MUNSHI’'S PROOF OF THE NULLSTELLENSATZ

J.PETER MAY

1. Introduction.

Following Ritabrata Munshi [5] and using extracts from Kaplansky’s book [3],
we give a geodesic proof of the Nullstellensatz, aimed at undergraduates. Some
historical commentary will be given in Section 7.

We assume familiarity with the definitions of a commutative ring, an integral
domain, a field, and the field of fractions of an integral domain. The letter R will
always stand for an integral domain, and K will stand for its field of fractions.
We also assume familiarity with the notion of an ideal. For the present purposes,
an R-algebra A will mean a commutative ring A that contains R as a subring.
The polynomial R-algebra R[zq,--- ,x,] may be viewed as R[zi][z2...,z,] or as
R[x1,...,Zp—1][xs]). Polynomials in R[x1,...,xz,] have degrees in each variable,
and a total degree. It is convenient to let the zero polynomial have (total) degree
—o00. In R[z], we then have

deg(fg) = deg(f) + deg(g)
and
deg(f + g) < max(deg(f),deg(g))

for all polynomials f and g. Proofs of results about polynomials often proceed by
inductive arguments in which one lowers degrees of polynomials by taking appro-
priate linear combinations. Munshi’s new proof of the Nullstellensatz carries that
simple idea to extreme lengths, introducing a simple and precise way to carry out
such inductions when there are many variables.

2. Preliminaries.

Before explaining Munshi’s proof, we summarize all of the relevant classical facts
about integral domains that will implicitly or explicitly enter into the argument.

Proposition 2.1. The ring R[z1,...,x,] is an integral domain.

Indeed, by induction on n, it suffices to show this for n = 1. Here deg(fg) > 0 if
and only if both deg(f) > 0 and deg(g) > 0, which means that fg # 0 if and only
if both f # 0 and g # 0.

We recall that a (proper) ideal P in R is primeif xy € P impliesz € P or y € P;
P is mazimal if it is not properly contained in a larger (proper) ideal. A maximal
ideal is a prime ideal. An element p of an integral domain R is irreducible if it is
not zero and not a unit, and if p = ab implies that either a or b is a unit. This is
one possible generalization of the notion of a prime number in Z. Here is another.
An element p is prime if the principal ideal (p) = {rp|r € R} is a prime ideal.

Proposition 2.2. Fvery prime element is irreducible, but not conversely.
1
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An integral domain R is a principal ideal domain (PID) if every ideal I in R is
principal. Here the converse does hold in view of the following stronger result.

Proposition 2.3. If R is a PID, then p is irreducible if and only if (p) is mazimal.

Indeed, if (p) C (¢), then p = rq, and if p is irreducible, then r must be a unit
and (p) = (q)-

Proposition 2.4. If F is a field, then F[z] is a PID.

An integral domain R is a unique factorization domain (UFD) if every nonzero
element a that is not a unit can be written as a finite product of irreducible elements,
uniquely up to order of factors and multiplication by units. That is, if a = p1 - pm
and @ = q1 - .. qn, then m = n and, after reordering, g; = u;p; for a unit u;.

Theorem 2.5. Every principal ideal domain is a unique factorization domain.
Theorem 2.6. If R is a unique factorization domain, then so is Rlxy, ..., zy].

Again, the proof is by induction on n. Of course, Theorem 2.6 would be false
if UFD were replaced by PID, since ;1 would be an irreducible element such that
(21) is not maximal.

3. The Nullstellensatz.

Consider the fields R and C of real and complex numbers. In R|z|, the polyno-
mial 22 + 1 is irreducible. The quotient field R[z]/(2? + 1) is a copy of C: we have

adjoined i = /—1.

Theorem 3.1 (Fundamental theorem of algebra). Fvery polynomial f in C[x]
has a root a in C. Thus, if f is monic, it splits completely as a product of linear
polynomials © — a;.

This means that the only maximal ideals in C[z] are the principal ideals (z —a).
A field F with the property of the conclusion is said to be algebraically closed. The
Nullstellensatz says that this property propagates to polynomials in many variables.

Theorem 3.2 (Nullstellensatz). Let F' be an algebraically closed field. Then an
ideal M in Flxy,...,x,] is mazimal if and only if there are elements a; in F such
that M is the ideal generated by the elements x; — a;; that is,

M= (z1—a1,...,Tn — ay).

The name “Nullstellensatz,” or “zero—place theorem,” comes from the following
consequence.

Corollary 3.3. If I is a proper ideal of Flx1,...,x,], then there is an element
a=(ay,...,an) in F™ such that f(a) =0 for all f in I.

Proof. The ideal T is contained in some maximal ideal (1 — aq,...,2, —ay). O

The new proof of the Nullstellensatz is a direct consequence of the following
theorem, which a priori has nothing to do with algebraically closed fields.

Theorem 3.4 (Munshi). Assume that the intersection of the nonzero prime ideals
of R is zero. If M is a mazimal ideal in R[z1,...,2,], then M N R # 0.
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The following result, which is equivalent to Kaplansky’s [3, Thm. 21, p.14],
is used in the proof of Munshi’s theorem, and a special case of it enters into the
application of Munshi’s theorem to the proof of the Nullstellensatz.

Theorem 3.5 (Kaplansky). The intersection of the nonzero prime ideals of R[x]
18 Z€ro.

Proof of the Nullstellensatz. An ideal (1 — aq,...,z — a,) is maximal since
Flzy,...,z,)/(z1 —a1,...,2 — ay)
is clearly isomorphic to F' and is thus a field. Conversely, let M be a maximal
ideal in Flx1,...,2,], where n > 2. Regard F[z1,...,x,] as Flxi][ze,...,x,]. By
Kaplansky’s theorem, the integral domain F[z1] satisfies the hypothesis on R in
Munshi’s theorem. Therefore there is a nonzero element f in M N F[z1]. Since F is
algebraically closed, f splits into a product of linear factors. Because f is in M and
M is maximal (and hence prime), at least one of those linear factors, say z1 — aq,
is in M. The same argument gives an element x; — a; in M for each i, 1 < i < n.
Then
(rt1 —a1,...,xn —an) C M.
Since (x1 — a1, ..., T, — a,) is maximal, equality holds and we are done. O

Theorem 3.2 is actually the “weak form” of the Nullstellensatz. For completeness,
and because it is the real starting point of algebraic geometry, we explain how little
more is needed to prove the “strong form” of the Nullstellensatz in Section 6.

4. The proof of Kaplansky’s theorem.
We need a definition and some lemmas to prove Kaplansky’s theorem.

Definition 4.1. R is of finite type if K is finitely generated as an R-algebra; that
is, there are finitely many elements k1, ..., k, of K such that every element of K
is a polynomial in the k; with coefficients in R.

Lemma 4.2. If R is of finite type, then K is generated over R by a single element
k, so that every element of K is a polynomial in k with coefficents in R.

Proof. Let K be generated by elements kq, ..., k,, where k; = a;/b; with a; and
b; in R. Let k = 1/by---b,. If 11 = ajbs---by,, then ky = rik, and similarly for
the other k;. Therefore, since every element of R is a polynomial in the k;, every
element of R is a polynomial in k. (Il

Setting k = 1/c¢, we see that ¢ is a nonzero element of R such that every element
of K is a polynomial in 1/c¢ with coefficients in R. We may write K = R[1/c].

Lemma 4.3. The following conditions on a nonzero element ¢ of R are equivalent:

(i) c is in the intersection of the nonzero prime ideals of R;
(ii) every nonzero ideal I of R contains some power of ¢;
(iii) K = R[1/c].

Proof. (i) = (ii). Assume that no power of ¢ is in I and let P be an ideal maximal
among those that contain I but do not contain any power of c¢. Such a P exists
by Zorn’s lemma (or more directly if R is Noetherian, when any ascending chain
of ideals stabilizes after finitely many stages). Then P is prime. Indeed, if ab is
in P and neither a nor b is in P, then both (P,a) and (P,b) properly contain P
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and therefore each of these ideals contains some power of ¢, say p + ra = ¢™ and
q + sb = ¢™ for some elements p, ¢ in P and r, s in R. The product of these two
elements is a power of ¢ that lies in P, which is a contradiction. This shows that P
is a prime ideal that does not contain ¢, which is contrary to (i). Therefore some
power of ¢ must be in 1.

(ii) = (iii). For any nonzero b in R, some power ¢ of c¢ is in the ideal (b), say
rb=c¢". Then, in K, 1/b =r/c"™. This implies (iii).

(iii) = (i). Let P be any nonzero prime ideal of R, let b be a nonzero element of
P, and write 1/b =r/c¢™. Then br = ¢" is in P, hence ¢ is in P. (]

Lemma 4.4. If R is a PID, then R is of finite type if and only if, up to units, it
has only finitely many prime elements p;.

Proof. If ¢ is a nonzero element of R, then c is a product of finitely many prime
elements p;, by Proposition 2.3 and Theorem 2.5. The equivalence of (iii) and (i)
in Lemma 4.3 implies that K = R[1/c] if and only if, up to units, the p; are the
only prime elements in R. (]

Lemma 4.5. Let S be an integral domain such that R C S C K. If R is of finite
type, then so is S.

Proof. Observe that K is also the field of fractions of S. If K = R[1/c], then
K = S[1/c]. O

Lemma 4.6. The polynomial ring K[x] has infinitely many prime ideals.

Proof. By Proposition 2.4, K[z] is a PID, and it has infinitely many monic irre-
ducible polynomials. Indeed, Euclid’s proof that there are infinitely many prime
numbers applies: if py, ..., p, were a complete list of the irreducible monic poly-
nomials in K[x], then ¢ = 1+ p; -+ - p, would be a monic polynomial divisible by
none of the p;. Since irreducible polynomials are prime elements, by Proposition
2.3, the conclusion follows. O

Proof of Kaplansky’s theorem. Suppose that ¢ is a nonzero element of R[x] that is
in every nonzero prime ideal of R[z]. Let L be the field of fractions of R[z]. By
Lemma 4.3, L = R[z][1/¢]. Since L contains K and z, we have R[x] C K[z] C L.
Since R[z] is of finite type, so is K[z], by Lemma 4.5. Lemma 4.4 implies that K[x]
has only finitely many monic irreducible polynomials, but Lemma 4.6 ensures that
K[z] has infinitely many monic irreducible polynomials. The contradiction proves
the result. d

5. The proof of Munshi’s theorem.

We first prove the case n = 1, then the case n = 2. It will be immediately
apparent that the same argument applies to prove the general case, at the price of
just a little added notational complexity.

Let n = 1, write x = x1, and assume that M N R = 0, contrary to the conclusion
of the theorem. Let f(z) = apz® + a12*~' 4 --- + ax be a polynomial of minimal
degree in M, where a; is in R and ag # 0. Then our assumption is that £ > 1. By
hypothesis, there is a nonzero prime ideal P of R such that ag is not in P. Let p
be a nonzero element of P. Since p is in R, p is not in M. Thus (M, p) = R[z|. Let
S =R — P. For each s in S, we can choose a polynomial gs(x) in R[z] such that
pgs(x) + s is in M. Since s is not in P, s is not in (p) and pgs(z) + s # 0. Note
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that gs(x) and gs(x) + s have the same degree. Here gs(x) need not be unique, and
we agree to choose gs(x) to be of minimal degree among all possible choices. Since
pgs(x) + s is in M, its degree is at least k.

Now choose an element s of S such that g,,(z) has minimal degree among all
gs(x). Write gs,(z) = boz? + byl =1 +-- -+ b; with by # 0. Then j > k. Because P
is prime and both ag and sg are in S, t = agsg is also in S. Consider the element
ao(pgs, (z) + so) — bopz? ~F f(x) of M. Since the coefficient of 27 is zero, the degree
of this polynomial is at most j — 1. Clearly, we can rewrite it as an expression of
the form ¢;(x) +¢. Since ¢;(x) has degree at most j — 1, this contradicts the choice
of sg. Thus our original assumption that k£ > 1 is incorrect and M N P # 0.

Now let n = 2 and assume again that M NR = 0. We must derive a contradiction.
Write ¢ = x; and y = x5 to simplify notation. Since Kaplansky’s theorem shows
that R[x] and R[y] satisfy the hypothesis of Munshi’s theorem, we conclude from
the case n = 1 that M N R[z] and M N R[y| are nonzero. Choose polynomials d(z)
in M N R[z] and e(y) in M N R[y] of minimal degrees m and n among all such
polynomials.

Let N be the nonnegative integers and give N X N the reverse lexicographic
order: (i,j) < (¢',4") if j < j  orif 5 = j/ and ¢ < ¢’. Define the bidegree of a
nonzero polynomial h = Zaijxiyj to be the maximal (¢,7) in this ordering such
that a;; # 0; we call a;; the leading coefficient of h. It is convenient pictorially to
think of the points of N x N as a lattice in the first quadrant of the plane, with
arrows drawn left and downwards to indicate adjacent inequalities.

The polynomials y/d(z) and x’e(y) in M have bidegrees (m,j) and (i,n), re-
spectively. Since M N R =0, m > 0 and n > 0, so that (0,0) < (m,0) < (0,n). Let
B and 0B denote the lower left box

B={(i,7)|0<i<mand 0<j<n}
and its partial boundary
OB ={(i,j)|i=mor j=n} C B.

We have an element of M of bidegree (4, j) for each (4, ) in 9B.
A flow F from (a4, bq) to (0,0) is a finite sequence of adjacent lattice points

F:(0,0) < (a1,b1) <--- < (agq,bq).
Here “adjacent” means that, for 0 < ¢ < g, either
a; =a;4+1—1 and b; =041 or a;=a;41 and b; =b;y; — 1.

We say that (a;,b;) in F' is a point on the flow F. We have the elementary, but key,
observation that a flow from a point outside B down to (0,0) must intersect B
and a flow from a point in B down to (0,0) is part of a flow from (m,n) down to
(0,0). Here, going downstream in a flow corresponds to going down in the reverse
lexicographic order. Let % denote the set of all flows from (m,n) to (0,0); it is
nonempty and finite.

Now we mimic the proof in the case n = 1. For a flow F in %, let Mg be
the set of nonzero polynomials in M with bidegree on F'. Since there are nonzero
polynomials of bidegree (m,n) in M, Mg is nonempty. Choose a polynomial fg in
MF of minimal bidegree. Since M N R = 0, the bidegree of fr is not (0,0). Let ap
be the leading coefficient of fr and let a be the product over F' in .# of the ap.
Since a is a nonzero element of R, our hypothesis ensures that there is a nonzero
prime ideal P of R such that a is not in P. Let p be a nonzero element of P. Since
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pisin R, p is not in M. Thus (M,p) = R[z,y]. Let S = R — P. Since a is in
S, ap is in S for all F in #. For each s in S, we can choose an element g4(z,y)
of R[z,y] such that pgs(z,y) + s is in M. Since s is not in P, s is not in (p) and
pgs(x) + s # 0. Here gs(x,y) need not be unique, and we agree to choose gs(z,y)
to be of minimal bidegree among all possible choices.

Now choose sg to be an element of S such that gs,(x,y) has minimal bidegree
among all gs(z,y). Let b be the leading coefficient of gs,(z,y). Consider any
flow from the bidegree of g, (z,y) to (0,0). By our key observation, this flow must
coincide with a flow F from (m,n) to (0,0) from some point downwards. Clearly the
bidegree of fr lies downstream from, or coincides with, the bidegree of gs,(z,y).
Let (u,v) be the difference (in the obvious sense) of the bidegrees of these two
polynomials. Then z"y" fr and pgs, (z,y) + so are two elements of M of the same
bidegree. Multiplying the former by bp and the latter by ar, we obtain elements
of M with the same leading term. Since P is prime and both ar and sy are in S,
t =apsgisin S. The element ar(pgs, (x, y)+s0) —bpx“y® fr of M can be rewritten
in the form g¢;(z,y) + t, where the bidegree of g:(z,y) is less than the bidegree of
Jso(x,y). This is a contradiction, hence our original assumption that M N R =0
must be false.

As said at the start, the generalization to n variables works the same way.

6. The strong form of the Nullstellensatz.

Here we need another preliminary, namely the Hilbert basis theorem. A commu-
tative ring R is said to be Noetherian if every ideal of R is finitely generated. We
need only consider integral domains, but the general case of the following result is
no more difficult.

Theorem 6.1 (Hilbert basis theorem). If R is a commutative Noetherian ring,
then so is R[x]. Therefore R[x1,...,x,] is Noetherian for all n.

An ideal I of R is a radical ideal if ™ € I for some m > 1 implies € I. The
radical of an ideal I, denoted /T, is the set of all elements 2 some power of which
is in I. It is not hard to see that v/T is in fact an ideal containing I.

Now focus on Flzy,--- ,x,] for a field F' and a fixed n. Write A™ = A™[F] for
F™ regarded as just a set (ignoring its vector space structure), and call it affine
n-space. The zeroes Z°(I) of an ideal I in F[x1,- - ,x,] are the points a of A™ such
that f(a) =0 for all f in I. The affine algebraic sets are the subsets V of A™ that
are the zeroes of a set of polynomials {f;}. The ideal (V) is then defined to be
the set of all polynomials f such that f(v) =0 for all v in V. This is an ideal, and
it is clearly a radical ideal: if (f™)(v) = f(v)™ =0, then f(v) = 0.

Thus an algebraic set V' gives rise to a radical ideal .#(V'), and an ideal I gives
rise to an algebraic set Z°(I). Because we start with sets V' that are the zeroes of a
set of polynomials, it is immediate that V = 2°(.#(V)). On the other hand, for an
arbitrary ideal I, it is immediate that I is contained in .#(%(I)). Since #(Z(I))
must be a radical ideal, equality cannot be expected in general. However, even if we
start with a radical ideal, equality need not hold. The point is that not all radical
ideals are of the form .# (V) for some V. For example, any prime ideal is a radical
ideal, and the prime ideal (22 + 1) of R[z] has no zeroes in R. The strong form of
the Nullstellensatz says that these conclusions do hold when the field we start with
is algebraically closed.
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Theorem 6.2 (Strong form of the Nullstellensatz). Let F' be an algebraically
closed field. Then, for any ideal I of Flx1,--- ,x,], Z(Z(I)) = V/I. Therefore
the correspondences 2 and & between algebraic sets and radical ideals are inverse
bijections.

Proof. We must prove that .#(Z(I)) is contained in v/I. By the Hilbert basis
theorem, I is generated by a finite set {f1,..., fy} of polynomials. Consider an
element g of #(Z(I)). We must prove that some power of g is in I. Introduce a
new variable y, and let J be the ideal of F[zy,- - ,2,,y] generated by the f; and
yg — 1. Clearly g and the f; depend only on the x;, and g vanishes at any point
a of A™ at which each f; vanishes. Therefore, if a is a point of A”*! such that
fi(a) =0 for all 4, then a,419(a) —1 = —1. Thus Z(J) is empty and J cannot be

a proper ideal. Therefore J = Flx1, -+ ,2,,y] and we can write
L=hifi+ -+ hgfg+her1(yg — 1)
for some h; in Flz1,---,2,,y]. Working in the field of fractions, say, we may set

z =y~ and think of the h; as polynomials in the x; and 27!, and we may think

of the last summand as z~thg41(g — ). Multiplying by 2V for N large enough to
clear denominators, we obtain

N =i1f1 +"'jqfq +jq+1(9—2’)

for some j; in Flz1, -+ ,zpn,2]. Setting z = g in this polynomial equation, we
conclude that g% is in I. O

It is convenient to let radical ideals I correspond to their quotient F-algebras
Flzy, - ,xz,)/I. It I = #(V), this quotient ring is called the coordinate ring of
V and denoted F[V]. It is to be thought of as the ring of polynomial functions on
A" that vanish on V. The passage back and forth between algebraic sets and their
coordinate rings is an algebraization of the geometry of solutions to polynomial
equations.

Pedagogically, this development of the Nullstellensatz gives the starting point of
a rigorous introduction to algebraic geometry that requires the absolute minimum
of ring and field theoretic prerequisites.

7. A little background.

This is not the place to give full historical background, so I will restrict myself to a
short discussion of previous elementary proofs of the Nullstellensatz. Oscar Zariski
[6] first advertised the desirability of a proof that avoids advanced techniques and,
in particular, avoids use of the Noether normalization theorem. He himself gave
two such proofs. A very brief modern account of his first proof is posted on Dan
Grayson’s website [2]. While both of Zariski’s proofs use some language beyond
the level to which I have restricted myself, in particular the language of integrality
and algebraic extensions, they could be rewritten in terms comparably accessible
to undergraduates. However, while Zariski’s proofs are as elementary as the proof
given here and use some of the same details, I find the conceptual structure of
the present proof especially appealing. Incidentally, Zariski ascribes the ingenious
standard deduction of the strong form of the Nullstellensatz from the weak form to
“A. Rabinowitsch,” who is not to be found on MathSciNet.

A few years after Zariski’s note, Oscar Goldman [1] and Wolfgang Krull [4],
independently, gave two quite similar elementary proofs of the Nullstellensatz, both
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of which start out with some of the ideas used here. Kaplansky’s book [3] gave a
reworking of Goldman’s argument that was the starting point for Munshi’s proof.
Incidentally, while Kaplansky proved our Theorem 3.5, he didn’t state it in the
same form. He called an integral domain of finite type a “G-domain,” in honor of
Goldman, and the material in [3, pp. 12-15] includes our Lemmas 4.2-4.6 and the
theorem that R[z] is never a G-domain, which is equivalent to our Theorem 3.5.
Munshi, who is currently a graduate student at Princeton University, found his
proof while visiting Bombay as an undergraduate at Calcutta. He published it in
[5] (in a journal with a very small circulation, restricted to a few institutes in India)
after receiving rejections from several other journals, including this Monthly. He
included his proof with his applications to graduate school. I was impressed by the
argument, and I reworked it for use in the University of Chicago’s 2000 summer
REU program, posting it on my web page at that time. Several people persuaded
me that it should be published. I offered Munshi three options: a paper by Munshi
rewritten in the light of my reworking, a joint paper, or publication in the present
form. Munshi chose to have me publish this version. I make no claim to originality.
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