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Equivariant iterated loop space theory and permutative
G-categories

B. GUILLOU

J. P. MAY

We set up operadic foundations for equivariant iterated loop space theory. We start
by building up from a discussion of the approximation theorem and recognition
principle for V -fold loop G-spaces to several avatars of a recognition principle for
infinite loop G-spaces. We then explain what genuine permutative G-categories
are and, more generally, what E∞ G-categories are, giving examples showing how
they arise. As an application, we prove the equivariant Barratt-Priddy-Quillen the-
orem as a statement about genuine G-spectra and use it to give a new, categorical,
proof of the tom Dieck splitting theorem for suspension G-spectra. Other examples
are geared towards equivariant algebraic K -theory.
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Introduction

Let G be a finite group. We will develop equivariant infinite loop space theory in a
series of papers. In this introductory one, we focus on the operadic equivariant infinite
loop space machine. This is the most topologically grounded machine, as we illustrate
by first focusing on its relationship to V -fold deloopings for G-representations V .
Genuine permutative G-categories and, more generally, E∞ G-categories are also
defined operadically. They provide the simplest categorical input needed to construct
genuine G-spectra from categorical input.

For background, naive G-spectra are just spectra with actions by G. They have their
uses, but they are not adequate for serious work in equivariant stable homotopy theory.
The naive suspension G-spectra of spheres Sn with trivial G-action are invertible in
the naive equivariant stable homotopy category. In contrast, for all real orthogonal G-
representations V , the genuine suspension G-spectra of G-spheres SV are invertible in
the genuine equivariant stable homotopy category, where SV is the one-point compact-
ification of V . Naive G-spectra represent Z-graded cohomology theories, whereas
genuine G-spectra represent cohomology theories graded on the real representation
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ring RO(G). The RO(G)-grading is essential for Poincaré duality and, surprisingly, for
many nonequivariant applications.

The zeroth space E0 = Ω∞E of a naive Ω-G-spectrum is an infinite loop G-space in
the sense that it is equivalent to an n-fold loop G-space ΩnEn for each n ≥ 0. The
zeroth space E0 of a genuine Ω-G-spectrum E is an infinite loop G-space in the sense
that it is equivalent to a V -fold loop G-space ΩVE(V) for all real representations V .
The essential point of equivariant infinite loop space theory is to construct G-spectra
from space or category level data. Such a result is called a recognition principle since
it allows us to recognize infinite loop G-spaces when we see them. A functor that
constructs G-spectra from G-space or G-category level input is called an equivariant
infinite loop space machine.

As we shall see, a recognition principle for naive G-spectra is obtained simply by
letting G act in the obvious way on the input data familiar from the nonequivariant
theory. One of our main interests is to construct and apply an equivariant infinite loop
space machine that constructs genuine G-spectra from categorical input.

A permutative category is a symmetric strictly associative and unital monoidal category,
and any symmetric monoidal category is equivalent to a permutative category. The
classifying space of a permutative category A is rarely an infinite loop space, but
infinite loop space theory constructs an Ω-spectrum KA whose zeroth space is a
group completion of the classifying space BA . A naive permutative G-category is
a permutative category that is a G-category with equivariant structure data. It is a
straightforward adaptation of the nonequivariant theory to construct naive G-spectra
KA from naive permutative G-categories A in such a way that K0A is a group
completion of BA , meaning that (K0A )H is a nonequivariant group completion of
B(A H) for all subgroups H of G.

In this paper, we explain what genuine permutative G-categories are and what E∞
G-categories are, and we explain how to construct a genuine G-spectrum KGA from
a genuine permutative G-category A or, more generally, from an E∞ G-category
A . A genuine G-spectrum has an underlying naive G-spectrum, and the underlying
naive G-spectrum of KGA will be KA . Therefore we still have the crucial group
completion property relating BA to the zeroth G-space of KGA .

We use this theory to show how to construct suspension G-spectra from categorical
data, giving a new equivariant version of the classical Barratt-Priddy-Quillen (BPQ)
theorem for the construction of the sphere spectrum from symmetric groups. In [15],
we shall use this version of the BPQ theorem as input to a proof of the results from
equivariant infinite loop space theory that were promised in [12], where we described
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the category of G-spectra as an easily understood category of spectral presheaves.
Here we use this version of the BPQ theorem to give a new categorical proof of the
tom Dieck splitting theorem for the fixed point spectra of suspension G-spectra. The
new proof is simpler and gives more precise information than the classical proof by
induction up orbit types.

A complementary interest is to understand the geometry of V -fold loop G-spaces. As
we shall explain in this paper, these interests lead to quite different perspectives. They
are manifested in point set level distinctions that would be invisible to a more abstract
approach. One way of pinpointing these differences is to emphasize the distinction
between the role played by EV operads for representations V , which are the equivariant
generalizations of En operads, and the role played by (genuine) E∞ -operads of G-
spaces.

An EV -space is a G-space with an action by an EV -operad. We here develop a machine
that constructs V -fold loop G-spaces from EV -spaces. For future perspective, we
envision the possibility of an equivariant version of factorization homology in which
EV operads will govern local structure of G-manifolds in analogy with the role played
by En operads in the existing non-equivariant theory. For such a theory, E∞ operads
would be essentially irrelevant.

In contrast, for infinite loop space theory EV operads serve merely as scaffolding used
to build a machine that constructs genuine G-spectra from E∞ G-spaces, which are
spaces with an action by some E∞ operad. The classifying G-spaces of genuine
permutative G-categories are examples of E∞ G-spaces with actions by a particular
E∞ operad PG , but E∞ G-spaces with actions by quite different E∞ operads abound.
We concentrate on such an operadic machine in this paper. The machine we concentrate
on in the sequels [14, 15, 33] makes no use of EV -operads and does not recognize V -
fold loop G-spaces, but it allows a level of categorical power and multiplicative control
that is unobtainable with the machine built here.

This paper offers a number of variant perspectives on the topics it studies. We give
recognition principles for V -fold loop spaces (Theorem 1.14), for orthogonal G-spectra
(Theorem 1.25 and Definition 2.7) and, preserving space level structure invisible in
orthogonal G-spectra, for Lewis-May G-spectra (Definition 2.11 and Theorem 2.13).
The geometric input data for Theorem 1.14 consists of algebras over the little disks or
Steiner operad DV or KV . For Theorem 1.25, it consists of compatible algebras over
the KV for all finite dimensional V .

In both Definitions 2.7 and 2.11, the input data consists of algebras over an E∞ operad
of G-spaces. These algebras may come by applying the classifying space functor B to
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algebras over an E∞ operad of G-categories. The orthogonal spectrum machine and
the Lewis-May spectrum machine are shown to be equivalent by comparing them both
to a machine landing in the SG -modules of EKMM [9, 21]. In effect, the machines
landing in Lewis-May G-spectra and in SG -modules provide highly structured fibrant
approximations of the machine landing in orthogonal G-spectra. In retrospect, such
fibrant approximation is central to nonequivariant calculational understanding, and one
can hope that the same will eventually prove true equivariantly.

The variants have alternative and contradictory good features, which become partic-
ularly apparent and relevant when specialized to free E∞ algebras, where they are
all viewed as giving variants of the equivariant BPQ theorem. Thinking unstably
and geometrically, Theorem 1.21 shows how the machine recognizes V -fold suspen-
sions ΣVX and shows that the recognition is precisely compatible with the evident
G-homeomorphisms ΣVX ∧ ΣWY ∼= ΣV⊕WY . Thinking stably and geometrically,
Theorems 1.31 and 2.18 show how the machine recognizes orthogonal or Lewis-May
suspension G-spectra Σ∞G X . In both cases, the recognition is precisely compatible
with the standard G-isomorphisms Σ∞G X∧Σ∞G Y ∼= Σ∞G (X∧Y). However, the meaning
of Σ∞G is quite different in the two cases. For orthogonal G-spectra, Σ∞G X is cofibrant
if G is cofibrant as a G-space, but it is never fibrant. For Lewis-May or EKMM
G-spectra, Σ∞G X is always fibrant and often bifibrant.

Theorems 6.1 and 9.9 show how the machine recognizes suspension G-spectra from
two variant categorical inputs. Here we do not have precise compatibility with smash
products, a failure that will be rectified with a hefty dose of 2-category theory in the
sequel [15], but instead we have structure that allows our new proof of the tom Dieck
splitting theorem.

As already mentioned, there are three sequels to this paper. The first, [33], develops
a new version of the Segal-Shimakawa infinite loop space machine and proves among
other things that it is equivalent both to the original Segal-Shimakawa machine and to
the machine landing in orthogonal G-spectra that we develop here. That requires a
generalization of the present machine from operads to categories of operators, about
which we say nothing here. The second and third [14, 15] give a more categorically
sophisticated machine, the first purely additive and the second building in multiplicative
structure. These start with more general categorical input than we deal with here and
give new information even nonequivariantly.
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Outline

We begin with a machine for recognizing iterated equivariant loop spaces in §1. All
versions of our iterated loop space machine are based on use of the Steiner operads,
whose equivariant versions have not previously appeared. We define them and compare
them to the little disks operads in §1.1. All versions are also based on an approximation
theorem, which is explained in §1.2. We use a strengthened version due to Rourke
and Sanderson [43], and that allows us to obtain slightly stronger versions of the
recognition principle than might be expected. The compatibility with smash products
of the geometric versions of the recognition principle is based on pairings between
Steiner operads that are defined in §1.4; the relevant definition of a pairing is recalled
in §10. The promised variants of the recognition principle starting from space level
input data are given in §§1.3, 1.5, 2.2, and 2.3.

Section 2 gives our machines for recognizing infinite loop G-spaces. After recalling
the notion of E∞ G-operad and giving some examples in §2.1, the orthogonal and
Lewis-May machines are defined and compared in §2.2–§2.4. Examples of E∞ G-
spaces are given in §2.5. General properties that must hold for any equivariant infinite
loop space machine are described in §2.6. A recognition principle for naive G-spectra,
with G not necessarily finite, is given in §2.7. An interesting detail there shows how
to use the recognition principle to construct change of universe functors on the space
level. The proof uses a double bar construction described in §11.

The recognition principle starting from categorical imput is given in §4.5. It is preceded
by preliminaries about equivariant universal bundles and equivariant E∞ operads in
§3 and by a discussion of operadic definitions of naive and genuine permutative G-
categories in §4. In the brief and parenthetical §4.4, we point out how these ideas
and our prequel [13] with Merling specialize to give a starting point for equivariant
algebraic K -theory [7, 10, 19, 35]. We give an alternative and equivalent starting point
in the case of G-rings R in §8.2.

We give a precise description of the G-fixed E∞ categories of free PG -categories in
§5. This is a precursor of our first categorical version of the BPQ theorem, which we
prove in §6.1, and of the tom Dieck splitting theorem for suspension G-spectra, which
we reprove in §6.2.

Changing focus, in §7 and §8 we give three interrelated examples of E∞ G-operads,
denoted VG , V ×G , and WG , and give examples of their algebras. This approach
to examples is more intuitive than the approach based on genuine permutative G-
categories, and it has some technical advantages. It is new and illuminating even
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nonequivariantly. It gives a more intuitive categorical hold on the BPQ theorem than
does the treatment starting from genuine permutative G-categories, as we explain in
§9.3. It also gives a new starting point for multiplicative infinite loop space theory,
both equivariantly and nonequivariantly, but that is work in progress.

Notational preliminaries

A dichotomy between Hom objects with G-actions and Hom objects of equivariant
morphisms, often denoted using a G in front, is omnipresent. We start with an under-
lying category V . A G-object X in V can be defined to be a group homomorphism
G −→ Aut X . We have the category VG of G-objects in V and all morphisms in V

between them, with G acting by conjugation. We denote the morphism objects of VG

simply by V (X,Y).1 We also have the category GV of G-objects in V and G-maps in
V . Since objects are fixed by G, GV is in fact the G-fixed category (VG)G , although
we shall not use that notation. Thus the hom object GV (X,Y) in V of G-morphisms
between G-objects X and Y is the fixed point object V (X,Y)G .

One frequently used choice of V is U , the category of unbased (compactly generated)
spaces. We let T denote the category of based spaces. We assume once and for all
that the basepoints ∗ of all given based G-spaces X (or spaces X when G = e) are
nondegenerate. This means that ∗ −→ X is a G-cofibration (satisfies the G-HEP). It
follows that ∗ −→ XH is a cofibration for all H ⊂ G.

By an equivalence f : X −→ Y of G-spaces we understand a G-map whose fixed
point maps f H : XH −→ YH are weak homotopy equivalences for all subgroups H of
G. When X and Y have the homotopy types of G-CW complexes, such an f is a
G-homotopy equivalence.

By a topological category C we understand a category internal to U ; thus it has an
object space and a morphism space such that the structural maps I , S , T , and C are
continuous. This is more structure than a topologically enriched category, which would
have a discrete space of objects. We also have the based variant of categories internal
to T , but U will be the default.

We let Cat denote the category of (small) topological categories. As above, starting
from Cat , we obtain the concomitant categories GCat and CatG of G-categories. A
G-category is a topological category equipped with an action of G through natural

1In [21] and elsewhere, we used the notation VG(X,Y) instead of V (X,Y), but some readers
found that misleadingly analogous to HomG(X,Y).
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isomorphisms. This is the same structure as a category internal to GU . Similarly,
a based G-category, is a category internal to GT . That is, an action of G on a
topological category C is given by actions of G on both the object space and the
morphism space such that I , S , T , and C are G-maps. In particular, G can and often
will act non-trivially on the space of objects. That may be unfamiliar (as the referee
noted), but in many of our examples it is essential for proper behavior on passage to
H -fixed subcategories for H ⊂ G.

For brevity of notation, we shall often but not always write | − | for the composite
classifying space functor B = |N − | from topological categories through simplicial
spaces to spaces. It works equally well to construct G-spaces from topological G-
categories. We assume that the reader is familiar with operads (as originally defined
in [23]) and especially with the fact that operads can be defined in any symmmetic
monoidal category V . Brief modernized expositions are given in [29, 30]. Since it is
product-preserving, the functor | − | takes operads in Cat or in GCat to operads in U

or in GU , and it takes algebras over an operad C in Cat or in GCat to algebras over
the operad |C | in U or in GU .

To avoid proliferation of letters, we shall write OG for the monad on based G-categories
constructed from an operad OG of G-categories. We shall write OG for the monad on
based G-spaces constructed from the operad |OG| of G-spaces. More generally, for
an operad CG of unbased G-spaces, we write CG for the associated monad on based
G-spaces.
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mistake in the original version. That led to a reworking of this paper and to much of the
work in the sequels [14, 15, 33]. It also led to the long delay in the publication of this
paper, which is entirely due to the authors and not at all to the referee or editors. We
thank them for their patience. The first author was supported by Simons Collaboration
Grant 282316.

Algebraic & Geometric Topology XX (20XX)



1008 B. Guillou and J. P. May

1 EV operads and V -fold loop G-spaces

In this geometrically focused chapter, we first define EV operads and give two examples.
We then relate EV -spaces to V -fold loop G-spaces via the equivariant approximation
theorem and recognition principle. The approximation theorem shows how to approx-
imate “free” V -fold loop G-spaces ΩVΣVX in terms of free algebras DVX or KVX
over the EV operad DV or KV . The recognition principle shows how to construct
V -fold loop spaces from EV -algebras. We elaborate multiplicatively by showing how
machine-built pairings relate to evident pairings between iterated loop G-spaces. We
then give a geometric version of a concrete spacewise infinite loop G-space machine
that does not use E∞ operads and is new even nonequivariantly. This gives a geometric
precursor of the BPQ theorem that relates well to smash products. As already noted,
we envision that the theory here can provide the local data for an as yet undeveloped
equivariant factorization homology theory.

1.1 The little disks and Steiner operads

Definition 1.1 Let D(V) be the open unit disk in V . A little V -disk is a map
d : D(V) −→ D(V) of the form d(v) = rv + v0 for some r ∈ [0, 1) and some v0 ∈ V ;
c(d) = v0 is the center point of d and r is the radius. For g ∈ G, (gd)(v) = rv + gv0 .
Define DV (j) to be the G-space of (ordered) j-tuples of little V -disks whose images
have empty pairwise intersections. With the evident structure maps determined by
disjoint union and composites of little disks, the DV (j) form an operad DV , called the
little disks operad.

For a G-space V , let F(V, j) ⊂ V j be the configuration space of (ordered) j-tuples of
distinct points of V , with G acting by restriction of the diagonal action on V j . By
convention, F(V, 0) is a point, the empty 0-tuple of points in V . We are interested
in the special case when V is a real representation of G, by which we understand an
orthogonal action of G on a real inner product space. In contrast to the nonequivariant
case, very little is known about the (Bredon) homology and cohomology of the G-
spaces F(V, j), but we have the following result.

Lemma 1.2 There is a (G × Σj)-homotopy equivalence DV (j) −→ F(V, j) for each
j ≥ 0.

Proof Choose a decreasing rescaling homeomorphism ζ : [0,∞) −→ [0, 1) and also
denote by ζ the rescaling homeomorphism V −→ D(V) that sends v to ζ(|v|/|v|)v,

Algebraic & Geometric Topology XX (20XX)



Equivariant iterated loop space theory and permutative G-categories 1009

where D(V) is the open unit disc in V . Then ζ induces a rescaling homeomorphism
ζ : F(V, j) −→ F(D(V), j). Define a map c : DV (j) −→ F(D(V), j) by sending little
disks to their center points. For a point v = (v1, · · · , vj) in F(D(V), j), define

δ(v) = 1/2 min {|vi − vj|, i 6= j}.

Define s : F(D(V), j) −→ DV (j) by s(v) = (d1, · · · , dj), where dj(v) = δ(v)v + vi .
Then s and c are (G × Σj)-maps, c ◦ s = id, and there is a (G × Σj)-homotopy
h : s ◦ c ' id. If d = (d1, · · · , dj) ∈ D(j), where di(v) = riv + vi , then c(d) = v and
h(d, t) has ith little V -disk di(t) given by di(t)(v) =

(
(1− t)δ(v) + tri)

)
v + vi .

The following definition is the equivariant generalization of the usual definition of an
En -operad. We say that a map of operads of G-spaces is a weak equivalence if its jth
map is a weak (G× Σj)-equivalence.

Definition 1.3 An operad CG of G-spaces is an EV -operad if there is a chain of weak
equivalences of operads connecting CG to DV .

Of course, we could use any operad weakly equivalent to DV as a reference operad in
the definition. As explained in [31, §3], for inclusions V ⊂ W of inner product spaces,
there is no map of operads DV −→ DW that is compatible with suspension, so that use
of the little disks operads is inappropriate for iterated loop space theory. The Steiner
operads remedy the defect and will be used in [33] to compare the operadic and Segalic
equivariant infinite loop space machines. Their equivariant definition is little different
from their nonequivariant definition given in [31], following Steiner [48].

Definition 1.4 Let EV be the space of embeddings V −→ V , with G acting by conju-
gation, and let EmbV (j) ⊂ Ej

V be the G-subspace of (ordered) j-tuples of embeddings
with pairwise disjoint images. Regard such a j-tuple as an embedding jV −→ V , where
jV denotes the disjoint union of j copies of V (where 0V is empty). The element id
in EmbV (1) is the identity embedding, the group Σj acts on EmbV (j) by permuting
embeddings, and the structure maps

γ : EmbV (k)× EmbV (j1)× · · · × EmbV (jk) −→ EmbV (j1 + · · ·+ jk)

are defined by composition and disjoint union in the evident way [31, §3]. This gives
an operad EmbV of G-spaces.

Define RV ⊂ EV = EmbV (1) to be the sub G-space of distance reducing embeddings
f : V −→ V . This means that |f (v) − f (w)| ≤ |v − w| for all v,w ∈ V . Define a
Steiner path to be a map h : I −→ RV such that h(1) = id and let PV be the G-space
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of Steiner paths, with action of G induced by the action on RV . Define π : PV −→ RV

by evaluation at 0, π(h) = h(0).

Define KV (j) to be the G-space of (ordered) j-tuples (h1, · · · , hj) of Steiner paths
such that the π(hi) have disjoint images. The element id in KV (1) is the constant
path at the identity embedding, the group Σj acts on KV (j) by permutations, and the
structure maps γ are defined pointwise in the same way as those of EmbV . This
gives an operad of G-spaces, and application of π to Steiner paths gives a map of
operads π : KV −→ EmbV . Evaluation of embeddings at 0 ∈ V gives center point
(G× Σj)-maps c : EmbV (j) −→ F(V, j).

The Steiner operads KV are reduced, meaning that KV (0) is a point, and K0 is the
trivial operad with K0(1) = id and K0(j) = ∅ for j > 1. By pullback along π , any
space with an action by EmbV inherits an action by KV . As in [23, §5], [26, VII§2],
or [31, §3], EmbV acts naturally on ΩVX for based G-spaces X .

Proposition 1.5 ([48]) There is a weak equivalence of operads ι : DV −→ KV .

Proof For each j, we have a composite (G× Σj)-map

c ◦ π : KV (j) −→ EmbV (j) −→ F(V, j).

Steiner’s nonequivariant proof that c◦π is a Σj -homotopy equivalence applies to prove
that it is a (G × Σj)-homotopy equivalence. The argument is a clever and non-trivial
variant on the proof above for DV , but for us the essential point is that it uses the metric
on V and the contractibility of I and V in such a way that the construction is clearly
G-equivariant.

For a little disk d(v) = rv + v0 , define a path of little disks from d to the identity map
of D(V) by sending s ∈ I to the little disk

d(s)(v) = (s− rs + r)v + (1− s)v0.

Conjugating d by the rescaling ζ of Lemma 1.2 gives a distance reducing embedding
ζ−1dζ : V −→ V , and conjugating paths pointwise gives an embedding ι of DV

as a suboperad of KV . Composing the inverse (G × Σj)-homotopy equivalence
F(V, j) −→ DV (j) with ι : DV (j) −→ KV (j) gives an inverse (G × Σj)-homotopy
equivalence to c ◦ π , by Steiner’s proof, and it follows that ι is a (G× Σj)-homotopy
equivalence.
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Again, one key advantage of the Steiner operads over the little disks operads is that,
for an inclusion V ⊂ W of G-inner product spaces, there is an induced inclusion
KV −→ KW of G-operads such that the map

ΩVη : ΩVX −→ ΩVΩW−VΣW−VX ∼= ΩWΣW−VX

is a map of KV -spaces for any G-space X . Here W−V is the orthogonal complement of
V in W . If f : V −→ V is a distance-reducing embedding, then f ⊕ idW−V : W −→ W
is also distance-reducing, and this construction induces the inclusion.

1.2 The approximation theorem

Write KV for the monad on based G-spaces associated to the operad KV . For a
G-space X , KVX =

∐
KV (j) ×Σj Xj/(∼). If σi : KV (j) −→ KV (j − 1) deletes the

ith Steiner path and si : Xj−1 −→ Xj inserts the basepoint in the ith position, then
(σik, y) ∼ (k, siy) for k ∈ KV (j) and y ∈ Xj−1 . The monad DV arising from the
operad DV is defined the same way.

The unit η : Id −→ ΩVΣV of the monad ΩVΣV and the action θ of KV on the G-spaces
ΩVΣVX induce a composite natural map

αV : KVX
KVη //KVΩVΣVX θ //ΩVΣVX,

and αV : KV −→ ΩVΣV is a map of monads whose adjoint defines a right action of
KV on the functor ΣV , just as in [23]. The restriction to DV gives the corresponding
map αV : DVX −→ ΩVΣVX .

The heart of the operadic recognition principle is the approximation theorem that says
that αV is a group completion. However, already nonequivariantly, we have two
variants of what it means for a map X −→ Y to be a group completion. Recall that
Hopf spaces are spaces with a product with a two-sided unit element up to homotopy.

Definition 1.6 A Hopf space Y is grouplike if π0(Y) is a group. Let X and Y
be homotopy associative and commutative Hopf spaces, where Y is grouplike, and let
f : X −→ Y be a Hopf map. Then f is a group completion if f∗ : π0(X) −→ π0(Y) is the
Grothendieck construction converting a commutative monoid to an abelian group and if,
for any field of coefficients k , the map of commutative k-algebras H∗(X)[π0(X)−1] −→
H∗(Y) induced by f∗ is an isomorphism.

The second version of group completion drops the commutativity assumption and lives
in the setting of A∞ -spaces. For us, an A∞ -space will mean a space with an action
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of the Steiner operad KR . An A∞ -map will mean either a map homotopic to a map
of KR -spaces or the homotopy inverse of a map of KR -spaces that is an underlying
homotopy equivalence.

Definition 1.7 An A∞ -map f : X −→ Y of KR -spaces is a weak group completion
if it is equivalent under a chain of A∞ -maps to the natural map η : M −→ ΩBM for
some topological monoid M .

The following classical result has several proofs; see [25, §15] for discussion in slightly
greater generality.

Theorem 1.8 If a topological monoid M is homotopy commutative, then the natural
map η : M −→ ΩBM is a group completion.

Returning to our equivariant context, we have the following definition.

Definition 1.9 A Hopf G-space Y is grouplike if each π0(YH) is a group. Let X and
Y be homotopy associative and commutative Hopf G-spaces, where Y is grouplike,
and let f : X −→ Y be a Hopf G-map. Then f is a group completion if f H : XH −→ YH

is a group completion for all subgroups H of G.

For the equivariant notion of weak group completion, note that if X is a KR -G-space
and H ⊂ G is a subgroup, then XH inherits an action of KR .

Definition 1.10 A map f : X −→ Y of KR -G-spaces is a weak group completion if
f H is a weak group completion for all H . By Theorem 1.8, f is then a group completion
if X and Y are homotopy commutative.

In the weak case we require no compatibility between the monoids M(H) ' XH as H
varies. Recall that we understand equivalences of G-spaces to mean maps that induce
(weak) equivalences on passage to fixed points and observe that a group completion
is an equivalence if X is grouplike, for example if X is G-connected in the sense that
each XH is (path) connected.

Theorem 1.11 (The approximation theorem) Let V be a representation of G. If X
is G-connected, then αV : KVX −→ ΩVΣVX is an equivalence. If V contains a copy
of the trivial representation R, then αV is a weak group completion. Therefore, if V
contains a copy of R2 , then αV is a group completion.
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We shall not give a proof, only a commentary on the existing proofs. The group
completion version was first proven by Hauschild in his unpublished Habilitationschrift
[16], but the shorter published version [17] restricts to the case X = S0 , remarking
that the proof in the general case is essentially the same. Assuming that V contains
R∞ and not just R2 , Caruso and Waner [4, 1.18] gave a shorter proof in a paper that
concentrated on compact Lie groups G, rather than just finite groups.

Nonequivariantly, there is a proof by direct calculation due to Fred Cohen [20] and a
geometric proof due to Segal [44]. Starting from Segal’s proof, Rourke and Sanderson
[39, 40, 41] gave an elegant proof using their “compression theorem”. Following
up a suggestion of May, they generalized that proof to give the stated version of the
theorem in [43]. However, their notations are quite different from ours. They never
work equivariantly and focus instead on G-fixed point spaces. They use the notation
ΩVΣVX for the G-fixed point space (ΩVΣVX)G . One can replace G by a subgroup H
in their proof, and it works just as well.

All known proofs are manifold theoretic in nature and start with the G-space FVX of
(unordered) configurations of points in V with labels in X . More precisely, FVX =∐

F(V, j)×Σj Xj/(∼) is defined in the same way as KVX . In the notation of [43], their
CVX is our (FVX)G . They work with little disks, and their Co

VX is our (DVX)G . Their
map jV is the restriction to FV (X)G of our map αG

V .

Translated to our notations, [43, Theorem 1] proves the first statement of Theorem 1.11,
taking X to be G-connected; here there are no Hopf G-space structures in sight. When
W = V ⊕ R, Rourke and Sanderson observe that (DWX)G is equivalent to a monoid,
and their [43, Theorem 2] proves that its classifying space is weak homotopy equivalent
to (ΩVΣWX)G . The approximation theorem as stated follows by applying Ω, as in [43,
Corollary 1].

1.3 The recognition principle for V -fold loop spaces

We explain how KV -spaces, which are based spaces with an action of KV , give rise to
V -fold loop spaces. For fixed V , we can work equally well with DV . For compatibility
as V varies, KV is required. The two-sided monadic bar construction is described
in [23, 31] and works exactly the same way equivariantly as nonequivariantly.2 The
adjoint of αV gives a right action α̃V : ΣVKV −→ ΣV of the monad KV on the functor
ΣV .

2In particular, Reedy cofibrancy (or properness) works the same way; see [33].
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Definition 1.12 Let Y be a KV -space. We define

EVY = B(ΣV ,KV ,Y).

We have the diagram of KV -spaces and KV -maps

(1–13) Y B(KV ,KV ,Y)εoo αV //B(ΩVΣV ,KV ,Y)
ζ //ΩVB(ΣV ,KV ,Y),

where αV = B(αV , id, id) and ζ will be defined in the following sketch proof, which
is based on arguments in [5, 23, 24].

Theorem 1.14 (From KV -spaces to V -fold loop spaces) The following statements
hold relating a KV -space Y to its “V -fold delooping” EVY .

(i) The map ε is a G-homotopy equivalence with a natural homotopy inverse ν .

(ii) The map αV is an equivalence when Y is G-connected and is a weak group
completion when V ⊃ R.

(iii) The map ζ is an equivalence.

Therefore the composite

(1–15) ξ = ζ ◦ αV ◦ ν : Y −→ ΩVEVY

is an equivalence if Y is G-connected, a weak group completion if V ⊃ R, and a group
completion if V ⊃ R2 .

Proof The proof of (i) uses an “extra degeneracy argument” explained in [23, 9.8]; note
that the homotopy equivalence ν is not a KV -map. For (ii), it is shown nonequivariantly
in [24, Theorem 2.3], that αV is an equivalence when Y is connected and is a group
completion when V = Rn with n ≥ 2. We use Theorem 1.11 to improve on that
equivariantly. Geometric realization of simplicial G-spaces commutes with passage to
H -fixed points, so we can work nonequivariantly, one fixed point space at a time. If Y
is G-connected, each (Kq

VY)H is connected, hence αH is the realization of a levelwise
equivalence of simplicial spaces and hence an equivalence.

Now assume V ⊃ R and let K = KR , with associated monad K. We then have
an inclusion of the nonequivariant A∞ operad K in KV and can regard Y and each
(Kq

VY)H as a K -space. From here we combine arguments from [23, Section 13] and
the proof of [24, Theorem 2.3] with the Rourke-Sanderson proof of the approximation
theorem. Let M be the associativity operad that defines monoids; we have a weak
equivalence of (G-fixed) operads δ : K −→ M . For a K -space X , we define a
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topological monoid Λ(X) = B(M,K,X), where the monad M is a K-functor via δ .
We have a zigzag

X B(K,K,X)εoo δ //B(M,K,X) = ΛX

in which ε is a K -map and a G-homotopy equivalence and δ = B(δ, id, id) is an
equivalence. Define Γ(X) = ΩBΛ(X) and γ = η ◦ δ : B(K,K,X) −→ ΓX . We view
γ as a natural choice of a weak group completion. Moreover, γ is an equivalence if X
is grouplike. If f : X −→ Y is a weak group completion between K -spaces, then Γf
is an equivalence. To see this, note that by the definition of weak group completion,
we may assume without loss of generality that f is the map η : M −→ ΩBM for some
topological monoid M . It suffices to show that BΛ(η) : BΛM −→ BΛ(ΩBM) is an
equivalence. This follows from [49, Proposition 3.9 and Theorem 3.11].

Now consider the following commutative diagram.

Y B(KV ,KV ,Y)εoo αV // B(ΩVΣV ,KV ,Y)

B(K,K,Y)

γ

��

ε

OO

B(B(K,K,KV ),KV ,Y)εoo αV //

γ

��

ε

OO

B(B(K,K,ΩVΣV ),KV ,Y)

ε

OO

γ
��

ΓY B(ΓKV ,KV ,Y)εoo ΓαV // B(ΓΩVΣV ,KV ,Y)

The maps ε are G-homotopy equivalences, hence the middle map γ = B(γ, id, id) is
a weak group completion since γ is so. The right map γ and the bottom map ΓαV

are equivalences since realization preserves levelwise equivalences. Therefore αV is a
weak group completion.

In (iii), ζ is an instance of the natural G-map ζ : |ΩVK| −→ ΩV |K| for simplicial
based G-spaces K ; suspensions commute with realization, and the adjoint of ζ is the
evident evaluation G-map ΣV |ΩVK| ∼= |ΣVΩVK| −→ |K|. The proof of (iii) is due
to Hauschild [16] and appears in [5, pp. 495-496]. We will not repeat the argument,
which reduces the proof to the nonequivariant case treated in [23, §12]. The main
equivariant input that allows the reduction is the fact if S(V) is the unit sphere in V ,
then the space MapH(S(V),Kn) of H -maps is connected, where Kn = ΣVKn

VY is the
G-space of n-simplices of the simplicial G-space B∗(ΣV ,KV ,Y). This holds since
KJ

n is (dim(VJ) − 1)-connected for each subgroup J ⊂ G, while S(V) regarded as an
H -CW complex only has cells of type H/J × en where n < dim(VJ).

Remark 1.16 Equivariant homotopy theory often admits varying generalizations of
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nonequivariant theorems. A very different and very interesting equivariant recognition
principle was proven by Salvatore and Wahl [42].

1.4 The pairing (KV ,KW) −→ KV⊕W and the recognition principle

The general notion of a pairing of operads is recalled in §10. In [23, 8.3], a pairing

� : CmX ∧ CnY −→ Cm+n(X ∧ Y)

is defined for based spaces X and Y , where Cn denotes the monad on based spaces
induced from the little n-cubes operad Cn . Implicitly, it comes from a pairing of
operads � : (Cm,Cn) −→ Cm+n . The Steiner operad analogue appears in [27, p. 337],
and we recall it here.

Proposition 1.17 For finite dimensional real inner product G-spaces V and W , there
is a unital, associative, and commutative system of pairings

� : (KV ,KW) −→ KV⊕W

of Steiner operads of G-spaces.

Proof The required maps

� : KV (j)×KW(k) −→ KV⊕W(jk)

are given by (c ⊗ d) = e, where, writing c = (f1, · · · , fj) and d = (g1, · · · , gk), e is
the jk-tuple of Steiner paths

(fq, gr) : I −→ RV × RW ⊂ RV⊕W ,

1 ≤ q ≤ j and 1 ≤ r ≤ k , ordered lexicographically. The formulas required in
Definition 10.1 are easily verified, as we illustrate in Example 10.4.

The pairing is unital in the sense that � : KV (j) ∼= K0(1) ×KV (j) −→ KV (j) is the
identity map. It is associative in the sense that the following diagram commutes for a
triple (V,W,Z) of inner product G-spaces and a triple (i, j, k).

KV (i)×KW(j)×KZ(k) �×id //

id×�
��

KV⊕W(ij)×KZ(k)

�
��

KV (i)×KW⊕Z(jk)
�

//KV⊕W⊕Z(ijk)
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It is commutative in the sense that the following diagram commutes.

KV (j)×KW(k)

t
��

� //KV⊕W(jk)

τ (j,k)
��

KW(k)×KV (j)
�
//KW⊕V (kj)

Here t is the interchange map and τ (j, k) is determined in an evident way by the
interchange map for V and W and the permutation τ (j, k) of jk-letters.

Passing to monads as in Proposition 10.3 below, we obtain a unital, associative, and
commutative system of pairings

(1–18) � : KVX ∧KWY −→ KV⊕W(X ∧ Y).

For the unit property, when V = 0 the map � : X ∧ KWY −→ K(X ∧ Y) is induced
by the maps X× Y j −→ (X× Y)j obtained from the diagonal map on X and shuffling.
We have the following key observation. Its analogue for the little cubes operads is [23,
8.3].

Lemma 1.19 The following diagram commutes.

KVX ∧KWY � //

αV∧αW
��

KV⊕W(X ∧ Y)

αV⊕W

��
ΩVΣVX ∧ ΩWΣWY ∧

// ΩV⊕WΣV⊕W(X ∧ Y)

The notion of a pairing of a KV -space X and a KW -space Y to a KV⊕W -space Z is
defined in Definition 10.2, and we have the following recognition principle for pairings.
Note that smashing maps out of spheres gives a natural map

ΩVX ∧ ΩWY −→ ΩV⊕W(X ∧ Y).

Proposition 1.20 A pairing f : X ∧ Y −→ Z of a KV -space X and a KW -space Y to
a KV⊕W -space Z induces a G-map

Ef : EVX ∧ EWY −→ EV⊕WZ

such that the following diagram commutes.

X ∧ Y
ξ∧ξ //

f
��

ΩVEVX ∧ ΩWEWY // ΩV⊕W(EVX ∧ EWY)

Ef
��

Z
ξ

// ΩV⊕WEV⊕WZ

Algebraic & Geometric Topology XX (20XX)



1018 B. Guillou and J. P. May

Proof By convention, K0
V = Id for any V . Starting at q = 0 with the identity map

on X ∧ Y , � inductively determines a pairing �q for all q, namely the composite

Kq
VX ∧Kq

WY � //KV⊕W(Kq−1
V X ∧Kq−1

W Y)
KV⊕W�q−1

//Kq
V⊕W(X ∧ Y).

The map Ef is the geometric realization of a map of simplicial topological spaces that
is given on q-simplices by

ΣVKq
VX ∧ ΣWKq

WY ∼= ΣV⊕W(Kq
VX ∧Kq

WY) ΣV⊕W�q
//ΣV⊕WKq

V⊕W(X ∧ Y).

Commutation with face and degeneracy operators follows from Proposition 10.3. The
diagram in the statement commutes by a diagram chase from Lemma 1.19, Defini-
tion 10.2, and the description of ξ given in (1–15).

We have an unstable precursor of the BPQ theorem.

Theorem 1.21 (The BPQ theorem for V -fold suspensions) For based G-spaces X ,
there is a natural G-homotopy equivalence

ω : ΣVX −→ EVKVX

such that the following diagram commutes for based G-spaces X and Y .

ΣVX ∧ ΣWY ω∧ω //

∼=
��

EVKVX ∧ EWKWY

E(�)
��

ΣV⊕W(X ∧ Y) ω
// EV⊕WKV⊕W(X ∧ Y)

Therefore E(�) is an equivalence.

Proof Since EVKVX = B(ΣV ,KV ,KVX), another extra degeneracy argument ex-
plained in [23, 9.8] gives the natural homotopy equivalence ω . For the diagram, it
suffices to prove commutativity of the adjoint diagram, which features two adjoint
maps X ∧ Y −→ ΩV⊕W(−). These maps are equal by inspection of definitions.

1.5 The geometric recognition principle for orthogonal G-spectra

As in [12], we let GS denote the category of orthogonal G-spectra. Briefly, these
start with IG -spaces E , which are continuous functors E : IG −→ TG , where IG

is the category of finite dimensional G-inner product spaces and linear isometric
isomorphisms, with G acting by conjugation on morphism spaces IG(V,V ′). The
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continuous G-maps E : IG(V,V ′) −→ TG(E(V),E(V ′)) can be specified via adjoint
evaluation G-maps IG(V,V ′)+ ∧ E(V) −→ E(V ′).

An IG -space E is an orthogonal G-spectrum if there are structure G-maps ΣWE(V) −→
E(V⊕W) that give a natural transformation EZSG −→ E◦⊕ of functors IG×IG −→
TG , where SG = {SV} is the sphere G-spectrum, Z is the external smash prod-
uct specified by (D Z E)(V,W) = D(V) ∧ E(W) for IG -spaces D and E , and
⊕ : IG × IG −→ IG is the direct sum of G-inner product spaces functor. See
[21, II§2] for details.

Definition 1.22 We define a continuous G-functor K∗ from IG to G-operads. It
takes a G-inner product space V to the Steiner operad KV . Linear isometric isomor-
phisms i : V −→ V ′ act by conjugation of embeddings to send RV to RV′ . The action
extends pointwise to Steiner paths and then applies one at a time to j-tuples of Steiner
paths to give G-maps KV (j) to KV′(j). Compatibility with the operad structure is
immediate. Composing with the functor that sends the operad KV to the associated
monad KV on based G-spaces gives a functor K from IG to the category of monads
in the category of IG -spaces. In more detail, for an IG -space X with V th space
X (V), we have based evaluation G-maps

I (V,V ′)+ ∧KVX (V) −→ KV′X (V ′).

Using the diagonal action of IG(V,V ′), we obtain G-maps

IG(V,V ′)×KV (k)×KV (j1)× · · · ×KV (jk)×X (V)

��
KV′(k)×KV′(j1)× · · · ×KV′(jk)×X (V ′)

and these give evaluation G-maps

IG(V,V ′)+ ∧KVKVX (V) −→ KV′KV′X (V ′).

The product and unit maps are compatible with these maps in the sense that the
following diagrams commute, where the unlabelled arrows are evaluation G-maps.

(1–23)
IG(V,V ′)+ ∧X (V)

id∧η
��

π // X (V ′)

η

��
IG(V,V ′)+ ∧KVX (V) // KV′X (V ′)

IG(V,V ′)+ ∧KVKVX (V) //

id∧µ
��

KV′KV′X (V)

µ

��
IG(V,V ′)+ ∧KVX // KV′X (V ′)

Note that we can regard based G-spaces X as constant IG -spaces, X(V) = X ; the evaluation
G-maps IG(V,V ′)+ ∧ X −→ X are then the projections.

Algebraic & Geometric Topology XX (20XX)



1020 B. Guillou and J. P. May

Definition 1.24 Define a K∗ -G-space Y to be an IG -space Y with a structure of
KV -algebra on Y (V) for each V together with G-maps i : Y (V) −→ Y (V⊕W) such
that the following diagrams commute, where the θ are monad action maps.

IG(V,V ′)+ ∧KVY (V) //

id∧θ
��

KV′Y (V ′)

θ
��

IG(V,V ′)+ ∧ Y (V) // Y (V ′)

In the second diagram, we identify SV ∧ SW with SV⊕W .(
IG(V,V ′)×IG(W,W ′)

)
+
∧ Y (V) ∧ SV ∧ SW //

⊕∧i∧id
��

Y (V ′) ∧ SV′ ∧ SW′

i∧id
��(

IG(V ⊕W,V ′ ⊕W ′)
)

+
∧ Y (V ⊕W) ∧ SV⊕W // Y (V ′ ⊕W ′) ∧ SV′⊕W′

The first diagram says that θ is a map of IG -spaces and, ignoring the sphere coordi-
nates, the second diagram says that i : Y ◦ π1 =⇒ Y ◦ ⊕ is a natural transformation
of functors IG ×IG −→ TG .

Theorem 1.25 (From K∗ -G-spaces to orthogonal G-spectra) For a K∗ -G-space
Y , the based G-spaces EVY (V) and the based G-maps

ΣWEVY (V) −→ EV⊕WY (V ⊕W)

determined by i : Y ◦ π1 =⇒ Y ◦ ⊕ specify an orthogonal G-spectrum Egeo
G Y .

Proof Regarding the IG(V,V ′) as constant simplicial G-spaces, we see by diagram
chases from the definitions that the data of the previous definitions determine G-maps

IG(V,V ′)+ ∧ ΣVKq
VY (V) −→ ΣV′Kq

V′Y (V ′)

and
ΣWΣVKq

VY (V) −→ ΣV⊕WKq
V⊕WY (V ⊕W).

On passage to geometric realization, these give the required IG -space Egeo
G Y and the

required natural transformation Egeo
G Y Z SG −→ Egeo

G Y ◦ ⊕.

Of course, the recognition principle of (1–13) and Theorem 1.14 applies to describe
the relationship between the G-spaces Y (V) and ΩV (Egeo

G Y )(V). The recognition
principle for pairings also adapts directly.
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Definition 1.26 Let X , Y , and Z be K∗ -G-spaces. A pairing

f : X Z Y −→ Z ◦ ⊕

is a natural transformation of continuous functors IG × IG −→ TG such that each
f : X (V)∧Y (W) −→ Z (V ⊕W) is a pairing as in Definition 10.2 and the following
diagram commutes for all U,V,W .

(1–27) X (U) ∧ Y (V) id∧i //

i∧id

��

f

))

X (U) ∧ Y (V ⊕W)

f

��

Z (U ⊕ V)
i

))
X (U ⊕W) ∧ Y (V)

f
// Z (U ⊕W ⊕ V)

Z (id⊕t)
// Z (U ⊕ V ⊕W)

This diagram expresses that the three composite natural transformations of functors
I 3

G −→ TG in sight agree.

The smash product of orthogonal G-spectra is obtained by first applying Day convo-
lution to the external smash product Z and then coequalizing the action of the sphere
G-spectrum on the two variables. See [21, II§3] for details.

Proposition 1.28 A pairing f : X Z Y −→ Z ◦ ⊕ of K∗ -G-spaces induces a map

Egeo
G f : Egeo

G X ∧ Egeo
G Y −→ Egeo

G Z

of orthogonal G-spectra that is given levelwise by specialization of Proposition 1.20.

Proof The definition of a pairing immediately implies that f induces an external
pairing

Egeo
G X Z Egeo

G Y −→ Egeo
G Z ◦ ⊕,

and the diagram (1–27) ensures that the resulting map from the Day convolution to
Egeo

G Z factors through the coequalizer defining Egeo
G X ∧ Egeo

G Y .

The suspension G-spectrum Σ∞G X of a based G-space X is given by the G-spaces
ΣVX ; its structure maps are the evident identifications ΣWΣVX ∼= ΣV⊕WX . The
unstable BPQ theorem of Theorem 1.21 leads to the following “geometric” version of
the BPQ theorem.
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Definition 1.29 For a based G-space X , define K∗X to be the K∗ -G-space given by
the KV -spaces KVX and the maps i : KVX −→ KV⊕WX induced by the map of operads
KV −→ KV⊕W obtained by sending embeddings e : V −→ V to e× id : V ×W −→
V ×W .

It is easily verified that K∗X is a K∗ -G-space and the pairings � of (1–18) prescribe
pairings

(1–30) � : K∗X ZK∗Y −→ K∗(X ∧ Y) ◦ ⊕.

Theorem 1.31 (The geometric BPQ theorem for orthogonal suspension G-spectra)
For based G-spaces X , there is a natural equivalence

ω : Σ∞G X −→ Egeo
G K∗X

such that the following diagram commutes for based G-spaces X and Y .

Σ∞G X ∧ Σ∞G Y

∼=
��

ω∧ω // Egeo
G K∗X ∧ Egeo

G K∗Y

Egeo
G (�)
��

Σ∞G (X ∧ Y) ω
// Egeo

G K∗(X ∧ Y)

Proof The levelwise equivalence follows from Theorem 1.21. For the diagram, the
functor Σ∞G is left adjoint to the 0th G-space functor, and inspection of definitions
shows that the adjoint diagram starting with X ∧ Y commutes.

1.6 A configuration space model for free KV -spaces

The free KV -spaces KVX can be modelled more geometrically by configuration spaces.
To explain this, we first record the nonequivariant analogue in terms of the little cubes
operads, since that is relevant folklore which is not in the literature.

Consider the little n-cubes operads Cn and their associated monads Cn . Let J = (0, 1)
be the interior of I . We have the configuration spaces F(Jn, j) of j-tuples of distinct
points in Jn . Sending little n-cubes c : Jn −→ Jn to their center points c(1/2, · · · , 1/2)
gives a Σn -homotopy equivalence f : Cn(j) −→ F(Jn, j).

For based spaces X , we construct spaces FnX by replacing Cn(j) by F(Jn, j) in the
construction of CnX as the quotient of qCn(j)×Σj Xj by basepoint identifications; we
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now use the evident omit a point projections F(j, n) −→ F(j, n − 1) rather than the
analogous maps Cn(j) −→ Cn(j− 1). The maps f induce a homotopy equivalence

f : CnX −→ FnX.

That much has been known since [23].

The folklore observation is that although the F(Jn, j) do not form an operad, Cn acts
on FnX in such a way that f is a map of Cn -spaces. Indeed, we can evaluate little
n-cubes Jn −→ Jn on points of Jn to obtain maps

Cn(j)× F(Jn, j) −→ F(Jn, j),

and any reader of [23] will see how to proceed from there. Moreover, we have pairings

� : FmX ∧ FnY −→ Fm+n(X ∧ Y)

defined as in Definition 10.2 and Proposition 10.3, starting from the maps

F(Jn, j)× F(Jn, k) −→ F(Jn, jk)

that send (x, y), x = (x1, · · · , xj) and y = (y1, · · · , yk) to the set of pairs (xq, yr),
1 ≤ q ≤ j and 1 ≤ r ≤ k , ordered lexicographically.

Nonequivariantly, we put this together to obtain an analogue of Theorem 1.31, using
the evident variant of the geometric recognition principle that is obtained from the
operads Cn as n varies. Here it is more natural to use symmetric spectra rather than
orthogonal spectra, since it is natural to deal with sequences rather than inner product
spaces. The relationship between the little cubes operads and symmetric spectra is
explained in [21, §I.8], and we leave details of the relevant retooling of the previous
subsections to the interested reader.

Theorem 1.32 (The configuration space BPQ theorem for symmetric spectra) For
based spaces X , there is a natural equivalence

ω : Σ∞X −→ EgeoF∗X

such that the following diagram commutes for based spaces X and Y .

Σ∞X ∧ Σ∞Y

∼=
��

ω∧ω // EgeoF∗X ∧ EgeoF∗Y

Egeo
G (�)
��

Σ∞(X ∧ Y) ω
// EgeoF∗(X ∧ Y)
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For fixed V , the discussion generalizes equivariantly to relate DVX or KVX to FVX
for based G-spaces X . In the case of KVX , we use the time 0 projections from Steiner
paths to embeddings V −→ V and the centerpoint map from EmbV (j) to F(V, j).
Letting V vary, we obtain the following equivariant version of Theorem 1.32.

Theorem 1.33 (The configuration space BPQ theorem for orthogonal G-spectra)
For based G-spaces X , there is a natural equivalence

ω : Σ∞G X −→ Egeo
G F∗X

such that the following diagram commutes for based G-spaces X and Y .

Σ∞G X ∧ Σ∞G Y

∼=
��

ω∧ω // Egeo
G F∗X ∧ Egeo

G F∗Y

Egeo
G (�)
��

Σ∞G (X ∧ Y) ω
// Egeo

G F∗(X ∧ Y)

2 The recognition principle for infinite loop G-spaces

The equivariant recognition principle shows how to recognize (genuine) G-spectra in
terms of category or space level information. It comes in various versions. We shall
give two modernized variants of the machine from [23], differing in their choice of
the output category of G-spectra. In contrast with the previous section, we are now
concerned with infinite loop space machines with input given by E∞ G-spaces (or
G-categories) defined over any (genuine) E∞ operad. A G-spectrum E is connective
if the negative homotopy groups of each of its fixed point spectra EH are zero, and all
infinite loop space machines take values in connective G-spectra.

As in [12], we let S , Sp, and Z denote the categories of orthogonal spectra [22],
Lewis-May spectra [20], and EKMM S-modules [9]. Similarly, we let GS , GSp and
GZ denote the corresponding categories of genuine G-spectra from [21], [20], and
again [21]. We start with a machine that lands in GS . It is related to but different
from the geometric machine of the previous section, and it is the choice preferred in
[12] and in the sequels [14, 15, 33]. The sphere G-spectrum SG in GS is cofibrant,
and so are the suspension G-spectra ΣGX of cofibrant based G-spaces X . We then
give the variant machine that lands in GSp or GZ , where every object is fibrant, and
give a comparison that illuminates homotopical properties of the first machine via its
comparison with the second.
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2.1 Equivariant E∞ operads

Since operads make sense in any symmetric monoidal category, we have operads of
categories, spaces, G-categories, and G-spaces. Operads in GU were first used in [20,
VII]. Although we are only interested in finite groups G in this paper, the following
definition makes sense for any topological group G and is of interest in at least the
generality of compact Lie groups.

Definition 2.1 An E∞ operad CG of G-spaces is an operad in the cartesian monoidal
category GU such that CG(0) is a contractible G-space and the (G×Σj)-space CG(j)
is a universal principal (G,Σj)-bundle for each j ≥ 1. Equivalently, for a subgroup
Λ of G × Σj , the Λ-fixed point space CG(j)Λ is contractible if Λ ∩ Σj = {e} and is
empty otherwise. We say that CG is reduced if CG(0) is a point.

As is usual in equivariant bundle theory, we think of G as acting from the left and Σj as
acting from the right on the spaces CG(j). These actions must commute and so define
an action of G×Σj . We shall say nothing more about equivariant bundle theory except
to note the following parallel. In [23], an operad C of spaces was defined to be an
E∞ operad if C (j) is a free contractible Σj -space. Effectively, C (j) is then a universal
principal Σj -bundle. If we regard each C (j) as a G-trivial G-space, such an operad
is called a naive E∞ operad of G-spaces. Analogously, we have defined genuine E∞
operads by requiring the CG(j) to be universal principal (G,Σj)-bundles. That dictates
the appropriate homotopical properties of the CG(j), and it is only those homotopical
properties and not their bundle theoretic consequences that concern us in the theory
of operads. The bundle theory implicitly tells us which homotopical properties are
relevant to equivariant infinite loop space theory. Our default is that E∞ operads are
understood to be genuine unless otherwise specified.

We give two well-known examples. Recall that a complete G-universe U is a G-inner
product space that contains countably many copies of each irreducible representation of
G; a canonical choice is the sum of countably many copies of the regular representation
ρG .

Example 2.2 (The Steiner operad KU ) Inclusions V ⊂ W induce inclusions of
operads KV −→ KW . Let KU be the union over V ⊂ U of the operads KV , where U
is a complete G-universe.3 This is the infinite Steiner operad of G-spaces. It is an E∞
operad since Σj -acts freely on KU(j) and KU(j)Λ is contractible if Λ ⊂ G × Σj and

3We denoted the nonequivariant version as C in [31], but we prefer the notation KU here.
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Λ ∩ Σj = e. Indeed, such a Λ is isomorphic to a subgroup H of G via the projection
G×Σj −→ G, and if we let H act on U through the isomorphism, then U is a complete
H -universe and UH is isomorphic to R∞ . Therefore, by the proof of Proposition 1.5
KU(j)Λ is equivalent to the configuration space F(R∞, j), which is contractible.

Example 2.3 (Linear isometries operad) The equivariant linear isometries operad
LU was first used in [20, VII§1] and is defined just as nonequivariantly (e.g. [31,
§2]). The (G × Σj)-space LU(j) is the space of linear isometries Uj −→ U , with
G acting by conjugation, and LU is an E∞ operad of G-spaces if U is a complete
G-universe. Indeed, Σj acts freely on LU(j) and LU(j)Λ is contractible if Λ ⊂ G×Σj

and Λ ∩ Σj = e. If Λ ∼= H and H acts on U through the isomorphism, then U is a
complete H -universe and LU(j)H is isomorphic to the space of H -linear isometries
Uj −→ U . The usual argument that L (j) is contractible (e.g. [26, I.1.2]) adapts to
prove that this space is contractible.

We define E∞ -operads in G-categories in §3.3 and give examples in §4.2 and §7.

Remark 2.4 We will encounter one naturally occuring operad that is not reduced.
When an operad C acts on a space X via maps θi and we choose points ci ∈ C (i), we
have a map θ0 : C (0) −→ X and the relation

θ2(c2; θ0(c0), θ1(c1, x)) = θ1(γ(c2; c0, c1), x)

for x ∈ X . When the C (i) are connected, this says that θ0(c0) is a unit element for the
product determined by c2 . Reduced operads give a single unit element. The original
definition [23, 1.1] required operads to be reduced.

Lemma 2.5 Let CG be an E∞ operad of G-spaces and define C = (CG)G . Then C

is an E∞ operad of spaces. If Y is a CG -space, then YG is a C -space.

Proof (CG)G is an operad since the fixed point functor commutes with products, and
it is an E∞ operad since the space CG(j)G is contractible and Σj -free.

2.2 The infinite loop space machine: orthogonal G-spectrum version

In brief, we have a functor EG = ES
G that assigns an orthogonal G-spectrum EGY to

a G-space Y with an action by some chosen E∞ operad CG of G-spaces. We want
to start with CG -algebras and still exploit the Steiner operads, and we use the product
of operads trick recalled in §2.3 to allow this; compare [31, §9]. For simplicity of
notation, define CV = CG ×KV . We use the following observation.
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Lemma 2.6 If CG is an E∞ operad of G-spaces, then the projection

CV (j) = CG(j)×KV (j) −→ KV (j)

is a (G× Σj)-equivalence for each j.

Proof We must show that for each subgroup Λ ⊆ G× Σj , the induced map on fixed
points

CG(j)Λ ×KV (j)Λ −→ KV (j)Λ

is an equivalence. If Λ ∩ {e} × Σj = {e}, then C (j)Λ ' ∗, so the projection is an
equivalence. If Λ contains a non-identity permutation, then the fixed points on both
sides are empty. Both sides are trivial if j = 0.

We view CG -spaces as CV -spaces for all V via the projections CV −→ CG , and CV

acts on V -fold loop spaces via its projection to KV . Write CV for the monad on based
G-spaces associated to the operad CV . The categories of CV -spaces and CV -algebras
are isomorphic. As in the V -fold delooping argument, the unit η : Id −→ ΩVΣV of
the monad ΩVΣV and the action θ of CV on the G-spaces ΩVΣVX induce a composite
natural map

αV : CVX
CVη //CVΩVΣVX θ //ΩVΣVX,

and αV : CV −→ ΩVΣV is a map of monads whose adjoint defines a right action of
CV on the functor ΣV .

Definition 2.7 (From CG -spaces to orthogonal G-spectra) Let Y be a CG -space.
We define an orthogonal G-spectrum EGY , which we denote by ES

G Y when necessary
for clarity. Let

EGY(V) = B(ΣV ,CV ,Y).

Using the action of isometric isomorphisms on the KV and ΣV , as in the previous
section but starting with Y regarded as a constant IG -functor, as we can since its
action by CG is independent of V , this defines an IG -space. The structure G-map

σ : ΣWEGY(V) −→ EGY(V ⊕W)

is the composite

ΣWB(ΣV ,CV ,Y) ∼= B(ΣV⊕W ,CV ,Y) −→ B(ΣV⊕W ,CV⊕W ,Y).

obtained by commuting ΣW with geometric realization and using the map of monads
CV −→ CV⊕W induced by the inclusion i : KV −→ KV⊕W .

Algebraic & Geometric Topology XX (20XX)



1028 B. Guillou and J. P. May

Just as in (1–13), we have the diagram of CV -spaces and CV -maps

(2–8) Y B(CV ,CV ,Y)εoo α //B(ΩVΣV ,CV ,Y)
ζ //ΩVB(ΣV ,CV ,Y),

where α = B(α, id, id). Theorem 1.14 applies verbatim, with the same proof. We let
ξV = ζ ◦ α ◦ ν , where ν is the canonical homotopy inverse to ε. Then the following
diagram commutes, where σ̃ is adjoint to σ .

Y
ξV

zz

ξV⊕W

''
ΩVEGY(V)

ΩV σ̃
// ΩV⊕WEGY(V ⊕W)

Therefore ΩV σ̃ is a weak equivalence if V ⊃ R. If we replace EGY by a fibrant
approximation REGY , there results a group completion ξ : Y −→ (REGY)0 . We shall
shortly use the category Sp to give an explicit way to think about this.

Remark 2.9 Since K0(0) = {∗}, K0(1) = {id}, and K0(j) = ∅ for j > 1, C0 is the
identity functor if CG(0) = {∗} and CG(1) = {id}. In that case

EGY(0) = B(Σ0,C0,Y) = B(Id, Id,Y) ∼= Y.

We comment on an alternative point of view not taken above but relevant below.
We can use the product of operads trick from [23] to replace a CG -space Y by the
equivalent KU -space B(KU,CU,Y), where CU is the monad associated to the E∞
operad CU = CG ×KU and from there only use Steiner operads. However, there is
a catch. A KU -algebra Y is a KV -algebra by restriction, but the constant IG -space
Y is not a K∗ -G-space in the sense of Definition 1.24 since conjugation by isometries
is not compatible with the inclusions used to define KU . Therefore the B(ΣV ,KV ,Y)
do not define an IG -space. However, ignoring isometries, they do define a coordinate
free G-prespectrum, as defined in [21, II.1.2]. That can be viewed as the starting point
for the alternative machine we construct next.

2.3 The infinite loop space machine: Lewis-May G-spectrum version

A Lewis-May (henceforward LM) G-spectrum E consists of G-spaces EV for each
finite dimensional sub G-inner product space V in a complete G-universe U together
with G-homeomorphisms EV −→ ΩW−VEW whenever V ⊂ W . For a based G-space
X we define QGX = colim ΩVΣVX . The suspension LM G-spectrum Σ∞G X has V th
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G-space QGΣVX , and the functor Σ∞G is left adjoint to the zeroth space functor Ω∞G .
We sometimes change notation to Σ∞U and Ω∞U , allowing change of universe. While
GSp is not symmetric monoidal, that is rectified by passage to the SG -modules of [9],
at the inevitable price of losing the adjunction; see [31, §11].

The operad KU acts on Ω∞U E for any LM G-spectrum E . One could not expect such
precise structure when working with orthogonal G-spectra. Nonequivariantly, such
highly structured infinite loop spaces are central to calculations, and it is to be hoped
that the equivariant theory will eventually reach a comparable state. Therefore it is
natural to want an infinite loop space machine that lands in the category GSp of LM
G-spectra.

The operad KU plays a privileged role. As noted above, if CG is an E∞ G-operad, we
can convert CG -spaces to equivalent KU -spaces, so that it suffices to build a machine
for KU -spaces. On the other hand, CG spaces inherit actions of CU = CG ×KU ,
so that it suffices to build a machine for CU -spaces. To encompass both of these
approaches in a single machine, we suppose given a map (necessarily an equivalence)
of E∞ G-operads OG −→ KU . We can take OG = CU or OG = KU , but both here
and in [14, 15, 33], our primary interest is in CU . Formally, the equivariant theory now
works in the same way as the nonequivariant theory, and we follow the summary in
[31, §9]. An early version of this machine is in the paper [5] of Costenoble and Waner.

Scholium 2.10 We must use the Steiner operads KV and KU rather than the little
disks operads DV and DU , which was the choice in [5], and our notion of an E∞
operad of G-spaces should replace the notion of a complete operad used there.

Definition 2.11 (From OG -spaces to Lewis-May G-spectra) Let Y be an OG -space.
We define a LM G-spectrum EGY , which we denote by ESp

G when necessary for clarity,
by

EGY = B(Σ∞G ,OG,Y).

Here OG acts on Σ∞G through its projection to KU .

We have the diagram of OG -spaces and OG -maps
(2–12)

Y B(OG,OG,Y)εoo αU //B(QG,OG,Y)
ζ //Ω∞G B(Σ∞G ,OG,Y) = Ω∞G EGY,

where αU = B(αU, id, id). As explained nonequivariantly in [31, §9], the following
analogue of Theorem 1.14 holds.
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Theorem 2.13 Let OG be an E∞ G-operad with a map of operads OG −→ KU . The
following statements hold for an OG -space Y .

(i) The map ε is a G-homotopy equivalence with a natural homotopy inverse ν .

(ii) The map αU is an equivalence when Y is connected and is a group completion
otherwise.

(iii) The map ζ is an equivalence.

Therefore the composite

ξ = ζ ◦ αU ◦ ν : Y −→ Ω∞G EGY

is an equivalence if Y is grouplike and is a group completion otherwise.

We shall not pursue this variant of the recognition principle in further detail, but we
reemphasize that its much tighter relationship with space level data may eventually aid
equivariant calculation. However, it is worth stating the alternative geometric version
of the stable BPQ theorem to which it leads. Here we specialize to the case OG = KU .
This allows us to use the pairings of Steiner operads described in §1.4, which are
not available for other E∞ operads. By passage to colimits, we obtain the following
analogue of Proposition 1.17.

Proposition 2.14 For G-universes U and U′ , there is a unital, associative, and com-
mutative pairing

� : (KU,KU′) −→ KU⊕U′

of Steiner operads of G-spaces.

Passing to monads, we obtain a unital, associative, and commutative system of pairings

(2–15) � : KUX ∧KU′Y −→ KU⊕U′(X ∧ Y).

Passage to colimits from Lemma 1.19 gives the following analogue of that result.

Lemma 2.16 The following diagram commutes.

KUX ∧KUY � //

αU∧αU

��

KU⊕U(X ∧ Y)

αU⊕U

��
Ω∞U Σ∞U X ∧ Ω∞U Σ∞U Y ∧

// Ω∞U⊕UΣ∞U⊕U(X ∧ Y).
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The following recognition principle for pairings can by derived from Proposition 1.20
by passage to colimits or can be proven by the same argument as there. We note that
our definition of the machine EG depends on a choice of complete G-universe U , and
we sometimes write EU to indicate that choice.

Proposition 2.17 A pairing f : X ∧ Y −→ Z of a KU -space X and a KU -space Y to
a KU⊕U -space Z induces a map

Ef : EUX Z EUY −→ EU⊕UZ

of LM G-spectra indexed on U ⊕ U such that the following diagram commutes.

X ∧ Y
ξ∧ξ //

f
��

Ω∞U EUX ∧ Ω∞U EUY // Ω∞U⊕U(EUX Z EUY)

Ω∞U⊕UEf
��

Z
ξ

// Ω∞U⊕UEU⊕UZ

We can internalize the external smash product, as in [20], by choosing a linear isometry
φ : U ⊕ U −→ U . Then φ induces a change of universe functor φ∗ which allows us
to replace the right arrow by Ω∞U φ∗Ef . In the following result we can either stick with
Lewis-May G-spectra or pass to the SG -modules of [9, 21]. We interpret the smash
product according to choice.

Theorem 2.18 (The KU -space BPQ theorem for Lewis-May G-spectra) For based
G-spaces X , there is a natural equivalence

ω : Σ∞U X −→ EUKUX

such that the following diagram commutes for based G-spaces X and Y .

Σ∞U X ∧ Σ∞U Y

∼=
��

ω∧ω // EUKUX ∧ EUKUY

E(�)
��

Σ∞U (X ∧ Y) ω
// EUKU(X ∧ Y)

Sketch proof The first statement is the usual extra degeneracy argument [23, 9.8].
We comment on the diagram. In either GSp or GZ , it is an internalization of a
diagram of G-spectra indexed on U ⊕ U .

Σ∞U X Z Σ∞U Y

∼=
��

ωZω // EUKUX Z EUKUY

E(�)
��

Σ∞U⊕U(X ∧ Y) ω
// EU⊕UKU⊕U(X ∧ Y)
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The isomorphism on the left is trivial on the prespectrum level (indexing on inner
product G-spaces of the form V ⊕ W ) and follows on the spectrum level. After
passage to adjoints, to check commutativity it suffices to check starting from X ∧ Y on
the bottom left, where an inspection of definitions gives the conclusion. If in GSp,
this is internalized by use of a linear isometry φ : U ⊕ U −→ U . If in GZ , this
is internalized by use of the definition of the smash product in terms of the linear
isometries operad LU , as in [9, 21].

In fact, with the model theoretic modernization of the original version of the theory
that is given nonequivariantly in [1], one can redefine the restriction of EU to cofibrant
KU -spaces Y to be

EUY = Σ∞G ⊗KU Y,

where ⊗KU is the evident coequalizer. With that reinterpretation and taking X to be a
G-CW complex, EUKUX is actually isomorphic to Σ∞G X .

The nonequivariant statement is often restricted to the case Y = S0 . Then KUS0 is the
disjoint union of operadic models for the classifying spaces BΣj . Similarly, KUS0 is
the disjoint union of operadic models for the classifying G-spaces B(G,Σj).

2.4 A comparison of infinite loop space machines

We compare the S and Sp machines ES
G and ESp

G by transporting both of them to
the category GZ of SG -modules, following [21]. As discussed in [21, IV§4] with
slightly different notations, there is a diagram of Quillen equivalences

GP
L //

P

��

GSp
`

oo

F

��
GS

U

OO

N // GZ .
N#

oo

V

OO

Here GP is the category of coordinate-free G-prespectra. The left adjoint N is strong
symmetric monoidal, and the unit map η : X −→ N#NX is a weak equivalence for all
cofibrant orthogonal G-spectra X . It can be viewed as a fibrant approximation in the
stable model structure on GS . The pair (N,N#) is a Quillen equivalence with the
positive stable model structure on GS ; see [21, III§§4,5].
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We can compare machines using the diagram. In fact, by a direct inspection of
definitions, we see the following result, which is essentially a reinterpretation of the
original construction of [23] that becomes visible as soon as one introduces orthogonal
spectra.

Lemma 2.19 The functor ESp
G from CG -spaces to the category GSp of Lewis-May

G-spectra is naturally isomorphic to the composite functor L ◦ U ◦ ES
G .

As explained in [21, IV§5], there is a monad L on GSp and a category GSp[L] of
L-algebras. The left adjoint F in the diagram is the composite of left adjoints

L : GSp −→ GSp[L] and J : GSp[L] −→ GZ .

The functor L ◦ U : GS −→ GSp lands naturally in GSp[L], so that we can define

M = J ◦ L ◦ U : GS −→ GZ .

By [21, IV.5.2 and IV.5.4], M is lax symmetric monoidal and there is a natural lax
symmetric monoidal map α : NX −→ MX that is a weak equivalence when X is
cofibrant. Effectively, we have two infinite loop space machines landing in GZ ,
namely N◦ES

G and J◦ESp
G . In view of the lemma, the latter is isomorphic to M◦ES

G ,
hence

α : N ◦ ES
G −→M ◦ ES

G
∼= J ◦ ESp

G

compares the two machines, showing that they are equivalent for all practical purposes.
Homotopically, these categorical distinctions are irrelevant, and we can use whichever
machine we prefer, deducing properties of one from the other.

2.5 Examples of E∞ spaces and E∞ ring spaces

Many of the examples from the nonequivariant theory generalize directly to the equiv-
ariant setting. To illustrate the point of using varying E∞ operads and their natural
actions on spaces of interest, rather than just using KU , we focus on actions of the
linear isometries operad LU .

Nonequivariantly, taking U ∼= R∞ , a systematic account of naturally occurring exam-
ples of LU -spaces was already given in [26, §I.1]. It was revisited briefly in more
modern language [31, §2]. It includes the infinite classical groups O, SO, Spin, U ,
SU , Sp, their classifying spaces, constructed either using Grassmannian manifolds or
the standard classifying space functor B, and all of their associated infinite homoge-
neous spaces. All of these examples are grouplike, and all of them are given infinite
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loop spaces by application of the nonequivariant infinite loop space machine. The
discussion in [26, 31] was in terms of sub inner-product spaces V of a universe U . The
point to make here is that the entire exposition works verbatim equivariantly, with the
V being sub inner-product G-spaces of our complete G-universe U . We give a brief
account to show the idea.

As explained in [31, §2], an IG -FCP (functor with cartesian product) is a lax symmetric
monoidal functor IG −→ TG . We say that an IG -FCP is monoid-valued if it factors
through the category of equivariant topological monoids and monoid homomorphisms.
The classical groups all give group-valued IG -FCPs:

V 7→ O(V), V 7→ SO(V), V 7→ U(C⊗R V),V 7→ SU(C⊗R V), etc.

Any IG -FCP X extends to a functor on all isometries (not just isometric isomorphisms)
as follows: an isometry α : V −→ W yields an identification W ∼= α(V) ⊕ α(V)⊥ .
Then X(α) is the composite

X(V)
X(α)×0−−−−→ X(α(V))× X(α(V)⊥)→ X(α(V)⊕ α(V)⊥).

Then the colimit X(U) = colimV X(V) inherits an action of LU . The classifying space
BF of a monoid-valued IG -FCP F is an IG -space, and the cited sources show that F
is equivalent to ΩBF as an LU -space when F is group-valued.

The formal structure of the operad pair (KU,LU) works the same way equivariantly
as nonequivariantly. It is an E∞ operad pair in the sense originally defined in [26,
VI.1.2] and reviewed in [31, §1] and, in more detail, [32, 4.2]. See §7.2 below for
an example of an operad pair in G-categories. The action of LU on KU is defined
nonequivariantly in [31, §3], and it works the same way equivariantly.

From here, multiplicative infinite loop space theory works equivariantly to construct
E∞ ring G-spectra from (KU,LU)-spaces, alias E∞ -ring G-spaces, in exactly the
same way as nonequivariantly [26, 31, 32]. In particular, for any LU -algebra X , the free
KU -algebra KUX+ is an E∞ ring G-space, where X+ is obtained from X by adjoining
an additive G-fixed basepoint 0. The group completion αU : KUX+ −→ QGX+ is
a map of E∞ ring G-spaces, and EGKUX+ is equivalent to Σ∞G X+ as E∞ ring
G-spectra.

As we intend to show elsewhere [2], the passage from category level data to E∞ -ring
G-spaces, in analogy with [28, 32], generalizes to equivariant multicategories.

We remark that the usual construction of Thom G-spectra, such as MOG and MUG ,
already presents them as E∞ ring G-spectra, without use of infinite loop space theory,
as was explained and generalized in [20, Chapter X].
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2.6 Some properties of equivariant infinite loop space machines

Many properties of the infinite loop space machine EG follow directly from the group
completion property, independent of how the machine is constructed, but it is nota-
tionally convenient to work with the machine ESp

G , for which ξ is a natural group
completion without any bother with fibrant approximation. The results apply equally
well to ES

G . It is plausible to hope that the group completion property actually charac-
terizes the machine up to homotopy, as in [34], but the proof there fails equivariantly.
A direct point-set level comparison of our machine with a new version of the Segal-
Shimakawa machine will be given in [33]. We illustrate with the following two results,
some version of which must hold for any equivariant infinite loop space machine EG .
The first says that it commutes with passage to fixed points and the second says that it
commutes with products, both up to weak equivalence.

Theorem 2.20 For CG -spaces Y , there is a natural map of spectra

φ : E(YG) −→ (EGY)G

that induces a natural map of spaces under YG

YG

ξ

zz

ξG

$$
Ω∞E(YG) // (Ω∞G EGY)G

in which the diagonal arrows are both group completions. Therefore the horizontal
arrow is a weak equivalence of spaces and φ is a weak equivalence of spectra.

Proof For based G-spaces X , we have natural inclusions CUG(XG) −→ (CUX)G and
Σ∞(XG) −→ (Σ∞G X)G . For G-spectra E , we have a natural isomorphism Ω∞(EG) ∼=
(Ω∞G E)G . This gives the required natural map of spectra

E(YG) = B(Σ∞,CUG ,YG)
φ //(B(Σ∞G ,CU,Y))G = (EGY)G

and the induced natural map of spaces under YG . Since the diagonal arrows in the
diagram are group completions, the horizontal arrow must be a homology isomorphism
and hence a weak equivalence. Since our spectra are connective, φ must also be a
weak equivalence.

Theorem 2.21 Let X and Y be CG -spaces. Then the map

EG(X × Y) −→ EGX × EGY

induced by the projections is a weak equivalence of G-spectra.
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Proof We are using that the product of CG -spaces is a CG -space, the proof of which
uses that the category of operads is cartesian monoidal. Working in GSp, the functor
Ω∞G commutes with products and passage to fixed points and we have the commutative
diagram

(X × Y)H ∼= XH × YH

ξH

uu

ξH×ξH

**
(Ω∞G EG(X × Y))H // (Ω∞G EGX)H × (Ω∞G EGY)H.

Since the product of group completions is a group completion, the diagonal arrows are
both group completions. Therefore the horizontal arrow is a weak equivalence. Since
our spectra are connective, the conclusion follows.

2.7 The recognition principle for naive G-spectra

We elaborate on Theorem 2.20. The functor E = Ee in that result is the nonequivariant
infinite loop space machine, which is defined using the product of the nonequivariant
Steiner operad K = KUG and the fixed point operad C = (CG)G . We may think of
UG as R∞ , without reference to U , and start with any (naive) E∞ operad C to obtain
a recognition principle for naive G-spectra, which are just spectra with G-actions.
Again we can use either the category S of orthogonal spectra or the category Sp
of Lewis-May spectra, comparing the two by mapping to the category Z of EKMM
S-modules, but letting G act on objects in all three. We continue to write E for this
construction since it is exactly the same construction as the nonequivariant one, but
applied to G-spaces with an action by the G-trivial E∞ operad C .

It is worth emphasizing that when working with naive G-spectra, there is no need to
restrict to finite groups. We can just as well work with general topological groups
G. The machine E still enjoys the same properties, including the group completion
property. Working with Lewis-May spectra, the adjunction (Σ∞,Ω∞) relating spaces
and spectra applies just as well to give an adjunction relating based G-spaces and
naive G-spectra. For based G-spaces X , the map α : CX −→ Ω∞Σ∞X is a group
completion of Hopf G-spaces by the nonequivariant special case since (CX)H = C(XH)
and (Ω∞Σ∞X)H = Ω∞Σ∞(XH).

Returning to finite groups, we work with Lewis-May spectra and G-spectra in the rest
of this section in order to exploit the more precise relationship between spaces and
spectra that holds in that context. However, the conclusions can easily be transported
to orthogonal spectra. We index genuine G-spectra on a complete G-universe U
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and we index naive G-spectra on the trivial G-universe UG ∼= R∞ . The inclusion
of universes i : UG −→ U induces a forgetful functor i∗ : GSpU −→ GSpUG

from
genuine G-spectra to naive G-spectra. It represents the forgetful functor from RO(G)-
graded cohomology theories to Z-graded cohomology theories. The functor i∗ has a
left adjoint i∗ . The following observations are trivial but important.

Lemma 2.22 The functors i∗Σ∞ and Σ∞G from based G-spaces to genuine G-spectra
are isomorphic.

Proof Clearly Ω∞ι∗ = Ω∞G , since both are evaluation at V = 0, hence their left
adjoints are isomorphic.

Remark 2.23 For G-spaces X , the unit of the (i∗, i∗) adjunction gives a natural
map Σ∞X −→ i∗i∗Σ∞X ∼= ι∗Σ∞G of naive G-spectra. It is very far from being an
equivalence, as the tom Dieck splitting theorem shows; see Theorem 6.5.

The inclusion of universes i : UG −→ U induces an inclusion of operads of G-spaces
ι : KUG −→ KU , where G acts trivially on KUG . The product of this inclusion and
the inclusion ι : C = (CG)G −→ CG is an inclusion

ι : CUG ≡ C ×KUG −→ CG ×KU ≡ CU.

Pulling actions back along ι gives a functor ι∗ from CU -spaces to CUG -spaces. The
following consistency statement is important since, by definition, the H -fixed point
spectrum EH of a genuine G-spectrum E is (i∗E)H and the homotopy groups of E are
πH
∗ (E) ≡ π∗(EH).

Theorem 2.24 Let Y be a CG -space. Then there is a natural weak equivalence of
naive G-spectra Eι∗Y −→ i∗EGY .

Proof Again, although we work with ESp
G , the conclusion carries over to ES

G . It is
easy to check from the definitions that, for G-spaces X , we have a natural commutative
diagram of G-spaces

CUGX α //

��

Ω∞Σ∞X

��
CUX α

// Ω∞G Σ∞G X.
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The vertical arrows both restrict colimits over representations to colimits over trivial
representations. Passing to adjoints, we obtain a natural commutative diagram

Σ∞G CUGX //

��

Σ∞X

��
Σ∞G CUX // Σ∞G X.

The composite gives a right action of CUG on Σ∞G that is compatible with the right
action of CU . Using the natural map Σ∞ −→ i∗Σ∞G of Remark 2.23, there results a
natural map

µ : Eι∗Y = B(Σ∞,CUG , ι∗Y) −→ B(i∗Σ∞G ,CU,Y) ∼= i∗EGY

of naive G-spectra. The following diagram commutes by a check of definitions.

Y

=

��

B(CUG ,CUG , ι∗Y)εoo B(α,id,id) //

��

B(Q,CUG ,Y)
ζ //

��

Ω∞B(Σ∞,CUG ,Y)

Ω∞µ

��
Y B(CG,CG,Y)εoo B(α,id,id) // B(QG,CU,Y)

ζ // Ω∞G B(Σ∞G ,CU,Y).

Here the right vertical map is the map of zeroth spaces given by µ. Replacing the maps
ε with their homotopy inverses, the horizontal composites become group completions.
Therefore Ω∞µ is a weak equivalence, hence so is µ.

We also have the corresponding statement for the left adjoint i∗ of i∗ . In effect, it
gives a space level construction of the change of universe functor i∗ on connective
G-spectra. We need a homotopically well-behaved version of the left adjoint of the
functor ι∗ from C -spaces to CG -spaces, and we define it by ι!X = B(CG,C,X).

Theorem 2.25 Let X be a C -space. Then there is a natural weak equivalence of
genuine G-spectra EG(i!X) ' i∗E(X).

We give the proof in §11, using a construction that is of independent interest.

3 Categorical preliminaries on classifying G-spaces and G-
operads

We recall an elementary functor Cat(EG,−) from G-categories to G-categories from
our paper [13] with Mona Merling. We explored this functor in detail in the context of
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equivariant bundle theory in [13], and we refer the reader there for proofs. In §4, we
shall use it to define a certain operad PG of G-categories. The PG -algebras will be
the genuine permutative G-categories.

3.1 Chaotic topological categories and equivariant classifying spaces

For (small) categories A and B , we let Cat(A ,B) denote the category whose objects
are the functors A −→ B and whose morphisms are the natural transformations
between them. When B has a right action by some group Π, then Cat(A ,B) inherits
a right Π-action. When a group G acts from the left on A and B , Cat(A ,B)
inherits a left G-action by conjugation on objects and morphisms. Then GCat(A ,B)
is alternative notation for the G-fixed category Cat(A ,B)G of G-functors and G-
natural transformations. We have the G-equivariant version of the standard adjunction

(3–1) Cat(A ×B,C ) ∼= Cat(A ,Cat(B,C )).

Definition 3.2 For a space X , the chaotic (topological) category EX has object space
X , morphism space X × X , and structure maps I , S , T , and C given by I(x) = (x, x),
S(y, x) = x , T(y, x) = y, and C((z, y), (y, x)) = (z, x). For any point ∗ ∈ X , the map
η : X −→ X × X specified by η(x) = (∗, x) is a continuous natural isomorphism from
the identity functor to the trivial functor EX −→ ∗ −→ EX , hence EX is equivalent to
∗. When X = G is a topological group, EG is isomorphic to the translation category
of G, but the isomorphism encodes information about the group action and should not
be viewed as an identification; see [13, 1.7]. We say that a topological category with
object space X is chaotic if it is isomorphic to EX .

Definition 3.3 Without changing notation, we regard a topological group Π as a
topological category with a single object ∗ and morphism space Π, with composition
given by multiplication. Then Π is isomorphic to the orbit category EΠ/Π, where
Π acts from the right on EΠ via right multiplication on objects and diagonal right
multiplication on morphisms. The resulting functor p : EΠ −→ Π is given by the
trivial map Π −→ ∗ of object spaces and the map p : Π×Π −→ Π×Π/Π ∼= Π on
morphism spaces specified by p(τ, σ) = τσ−1 .

Theorem 3.4 [13, 2.7] For a G-space X and a topological group Π, regarded as a
G-trivial G-space, the functor p : EΠ −→ Π induces an isomorphism of topological
G-categories

ξ : Cat(EX, EΠ)/Π −→ CatG(EX,Π).
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Therefore, passing to G-fixed point categories,

(Cat(EX, EΠ)/Π)G ∼= Cat(EX,Π)G ∼= Cat(EX/G,Π).

The last isomorphism is clear since G acts trivially on Π. Situations where G is
allowed to act non-trivially on Π are of considerable interest, as we shall see in §4.4,
but otherwise they will only appear peripherally in this paper. The paper [13] works
throughout in that more general context. The previous result will not be used directly,
but it is the key underpinning for the results of the next section.

3.2 The functor Cat(EG,−)

The functor Cat(EG,−) from G-categories to G-categories is a right adjoint (3–1),
hence it preserves limits and in particular products. The projection EG −→ ∗ to the
trivial G-category induces a natural map

(3–5) ι : A = Cat(∗,A ) −→ Cat(EG,A ).

The map ι is not an equivalence of G-categories in general [13, 4.19], but the functor
Cat(EG,−) is idempotent in the sense that the following result holds.

Lemma 3.6 For any G-category A ,

ι : Cat(EG,A ) −→ Cat(EG,Cat(EG,A ))

is an equivalence of G-categories.

Proof This follows from the adjunction (3–1) using that the diagonal EG −→ EG×EG
is an equivalence with inverse given by either projection and that the specialization of
ι here is induced by the first projection.

Lemma 3.7 [13, 3.7] Let Λ be a subgroup of G × Π. The Λ-fixed category
Cat(EG, EΠ)Λ is empty if Λ ∩Π 6= e and is nonempty and chaotic if Λ ∩Π = e.

With G acting trivially on Π, let H1(G; Π) denote the set of isomorphism classes of
homomorphisms α : G −→ Π. Equivalently, it is the set of Π-conjugacy classes of
subgroups Λ = {(g, α(g)) | g ∈ G} of G× Π. Define Πα ⊂ Π to be the subgroup of
elements σ that commute with α(g) for all g ∈ G.

Theorem 3.8 [13, 4.14, 4.18] For H ⊂ G, The H -fixed category Cat(EG,Π)H is
equivalent to the coproduct of the groups Πα (regarded as categories), where the
coproduct runs over [α] ∈ H1(H; Π).
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Definition 3.9 Define E(G,Π) = |Cat(EG, EΠ)| and B(G,Π) = |Cat(EG,Π)|. Let

p : E(G,Π) −→ B(G,Π)

be induced by the passage to orbits functor EΠ −→ .

Theorem 3.10 [13, 3.11, 4.23, 4.24] Let Π be a discrete or compact Lie group and
let G be a discrete group. Then p : E(G,Π) −→ B(G,Π) is a universal principal
(G,Π)-bundle. For a subgroup H of G,

B(G,Π)H '
∐

B(Πα),

where the union runs over [α] ∈ H1(H; Π).

3.3 E∞ operads of G-categories

The definition of an E∞ -operad of G-spaces given in §2.1 has the following categorical
analogue.

Definition 3.11 An E∞ operad OG of (topological) G-categories is an operad in the
cartesian monoidal category GCat such that |OG| is an E∞ operad of G-spaces. We
say that OG is reduced if OG(0) is the trivial category. In practice, the OG(j) are
groupoids.

The proof of Lemma 2.5 works just as well to give the following analogue.

Lemma 3.12 Let OG be an E∞ operad of G-categories. Then O = (OG)G is an E∞
operad of categories. If A is an OG -category, then A G is an O -category.

4 Categorical philosophy: what is a permutative G-category?

4.1 Naive permutative G-categories

We have a notion of a monoidal category A internal to a cartesian monoidal category
V . It is a category internal to V together with a coherently associative and unital
product A × A −→ A . It is strict monoidal if the product is strictly associative
and unital. It is symmetric monoidal if it has an equivariant symmetry isomorphism
satisfying the usual coherence properties. A functor F : A −→ B between symmetric
monoidal categories is strict monoidal if F(A ⊗ A′) = FA ⊗ FA′ for A,A′ ∈ A and
FI = J , where I and J are the unit objects of A and B .

A permutative category is a symmetric strict monoidal category.4 Taking V to be U ,
4In interesting examples, the product cannot be strictly commutative.
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these are the topological permutative categories. Taking V to be GU , these are the
naive topological permutative G-categories.

Nonequivariantly, there is a standard E∞ operad of spaces that is obtained by applying
the classifying space functor to an E∞ operad P of categories. The following
definition goes back to Barratt and Eccles, thought of simplicially [3], and to [24],
thought of categorically.

Definition 4.1 We define an E∞ operad P of categories. Let P(j) = EΣj . Since Σj

acts freely and EΣj is chaotic, the classifying space |P(j)| is Σj -free and contractible,
as required of an E∞ operad. The structure maps

γ : EΣk × EΣj1 × · · · × EΣjk −→ EΣj,

where j = j1 + · · · + jk , are dictated on objects by the definition of an operad. If we
view the object sets of the P(j) as discrete categories (identity morphisms only), then
they form the associativity operad M .

We can define M -algebras and P -algebras in Cat or in GCat . In the latter case, we
regard M and P as operads with trivial G-action. The following result characterizes
naive permutative G-categories operadically. The proof is easy [24].

Proposition 4.2 The category of strict monoidal G-categories and strict monoidal G-
functors is isomorphic to the category of M -algebras in GCat . The category of naive
permutative G-categories and strict symmetric monoidal G-functors is isomorphic to
the category of P -algebras in GCat .

The term “naive” is appropriate since naive permutative G-categories give rise to naive
G-spectra on application of an infinite loop space machine. Genuine permutative G-
categories need more structure, especially precursors of transfer maps, to give rise to
genuine G-spectra. Nonequivariantly, there is no distinction.

4.2 Genuine permutative G-categories

The following observation will play a helpful role in our work. Recall the natural map
ι : A −→ Cat(EG,A ) of (3–5).

Lemma 4.3 For any space X regarded as a G-trivial G-space, ι : EX −→ Cat(EG, EX)
is the inclusion of the G-fixed category GCat(EG, EX).
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Proof Since EX is chaotic, functors EG −→ EX are determined by their object map
G −→ X and are G-fixed if and only if the object map factors through G/G = ∗.

Definition 4.4 Let PG be the (reduced) operad of G-categories whose jth G-category
is PG(j) = Cat(EG,P(j)), where P(j) = EΣj is viewed as a G-category with trivial
G-action and is given its usual right Σj -action. The unit in PG(1) is the unique functor
from EG to the trivial category P(1) = PG(1). The structure maps γ of PG are
induced from those of P , using that the functor Cat(EG,−) preserves products. By
Theorem 3.10, PG is an E∞ operad of G-categories. The natural map ι of (3–5)
induces an inclusion ι : P = (PG)G −→PG of operads of G-categories.

Definition 4.5 A genuine permutative G-category is a PG -algebra in GCat . A map
of genuine permutative G-categories is a map of PG -algebras.

We usually call these PG -categories. We have an immediate source of examples.
Let ι∗ be the functor from genuine permutative G-categories to naive permutative
G-categories that is obtained by restricting actions by PG to its suboperad P .

Proposition 4.6 The action of P on a naive permutative G-category A induces an
action of PG on Cat(EG,A ). Therefore Cat(EG,−) restricts to a functor from naive
permutative G-categories to genuine permutative G-categories.

Proof This holds since the functor Cat(EG,−) preserves products.

Proposition 4.7 The map ι of (3–5) restricts to a natural map A −→ ι∗Cat(EG,A )
of naive permutative G-categories, and ι is an equivalence when A = ι∗Cat(EG,B)
for a naive permutative G-category B .

Proof Since ι is induced by the projection EG −→ E{e} = ∗, the first claim is clear,
and the second holds by Lemma 3.6.

As noted before, the map ι : A −→ ι∗Cat(EG,A ) is not an equivalence in general
[13, 4.19]. The PG -categories of interest in this paper are of the form Cat(EG,A )
for a naive permutative G-category A . In fact, we do not yet know how to construct
other examples, although we believe that they exist.

Remark 4.8 Shimakawa [45, p. 256] introduced the E∞ operad PG under the name
D and demonstrated the first part of Proposition 4.6.
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Remark 4.9 One might hope that (Cat(EG,−), ι∗) is an adjoint pair. However,
regarding ι∗ monadically as the forgetful functor from PG -algebras to P-algebras,
its left adjoint is the coend that sends a naive permutative G-category A to the
genuine permutative G-category PG ⊗P A , which is the coequalizer in GCat of the
maps PGPA // // PGA induced by the action map PA −→ A and by the map
PGP −→ PGPG −→ PG induced by the inclusion P −→ PG and the product on PG .
The universal property of the coequalizer gives a natural map

ι̃ : PG ⊗P A −→ Cat(EG,A )

of genuine permutative G-categories that restricts to ι on A , but ι̃ is not an isomor-
phism. We shall say a bit more about this in Remark 4.20.

4.3 E∞ G-categories

We can generalize the notion of a genuine permutative G-category by allowing the use
of E∞ operads other than PG . In fact, thinking as algebraic topologists rather than
category theorists, there is no need to give the particular E∞ operad PG a privileged
role.

Definition 4.10 An E∞ G-category A is a G-category together with an action of
some E∞ operad OG of G-categories. The classifying space BA = |A | is then an
|OG|-space and thus an E∞ G-space.

We may think of E∞ G-categories as generalized kinds of genuine permutative G-
categories. The point of the generalization is that we have interesting examples of E∞
operads of G-categories with easily recognizable algebras. We shall later define E∞
operads VG , V ×G , and WG that are interrelated in a way that illuminates the study of
multiplicative structures.

Observe that PG -algebras, like nonequivariant permutative categories, have a canon-
ical product, whereas E∞ G-categories over other operads do not. The general phi-
losophy of operad theory is that algebras over an operad C in any suitable category
V have j-fold operations parametrized by the objects C (j). Homotopical properties
of C relate these operations. In general, in an E∞ space, there is no preferred choice
of a product on its underlying H -space, and none is relevant to the applications; E∞
G-categories work similarly.

Remark 4.11 Symmetric monoidal categories occur more often “in nature” than per-
mutative categories. We have not specified a notion of a genuine symmetric monoidal
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G-category in this paper. One approach is to apply the construction Cat(EG,−) to
the tree operad that defines symmetric monoidal categories. Another approach, which
we find more useful, is to define a genuine symmetric monoidal G-category to be a
pseudoalgebra over PG . That approach is developed and applied in the categorical
sequels [14, 15]. We shall not pursue the topic further here. A first comparison between
symmetric monoidal G-categories and (genuine) G-symmetric monoidal categories,
whose definition is a priori quite different, is given in Hill and Hopkins [18, Section
3.2], but work in progress shows that there is a good deal more to be said about that
comparison and about the comparison between these notions and Tambara functors
that is given in [18, Section 5.1].

Up to homotopy, any two choices of E∞ operads give rise to equivalent categories of
E∞ G-spaces. To see that, we apply the trick from [23] of using products of operads
to transport operadic algebras from one E∞ operad to another. The product of operads
C and D in any cartesian monoidal category V is given by

(C ×D)(j) = C (j)×D(j),

with the evident permutations and structure maps. With the choices of V of interest
to us, the product of E∞ operads is an E∞ operad. The projections

C ←− C ×D −→ D

allow us to construct (C × D)-algebras in V from either C -algebras or D -algebras
in V , by pullback of action maps along the projections.

More generally, for any map µ : C −→ D of operads in V , the pullback functor
µ∗ from D -algebras to C -algebras has a left adjoint pushforward functor µ! from
C -algebras to D -algebras. One can work out a homotopical comparison model cate-
gorically. Pragmatically, use of the two-sided bar construction as in [23, 31] gives all
that is needed. One redefines µ!X = B(D,C,X), where C and D are the monads whose
algebras are the C -algebras and D -algebras.5 In spaces, or equally well G-spaces,
µ∗ and µ! give inverse equivalences of homotopy categories between C -algebras and
D -algebras when C and D are E∞ -operads.

Starting with operads in Cat or in GCat we can first apply the classifying space
functor and then apply this trick. The conclusion is that all E∞ categories and E∞
G-categories give equivalent inputs for infinite loop space machines. In particular, for
example, letting OG , PG , and OG × PG denote the monads in the category of G-spaces
whose algebras are |OG|-algebras, |PG|-algebras, and |OG ×PG|-algebras, we see

5Of course, this is an abuse of notation, since µ! here is really a derived functor.
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that after passage to classifying spaces, every PG -algebra Y determines an OG -algebra
X = B(OG,OG × PG,Y) such that X and Y are weakly equivalent as (OG × PG)-
algebras (and conversely). This says that for purposes of equivariant infinite loop space
theory, PG and any other E∞ operad OG can be used interchangeably, regardless of
how their algebras compare categorically.

4.4 Equivariant algebraic K -theory

The most interesting non-equivariant permutative categories are given by categories
A =

∐
Πn , where {Πn|n ≥ 0} is a sequence of groups (regarded as categories with a

single object) and where the permutative structure is given by an associative and unital
system of pairings Πm × Πn −→ Πm+n . Then the pairings give the classifying space
BA =

∐
BΠn a structure of topological monoid, and one definition of the algebraic

K -groups of A is the homotopy groups of the space ΩB(BA ).

Equivariantly, it is sensible to replace the spaces BΠn by the classifying G-spaces
B(G,Πn) and proceed by analogy. This definition of equivariant algebraic K -groups
was introduced and studied calculationally in [10]. It is the equivariant analogue of
Quillen’s original definition in terms of the plus construction. With essentially the same
level of generality, the analogue of Quillen’s definition in terms of the Q-construction
has been studied by Dress and Kuku [7, 19]. Shimada [46] has given an equivariant
version of Quillen’s “plus = Q” theorem in this context.

Regarding A as a G-trivial naive permutative G-category, we see that the classifying
G-space of the genuine permutative G-category Cat(EG,A ) is the disjoint union
of classifying spaces B(G,Πn). Just as nonequivariantly, the functor ΩB can be
replaced by the zeroth space functor Ω∞G EG of an infinite loop G-space machine
EG . The underlying equivariant homotopy type is unchanged. Therefore, we may
redefine the algebraic K -groups to be the homotopy groups of the genuine G-spectrum
KGA ≡ EGBCat(EG,A ). Essentially the same definition is implicit in Shimakawa
[45], who focused on an equivariant version of Segal’s infinite loop space machine.
A different equivariant version of Segal’s machine is developed and compared to
Shimakawa’s in [33]. It is generalized categorically in [14, 15].

Applying the functor Cat(EG,−) to naive permutative G-categories A with non-
trivial G-actions gives more general input for equivariant algebraic K -theory than has
been studied in the literature. This allows for G-actions on the groups Πn , and we
then replace B(G,Πn) by classifying G-spaces B(G, (Πn)G) for the (G, (Πn)G)-bundles
associated to the split extensions Πn o G. Such classifying spaces are studied in [13].
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Alternative but equivalent constructions of the associated G-spectra KG(A ) are given
in §4.5 and §8.2 below. The resulting generalization of equivariant algebraic K -theory
is studied in [35].

4.5 The recognition principle for permutative G-categories

We may start with any E∞ operad OG of G-categories and apply the classifying space
functor to obtain an E∞ operad |OG| of G-spaces. If OG acts on a category A , then
|OG| acts on |A | = BA . We can replace |OG| by its product with the Steiner operads
KV or with the Steiner operad KU and apply the functor ES

G or ESp
G to obtain a

(genuine) associated G-spectrum, which we denote ambiguously by EG(BA ).

Definition 4.12 Define the (genuine) algebraic K -theory G-spectrum of an OG -
category A by KG(A ) = EG(BA ).

We might also start with an operad O of categories such that |O| is an E∞ operad of
spaces and regard these as G-objects with trivial action. Following up the previous
section, we then have the following related but less interesting notion.

Definition 4.13 Define the (naive) algebraic K -theory G-spectrum of an O -category
A by K(A ) = E(BA ).

Until §7, we restrict attention to the cases OG = PG and O = P , recalling that the
PG -categories are the genuine permutative G-categories, the P -categories are the
naive permutative G-categories, and the inclusion ι : P −→ PG induces a forgetful
functor ι∗ from genuine to naive permutative G-categories. Since the classifying
space functor commmutes with products, passage to fixed points, and the functors ι∗ ,
Theorems 2.20, 2.21, and 2.24 have the following immediate corollaries. The first was
promised in [12, Thm 2.2].

Theorem 4.14 For PG -categories A , there is a natural weak equivalence of spectra

K(A G) −→ (KGA )G.

Theorem 4.15 Let A and B be PG -categories. Then the map

KG(A ×B) −→ KGA ×KGB

induced by the projections is a weak equivalence of G-spectra.
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Theorem 4.16 For PG -categories A , there is a natural weak equivalence of naive
G-spectra Kι∗A −→ i∗KGA .

The algebraic K -groups of A are defined to be the groups

(4–17) KH
∗ A = πH

∗ (Kι∗A ) ∼= πH
∗ (KGA ).

We are particularly interested in examples of the form Cat(EG,A ), where A is a
naive permutative G-category. As noted in Proposition 4.6, we then have a natural
map ι : A −→ ι∗Cat(EG,A ) of naive permutative G categories. We can pass to
classifying spaces and apply the functor E to obtain a natural map

(4–18) KA
Kι //Kι∗Cat(EG,A )

µ

'
// i∗KGCat(EG,A ).

This map is a weak equivalence when ιH : A H −→ (ι∗Cat(EG,A ))H is an equivalence
of categories for all H ⊂ G. The following example where this holds is important in
equivariant algebraic K -theory.

Example 4.19 Let E be a Galois extension of F with Galois group G and let G
act entrywise on GL(n,E) for n ≥ 0. The disjoint union of the GL(n,E) is a naive
permutative G-category that we denote by GL(EG). Its product is given by the block
sum of matrices. Write GL(R) for the nonequivariant permutative general linear
category of a ring R. As we proved in [13, 4.20], Serre’s version of Hilbert’s Theorem
90 implies that

ιH : GL(EH) ∼= GL(EG)H −→ (ι∗Cat(EG,GL(EG))H

is an equivalence of categories for H ⊂ G. This identifies the equivariant algebraic
K -groups of E with the nonequivariant algebraic K -groups of its fixed fields EH .

Remark 4.20 In the list above of theorems about permutative categories, a conse-
quence of Theorem 2.25 is conspicuous by its absence. Letting ι!A ≡ PG ⊗P A

denote the left adjoint of ι∗ , as defined in Remark 4.9, one might hope that Bι!A is
equivalent as an |PG|-space to ι!BA for a naive permutative G-category A . We do
not know whether or not that is true.

5 The free |PG|-space generated by a G-space X

The goal of this section is to obtain a decomposition of the fixed point categories of
free permutative G-categories. This decomposition will be the crux of the proof of the
tom Dieck splitting theorem given in §5.2.
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5.1 The monads PG and PG associated to PG

Recall that PG is reduced. In fact, both PG(0) and PG(1) are trivial categories. As
discussed for spaces in [31, §4], there are two monads on G-categories whose algebras
are the genuine permutative G-categories. The unit object of an PG -category can be
preassigned, resulting in a monad PG on based G-categories, or it can be viewed as
part of the PG -algebra structure, resulting in a monad PG+ on unbased G-categories.
Just as in [31], these monads are related by

PG(A+) ∼= PG+A ,

where A+ = A q∗ is obtained from an unbased G-category A by adjoining a disjoint
copy of the trivial G-category ∗. Explicitly,

(5–1) PG(A+) =
∐
j≥0

PG(j)×Σj A j.

The term with j = 0 is ∗ and accounts for the copy of ∗ on the left. The unit η : A −→
PG(A+) identifies A with the term with j = 1. The product µ : PGPGA+ −→ PGA+

is induced by the operad structure maps γ . We are only concerned with based G-
categories that can be written in the form A+ .

Since we are concerned with the precise point-set relationship between an infinite loop
space machine defined on G-categories and suspension G-spectra, it is useful to think
of (unbased) G-spaces X as categories. Thus we also let X denote the topological
G-category with object and morphism G-space X and with I , S , T , and C all given
by the identity map X −→ X ; this makes sense for C since we can identify X ×X X
with X . We can also identify the classifying G-space |X| with X .

By specialization of (5–1), we have an identification of (topological) G-categories

(5–2) PG(X+) =
∐
j≥0

PG(j)×Σj Xj.

The following illuminating result gives another description of PG(X+).

Proposition 5.3 For G-spaces X , there is a natural isomorphism of genuine permu-
tative G-categories

PG(X+) =
∐

j

Cat(EG, EΣj)×Σj Xj −→
∐

j

Cat(EG, EΣj ×Σj Xj) = Cat(EG,P(X+)).
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Proof For each j and for (G× Σj)-spaces Y , such as Y = Xj , we construct a natural
isomorphism of (G× Σj)-categories

Cat(EG, EΣj)× Y −→ Cat(EG, EΣj × Y).

Here Y is viewed as the constant (G× Σj)-category at Y . The target is

Cat(EG, EΣj)× Cat(EG,Y).

Since there is a map between any two objects of EG but the only maps in Y are
identity maps iy : y −→ y for y ∈ Y , the only functors EG −→ Y are the constant
functors cy at y ∈ Y and the only natural transformations between them are the identity
transformations idy : cy −→ cy . Sending y to cy on objects and iy to idy on morphisms
specifies an identification of (G × Σj)-categories Y −→ Cat(EG,Y). The product of
the identity functor on Cat(EG, EΣj) and this identification gives the desired natural
equivalence. With Y = Xj , passage to orbits over Σj gives the jth component of the
claimed isomorphism of G-categories. It is an isomorphism of PG -categories since
on both sides the action maps are induced by the structure maps of the operad P .

Recall that we write PG for the monad on based G-spaces associated to the operad
|PG|. Thus PG(X+) is the free |PG|-space generated by the G-space X .

Proposition 5.4 For G-spaces X , there is a natural isomorphism

PG(X+) =
∐
j≥0

|PG(j)| ×Σj Xj ∼= |PGX+|.

Proof For a (G×Σj)-space Y viewed as a G-category, the nerve NY can be identified
with the constant simplicial space Y∗ with Yq = Y . The nerve functor N does not
commute with passage to orbits in general, but arguing as in [13, §2.3] we see that

N(PG(j)×Σj Y) ∼= (NPG(j))×Σj Y∗ = N(PG(j)×Σj NY).

Therefore the classifying space functor commutes with coproducts, products, and the
passage to orbits that we see here.

5.2 The identification of (PGX+)G

The functor | − | commutes with passage to G-fixed points, and we shall prove the
following identification. Let P denote the monad on nonequivariant based categories
associated to the operad P that defines permutative categories.
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Theorem 5.5 For G-spaces X , there is a natural equivalence of P -categories

PG(X+)G '
∏
(H)

P(EWH ×WH XH)+,

where (H) runs over the conjugacy classes of subgroups of G and WH = NH/H .

We are regarding P as the suboperad (PG)G of PG , and the identification of cate-
gories will make clear that the identification preserves the action by P . Of course,

(5–6) PG(X+)G =
∐
j≥0

(PG(j)×Σj Xj)G

and

(5–7) P(EWH ×WH XH)+ =
∐
k≥0

EΣk ×Σk (EWH ×WH XH)k.

We shall prove Theorem 5.5 by identifying both (5–6) and (5–7) with a small (but not
skeletal) model FG(X)G for the category of finite G-sets over X and their isomorphisms
over X . We give the relevant definitions and describe these identifications here, and
we fill in the easy proofs in §5.3 and §5.4.

A homomorphism α : G −→ Σj is equivalent to the left action of G on the set
j = {1, · · · , j} specified by g · i = α(g)(i) for i ∈ j. Similarly, an anti-homomorphism
α : G −→ Σj is equivalent to the right action of G on j specified by i · g = α(g)(i)
or, equivalently, the left action specified by g · i = α(g−1)(i); of course, if we set
α−1(g) = α(g)−1 , then α−1 is a homomorphism. We focus on homomorphisms and
left actions, and we denote such G-spaces by (j, α). When we say that A is a finite
G-set, we agree to mean that A = (j, α) for a given homomorphism α : G −→ Σj . That
convention has the effect of fixing a small groupoid GF equivalent to the groupoid of
all finite G-sets and isomorphisms of finite G-sets. By a j-pointed G-set, we mean a
G-set with j elements.

Definition 5.8 Let X be a G-space and j ≥ 0.

(i) Let FG(j) be the G-groupoid whose objects are the j-pointed G-sets A and
whose morphisms σ : A −→ B are the bijections, with G acting by conjugation.
Then FG(j)G is the category with the same objects and with morphisms the
isomorphisms of G-sets σ : A −→ B.

(ii) Let FG(j,X) be the G-groupoid whose objects are the maps (not G-maps)
p : A −→ X and whose morphisms f : p −→ q, q : B −→ X , are the bijections
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f : A −→ B such that q ◦ f = p; G acts by conjugation on all maps p, q,
and f . We view FG(j,X)G as the category of j-pointed G-sets over X and
isomorphisms of j-pointed G-sets over X .

(iii) Let FG =
∐

j≥0 FG(j) and FG(X) =
∐

j≥0 FG(j,X).

(iv) Let FP
G (j) be the full G-subcategory of G-fixed objects of PG(j)/Σj and let

FP
G (j,X) be the full G-subcategory of G-fixed objects of PG(j)×Σj Xj . Then

FP
G (j)G = (PG(j)/Σj)G and FP

G (j,X)G = (PG(j)×Σj Xj)G.

In §5.3, we prove that the right side of (5–6) can be identified with FG(X)G .

Theorem 5.9 There is a natural isomorphism of permutative categories

(PG(X+))G =
∐
j≥0

FP
G (j,X)G ∼=

∐
j≥0

FG(j,X)G = FG(X)G.

We will prove an equivariant variant of this result, before passage to fixed points, in
Theorem 9.6. In §5.4, we prove that the right side of (5–7) can also be identified
with FG(X)G . At least implicitly, this identification of fixed point categories has been
known since the 1970’s; see for example Nishida [38, App. A].

Theorem 5.10 There is a natural equivalence of categories∏
(H)

∐
k≥0

EΣk ×Σk (EWH ×WH XH)k −→
∐
j≥0

FG(j,X)G = FG(X)G.

These two results prove Theorem 5.5.

Remark 5.11 With our specification of finite G-sets as A = (j, α), the disjoint union
of A and B = (k, β) is obtained via the obvious identification of j

∐
k with j + k.

The disjoint union of finite G-sets over a G-space X gives FG(X) a structure of
naive permutative G-category. By Theorem 5.9, its fixed point category FG(X)G is
a P -category equivalent to (PG(X+))G . One might think that FG(X) is a genuine
permutative G-category equivalent to the free PG -category PG(X+). However, its
H -fixed subcategory for H 6= G is not equivalent to FH(X)H , and one cannot expect
an action of PG (or any other E∞ G-operad) on FG(X). To see the point, let G be the
quaternion group of order 8, Q = {±1,±i,±j,±k}, and let X = ∗. Every nontrivial
subgroup of G contains the center H = Z = ±1. Therefore the H -set H cannot be
obtained by starting with a G-set (a disjoint union of orbits G/K ) and restricting along
the inclusion H −→ G.
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To compare with our paper [12], we offer some alternative notations.

Definition 5.12 For an unbased G-space X , let EG(X) = E P
G (X) = PG(X+). It is a

genuine permutative G-category, and its H -fixed subcategory EG(X)H is equivalent to
EH(X)H and therefore to FH(X)H .

Remark 5.13 In [12], we gave a more intuitive definition of a G-category EG(X). It
will reappear in §9, where it will be given the alternative notation E U

G (X). It is acted
on by an E∞ operad VG of G-categories, and, again, its fixed point category E U

G (X)H

is equivalent to E U
H (X)H and therefore to FH(X)H .

5.3 The proof of Theorem 5.9

We first use Theorem 3.8 to identify (5–6) when X is a point. The proof of Theorem 3.8
compares several equivalent categories, and anti-homomorphisms appear naturally. To
control details of equivariance, it is helpful to describe the relevant categories implicit
in our operad PG in their simplest forms up to isomorphism. Details are in [13, §§2.1,
2.2, 4.1, 4.2].

Lemma 5.14 The objects of the chaotic (G × Σj)-category PG(j) are the functions
φ : G −→ Σj . The (left) action of G on PG(j) is given by (gφ)(h) = φ(g−1h) on
objects and the diagonal action on morphisms. The (right) action of Σj is given by
(φσ)(h) = φ(h)σ on objects and the diagonal action on morphisms.

Lemma 5.15 The objects of the G-category PG(j)/Σj are the functions
α : G −→ Σj such that α(e) = e. The morphisms σ : α −→ β are the elements
σ ∈ Σj , thought of as the functions G −→ Σj specified by σ(h) = β(h)σα(h)−1 . The
composite of σ with τ : β −→ γ is τσ : α −→ γ . The action of G is given on objects
by

(gα)(h) = α(g−1h)α(g−1)−1.

In particular, (gα)(e) = e. The action on morphisms is given by

g(σ : α −→ β) = σ : gα −→ gβ.

Lemma 5.16 For Λ ⊂ G×Σj , PG(j)Λ is empty if Λ∩Σj 6= e. It is a nonempty and
hence chaotic subcategory of PG(j) if Λ ∩ Σj = e.
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Lemma 5.17 The objects of (PG(j)/Σj)G are the anti-homomorphisms
α : G −→ Σj . Its morphisms σ : α −→ β are the conjugacy relations β = σασ−1 ,
where σ ∈ Σj . For H ⊂ G, restriction of functions gives an equivalence of categories

(PG(j)/Σj)H −→ (PH(j)/Σj)H.

Now return to a general G-space X . To prove Theorem 5.9, it suffices to prove that
(PG(j) ×Σj Xj)G is isomorphic to FG(j,X)G for all j. Passage to orbits here means
that for φ ∈ PG(j), y ∈ Xj , and σ ∈ Σj (thought of as acting on the left on j and
therefore on j-tuples of elements of X ), (φσ, y) = (φ, σy) in PG(j) ×Σj Xj . Observe
that an object (φ, z1, · · · , zj) ∈ PG(j) ×Σj Xj has a unique representative in the same
orbit under Σj of the form (α, x1, · · · , xj) where α(e) = e. It is obtained by replacing
φ by φτ , where τ = φ(e)−1 , and replacing zi by xi = zτ (i) .

Lemma 5.18 An object (α, y) ∈ PG(j) ×Σj Xj , where α(e) = e and y ∈ Xj , is
G-fixed if and only if α : G −→ Σj is an anti-homomorphism and α(g−1)y = gy for
all g ∈ G.

Proof Assume that (α, y) = (gα, gy) for all g ∈ G. Then each gα must be in the
same Σj -orbit as α , where α is regarded as an object of PG(j) and not PG(j)/Σj ,
so that (gα)(h) = α(g−1h). Then (gα)(h) = α(h)σ for all h ∈ G and some σ ∈ Π.
Taking h = e shows that σ = α(g−1). The resulting formula α(g−1h) = α(h)α(g−1)
implies that α is an anti-homomorphism. Now

(α, y) = (gα, gy) = (αα(g−1), gy) = (α, α(g)gy),

which means that α(g)gy = y and thus gy = α(g−1)y.

Use α−1 to define a left action of G on j and define p : j −→ X by p(i) = xi . Then
the lemma shows that the G-fixed elements (α, y) are in bijective correspondence with
the maps of G-sets p : A −→ X , where A is a j-pointed G-set. Using Lemma 5.17, we
see similarly that maps f : A −→ B of j-pointed G-sets over X correspond bijectively
to morphisms in (PG(j)×Σj Xj)G . These bijections specify the required isomorphism
between FG(j,X)G and (PG(j)×Σj Xj)G .

5.4 The proof of Theorem 5.10

This decomposition is best proven by a simple thought exercise. Every finite G-set A
decomposes non-uniquely as a disjoint union of orbits G/H , and orbits G/H and G/J
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are isomorphic if and only if H and J are conjugate. Choose one H in each conjugacy
class. Then A decomposes uniquely as the disjoint union of the G-sets AH , where
AH is the set of elements of A with isotropy group conjugate to H . This decomposes
the category GF ≡ (FG)G as the product over H of the categories GF (H) of finite
G-sets all of whose isotropy groups are conjugate to H .

In turn, GF (H) decomposes uniquely as the coproduct over k ≥ 0 of the categories
GF (H, k) whose objects are isomorphic to the disjoint union, denoted kG/H , of k
copies of G/H . Up to isomorphism, kG/H is the only object of GF (H, k). The
automorphism group of the G-set G/H is WH , hence the automorphism group of
kG/H is the wreath product Σk

∫
WH . Viewed as a category with a single object, we

may identify this group with the category EΣk ×Σk (WH)k . This proves the following
result.

Proposition 5.19 The category GF is equivalent to the category

∏
(H)

∐
k≥0

EΣk ×Σk (WH)k.

The displayed category is a skeleton of GF . As written, its objects are sets of numbers
{kH}, one for each (H), but they are thought of as the finite G-sets

∐
H kHG/H .

Its morphism groups specify the automorphisms of these objects. On objects, the
equivalence sends a finite G-set A to the unique finite G-set of the form

∐
(H) kG/H in

the same isomorphism class as A. Via chosen isomorphisms, this specifies the inverse
equivalence to the inclusion of the chosen skeleton in GF .

We parametrize this equivalence to obtain a description of the category GF (X) of
finite G-sets over X . Given any H and k , a k-tuple of elements {x1, · · · , xk} of XH

determines the G-map p : kG/H −→ X that sends eH in the ith copy of G/H to
xi , and it is clear that every finite G-set A over X is isomorphic to one of this form.
Similarly, for a finite G-set q : B −→ X over X and an isomorphism f : A −→ B, f is
an isomorphism over X from q to p = q ◦ f , and every isomorphism over X can be
constructed in this fashion. Since we may as well choose A and B to be in our chosen
skeleton of GF , this argument proves Theorem 5.10.

Algebraic & Geometric Topology XX (20XX)



1056 B. Guillou and J. P. May

6 The Barratt-Priddy-Quillen and tom Dieck splitting theo-
rems

6.1 The Barratt-Priddy-Quillen theorem revisited

The BPQ theorem shows how to model suspension G-spectra in terms of free E∞
G-categories and G-spaces. It is built tautologically into the equivariant infinite loop
space machine in the same way as it is nonequivariantly [24, 2.3(vii)] or [31, §10].
The following result works for either EG = ESp

G or EG = ES
G , but note that the

interpretation of both the source and target are different in the two cases. The proof
shows consistency with the versions of the BPQ theorem in Theorems 1.31 and 2.18.

Theorem 6.1 (The E∞ operad BPQ theorem) For an E∞ operad CG of G-spaces
and based G-spaces X , there is a natural weak equivalence of G-spectra

Σ∞G X −→ EGCGX.

Proof For ESp
G , recall that CU = KU × CG . The same formal argument as for

Theorem 2.18 and use of the projections to CG and to KU give equivalences of LM
G-spectra

Σ∞G X //

''

B(Σ∞G ,CU,CUX)

��

// B(Σ∞G ,CU,CGX).

B(Σ∞G ,KU,KUX)

For ES
G , recall that CV = KV × CG . Analogously to Theorem 1.31, there is an

orthogonal G-spectrum with V th space B(ΣV ,CV ,CVX). The usual formal argument
and the projections to CG and KV give diagrams

ΣVX //

&&

B(ΣV ,CV ,CVX)

��

// B(ΣV ,CV ,CGX).

B(ΣV ,KV ,KVX)

for all V in which the left horizontal arrow and the vertical arrow are level equivalences
of orthogonal G-spectra, and the right horizontal arrow is a weak equivalence (π∗ -
isomorphism) of orthogonal G-spectra, as we see my forgetting to G-prespectra and
passing to colimits over V ⊂ U , where U is a complete G-universe.
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Taking Y = X+ for an unbased G-space X and using (5–2), we can rewrite this version
of the BPQ theorem using the infinite loop space machine defined on permutative
G-categories.

Theorem 6.2 (The categorical BPQ theorem: first version) For unbased G-spaces
X , there is a natural weak equivalence of G-spectra

Σ∞G X+ −→ KGPG(X+).

Remark 6.3 Diagrams showing compatibility with smash products, like those in
Theorems 1.31 and 2.18 are conspicuous by their absence from Theorems 6.1 and 6.2.
A previous version of this article erroneously claimed that the operad P has a self
pairing (P,P) −→P induced by the homomorphisms

(6–4) ⊗ : Σj × Σk −→ Σjk,

which are made precise in §10 by use of lexicographic ordering. However, these
do not satisfy the condition in Definition 10.1(iii); see Counterexample 10.1. For
a conceptual understanding of why P cannot have a self-pairing, consider the free
P -algebra P(S0). This is a model for the groupoid of finite sets. As explained in
[28, Appendix A], a self-pairing on P would give strict distributivity on both sides
in P(S0). But the lexicographic ordering on j × (k q m) does not agree with the
lexicographic ordering on (j× k)q (j×m).

As we explain in [15], the homomorphisms⊗ exhibit a product that exists in any operad.
The categorical operads P and PG are “pseudo-commutative”, meaning that certain
diagrams of functors defined using these products commute up to natural isomorphism.
Putting together Theorem 6.2, the comparison of operadic and Segalic machines in
[33], and 2-category machinery developed in [14], we will obtain multicategorical
generalizations of the missing diagrams in [15], where we complete the proofs from
equivariant infinite loop space theory promised in [12].

6.2 The tom Dieck splitting theorem

The G-fixed point spectra of suspension G-spectra have a well-known splitting. It is
due to tom Dieck [6] on the level of homotopy groups and was lifted to the spectrum
level in [20, §V.11]. The tom Dieck splitting actually works for all compact Lie groups
G, but we have nothing helpful to add in that generality. Our group G is always finite.
In that case, we have already given the ingredients for a new categorical proof, as we
now explain.
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Theorem 6.5 For a based G-space Y ,

(Σ∞G Y)G '
∨
(H)

Σ∞(EWH+ ∧WH YH).

The wedge runs over the conjugacy classes of subgroups H of G, and WH = NH/H .

Theorem 6.5 and the evident natural identifications

(6–6) EWH+ ∧WH XH
+
∼= (EWH ×WH XH)+

imply the following version for unbased G-spaces X .

Theorem 6.7 For an unbased G-space X ,

(Σ∞G X+)G '
∨
(H)

Σ∞(EWH ×WH XH)+.

Conversely, we can easily deduce Theorem 6.5 from Theorem 6.7. Viewing S0 as
{1}+ with trivial G action, our standing assumption that basepoints are nondegenerate
gives a based G-cofibration S0 −→ Y+ that sends 1 to the basepoint of Y , and
Y = Y+/S0 . The functors appearing in Theorem 6.7 preserve cofiber sequences, and
the identifications (6–6) imply identifications

(6–8) (EWH ×WH YH)+/(EWH ×WH {1})+
∼= EWH+ ∧WH YH.

Therefore Theorem 6.7 implies Theorem 6.5.

We explain these splittings in terms of the categorical BPQ theorem. We begin in
the based setting. The nonequivariant case G = e of the BPQ theorem relates to the
equivariant case through Theorem 2.20. Explicitly, Theorems 2.20 and 6.1 give a pair
of weak equivalences

(6–9) (Σ∞G Y)G −→ (EGCGY)G ←− E((CGY)G).

Since the functor Σ∞ commutes with wedges, the nonequivariant BPQ theorem gives
a weak equivalence

(6–10)
∨
(H)

Σ∞(EWH+ ∧WH YH) −→ EC(
∨
(H)

(EWH+ ∧WH YH).

If we could prove that there is a natural weak equivalence of C -spaces

(CGY)G ' C(
∨
(H)

(EWH+ ∧WH YH),
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that would imply a natural weak equivalence

(6–11) E((CGY)G) ' EC(
∨
(H)

(EWH+ ∧WH YH)

and complete the proof of Theorem 6.5. However, the combinatorial study of the
behavior of C on wedges is complicated by the obvious fact that wedges of based
spaces do not commute with products.

We use the following consequence of Theorem 5.5 and the relationship between wedges
and products of spectra to get around this. Recall that PG is the monad on based G-
spaces obtained from the operad |PG| of G-spaces.

Theorem 6.12 For unbased G-spaces X , there is a natural equivalence of |P|-spaces

(PGX+)G '
∏
(H)

P(EWH ×WH XH)+,

where (H) runs over the conjugacy classes of subgroups of G and WH = NH/H .

Proof Remembering that |EG| = EG, we see that the classifying space of the category
EWH ×WH XH can be identified with EWH ×WH XH . The commutation relations
between | − | and the constituent functors used to construct the monads PG on G-
spaces and PG on G-categories make the identification clear.

Remark 6.13 Of course, we can and must replace PG and P by their products with
the equivariant and nonequivariant Steiner operad to fit into the infinite loop space
machine. There is no harm in doing so since if we denote the product operads by
OG and O , as before, the projections OG −→ PG and O −→ P induce weak
equivalences of monads that fit into a commutative diagram

(OGX+)G ' //

'
��

∏
(H) O(EWH ×WH XH)+

'
��

(PGX+)G ' //
∏

(H) P(EWH ×WH XH)+.

The functor Σ∞G commutes with wedges, and the natural map of G-spectra

E ∨ F −→ E × F

is a weak equivalence. Theorems 2.21 and 6.1 have the following implication. We
state it equivariantly, but we shall apply its nonequivariant special case.
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Proposition 6.14 For based G-spaces X and Y , the natural map

EGOG(X ∨ Y) −→ EG(OGX ×OGY)

is a weak equivalence of G-spectra.

Proof The following diagram commutes by the universal property of products.

Σ∞G (X ∨ Y)

∼=
��

// EGOG(X ∨ Y)

��
Σ∞G X ∨ Σ∞G Y

��

EG(OGX ×OGY)

��
Σ∞G X × Σ∞G Y // EGOGX × EGOGY.

All arrows except the upper right vertical one are weak equivalences, hence that arrow
is also a weak equivalence.

For any nonequivariant E∞ operad C , we therefore have a weak equivalence

(6–15) EC(
∨
(H)

(EWH+ ∧WH YH) −→ E
∏
(H)

C(EWH+ ∧WH YH).

Together with (6–15), Theorem 6.12 and Remark 6.13 give a weak equivalence (6–11)
in the case Y = X+ . Together with (6–9) and (6–10), this completes the proof of
Theorem 6.7, and Theorem 6.5 follows.

7 The E∞ operads VG , V ×G , and WG

The operad PG has a privileged conceptual role, but there are other categorical E∞
G-operads with different good properties. We define three interrelated examples. The
objects of the chaotic category PG(j) are functions G −→ Σj . We give analogous
chaotic G-categories in which the objects are suitable functions between well chosen
infinite G-sets, with G again acting by conjugation. Their main advantage over PG

is that it is easier to recognize G-categories on which they act.
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7.1 The definitions of VG and V ×G

We start with what we would like to take as a particularly natural choice for the jth

category of an E∞ G-operad. It is described in more detail in [13, §6.1].

Definition 7.1 Let U be a countable ambient G-set that contains countably many
copies of each orbit G/H . Let Uj be the product of j copies of U with diagonal
action by G, and let jU be the disjoint union of j copies of the G-set U . Here U0 is
a one-point set, sometimes denoted 1, and 0U is the empty set, sometimes denoted ∅
and sometimes denoted 0.

Let j = {1, · · · , j} with its natural left action by Σj , written σ : j −→ j.

Definition 7.2 For j ≥ 0, let Ẽ U
G (j) be the chaotic G × Σj -category whose objects

are the pairs (A, ι), where A is a j-element subset of U and ι : j −→ A is a bijection.
The group G acts on objects by g(A, ι) = (gA, gι), where (gι)(i) = g · ι(i). The group
Σj acts on objects by (A, ι)σ = (A, ι ◦ σ) for σ ∈ Σj . Since Ẽ U

G (j) is chaotic, this
determines the actions on morphisms.

Proposition 7.3 [13, 6.3] For each j, the classifying space |Ẽ U
G (j)| is a universal

principal (G,Σj)-bundle.

Therefore Ẽ U
G (j) satisfies the properties required of the jth category of an E∞ G-

operad. However, these categories as j varies do not form an operad. The problem
is a familiar one. These categories can be thought of as analogous to configuration
spaces. Just as we fattened up the configuration space models of §1.6 to the little discs
operads of §1.1, we must fatten up these categories to provide enough room for an
operad structure.

Definition 7.4 We define a reduced operad VG of G-categories. Let VG(j) be the
chaotic G-category whose set of objects is the set of injective functions jU −→ U . Let
G act by conjugation and let Σj have the right action induced by its left action on jU .
Let id ∈ VG(1) be the identity function U −→ U . Define

γ : VG(k)× VG(j1)× · · · × VG(jk) −→ VG(j),

where j = j1 + · · ·+ jk , to be the composite

VG(k)× VG(j1)× · · · × VG(jk) −→ VG(k)× VG(jU,kU) −→ VG(j)

obtained by first taking coproducts of maps and then composing. Here V (jU,kU) is
the set of injections jU −→k U . The operad axioms [23, 1.1] are easily verified.
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Remembering that taking sets to the free R-modules they generate gives a coproduct-
preserving functor from sets to R-modules, we see that VG is a categorical analogue
of the linear isometries operad LU .

There is a parallel definition that uses products instead of coproducts.

Definition 7.5 We define an unreduced operad V
×
G of G-categories. Let V

×
G (j) be

the chaotic G-category whose set of objects is the set of injective functions Uj −→ U .
Let G act by conjugation and let Σj have the right action induced by its left action on
Uj . Let id ∈ V

×
G (1) be the identity function. Define

γ : V
×
G (k)× V

×
G (j1)× · · · × V

×
G (jk) −→ V

×
G (j),

where j = j1 + · · ·+ jk , to be the composite

V
×
G (k)× V

×
G (j1)× · · · × V

×
G (jk) −→ V

×
G (k)× V

×
G (Uj,Uk) −→ V

×
G (j)

obtained by first taking products of maps and then composing. Here V
×
G (Uj,Uk) is

the set of injections Uj −→ Uk . Again, the operad axioms are easily verified.

Observe that the objects of V
×
G (0) are the injections from the point U0 into U and can

be identified with the set U , whereas VG(0) is the trivial category given by the injection
of the empty set 0U into U . As in Remark 2.4, the objects of the zeroth category give
unit objects for operad actions, and it is convenient to restrict attention to a reduced
variant of V

×
G .

Definition 7.6 Choose a G-fixed point 1 ∈ U (or, equivalently, adjoin a G-fixed
basepoint 1 to U ) and also write 1 for the single point in U0 . Give Uj , j ≥ 0, the
basepoint whose coordinates are all 1. The reduced variant of V

×
G is the operad V ×G

of G-categories that is obtained by restricting the objects of the V
×
G (j) to consist only

of the basepoint preserving injections Uj −→ U for all j ≥ 0.

Remark 7.7 If V
×
G acts on a category A , then V ×G acts on A by restriction of the

action. However, V ×G can act even though V
×
G does not. This happens when the

structure of A encodes a particular unit object and the operad action conditions fail
for other choices of objects in A .

Proposition 7.8 The classifying spaces |VG(j)|, |V ×G (j)|, and |V ×G (j)| are universal
principal (G,Σj)-bundles, hence VG , V

×
G , and V ×G are E∞ operads.
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Proof Since the objects of our categories are given by injective functions, Σj acts
freely on the objects of VG(j) and V ×G (j). Since our categories are chaotic, it suffices to
show that if Λ∩Σj = {e}, where Λ ⊂ G×Σj , then the object sets VG(j)Λ and V ×G (j)Λ

are nonempty. This means that there are Λ-equivariant injections jU −→ U and
Uj −→ U , and in fact there are Λ-equivariant bijections. We have Λ = {(h, α(h))|h ∈
H} for a subgroup H of G and a homomorphism α : H −→ Σj , and we may regard
U as an H -set via the canonical isomorphism H ∼= Λ. Since countably many copies
of every orbit of H embed in U , jU , and Uj for j ≥ 1, these sets are all isomorphic as
H -sets and therefore as Λ-sets.

7.2 The definition of WG and its action on VG

This section is parenthetical, aimed towards work in progress on a new version of
multiplicative infinite loop space theory. The notion of an action of a “multiplicative”
operad G on an “additive” operad C was defined in [26, VI.1.6], and (C ,G ) was
then said to be an “operad pair”. This notion was redefined and discussed in [31, 32].
Expressed in terms of diagrams rather than elements, it makes sense for operads in any
cartesian monoidal category, such as the categories of G-categories and of G-spaces.
As is emphasized in the cited papers, although this notion is the essential starting point
for the theory of E∞ ring spaces, the only interesting nonequivariant example we know
is (K ,L ), where K is the Steiner operad. As pointed out in in §2.5, this example
works equally well equivariantly.

The pair of operads (VG,V
×

G ) very nearly gives another example, but we must shrink
V ×G and drop its unit object to obtain this.

Definition 7.9 Define WG ⊂ V ×G to be the suboperad such that WG(j) is the full
subcategory of V ×G (j) whose objects are the based bijections Uj −→ U . In particular,
WG(0) is the empty category, so that the operad WG does not encode unit object
information. By the proof of Proposition 7.8, for j ≥ 1 WG(j) is again a universal
principal (G,Σj)-bundle. We view WG as a restricted E∞ operad, namely one without
unit objects.

Proposition 7.10 The restricted operad WG acts on the operad VG .

Proof We must specify action maps

λ : WG(k)× VG(j1)× · · · × VG(jk) −→ VG(j),
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where j = j1 · · · jk and k ≥ 1. To define them, consider the set of sequences I =

{i1, · · · , ik}, ordered lexicographically, where 1 ≤ ir ≤ jr and 1 ≤ r ≤ k . For an
injection φr : jrU −→ U , let φir : U −→ U denote the restriction of φr to the ithr copy
of U in jrU . Then let

φI = φi1 × · · · × φik : Uk −→ Uk.

For a bijection ψ : Uk −→ U , define

λ(ψ;φ1, · · · , φk) : jU −→ U

to be the injection which restricts on the Ith copy of U to the composite

U
ψ−1
//Uk φI //Uk ψ //U.

It is tedious but straightforward to verify that all conditions specified in [26, VI.1.6],
[32, 4.2] that make sense are satisfied6.

Remark 7.11 When all ji = 1, so that there is only one sequence I , we can define λ
more generally, with V ×G (k) replacing WG(k), by letting

λ(ψ;φ1, · · · , φk) : U −→ U

be the identity on the complement of the image of the injection ψ : Uk −→ U and

ψ(U)
ψ−1
//Uk φI //Uk ψ //ψ(U)

on the image of ψ . Clearly we can replace VG(1) by V ×G (1) here.

This allows us to give the following speculative analogue of Definition 4.10. An E∞
ring space is defined to be a (C ,G )-space, where (C ,G ) is an operad pair such that
C and G are E∞ operads of spaces. Briefly, a (C ,G )-space X is a C -space and
a G -space with respective basepoints 0 and 1 such that 0 is a zero element for the
G -action and the action CX −→ X is a map of G -spaces with zero, where C denotes
the monad associated to the operad C . Here the action of G on C induces an action of
G on the free C -spaces CX , so that C restricts to a monad in the category of G -spaces.
These notions are redefined in the more recent papers [31, 32]. The definitions are
formal and apply equally well to spaces, G-spaces, categories, and G-categories.

6In fact, with the details of [32, 4.2], the only condition that does not make sense would
require λ(1) = id ∈ VG(1), where {1} = W (0), and that condition lacks force since it does
not interact with the remaining conditions.
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Definition 7.12 An E∞ ring G-category A is a G-category together with an action
by the E∞ operad pair (VG,WG) such that the multiplicative action extends from the
restricted E∞ operad WG to an action of the E∞ operad V ×G .

The notion of a bipermutative category, or symmetric strict bimonoidal category, was
specified in [26, VI.3.3]. With the standard skeletal model, the direct sum and tensor
product on the category of finite dimensional free modules over a commutative ring R
gives a typical example. Without any categorical justification, we allow ourselves to
think of E∞ ring G-categories as an E∞ version of genuine operadic bipermutative
G-categories. A less concrete but more general version of this notion is defined and
developed in [15].

Our notion of an E∞ G-category A implies that BA is an E∞ G-space. We would
like to say that our notion of an E∞ ring G-category A implies that BA is an E∞
ring G-space, but that is not quite true. However, we believe there is a way to prove the
following conjecture that avoids the categorical work of [8, 14, 15, 28, 32]. However,
that proof is work in progress.

Conjecture 7.13 There is an infinite loop space machine that carries E∞ ring G-
categories to E∞ ring G-spectra.

8 Examples of E∞ and E∞ ring G-categories

We have several interesting examples. We emphasize that these particular constructions
are new even when G = e. In that case, we may take U to be the set of positive integers,
with 1 as basepoint.

We have the notion of a genuine permutative G-category, which comes with a preferred
product, and the notion of a VG -category, which does not. It seems plausible that the
latter notion is more general, but to verify that we would have to show how to regard a
permutative category as a VG -algebra. One natural way to do so would be to construct
a map of operads VG −→ PG , but we do not know how to do that. Of course,
the equivalence of VG -categories and PG -categories shows that genuine permutative
categories give a plethora of examples of VG -algebras up to homotopy. However,
the most important examples can easily be displayed directly, without recourse to the
theory of permutative categories.
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8.1 The G-category E U
G = E V

G of finite sets

Recall Remark 5.13. Intuitively, we would like to have a genuine permutative G-
category whose product is given by disjoint unions of finite sets, with G relating finite
sets (not G-sets) by translations. Even nonequivariantly, this is imprecise due to both
size issues and the fact that categorical coproducts are not strictly asssociative. We
make it precise by taking coproducts of finite subsets of our ambient G-set U , but we
must do so without assuming that our given finite subsets are disjoint. We achieve this
by using injections jU −→ U to separate them. We do not have canonical choices
for the injections, hence we have assembled them into our categorical E∞ operad VG .
Recall Definition 7.2 and Proposition 7.3.

Definition 8.1 The G-category Ẽ U
G of finite ordered sets is the coproduct over n ≥ 0

of the G-categories Ẽ U
G (n). The G-category E U

G = E V
G of finite sets is the coproduct

over n ≥ 0 of the orbit categories Ẽ U
G (n)/Σn . By Proposition 7.3, BE U

G is the
coproduct over n ≥ 0 of classifying spaces B(G,Σn). Explicitly, by [13, 6.5], the
objects of E U

G are the finite subsets (not G-subsets) A of U . Its morphisms are the
bijections ν : A −→ B; if A has n points, the morphisms A −→ A give a copy of the
set Σn . The group G acts by translation on objects, so that gA = {ga|a ∈ A}, and by
conjugation on morphisms, so that gν : gA −→ gB is given by (gν)(g · a) = g · ν(a).

Proposition 8.2 The G-categories Ẽ U
G and E U

G are VG -categories, and passage to
orbits over symmetric groups defines a map Ẽ U

G −→ E U
G of VG -categories.

Proof Define a G-functor

θj : VG(j)× (E U
G )j −→ E U

G

as follows. On objects, for φ ∈ VG(j) and Ai ∈ Ob E U
G , 1 ≤ i ≤ j, define

θj(φ; A1, · · · ,Aj) = φ(A1 q · · · q Aj),

where Ai is viewed as a subset of the ith copy of U in jU . For a morphism

(ζ; ν1, · · · , νj) : (φ; A1, · · · ,Aj) −→ (ψ; B1, · · · ,Bj),

where ζ : φ −→ ψ is the unique morphism, define θj(ζ; ν1, · · · , νj) to be the unique
bijection that makes the following diagram commute.

A1 q · · · q Aj

ν1q···qνj

��

φ // φ(A1 q · · · q Aj)

θj(ζ;ν1,··· ,νj)
��

B1 q · · · q Bj
ψ
// ψ(B1 q · · · q Bj)
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Then the θj specify an action of VG on E U
G .

Since the Ẽ U
G (n) are chaotic, to define an action of VG on Ẽ U

G we need only specify
the required G-functors

θ̃j : VG(j)× (Ẽ U
G )j −→ Ẽ U

G

on objects. A typical object has the form (φ; (A1, ι1), · · · , (Aj, ιj)), ιi : ni −→ Ai . We
have the canonical isomorphism n1 q · · · q n1 ∼= n, n = n1 + · · · nj , and θ̃j sends our
typical object to (

φ(A1 q · · · ,qAj), φ ◦ (ι1 q · · · q ιj)
)
.

Again, the θ̃j specify an action. The compatibility with passage to orbits is verified by
use of canonical orbit representatives for objects A that are obtained by choosing fixed
reference maps ηA : n −→ A for each n-point set A ⊂ U ; compare [13, Proposition
6.3 and Lemma 6.5].

Remark 8.3 If we restrict to the full G-subcategory of E U
G of G-fixed sets A of

cardinality n, we obtain an equivalent analogue of the category FG(n) of Definition 5.8:
these are two small models of the G-category of all G-sets with n elements and the
bijections between them, and they have isomorphic skeleta. Thus the restriction of
E U

G to its full G-subcategory of G-fixed sets A is an equivalent analogue of FG .
Remember from Remark 5.11 that no E∞ operad can be expected to act on FG . The
VG -category E U

G gives a convenient substitute.

8.2 The G-category GLG(R) for a G-ring R

Let R be a G-ring, that is a ring with an action of G through automorphisms of R.
We have analogues of Definitions 7.2 and 8.1 that can be used in equivariant algebraic
K -theory. For a set A, let R[A] denote the free R-module on the basis A. Let G act
entrywise on the matrix group GL(n,R) and diagonally on Rn . Our conventions on
semi-direct products and their universal principal (G,GL(n,R)G)-bundles are in [13],
and [13, §6.3] gives more details on the following definitions.

Definition 8.4 We define the chaotic general linear category G̃L G(n,R). Its objects
are the monomorphisms of (left) R-modules ι : Rn −→ R[U]. The group G acts on
objects by gι = g ◦ ι ◦ g−1 . The group GL(n,R) acts on objects by ιτ = ι ◦ τ : Rn −→
R[U]. Since G̃L G(n,R) is chaotic, this determines the actions on morphisms.

Proposition 8.5 [13, 6.18] The actions of G and GL(n,R) on G̃L G(n,R) determine an
action of GL(n,R)oG, and the classifying space |G̃L G(n,R)| is a universal principal
(G,GL(n,R)G)-bundle.
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Definition 8.6 The general linear G-category GLG(R) of finite dimensional free R-
modules is the coproduct over n ≥ 0 of the orbit categories G̃L G(n,R)/GL(n,R).
By Proposition 8.5, BGLG(R) is the coproduct over n ≥ 0 of classifying spaces
B(G,GL(n,R)G). Explicitly, by [13, 6.20], the objects of GLG(R) are the finite
dimensional free R-submodules M of R[U]. The morphisms ν : M −→ N are the
isomorphisms of R-modules. The group G acts by translation on objects, so that
gM = {gm |m ∈ M}, and by conjugation on morphisms, so that (gν)(gm) = ν(m) for
m ∈ M and g ∈ G.

Proposition 8.7 The G-categories G̃L G(R) and GLG(R) are VG -categories and pas-
sage to orbits over general linear groups defines a map G̃L G(R) −→ GLG(R) of
VG -categories.

Proof Define a functor

θj : VG(j)× GLG(R)j −→ GLG(R)

as follows. On objects, for φ ∈ VG(j) and Mi ∈PbGLG(R), 1 ≤ i ≤ j, define

θj(φ; M1, · · · ,Mj) = R[φ](M1 ⊕ · · · ⊕Mj),

where R[φ] : R[jU] −→ R[U] is induced by φ : jU −→ U and Mi is viewed as a
submodule of the ith copy of R[U] in R[jU] = ⊕jR[U]. For a morphism

(ζ; ν1, · · · , νj) : (φ; M1, · · · ,Mj) −→ (ψ; N1, · · · ,Nj),

define θj(ι; ν1, · · · , νj) to be the unique isomorphism of R-modules that makes the
following diagram commute.

M1 ⊕ · · · ⊕Mj

ν1⊕···⊕νj

��

R[φ] // R[φ](M1 ⊕ · · · ⊕Mj)

θj(ζ;ν1,··· ,νj)
��

N1 ⊕ · · · ⊕ Nj R[ψ]
// R[ψ](N1 ⊕ · · · ⊕ Nj)

Then the θj specify an action of VG on GLG(R). Since the G̃L G(R, n) are chaotic, to
define an action of VG on G̃L G(R), we need only specify the required G-functors

θ̃j : VG(j)× G̃L G(R)j −→ G̃L G(R)

on objects. A typical object has the form (φ; ι1, · · · , ιj), ιi : Rni −→ R[U], and, with
n = n1 + · · ·+ nj , θ̃j sends it to

R[φ] ◦ (ι1 ⊕ · · · ⊕ ιj) : Rn −→ R[U].
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Again, the θ̃j specify an action. The compatibility with passage to orbits is verified
by use of canonical orbit representatives for objects that are obtained by choosing
reference maps ηM : Rn −→ M for each M dimensional free R-module M ⊂ R[U];
compare [13, 6.18, 6.20].

On passage to classifying spaces and then to G-spectra via our infinite loop space
machine EG , we obtain a model EGBGLG(R) for the K -theory spectrum KG(R) of R.
The following result compares the two evident models in sight.

Definition 8.8 Define the naive permutative G-category GLG(R) to be the G-groupoid
whose objects are the n ≥ 0 and whose set of morphisms m −→ n is empty if
m 6= n and is the G-group GL(n,R) if m = n, where G acts entrywise. The
product is given by block sum of matrices. Applying the chaotic groupoid functor
to the groups GL(n,R) we obtain another naive permutative G-category EGLG(R)
and a map EGLG(R) −→ GLG(R) of naive permutative G-categories. Applying the
functor Cat(EG,−) from Proposition 4.6, we obtain a map of genuine permutative
G-categories Cat(EG, (EGLG(R))) −→ Cat(EG, (GLG(R))).

It is convenient to write GL P
G (R) for the PG -category Cat(EG, (GLG(R))) and

GL V
G (R) for the VG -category GLG(R), and similarly for their total space variants

Cat(EG, (EGLG(R))) and G̃L G(R). We have the following comparison theorem.

Theorem 8.9 The G-spectra KGGL P
G (R) and KGGL V

G (R) are weakly equivalent,
functorially in G-rings R.

Proof We again use the product of operads trick from [23]. Projections and quotient
maps give a commutative diagram of (PG × VG)-categories

G̃L
P

G (R)

��

G̃L
P

G (R)× G̃L
V

G (R)

��

oo // G̃L
V

G (R)

��
GL P

G (R) GL P×V
G (R)oo // GL V

G (R).

The middle term at the top denotes the diagonal product, namely∐
n

G̃L
P

G (n,R)× G̃L
V

G (n,R).

The middle term on the bottom is the coproduct over n of the orbits of these products
under the diagonal action of GL(n,R). The product of total spaces of universal principal
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(G,GL(R, n)G)-bundles is the total space of another universal principal (G,GL(R, n)G)-
bundle. Therefore, after application of the classifying space functor, the horizontal pro-
jections display two equivalences between universal principal (G,GL(R, n)G)-bundles.
The conclusion follows by hitting the resulting diagram with the functor KG defined
with respect to (PG × VG)-categories and using evident equivalences to the functors
KG defined with respect to PG -categories and VG -categories when the input is given
by PG or VG -categories.

8.3 Multiplicative actions on E U
G and GLG(R)

We agree to think of V ×G -categories as “multiplicative”, whereas we think of VG -
categories as “additive”.

Proposition 8.10 The G-category E U
G is a V ×G -category.

Proof Define a G-functor

ξj : V ×G (j)× (E U
G )j −→ E U

G

as follows. On objects, for φ ∈ V ×G (j) and Ai ∈ EG , 1 ≤ i ≤ j, define

ξj(φ; A1, · · · ,Aj) = φ(A1 × · · · × Aj).

For a morphism

(ζ; ν1, · · · , νj) : (φ; A1, · · · ,Aj) −→ (ψ; B1, · · · ,Bj)

define ξj(ζ; ν1, · · · , νj) to be the unique bijection that makes the following diagram
commute.

A1 × · · · × Aj

ν1×···×νj

��

φ // φ(A1 × · · · × Aj)

ξj(ζ;ν1,··· ,νj)
��

B1 × · · · × Bj
ψ
// ψ(B1 × · · · × Bj)

Then the ξj specify an action of V ×G on E U
G .

Proposition 8.11 If R is a commutative G-ring, then GLG(R) is a V ×G -category.

Proof Define a functor

ξj : V ×G (j)× GL (R)j
G −→ GLG(R)
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as follows. Identify R[Uj] with ⊗jR[U], where ⊗ = ⊗R . On objects, for φ ∈ VG(j)
and R-modules Mi ⊂ R[U], 1 ≤ i ≤ j, define

ξj(φ; M1, · · · ,Mj) = R[φ](M1 × · · · ×Mj).

For a morphism

(ζ; ν1, · · · , νj) : (φ; M1, · · · ,Mj) −→ (ψ; N1, · · · ,Nj)

define ξj(ζ; ν1, · · · , νj) to be the unique isomorphism of R-modules that makes the
following diagram commute.

M1 ⊗ · · · ⊗Mj

ν1⊗···⊗νj

��

R[φ] // φ(M1 ⊗ · · · ⊗Mj)]

ξj(ζ;ν1,··· ,νj)
��

N1 ⊗ · · · ⊗ Nj
R[ψ] // ψ(N1 ⊗ · · · ⊗ Nj).

Then the ξj specify an action of V ×G on GLG(R).

Restricting the action from V ×G to WG , the examples above and easy diagram chases
prove that the operad pair (VG,WG) acts on the categories EG and GLG(R). This
proves the following result.

Theorem 8.12 The categories E U
G and GLG(R) for a commutative G-ring R are E∞

ring G-categories in the sense of Definition 7.12.

Although we have a definition of a genuine permutative G-category, we do not have
a comparably simple definition of a genuine bipermutative G-category. The previous
examples show that we do have examples of E∞ ring G-categories. In [15], we
will show how to construct E∞ ring G-categories from general naive bipermutative
G-categories, in particular nonequivariant bipermutative categories, and we will show
how to construct genuine commutative ring G-spectra from them.

9 The VG-category E U
G (X) and the BPQ-theorem

We now return to the categorical BPQ-theorem, but thinking in terms of VG -categories
rather than PG -categories. This gives a more intuitive approach to the G-category of
finite sets over a G-space X .
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9.1 The G-category E U
G (X) of finite sets over X

Definition 9.1 Let X be a G-space. We define the G-groupoid E U
G (X) = E V

G (X) of
finite sets over X . Its objects are the functions p : A −→ X , where A is a finite subset
of our ambient G-set U . For a second function q : B −→ X , a map ν : p −→ q is a
bijection ν : A −→ B such that q ◦ ν = p. Composition is given by composition of
functions over X . The group G acts by translation of G-sets and conjugation on all maps
in sight. Thus, for an object p : A −→ X , gp : gA −→ X is given by (gp)(ga) = g(p(a)).
For a map ν : p −→ q, gν : gA −→ gB is given by (gν)(ga) = g(ν(a)).

To topologize E U
G (X), give U and X disjoint basepoints ∗.7 View the set Ob of

objects of E U
G (X) as the set of based functions p : U+ −→ X+ such that p−1(∗) is the

complement of a finite set A ⊂ U . Topologize Ob as a subspace of XU+
+ . View the set

Mor of morphisms of E U
G (X) as a subset of the set of functions µ : U+ −→ U+ that

send the complement of some finite set A ⊂ U to ∗ and map A bijectively to some finite
set B ⊂ U . Topologize Mor as the subspace of points (p, µ, q) in Ob × UU+

+ × Ob,
where UU+

+ is discrete. When X is a finite set and thus a discrete space (since points
are closed in spaces in the category U ), E U

G (X) is discrete.

Let E U
G (n,X) denote the full subcategory of E U

G (X) of maps p : A −→ X such that A
has n elements. Then E U

G (X) is the coproduct of the groupoids E U
G (n,X).

Proposition 9.2 The operad VG acts naturally on the categories E U
G (X).

Proof For j ≥ 0, we must define functors

θj : VG(j)× E U
G (X)j −→ E U

G (X).

To define θj on objects, let φ : jU −→ U be an injective function and pi : Ai −→ X be
a function, 1 ≤ i ≤ j, where Ai is a finite subset of U . We define θj(φ; p1, · · · , pj) to
be the composite

φ(A1 q · · · q Aj)
φ−1
//A1 q · · · q Aj

qpi // jX ∇ //X,

where ∇ is the fold map, the identity on each of the j copies of X . To define θ on
morphisms, let ψ : : jU −→ U be another injective function, and let ζ : φ −→ ψ be
the unique map in VG(j). For functions qi : Bi −→ X and bijections νi : Ai −→ Bi

7These basepoints are just a convenience for specifying the topology; they play no other
role.
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such that qiνi = pi , define θj(ζ; ν1, · · · , νj) to be the unique dotted arrow bijection that
makes the following diagram commute.

φ(A1 q · · · q Aj)
φ−1
//

θ(ζ;ν1,··· ,νj)

��

A1 q · · · q Aj

qpi

%%
qνi

��

jX ∇ // X.

ψ(B1 q · · · q Bj)
ψ−1
// B1 q · · · q Bj

qqi

99

Then the maps θj specify an action of VG on the category E U
G (X).

We have a multiplicative elaboration, which is similar to [26, VI.1.9] but curiously
restricted. Regarding a G-space X as a constant G-category with object and morphism
space both X , it makes sense to speak of an action of the operad V ×G on the G-category
X . For example, V ×G acts on X if X is a commutative topological G-monoid. The
following result is closely related to Proposition 7.10. It has the minor advantage that
restriction from V ×G to WG is unnecessary but the major limitation that it only applies
to commutative G-monoids, not to general V ×G -algebras.

Proposition 9.3 If X is a commutative topological G-monoid, then E U
G (X) is an E∞

ring G-category.

Proof By analogy with the previous proof, for k ≥ 0, we have functors

ξ : V ×G (k)× E U
G (X)k −→ E U

G (Xk).

With notations as in the previous proof, on objects (φ; p1, · · · , pk), ξ(φ; p1, · · · , pk),
pr : Ar −→ X , ξ(φ; p1, · · · pk) is defined to be the composite

φ(A1 × · · · × Ak)
φ−1
//A1 × · · · × Ak

×pk //Xk π //X,

where π is the k-fold product on X . On morphisms (ζ; ν1, · · · , νk), νr : pr −→ qr ,
where the νi are understood to be order-preserving, ξ(ζ; ν1, · · · , νk) is defined to be
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the unique dotted arrow that makes the the following diagram commute.

φ(A1 × · · · × Ak)
φ−1
//

ξ(ζ;ν1,··· ,νk)

��

A1 × · · · × Ak
×pi

%%
×νi

��

Xk π // X.

ψ(B1 × · · · × Bk)
ψ−1
// B1 × · · · × Bk

×qi

99

Further details are similar to those in the proof of [26, VI.1.9] or [31, 4.9].

9.2 Free VG -categories and the VG -categories E U
G (X)

The categories E U
G (X) are conceptually simple, and they allow us to give the promised

genuinely equivariant variant of Theorem 5.9. To see that, we give a reinterpretation of
E U

G (X). Regarding X as a topological G-category as before, we have the topological
G-category Ẽ U

G (j)×Σj Xj .

Lemma 9.4 The topological G-categories E U
G (j,X) and Ẽ U

G (j) ×Σj Xj are naturally
isomorphic.

Proof For an ordered set A = (a1, · · · , aj) of points of U , let a point (A; x1, ·, xj) of
Ob(ẼG(j)×Σj X

j) correspond to the function p : A −→ X given by p(ai) = xi . Similarly,
let a point (ν : A −→ B; x1, · · · , xj) of Mor(ẼG(j)×Σj Xj) correspond to the bijection
ν : p −→ q over X , where qν(ai) = p(ai) = xi . Since we have passed to orbits over
Σj , our specifications are independent of the ordering of A. These correspondences
identify the two categories.

Recall that we write VG for the monad on based G-categories associated to the operad
VG , |VG| for the operad of G-spaces obtained by applying the classifying space functor
B to VG , and VG for the monad on based G-spaces associated to |VG|. Recall too that
X+ denotes the union of the G-category X with a disjoint trivial basepoint category ∗
and that

(9–5) VG(X+) =
∐
j≥0

VG(j)×Σj Xj.
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Theorem 9.6 There is a natural map

ω : VG(X+) −→ E U
G (X)

of VG -categories, and it induces a weak equivalence

Bω : VG(X+) −→ BE U
G (X)

of |VG|-spaces on passage to classifying spaces.

Proof Pick any G-fixed point 1 ∈ U .8 Define an inclusion i : X+ −→ E U
G (X) of

based G-categories by identifying ∗ with E U
G (0,X) and mapping X to E U

G (1,X) by
sending x to the map 1 −→ x from the 1-point subset 1 of U to X . Since VG(X+) is
the free (based) VG -category generated by X+ , i induces the required natural map ω .
Explicitly, it is the composite

VG(X+)
VGi //VGE U

G (X)) θ //E U
G (X).

More explicitly still, let 1 ⊂ jU be the j-point subset consisting of the elements 1 in
the j summands. Then ω is the coproduct of the maps

ωj = ij ×Σj id : VG(j)×Σj Xj −→ Ẽ U
G (j)×Σj Xj,

where ij : VG(j) −→ Ẽ U
G (j) is the (G × Σj)-functor that sends an object φ : jU −→ U

to the set φ(1) ⊂ U and sends the morphism ν : φ −→ ψ to the bijection

φ(1)
φ−1
//1

ψ //ψ(1).

Passing to classifying spaces, |ij| is a map between universal principal (G,Σj)-bundles,
both of which are (G × Σj)-CW complexes. Therefore |ij| is a (G × Σj)-equivariant
homotopy equivalence. The conclusion follows.

9.3 The categorical BPQ theorem: second version

We begin by comparing Theorem 9.6, which is about G-categories, with Theorems 5.5,
5.9, and 5.10, which are about G-fixed categories. Clearly EG(X)G is a V -category,
where V = (VG)G . By Theorem 9.6, it is weakly equivalent (in the homotopical
sense) to the V -category (VGX+)G . We also have the P -category FG(X)G , which by
Theorem 5.9 and Remark 5.11 is equivalent (in the categorical sense) to the P -category
(PGX+)G . Elaborating Remark 8.3, E U

G (X)G and FG(X)G are two small models for the
category of all finite G-sets and G-isomorphisms over X and are therefore equivalent.

8This must not be confused with the convenience basepoint ∗ used to define the topology.
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To take the operad actions into account, recall the discussion in §4.3. We say that a
map of topological G-categories is a weak equivalence if its induced map of classifying
G-spaces is a weak equivalence.

Lemma 9.7 The PG -category PGX+ and the VG -category VGX+ are weakly equiva-
lent as (PG×VG)-categories. Therefore the P -category (PGX+)G and the V -category
(VGX+)G -categories are weakly equivalent

Proof The projections

PGX+ (PG × VG)(X+)oo //VGX+

are maps of (PG×VG)-categories that induce weak equivalences of |PG×VG|-spaces
on passage to classifying spaces.

Theorem 9.8 The classifying spaces of the P -category FG(X)G and the V -category
E U

G (X)G are weakly equivalent as |P × V |-spaces.

The conclusion is that, on the G-fixed level, the categories E U
G (X)G and FG(X)G can

be used interchangeably as operadically structured versions of the category of finite G-
sets over X . On the equivariant level, E U

G (X) but not FG(X) is operadically structured.
It is considerably more convenient than the categories PG(X+) or VG(X+). With the
notations KGVG(X+) = EGBVG(X+) = EGVG(X+) and KGE U

G (X) = EGBE U
G (X), we

have the following immediate consequence of Theorems 6.2 and 9.6. It is our preferred
version of the categorical BPQ theorem, since it uses the most intuitive categorical
input.

Theorem 9.9 (Categorical Barratt-Priddy-Quillen theorem) For G-spaces X , there
is a composite natural weak equivalence

α : Σ∞G X+ −→ KGVGX+ −→ KGE U
G (X).

Remark 9.10 It is not known how the tom Dieck splitting theorem behaves with
respect to the Mackey functor structure on homotopy groups. It seems likely to us that
this could be analyzed using this version of the BPQ theorem and our categorical proof
of the splitting.
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10 Appendix: pairings of operads

We recall the following definition from [27, 1.4]. It applies equally well equivariantly.
We write it element-wise, but written diagrammatically it applies to operads in any
symmetric monoidal category V . Write j = {1, · · · , j} and let

⊗ : Σj × Σk −→ Σjk

be the homomorphism obtained by identifying j × k with jk by ordering the set of
jk elements (q, r), 1 ≤ q ≤ j and 1 ≤ r ≤ k , lexicographically. More precisely, let
λj,k : jk −→ j × k be the lexicographic ordering. Then, given ρ ∈ Σj and σ ∈ Σk ,
ρ⊗ σ is defined by

jk
λj,k−−→ j× k ρ×σ−−→ j× k

λ−1
j,k−−→ jk.

For nonnegative integers hq and ir , let

δ :
∐
(q,r)

(hq × ir) −→ (
∐

q

hq)× (
∐

r

ir)

be the distributivity isomorphism viewed as a permutation via block and lexicographic
identifications of the source and target sets with the appropriate set n. A little more
precisely, we define the permutation δ to be the composite∑

q,r

hqir
∼=−→ h1i1 q h1i2 q · · · q hjik

λq···qλ−−−−−→ h1 × i1 q · · · q hj × ik

dist−−→ (h1 q · · · q hj)× (i1 q · · · q ik)
∼=−→ h× i

λ−1
h,i−−→ hi

Definition 10.1 Let C , D , and E be operads in a symmetric monoidal category V

(with product denoted ⊗). A pairing of operads

� : (C ,D) −→ E

consists of maps
� : C (j)⊗D(k) −→ E (jk)

in V for j ≥ 0 and k ≥ 0 such that the diagrammatic versions of the following
properties hold. Let c ∈ C (j) and d ∈ D(k).

(i) If µ ∈ Σj and ν ∈ Σk , then

cµ� dν = (c� d)(µ⊗ ν)

(ii) With j = k = 1, id� id = id.
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(iii) If cq ∈ C (hq) for 1 ≤ q ≤ j and dr ∈ D(ir) for 1 ≤ r ≤ k , then9

γ(c� d;×(q,r)cq � dr) =
[
γ(c;×qcq)� γ(d;×rdr)

]
δ.

When specialized to spaces, the following definition (which is a variant of [27, 1.2])
gives one possible starting point for multiplicative infinite loop space theory.

Definition 10.2 Let � : (C ,D) −→ E be a pairing of operads in V . A pairing of a
C -algebra X and a D -algebra Y to an E -algebra Z is a map f : X ⊗ Y −→ Z such
that the following diagram commutes for all j and k , where Xj denotes the jth tensor
power in V and we write θ generically for action maps.

C (j)⊗ Xj ⊗D(k)⊗ Yk

�
��

θ⊗θ // X ⊗ Y

f
��

E (jk)⊗ (X ⊗ Y)jk
id⊗f jk

// E (jk)⊗ Zjk
θ
// Z

On the left, � denotes the composite

C (j)⊗ Xj ⊗D(k)⊗ Ykid⊗t⊗id//C (j)⊗D(k)⊗ Xj ⊗ Yk �⊗λ //E (jk)⊗ Zjk.

Here, in elementwise notation,

λ((x1 ⊗ · · · ⊗ xj)⊗ (y1 ⊗ · · · ⊗ yk)) = ((x1 ⊗ y1)⊗ · · · ⊗ (xj ⊗ yk)),

where we order the pairs (xq ⊗ yr), 1 ≤ q ≤ j and 1 ≤ r ≤ k , lexicographically.

Letting V be the category of unbased G-spaces, with ⊗ = ×, but then passing to
monads on based G-spaces, we obtain the following observations.

Proposition 10.3 For based G-spaces X and Y , a pairing � : (CG,DG) −→ EG of
operads of G-spaces induces a natural pairing

� : CGX ∧ DGY −→ EG(X ∧ Y)

such that the following diagrams commute.

X ∧ Y
η∧η //

η
&&

CGX ∧ DGY

�
��

EG(X ∧ Y)

9The original definition in [27] had δ on the other side in this condition.
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CGCGX ∧ DGDGY
µ∧µ //

�
��

CGX ∧ DGY

�
��

EG(CGX ∧ DGY)
EG�

// EGEG(X ∧ Y) µ
// EG(X ∧ Y)

The following diagram commutes for any pairing f : X ⊗ Y −→ Z of a CG -algebra X
and a DG -algebra Y to an EG -algebra Z .

CGX ∧ DGY θ∧θ //

�
��

X ∧ Y

f
��

EG(X ∧ Y)
EGf

// EGZ
θ
// Z.

Proof The map � is induced from the map � of the previous definition and the
commutativity of the first two diagrams is checked by chases from Definition 10.1. The
commutativity of the second implies that � is a pairing in the sense of Definition 10.2.
The commutativity of the third follows from Definition 10.2.

Example 10.4 The following commutative diagram, in which we ignore the path
space variable for simplicity, shows that condition (iii) is satisfied by the pairing
(KV ,KW) −→ KV⊕W defined in Proposition 1.17. This completes the proof of that
result.

hi× V × W //

δ×id

��

(∐
q,r

hqir
)
× V × W

dist //

qλ×id

��

∐
q,r

(
hqir × V × W

)

qλ

��

qcq⊗dr // j× k× V × W

twist

��
hi× V × W

λ×id

��

(∐
q,r

hq × ir
)
× V × W

dist //

δ×id

��

∐
q,r

(
hq × ir × V × W

)

q twist

��

j× V × k× W

c×d

��
h× i× V × W //

twist

��

(
∐
q

hq)× (
∐
r

ir)× V × W

twist

��

∐
q,r

(hq × V × ir × W)

δ

��

q(cq×dr )

>>

V × W

h× V × i× W // (∐
q

hq)× V × (
∐
r

ir)× W
dist // (∐

q
hq × V

)
×
(∐

r
ir × W

) qcq×qdr// (∐
q

V)× (
∐
r

W)

c×d

OOid

CC

The following counterexample was pointed out to us by Anna Marie Bohmann and
Angelica Osorno. Using a more sophisticated categorical framework, we shall explain
how to get around the difficulty in [14, 15].

Counterexample 10.1 We show that the pairing (6–4) is not a self-pairing of P .
Letting τ ∈P(2) be the transposition τ = (12), we calculate

γ(τ ⊗ τ ; id2⊗ id1, id2⊗ id1, id1⊗ id1, id1⊗ id1) = (1526)(3)(4)
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whereas [
γ(τ ; id2, id1)⊗ γ(τ ; id1, id1)

]
δ = (14526)(3).

In this case δ is the transposition (23). Thus condition (iii) fails.

11 Appendix: the double bar construction and the proof of
Theorem 2.25

The proof of Theorem 2.25 is based on a construction that the senior author has
used for decades in unpublished work and whose algebraic analogue has also long
been used. Heretofore he has always found alternative arguments that avoid its use
in published work, and the topological version seems not to have appeared in print.
The construction works in great generality with different kinds of bar constructions,
as described in [36, 37, 47] for example. We restrict attention to the monadic bar
construction used in this paper. We shall be informal, since it is routine to fill in the
missing details.

We assume given two monads C and D in some reasonable category U , and we
assume given a morphism of monads ι : C −→ D. We also assume given a right
D-functor Σ : U −→ V for some other reasonable category V . Then Σ is a right
D-functor with the pullback action

ΣC −→ ΣD −→ Σ.

Let X be a C-algebra in U . Reasonable means in particular that we can form
“geometric realizations” of simplicial objects X as usual, tensoring X over the category
∆ with a canonical (covariant) simplex functor from ∆ to U or V .

We assume that the functor D commutes with geometric realization, so that the real-
ization of a simplicial D-algebra is a D-algebra. Then the bar construction

ι!X = B(D,C,X)

in U specifies an “extension of scalars” functor that converts C-algebras X to D-
algebras in a homotopically well-behaved fashion. Since D acts on Σ, we have the
bar construction B(Σ,D, ι!X), and we also have the bar construction B(Σ,C,X), both
with values in V . Under these assumptions, we have the following result.

Theorem 11.1 There is a natural equivalence B(Σ,D, ι!X) ' B(Σ,C,X).
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Proof of Theorem 2.25 We replace U by GU and V by GSp. We take C to be
the monad associated to the operad CUG = (CG)G × KUG and D to be the monad
associated to CU = CG ×KU . We take Σ to be Σ∞G , and we recall that Σ∞G = i∗Σ∞

by Lemma 2.22. By inspection or a commutation of left adjoints argument, the functor
i∗ commutes with geometric realization. Therefore

EG(ι!X) ≡ B(Σ∞G ,CU, ι!X) ' B(Σ∞G ,CUG ,X) ∼= i∗B(Σ∞,CUG ,X) ≡ i∗EX,

where Theorem 11.1 gives the equivalence.

Proof of Theorem 11.1 We construct the double bar construction

B(Σ,D,D,C,X)

as the geometric realization of the bisimplicial object B•,•(Σ,D,D,C,X) in V whose
(p, q)-simplex object is ΣDpDCqX . The horizontal face and degeneracy operations
are those obtained by applying the simplicial bar construction B•(Σ,D,Y) to the D-
algebras Y = DCqX . The vertical face and degeneracy operations are those obtained
by applying the simplicial bar construction B•(Υ,C,X) to the C-functors Υ = ΣDpD.
The geometric realization of a bisimplicial object is obtained equivalently as the re-
alization of the diagonal simplicial object, the horizontal realization of its vertical
realization, and the vertical realization of its horizontal realization. Realizing first
vertically and then horizontally, we obtain

B(Σ,D,B(D,C,X)) = B(Σ,D, i!X).

Realizing first horizontally and then vertically, we obtain the bar construction

B(B(Σ,D,D),C,X) ' B(Σ,C,X).

Here B(Σ,D,D) is the right C-functor whose value on a C-algebra Y is B(Σ,D,DY)
with right C-action induced by the C-action CY −→ Y . The equivalence is induced
by the standard natural equivalence B(Σ,D,DY) −→ ΣY .

Remark 11.2 The double bar construction can be defined more generally and sym-
metrically. Dropping the assumption that there is a map of monads C −→ D,
B(Σ,D,F,C,X) is defined if F is a left D-functor and a right C-functor U −→ U
such that the following diagram commutes.

DFC //

��

DF

��
FC // F.

This can even work when the domain and target categories of F differ but agree with
the categories on which C and D are defined.
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