level, we may view $A_+ \wedge S^V$ as the wedge over $a \in A$ of the spaces (not G-spaces) $\{a\}_+ \wedge S^V$, with G acting by $g(a, v) = (ga, gv)$. There is no such wedge decomposition after passage to G-spectra.

Definition 3.3. Recall that $\varepsilon: (A \times A)_+ \to S^0$ is the G-map defined by $\varepsilon(a, b) = \ast$ if $a \neq b$ and $\varepsilon(a, a) = 1$. Recall too that $(A \times B)_+$ can be identified with $A_+ \wedge B_+$ and that the functor Σ_G^∞ is almost strong symmetric monoidal. We shall also write ε for the composite map of S_G-modules

$$\langle 3.4 \rangle \quad A \wedge A \cong S_G \wedge \Sigma_G^\infty (A \times A)_+ \xrightarrow{\text{id} \wedge \Sigma_G^\infty \varepsilon} S_G \wedge S_G \xrightarrow{\gamma \wedge \text{id}} S_G \wedge S_G \cong S_G,$$

where the unlabeled isomorphisms are two instances of $\langle 3.2 \rangle$.

Definition 3.5. Embed A as the basis of the real representation $V = \mathbb{R}[A]$. The normal bundle of the embedding is just $A \times V$, and its Thom complex is $A_+ \wedge S^V$. We obtain an explicit tubular embedding $\nu: A \times V \to V$ by setting

$$\nu(a,v) = a + (\rho(|v|)/|v|)v,$$

where $\rho: [0, \infty) \to [0, d]$ is a homeomorphism for some $d < 1/2$; ν is a G-map since $|gv| = |v|$ for all g and v. Applying the Pontryagin-Thom construction, we obtain a G-map $t: S^V \to A_+ \wedge S^V$, which is an equivariant pinch map

$$S^V \to \vee_{a \in A} S^V \cong A_+ \wedge S^V.$$
To be more precise, after collapsing the complement of the tubular embedding to a point, we use ν^{-1} to expand each small homeomorphic copy of S^V to the canonical full-sized one; explicitly, if $|w| < d$, then

$$\nu^{-1}(a + w) = (a, (\rho^{-1}(|w|)/|w|)w).$$

The diagonal map on A induces the Thom diagonal $\Delta: A_+ \wedge S^V \to A_+ \wedge A_+ \wedge S^V$, and we let

$$\eta = \eta_A: S^V \to A_+ \wedge A_+ \wedge S^V$$

be the composite $\Delta \circ t$. Explicitly,

$$\eta(v) = \begin{cases} (a, a, (\rho^{-1}(|w|)/|w|)w) & \text{if } v = a + w \text{ where } a \in A \text{ and } |w| < d \\ * & \text{otherwise.} \end{cases} \tag{3.6}$$

The negative sphere G-spectrum S^{-V} in $G\mathcal{F}p$ is obtained by applying the left adjoint of the V^{th}-space functor to S^0, and S_G is isomorphic to $S^V \circ S^{-V}$ (see [20, I.4.2] and [23, IV.2.2]). Taking the tensor of η with S^{-V} we obtain a map of G-spectra

$$S_G \cong S^V \circ S^{-V} \to (A_+ \wedge A_+ \wedge S^V) \circ S^{-V} \cong (A_+ \wedge A_+) \circ S_G \cong \Sigma G (A_+ \wedge A_+).$$

Applying the functor F to this map and smashing with S_G we obtain the second map in the diagram

$$S_G \cong S_G \wedge S_G \xleftarrow{\gamma \wedge \eta} S_G \wedge S_G \xrightarrow{\gamma} \Sigma G (A \times A) \cong A \wedge A. \tag{3.7}$$

The following result is a reminder about space level Atiyah duality. The notion of a V-duality was defined and explained for smooth G-manifolds in [20, §III.5].

Proposition 3.9. The maps

$$\eta: S^V \to A_+ \wedge A_+ \wedge S^V \text{ and } \varepsilon \wedge \text{id}: A_+ \wedge A_+ \wedge S^V \to S^V$$

specify a V-duality between A_+ and itself.

Proof. This could be proven from scratch by proving the required triangle identities, but in fact it is a special case of equivariant Atiyah duality for smooth G-manifolds, A being a 0-dimensional example. Our specification of η is a specialization of the description of ε for a general smooth G-manifold M given in [20, p. 152]. We claim that our $\varepsilon \wedge \text{id}$ is a specialization of the definition of ε for a general smooth G-manifold given there. Indeed, letting s be the zero section of the normal bundle ν of the embedding $A \subset \mathbb{R}[A] = V$, we have the composite embedding

$$A \xrightarrow{\Delta} A \times A \xrightarrow{s \times \text{id}} (A \times V) \times A \cong A \times A \times V.$$

The normal bundle of this embedding is $A \times V$, and we may view

$$\Delta \times \text{id}: A \times V \to A \times A \times V$$

as giving a big tubular neighborhood. The Pontryagin-Thom map here is obtained by smashing the map $r: (A \times A)_+ \to A_+$ that sends (a, b) to a if $a = b$ and to $*$ if $a \neq b$ with the identity map of S^V. Composing with the map induced by the projection $\pi: A_+ \to S^0$ that sends a to 1, this gives $\varepsilon \wedge \text{id}$. We observed this factorization of ε in Definition 1.39 and we have used it before, in the proof of Theorem 2.18. \hfill \square

Tensoring with S^{-V}, applying the functor $S_G \wedge F$, and composing with γ, we obtain the explicit duality maps in $G\mathcal{F}$ displayed in (3.4) and (3.8).
3.3. The weakly unital categories $G\mathcal{B}$ and \mathcal{B}_G. Since the G-spectra A are self-dual, $F_G(A, B)$ is naturally isomorphic to $B \wedge A$ in $HoG\mathcal{Z}$, and the composition and unit

\[(3.10) \quad F_G(B, C) \wedge F_G(A, B) \rightarrow F_G(A, C) \quad \text{and} \quad S_G \rightarrow F_G(B, B)\]

can be expressed as maps

\[(3.11) \quad C \wedge B \wedge B \wedge A \rightarrow C \wedge A \quad \text{and} \quad S_G \rightarrow A \wedge A\]

in $HoG\mathcal{Z}$. We want to understand these maps in terms of duality in $G\mathcal{Z}$, without use of infinite loop space theory. However, since we are working in $G\mathcal{Z}$, we must take the isomorphisms (3.2) and the cofibrant approximation $\gamma: S_G \rightarrow S_G$ into account, and we cannot expect to have strict units. The notion of a weakly unital enriched category was introduced in [8, §3.5] to formalize what we see here.

Thus we shall construct a weakly unital $G\mathcal{Z}$-category \mathcal{B}_G, analogous to \mathcal{B}_G, and compare it with \mathcal{B}_G. The G-fixed category $G\mathcal{B}$ will be a weakly unital \mathcal{Z}-category. The objects of \mathcal{B}_G and $G\mathcal{B}$ are the S_G-modules A for finite G-sets A. The morphism S_G-modules of \mathcal{B}_G are $\mathcal{B}_G(A, B) = B \wedge A$. Composition is given by the maps

\[(3.12) \quad \text{id} \wedge \varepsilon \wedge \text{id}: C \wedge B \wedge B \wedge A \rightarrow C \wedge A,\]

where ε is the map of (3.4); compare Theorem 2.18.

As recalled in §1.5, the adjoint $\hat{\varepsilon}: A \rightarrow D_{\mathcal{A}} = F_G(A, S_G)$ of ε is a stable equivalence, and we have the composite stable equivalence

\[(3.13) \quad \delta = \zeta \circ (\text{id} \wedge \hat{\varepsilon}): B \wedge A \rightarrow B \wedge DA \rightarrow F_G(A, B).\]

Formal properties of the adjunction (\wedge, F_G) give the following commutative diagram in $G\mathcal{Z}$, which uses δ to compare composition in \mathcal{B}_G with composition in \mathcal{B}_G.

\[(3.14) \quad \begin{array}{ccc}
C \wedge B \wedge B \wedge A & \xrightarrow{id \wedge \varepsilon \wedge \text{id}} & C \wedge A \\
\downarrow \text{id} \wedge \hat{\varepsilon} \wedge \text{id} \wedge \varepsilon & & \downarrow \text{id} \wedge \varepsilon \\
C \wedge DB \wedge B \wedge DA & \xrightarrow{id \wedge \varepsilon \wedge \text{id}} & C \wedge DA \\
\zeta \wedge \zeta & & \zeta \\
F_G(B, C) \wedge F_G(A, B) & \xrightarrow{\circ} & F_G(A, C)
\end{array}\]

At the bottom, we do not know that the function S_G-modules or their smash product are cofibrant, but all objects at the top are cofibrant and thus bifibrant. In general, to compute the smash product of G-spectra X and Y in the homotopy category, we should take the smash product of cofibrant approximations QX and QY of X and Y. Since all objects of $G\mathcal{Z}$ are fibrant, to compute a map $X \wedge Y \rightarrow Z$ in the homotopy category, we should represent it by a map $QX \wedge QY \rightarrow QZ$ and take its homotopy class. The diagram displays such a cofibrant approximation of the composition in \mathcal{B}_G.

The unit $S_G \rightarrow F_G(A, A)$ of \mathcal{B}_G is represented by the (formal) composite

\[(3.15) \quad S_G \xrightarrow{\eta} A \wedge A \xrightarrow{\text{id} \wedge \hat{\varepsilon}} A \wedge DA \xrightarrow{\zeta} F_G(A, A)\]

that is obtained by inverting the map $\gamma \wedge \gamma$ in (3.8) to obtain the map denoted η. The weak unital property is a way of expressing the unital property by maps in \mathcal{Z}_G, without use of inverses in $Ho\mathcal{Z}_G$. This is a bit tedious. Here are the details.
Definition 3.16. Let $V = \mathbb{R}[A]$. For $a \in A$, define $\xi_a: \{a\}_+ \wedge S^V \to \{a\}_+ \wedge S^V$ by

$$\tag{3.17} \xi_a(a, v) = \begin{cases} (a, (\rho^{-1}([w])/|w|)w) & \text{if } v = a + w \text{ and } |w| < d \\ * & \text{otherwise,} \end{cases}$$

where ρ is as in Definition 3.5. Then the wedge of the ξ_a is a G-map

$$\tag{3.18} \xi = \xi_A: A_+ \wedge S^V \to A_+ \wedge S^V;$$

ξ is G-homotopic to the identity map of $A_+ \wedge S^V$ via the explicit G-homotopy

$$h(a, v, t) = \begin{cases} (a, v) & \text{if } t = 0 \text{ or } v = a \\ (a, (1-t)v + t(\rho^{-1}([w])/|w|)w) & \text{if } v = a + w \text{ and } t|w| < d \\ * & \text{otherwise.} \end{cases}$$

Tensoring with S^{-V} and using the natural isomorphisms

$$(X \wedge S^V) \circ S^{-V} \cong X \circ S_G \cong \Sigma_G^\infty X$$

for based G-spaces X, we see that the space level G-equivalence ξ induces a spectrum level G-equivalence $\xi: A \to A$.

With η as specified in (3.6), easy and perhaps illuminating inspections show that the following unit diagrams already commute in $G\mathcal{F}$, before passage to homotopy. In both, A and B are finite G-sets. In the first, $V = \mathbb{R}[A]$. In the second, $W = \mathbb{R}[B]$ and we move S^W from the right to the left for clarity.

$$B_+ \wedge A_+ \wedge S^V \xrightarrow{id \wedge \xi A} B_+ \wedge A_+^3 \wedge S^V \quad \text{and} \quad S^W \wedge B_+ \wedge A_+ \xrightarrow{\eta B \wedge \text{id}} S^W \wedge B_+^3 \wedge A_+$$

$$B_+ \wedge A_+ \wedge S^V \xrightarrow{id \wedge \xi A} B_+ \wedge A_+^3 \wedge S^V \quad \text{and} \quad S^W \wedge B_+ \wedge A_+ \xrightarrow{\eta B \wedge \text{id}} S^W \wedge B_+^3 \wedge A_+$$

Tensoring with S^{-V} and S^{-W} and using (3.2) to pass to smash products of S_G-modules, a little diagram chase shows that the previous pair of diagrams in $G\mathcal{F}$ gives rise to the following pair of commutative diagrams in $G\mathcal{Z}$. These express the unit laws for a weakly unital $G\mathcal{Z}$-category \mathcal{B}_G [8, §3.5] with objects the A and composition as specified in (3.12). The cited unit laws allow us to start with any chosen cofibrant approximation $\gamma: \mathcal{Q}\mathcal{S}_G \to \mathcal{S}_G$ of the unit \mathcal{S}_G, and we are led by (3.8) to choose our cofibrant approximation to be $\gamma \wedge \gamma: \mathcal{S}_G \wedge \mathcal{S}_G \to \mathcal{S}_G \wedge \mathcal{S}_G \cong \mathcal{S}_G$. Using the notation $\gamma: \mathcal{Q}\mathcal{S}_G \to \mathcal{S}_G$ for this map, we obtain the required diagrams

$$\mathcal{B} \wedge A \wedge \mathcal{Q}\mathcal{S}_G \xrightarrow{id \wedge \eta} \mathcal{B} \wedge A \wedge A \wedge \mathcal{A} \quad \text{and} \quad \mathcal{Q}\mathcal{S}_G \wedge \mathcal{B} \wedge A \wedge \mathcal{A} \xrightarrow{\eta \wedge \text{id}} \mathcal{B} \wedge \mathcal{B} \wedge \mathcal{B} \wedge \mathcal{A}$$

Taking $A = S^0$ in our second space level diagram and changing B to A, we also obtain the following commutative diagrams in $G\mathcal{Z}$, where the second diagram is
MODELS OF G-SPECTRA AS PRESHEAVES OF SPECTRA

adjoint to the first.

\[
\begin{align*}
Q_S \wedge A & \xrightarrow{\eta \wedge \id} A \wedge A \wedge A \\
& \xrightarrow{\gamma \wedge \xi} A \wedge D A \\
S_G \wedge A & \xrightarrow{\eta} A \wedge A \wedge A \\
& \xrightarrow{\gamma} F_G(A, A) \xrightarrow{F_G(\xi, \id)} F_G(A, A)
\end{align*}
\]

Here η at the bottom right is adjoint to the identity map of A. In effect, this uses $\delta = \zeta \circ (\id \wedge \tilde{\varepsilon})$ to compare the actual unit η in D_G at the top with the weak unit in B_G, which is given by the interrelated maps η, γ, and ξ.

3.4. The category of presheaves with domain $G\mathcal{B}$. The diagrams (3.14) and (3.19) show that the maps $\delta: A \wedge B \to F_G(A, B)$ specify a map of weakly unital \mathcal{Z}_G-categories from the weakly unital \mathcal{Z}_G-category B_G to the (unital) \mathcal{Z}_G-category D_G. Passing to G-fixed points, we obtain a weakly unital \mathcal{Z}-category $G\mathcal{B}$ and a map $\delta: G\mathcal{B} \to G\mathcal{G}$ of weakly unital \mathcal{Z}-categories. Weakly unital presheaves and presheaf categories are defined in [8, 3.25]. By [8, 3.26], we obtain the same category of presheaves \mathcal{Z}_G using unital or weakly unital presheaves. Since δ is an equivalence, we can adapt the methodology of [8, §2] to complete the proof of the following theorem, using the details relating the functor Σ^∞_G to smash products from §4.4. Since we find the use of weakly unital categories unpleasant and our main result Theorem 1.13 more satisfactory, we shall leave the details to the interested reader.

Theorem 3.20. The categories $\text{Pre}(G\mathcal{B}, \mathcal{Z})$ and $\text{Pre}(G\mathcal{G}, \mathcal{Z})$ are Quillen equivalent.

4. Appendix: Enriched model categories of G-spectra

The results in this section show how to model categories of G-spectra as categories of presheaves of spectra, where G is any compact Lie group. We specialize results of [8] to prove and compare two such models. More precisely, in §4.1 we establish Theorems 2.3 and 3.1, which state that G-spectra can be modeled as presheaves of spectra in both the orthogonal and S-module contexts. In §4.2, we compare these two presheaf models. In sections 4.3 and 4.4 we discuss suspension spectra for orthogonal spectra and S-modules, respectively, in order to be precise about the domain categories for our presheaves. We shall rely on [5, 20, 23, 24] for definitions of the relevant categories.

4.1. Presheaf models for categories of G-spectra. We focus on two categories of G-spectra treated in detail in [23]. We have the closed symmetric monoidal category \mathcal{J} of nonequivariant orthogonal spectra [24]. Its function spectra are denoted $F(X, Y)$. We also have the closed symmetric monoidal category $G\mathcal{J}$ of orthogonal G-spectra (for a fixed G-universe U as above) [23]. Its function G-spectra are denoted $F_G(X, Y)$. Then $G\mathcal{J}$ is enriched over \mathcal{J} via the G-fixed point spectra $F_G(X, Y)^G$.\(^{13}\) We have stable model structures on \mathcal{J} and $G\mathcal{J}$ [23, 24]. The following specialization of [8, 1.35] is Theorem 2.3.

\(^{13}\)In terms of the general context of [8], we are taking $\mathcal{V} = \mathcal{J}$ and $\mathcal{M} = G\mathcal{J}$.
Theorem 4.1. Let \(G \mathcal{D} \) be the full \(\mathcal{I} \)-subcategory of \(G \mathcal{I} \) whose objects are fibrant approximations of the orbit suspension \(G \)-spectra \(\Sigma_\infty^G(G/H+) \), where \(H \) runs over the closed subgroups of \(G \). Then there is an enriched Quillen adjunction

\[
\text{Pre}(G \mathcal{D}, \mathcal{I}) \xrightarrow{\sim} G \mathcal{I},
\]

and it is a Quillen equivalence.

We have a second specialization of [8, 1.35]. We have the closed symmetric monoidal category \(Z \) of nonequivariant \(S \)-modules [5]. Its function spectra are again denoted \(F(X,Y) \). We also have the closed symmetric monoidal category \(GZ \) of \(SG \)-modules (for a fixed \(G \)-universe \(U \) as above) [23]. Its function \(G \)-spectra are denoted \(F_G(X,Y) \). Then \(G \mathcal{I} \) is enriched over \(\mathcal{I} \) via the \(G \)-fixed point spectra \(F_G(X,Y)^G \). We are taking \(\mathcal{V} = \mathcal{I} \) and \(\mathcal{M} = G \mathcal{I} \). We have stable model structures on \(\mathcal{I} \) and \(G \mathcal{I} \) [5, 23]. The following specialization of [8, 1.35] is Theorem 3.1.

Theorem 4.2. Let \(G \mathcal{D} \) be the full \(\mathcal{I} \)-subcategory of \(G \mathcal{I} \) whose objects are cofibrant approximations of the orbit suspension \(G \)-spectra \((\equiv SG \)-modules) \(\Sigma_\infty^G(G/H+) \), where \(H \) runs over the closed subgroups of \(G \). Then there is an enriched Quillen adjunction

\[
\text{Pre}(G \mathcal{D}, \mathcal{I}) \xrightarrow{\sim} G \mathcal{I},
\]

and it is a Quillen equivalence.

Remark 4.3. We stated Theorems 4.1 and 4.2 in terms of orbits \(G/H \). We could equally well shrink the category \(G \mathcal{D} \) by choosing one \(H \) in each conjugacy class.

When \(G \) is finite, we can instead expand \(G \mathcal{D} \) to the full subcategory of \(G \mathcal{I} \) or \(G \mathcal{I} \) whose objects are bifibrant approximations of the suspension \(G \)-spectra \(\Sigma_\infty^G(A+) \), where \(A \) runs over the finite \(G \)-sets. By [8, 2.5], [8, 1.35] applies to any set of compact generators, hence Theorems 4.1 and 4.2 remain true for these expanded versions of the categories \(G \mathcal{D} \).

Alternatively, still defining \(\mathcal{I} \) using finite \(G \)-sets, we can restrict attention to additive presheaves, namely those that take finite wedges in \(G \mathcal{D} \) to finite products (which are weakly equivalent to finite wedges). The original categories \(\text{Pre}(G \mathcal{D}, \mathcal{I}) \) and \(\text{Pre}(G \mathcal{D}, \mathcal{I}) \) are equivalent to the respective categories of additive presheaves defined using finite \(G \)-sets. One point is that the represented presheaves \(F_G(-,Y)^G \)

are additive, so that additivity drops out of the proofs and need not be assumed.

Either way, when \(G \) is finite Theorems 4.1 and 4.2 remain valid with \(G \mathcal{D} \) reinterpreted to allow general finite \(G \)-sets rather than just orbits.

Homotopically, Theorems 4.1 and 4.2 are essentially the same result since \(G \mathcal{I} \) and \(G \mathcal{I} \) are Quillen equivalent. On the point set level they are quite different, and they have different virtues and defects. Since we now have both results, we write \(G \mathcal{I} \) or \(G \mathcal{I} \) instead of \(G \mathcal{I} \) when it is unclear from context which is intended.

We say just a bit about the proofs of these theorems. By [8, 4.31], the presheaf categories used in them are well-behaved model categories. The acyclicity condition there holds in Theorem 4.1 because \(\mathcal{I} \) satisfies the monoid axiom, by [23, 7.4]. It holds in Theorem 4.2 by use of the “Cofibration Hypothesis” of [5, p. 146], which

\[\frac{14}{14} \] The notation \(\mathcal{I} \) is short for \(\mathcal{I} \mathcal{I} \) and the notation \(\mathcal{X} \) is short for \(M \mathcal{S} \) in the original sources; as a silly mnemonic device, \(\mathcal{X} \) stands for the \(Z \) in the middle of Elmendorf-Križ-Mandell-May.
also holds equivariantly. The orbit G-spectra give compact generating sets in both $\text{Ho}(\mathcal{F})$ and $\text{Ho}(\mathcal{Z})$. We require bifibrant representatives. In Theorem 4.1, the orbit G-spectra are cofibrant, and fibrant approximation makes them bifibrant. We say more about the relevant functors in §4.3.

By contrast, in Theorem 4.2, all S_G-modules are fibrant, and cofibrant approximation makes them bifibrant. Here cofibrant approximation is given by a well understood left adjoint that very nearly preserves smash products, as we shall explain in §4.4.

Technically, [8, 1.35] requires either that the unit object of the enriching category \mathcal{V} be cofibrant or that every object in \mathcal{V} be fibrant. The first hypothesis holds in S and the second holds in Z. It is impossible to have both of these conditions in the same symmetric monoidal model category for the stable homotopy category [18, 31]. That is a key reason that both of these results are of interest.

4.2. Comparison of presheaf models of G-spectra. Theorems 4.1 and 4.2 are related by the following result, which is [23, IV.1.1]; the nonequivariant special case is [23, I.1.1]. In this result, $G\mathcal{F}$ is given its positive stable model structure from [23] and is denoted $G\mathcal{F}_{pos}$ to indicate the distinction; in that model structure, the sphere G-spectrum in $G\mathcal{S}$, like the sphere G-spectrum in $G\mathcal{Z}$ is not cofibrant.

The cited result is proven for genuine G-spectra for compact Lie groups G, but the same proof applies to naive G-spectra for any topological group G.

Theorem 4.4. There is a Quillen equivalence

$$G\mathcal{F}_{pos} \xrightarrow{N} G\mathcal{Z}.$$

The functor N is strong symmetric monoidal, hence $N^\#$ is lax symmetric monoidal.

The identity functor is a left Quillen equivalence $G\mathcal{F}_{pos} \rightarrow G\mathcal{F}$. Therefore Theorems 4.1, 4.2, and 4.4, have the following immediate consequence.

Corollary 4.5. The categories $\text{Pre}(G\mathcal{F}, \mathcal{F})$ and $\text{Pre}(G\mathcal{Z}, \mathcal{Z})$ are Quillen equivalent. More precisely, there are left Quillen equivalences

$$\text{Pre}(G\mathcal{F}, \mathcal{F}) \rightarrow G\mathcal{F} \leftarrow G\mathcal{F}_{pos} \rightarrow G\mathcal{Z} \leftarrow \text{Pre}(G\mathcal{Z}, \mathcal{Z}).$$

In fact, we can compare the \mathcal{F}-category $G\mathcal{F}$ with the \mathcal{Z}-category $G\mathcal{Z}$ via the right adjoint $N^\#$. The adjunction

$$G\mathcal{F}_{pos} \xrightarrow{N} G\mathcal{Z}$$

is tensored over the adjunction

$$\mathcal{F}_{pos} \xrightarrow{N} \mathcal{Z}$$

in the sense of [8, 3.20]. Indeed, since $G\mathcal{F}$ is a bicomplete \mathcal{F}-category, it is tensored over \mathcal{F}. While a more explicit definition is easy enough, we can define $Y \odot X$ to be $Y \wedge i_\ast e^\ast X$, where $i_\ast e^\ast : \mathcal{F} \rightarrow G\mathcal{F}$ is the change of group and universe functor associated to $\varepsilon : G \rightarrow e$ that assigns a genuine G-spectrum to a nonequivariant spectrum. The same is true with \mathcal{F} replaced by \mathcal{Z}. These functors are discussed in both contexts and compared in [23]. Results there (see [23, IV.1.1]) imply that

$$NY \odot NX \cong N(Y \odot X),$$
which is the defining condition for a tensored adjunction. Now [8, 3.24] gives that the \(\mathcal{J} \)-category \(\mathbb{N}^\# G \mathcal{D} \) is quasi-equivalent to \(G \mathcal{D} \). Using [8, 2.15 and 3.17], this implies a direct proof of the Quillen equivalence of Corollary 4.5. Therefore Theorems 4.1 and 4.2 are equivalent: each implies the other.

We reiterate the generality: the results above do not require \(G \) to be finite. In that generality, we do not know how to simplify the description of the domain category \(G \mathcal{D} \) to transform it into a weakly equivalent \(\mathcal{J} \)-category or \(\mathcal{Z} \)-category that is intuitive and perhaps even familiar, something accessible to study independent of knowledge of the category of \(G \)-spectra that we seek to understand. Our main theorem shows how to do just that when \(G \) is finite.

4.3. Suspension spectra and fibrant replacement functors in \(G \mathcal{J} \)

We here give some observations relevant to understanding the category \(G \mathcal{D} \) of Theorem 4.1. We start with a parenthetical observation about fibrant approximations that is immediate from Theorem 4.4 but does not appear in the literature.

Proposition 4.6. The unit \(\eta: E \to \mathbb{N}^\# N \mathcal{E} \) of the adjunction between \(G \mathcal{J} \) and \(G \mathcal{Z} \) specifies a lax monoidal fibrant replacement functor on cofibrant objects for the positive stable model structure on \(G \mathcal{J} \).

Remark 4.7. Nonequivariantly, Kro [17] has given a different lax monoidal positive fibrant replacement functor for orthogonal spectra. His construction does not restrict to cofibrant objects, but as he notes, it does not apply to symmetric spectra. However, by [24, 3.3], the unit \(E \to \mathbb{N}^\# UP \mathcal{N} \mathcal{E} \) of the composite of the adjunction \((\mathcal{P}, U)\) between symmetric and orthogonal spectra and the adjunction \((\mathcal{N}, \mathcal{N}^\#)\) gives a lax monoidal positive fibrant replacement functor for symmetric spectra.

Unfortunately the restriction to the positive model structure is necessary, and the only fibrant approximation functor we know of for use in Theorem 4.1 is that given by the small object argument. The point is that the suspension \(G \)-spectra \(\Sigma^\infty_G \) are cofibrant but not positive cofibrant. For an inner product space \(V \) and a based \(G \)-space \(X \), the \(V \)-th space of \(\Sigma^\infty_G X \) is \(X \wedge S^V \). The functor \(\Sigma^\infty_G \), also denoted \(F_0 \), is left adjoint to the zero-th space \((-)_0: G \mathcal{J} \to G \mathcal{J} \). Nonequivariantly, it is part of [24, 1.8] that for based spaces \(X \) and \(Y \), \(F_0 X \wedge F_0 Y \) is naturally isomorphic to \(F_0(X \wedge Y) \). The categorical proof of that result in [24, §21] applies equally well equivariantly to give the following complement to Proposition 4.6.

Proposition 4.8. The functor \(\Sigma^\infty_G: G \mathcal{J} \to G \mathcal{J} \) is strong symmetric monoidal.

Therefore the zero-th space functor is lax symmetric monoidal, but of course that functor is not homotopically meaningful except on objects that are fibrant in the stable model structure. There is no known fibrant replacement functor in that model structure that is well-behaved with respect to smash products.

Nonequivariantly, a homotopically meaningful version of the adjunction \((\Sigma^\infty_G, \Omega^\infty_G)\) has been worked out for symmetric spectra by Sagave and Schlichtkrull [34] and for symmetric and orthogonal spectra by Lind [21], who compares his constructions with the adjunction \((\Sigma^\infty_G, \Omega^\infty_G)\) in \(\mathcal{P} \) (see below) and with its analogue for \(\mathcal{Z} \). This generalizes to the equivariant context, although details have not been written down.

4.4. Suspension spectra and smash products in \(G \mathcal{Z} \)

We here give some observations relevant to understanding the category \(G \mathcal{D} \) of Theorem 4.2. In
In particular, we give properties of cofibrant approximations of suspension spectra that are used in §3. For more information, see [25, XXIV], [23, §IV.2], and the nonequivariant precursor [5].

We have a category $G\mathcal{P}$ of (coordinate-free)-prespectra. Its objects Y are based G-spaces $Y(V)$ and based G-maps $Y(V) \wedge S^W \to Y(W - V)$ for $V \subset W$. Here V and W are sub inner product spaces of a G-universe U. A G-spectrum X is a G-prespectrum Y whose adjoint G-maps $Y(V) \to \Omega^{W - V}Y(W)$ are homeomorphisms. The (Lewis-May) category $G\mathcal{P}$ of G-spectra is the full subcategory of G-spectra in $G\mathcal{P}$. The suspension G-prespectrum functor Σ sends a based G-space X to $(X \wedge S^V)$. There is a left adjoint spectrification functor $L: G\mathcal{P} \to G\mathcal{P}$, and the suspension G-spectrum functor $\Sigma^\infty: G\mathcal{F} \to G\mathcal{P}$ is $L \circ \Pi$. Explicitly, let

$$QGX = \text{colim} \Omega^V \Sigma^V X,$$

where V runs over the finite dimensional subspaces of a complete G-universe U. Then the Vth G-space of $\Sigma^\infty X$ is $QG \Sigma^V X$.

All objects of $G\mathcal{P}$ are fibrant, and the zeroth space functor $\Omega^\infty: G\mathcal{P} \to G\mathcal{F}$ is now homotopically meaningful. For a based G-CW complex X (with based attaching maps), $\Sigma^\infty X$ is cofibrant in $G\mathcal{P}$. In particular, the sphere G-spectrum $S_G = \Sigma^\infty S^0$ is cofibrant. Since G is a compact Lie group, the orbits G/H are G-CW complexes, hence the $\Sigma^\infty(G/H_+)$ are cofibrant. However, $G\mathcal{P}$ is not symmetric monoidal under the smash product. The implicit trade off here is intrinsic to the mathematics, as was explained by Lewis [18]; see [31] for a more recent discussion.

We summarize some constructions in [5] that work in exactly the same fashion equivariantly as nonequivariantly. We have the G-space $\mathcal{L}(j)$ of linear isometries $U^j \to U$, with G acting by conjugation. These spaces form an E_∞ G-operad when U is complete. The G-monoid $\mathcal{L}(1)$ gives rise to a monad L on $G\mathcal{P}$. Its algebras are called L-spectra, and we have the category $G\mathcal{P}[L]$ of L-spectra. It has a smash product $\wedge_{\mathcal{L}}$ which is associative and commutative but not unital. The action map $\xi: LY \to Y$ of an L-spectrum Y is a stable equivalence.

Suspension G-spectra are naturally L-spectra. In particular, the sphere G-spectrum S_G is an L-spectrum. There is a natural stable equivalence $\lambda: S_G \wedge_{\mathcal{L}} Y \to Y$ for L-spectra Y. The S_G-modules are those Y for which λ is an isomorphism, and they are the objects of $G\mathcal{L}$. All suspension G-spectra are S_G-modules, and so are all L-spectra of the form $S_G \wedge_{\mathcal{L}} Y$. The smash product \wedge on S_G-modules is just the restriction of the smash product $\wedge_{\mathcal{L}}$, and it gives $G\mathcal{L}$ its symmetric monoidal structure.

We have a sequence of Quillen left adjoints

$$G\mathcal{F} \xrightarrow{\Sigma^\infty} G\mathcal{P} \xrightarrow{L} G\mathcal{P}[L] \xrightarrow{\lambda} G\mathcal{L},$$

where LX is the free L-spectrum generated by a G-spectrum X and $LY = S_G \wedge_{\mathcal{L}} Y$ is the S_G-module generated by an L-spectrum Y. We let $F = JL$; then L, λ, and F are Quillen equivalences. The composite $\gamma = \xi \circ \lambda: FY \to Y$ is a stable equivalence for any L-spectrum Y. We have defined Σ^∞_G to be the composite functor $FF \Sigma^\infty$, and we have the natural stable equivalence of S_G-modules $\gamma: \Sigma^\infty_G X \to \Sigma^\infty G X$.

The tensor $Y \circ X$ of a G-prespectrum and a based G-space X has Vth G-space $Y(V) \wedge X$. When Y is a G-spectrum, the G-spectra $Y \circ X$ is $L((Y \circ X))$, where ℓY is the underlying G-prespectrum of Y [20, 1.3.1]. Tensors in $G\mathcal{P}[L]$ and $G\mathcal{L}$
are inherited from those in \(G \mathcal{D} \). All of our left adjoints are enriched in \(\mathcal{F} \) and preserve tensors. This leads to the following relationship between \(\land \) and \(\Sigma_G^\infty \).

Proposition 4.9. For based \(G \)-spaces \(X \) and \(Y \), there are natural isomorphisms
\[
\Sigma_G^\infty X \land \Sigma_G^\infty Y \cong (S_G \land S_G) \circ (X \land Y) \cong S_G \land \Sigma_G^\infty (X \land Y).
\]

Proof. We have \(\Sigma_G X \cong S_G \circ X \) and therefore
\[
\Sigma_G^\infty X = E\Sigma_G X \cong E(S_G \circ X) \cong (ES_G) \circ X = S_G \circ X.
\]
We also have
\[
(S_G \circ X) \land (S_G \circ Y) \cong (S_G \land S_G) \circ (X \land Y)
\]
and the conclusion follows. \(\square \)

5. **Appendix: Whiskering \(GE \) to obtain strict unit 1-cells**

The bicategory \(GE \) of Definition 1.6 narrowly misses being a strict 2-category, and we whisker the unit 1-cells to obtain a strict 2-category \(GE' \).\(^{15}\) Before focusing on specifics we give an elementary general definition.

Definition 5.1. For a category \(\mathcal{D} \) with a privileged object \(\Delta \), define the whiskering \(\mathcal{D}' \) of \(\mathcal{D} \) at \(\Delta \) by adjoining a new object \(I \) and an isomorphism \(\zeta: I \to \Delta \). We have the inclusion \(i: \mathcal{D} \to \mathcal{D}' \), and we define a retraction functor \(r: \mathcal{D}' \to \mathcal{D} \) by \(r(I) = \Delta \) and \(r(\zeta) = \text{id}_\Delta \). Thus \(r \circ i = \text{id}_\mathcal{D} \) and the isomorphism \(\zeta \) on the object \(I \) together with the identify map on all other objects of \(\mathcal{D}' \) defines a natural isomorphism \(\text{id}_{\mathcal{D}'} \to i \circ r \). If \(\mathcal{D} \) is a \(G \)-category and \(\Delta \) is \(G \)-fixed, then \(\mathcal{D}' \) is a \(G \)-category with \(I \) and \(\zeta \) fixed by \(G \), and then \(\mathcal{D} \) and \(\mathcal{D}' \) are \(G \)-equivalent.

The whiskered category \(GE' \) “enriched in permutative categories” and the whiskered \(G \)-category \(GE'_G \) “enriched in permutative \(G \)-categories” are defined to have the same objects, or 0-cells, as \(GE \) and \(GE'_G \), namely the finite \(G \)-sets \(A \) in both cases.

Definition 5.2. If \(A \neq B \) or if \(|A| \leq 1 \) and \(A = B \), we define \(GE'(A, B) \) to be the permutative category \(GE(A, B) \). For each \(A \) of cardinality at least 2, we define
\[
GE'(A, A) = GE(A, A)'.
\]
We denote the adjoined 1-cell by \(I_A \) and the adjoined isomorphism 2-cell by \(\zeta_A \).

We specify a permutative structure on \(GE'(A, A) \) by setting
\[
EIIF = \begin{cases} I_A & \text{if } (E, F) = (I_A, \emptyset) \text{ or } (\emptyset, I_A) \\ i(r(E) \amalg r(F)) & \text{otherwise.} \end{cases}
\]
We have denoted the monoidal product as \(\amalg \) since the product in \(GE(A \times A) \) is given by the disjoint union of spans. As the only 2-cell in \(GE'(A, A) \) with source or target \(\emptyset \) is \(\text{id}_{\emptyset} \), this product extends uniquely to a functor. Since the retraction
\[
r: GE'(A, A) \to GE(A, A)
\]
is strict monoidal (even though the unit of \(GE(A, A) \) is not strict) and an equivalence of categories, the symmetry isomorphism \(\gamma: \amalg \cong \amalg \tau \) on \(GE(A, A) \) lifts uniquely to a symmetry isomorphism \(\gamma: \amalg \cong \amalg \tau \) on \(GE'(A, A) \).

To extend composition to functors
\[
GE'(B, C) \times GE'(A, B) \xrightarrow{\circ} GE'(A, C)
\]
\(^{15}\)We thank Angelica Osorno for help with the material in this section.
we declare I_A to be a strict 2-sided unit. It remains to define composition with a 2-cell with source or target I_A. Since every such 2-cell factors through ζ_A and composition with Δ_A is already defined, it suffices to define composition with ζ_A. Since Δ_A is a strict right unit, for a span $B \leftarrow E \rightarrow A$, abbreviated E, we may define $E \circ \zeta_A : E \circ I_A \rightarrow E \circ \Delta_A$ to be the identity 2-cell id_E. We define $\zeta_B \circ E : \Delta_B \circ E \rightarrow E \circ \Delta_A$ to be $\ell_{B,E}^1$, where $\ell_{B,E}$ is the 2-cell defined in (1.8).

Remark 5.3. In [2], and also in a previous version of this article, a different strictification of $G\mathcal{E}$ was proposed, namely just redefining composition with Δ_A to force this to be a unit 1-cell. Unfortunately, this breaks associativity, since the 1-cell Δ_A is decomposable under composition if $|A| \geq 2$.

We have a precisely analogous definition on the level of G-categories, obtaining a strict 2-category E'_G from E_G.

Definition 5.4. If $A \neq B$ or if $|A| \leq 1$ and $A = B$, we define $E'_G(A, B)$ to be the permutative G-category $E_G(A, B)$. For each A of cardinality at least 2, we define $E'_G(A, A) = E_G(A, A)'$.

We denote the adjoined 1-cell by I_A and the adjoined isomorphism 2-cell by ζ_A. We specify a G-permutative structure on $E'_G(A, A)$ by setting

$$\theta(\mu; E_1, \ldots, E_n) = \begin{cases} I_A & \text{if } E_i = I_A \text{ and } E_j = \emptyset \text{ for } j \neq i \\ \theta(\mu; r(E_1), \ldots, r(E_n)) & \text{otherwise}. \end{cases}$$

To extend composition to a functor

$$E'_G(B, C) \times E'_G(A, B) \rightarrow E'_G(A, C),$$

we declare the object $I_A \in E'_G(A, A)$ to be a strict 2-sided unit. We define composition with a 2-cell whose source or target is of the form I_A exactly as in Definition 5.2, except that to define $\zeta_B \circ E$ we now use the $\ell_{B,E}$ defined in (1.35).

References

E-mail address: bertguillou@uky.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506 USA

E-mail address: may@math.uchicago.edu

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF CHICAGO, CHICAGO, IL 60637 USA