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In [12], we reworked and generalized equivariant infinite loop space theory, which 
shows how to construct G-spectra from G-spaces with suitable structure. In this 
paper, we construct a new variant of the equivariant Segal machine that starts from 
the category F of finite sets rather than from the category FG of finite G-sets and 
which is equivalent to the machine studied in [19,12]. In contrast to the machine in 
[19,12], the new machine gives a lax symmetric monoidal functor from the symmetric 
monoidal category of F–G-spaces to the symmetric monoidal category of orthogonal 
G-spectra. We relate it multiplicatively to suspension G-spectra and to Eilenberg–
Mac Lane G-spectra via lax symmetric monoidal functors from based G-spaces 
and from abelian groups to F–G-spaces. Even non-equivariantly, this gives an 
appealing new variant of the Segal machine. This new variant makes the equivariant 
generalization of the theory essentially formal, hence likely to be applicable in other 
contexts.

© 2018 Elsevier B.V. All rights reserved.

0. Introduction

The Segal infinite loop space machine [18] provides one of the two most commonly used approaches 
for constructing spectra from space level data, and it is widely used for constructing algebraic K-theory 
spectra. The input of the Segal infinite loop space machine is F -spaces, which are functors from the 
category of based finite sets, which we denote by F , to the category of spaces.1 The machine constructs 
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spectra from F -spaces, and all connective spectra arise in this way. The category of F -spaces is symmetric 
monoidal under Day convolution, and the conceptual version of the Segal machine from F -spaces to spectra, 
defined as a prolongation functor, is lax symmetric monoidal for formal reasons. However, this version of the 
machine is not homotopically well-behaved except under cofibrancy conditions that are not usually satisfied, 
and the derived version given by the bar construction (which can be thought of as a structured cofibrant 
approximation) loses the symmetry: it is lax monoidal but is not lax symmetric monoidal.

There are two evident equivariant generalizations of nonequivariant F -spaces: one can consider functors 
from the category of based finite sets F or from the category of based finite G-sets FG to G-spaces. However, 
the resulting categories of F–G-spaces and FG–G-spaces are equivalent [20]. The equivariant Segal machine 
defined in [19] and studied further in [12] takes FG–G-spaces as input. Just as nonequivariantly, this machine 
is defined as a prolongation functor precomposed with a homotopical replacement of the input, which results 
in a lax monoidal but not lax symmetric monoidal functor to G-spectra. In [12], this machine is shown to 
be equivalent to the operadic equivariant infinite loop space machine from [5].

It is desirable to have a machine whose natural input is F–G-spaces rather than FG–G-spaces. However, 
there is a subtle but critical problem with the obvious equivariant generalization of the homotopical Segal 
machine that makes it unusable equivariantly. This is explained in [12, Warning 3.10], as we recall in 
Remark 3.21: even when fed the correct input F–G-spaces, the usual bar construction defined using F
fails to produce genuine Ω–G-spectra. That is, the usual bar construction on F–G-spaces does not give an 
equivariant infinite loop space machine when applied to appropriate F–G-spaces, as it does nonequivariantly 
when applied to F -spaces [18] and equivariantly when applied to FG–G-spaces [19,12].

In this paper, we introduce a modification of the bar construction that solves the problem pointed out in 
[12, Warning 3.10] and gives an equivariant Segal infinite loop space machine that starts from F–G-spaces. 
The modification of the bar construction entails complementary use of different monads with the same 
algebras, as in [11, §4]. Our new version of the Segal machine has the unexpected bonus that it gives a new 
Segal machine that is both homotopically correct and lax symmetric monoidal.

In fact, as summarized in §4.1, we give several equivalent such machines. All are equivalent to the 
homotopically correct but non-symmetric monoidal machine developed in [19,12]. With the new variants 
of the Segal machine, any multiplicative algebraic structure, such as rings, modules, and algebras, that we 
see on the level of F–G-spaces is automatically transported by the machine to corresponding algebraic 
structure on the level of genuine G-spectra.

The new variants of the Segal machine are made possible by an invariance theorem that we prove in §2. 
It allows us to use variant versions of the bar construction and prove that they give equivalent machines. 
The key construction, developed in §3.1 and §3.2, is a symmetric version of the bar construction that leads 
to the good properties of our new machines. In §3.3 we review the classical equivariant Segal machine from 
[19,12]. The construction and comparisons of the new machines are given in §4. We prove that the new 
variants are symmetric monoidal in §5.

We give two examples in §6. One uses a strong symmetric monoidal functor from based G-spaces to 
F–G-spaces to give an equivariant version of the Barratt–Priddy–Quillen theorem that applies the Segal 
machine to construct suspension G-spectra. Another uses a lax symmetric monoidal functor from Abelian 
G-groups to F–G-spaces to construct genuine ring, module, and algebra Eilenberg–MacLane G-spectra. 
Parenthetically, we also note that the Segal machine preserves homotopies.
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1. Definitions, conventions, and the Segal machine

We fix a finite group G throughout the paper. In this section, we recall some definitions and results from 
[12] and specify what we mean by a Segal machine.

1.1. The relevant categories of G-spaces

All spaces are understood to be compactly generated and weak Hausdorff. We use the following nota-
tion.

• U is the category of unbased spaces and unbased maps; U∗ and T are the categories of based and of 
nondegenerately based spaces, respectively, and based maps;

• GU is the category of unbased G-spaces and unbased G-maps; GU∗ and GT are the categories of based 
and of nondegenerately based G-spaces, respectively, and based G-maps;

• UG is the category of unbased G-spaces and all (that is, not necessarily equivariant) unbased maps; 
UG∗ and TG are the categories of based and of nondegenerately based G-spaces, respectively, and all
based maps.

While U∗ and its equivariant avatars have better formal properties than T , all of our F–G-spaces and 
FG–G-spaces, as defined in §1.2 below, are required to take values in TG. This restriction is mathematically 
essential, but it is trivial to arrange by whiskering based G-spaces to obtain nondegenerately based G-spaces, 
just as in [9, Appendix] nonequivariantly. The following remark explains why we do not just restrict attention 
to TG everywhere.

Remark 1.1. A presentation of a pair (Y, A) of G-spaces as a G-NDR pair induces a presentation of the 
pair (Map(X, Y ), Map(X, A)) as a G-NDR pair when X is a compact G-space. Taking A = ∗, it follows 
that Map(X, Y ) is nondegenerately based by the trivial map X −→ ∗ when Y is nondegenerately based. 
We deduce that the G-space UG∗(X, Y ) of all based maps between based G-spaces is nondegenerately 
based when X is compact and Y is nondegenerately based. We do not believe that the conclusion holds for 
general X, a problem overlooked in [12]. Thus we must allow all based spaces and all based G-spaces when 
considering enrichment.

The categories of unbased G-spaces and G-maps are enriched over U , and the categories of based G-spaces 
and based G-maps are enriched over U∗. The category UG is enriched over GU , with G acting by conjugation 
on function spaces, and we may view GU as the G-fixed point category (UG)G. Similarly UG∗ and TG

are enriched over GU∗. It is important to distinguish between based and unbased enrichment; [12, §1.3]
discusses the importance of this distinction.

The categories listed above are closed symmetric monoidal with respect to × for unbased spaces and ∧
for based spaces. It is often best to think of UG and UG∗ not as categories in their own right but rather 
as giving the hom objects of the closed structures on the symmetric monoidal categories (GU , ×) and 
(GU∗, ∧). This makes sense since for unbased G-spaces X, Y, Z we have

GU (X × Y,Z) ∼= GU (X,UG(Y,Z))

and for based G-spaces X, Y, Z we have

GU∗(X ∧ Y,Z) ∼= GU∗(X,UG∗(Y,Z)).
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Our definition of G-equivalences of G-spaces is the usual definition where a G-equivalence is detected on 
fixed points.

Definition 1.2. A G-map f : X −→ Y is a G-equivalence if it induces weak homotopy equivalences 
fH : XH −→ Y H of fixed point spaces for all subgroups H ⊂ G.

1.2. F–G-spaces and FG–G-spaces

We use the following notation.

• F is the subcategory of T of based finite sets n, where n = {0, 1, . . . , n} with basepoint 0.
• Π is the subcategory of F of those maps φ : m −→ n such that |φ−1(j)| ≤ 1 for 1 ≤ j ≤ n.
• FG is the subcategory of TG of based finite G-sets of the form (n, α), where α : G −→ Σn is a homo-

morphism; we think of α(g) for g ∈ G as giving a based function g : n −→ n.
• ΠG is the subcategory of FG of those maps φ : (m, α) −→ (n, β) such that |φ−1(j)| ≤ 1 for 1 ≤ j ≤ n.

The category Π was used in [14] when defining categories of operators. The intuition is that if one thinks 
of F (m, n) as the space of operations with m inputs and n outputs (in particular, F (m, 1) is the space of 
m-ary operations), then Π contains only those operations that do not combine variables. The category ΠG

was used in [16,12] to generalize to equivariant categories of operators when indexing on finite G-sets.
The category F is enriched in based sets and thus, with the discrete topology on morphism sets, in T . 

We can also view it as enriched in GT , with the trivial G-action on morphism sets. The morphisms of FG

are the based functions, but now G acts by conjugation on morphism sets and we regard FG as a category 
enriched in GT . The maps in Π and ΠG are the composites of injections, projections, and permutations.

Notation 1.3. To make the notation less cumbersome, especially when indices are involved, we let α denote 
the G-set determined by the homomorphism α : G −→ Σn, writing (n, α) when necessary for clarity. We 
sometimes use the notation |α| to indicate the cardinality n of n\{0}.

We recall our definitions of F–G-spaces and FG–G-spaces from [12, §2.1].

Definition 1.4. An F–G-space is a GU∗-functor X : F −→ TG. Replacing F by Π gives the notion of a 
Π–G-space.

Since G acts trivially on F , X lands in the fixed point category (TG)G = GT . Thus it is equivalent to 
define an F–G-space X to be a U∗-functor X : F −→ GT .

Remark 1.5. Since Π ⊂ F , an F–G-space has an underlying Π–G-space, but an F–G-space has more 
structure. In particular, it has an n-fold multiplication Xn −→ X1 coming from the map n −→ 1 that sends 
0 to 0 and all other i to 1. For n ≥ 2, this map is in F but not in Π. Due to this extra structure, the 
assignment n 
→ An for a G-space A, which always extends to a functor on Π, generally does not extend 
to a functor on F . There is such an extension if and only if A has a product A2 −→ A under which it is a 
commutative monoid in GT .

Notation 1.6. We write Xn or X(n) for the value of X on n, choosing whichever notation is convenient in 
context.

From the enrichment in U∗, we see that X is given by based maps

F (m,n) −→ GU∗(X(m), X(n))
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and composition factors through smash products. Also, as a based functor, any F–G-space X is necessarily 
reduced, meaning that X0 = ∗ (see [12, Lemma 1.13]). There is a unique morphism 0 −→ n in F , and the 
basepoint of Xn is the image of the induced map X0 −→ Xn.

Definition 1.7. An FG–G-space is a GU∗-functor Y : FG −→ TG. Replacing FG with ΠG gives the notion 
of a ΠG–G-space.

Again, such a Y is necessarily reduced, meaning that Y (0) = ∗.

Remark 1.8. As in Remark 1.5, an FG–G-space has an underlying ΠG–G-space. The extra structure in 
FG encodes multiplications on FG–G-spaces Y that are indexed on finite G-sets. We have a multiplication 
Y (α) −→ Y1 where α : G −→ Σn specifies a G-action on the set n.

We have an adjoint pair of functors given by restricting along the inclusion i : F −→ FG and prolonging 
the other way by taking the left Kan extension along i.

F–G-spaces
P

FG
F

FG–G-spaces.
U

FG
F

(1.9)

We have a similar adjunction using the inclusion Π −→ ΠG.

Π–G-spaces
P
ΠG
Π

ΠG–G-spaces.
U

ΠG
Π

(1.10)

The following result originally appeared in [20] (cf. [12, Theorem 2.30]).

Proposition 1.11. The adjoint pairs of (1.9) and (1.10) are equivalences of categories.

1.3. Equivalences and the notion of a Segal machine

We recall the notions of equivalence for F–G-spaces and FG–G-spaces from [12, Definitions 2.6 and 2.27]. 
If X is a Π–G-space, the G-space Xn has a Σn-action coming from functoriality since permutations are maps 
in Π. The G × Σn-action on Xn is used in the following definition of equivalences.

Definition 1.12. Let f : X −→ X ′ be a map of Π–G-spaces and let j : Y −→ Y ′ be a map of ΠG–G-spaces.

(i) The map f is an F•-level equivalence if fn : XΛ
n −→ X ′Λ

n is a weak equivalence for all Λ ∈ Fn, where Fn

is the set of subgroups Λ of G × Σn that intersect Σn trivially.
(ii) The map j is a level G-equivalence if jα : Y (α) −→ Y ′(α) is a G-equivalence for all finite G-sets α.

We say that a map of F–G-spaces is an F•-level equivalence if its underlying map of Π–G-spaces is an 
F•-level equivalence, and we say that a map of FG–G-spaces is a level G-equivalence if its underlying map 
of ΠG–G-spaces is a level G-equivalence.

As explained in [12, Theorem 2.30], (i) is what we get if we transport the notion of equivalence of 
FG–G-spaces from (ii) along the equivalence of categories (1.9). Thus we have the following result, which 
will be used heavily whenever we compare F–G-spaces with FG–G-spaces.
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Theorem 1.13. A map f of F–G-spaces is an F•-level equivalence if and only if PFG

F f is a level 
G-equivalence.

We also recall what it means for an F–G-space X or an FG–G-space Y to be special from [12, Defini-
tions 2.6 and 2.27]. As explained there, there are two notions for F–G-spaces, but we shall only consider 
the one that gives the correct input for the construction of genuine G-spectra. We first recall the definitions 
of the Segal maps from [12, Definitions 2.3 and 2.26], which give more details.

Definition 1.14. Let A be a based G-space. Define a Π–G-space RA by letting its nth G-space be An =
TG(n, A). Define a ΠG–G-space RGA by letting its αth G-space be Aα = TG(α, A), where α denotes the 
based G-set n with G-action specified by α : G −→ Σn.

For a Π–G-space X, define the Segal map δ : X −→ RX1 of Π–G-spaces by letting its nth G-map 
δ : Xn −→ Xn

1 have coordinates δi induced by the n projections δi : n −→ 1, where δi sends i to 1 and all 
other j to 0. As in Remark 1.5, its target is only a Π–G-space even when X is an F–G-space.

Similarly, for a ΠG–G-space Y , define the Segal map δ : Y −→ RGY1 of ΠG–G-spaces by letting its αth 
G-map δ : Y (α) −→ TG(α, Y1) have coordinates induced by the projections δi. Here, as explained in [12, 
Definitions 2.26], the δi are not G-maps, but they nevertheless give the coordinates of the G-map δ. As in 
Remark 1.8, the target is only a ΠG–G-space, even when Y is an FG–G-space.

Definition 1.15. Let X be an F–G-space and Y be an FG–G-space.

(i) X is F•-special if δ : X −→ RX1 is an F•-level equivalence of Π–G-spaces.
(ii) Y is special if δ : Y −→ RGY1 is a level G-equivalence of ΠG–G-spaces.

We note that for G = e an F•-level equivalence is just a level equivalence, so that for a nonequivariant 
F -space we recover the classical definition of special as meaning that the maps Xn −→ Xn

1 are equivalences. 
Again by [12, Theorem 2.30], we have the following companion to Theorem 1.13.

Theorem 1.16. An F–G-space X is F•-special if and only if PFG

F X is special.

Definition 1.17. An (equivariant) Segal machine is a functor SG from F–G-spaces X to orthogonal G-spectra 
such that if X is F•-special, then

(i) SGX is a positive Ω–G-spectrum and
(ii) if V G �= 0, there is a natural group completion X1 −→ ΩV (SGX)(SV ).

Via the results above, an equivalent definition is that a Segal machine is a functor SG from FG–G-spaces 
Y to orthogonal G-spectra such that if Y is special, then

(i) SGY is a positive Ω–G-spectrum and
(ii) if V G �= 0, there is a natural group completion Y1 −→ ΩV (SGY )(SV ).

Given a machine SG on F–G-spaces, SG ◦ U
FG

F gives the equivalent machine on FG–G-spaces. Given a 
machine SG on FG–G-spaces, SG ◦ PFG

F gives the equivalent machine on FG–G-spaces.
The original non-equivariant Segal machine was introduced by Segal in [18]. An equivariant version of 

the Segal machine was constructed in [19,12]. Our goal in this paper is to construct equivalent machines 
with better properties.
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2. The invariance theorem

All variants of the Segal machine treated here start with F–G-spaces or FG–G-spaces, prolong them 
to functors defined on based G–CW complexes A, and then restrict A to spheres SV to obtain orthog-
onal G-spectra. To compare machines, we show that prolongation preserves equivalences under suitable 
hypotheses.

2.1. Statement of the invariance theorem

We recall the details of the prolongation functor from [12, §2.3] and state the invariance theorem.

Definition 2.1. Let WG be the full subcategory of TG of based G–CW complexes, and define a WG–G-space
to be a GU∗-functor X : WG −→ TG.

Construction 2.2. The G-spaces X(SV ) of a WG–G-space specify an orthogonal G-spectrum. Identifying 
SV ∧ SW with SV⊕W , its structure G-maps

X(SV ) ∧ SW −→ X(SV⊕W )

are adjoint to the composites

SW TG(SV , SV⊕W ) X
TG(X(SV ), X(SV⊕W )),

where the first map is adjoint to the identity map of SV⊕W .

We define the prolongation functor PWG

F from F–G-spaces to WG–G-spaces to be the left adjoint of the 
functor induced by the inclusion F −→ WG. For a G–CW-complex A, its evaluation at A is given by the 
categorical tensor product

(PWG

F X)(A) = A• ⊗F X,

where A• is the functor F op −→ TG that sends n to the based G-space An = TG(n, A). A detailed 
point-set topological level discussion of the prolongation functor is given in [17, Appendix B]. We have 
a factorization of prolongation functors as in the following diagram. This factorization (up to canonical 
natural isomorphism) of left adjoints is immediate since the corresponding factorization of their right adjoint 
forgetful functors is evident.

FG–G-spaces P
WG
FG

F–G-spaces

P
FG
F

P
WG
F

WG–G-spaces

As recalled in Proposition 1.11, the functor PFG

F on the left is an equivalence of categories. However, the 
prolongation functor PWG

FG
does not preserve level G-equivalences in general, hence we cannot expect the 

composite functor PWG

F to take F•-level equivalences of F–G-spaces to level G-equivalences of WG–G-spaces 
in general. We will prove that such a homotopical invariance theorem does hold if we impose the following 
“cofibrancy” condition on F–G-spaces. A simplicial G-space is a simplicial object in G-spaces; equivalently, 
it is a G-object in simplicial spaces. It was shown in [12, §1.2]) that a simplicial G-space X � is Reedy cofibrant 
if all of its degeneracy maps si : Xn −→ Xn+1 are G-cofibrations.
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Definition 2.3. An F–G-space X is proper if for any based simplicial G-set A � the simplicial G-space 
(PWG

F X)(A �) is Reedy cofibrant. An FG–G-space Y is proper if for any simplicial G-set A � the simplicial 
G-space (PWG

FG
Y )(A �) is Reedy cofibrant. Observe that X is proper if and only if PFG

F X is proper.

This notion of a proper F–G-space (or FG–G-space) is new and may look strange at first sight.2 Recall 
that all simplicial sets are Reedy cofibrant in the standard Quillen model structure. Since cofibrations are 
precisely monomorphisms, the same is true for simplicial G-sets with the model structure given by requiring 
a map f : K −→ L of simplicial G-sets to be a weak equivalence or fibration if each fixed point map fH is 
a weak equivalence or fibration for all subgroups H ⊂ G; see [22, Proposition 2.16].

Remark 2.4. In [12, Definition 9.10] we said that a WG–G-space Z, such as PWG

F X or PWG

FG
Y , preserves Reedy 

cofibrancy if for every simplicial G–CW-complex A �, the simplicial G-space Z(A �) is Reedy cofibrant. Clearly 
X is proper if PWG

F X preserves Reedy cofibrancy.

We can now state the invariance theorem.

Theorem 2.5 (Invariance theorem). Let f : X −→ X ′ be an F•-level equivalence of proper F–G-spaces. Then 
the induced map

P
WG

F f : (PWG

F X)(A) −→ (PWG

F X ′)(A)

is a G-equivalence for all based G–CW complexes A.

By Theorem 1.13 and the observation at the end of Definition 2.3, the invariance theorem admits the 
following equivalent reinterpretation.

Theorem 2.6 (Invariance theorem). Let f : Y −→ Y ′ be a level equivalence of proper FG–G-spaces. Then 
the induced map

P
WG

FG
f : (PWG

FG
Y )(A) −→ (PWG

FG
Y ′)(A)

is a G-equivalence for all based G–CW complexes A.

Remark 2.7. Note that when G = e, an F•-level equivalence of F -spaces is just a level equivalence. Thus, in 
the nonequivariant case, the invariance theorem says that prolongation preserves level equivalences between 
proper F -spaces.

2.2. Proof of the invariance theorem

We make use of the classical adjunction (| − |, S �) between geometric realization of simplicial sets and 
the total singular complex functor. Let G act trivially on the topological simplices Δn. If A is a based 
G-space, then S �A is a based G-simplicial set with G acting on simplices via the action of G on A. Visibly 
(S �A)H = S �(AH); a simplex f : Δn −→ A is fixed by H if and only if it takes values in AH . Similarly, 
for a simplicial G-set K �, we have (|K �|)H = |KH

�
|. Thus the natural G-map ε : |S �A| −→ A restricts on 

H-fixed points to the standard weak equivalence |S �AH | −→ AH . Moreover, just as nonequivariantly, |K �|
is a G–CW complex. Choosing one H in each conjugacy class of subgroups of G, it has one cell of type 
G/H×Dn for each nondegenerate n-simplex with isotropy group H. If A is a G–CW complex, ε is therefore 
a G-homotopy equivalence. This implies the following lemma.

2 We owe the idea for this notion to Stefan Schwede.
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Lemma 2.8. For any F–G-space X, the map ε : |S �A| −→ A induces a natural G-homotopy equivalence

P
WG

F X(ε) : |S �A|• ⊗F X → A• ⊗F X.

Therefore the invariance theorem holds if and only if its conclusion holds with A replaced by |S �A|. We 
may view a G-set A, not necessarily finite, as a G–CW complex. The following lemma gives the starting 
point for the proof of the invariance theorem.

Lemma 2.9. Let f : X −→ X ′ be an F•-level equivalence of F–G-spaces. Then PWG

F f : (PWG

F X)(A) −→
(PWG

F X ′)(A) is a G-equivalence for any based G-set A.

Proof. By Zorn’s Lemma, we may decompose the based G-set A as a wedge of orbits G/H+. We can then 
order our orbits, so that A is the well-ordered colimit of maps of the form B+ −→ B+ ∨G/H+. Due to the 
presence of the disjoint basepoint, the inclusion from one term into the next is the inclusion of a retract, 
a property that is retained on application of PWG

F X. By [13, Lemma 1.6.2], it follows that each induced map 
(PWG

F X)(B+) −→ (PWG

F X)(B+ ∨G/H+) is a closed inclusion.
Since passage to H-fixed points commutes with wedges and ordered colimits ([7, Lemma III.1.6]) and 

since we can commute ordered colimits and the coequalizers that define PWG

F , the map PWG

F f , evaluated at A, 
is the colimit of an ordered set of G-equivalences. It is therefore a G-equivalence since passage to homotopy 
groups commutes with ordered colimits of closed inclusions. In more detail, we again use that the colimits 
in question commute with fixed points and we observe that applying fixed points to a closed inclusion again 
produces a closed inclusion. The fact that homotopy groups commute with colimits of sequences in the 
category Top of (arbitrary) topological spaces is classical [3, Lemma 2.14], and the classical proof readily 
generalizes from sequences to ordered colimits. As all maps in the colimit system are closed inclusions, the 
colimit as calculated in Top agrees with the colimit as calculated in U [23, Lemma 3.3]. �

Now we use the notion of a proper F–G-space to complete the proof of the invariance theorem.

Proposition 2.10. Let f : X → X ′ be an F•-level equivalence of proper F–G-spaces and let A = |K �| be 
the geometric realization of a based G-simplicial set K �. Then PWG

F f : (PWG

F X)(A) −→ (PWG

F X ′)(A) is a 
G-equivalence.

Proof. Using that products commute with realization and that the coequalizers that define PWG

F commute 
with the colimits that define | − |, we see that

A• ⊗F X ∼= |(PWG

F X)(K �)|,

and similarly for X ′. By Lemma 2.9, (PWG

F f)(A) is the realization of a level G-equivalence of simplicial 
G-spaces, and by assumption (PWG

F X)(K �) and (PWG

F X ′)(K �) are Reedy cofibrant simplicial G-spaces. There-
fore, (PWG

F f)(A) is a G-equivalence [12, Theorem 1.10]. �
Remark 2.11. We only need the case A = SV . As a smooth G-manifold, SV is triangulable as a countable 
G-simplicial complex [6]. Restricting to this case, we only need countable colimits in a variant of the argument 
above. Schwede [17, Proposition B.48] gives an analogous invariance theorem that restricts attention to finite 
G–CW complexes A and bypasses the use of infinite colimits.

3. Variants of the two-sided bar construction

All of our variants of the Segal machine are constructed by prolonging either F–G-spaces or FG–G-spaces 
given by two-sided bar constructions to WG–G-spaces and then restricting to G-spheres to obtain (orthog-
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onal) G-spectra. We focus on the relevant bar constructions in this section. We first recall the general 
definitions and then specialize to the examples of interest.

3.1. The general monadic bar construction B(Y, E, X)

We assume given a closed symmetric monoidal category V with product ⊗ and internal hom objects 
V (V, W ). We are thinking of (V , ⊗) as either (GU , ×) or (GU∗, ∧), and then we are thinking of UG and 
UG∗ as giving the hom objects of the closed structures on (GU , ×) and (GU∗, ∧). We also assume given a 
small V -category E . We are thinking of E as either F or FG. With these examples in mind, we shall be a 
little imprecise about categorical details in order to avoid excessive pedantry.

In decades of previous work, and especially in the prequel [12], it is emphasized that there is a categorical 
two-sided bar construction that is defined when ⊗ = × (as in [15, §12]) and a monadic two-sided bar 
construction that is defined in general (as in [9, §9]). It is essential to our new examples that we work 
monadically. In this section, we recall the definition of the monadic bar construction and show that the 
categorical bar construction is a special case. We then generalize this special case to obtain the monadic bar 
constructions of interest in this paper. In our examples, W in the following definition will be the category 
Fun(Ψ, V ) of V -functors Ψ −→ V for some V -subcategory Ψ of E .3 We require the category Z below to 
be enriched and tensored over V .

Definition 3.1. Let (E, μ, η) be a monad in a ground category W , let (X, θ) be an E-algebra, and let 
Y : W −→ Z be a right E-functor, namely a functor together with an action natural transformation 
ϑ : YE −→ Y such that ϑ ◦ Yη = I and ϑ ◦ Yμ = ϑ ◦ ϑE. Then the bar construction B(Y, E, X) in Z
is defined as the geometric realization, constructed as usual in our topological examples, of a simplicial ob-
ject B �(Y, E, X) in Z with q-simplices YEqX. The faces are induced by ϑ, μ, and the action θ : EX −→ X

and the degeneracies are induced by η, as in [9, §9].

Conceptually, the bar construction B(Y, E, X) is a derived variant of the monadic tensor product Y ⊗EX, 
which is defined to be the coequalizer of the pair of maps

YEX ⇒ YX

in Z induced by ϑ and θ. The maps YEqX −→ YX given by iterated use of μ induce a map of simplicial 
objects in Z from B �(Y, E, X) to the constant simplicial object at Y ⊗E X. Its realization is a natural map

ε : B(Y,E, X) −→ Y⊗E X.

The most obvious example of Y is E : W −→ W , with ϑ = μ. In this case μ also induces an E-algebra 
structure on B(E, E, X), and ε : B(E, E, X) −→ X is a map of E-algebras. By the standard extra degeneracy 
argument, as in [9,21], ε is a homotopy equivalence when W is any of the categories of spaces or G-spaces we 
consider, with homotopy inverse η : X −→ B(E, E, X) induced by η : X −→ EX on 0-simplices. Examples 
of this form are the starting point of all of our variants of the Segal machine. By inspection in examples or 
a formal argument in general [21], we have a natural isomorphism

Y⊗E B(E,E, X) ∼= B(Y,E, X) (3.2)

over Y ⊗E X.

3 More generally, V could be replaced by an appropriate V -category M .
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Recall that any adjoint pair of functors (P, U) gives rise to a monad E = UP with unit Id −→ E given by 
the unit η of the adjunction, and product EE −→ E given by UεP, where ε is the counit of the adjunction. 
Here the W above is the domain category of P. Our monads E are all of this form.

To compare with the categorical bar construction (in its general enriched form), we let O denote the 
object set of E . We think of O as a discrete V -category, identity morphisms only, and we have the inclusion 
of V -categories O −→ E . Notice that a covariant or contravariant V -functor X : O −→ V is just an 
assignment of objects X(e) of V , one for each object e ∈ O of E . We then have a forgetful functor

U = U
E
O : Fun(E ,V ) −→ Fun(O,V ). (3.3)

Assuming (as we have already done implicitly) that V has coproducts, U has the left adjoint

P = P
E
O : Fun(O,V ) −→ Fun(E ,V ) (3.4)

specified by

(PX)(e) =
∐
d

E (d, e) ⊗X(d). (3.5)

The evaluation map of this V -functor is given by coproducts of maps

E (e, f) ⊗ E (d, e) ⊗X(d) −→ E (d, f) ⊗X(d)

given by composition in E . Remembering only the underlying objects, this gives the monad E = UP in the 
ground category W = Fun(O, V ).

In this case, an action θ : EX −→ X is just the evaluation map of a covariant V -functor X : E −→ V . For 
a contravariant V -functor Y : E −→ Z , where Z is a V -category tensored over V , define a right E-functor 
Y : Fun(O, V ) −→ Z by

Y(Z) =
∐
e

Y (e) ⊗ Z(e).

Then (YE)(Z) =
∐

e,d Y (e) ⊗E (d, e) ⊗Z(d), and ϑ is induced by the evaluation map Y (e) ⊗E (d, e) −→ Y (d)
of the V -functor Y . Expanding the definitions, the monadic bar construction is given by

Bq(Y,E, X) =
∐

(e0,...,eq)

Y (eq) ⊗ E (eq−1, eq) ⊗ · · · ⊗ E (e0, e1) ⊗X(e0). (3.6)

This is the same as the Bq(Y, E , X) of the categorical bar construction, and the faces and degeneracies 
agree. Therefore B(Y, E, X) coincides with the categorical two-sided bar construction B(Y, E , X).

An object A ∈ V gives the represented contravariant V -functor Y = V (−, A) on V . If E ⊆ V , the 
associated right E-functor Y : Fun(O, V ) → V is denoted by A•. It is defined explicitly on V -functors 
Z : O −→ V by

A•(Z) =
∐
e

V (e,A) ⊗ Z(e).

These right E-functors lead to the prolongation functors that are used to construct the Segal machine.
The treatment of the Segal machine in [19,12] uses the categorical bar construction with V = GU . We 

have analogous monads and monadic bar constructions starting from V = GU∗. We did not use those 
in [12] only because we did not yet have the invariance theorem and so did not know they behave well 
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homotopically. That gives one innovation in this paper. But the main innovation is to replace O by the 
subgroupoid all isomorphisms of E . Anticipating our examples, we denote this subgroupoid by Σ. We again 
have a forgetful functor

U = U
E
Σ : Fun(E ,V ) −→ Fun(Σ,V ). (3.7)

It has the left adjoint

P = P
E
Σ : Fun(Σ,V ) −→ Fun(E ,V ), (3.8)

given by the categorical tensor product of functors E ⊗Σ X. Thus, for an object e of E , P(X)(e) is the 
coequalizer of the pair of maps

∐
(c,d)

E (d, e) ⊗ Σ(c, d) ⊗X(c) ⇒
∐
d

E (d, e) ⊗X(d)

given by ◦ ⊗id and id⊗ζ, where ◦ : E (d, e) ⊗Σ(c, d) −→ E (c, e) is composition in E and ζ : Σ(c, d) ⊗X(c) −→
X(d) is the evaluation map of the V -functor X : Σ −→ V . This gives a monad E = UP in the ground category 
W = Fun(Σ, V ).

Here again, for an object A ∈ V , we have a right E-functor A•. It is defined on V -functors Z : Σ −→ V

as the categorical tensor product of the functor represented by A and Z. Explicitly, it is the coequalizer of 
the pair of maps

∐
(c,d)

V (d,A) ⊗ Σ(c, d) ⊗ Z(c) ⇒
∐
d

V (d,A) ⊗ Z(d)

given by composition in V and the evaluation map of Z. Assuming that Σ ⊂ E ⊂ V , the right action 
of E on A• is induced by composition in V . To see this, it helps to observe that, ignoring associativity 
isomorphisms, A•

EZ is constructed by passage to coequalizers from
∐

a,b,c,d

V (d,A) ⊗ Σ(c, d) ⊗ E (b, c) ⊗ Σ(a, b) ⊗ Z(a).

3.2. Overview of the relevant specializations

In principle, there are eight relevant specializations visible in our general discussion. Four are obtained 
by taking E = F and four are obtained by taking E = FG. In each case, two take (V , ⊗) = (GU , ×) and 
two take (V , ⊗) = (GU∗, ∧) for the enriching category, while two start from O ⊂ E and two start from 
Σ ⊂ E .

We first consider the distinction between GU and GU∗. Thus consider the functor categories

Fun(E ,UG) and Fun(E ,UG∗). (3.9)

We require the first to consist of GU -functors and the second to consist of GU∗-functors; that is, the 
functors X in these categories must be given by maps

X : E (d, e) −→ UG(X(d), X(e)) or X : E (d, e) −→ UG∗(X(d), X(e))

in GU or GU∗. As said earlier, in the case of UG∗ this forces X to be reduced in the sense that X(0) is a 
point. In particular, F–G-spaces and FG–G-spaces are reduced. Thus, the full subcategory of Fun(E , UG)
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consisting of those functors that are reduced can be identified with Fun(E , UG∗). Indeed, applying X to 
the unique map 0 −→ n in F then gives the G-spaces X(n) basepoints that are preserved by X(φ) for all 
morphisms φ ∈ F , and similarly for FG.

However, for any of the four E that we have in the case of (GU , ×), the bar construction B(E, E, X) is 
not reduced even when X is so. To remedy that and to get enrichment in GU∗ rather than in GU , we follow 
[12, (3.3)] and replace all bar constructions B(Y, E, X) with the reduced variants obtained by quotienting 
out the contractible G-subspace B(∗, E, X). Here we use that the basepoints of the Yn induced by the maps 
0 −→ n in F or FG give a map ∗ −→ Y of E-functors for any E-functor Y. In particular, we define

B̃(E,E, X) = B(E,E, X)/B(∗,E, X). (3.10)

In [12], we used the unadorned notation B for such reduced bar constructions. Taking E = FG and 
restricting our target to be TG rather than UG∗,4 the reduced bar construction gives rise to the versions of 
the Segal machines used there. To describe our variants, we fix the following notations.

Notation 3.11. The set of objects of F is the set N of natural numbers, so we write O = N in that case. 
Correspondingly, we write O = NG for the set of objects (n, α) of FG. The maximal subgroupoid of F is 
the disjoint union Σ of the symmetric groups Σn, and here the source and target of an isomorphism must 
be the same. Correspondingly we write ΣG for the maximal subgroupoid of FG. Thus ΣG has the same 
objects as FG and, for finite based G-sets α and β, ΣG(α, β) is empty if |α| �= |β|, and it is Σn, equipped 
with the conjugation G-action, if |α| = |β| = n.

We have the following eight monads, listed here with the corresponding ground categories

×
F
N = (Fun(N,UG),UF

N P
F
N ) ×

F
NG

G = (Fun(NG,UG),UFG

NG
P

FG

NG
)

×
F

Σ = (Fun(Σ,UG),UF
Σ P

F
Σ ) ×

F
ΣG

G = (Fun(ΣG,UG),UFG

ΣG
P

FG

ΣG
)

∧
F
N = (Fun(N,TG),UF

N P
F
N ) ∧

F
NG

G = (Fun(NG,TG),UFG

NG
P

FG

NG
)

∧
F

Σ = (Fun(Σ,TG),UF
Σ P

F
Σ ) ∧

F
ΣG

G = (Fun(ΣG,TG),UFG

ΣG
P

FG

ΣG
)

(3.12)

Notation 3.13. By default, we agree to write F rather than ∧F for the bottom four monads, occasionally 
retaining the notation ∧F for emphasis or when making comparisons. We always write ×F when the ×-variant 
is meant.

The algebras for the four monads on the left are functors with domain F . The two on the top are 
unreduced functors, and the two on the bottom are reduced functors. Similarly, the algebras for the four 
monads on the right are functors with domain FG, with the two on the top being unreduced and the 
two on the bottom being reduced. For the four categories of algebras for the monads on the top, we will 
restrict our attention to those algebras whose underlying functor is reduced (and hence based), and lands 
in TG. Recalling the equivalence between the categories of F–G-categories and FG–G-categories, we see 
that we have eight monads in sight, all of which have equivalent categories of algebras, after the appropriate 
restrictions are taken. There are still others that we have chosen not to consider; see Remark 4.14.

We have eight corresponding bar constructions. Fixing an F–G-space X and an FG–G-space Y , we 
obtain eight WG–G-spaces by taking A• for A ∈ WG as the first variable in the bar constructions. As 
a reminder that we must reduce the bar constructions in the ×-case and that we prefer the ∧-case, we 
systematically write B̃ in the ×-case and B in the ∧-case.

4 By inspection of definitions, all of the monads in sight restrict to TG, meaning that if X takes values in TG, then so do EX
and the relevant bar constructions.
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For example, we write

(B̃NGY )(A) = B̃(A•,× F
NG

G , Y ) and (BΣX)(A) = B(A•,∧ F
Σ, X). (3.14)

We display these WG–G-spaces in a commutative diagram. For the isomorphism r, which is given by 
Theorem 4.10, we take Y = P

FG

F X or, equivalently, X = U
FG

F Y .
The dotted arrow maps p are equivalences, but the proof is not obvious and will be omitted. The left 

dotted arrow q is thus also an equivalence since by Theorem 4.13 the bottom left solid arrow q is an 
equivalence. The right dotted arrow q is not an equivalence since the bottom right solid arrow q is not an 
equivalence, as we shall see. However, the dotted arrows are included solely in order to make the relationships 
among the eight bar constructions clear since we have no real interest in the symmetric bar constructions 
defined using × rather than ∧.

B̃NGY
q

p

B̃ΣGY

p

B̃ΣX

p

B̃NX

p

q

BNGY
q

BΣGY
∼=
r

BΣX BNX
q

(3.15)

The natural quotient map from products to smash products of G-spaces induces quotient maps labeled p. 
The natural quotient maps from monads defined just using objects to monads defined using isomorphisms 
of objects induce quotient maps labeled q.

It was convenient to use × for some of the proofs in [12]. However, as the use of dotted arrows emphasizes, 
we see no advantages to using × equivariantly or multiplicatively, preferring to use ∧ on the grounds that 
it is most natural to work throughout with based G-spaces. The invariance theorem allows us to do so since 
it allows us to prove that the solid arrow maps p in (3.15) are level G-equivalence of WG–G-spaces; see 
Theorem 3.19.

The diagram gives eight candidates for Segal machines. According to our preference for the variant of the 
bar construction defined using ∧, we rule out B̃ΣG and B̃Σ from further consideration. Equivariantly, as we 
explain in §3.3, B̃N and BN fail to give Segal machines, and we therefore also rule them out. As we shall 
prove in the following sections, we are left with four equivalent Segal machines, two of which are symmetric 
monoidal and two or which are not.

Nonequivariantly, with G = e, the left and right squares coincide and we have agreed to ignore B̃Σ. 
Here B̃N gives Woolfson’s variant [24] of Segal’s original machine [18] and our BN gives an equivalent 
variant defined using ∧ instead of ×. These machines are not symmetric monoidal, but our BΣ gives a third 
equivalent nonequivariant machine that is so.

Equivariantly, as we explain in §3.3, B̃NG gives the Segal machine studied in [19,12], and BNG gives an 
equivalent machine defined using ∧ instead of ×. Again, these machines are not symmetric monoidal.

The main new idea of this paper is the introduction of the symmetric bar constructions defined using Σ
and ΣG. In Theorem 4.10, we shall prove the surprising fact that BΣ and BΣG give isomorphic WG–G-spaces, 
giving the isomorphism r in (3.15). In Theorem 4.13, we shall prove that the bottom left arrow q : BNGY −→
BΣGY in (3.15) is a level G-equivalence of WG–G-spaces. These results prove the main result of the paper, 
namely that the composite

B̃NGY
p

BNGY
q

BΣGY ∼=

r
BΣX (3.16)

displays equivalences between four Segal machines when Y = P
FG

F X or, equivalently, when X = U
FG

F Y . 
The isomorphic symmetric variants remedy the defects of the original Segal machine of [19,12].



B. Guillou et al. / Journal of Pure and Applied Algebra 223 (2019) 2425–2454 2439
3.3. The bar constructions defined using NG

We start with FG and NG and recall the classical Segal machine of [19,12], adding tilde to the notation 
to distinguish this variant from our variant defined using smash products.

Definition 3.17. For an FG–G-space Y , define S̃NG

G Y to be the G-spectrum associated to the WG–G-space 
B̃NGY , so that

(S̃NG

G Y )(V ) = (B̃NGY )(SV ).

Similarly, define SNG

G Y to be the G-spectrum associated to the WG–G-space BNGY , so that

(SNG

G Y )(V ) = (BNGY )(SV ).

As was noted in [12, Remark 3.6], unravelling definitions shows that (B̃NGY )(A) is the geometric real-
ization of a simplicial G-space with q-simplices given by wedges of half-smash products:

∨
α0,...,αq

Aαq ∧
(
FG(αq−1, αq) × · · · × FG(α0, α1) × Y (α0)

)
+.

For comparison, (BNGY )(A) is the geometric realization of a simplicial G-space with q-simplices given by 
wedges of smash products:

∨
α0,...,αq

Aαq ∧ FG(αq−1, αq) ∧ . . . ∧ FG(α0, α1) ∧ Y (α0).

It was proven in [19], with an updated proof in [12, Theorem 3.22], that S̃NG

G is indeed a Segal machine in 
the sense of Definition 1.17. The following results imply that SNG

G gives another, equivalent, Segal machine.

Lemma 3.18. The FG–G-spaces B̃(×FNG

G ,× F
NG

G , Y ) and B(∧FNG

G ,∧ F
NG

G , Y ) are proper for any FG–G-space Y .

Proof. By [12, Proposition 9.13], the prolonged WG–G-space given by the (B̃NGY )(A) preserves Reedy 
cofibrancy, and the same argument works with × replaced by ∧. The conclusion follows from Remark 2.4. �
Theorem 3.19. For FG–G-spaces Y , there is a natural level G-equivalence of G-spectra

S̃
NG

G Y −→ S
NG

G Y.

Proof. We have the following commutative triangle, where p is the evident quotient map and the middle 
arrow ε is induced by passage to quotients from the left arrow ε. Since it is not reduced, the left corner 
is not an FG–G-space, but the map p is a map of FG–G-spaces and it induces a map of prolongations to 
WG–G-spaces, which in turn induces a map p : S̃NG

G Y −→ S
NG

G Y of G-spectra.

B(×FNG

G ,× F
NG

G , Y ) �

ε

B̃(×FNG

G ,× F
NG

G , Y )
p

ε

B(∧FNG

G ,∧ F
NG

G , Y )

ε

Y

(3.20)

The left and right maps ε are level G-equivalences. As explained in [12, §3.1], B(∗, F×,N
G , Y ) is level 

G-contractible and the inclusion of it into B(×FNG

G ,× F
NG

G , Y ) is a level G-cofibration, hence the arrow labeled 
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� is a level G-equivalence. Therefore the middle map ε and the quotient map p are level G-equivalences. 
Remembering (3.2), Lemma 3.18 allows us to apply the invariance theorem of Theorem 2.6 to obtain the 
conclusion. �
Remark 3.21. Consider F and N. We recall briefly from [12, Remark 3.10] why the obvious generalization 
of the nonequivariant machine to F–G-spaces X does not work equivariantly. Just as in the previous proof, 
we have the following diagram.

B(×FN,× F
N, Y ) �

ε

B̃(×FN,× F
N, Y )

p

ε

B(∧FN,∧ F
N, Y )

ε

Y

(3.22)

The left and right maps ε are again level G-equivalences, as is the arrow labeled �, hence so are the middle 
arrow ε and the arrow p. However, because the homotopy inverse η of ε on the left and right is not level 
Σ-equivariant, these level G-equivalences are not F•-level equivalences. Therefore, prolonging the diagram 
to FG–G-spaces does not result in level G-equivalences and the invariance theorem does not apply, even 
though the bar constructions here are again proper.

4. The symmetric Segal machines

The previous section laid the groundwork for our symmetric Segal machines defined using Σ and ΣG. 
We here define these machines and compare them to each other and to the machines defined using NG. We 
emphasize that the comparison with the machine defined using NG gives the only proof we know that the 
symmetric machines are in fact Segal machines.

4.1. The Segal machines defined using Σ and ΣG

Anticipating the proofs to follow, we offer the following new definitions of Segal machines. Starting from 
F–G-spaces, the first of our new machines will solve the problem with F and N discussed in Remark 3.21. 
Recall Notation 3.13.

Definition 4.1. For an F–G-space X, define SΣ
GX to be the G-spectrum associated to the WG–G-space BΣX, 

so that

(SΣ
GX)(V ) = (BΣX)(SV ).

More explicitly, (BΣX)(A) is the geometric realization of a simplicial G-space with q-simplices given by 
passage to orbits over symmetric group actions from the q-simplices of (BNX)(A): the q-simplices are

∨
nq,...,n0

Anq ∧Σnq
F (nq−1,nq) ∧Σnq−1

. . . ∧Σn1
F (n0,n1) ∧Σn0

X(n0).

The following analogue provides an intermediary that will allow us to compare the Segal machines of 
Definitions 3.17 and 4.1 but, surprisingly, it turns out to give a machine that is actually isomorphic to that 
of Definition 4.1.
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Definition 4.2. For an FG–G-space Y , define SΣG

G Y to be the G-spectrum associated to the WG–G-space 
BΣGY , so that

(SΣG

G Y )(V ) = (BΣGY )(SV ).

We summarize what we shall prove about these machines. For any FG–G-space Y , we have maps of 
G-spectra

S̃
NG

G Y
p

S
NG

G Y
q

S
ΣG

G Y
∼=

S
Σ
GU

FG

F Y.

For any F–G-space X, we have maps of G-spectra

S̃
NG

G P
FG

F X
p

S
NG

G P
FG

F X
q

S
ΣG

G P
FG

F X
∼=

S
Σ
GX.

Theorem 4.10 will give that the maps labeled ∼= are indeed natural isomorphisms of G-spectra. Theo-
rem 4.13 will give that the middle quotient maps q are level G-equivalences of G-spectra. Theorem 3.19
already gives that the left quotient maps p are level equivalences of G-spectra. Thus the cited results show 
that the proposed Segal machines in Definitions 4.1 and 4.2 are level G-isomorphic and are level G-equivalent 
to the Segal machines of Definition 3.17.

4.2. The proof that the symmetric bar constructions are proper

The comparison of machines depends on the invariance theorem, and to apply it we need to know that 
our symmetric bar constructions give proper F–G-spaces, just as the bar constructions of §3.3 do (see 
Lemma 3.18). We only consider FΣ here, dealing with FΣG

G in Theorem 4.10. Again recall Notation 3.13.

Lemma 4.3. Let A be a based G-space, and let X be an F–G-space. Then the simplicial G-space 
B �(A•, FΣ, X) is Reedy cofibrant.

Proof. By [12, Lemma 1.9], it suffices to show that the degeneracy maps are based G-cofibrations. These 
are wedges of maps of the form

An ∧Σn
F (k,n) ∧Σk

X(k) −→ An ∧Σn
F (k,n) ∧Σk

F (k,k) ∧Σk
X(k)

that are obtained by inserting idk into one factor. [1, Appendix, Proposition 2.6] implies that An is nonde-
generately based as a (G × Σn)-space. We assume or arrange by whiskering that X(k) is nondegenerately 
based as a (G × Σk)-space. Since the mapping spaces of F are all discrete, we deduce that the degeneracy 
maps are G-cofibrations from the cofibration property we see before passage to orbits. �
Proposition 4.4. Let X be an F–G-space. Then the F–G-space B(FΣ, FΣ, X) is proper and thus, equiva-
lently, the FG–G-space PFG

F B(FΣ, FΣ, X) is proper.

Proof. By [12, Lemma 1.9], it suffices to show that for any based simplicial G-set A∗, each of the degeneracy 
maps si : An −→ An+1 induces a G-cofibration B(A•

n, F
Σ, X) −→ B(A•

n+1, F
Σ, X). By Lemma 4.3, these 

bar constructions are realizations of Reedy cofibrant simplicial G-spaces, so that by [12, Theorem 1.11] it 
suffices to show that each map

A•
n(FΣ)qX −→ A•

n+1(FΣ)qX
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is a G-cofibration. Taking q = 1 for simplicity, this map is a wedge over k and m of maps

Ak
n ∧Σk

F (m,k) ∧Σm
Y (m) si∧id ∧ id−−−−−−→ Ak

n+1 ∧Σk
F (m,k) ∧Σm

Y (m) (4.5)

Since si : An −→ An+1 is an injection of (discrete) sets, it follows that the function si : Ak
n −→ Ak

n+1 is a 
(G × Σk)-cofibration, so that the map (4.5) is a G-cofibration by [1, Appendix, Lemma 2.3]. �
4.3. The comparison of SΣ

G and SΣG

G

The commutative diagram of inclusions of categories

Σ ΣG

F FG

gives rise to a commutative diagram of forgetful functors

Fun(Σ,TG) Fun(ΣG,TG)
U

ΣG
Σ

Fun(F ,TG)

U
F
Σ

Fun(FG,TG)

U
FG
ΣG

U
FG
F

The left adjoints given by categorical tensor products then make the following diagram commute up to 
natural isomorphism.

Fun(Σ,TG)
P
ΣG
Σ

P
F
Σ

Fun(ΣG,TG)

P
FG
ΣG

Fun(F ,TG)
P

FG
F

Fun(FG,TG)

∼=

(4.6)

The proof of the following result is identical to that for the pair (PFG

F , UFG

F ) given in [12, Theorem 2.30]. 
While we no longer have Segal maps in the top pair of functor categories in (4.6), the respective notions of 
F•-level equivalence and level G-equivalence still make sense.

Theorem 4.7. The adjoint pair (PΣG

Σ , UΣG

Σ ) gives an equivalence of categories. A map f ∈ Fun(Σ, TG) is an 
F•-level equivalence if and only if PΣG

Σ f is a level G-equivalence.

Remark 4.8. The proof of [12, Theorem 2.30] is given for the pair of adjoint functors (PΠG

Π , UΠG

Π ). The same 
proof works with Π replaced by F , Σ, or any subcategory of F that contains Σ. The proof does not work 
with Π replaced by N. Since there are no non-identity morphisms in NG, PNG

N
X(α) is a point when α is a 

non-trivial G-set.

Since (UΣG

Σ , PΣG

Σ ) and (UFG

F , PFG

F ) are equivalences of categories, the following square also commutes up 
to natural isomorphism
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Fun(Σ,TG)
P
ΣG
Σ Fun(ΣG,TG)

Fun(F ,TG)

U
F
Σ

P
FG
F

Fun(FG,TG)

U
FG
ΣG

∼=

(4.9)

Combining squares (4.6) and (4.9) and remembering that our monads are composites of the form UP, we 
obtain a natural isomorphism

Fun(Σ,TG)

F
Σ

P
ΣG
Σ Fun(ΣG,TG)

F
ΣG
G

Fun(Σ,TG)
P
ΣG
Σ

Fun(ΣG,TG)

∼=

This isomorphism implies the following precise comparison of the symmetric machines defined in Defini-
tions 4.1 and 4.2.

Theorem 4.10. Let X be an F–G-space. Then there is a natural isomorphism of FG–G-spaces

B(FΣG

G ,FΣG

G ,PFG

F X) ∼= P
FG

F B(FΣ,FΣ, X) (4.11)

and B(FΣG

G , FΣG

G , PFG

F X) is proper. Applying PWG

FG
and restricting to spheres, there is a natural isomorphism 

of G-spectra

S
ΣG

G P
FG

F X ∼= S
Σ
GX.

Equivalently, for an FG–G-space Y , there is a natural isomorphism of G-spectra

S
ΣG

G Y ∼= S
Σ
GU

FG

F Y.

Proof. To be pedantically precise, the left hand side of (4.11) is really

P
FG

ΣG
B(FΣG

G ,FΣG

G ,UFG

ΣG
P

FG

F X) ∼= P
FG

ΣG
B(FΣG

G ,FΣG

G ,PΣG

Σ U
F
Σ X).

Since FΣG

G P
ΣG

Σ
∼= P

ΣG

Σ F
Σ,

B(FΣG

G ,FΣG

G ,PΣG

Σ U
F
Σ X) ∼= P

ΣG

Σ B(FΣ,FΣ,UF
Σ X).

Applying PFG

ΣG
, we get

P
FG

ΣG
P

ΣG

Σ B(FΣ,FΣ,UF
Σ X) ∼= P

FG

F P
F
Σ B(FΣ,FΣ,UF

Σ X),

which is exactly what the right hand side of (4.11) really means. The statement about properness follows, 
since the isomorphism is obtained by applying geometric realization to an isomorphism of simplicial G-spaces 
and the right side of (4.11) is proper by Proposition 4.4. The last statements follow directly. �

We find these isomorphisms quite remarkable. If we write out the definitions explicitly and try to com-
pare the bar constructions explicitly, we find the task quite forbidding. We emphasize that, as a result of 
Remark 4.8, the analogous theorem does not hold if we replace Σ and ΣG with N and NG.
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4.4. The comparison of SNG

G and SΣG

G

Arguing as in the previous section, the inclusion of domain categories NG −→ ΣG gives rise to a natural 
transformation (not an isomorphism)

Fun(NG,TG)

F
NG
G

U
NG
ΣG Fun(ΣG,TG)

F
ΣG
G

Fun(NG,TG)
U

NG
ΣG

q

Fun(ΣG,TG)

For an FG–G-space Y , q induces a map of FG–G-spaces

q : B(FNG

G ,FNG

G , Y ) −→ B(FΣG

G ,FΣG

G , Y ).

This gives a formal construction of the natural quotient map q, and the following diagram of FG–G-spaces 
commutes.

B(FNG

G ,FNG

G , Y )

ε

q
B(FΣG

G ,FΣG

G , Y )

ε

Y

(4.12)

The maps ε are level G-equivalences, hence so is q. Since the bar constructions are proper, by Lemma 3.18
and Theorem 4.10, the invariance theorem applies to give the following conclusion.

Theorem 4.13. For any FG–G-space Y , the map q of (4.12) is a level G-equivalence of FG–G-spaces. 
Therefore, applying PWG

FG
and restricting to spheres, q induces a level G-equivalence of G-spectra

S
NG

G Y −→ S
ΣG

G Y.

Taking Y = P
FG

F X for an F–G-space X and combining Theorems 3.19, 4.10 and 4.13, we see that the 
Segal machine S̃NG

G P
FG

F X of [19,12] is equivalent to our new symmetric Segal machine SΣ
GX.

Remark 4.14. The reader of [12] may notice that when dealing with the operadic infinite loop space machine 
there we constructed appropriate monads using Π and ΠG rather than Σ and ΣG. We could have used Π
and ΠG here too. However, it would be finicky to adapt the proof of Proposition 4.4 to show that the bar 
constructions that are relevant here are proper and thus to justify application of the invariance theorem 
using the resulting monads. The variant machines that would be obtained offer no apparent advantages over 
those already constructed.

5. Symmetric monoidal properties of the symmetric Segal machine

We recall the monoidal structures on the categories of F–G-spaces and of orthogonal G-spectra and 
state the theorem about the symmetric monoidal Segal machine in §5.1. For definiteness, we take SG to be 
S

Σ
G in this section and remove the superscripts from the notation. We prove that SG is lax monoidal in §5.2. 

This proof can be adapted for any of the other variants. We prove that SG is lax symmetric monoidal in 
§5.3. There it is essential to use the symmetric machine.



B. Guillou et al. / Journal of Pure and Applied Algebra 223 (2019) 2425–2454 2445
5.1. Recollections about product structures

The category F is permutative with respect to the smash product ∧. Thus, we can define a symmetric 
monoidal product on F–G-spaces by using Day convolution; see e.g. [8, §21]. For F–G-spaces X and Y , 
we have the evident levelwise external smash product X � Y , defined as the composite5

F × F
X×Y−−−−→ GT ×GT

∧−→ GT .

We define X ∧ Y as the left Kan extension indicated in the diagram

F × F

∧

X�Y
GT .

F

X∧Y

It is characterized by the adjunction

Fun(F , GT )(X ∧ Y,Z) ∼= Fun(F × F , GT )(X � Y,Z ◦ ∧), (5.1)

where Z ∈ Fun(F , GT ). Its unit is the F–G-space I given by the inclusion F ⊂ T ⊂ GT . As motivation, 
pairings X�Y −→ Z◦∧ of F–G-spaces appear ubiquitously in nature, as was already noted nonequivariantly 
in [10].6

The category of orthogonal G-spectra is also symmetric monoidal [7, II.3.1], and its smash product is 
defined similarly. Recall the definition of orthogonal G-spectra and of the external smash product � from [12, 
Definition 1.18]. Recall also that the structure maps of X give a map of IG–G-spaces σ : X � S −→ X ◦ ⊕. 
For G-spectra X and Y , X ∧ Y starts from the external smash product X � Y and its left Kan extension 
indicated in the diagram

IG × IG

⊕

X�Y
TG.

IG

X∧IG
Y

This left Kan extension is characterized by the adjunction

Fun(IG,TG)(X ∧IG
Y,Z) ∼= Fun(IG × IG,TG)(X � Y,Z ◦ ⊕), (5.2)

where Z ∈ Fun(IG, TG). In particular, the structure map σ induces a map

X ∧IG
S −→ X.

The smash product X ∧ Y is the coequalizer displayed in the diagram

X ∧IG
S ∧IG

Y X ∧IG
Y X ∧ Y, (5.3)

5 F × F and GT ×GT are understood in the enriched sense, so that hom objects are smash products of the hom objects of the 
two variables.
6 Regrettably, its author did not then know about Day convolution, which converts such pairings to maps of F–G-spaces.
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where the two arrows are induced by the action of S on X and Y (using S∧IG
Y ∼= Y ∧IG

S). The action of 
S on X or Y induces the required action of S on X∧Y . For the unit property, X∧IG

S becomes isomorphic 
to X on passage to coequalizers.

Definition 5.4. For G-spectra X, Y , and Z, a pairing f : X ∧ Y −→ Z is a map of G-spectra.

Theorem 5.5. The functor SG from F–G-spaces to orthogonal G-spectra is lax symmetric monoidal. There-
fore a pairing f : X ∧Y −→ Z of F–G-spaces functorially determines a pairing SGf : SGX ∧SGY −→ SGZ

of G-spectra.

Remark 5.6. The equivariant version of [8, Proposition 3.3] shows that the conceptual variant of the Segal 
machine, namely the functor UGSP

WG

F of [12, Definition 2.20], is also a lax symmetric monoidal functor 
from F–G-spaces to orthogonal G-spectra. However, we are more interested in the homotopically better 
behaved functor SG.

We prove Theorem 5.5 in two steps. We first prove that SG is lax monoidal and then prove that it is 
symmetric. We repeat that the symmetric variant of the bar construction used in our construction of SG is 
vital for the second part.

5.2. The proof that SG is lax monoidal

Let X and Y be F–G-spaces. We need maps of G-spectra ε : SG −→ SG(I) and

ϕ : SG(X) ∧ SG(Y ) −→ SG(X ∧ Y ),

the latter natural in X and Y , such that the following three diagrams commute:

SG ∧ SG(X) ε∧id

∼=

SG(I) ∧ SG(X)

ϕ

SG(X) SG(I ∧X),∼=

SG(X) ∧ SG

∼=

id ∧ε
SG(X) ∧ SG(I)

ϕ

SG(X) SG(X ∧ I),∼=

SG(X) ∧ SG(Y ) ∧ SG(Z)
ϕ∧id

id ∧ϕ

SG(X ∧ Y ) ∧ SG(Z)

ϕ

SG(X) ∧ SG(Y ∧ Z)
ϕ

SG(X ∧ Y ∧ Z).

In the last diagram we have omitted the associativity isomorphisms for both F–G-spaces and orthogonal 
G-spectra.

Note that SV includes into the 0-simplices of the bar construction B((SV )•, FΣ, I) by mapping into the 
component SV ∼= SV ∧1. It is straightforward to check that this map gives a map of spectra ε : SG −→ SG(I).

To construct ϕ, we define a map

B
(
(SV )•,FΣ, X

)
∧B

(
(SW )•,FΣ, Y

)
−→

(
(SV⊕W )•,FΣ, X ∧ Y

)
(5.7)

for X, Y F–G-spaces, and V , W in IG. We will define the map on wedge summands at the simplicial level, 
before modding out by the symmetric groups. As usual, we use lexicographic ordering to identify the smash 
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product m ∧ n of finite based sets with mn. This is where asymmetry enters. To simplify notation, for a 
tuple (n0, . . . , nq), write

F (n) = F (nq−1,nq) ∧ · · · ∧ F (n0,n1). (5.8)

Given a second tuple (m0, . . . , mq), write

F (m) ∧ F (n) = F (mq−1,mq) ∧ F (nq−1,nq) ∧ · · · ∧ F (m0,m1) ∧ F (n0,n1) (5.9)

and

F (m ∧ n) = F (mq−1nq−1,mqnq) ∧ · · · ∧ F (m0n0,m1n1). (5.10)

On q-simplices, the map in (5.7) is defined, after passing to orbits, as the composite

(SV )mq ∧ F (m) ∧X(m0) ∧ (SW )nq ∧ F (n) ∧ Y (n0)

(SV )mq ∧ (SW )nq ∧ F (m) ∧ F (n) ∧X(m0) ∧ Y (n0)

(SV⊕W )mqnq ∧ F (m ∧ n) ∧ (X ∧ Y )(m0 ∧ n0).

(5.11)

The first map is a shuffle map. The second map is the smash product of the map

(SV )mq ∧ (SW )nq −→ (SV⊕W )mqnq

that sends (v1, . . . , vm) ∧ (w1, . . . , wn) to (vi ∧ wj) in the (i, j)th-coordinate, the map induced by ∧ on F , 
and the map

X(m0) ∧ Y (n0) −→ (X ∧ Y )(m0 ∧ n0)

induced by the universal property of Day convolution.
One can easily check that these maps commute with the simplicial maps and are compatible with the 

symmetric group actions that are used in the passage to orbits in the definition of BΣ, thus giving a pairing 
of G-functors IG × IG −→ TG. By the universal property of left Kan extension, there results a map

SG(X) ∧IG
SG(Y ) −→ SG(X ∧ Y )

of IG–G-spaces. It is routine to check that this map factors through the coequalizer in (5.3), and this gives 
the required map

ϕ : SG(X) ∧ SG(Y ) −→ SG(X ∧ Y )

of G-spectra. From here, it is straightforward to check that the three diagrams do in fact commute. For the 
unit diagrams, the essential point is just that S0 is the unit for ∧ in TG. For the associativity diagram, the 
essential point is just that ∧ on (nondegenerately based compactly generated) G-spaces is associative (up 
to canonical isomorphism).
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5.3. The proof that SG is lax symmetric monoidal

In the previous section we could have worked just as well with the machine defined in [12] in terms of the 
ordinary bar construction, but the resulting lax monoidal machine would not be lax symmetric monoidal. In 
fact, the dichotomy is already present nonequivariantly, where Woolfson’s variant [24] of the Segal machine, 
which is implicitly defined using the ordinary bar construction, is lax monoidal but not lax symmetric 
monoidal.

We must prove that the following diagram commutes.

SG(X) ∧ SG(Y )
ϕ

τ

SG(X ∧ Y )

SGτ

SG(Y ) ∧ SG(X)
ϕ

SG(Y ∧X).

In general, for orthogonal G-spectra X, Y , and Z with maps f : X ∧ Y −→ Z and e : Y ∧X −→ Z, the 
interpretation in terms of the external smash product for the diagram

X ∧ Y
f

τ

Y ∧X
e

Z

to commute is that the diagram

X(V ) ∧ Y (W )
f

τ

Z(V ⊕W )

Z(τ)

Y (W ) ∧X(V )
e

Z(W ⊕ V )

commutes for all V and W . Therefore, with the horizontal arrows defined as in the previous section, the 
diagram that we are trying to show commutes translates to the commutativity of the diagram

B((SV )•,FΣ, X) ∧B((SW )•,FΣ, Y )

τ

B((SV⊕W )•,FΣ, X ∧ Y )

B(id,id,τ)

B((SV⊕W )•,FΣ, Y ∧X)

B(τ•,id,id)

B((SW )•,FΣ, Y ) ∧B((SV )•,FΣ, X) B((SW⊕V )•,FΣ, Y ∧X),

which can be rewritten as

B((SV )•,FΣ, X) ∧B((SW )•,FΣ, Y )

τ

B((SV⊕W )•,FΣ, X ∧ Y )

B(τ•,id,τ)

B((SW )•,FΣ, Y ) ∧B((SV )•,FΣ, X) B((SW⊕V )•,FΣ, Y ∧X).
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That diagram does not commute with FΣ replaced by FN, but it does commute as written. The quotienting 
by permutations that appears in the construction of FΣ rectifies the noncommutativity that was introduced 
by the choice of lexicographic ordering on smash products. To see the intuition, observe that the diagram for 
the actual tensor product of functors over F rather than the bar construction clearly commutes (as is needed 
to verify that the conceptual Segal machine is lax symmetric monoidal, as claimed in the introduction). 
That diagram takes the form

((SV )• ⊗F X) ∧ ((SW )• ⊗F Y )

τ

(SV⊕W )• ⊗F (X ∧ Y )

τ⊗τ

((SW )• ⊗F Y ) ∧ ((SV )• ⊗F X) (SW⊕V )• ⊗F (Y ∧X).

Expanding out the definitions of the maps ϕ on q-simplices given in (5.11), we see that going clockwise 
we get

(SV )mq ∧ F (m) ∧X(m0) ∧ (SW )nq ∧ F (n) ∧ Y (n0)

(SW⊕V )mqnq ∧ F (m ∧ n) ∧ (Y ∧X)(m0 ∧ n0),

while going counterclockwise we get

(SV )mq ∧ F (m) ∧X(m0)) ∧ (SW )nq ∧ F (n) ∧ Y (n0)

(SW⊕V )nqmq ∧ F (n ∧ m) ∧ (Y ∧X)(n0 ∧ m0).

When we pass to orbits over the groups Σmini
and consider the evident permutations τi : mi ∧ ni −→

ni ∧mi in the three variables of our two-sided bar constructions, we see that the diagram commutes after 
passage to quotienting by the symmetric groups. To see what is happening on the first two variables, just 
observe that the following general diagram commutes for based G-spaces A, B, C, D

TG(A,B) ∧ TG(C,D) τ

∧

TG(C,D) ∧ TG(A,B)

∧

TG(A ∧ C,B ∧D)
TG(τ,τ)

TG(C ∧A,D ∧B).

To see what is happening on the third variable, we note that the symmetry isomorphism τ : X ∧Y → Y ∧X

of the Day convolution on F–G-spaces, is defined as the morphism corresponding via (5.1) to the composite

X(m) ∧ Y (n) τ−→ Y (n) ∧X(m) → (Y ∧X)(n ∧ m) (Y ∧X)(τ)−−−−−−−→ (Y ∧X)(m ∧ n),

where the unlabeled arrow corresponds to the identity of Y ∧X under (5.1). Thus the diagram
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X(m) ∧ Y (n) τ
Y (n) ∧X(m)

(X ∧ Y )(m ∧ n)
τ

(Y ∧X)(m ∧ n)
(Y ∧X)(τ)

(Y ∧X)(n ∧m)

commutes.

6. Examples

We give two elementary examples where the symmetric monoidal property of the Segal machine appears 
naturally. We first give a symmetric monoidal functor from based G-spaces to F–G-spaces that gives a 
multiplicative version of the Barratt–Priddy–Quillen theorem on application of the Segal machine. We then 
give a lax symmetric monoidal functor from abelian G-groups to F–G-spaces that gives rise to genuine ring, 
module, and algebra Eilenberg–MacLane G-spectra on application of the machine. A brief final section shows 
that the Segal machine preserves homotopies.

6.1. Suspension G-spectra

Any equivariant infinite loop space machine should encode a version of the Barratt–Priddy–Quillen 
theorem expressing suspension G-spectra as outputs of input to the machine. As explained in [5], this is 
true of the operadic machine, where free E∞ G-spaces give rise to suspension G-spectra. In this section we 
explain the very different way that suspension G-spectra appear in the Segal machine. We give a monoidal 
equivalence between the suspension G-spectrum functor and the composite of the Segal machine with an 
elementary functor from G-spaces to F–G-spaces. For definiteness, we again take SG to mean SΣ

G in this 
section.

Recall that Σ∞
G is the functor from based G-spaces GT to orthogonal G-spectra GS that sends X to 

{ΣV X}. It is left adjoint to the 0th G-space functor (−)0, given by evaluation at S0. The following result 
is well-known, but is not well documented in the literature.

Lemma 6.1. There is a natural isomorphism of G-spectra

Σ∞
G X ∧ Σ∞

G Y −→ Σ∞
G (X ∧ Y ), (6.2)

and the functor Σ∞
G from based G-spaces to G-spectra is symmetric monoidal.

Sketch. For G-spaces X and Y , the obvious isomorphisms

ΣV X ∧ ΣWY ∼= ΣV⊕W (X ∧ Y )

specify a natural isomorphism

Σ∞
G X � Σ∞

G Y ∼= Σ∞
G (X ∧ Y ) ◦ ⊕

of G-functors IG × IG −→ TG. By the universal property of left Kan extension, there results a natural 
map of G-functors IG −→ TG

Σ∞
G X ∧IG

Σ∞
G Y −→ Σ∞

G (X ∧ Y ). (6.3)
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The smash product Σ∞
G X∧Σ∞

G Y is obtained by coequalizing the actions of the sphere G-spectrum on Σ∞
GX

and Σ∞
G Y , and the map (6.3) factors through the coequalizer to give the map (6.2). By a check of definitions, 

the 0th G-space of Σ∞
G X ∧ Σ∞

G Y is homeomorphic to X ∧ Y , and the adjoint of this homeomorphism is a 
natural map

Σ∞
G (X ∧ Y ) −→ Σ∞

G X ∧ Σ∞
G Y. (6.4)

The maps (6.2) and (6.4) are inverse isomorphisms of G-spectra. Alternatively, one can check directly that 
Σ∞

G (X ∧Y ) satisfies the universal property of the coequalizer that defines Σ∞
G X ∧Σ∞

G Y . The last statement 
is clear from the construction of the isomorphism. �

Slightly generalizing a notation used before, write Y • for the contravariant functor F −→ GT given 
by the powers Y n = TG(n, Y ) of any based G-space Y . Analogously, write •X for the covariant functor 
F −→ GT given by the n-fold wedges nX = n ∧ X of a based G-space X. Since nS0 = n ∼= F (1, n), 
•S0 ∼= F (1, −) is the unit F–G-space previously denoted by I. Note that •X is very far from being 
F•-special, or even naively special, and bears no obvious relationship to free E∞ G-spaces. We shall prove 
that application of the functor SG to these F–G-spaces gives a functor from G-spaces to G-spectra that is 
monoidally equivalent to Σ∞

G .

Remark 6.5. With the notations of [8, Definition 1.3], we have

nX = n ∧X = F (1,n) ∧X = (F1X)(n),

and the functor F1 =• (−) from G-spaces to F–G-spaces is left adjoint to the functor Ev1 specified by 
evaluation at 1.

Lemma 6.6. The functor F1 =•(−) is strong symmetric monoidal.

Proof. This is implied by [8, Lemma 1.8], which specializes to give the required natural isomorphism F1X ∧
F1Y ∼= F1(X ∧ Y ). �
Theorem 6.7. For based G-spaces X, there is a natural weak equivalence

μ : Σ∞
G X −→ SG(•X)

of G-spectra, and μ is a monoidal natural transformation.

To prove the theorem conceptually, we put it in a more general context, starting with the following two 
observations.

Lemma 6.8. The G-space Y • ⊗F
•X is G-homeomorphic to Y ∧X.

Proof. Recall that the tensor product of functors is given by the evident coequalizer and is a quotient of 
the wedge over n of the G-spaces

Y n ∧ nX ∼=
∨

1≤j≤n

(Y n ∧X).

Using the inclusions ιj : 1 −→ n, 1 ≤ j ≤ n, and noting that ι∗j : Y n −→ Y is projection on the jth 
coordinate while ιj∗ : X −→nX is inclusion of the jth wedge summand, we see that each wedge summand 
is identified with Y ∧X on passage to the coequalizer. �
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Lemma 6.9. Let D and E be monoidal categories and let L : D � E : R be a monoidal adjunction, meaning 
that L is strong monoidal and (consequently) R is lax monoidal. Suppose that H : D −→ E is a lax monoidal 
functor. Then a transformation

μ : L =⇒ H

is monoidal if and only if the adjoint transformation

μ̂ : Id =⇒ RH

is monoidal.

Theorem 6.10. The G-space B(Y •, FΣ,•X) is naturally G-equivalent to Y ∧X.

Proof. The inclusion of Y ∧ X in the G-space of 0-simplices of the simplicial bar construction induces a 
G-map η : Y ∧X −→ B(Y •, FΣ,•X). We have a G-map ζ : B(Y •, FΣ,•X) −→ Y ⊗F X ∼= Y ∧X obtained 
as usual by composition and evaluation maps. Clearly ζ ◦ η = id. Noting that

B
(
Y •,FΣ,•X

)
= B

(
Y •,FΣ,F (1, •) ∧X

)
,

we see that the identity map 1 −→ 1 gives rise to an extra degeneracy operator, and then a standard 
argument gives a homotopy η ◦ ζ � id, as we used in §3. �
Proof of Theorem 6.7. The map η of the previous proof specializes to give

η : X −→ B((S0)•,FΣ,•X) = SG(•X)0.

We define μ to be its adjoint under the adjunction between Σ∞
G and the 0th space functor. Theorem 6.10

implies that μ is a levelwise G-homotopy equivalence. It remains to prove that μ is monoidal.
Applying Lemma 6.9 with L = Σ∞

G , R = (−)0, and H = SG(•(−)), it is enough to prove that η : Id −→ RH

is monoidal. The unit diagram commutes since η is the adjoint of the unit map of spectra ε : SG −→ SG(I)
when X = S0. The other diagram we must show commutes is

X ∧ Y
η∧η

SG(•X)0 ∧ SG(•Y )0

ϕ0

X ∧ Y
η

SG(•(X ∧ Y ))0.

Since η is the inclusion into the 0-simplices of the bar construction, this is clear from the definition of ϕ. �
6.2. Ring, module, and algebra Eilenberg–MacLane G-spectra

We show how the symmetric monoidal machine SG transports G-rings, G-modules, and G-algebras to 
their genuine G-spectrum level analogs.

A commutative topological G-monoid A is the same thing as a Com–G-space, where Com is the com-
mutativity operad; we require the basepoint 0 of A to be nondegenerate. By Remark 1.5 and Definition 1.14, 
the functor R from G-spaces to Π–G-spaces given by (RA)(n) = An takes Com–G-spaces to F–G-spaces. 
The sum induces the F -action, and RA is trivially F•-special.
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We restrict attention to discrete abelian G-groups A. Then SGA is an Eilenberg–Mac Lane G-spectrum 
HA. We have the free abelian group functor Z[−] that sends a G-set S to the free abelian G-group Z[S]. We 
view Z[S] as obtained from the based version Z[S+] by setting the basepoint equal to zero. The composite 
RZ[−] sends finite G-sets to F•-special F–G-spaces. Specializing the functor •(−) to G-sets, it gives a 
functor from based G-sets to F–G-spaces. We have the following observation.

Lemma 6.11. For based G-sets S+, there is a natural map h : •(S+) −→ RZ[S] of F–G-spaces.

Proof. We have n(S+) = (
∐

n S)+. The map h sends the basepoint to 0 and sends the jth copy of S to the 
set S viewed as the generating set of the jth coordinate of the product Z[S]n. It is easily checked that this 
is a map of F–G-spaces. �

The letter h is meant to indicate that SGh : Σ∞
G S+ −→ HZ[S] gives a machine built avatar of a special-

ization of the Hurewicz homomorphism.
We shall prove the following result.

Lemma 6.12. The functor R from abelian G-groups to F–G-spaces is lax symmetric monoidal.

Proof. Since I =•S0, the map h specialized to S = {1} gives the required unit map I −→ RZ. For abelian 
G-groups A and B, we must construct a map of F–G-spaces

RA ∧ RB −→ R(A⊗B).

By the universal property of Day convolution, this amounts to constructing a natural transformation of 
functors out of F × F ,

RA � RB −→ R(A⊗B) ◦ ∧. (6.13)

Note that the latter sends a pair (m, n) to (A ⊗ B)mn, where m ∧ n = mn, ordered lexicographically. At 
(m, n), the map in (6.13) is the composite

Am ×Bn −→ (A×B)mn −→ (A⊗B)mn,

where the first map uses the lexicographical ordering to send a pair (a, b) to the mn-tuple that has (ai, bj)
in the (i, j)th position, and the second map is the mn-fold product of the canonical map A ×B −→ A ⊗B. 
It is straightforward to check the required coherence relations. �
Corollary 6.14. The composite functor SΣ

G ◦R from abelian G-groups to Eilenberg–MacLane G-spectra takes 
G-rings, G-modules over G-rings, and G-algebras over commutative G-rings to ring G-spectra, module 
G-spectra over G-ring spectra, and algebras over commutative ring G-spectra.

Proof. G-rings are just monoids in the symmetric monoidal category (GA b, ⊗), and so on. Preservation 
properties such as these are formal for any lax symmetric monoidal functor. �
Remark 6.15. In [2], Bohmann and Osorno use an infinite loop space machine starting from Guillou and 
May [4] to construct Eilenberg–Mac Lane G-spectra HM for all Mackey functors M , whereas the fixed 
points of abelian G-groups give only very special examples. However, their machine is not yet known to 
work multiplicatively. There is work in progress seeking a common generalization.
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6.3. Homotopies

We give a brief discussion of how the Segal machine SG sees homotopies. The category of orthogonal 
G-spectra is tensored over the category of spaces via the half-smash product. For a G-spectrum E and a 
space A, the half-smash product E ∧ A+ has V th G-space (E ∧ A+)(V ) = E(V ) ∧ A+. We are mainly 
interested in A = I, and we may as well restrict to CW complexes A. If A is contractible and E is an 
Ω–G-spectrum, then so is E ∧A+. The category of F–G-spaces is also tensored over the category of spaces 
via the half-smash product. For an F–G-space X, (X ∧ A+)(n) = X(n) ∧ A+. Similarly, the category of 
FG–G-spaces is tensored over spaces. In these contexts, just as for G-spectra, homotopies between maps 
X −→ Y are given by maps X ∧ I+ −→ Y .

Proposition 6.16. The Segal machine SG (in any of its avatars) preserves tensors with spaces and therefore 
preserves homotopies.

Proof. Arguing as in [12, Remark 3.3] or just inspecting definitions, we see for example that

(BNGY )(SV )) ∧A+ ∼= (BNG(Y ∧A+))(SV ).

This gives the proof for machine SNG

G . The analogous commutation relation holds for our other machines. �
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