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Abstract

We give a systematic study of a new equivariant cohomology theory {(kg)* that we
construct from a given equivariant cohomology theory kg, where G is a compact Lie group.
If k7, is ordinary cohomology, then t(kg)* is. classical Tate-Swan cohomology if G is finite
and is Jones’ version of cyclic cohomology if G is the circle group. As in these cases, t(k¢g)"
vanishes on free G-spaces, enjoys useful periodicity properties, and is obtained by splicing
the k;homology with the &-cohomology of the Borel construction EG x¢ X, where k* is

the nonequivariant cohomology theory that underlies kg

After establishing the formal .prdperties of our theories, including the fact that t(kg)*
is multiplicative if kg is multiplicati{re, we construct an analog of the Atiyah-Hirzebruch
spectral seqﬁence for the calculation of ¢(kg)*(X). If G is finite or S, then the Ey-term
is the Tate—Swan or cyclic cohomology of X with coefficients in k*. The convergence of
our spectral sequences is rather delicate, and we give a careful study that may be of wider

interest.

We consider various special cases in detail. If & is c¢yclic of order 2, then the fixed
point spectrum of the G-spectrum #(kg) is equivalent to holim(RP% AXk) and our Atiyah-
Hirzebruch spectral sequence generalizes Mahowald’s root invariant spectral sequence for
the stable homotopy groups of spheres. This result, among others, establishes a close
relationship between Tafe theory and areas of current interest in nonequiva;ria,nt stable
homotopy fheory. In particular, we show that there is a web of relations connecting Tate

cohomology for general finite groups with nonequivariant stable homotopy groups.

In the case of periodic equivariant K-theory K7, we prove the striking fact that t(Ka)"
is rational if G is finite, and we identify ¢(K¢)* explicitly. We include a complete algebraic
analysis of the equivariant rational stable homotopy category for this purpose. Here the
FEs-term of our Atiyah-ﬂirzebruch spectral sequence is annihilated by the order of G, and -

yet it converges strongly to the rational vector space t¢{Kq)*. The arguments establish

vii




viii ABSTRACT -

an intimate connection between the rationality of the Tate theory and the Atiyah-Segal
completion theorem.

These results all have analogs for general families of is_otfopj groups. We deveiop
these analogs, toéether with the relevant algebra, in a final part. Here, for finite groups,
the role of classicél Tate cohomology is played by Amitsur-Dress-Tate cohomology, which

first appeared in induction theory and deserves much further study.

Kejr words and phraseé:

Amitsur-Dress cohomoldgy, Atiyah-Hirzebruch spectral 'sequencé, Atiyah-Segal comple-
tion theorem, Borel cohomology, Burnside ring, Cyclic cohomology, Eilenberg-MacLane
G-spectrum, Equivariant cohomology theory, Equivariant stable homotopy theory, Homo-
topy limit problem, K-theory, Mackey functor, Root invariant, Segal conjecture, Stable

homotopy groups of spheres, Tate cohomology, Transfer



Introduction

Tate cohomology plays a prominent role in finite group theory and its applications.
In conﬁection with Smith theory, Swan generalized the purely algebraic theory to a coho-
moiogy”th'eory defined on G-spaces. The resulting theory is related to Borel cohomology,
H *(EG x@ X), by a long exact sequence whose third term we call f—cohomblqu. Borel
cohomology is one of the most basic tools in the theo.ry' of transformation groups. Tate
cohomology can be thought of as obtained from Borel cohomology by a process of killing
the cohomology groups of free G-spaces, and the vanishing of Tate theory on free G~spaces
makes it particularly well-suited to‘ the study of fixed point phenomena. Tate theory also
enjoys calculationally powerful periodicity properties. _

More recent topological work, especially in surgery theory, has led a n_urﬁber of people
to consider analogs of Tate theory associated to spectra with G'-actiolns and to consider
analogs for compact Lie groups. When specialized to the circle group, Tate theory recoveré
and generalizes one manifestation of cyclic cohomology theory. However, there has been
no systematic study.

The last decade has seen a large-scale development of equivariant stable homotopy
theory, with a concomitant understanding of generalized equivariant homology and coho-
mology theories. We shall redevelop and genéralize Tate and Borel cohomology theories
within this now well-established framework.

Let G be a compact Lie group, let EG be a free contractible G-space, and let EG be

the unreduced suspension of EG with one of the cone points as basepoint. Let X, denote

Received by the editor June 8, 1992.
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the disjoint union of a G-space X and a G-fixed basepoint. We have an evident cofiber

sequence
(A) EG, - 8° - EG.

Let kg be a G-spectrum and let F(EG4,kg) be the function G-spectrum of maps

EG 4 — kg. The projection EG+ — SO induces a map of G-spectra
(B) € kg = F(5%kg) — F(EG ., ka).

By taking the smash product of the cofibering (A) with the map (B), we obtain the

following map of cofiberings of G-spectra:

ke AEG, ke vk ABG

(C) £ A 11 le le A1l

F(EG,,kg) A EGy ——— F(EG4, kg) — F(EG 4, kg) A EG.

We introduce abbreviated notations for these spectra and explain the intuitions.
Roughly speaking, smashing a G-spectrum with the cofibering (A) has the effect of break-
ing the represented homology and colhomology theories into parts that see the free orbits
and the singular orbits of G-spaces: this is a modern formulaf,ion of an old idea.

Define

f(ka) = ke A EG.,.

We call f(kg) the free G-spectrum associated to kg. This construction is the spectrum
level analog of the standard way of associating to a based G-space X a new based G-spaée
whose éction is free away from the basepoint. We shall see that f (ka) represents the
appropriate generalized version of the Borel homology theorjr H,(EG g X), and we shall |
therefore refer to all of the homology theories represented by G-spectra f (kg) as- Borel
homology theories. We shall refer to the cohomology theories .represented by the f(kg)

simply as f-cohomology theories.
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Define

['lkg) = F(EG4+, kg) A EG.,.

It will turn out the map € Al : f(kg) — f'(kg) is always an equivalence, so that the
G-spectra f(kg) and f'(kg) can be used interchangeably. After proving this equivalence,
we will drop the notation f and just use f.

Define

fJ'(kg) = ke A EG.

We call f(ke) the singular G-spectrum associated to kg. This construction gives the
spectrum level analog of the standard way of associating to a based G-space X a new
based G-space that has the same fixed points as X under the action of any non-trivial -
subg_roup of G but is nonequivariantly contractible. |

Define

C(kg) = F(EG+:kG)‘

We call c(kg) the geometric completion of kg. The map ¢ : kg — c(kg) displayed in (B) is
the object of study of such results as the Atiyah-Segal completion theorem and the Segal
conjecture: quite generally, the question of the behavior of € on G-fixed point spectra is
called the “stable homotopy limit problem”. As we shall explain later, one interpretation
of this problem is that of comparing the geometric completion c{kg) with the algebraic
completion (kg)7 of kg at the augmentation ideal of the Burnside ring. We shall see that
c(ka) represenfs the appropriate generalized version of Borel cohomology H*(EG x¢ X),
and we shall therefore refer to all of the cohomology theories represented by G-spectra
c(kg) as Borel cohomology theories. We shall refer to the homology theories represented
by r‘the e(kg) as c-homology theories.
Define

Hke) = F(EG.., ko) A BG = f*clke).




We call t(kg) the Tate G-spectrum associated to kg. It is the singular part of the geometric
completion of kg. Our primary focus will be on the theories represented by the t(ke).
These are our generalized Tate homology and cohomology theories.

With this cast of characters, and with the abbreviation of e Al to €, diagram (C) can

be rewritten in the form

f(ke) > ka » f(ke)
(D) sl ls : ls
| f'(ke) ~—— clkg) —— t(ke)-

We_ call the bottom row the “norm sequence”. It is a generalization of the classical norm
sequence in .the Tate cohomology of groups. |

We sha,ll= study general features of the homology and cohomology theories on G-spaces
represented by fhese G-spectra and shall discuss a few important examples in detail. These
simple and concept.ual definitions include all previous versions of these theories, and they
lead to a number of new and unexpected calculations. Diagram (D) relating them encodes
an extremely convenient unifying framework for the conceptual study of a variety of phe-
nomena that are céntrai to equivariant hemology and bohomology theory. We shall see
that it is also closely related to certain areas of current interest in nonequivariant stable
homotOpj theory;

it is clearly sensible to break the study of the homotopy limit problem into free and
singular parts, as is formalized by the diagram. This was a key idea in Carlsson’s proof of
the Segal conjectﬁre for finite p-groups-{11]. The f)resent framework began to emerge in
[13}; all ingredienfs of diagram {C) were explicit there, and its bottom row was exploited
with G taken to be a p-group and kg taken to be the Eilenberg-MacLane G-spectrum HZ,,
constructed in [32]. '

For finite groups G and Eilenberg-MacLane G-spectra, HM, t(HM) represents clas-

sical Tate-Swan homology and cohomology. This is an insight of the first author [19], who
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was the first to study the representation of Tate theories. The second author wishes to
emphasize that the germ of much of the material here is in [19]; in particular, the defini-
tions above are obvious generalizations of those given there. Elsewhere [20], [21], the first
author has used the c;homoiogy and f-cohomology theories associated to HZ,, to set up
and analyze equivariant versions of the Adams spectral sequence.

For the circle group' G and FEilenberg-MacLane G-spectra HM, t(HM) represents
periodic cyclic homology and cohomology theory. There is an analogous identification for
the group of unit quaternions. In his paper [29] on eyclic theory, Jones had noted that
‘;there is a clear and precise analogy with the Tate homology of groups”. Adem, Cohen,
and Dwyer [4] were the first to make this insigﬁt explicit and the first to consider Tate
theories associated to compact Lie groups. For finite G-CW complexes X, they constructed
sﬁectra whose homotopy groups are the cyclic homology groups of X when G = 8. The;y
did not conéider cohomology.

For general compact Lie groups G and Eilenberg-MacLane G-spectra HM, our theo-
ries give the appropriate generalization of Tate-Swan and cyclic homology and cohomology,
but we no l_onger have a chain level method to calculate the values of these theories on
general G-spaces. However, we do have a reasonable, and quite computable, chain level
method for calculating the coefficient groups t(HM)*. Here M is a Mackey functor, and
the bottom row of diagram (C) depends only on the no(G)-module V = M(G/e). We
therefore writg the represented Tate cohomology theory as I?a (X;V) in all ca,ses,- gener-
alizing the standard notation for finite groupé and the circle group. When G is connected
of dimension d > 0 and X = S°, we have the following explicit calculation in terms of the

ordinary (unreduced) homology and cohomology groups of the classifying space BG.
H*BG;V) ifo<n
H(WV)=tHM"={0 if —d<n<0
H_,1-¢(BG;V) ifn<—d-—1

The dependence on d is a natural consequence of the fact that the Spanier-Whitehead dual

of G, is G4 A 8¢, but it is nevertheless a rather startling phenomenon at first sight.




One of the main contributions of this paper is the construction of Spectral sequences
of Atiyah-Hirzebruch type that generalize the identifications of the previous paragraphs.
In Tate cohomology, the Ey-term is I:T&(X ; k*), where k is the underlying nonequivariant
spectrum of kg and k79 = 74(k) regarded as a 1o(G)-module. Although this is a whole
plane spectral sequence, it converges strongly to t(kg)*(X) provided that there are not too
many non-zero higher differentials. Moreover, when kg is a ring spectrum, this is a spectral
sequence of differential algebras. Wé emphasize that this works for general compact Lie
groups G'. We have similar spectral sequences for Borel and f-cohomology, and in these
cases too the Ey-terms depend only on the graded 'n'g(G’)—mociule k*.

This very weak dependence on kg makes the Bottom row of Diagram (D) far mgfe
calculationally accessible than the top row, and another contribution of our paper is to
bring the theory down to earth with some explicit calculations in K-theory and some
concrete relationships to nonequivariant stable homotopy theory.

Our most interesting calculation shows that, for any finite group G, (K Ug) is a

rational G-spectrum, namely
HKUG) = \/ K(I" ® Q,2),

where J" is the Mackey functor of completed augmentation ideals of representation rings
and i ranges over the integers. In this case, the relevant Atiya,h-Hirzebruch spectral se-
quence is rathér amazing. Its Fy-term is torsion, being annihilated by multiplication by
the order of G. If G is cyclic, then Ey = E,, and the spectral sequence certainly converges
strongly. In general, the Es-term depends solely on the classical Tate cohomology of G and
not at all on its representation ring, where‘a,s t(KUg)* depends solely on the representation
ring and not at all on the Tate cohomology. As an immediate corollary of the calculation
of t{KUg), we obtain a surprisingly simple and explicit calculation of the nonequivariant
K-homology of thé classifying space; BG:
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For comparisox, if G is the circle group, then {(KUg)® is & homotopy inverse limit of
wedges of even suspensions of KU and each even homotopy group of ¢(K Ug)C is isomorphic
to Z[[x]][x "], where 1 — x is the canonical irreducible one-dimensional representation of
G.

Connections with current nonequivariant work come from our observation that, if G is
cyclic of order 2 and kg = i,k is “the G-spectrum associated to a non—equiﬁaria;nt spectrum

E”, .then (with a mnemonic labelling of the statement), we have
(R) _ t(ka)® = holim(RP2} A Tk).
Similarly, if G is cyclic of odd prime order and kg = ik, we have
(IL) t(kq)C =~ holim(L%, A Bk),

where L% is the lens space analog of RP%3. Again, if G is the circle group and kg = ik,

then
(C) t(ke)® = holim(CP%; A £%k).

These are special cases of a phenomenon which occurs whenever G acts freely on the uni:t
sphere of a representation, and this phenomenon is the source of periodic behavior in Tate
theory.

These equivalences allow us to apply the reservoir of nonequivariant calculations of
spectra on the right sides to study equivariant theories. It also gives new insight into the
nonequivariant theories. In particular, if k is a ring spectrum, then t(kg) is naturally a
ring G-spectrum and t(kq)¢ is naturally a rin'g spectrum. This is not at all apparent from
3 purely nonequivariant point of view of the spectra on the right sides. .

When @ is cyclic of order 2 and k is the sphere spectrum S, our Atiyah-Hirzebruch
spectral sequence is (up to suspension) exactly the spectral sequence constructed by Ma-

howald (see [1]) some 20 years ago. Its conjectural behavior led to the form of the Segal
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conjecture proven by Lin [34], and its structure encodes Mahowald’s “roét invariants”.
This spectral sequence and its odd prime analog havé been studied more recently by Jones
[28], Miller (39}, Sadofsky [43], and otheré, but there is little hint in the literature that
these spectral sequences might be multiplicative. Our spectral sequences for general finite
groups G and k = S encode a slew of further such symmetry invariants—mot usually of a
periodic nature—and they give a fascinatiﬁg and mysterious web of 'relatio.ns among the
stable homotopy groups of spheres and. classifying spaces. |

The theory and calculations described above are only part of the étory. The entire
theory admits a vast generalization, in which the universal free G-space EG is replaced by
the universal F-space EF for any family F of subgroups of G. The definitions above déal
with the case F = {e}, and there are precisely analogos definitions for any other family.
The map ¢ : kg — F(EF+, kg) is the object of study of a generalized homotopy limit
problem, special cases of which include the genefalized Atiyah-Segal completion theory of
[2] and the generalized Segal conjecture of [3].

Wheﬂ @G is finite, we shall analyze the F-Tate G-spectra tx(KUg), and tx(XOg),
which turn out to be rational for any family F, and the F-free G-spectra fx{HKUg) and
J7(KOg). The genera,]izatién to families is interesting in its own right, and it leads to
congiderably simpler proofs than would be possible if we concentrated solely on the case
F = {e}. |

When G is finite and k¢ is an Eilenberg-MacLane G-spectrum HM, the F-Tate G-
spectrum tr(HM) represents the generalization to homology and cohomology theories
on. G-spaces and G-spectra of the Amitsur—Dress—Tate theories that figure prominently
in induction theory.- We again obtain general Atiyah-Hirzebruch spectral sequences in the
context of families. These vastly extend the web of symmetry relations relating equivariant
theory with the stable homotopy groups of spheres.

The phenomena uncovered here deserve much further study. The present paper raises

far more questions than it answers, and its later sections are sprinkled with open problems,
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conjectures, and glimpses of new and unexplored mathematical terrain.

The paper is divided into four parts. In Paxt I, which comprises Sections 0 through
5, we set up the general framework. We¢ explain our definitions in Section (. We prove
invariance statements that allow us to understand when different G-spectra kg give the
same bottom row in (D) in Section 1. We record the basic general properties of our
represented theories apd describe the behavior of f, ¢, and t regarded as functors on G-
spectra in Sedtions 2 and 3. It is to be expected that Diagram (D) is closely related to
completion at the augmentation ideal I of the Burnside ring in view of the relevance of
completion at I to the homotopy limit problem. In Section 4, we show that, when G is
finite, c(kqg) is always I-complete and f(kg) and t(kg) are I-complete if kg is bounded
below. The bounded below hypothesis is necessary since we shall see that the completion
of t(KUg) at I is trivial. We also discuss the relationship between completion theorems
and suitable homological analogs. In Section 5, we describe Tate homology in terms of

transfer and compare our definition with other recent topological definitions.

In Part II, which comprises Sections 6 through 10, we study the “ordinary” f, ¢, and
Tate theories obtained when kg in (D) is an Eilenberg-MaclLane G-spectrum HM and give
our generalized Atiyah-Hirzebruch spectral sequences. We take a completely topological
point of view in this part. For example, we give an axiomatic proof, independent of the
usual chain level description, that t(HM)*, with its products, agrees with classical Tate
cohomology when G is finite. The interplay between the topology and algebra is especially
interesting here. For example, the topology gives a new construction of a basic algebraic
functor from coefficient systems to Mackey functors that was central to Lewis’ study [31]
of therequiva,riant Hurewicz theorem. One point of this “no chains” approach is that
we don’t know how to realize topologically the usual chain level description of products.
More importantly, we want to emi)hasize the inevitability of our definition of the Tate
cohomology of general compact. Lie groups, despite the unfamiliar calculational behavior

noted above.
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Part III comprises Sections 11 through 16. It gives specializations and calculations,
and the impatient reader may wish to turn to it first. Sections 11 and 14, respectively, give
chain level studies of the relation between our represented theories for finite groups and the
classica] Tate-Swan theories and between our represented theories for the circle group and
cyclic theories. Sections 12 and 13 give our calculational results for finite groups, except
that the proofs of our results about periodic K-theory are deferred to Part TV. Section
15 gives our ca.lculatiﬁnal results for the circle group. The proofs of (R), (L), and (C),
togefher with a discussion of periodicity phenomena, appear in Section 16.

Part IV, Sections 17 through 25, deals with the generalization to families, about which
nothiﬁg ia said in Parts I-IIL. Sections 17 and 18 describe the F-version of the material of
Part I Section 19 gives the formulation and proofs of our results about K Uz and KQOg. In
Section 20, we specialize to Eilenberg-MacLane G-spectra. Here, for general compact Lie
groups, another interesting phenomenon appears: we must use two quite different kinds

of Eilenberg-MacLane G-spectra. The cohomology theory satisfying the dimension axiom

'Sﬁeciﬁed in terms of a Mackey functor M is represented by HM, whereas the homology

theory satisfying the dimension axiom specified in terms of & “coMackey functor” N is
represented by JN.

In Sections 21 through 25, we focus on finite groups. We use explicit models for the

universal F-spaces EF to define algebraic Amitsur-Dress-Tate cohomology theories, and

" we then relate them to our topological theories, giving generalized Atiyah-Hirzebruch type

spectral sequences. In Section 23, we give some methods for the calculation of Amitsur-
Dress cohomology groups, the most interesting of which involves use of a special case of

the AHSS, and apply these methods to calculate the Amitsur-Dress cohomology groups for

' the family of proper subgroups of a nonabelian group of order pq, where p < ¢ are primes.

In Sections 24 and 25, we specialize to stable homotopy theory. “We use the family P of
proper subgroups of a finite group @ to obtain two related spectral sequences, both of which

converge to the completion of the (nonequivariant) stable homotopy groups of spheres af
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n{P), where n(P) is the product of those primes p such that Z/pZ is-a quotient of G. For
example, if G is a nonabelian group of order pé, p < q, then n{P} = p and the spectral
sequences provide a mechanism for the ;;rime g to affect stable hqmotopy groups at the
prime p. One of the spectral sequences is the Atiyah-Hirzebruch spectral sequence whose
Ey-term is the Amitsur-Dress-Tate cohomology of P. The other comes from a filtration
of EG in terms of the reduced regular representation of G. These épectral sequences lead
to new equivariant root invariants, and the Jones-Miller root invariant theorem [28], [39]
generalizes to the spectral sequence constructed by use of the regular representation.

There are two appendiceé._ The first proves ﬁhe folklore result that rational G-spectra,
split as products of Eilenberg-MacLane G-spectra when G is finite and gives a complete
algebraic analysis of the rational equivariant stable category.

The second gives an analysis and comparison of the versions of the Atiyah-Hirzebruch
spectral sequence with target [X, Y]* that arise from filtrations of X and of Y. It is written
nonequivariantly, but it applies verbatim equivariantly. In Section 10, we use filtrations of
X to obtain chain level information and prove convergence, and we use filtrations of ¥ to
study products.

In all of what follows, G-spaces are to be based G-CW complexes, and homology and
cohomology are to be understood in the reduced sense. As we recall in Section 0, there are
two basic kinds of G-spectra, namely ordinary spectra with G-actions, which we refer to
as “naive G-spectra”, and genuine G spectra indexed on representations. Our G-specira
are of the latter sort unless otherwise specified. There is a forgetful functor :* from G-
spectra to naive G-spectra. This functor has a left adjoint 4, which constructs G-spectra
from naive G-spectra -by building in nontrivial representations. The algebraic counterparts
are coeflicient systems and Mackey functors, and the topology will lead to an analogous
algebraic functor s, that constructs Mackey functors out of coeflicient systems by building

in transfer maps.

Naive (G-spectra represent Z-graded cohomology theories; genuine G-spectra represent




RO(G)-graded, or RO(G)-gradable, theories. In fact, most interesting theories are RO(G)-
gradable, and such theories come with a great deal of calculationally useful extra, structure,
whereas theories represented only by naive G-spectra lack some of the most rudimentary
properties. For example, they do not admit a Spanier-Whitehead duality theorem (simply
because one cannot embed non-fixed G-spaces in trivial representations), and, in fact,
interesting homology theories on G-spaces cannot be represented in the form m, {(jg A X))
for a naive G-spectrum jg: such represented theories vanish on X /X6,

Much of the force of our work comes from the fact that (D) is a diagram of genuine
and conveniently explicit G-spectra indexed on representations, so that all of the Z-graded
theories mentioned above are RO(G)-gradable. The significance of the RO(G)-grading will
be illustrated in our discussion of periodicity and Euler classes in Section 16,.and it will
be vital to the proofs of our results on periodic K-theory in Section 19.

While [19] worked with genuine G-spectra, later authors, motivated by nonequivariant
applications, worked with naive G-spectra and gave central emphasis to the role of the
transfer map. Essentially, their versions of Tate spectra can be obtained from ours by

passiné; to fixed poinf spectra. With our definitions, the Tate homology of X is |
t(ka)u(X) = m((t(ks) A X)%).

As we show in Section 1, we may assume without loss of generality that kg = i, Ja for a
naive G-spectrum jg. As we show in Section 5, provided that X is finite, the spectrum

(t{ka) A X)© is then equivalent to the cofiber of a suitable transfer map
(je ABPOX) MG = (jo AEG, ASAEX) /G - F(EG., je A X)® = (o A X)Hhe,

When G is finite, jg is 2 nonequivariant spectrum k given trivial action by G, and X = 5S¢
this reduces to kA BG4 — F(BG, k). Detailed comparisons of our definitions with those
of Adem, Cohen, and Dwyer [4] and of Weiss and Williams [47] would only require detailed

verification that our version of the transfer map agrees with theirs.
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Part I: General theory
§0. Preamble: definitions, change of universe, and split G-spectra

In the interest of intelligibility, we begin by recalling some of the basic definitional
framework of [33]. We especially want to make clear the idea of “change of universe”.
In any framework, in one guise.or another, this notion is central to the mathematics at
hand. We also want to explain the technical notion of a split G-spectrum, which plays
an important role in comparing equivariant and nonequivariant phenomena. The essential
point is to make clear how to go back and forth among genuine G-spectra, naive G-spectra,
and nonequivariant spectra. This is crucial to explicit calculation in all of equivariant
cohomology theory.

Let U be a “complete G-universe”, namely the sum of countably many copies of each

~ irreducible representation of G. If G is finite, we may take U to be the sum of countably

many copies of the regular representation. An indexing G-space V is a finite-dimensional
sub inner product space of U. If V. C W, let W — V be the orthogonal complement of \4
in W. A G-spectrum k¢ indexed on U consists of based G-spaces kgV for indexing spaces
V and a transitive system of G-homeomorphisms kgV = QW—V(keW) for V.c W. A
map kg — kg consists of based G-maps kgV — ki V that are sirictly compatible with
the given homeomorphisms. Let GSU be the category of G-spectra indexed on U/. The
G-spectra of this paper are to be understood as G-spectra indexed on U unless otherwise
specified. |

The G-fixed point space U% is a “trivial G-universe” and may be identified with R,
We define the category GSU® of G-spectra indexed on U exactly as above, but restricting
attention to the G-fixed indexing G-spaces. There is no loss of information if we restrict
further to just the indexing spaces R". Thus G-spectra indexed on U G are just ordinary
spectra with G-action, and we refer to them as naive G-spectra. We regard nonequivariant

spectra as G-trivial naive G-spectra.

14
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Working in either universe, we define G-prespectra just as we defined G-spectra, except
that we place no restrictions on the structural G-maps kgV — QWY (kgW), and we
obtain categories GPU® and GPU of G-prespectra. We then construct functors L from
G-prespectra to G‘—-spectra that are left adjoint to the evident forgetful functors £ from G-
spectra to G-prespectra. This allows us to lift any prespectrum level functor £ that fails to
preserve spectra to the spectrum level, by taking LFZ. In general, spacewise constructions
on prespectra that are left adjoints, such as wedges, cofibers, and smash products, fail td
preserve spectra while constructions that are right adjoints, such as products, fibers, and
function spectra, do preserve spectra.

Let i : US — U be the inclusion. We have the forgetful functor #* : GSU — GSUC
given by forgetting about those indexing G-spaces with non-trivial G-action. The under-
lying nonequivariant spectrum k of kg € GSU is i*kg with its action by G ignored. The
functor i* has a left adjoint @,. : GSUC — @G8U, which builds in non-trivial representations.

Explicitly, for a naive G-prespectrum jg and an indexing G-space V,
. . _y©
(Lnje V) = je(VE) A SV,

For a naive G-spectrum jg, i.jg = Li.£jq, as prescribed above. The following intuitively

obvious result is proven in [33, I1L.1.8].

LemMaA 0.1. For jg € GSU€C, the unit G-map 7 : jg — i*i,jc of the (i.,7*) adjunction
is a nonequivariant equivalence. For !cIG € GSU, the counit G-map € : i.i*kg — kg is a

nonequivariant equivalence.

The composite of i, and the suspension spectrum functor ¥F  GT — GSUE is
the suspension spectrum functor X : GT —» GSU, where G7T is the category of based
G-spaces. The V" space (5Z X)(V) is the G-space Qa(EY X), where QgY is the union
of the G-spaces QVEVY; 5% : GT — GSUC is defined similarly, but using only G-fixed

indexing spaces.




N R

In either category of G-spectra, for a G-space X and a G-spectrum kg, we have
the function G-spectrum F(X,kg). Its V" space is the space F(X, keV) of based maps
X = kgV, with G acting by conjugation. The smash product X A kg is defined on
@G-prespectra kg by '

(X Akg)(V) = X AkgV

and on G-spectra kg by X A kg = L(X A tke). It is obvious from the definitions that
| *F(X,kg) = F(X,i*ke) for kg € GSU.
By playing with adjunctions [33, pp. 18-20], this implies that

WX ANje) 2 X Niyjg  for jg € GSUS.
Smash products of G-spectra, and the concomitant function G-spectra, are defined and
proven to have all of the expected properties in [33, II§3). The functor i, commutes with
smash products. |

For ja € GSUC, we define the fixed point spectrum (je)@ simply by passing to fixed

points spacewise, (j¢)?(V) = (jgV)%. It is essential that G act trivially on V to obtain

well-defined structural home_omorphisms here. For kg € GSU, we define (k.g)G = (i*kg)®.

DEFINITIONS 0.2. A naive G-spectruni jg with underlying nonequivariant spectrum Jis
said to be split if there is a map of spectra ¢ : j — (j(;)g whose composite with the
inclusion of (jq)€ in j is homotopic to the identity map. A G-spectrum kg is said to be

split if i*kg Is split.

The K-theory G-spectra KUg and K Og are split [33, p. 458). The Eilenberg-Maclane
G-spectrum HM associated to a Mackey functor M is split if and only if the caﬁonical map
M(G/G) — M(G/e) is a split epimorphism; this implies thé,t G acts trivially on M(G/e),
which is usually not the case. (See Section 6 for definitions.) The susbension G-spectrum
L& X of a G-space X is split if and only if X is stably a retract up to homotopy o_f Xe,
which again is usually not the case unless G acts trivially on X. In particular, however, the

sphere G-spectrum Sg = £Z S0 is split. The following observation gives more examples.
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LEMMA 0.3. Ifjg € GSUY is split, for example if G acts trivially on jg, then i, jg € GSU

is also split.

ProorF: Let ¢ :ja — ( jé)G be a splitting map. Then, by Lemma, 0.1 and an easy diagram

chase, the following composite is a splitting map
I L S Tt 1 L
ivie — ©*i((j6)%) — (j6)° — (*inje)
The notion of a split G-spectrum is defined in nonequivariant terms, but it admits the

folloﬁiﬁg equivariant interpretation.

LemMMA 0.4. Let kg be a G-spectrum with underlying nonequivariant spectrum k. Then
kg is split_if and only if there is a map of G-spectra i,k — kg which is a nonequivariant

equivalence.

ProoF: Composing a splitting map ¢ : k — (*kg)® with the inclusion (i*kg)® — i*kg,
we obtain a G-map v : k ~» i*kg which is the identity map nonequivariantly. Its adjoint
V : i,k — kg is a G-map which is a nonequivariant equivalence since v = ¢*7 o 5 and
n : k — ",k is a nonequivariant equivalence. Conversely, given a nonequivariant equiv-
alence 7, its adjoint v, regarded as a nonequivariant map, is an equiv.alence k — k which
factors thrqugh amap (' : k — (i*kg)®. The composite of ¢’ and an inverse to v gives g,

splitting map (.

Sphere G-spectra G/H . AS™ in GSU are obtained by applying i, to the—correéponding
sphere G-spectra in GSUC. A map of G-spectra is called a weak G-equivalence if it induces
an isomorphism on all homotopy groups #(7) = [G/Hy A 5", ¢e. Such a map between
G-CW -spectra is a G-equivalence by the G-Whitehead theorem [33, 1.5.10). The stable
category is constructed from the homotopy category of G-spectra by formally inverting
the weak G-equivalences [33,I§6], so we make no distinction between weak and actual

G-equivalences in what follows.




There are also sphere G-spectra 5% ¢ GSU for virtual representations a {33, p.34].

For G-spectra X and kg,
(0.5) KG(X)=[5% X Nkglg and E&(X)=[X AS™* kela.

When we restrict to integer gradings, we may use standard adjunctions to rewrite this
definition as follows in terms of the ordinary homotopy groups of nonequivariant fixed

point spectra:
(0.6) EG(X) = ma((X Aka)®) and  k&(X) = m_n(F(X,ke)®).

Orbit spectra jg /G of naive G-SPectré are constructed by first passing to orbits space-
wise on the prespectrum level and then applying the functor L from prespectra to .spectra,,
On free G-spectra X, we can.often reduce (0.6) to nonequivariant calculations on orbits. A
based G-space is said to be free if it is free away from its G-fixed basepoint. A G-spectrum,
in either sense, is said to be free if it is equivalent to a .G—CW spectrum built up out of
free cells G4 A CS™. The functors £®° : T — GSU® and i, : GSU® — GSU carry free
G-spaces to free naive G-spectra and free naive G-spectra to free G-spectra. In all three
categories, X is homotopy equivalent to a free object if and only if the canonical map
EQ@ AX — X is a G-equivalence [33, I1.2.12]. A free G-spectrum Y has the form ¢, X for
a free naive G-spectrum X, which is unique up to equivalence [33, 11.2.8]. A useful slogan
is that “free G-spectra live in the trivial universe”.

When k¢ is split and X is a free naive G-spectrum, we have
(0.7) KS (1, X) & k(B2 X)/G) and  kE(X) 2 k™(X/G)

by [33, I1.8.4]. The second isomorphism is elementary. The first depends on the dimension-
shifting transfer isomorphism discussed in Section 5.

The functional (or Spanier-Whitehead) dual of a G-spectrum X is D(X) = F(X, Sg).
For H C G, let L(H) be the tangent representation of H at the identity coset of G/H.
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Then
(0.8) D(ZXG/H,) is equivalent to G x g §~HH

where the functor G xg (7) extends H-spectra to G-spectra [33,11.6.3]. In particular,

D{(S%G,) is equivalent to TFG4 A S [33,11.4.8].




§1. Invariance properties of the functors f, ¢, and ¢
The bottom row of Diagram (D) is a substantial simplification of the top row because

1t is invariant under G-maps that are nonequivar;ant equivalences.
PROPOSITION 1.1. Let ¢ : kg — ki be a map of G-spectra that is a nonequ‘ivarjant
equivalence. Then the induced maps
¢AL:kg ANEGL —~ kg AEGy and F(1,¢): F(EGy,kg) = F(EG, kL)
are G-equivalences. Therefore the cofibration sequences

f'{kg) — c(ke) = tlke) and f'(kg) — c(kg) — t(ke)

are G-equivalent.

ProoF: The smash product of any G-spectrum with EG . is a free G-spectrum. (see p.20),
and the statement about ¢ A 1 follows from the G-Whitehead theorem of [33,11.2.2]. For
G-spectra X

[X, F(EG 4, kc)la = [X AEG 4, kala-

Using the natural isomorphism [X A G4, kgle 2 [* X, k] of [33, I1.4.7 and 4.8] to handle
skeletal subquotients, we see by induction up the skeleta of EG, and use of the Him! exact
sequence of {[X A EGY,ka]g} that [X ,F(l,qﬁ)]é is an isomorphism for all X. It follows

that F'(1, ¢) is a G-equivalence.

Since the middie vertical arrow ¢ : kg — c(kg) of Diagram (D) is a4 nonequivariant
equivalence, the first statement of the pfoposition implies the following basic fact about

the left vertical arrow & = e A 1.

PROPOSITION 1.2. For any G-spectrum kg,
e: f(ka) = ke AEG4 — F(EG4,kg) A EGy = f'(kg)

is an equivalence of G-spectra .

20
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From now on, we agree to write f instead of f'.
By Lemma 0.1, Proposition 1.1 directly implies the following result. Tt says that,
when studying the bottom row of Diagram (D), there is no loss of generaliiy if we restrict

attention to G-spectra of the form i.jg.

COROLLARY 1.3, If ¢ : jg — jl is a map of naive G-spectra that is a nonequivariant

equivalence, then the cofibration sequences
Flinje) = clivja) — t(ixja) and  f(ijg) — elivig) — tlinig)
are G-equi?alent. If Jja =t"kg fo:_* a G-spectrum kg, then the cofibration sequences
£(k) — olka) = H(ka) and f(isja) - clivia) = tirje)

are G-equivalent.

REMARK 1.4: Propositions 1.1 and 1.2 are true as stated, with the same proofs, for naive
G-spectra. We could naively define ¢(jg) = F(BG4,jg) since Lemma 0.1 implies an
equivalence

F(BEG4,jg) = F(EG,,i"ije) 2 " F(EG4, iujg),

so that ¢(jg) = i*6(ixjg). However, because ¢* fails to commute with smash products,
nothing like this is true for f or #: jo A EG is very different from ¢*(isjo A EG ). For

example, if j = jg is the nonequivariant sphere spectrum, then
GAEGH® ~% but i*(i.j A EGL)E » 2®EAMOEG, /G).

It is an interesting open question, raised recently by Rognes, to determine which naive
G-spectra jg come from genuine G-spectra. The answer for naive Eilenberg-MacLane G-
spectra was determined in [32) and will be recalled in Section 6.

Of course, the action of G on jg is non-trivial in general. However, by Lemma 0.4,
Proposition 1.1 implies that in surprisingly many cases we can reduce further by ignoring

this action without changing the bottom row of diagram (C).




CoRrROLLARY 1.5. If kg Is a split G-spectrum with underlying nonequivariant spectrum k,

then the cofibration sequences
flkg) — clka) — tka) and  f(ik) — clivk) — t(i.k)

are G-equivalent.

The reader primarily interested in equivariant theory as a tool for the study of
nonequivariant phenomena may wish to concentrate on the G-spectra ¢.k. When consider-
ing only split G-spectra, there is no loss of generality. Note however that there tisually will
be more than one split G-spectrum having underlying nonequivariant spectrum equivalent
to a given épectrum k.

EXAMPLE 1.6: Let KU be the classical periodic K-theory spectrum. Then KU, and
4 KU are inequivalent split G-spectra both of which have KU as underlying nonequivariant
spectrum. They therefore have equivalent f, ¢, and ¢ G-spectra. The analogous assertions

hold in the real and connective cases.

In sum, we may always start with naive G-spectra as input, and we may often start
with classical nonequivariant spectra. However, the functors [ and t are inconvenient to
define or to compute on the naive level, and it is essential to our work that the functors

f, ¢, and ¢ all have genuine G-spectra as output.



§2. Basic properties of the theories represented by f{kg), c(ke), and t{k¢)
Of course, Borel homology and cohomology theories have long been studied. The

following result shows how our theories relate to them.

PROPOSITION 2.1. Ifk is the underlying nonequivariant spectrum of a split G-spectrum
ke and X is a naive G-spectrum, such as the naive suspension spectrum of a G-space,

then
clke) (2 X) 2 K" (BEGL Ag X) and  f(ke)n(inX) & kn(BG, Ag 24O,

where Ad(G) denotes the adjoint representation of G.

ProoF: Immediate from (0.7).

We have the following analogous reduction to naive level theories; in view of Corollary

1.3, it applies in complete generality. Recall Remark 1.4.

PROPOSITION 2.2. Ifkg = i.jc for a naive G-spectrum jg and X is a naive G-spectrum,

such as the naive suspension spectrum of a G-space, then
olhe)" (1 X) % clic)"(X) and  F(ke)a(nX) & ma((ic A BG A MO X)/G),
Proor: These isomorphisms are composites
C(kaj”(i*X) 2 1w (Fix(BGy A X),kG)®) 2 m_p(F(EG4 A X, ja)%) 2 c(je)™(X)
and
f(kG)n-(i*X)  ma(ia(io A EG A X)) 2 mal(i A BG AEMOIX) /@),

In both cases, the first isomorphism holds because ¢, commutes with smash products. For
¢, the second isomorphism holds by 33, I1.2.8]. For f, the second isomorphism holds by
[33,11.7.2]; see Theorem 5.3 below.
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We will say more about the cited results in Section 5, where we will give an analogous
reduction of Tate homology, in terms of transfer, when X is finite. No such reduction is
known for infinite G-CW complexes X.

The relationship between the three kinds of theories is immediate from the bottom

cofiber sequence of diagram (C).

PROPOSITION 2.3. For (3-spaces or G-spectra X, there are natural long exact sequences
o f(ka)M(X) = elba)(X) — tho)™(X) = F(ka) ™ (X) = -

and
= Fk)a(X) = elk)n(X) = t(ke)n(X) — flhc)n-1(X) = -

We also call these norm sequences. Under appropriate hypotheses, they collapse to

give isomorphisms.

PROPOSITION 2.4. Let X be a free G-space or a free G-spectrum . Then
t(ke)(X) =0 and t(kg)(X)=0.
Therefore
Flka)'(X) = e(ke) (X) and  f(ka)s(X) & c(ha)e(X).
If, further, k¢ is split with underlying nonequivariant spectrum k, then
Flka) (X)) =2 k*(EG4 A X) = K(X/G)
and .
e(ke)o(X) 2 k(BG4 Ag TAYO X)  k, (844D X)/@).

PROOF: X is G-equivalent to EG4 A X and thus EG A X is G-contractible (see p.20).
Therefore t(kq)«(X) = 0. For cohomology, note that #(kg) is contractible as a nonequiv-
ariant spectrum since EG is contractible as a space. Since X is constructed out of spaces or

spéctra Gy AS™ and all G-maps from these into ¢(k¢) are null homotopic, H{ke)*(X) = 0.
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ProrosiTION 2.5. If X is a nonequivariantly contractible G-space or G-spectrum, then
(k) (X)=0 and f(ka)(X)=0.
Therefore
(k)™ (X) & f(ka)"™H(X) and clka)a(X) % t(ka)a(X).

PROOF: X i3 G-equivalent to EGA X and thus BG4 A X is G-contractible (see [33,11.9.2]).

By definition, Tate homology is a special case of c-homology,
t(ka)n(X) = c(ka)n(EG A X).

The previous results combine to show that, analogously, Tate cohomology is a special case

of f-cohomology.

PROPOSITION 2.6, The Tate spectrum t(kg) is equivalent to F(EG, Y f(kg)). Therefore,

for any G-space or G-spectrum X,
t(ke)(X) 2 f(ke)" " (EG A X).

PrOOF: F(EG,t(kg)) and F(EG,C(ICG)) are trivial by the previous two results, hence
59 — EQ and EG — ZEG, induce equivalences

t(ke) = F(5°,1(kq)) « F(EG,t(kc)) — F(EG,Zf(ka)).

This seems like a formality, but it hides substantial content and we will use it heavily.
If we filter £G, then we get a homotopy colimit description of t(kg) but a hofnotopy limit
description of the equivalent G-spectrum F(EG, L f(ke)). This dichotomy will sometimes
lead us to two quite different means of algebraic computation (and the equivalence actually
admits a purely algebraic analog [50]). This is part of the substance of the equivalences

(R), (L), and (C) in the introduction.




§3. Homotopical behavior of the funetors f, ¢ and ¢

In the previous section, the G-spectrum kg was fixed. However, the fact that f, e, and
t are well-behaved functors will be crucial to our work. As a left adjoint (see Proposition
1.2}, f preserves wedges, cofibers, and colimits. As a right adjoint, ¢ preserves products,
fibers, and limits. The functor ¢ is neither a left nor a right adjoint, but it clearly preserves
finite wedges and cofibration sequences since finite wedges and products are equivalent and
cofibration and fibration sequences are equivalent. The following result along these lines
will be needed in our study of Atiyah-Hirzebruch spectral sequences. Given G-spectra X7,

p € Z, and maps X? — XP+1 we write
(3.1) Tel X* = hocolimp—oo X?  and  Mic X? = holimy_, _ o X?.

Precise spectrum level definitions are recalled in Appendix B.

PROPOSITION 3.2. If the X? are bounded below, with a uniform bound, then the following
diagram displays a G-equivalence between cofiber sequences:
f(Mic XP) ¢(Mic XP) —— ¢(Mic X7)

| | |

Mic f(XP) ~—— Mic ¢(X?) ——— Mict(X?)

- PROOF: For any G-space or spectrum E, the functor F(E,?) commutes with arbitrary
microscopes, so it suffices to prove that the left vertical arrow is an equivalence. In view
of Proposition 1.2, it suffices to show that the natural map E A ([T X?) — [[(E A XP)is s
G-equivalence when F is a bounded below G-CW spectrum with finite skeleta. Since the _
X7 are uniformly bounded below, consideration of homotopy. groups shows that it suffices

to proﬂre this when F is finite. Here, for any K, we have
[K, EA]]XP|e = [KADE,[]X?)g = [I|[KADE, XPlg =[[IK, EAX?P)q & [K, HEAX]G.

We shall be interested in applications of this result to the Postnikov tower {Y9} of

a G-spectrum Y. To keep track of the indexing of spectral sequences, we shall find it

.26
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convenient to index Postnikov towers so that ¥ — Y7 = Y {—oo0, ——.q] is obtained from Y
by killing its homotopy group systems in dimensions greater than —g. There results a
map Y7 — Y71 under ¥, unique up to-homotopy, and its fiber is an Eilenberg-MacLane
G-spectrum K (gmq(Y), —q). The induced map Y -~ Mic(Y'9) is an equivalence, where the

homotopy limit is taken as ¢ — —o0.

ProrosiTioN 3.3. If {Y} is the Postnikov tower of a G-spectrum Y, then the following

diagram displays a G-equivalence between cofiber sequences:
f(Mie Y?) —— ¢(Mic Y?) —— t(Mic Y9)

Mic l(Y") —+ Mic i(Yq) > Mic t(Y'9).

PROOF: Since we have not assumed that ¥ is bounded below, there is something to prove.
Let X — Y be the connective cover of Y, so that X = Y[0, oo) The Postnikov tower
{X9} of X maps to that of Y, and the cofiber of X¥ — Y7 is Y'¢ ifg>0 and‘Y(—oo,'ml]
if ¢ < 0. We may take our homotopy limits over ¢ < 0, and the previous result applies
to the system {X}. The conclusion of the pfevious result holds trivially for the constant
system {Y (—co, —1]}, and the result follows.

Smash products and therefore multiplicative structures also behave well. We have the

canonical smash product pairing
FX,Y)AFX',Y) - F(XAX Y AY').
Since EGy has a diagonal map and since there are equivalences
EG, ANEG, ~EG, and EGAEG=EG,
unique up to homotopy, we obtain a commutative diagram of associative and commutative

natural pairings, which we call a “norm pairing diagram”:
; : pairing diag

Fka) A f(kG) —— clke) A elki) —— t{ke) At(ke)

w T

flkg A ki) ————— c(ka A ki) ————— tlka A ko)
This easily implies the following result.




ProprosITION 3.5. If kg Is a ring G-spectrum, such as i,jg for a naive ring G-spectrum
je, then c(kg) and t(kg) are ring G-spectra and the following part of diagram (C) is a

commutative diagram of ring G-spectra:

kG_—M—ék(;/\EG

I

e(kg) ———> t(kg).

If kg is commutative, then so are elka) and t(kg). If mg is a kg-module G-spectrum,

then c{mg) is a c(kg)-module G-spectrum and t{mg) is a t(kg)-module G-spectrum.

The unit of ¢(kg) is the smash.product of the unit of e(kg) and the canonical map
5® — EG; only the lack of a unit prevents f(kg) from also being a ring G-spectrum.
The G-fixed point spectra of ring G-spectra are ring spectra. The essential point is

that there is an associative and commutative natural pairing [33, 11.3.14]
(3.6) w: (ka)® A (k)¢ — (ka ARG)C.

In contrast to the space level, w is not an equivalence. If jg is a naive ring G-spectrum,
then the natural map (jg)% — (i.j@)% is a ring map. Of course, the case when G acts
trivially on j is of particular interest.

We cannot expect t(kg) to be functorial in G since classical Tate cohomology is not
functorial in G. However, we do have restriction and transfer maps satisfying all of the
usual properties. That is, the collection {t*(kg)(X)} for H C G specifies a Mackey functor
(see Sections 6 and 20). This is a diréct consequence of the following easy observation.

Recall that EG regarded as an H-space is a model for EH, and similarly for EG.

PRroroSITION 3.7. Let ky denote kg regarded as an H-spectrum for H C . When
regarded as H-spectra, f(kg), c(ka), and t{kq) are equivalent to.f(kg), e(ky), and t(kg),

respectively.
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There is a more subtle result along the same lines, The forgetful functor from G-
spectra to H-spectra has both a left adjoint G x g (7) and a right adjoint FylG, ‘?) These
two functors are equivalent when H has finite index in G, but in general they differ by a
suitéble suspensioln. The results [33; 11.4.3, 4.9, and 6.2] imply the f{ollowing commutation

relations.

PROPOSITION 3.8. Let'kH be an H-spectrum. Then the following cofiber sequences of

G-spectra are canonically equivalent:
Gy flkag) = G xy clky) = G xy tlky)

and

f(G g kH) — C(G X g kH) — t(G X kH).
Similarly, the following cofiber sequences of G-spectra are canonically equivalent:

f(FH[G: kH)) - C(FH[GJCH)) - t(FH[Gi kH))

&I]d

FulG, £ (kar)) — FarlG clksr)) — FulG (k).




|
|

4. Completion at the augmentation ideal of the Burnside ring

We introduced completions of G-spectra at ideals of the Burnside ring A(G) in [25].
Let I C A(G) be the augmentation ideal. The following result, which wiil be proven
shortly, may be viewed as a formalization of the intuition that completion at 7 is intimately
connected with the kind of invariance displayed in Proposition 1.1. Of course, completion
abt I only makes sense for genuine G-spectra since the starting point of the construction
is the natural action of A(G) = x§(Sg) on G-spectra. Until Proposition 4.20, we restrict

attention to finite groups in this section.

TrHEOREM 4.1. Let G be finite. Then c(kg) is I-complete for any G-spectrum kg. If ke
is bounded below, then f(kg) and therefore t(kq) are also I-complete. If (3 js a p-group

and kq is bounded below, then t(kq) is p-complete.

The last statement follows from the topological fact that i(kg) is nonequivariantly
contractible and the algebraic fact that) forvany Mackey functor M, I-adic compleﬁion
agrees with p-adic completion on the kernel of 7* M (G/G) = M(G/e), m: Gle — G/G.

Since f(KUg) and {(KUg) are not I-complete (see Theorem 13.1), the bounded below
hjpothesis is essential. As explained in [25, §4], the Atiyah-Segal completion theorem and
the Segal conjecture imply that ¢ : kg — b.(kg) is a completion at I when k¢ is KUg,
KOg, or Sg. In the last case, we can conclude from Diagram (D) that 18 — t(Se) is
also a completion at I. In general, £he map € : kg - b(kg) is a completion at I if and only
if the cohomology theory represented by (kg)} carries G-maps which are noneguivariant
equivalences to isomorphisms, and thig holds if and only if the left derived functors Lg and
L of I-adic completion vanish on (kg)*(X) whenever X is a nonequivariantly contractible
G-spectrurn.,

The last statement holds since we have short exact sequences
(4.2) 0 — LY (X)) = (¥)™(X) - L§(Y™(X)) — 0

for any G-spectra X and Y and any ideal I C A(@) [25, 3.3]. Under finite type hypotheses,
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these sequences reduce to isomorphisms
(4.3) (YA™(X) - (Y™ (X))

There is a simple and explicit construction of ¥/ for any I. For a € A(G), let M(a)
be the fiber of S¢ — Se[a~], where Sg[a™'] is the telescope of iterates of & : Sg — Sg.

If I =(ar,...,o), let
(4.4) M(I) = M(ag) A+ A M(og).

Up to equivalence, M(I) depends only on I and not on the choice of its generators, and
M(Iy A M(I) =~ M(I). By construction, we have a canonical map M(I) — Sg, and

completions at I are given by the induced maps
(4.5) ' Y = F(8¢,Y) — F(M(I),Y) =Y}

In fact, completion at I'is just Bousfield localization at M (I) (25, 2.2).

This construction of completions leads to a different way of thinking about completion
theorerﬁs. Returning to the augmentation ideal I, we note that the map M(I) — Sg is
a nonequivariant equivalence. By the Whitehead theorem, there is thus a unique xﬁap
¢ : ®EG, — M(I) over Sg. By (4.5), we conclude that ¢ : kg — F(EG4,kg) s a

completion at I if and only if the “completion conjecture map”
(46) g* : (kG)? = F(M(I)a kG) —+ F(EG-I-:kG) :-C(kG)

is an equivalence. See [25, §4] for discussion. This is a question about the cohomeology
theory k%, and it virtually demands consideration of the corresponding question about the

homology theory k¥: when is the “cocompletion conjecture map”
(4.7 Ex=1AE: kg NEG, — kg A M(I)

an equivalence? We shall prove the following very surprising relationship between these
two questions. Although we find this result illuminating, it is something of a digression

and will not be used later.




THEOREM 4.8. Let kg be a ring G-spectrum . Then the map &, of (4.7) is an equivalence
if and only if t(kg) is a rational G-spectrum and the map £* of (4.6) is an equivalence.
When these equivalent conditions hold, f*(kg)} and t(kg)} are trivial, hence c(kq) is the

completion at I of both kg and f(kga).

In the case of KUg and KOg, £* is an equivalence by the Atiyah-Segal completion
theorem, £, was proven to be an equivalence bjr the first author in [22], and the rationality
of the Tate spectra will be proven independently in Section 19.

Clearly these results on K-theory are very special. In particular, if kGl is bounded
below and t(kg){ is trivial, then t(kg) is itself trivial, by Theorem 4.1. Aside from the K-
theory spectra, the only examples we know of for which the cocompletion conjecture map
is an equivalence are the obvious rones, namely free G-spectra kg and rational G—Sp-ectra,
ka such that kg ~ kg A EG.

To begin the proof of Theorem 4.8, we see that £* is an equivalence if {. is an equiv-

alence by the following general observation of Adams.

LEMMA 4.9. Let kg be a ring G-spectrum and mg be a kg-module G-spectrum. If
a: X — Y is a map such that 1 Ao : kg AN X — kg AY is an equivalence, then the

following maps are also equivalences:
1Aa:mgAX = mgAY and F(o, 1) : F(Y,mg) — F(X,mg).

Proor: Equivalently, if kg A Z is trivial, then so are mg A Z and F(Z,mg): For the
first, mg A'Z i8 a retract of mg A kg A Z. For the second, the adjoint 43 of a map

¢ W — F(Z,mg) factors as the composite'
pAAPAD : WAZ = kg AW AZ — kg Amg — mg.
In particular, since c(kg) is a kg-fnodule G-spectrum, the map

(4.10) £ =1AE:clkq) NEGy — clkg) A M(I)
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is an equivalence if the map &, of (4.7) is an equivalence. This leads us to the following

formal part- of Theorem 4.8.

PROPOSITION 4.11. The map &, of (4.7) is an equivalence if and oﬁIy if the maps £ of

(4.6) and &, of (4.10) are both equivalences.

PROOF: By Proposition 1.1, the left arrow in the commutative square

ke AN EGy ————— kg A M(T)
CG(.kG)‘l/‘\ EGy — CG(’GG)J/\ M(I)
is always an equivalence. Since completion at I is Bousfield localization at M(I), the right
arrow is an equivalence if and only if ¢ : kg — c(kg) is 2 completion at I, and this holds
if and only if the map £* of (4.6) is an equivalence. The conclusion follows.
To tie in rationality considerations, let M(I) denote the cofiber of M(I) — Sg. We

have a map of cofiber sequences

EG, » G0 » EG
(4.12) el £
M(I) 80 > M(I).

Therefore the map £, of (4.7) is an equivalence if and only if the map
(4.13) & =1AE: kg AEG — kg A M(I)

is an equivalence, and the map &, of (4.10) is an equivalence if and only if the map

(4.14) €= 1AE : t(k) = e(kc) A EG — c(ka) A M(I)

is an equivalence. The main point of Theorem 4.8 is the following result.

PROPOSITION 4.15. Let kg be a ring G-spectrum . Then t{kg) is rational if and only if

the map &, of (4.14) is an equivalence.




[l o T MW Aed A A A A = e - = — e

PrROOF: By Remark A.14 below, the vertical arrows in (4.12) are rational equivalences. If
t(kg) is rational, then the map E; of (4.‘14) is a ring map and a rationsl equivalence with
rational domain. This implies that its target is also rational and thus that it itself is an
equiva,lén_ce. For the converse, g acts invertibly on t(kq) for any G-spectrum kg if ¢ is a
pfime th#t does not divide |G|, by Corollary 11.5 below. The following three lemmas show
that p acts invertibly on t(kg) if the map £, of (4.14) is an equivalence and p is a prime
that does divide |G| Observe that the assumption about the map (4.14) is inherited on
passage to subgroups (as in Proposition 3.7). -

Recall the construction of M (I) in (4.4). Since M(I) — Sg is the smash product of
maps M(a) — Sg with cofibers Sg[a!], where o runs through a finite set of generators
of I, M(I) has a finite filtration each of whose subquotients is of the form Sela™] A Y for

some element a € I and G-spectrum Y. This has the following consequence.

LEMMA 4.16. If G is a non-trivial p-group, then p acts invertibly on X AM (I} for any

G-spectrum X.

Proor: In A(G), p divides some power of any element o € I. ‘Therefore p acts invertibly

on each subquotient of the induced filtration of X' A M (1.

Returning to our general finite group G, let p divide |G| and let P be a p-Sylow

subgroup of G. For any G-spectrum kg, the composite
kg = ka ANG/Py — kg

of transfer and projection is multiplication by the element [G/P] € A(G), and kg A G /Py
is isomorphic to G xp kp by [33, 11.4.8].. Therefore, if multiplication by [G/P] is an

equivalence on kg, then kg is a wedge summand of Gxpkp.

LEMMA 4.17. I£X is a free G-spectrum and Y is a p-local G-spectrum , then multiplication

by [G/P) is an equivalence on X AY and on F(X,Y).
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PROOF: Smce G, is self-dual, the two cases are the same when X G +; the conclusion
holds in this case since multiplication by [G//P)] agrees with multiplication by |G/P| on
G4 AY. The result holds for a wedge of free G-spectra X if it holds for each wedge’
summand, and the conclusion follows by induction up the sequéntial filtration of X {33,

1.5.2].

LEMMA 4.18. If kg is a G-spectrum such that p acts invertibly on t(kp), then p acts

invertibly on t(kg).

Proor: L_et. M, be the mod p Moore G-spectrum, that is, the cofiber of p : Sg — Sg.
Then p acts ipvertibly on kg if and only if kg A M, is trivial. Since f(kg) is free and
e(ka) AM, is equivalent to F{EG., kg AMp), the pfevious lernma, gives that multipli‘c&tion‘
by [G/P] is an equivalence on both f(kg) A M, and c(kg) A M, and therefore also on
t(kg) A M. Since the hypothesis implies that ¢(kg) A Mp is trivial when regarded as a

P-spectrum, the conclusion follows.
The following observation implies the last statement of Theorem 4.8.

LEMMA 4.19. IfX is a G-spectrum such that lAg: XAEG — XA]\?(I) is an equivalence,
then (X A EG)} is trivial,

PROOF: Since completion at I is Bousfield localization at M(I), Y/ is trivial if and only

i£ Y A M(I) is txivial, and M(I) A M(I) is trivial since M(I) A M(I) = M(J).

We must still prove Theorem 4.1. The following more general result is valid for any

compact Lie group G.

PROPOSITION 4.20. Let J be any finitely generated ideal contained in the augmentation

ideal I C A(G). Then the following conclusions hold.
(i) c(kg) is J-complete.

(ii) Any bounded below free G-CW spectrum Y is J-complete.




PrOOF: If J is obtained from an ideal K by adding a new generator ¢, then (4.4) and (4.5)
imply that Y = (Y}2)4 for any Y. Inductively, it suffices to prove the results for J = (a).
Since « is trivial as a nonequivariant map, the underlying nonequivariant spectrum of
Sala~] is trivial and M{a) — Sg is a nonequivariant equivalence. Par (i) follows from
(4.5), adjunction, and Proposition 1.1. By (4.5) again, (ii) will hold if F(Sla1,Y) is

trivial. For any X, we have the exact sequence
0 — im*[SX,Y]e — [X, F(Sle™'},V)lg — im[X,Y]e — 0,

where lim and lim! are taken with respect to countable iteration of @ : X — X. If
Y = G4 AK, then [X,Y]e & [X,%K] by {33, 11.4.8 and 6.5}, where X and K on the
right are underlying nonequivariant spectra. Since « is nonequivariantly trivial, the lim
and tim! terms vanish. Ta,king K to be a wedge of spheres 57", and applying induction,
we see that the conclusion holds if Y is finite dimensional. If ¥ is bounded below and X
ié finite, then_ all maps X — Y factor through a fixed finite dimensional subcomplex of ¥

and again the lim and lim! terms vanish. Thus F(S[a1],Y) has trivial homotopy groups.



§5. 'Iﬁransfer. and the fixed point spectra of Tate G-spectra

Transfer has played no overt role in setting up our basic definitions. However, it is.
implicitly present, as we now explain.

Looking back at diagram (C) and recalling from Proposition 1.2 that its left vertical
map is a G-equivalenc'e, we see that, up to equivalence, t{kg) can be viewed as the cofiber

of the evident composite.
(5.1) k(;‘/\ EGy — kG — F(EG4, kg).

As in (0.6), when we compute homology in integer degrees, we first sﬁash with the G-
| space X, then take G-fixed point spectra, and finally compute homotopy groups. Smashing
with X commutes with passage to cofibers. Taking ﬁxgd points commutes with fibers, by
insbection of definitions, hence commﬁtes up to equivalence with cofibers. As pointed out
in Section 0, to pass to fixed points we must first apply the forgetful functor z* and then
pass to fixed points spacewise. Thus Tate homology is obtained by takiﬁg the homotopy

groups 6f the cofiber of the composite
(62)  (i*(ke A BG4 AX))C = (*(ka A X))C — (*(F(BGy, ka) A X))

Replacing X by i, X for a finite naive G-CW spectrum X, for genera,lity, we here give
an equivalent description in terms of naive (-spectra, indexed on U€, without reférence
to the change of univérse functors i, and i*. However, such a description certainly should
not be taken as a definition, since it necessarily encodes far less information. By Corollary
1.3, we may assume without loss of generality that kg = i.(jg) for a naive G-spectrum
jg. Since i, commutes with smash products, the domain of (5.2) now has the form
(#*i.(jo A BG4 A X))€. The following specialization of [33, IL.7.1] gives a purely naive

deseription of this spectrum.
THEOREM 5.3. For naive G-spectra X, there is a natural equivalence of spectra
71 (jg A BG4 AZAOXYG — (i, (je A BG4 A X))C.
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The equivalence 7 is given by an appropriate transfer map. We sketch its construction,

To handle equivariance, we work with the semidirect product I' = G X, G as the
ambient group, where ¢ is the conjugation action of G on itself. Write G’ for the subgroﬁp
G %, e of I' and write II for the normal subgroup e x. G, so that G & ['/II. Write '@
for G regarded as a left T-space with action given by (g.9')h = g9’ hg~'. We obtain a
T-homeomorphism from 'G to the orbit T/G' by sending h to the coset of (e, h). Define
e:T—=Gandp:T— Gbye(g,g) =g and w(g,g') =99

Y is a free G-space and ©*Y denotes Y regarded as a G-space by pullback along ¢,
then Y is G-homeomorphic to the orbit space (¢*Y x'G) /TI. The right way to think of
Y — Y/G as an equivariant bundle is to regard the IT-free [-space ¢*Y as its associated
principal bundle, the T-space 'G = T/ as its fibre, and the subgroup IO of T as its
structural group. As usual, our deﬁnition of the transfer begins with an appropriate
definition of the “pretransfer” on the level of fibers.

Embed '@ in a T-representation V. The tangent T-bundle of 'G is trivial with fibre
A = Ad(G), where T acts on A through e. The complement V — A of A under the
embeddin‘g of tangent spaces is also a representat;lon of T, the nofmal F-bundle of the
embedding is ‘G x (V — A), and we obtain a I-map ¢ : SV — "Gy A SV—4 by the
Pontryagin-Thom construction. Let the complete G-universe U be (U’ Y, where U’ is a
complete [-universe. Passing to suspénsion I‘-sinectra (but leaving out notation for the
Suspension spectrum functor) and desuspending by V — A, we obtain a pretransfer mdp
¢: 84 5 'G, of I-spectra indexed on U'".

Now let Y be a free naive G‘—spectrum, such as jg A BG4 A X. By analogy with
the space level description given above, there is a sensible way of defining the “associated
principal II-free T-spectrum” determined by Y [33, I1.7.4], and [33, IL7.5] explains how to

smash this spectrum with the map ¢ and then pass to orbits over Il to obtain a map
(5.4) | T4 {((BAY)/G) = .Y

of G-spectra indexed on U, where G acts trivially on (24Y)/G. The adjoint of 7 is the
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transfer map
(5.5) 71 (T4Y)/G — (*4,Y)°.

By [33, 11.7.1], this map is a natural equivalence. -
For the target in (5.2), we have the following more elementary reduction to the naive

level; however, it is only valid for finite X.

THEOREM 5.6. For finite naive G-CW spectra X, there is a natural equivalence of naive

G-spectra . _
F(BEG,,ja A X) = i"(F(EG4,iede) N i:X).

Proor: Since X s finite, the canonical map
F(BEG.,,ijg) Nt X — F(EG.F,V?J*jG A1 X)
is an equivalence [33, III.2.8(ii)j, and, by Lemma 0.1 and Proposition 1.1,
P F(EGy, injg NinX) = F(EG+,z:*i*(le A X)) ~ F(EG4,jc A X).

Composing the equivalences of the previous two results with the maps induced by

(5.2}, we obtain a natural map
(5.7) 7: (jg A BGL AT XV /G — (F(BGL, jo A X))C.

Our discussion shows that, with kg = 1.jg, its cofiber is equivalent to (t(ke) AX)%, whose
homotopy groups are t(ka)«(X). |

For 2 naive G-spectrum Y, it is fashionable to call F(EG4,Y)€ the “homotolﬁy fixed
point spectrum” of ¥ and to denote it by Y*%. The dual notion of the “homotopy orbit
spectrum” is (EG4 A Y)/G which, by analogy, is sometimes denoted Y,g. With these

notations, (5.7) can be written as

(5.8) 71 (jag ASAO X))o — (jo A X
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For a naive G-spectrum Y, Adem, Cohen, and Dwyer [4] define H (Y) to be the fiber
of a suitable transfer map from a spéctrum they call (BG4 Ag Y)* to Yhe, They call
the homotopy groups of i (Y) the Tate homology groups of G with coeflicients in Y.
While their description is different, {EG4 Ag Yjad is equiva.lént to EAd(G)th. Taking
Y = HZ A X, they claim that =, (HY) gives the Tate-Swan and cyclic homology of X,
modulo the obvious difference in grading resulting from their description of H (Y') as a fiber
rather than a cofiber. (Our choice is dictated by the inherent logic of diagram (C) and the
fact that t(kg) should be a ring G-spectrum when kg is a ring G-spectram.) However, as

the following observation makes clear, their claim is not correct for infinite complexes.

ScHOLIUM 5.9. Let G act trivially on X and HZ. Then (HZ A X)'C is equivalent to the
prbduct over s of the spectra F(BG ., K (H,(X),s)). Its (—n)th homotopy group is the
product over s of H “+8(BG; H,(X)). As a functor of X, this clearly fails to satisfy the
wedge axiom, whereas the homotopy groups of (HZ A 249 X clearly do satisfy this
axiom. Therefore the homotopy groups of the fiber i (HZ A X) fail to satisfy the wedge

axiom.

The definitional framework of Weiss and Williams [47;], especially their version of
function spectra, seems a bit ad hoc to us, so we will not attempt a precise comparison
of their definitions with ours. Rather, we show that our Tate spectra have the essential
properties they require in their applications. The following is the main point; compare [47,
§2].

THEOREM 5.10. Let G be finite. Let ji be a naive G-spectrum and write j for j¢ regarded
as a nonequivariant spectrum. Then the foHoWing diagram commutes. Heret: G — EG

is determined by a choice of basepoint and N denotes the norm map Xg :j — j:
(Ga AG)/G = j—N i ~ F(BG,,))
anafe| |u

(ja A BGY)/G —T— P(EQy, j6)¢
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Moreover, for any nonequivariant spectrum j,
7:(j AGy AEG4)[G — F(EGy,j A G.)°

is an equivalence.

Proor: The second statement is an immediate consequence of 'the case kg = i.j and

X = G of Proposition 2.4, Note that, as on the si)ace level
(jaNG4)/GE(GAGL)G=]

since jg A G4+ with its diagonal action by G is isomorphic to j A G4 with its action by
G on the factor G4 [33, 11.4.8 and 11.4.15(iv)]. Expanding 7 via, (5.2), with X = 5%, and
using the naturality of 7, we see that the following diagram commutes and that traversal

of its periphery gives the composite around the bottom of the diagram of the statement.

% (jc AG4)/G . (o AEG4)/G

R k

i*i*(j A G+) — 'i*i*(jG A G+)G ——-——*i*i*(jG A EG+)G

J > %405 4 (i*tuic)®

£ eG
|
F(EG,i*14j) «——— F(EGy, " ijc)¢

12

i~ i~

| F(BG4,j) ———— F(EG+,jo)°
Passing to.adjoints, we may view 7 as a, G-map ixj — (iaj) A G4, and it suffices to show
that its composite with the projection & : (i.j} A Gy — 44j 13 Tic(g). Here .5 acts as a
dummy variable, and [33, I1.7.6] shows that r = 1 At, where ¢ : 8 — LG4 is the usual
transfer map. Explicitly, if V is the regular representation of G and G xV — V is a tubular

neighborhood of the inclusion of basis elements G — V, then t is the desuspension by V of
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the Pontryagin-Thom map SY — G A SY. The relevant comparison of definitions should
be clear from the fact that the map G — V can be reinterpreted as an allowable choice of
the I'-embedding ‘G — V that was the starting point of our construction of 7. Incidgnta;lly,
it now follows that £o7 : i,§ — i,7 is multiplication by the element [G] € A(G). Since the
Pontryagin-Thom map just cited is a pinch map suitable for computing sums, it is easily .

checked (by' use of {33, I1.4.8 and 4.15(iii)}) that ¢ o 7 does indeed coincide with 2, (g). -




Part II: Eilenberg-Maclane G-spectra and the speciral sequences

§6. Eilenberg-MacLane G-spectra and their associated theories

In this and the following two sections, we study the cohomology theories represented
by t(HM) for an Eilenberg-MacLane spectrum HM. We are particularly interested in
their coefficient groups, which we think of as topologically defined algebraic invariants of
the group. In principle, there are at least three ways to get at these théories. In favorable
cases, namely finite groups and the circle and unit quaternion groups, these theories can be
obtained as hypercohomology groups defined by mixing canonical algebraic complexes and
singular or cellular cochain compiexes. In the same cases, as we shall prove in Sections
11 and 14, ﬁe can realize these mixed algebraic and topological cochain complexes by
appropriate topologically defined cellular cochain groups. Qur present point of view is
that both of these cochain level approaches are calculational devices for the study of the
topologically defined, represented, theories. We prefer to understand the latter before
restricting attention to special cases.

Let G be a compact Lie group of dimension d and let G denote its finite group mo(G)
of components. Let OS be the full subcategory of the stable category of G-spectra whose
objects are the suspension spectra of orbits G/H,. A Mackey functor M is an additive
contravariant functor OS — Ab, written M(G/H ) on the object E¥G/H,. For finite
@G, this is equivalent to the standard definition of Dress [17], by [33, V.9.9]. For any G,
M(G/e) is a G-module, which we denote by UM (and think of as the underlying G-module
of M ). Fﬁr a 'G-spectrum X and an integer n, we have the nth homotopy group Mackey

functor x,,(X). Its value on G/H is
ﬂ-n(XH) = [Sn,X]H = [G/H+ A San]G:

and its contravariant functorality on OS is obvious.
| By [32], for a Mackey functor M, there is an Filenberg-Macl.ane G-spectrum HM,

unique up to equivalence, whose only nonvanishing homotopy group Mackey functor is
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mo(HM) 2 M. Maps HM — HM' correspond bijectively to maps M > M’ of Mackey
functors. We will prove shortly that, as suggested by Proposition 1.1, the bottom row of
Diagram (D) for HM depends only on UM. The proof is based on an understanding of the
relationship among G-modules, Mackey functors, and G-spectra, and this understanding
will be critical to our study of products in Section 8, Let Z[G] and MIG] denote the

categories of Z[G]-modules and of Mackey functors over G.

LEMMA 6.1. The functor U : M[G] = Z [G] has a left adjoint F, so that
Hom p(g)(F'V, M) = Homg(V,UM)

for a Mackey functor M and a G-module V. Moreover, UFV =V.

As a left adjoint, the functor F is right exact. It is not left exact, and it has left
derived functors L;F, i > 0, with LyF = F; see [12, V§§2,3]. The topology realizes this

algebraic fact in a rather remarkable fashion.

THEOREM 6,2. There is a functor L from Z[G] to the stable category of connective
G-spectra such that mo(LV) & FV and L is exact, in the sense that it transforms
short exact seéquences 0 — V! — V — V" — 0 of G-modules to cofibration sequences
LV! — LV — LV" of G-spectra . If Gy denotes the component of the identity element of
G, then -

78 (L(Z[G) ® A)) = H;_4(BG14,; A) for any Abelian group A and all i > 0.
If G is finite, then
7, (LV) & L;FV for any G-module V and all ¢ > 0;

moreover, if V = Z|G] ® A, then t(LV) is trivial and LV = f(LV) ~ ¢(LV).
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THEOREM 6.3. Let M be a Mackey functor and let V = UM. Then the following three

_eofibration sequences are canonically G-equivalent:

FHM) — c(HM) — t(HM),

f(HFV) — (_:(HFV) — t{(HFV),
and
FLV) s o(LV) —s t(LV)

Therefore, if M and M' are Mackey functors such that UM = UM', then the norm

cofibration sequences of HM and HM' are canonically G-equivalent.

Except for the part about-LV, this is immediate from Lemma 6.1 and Proposition 1.1:
the identity map on V extends uniquely to a map of Mackey functors FV — M, and the
resulting map HFV — HM induces an equivalence of bottom rows of Diagram (D). By

Corollary 1.5, the theorem specializes as follows to trivial G-modules and split G-spectra.

EXAMPLE 6.4: Let' M be a Mackey functor such that the natural map M(G/G) —
M(G/e) = V is a split epimorphism; thus G acts trivially on V. Then the split G-
spectra HM, HFV, LV, and ¢, HV all have equivalent f, ¢, and £ G-spectra, where HV
is the Eilenberg-MacLane spectrum (regarded as a naive G-spectrum with trivial action).
FV and the “constant Mackey functor” V with V(G/H) = V and with identity restriction

maps (see [33, V.9.10]) give two different examples of Mackey functors M with UM = V.

The results stated above will be proven in the next section. They allow us to make the
. following definition. Modulo variant grading conventions, it includes the Tate and cyclic
homology and cohomology theories. Our gradings are dictated by the usual definitions
of represented homology and cohomology theories and by a shift of dimensions resulting
from the fact that the dual of G is G4 A §™%, so that the homology theories represented

by Eilenberg-MacLane G-spectra fail to satisfy the dimension axiom unless G is finite.
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In fact, this last observation leads to a deeper, and definitive, topological motivation for
our choices, but we prefer not to ekpla,in this until Section 20. For H,, H*, and H*, our
gradings agree with the others that we have seen in the literature, but gradings of the

other three functors tend to vary from source to source.

DEFINITIONS 6.5. Let V be a G-module -and let M be any Mackey functor such that

UM 2 V. For G-spectra X and integers n, define

HO (X;V) = fHM)u(X)  and  HE(X;V) = (HM)"(X);
HO (X V)= o(HM),(X)  and  HZ(X;V) = f(HM)MX);

A (X;V) = HM)o(X)  and  HE(X;V)=t(HM)"(X).

When X = 8°, we delete it from the notation, writing f[g(V), etc.

The differing decorations on H for f and c are suggested by Proposition 2.1, which
tells us that the first two groups specialize to the appropriate homology and cohorflology
groups of the Borel construction when G acts trivially on V; compare Example 6.4. In
this and the next few sections, we concentrate on the case X = 50, thinking of Definitions
6.5 as giving invariants of groups. For finite G, they are the standard invariants by the
following consequence of Theorems 6.2 and 6.3. For the moment, let H* (G,V) denote

Tate cohomology as defined in [12, XII§2].

PROPOSITION 6.6. Let G be finite. Then there are natural identifications
HOWV) = To@9(Z, V), BE(V) = Btiy(Z,V), and HZ(V) = H*(G, V).

Proor: Note first that, by connectivity and obstruction theory, HE and H are identically
zero for n < 0. All three functors on the right admit standard axiomatizations, and we need
only verify the axioms. By Theorem 6.3, we may view the theories on the left as f(LV)a,
¢(LV)*, and ¢(LV)*. Theorem 6.2 then gives the required long exact sequences in all three

theories and shows that they agree with the theories on the right when specialized to free
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modules V, As a matter of algebra, this implies that, for any G-module V, H§ (V) =
Vg = V/IV, where I is the augmentation ideal of Z[G], and HZ(V) = V€. To complete
the check of axioms for ﬁI&(V), it suffices to compute H L(V) for any- one 4, and the norm
sequence iniplies that fI*G(V) =~ HiL(V) for a,lll positiverz'. Altefnatively, the norrﬁ sequence

and Theorem 5.10 imply that A%(V) = BY(G, V).




§7. Mackey functors and coefficient systems

We must prove Lemma. 6.1 and Theorerns 6.2 and 6.3. The main arguments depend
on the relationship between coefficient systems and Mackey functors, which is the algebraic
counterpart of the relationship between naive G-spectra and genuine G-spectra, .

We first give an algebraic proof of Lemma 6.1, which is actually an instance of a general
categorical resu.lt. An alternative topological proof will drop out of the construction of the

functor L of Theorem 6 2.

ALGEBRAIC PROOF OF LEMMA 6.1: Write G/H, for ZFG /H+ The essential point is
that [G4+,G4le & Z[G). If V = Z[G), we let FV be the represented Mackey functor
(FV)(G/H) = [G/H4,G4)g- The isomorphism of Lemma 6.1 is formal in this case.
Extend F.to free Z[G]-modules by additivity. For a general V, let P = Fp—= V — (0 be
the initial segment of a resolution by free Z[G)-modules on specified bases and define FV to
be the cokernel of the induced map FP; — FPy. By a standard comparison of resolutions
argument, FV is independent of the choice of the resolution, and the is_omorphism of
Lemma 6.1 follows by a comparison of exact sequences.

We next recall the definition of coefficient systems. Let NOS be the full subcategory
of the stable category of naive G-spectra whose objects are the suspension spectra of orbits
G/H,. As is easily checked, the group of morphisms G/H+ — G/Ky in NOS can be
identified with the ordinary {reduced) integral homology group Ho((G JK)E). A coefficient
system R is an additive contravariant functor AOS ~+ Ab, written R(G/H) on the object
G/H,. Again, UR = R(G/e) is a G-module. |

Let C[G] denote the category of coeflicient systems. The analog of Lemma 6.1 for co-
efficient systems is trivial: we identify the category of G-modules with the full subcategory

of coefficient systems V such that V(G/H) = 0 for H # e, and we find immediately that
(71) HOInc[(;](V, M) & HOIIIE(V, UM)

In particular, the identity map of V' lifts uniquely to a map of coefficient systems V -— R

48
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for any coefficient system R such that UR =V,

For a coeﬁicient system R, there is a naive Eilenberg-MacLane G-spectrum HR,
unique up to equivalence, whose only nonvanishing homotopy group coefficient system
is my(HR) & R. Maﬁs HR — HR' correspond bijectively to maps R — R’ of coefficient
systems. A naive Eilenberg-MacLane G-Specfrum HR comes from a genuine Eilenberg-
MacLane G-spectrum if and only if R comes from a Mackey funetor.

Formally, following Lewis [31], let s : NOS — OS denote the functor given by
application of 4. to orbits and let s* denote the forgetful functor from Mackey fuhctors
to coefficient systems that is obtained by preconiposition with s. Then i*HM = Hs*M.
When we write HV below, we mean the naive Eilenberg-MacLane G-spectrum associated

to the G-module V regarded as the coefficient system specified by
V(G/e)=V and V(G/Hj =0 for H #e.

DEFINITION 7.2. For a coeflicient system R, let LR be the G-spectrum i, HR and let s. R
be the Mackey functor my(i, HR). Write LV and s,V for these functors on G-modules V

regarded as coefficient systems.
PROPOSITION 7.3. The functor s, : C[G] — M|G] is left adjoint to the forgetful functor
s* : M[G] — C[G].

PROOF: . For a coefficient system R we can attach cells to i, HR to kill its higher homotopy
groups and so obtain a map ¢ : 1. HR — Hmy(i. HR) that induces the identity on m,. For

a Mackey functor M , ¢ induces an isomorphism OI{--H?;(?; M) =[?, HM]g. Therefore

Hom (s« R, M) = [Hzy(in HR), HM)¢ = [i, HR, HM]g
= [HR,i"HM|g = [HR, Hs* M} = Hom¢g)(R, s* M).
REMARK 7.4: Lewis [31, 4.5] proved the existence of the left adjoint s. by quoting a general

categorical criterion for the existence of adjoints. As a matter of category theory, s, R is

a certain coend, and [31, 4.8] gives a direct, but necessarily quite complicated, algebraic
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description. The functor . from naive G-spectra to genuine G-gpectra, somehow builds
in this algebra. In general, there ate many ways to furnish a given coefficient system R
with transfer maps that make it into a Mackey functor M. The identity map of R = s*M
has an adjoint map s.R — M of Mackey functors for every such M. The price of this
universality is that it cannot be true that s*s, R = R except in the very special case when
R(G/H) =0 for H # e, when there are no non-zero transfer maps to furnish.

PROOF OF THEOREM- 6.2: By the uniqueness of adjoints, s,V = v éince Irs* = [J,
That is, 7, (LV) = FV. The functor H from coefficient systems to naive G-spectra carries
short exact sequences to cofibrations and the functor i, preserves coﬁbratio_ns, hence L is
exact. Now let V = Z[G] ® A for an Abelian group A. We may take H V to be the naive
G-spectrum G4 A EGL A HA. In fact, the computation of fixed point spectra of naive
G-spectra is easy, and, if H # e, then (G4 NEG4 A HAY is trivial since EGH is empty.

As a nonequivariant spectrum, G4 A EGy. A HA o~ G4 A HA, and its zeroth

homotopy
group is V. By [33, IL.6.5 and I1.7.2] and a standard Serre spectral sequence argument, we

find that
S(LEZG) @ A) = 78 (L, HV ) 2 791 (BG4 A i HA)
= ’TF*(SAd(Gl) /\G1 EG1+ A HA)

= H,(%¢BG1; A).
Finally, suppose that G is finite. By the axioms for derived functors, to prove that
w,(LV) & L;FV for all G-modules V it only remains to prove that @;(LV) = 0 for
> 0 when V = Z[G] ® A. Here, since G4 A BEG, ~ G4,

LV >~ G Ni HA ~ ¢(LV).
By [33, IL6.5}, nH (LV) = H.(G/H,; A). Since G is self-dual and EG A Gy is trivial,
t(LV) is trivial by a standard duality equivalence.

PROOF OF THEOREM 6.3: Let M be any Mackey functor with UM = V. The identity

map of V' lifts uniquely to a map of coefficient systems V — s*M. We have an induced

A N e o i
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map of G-spectra

LV =i, HV — i, Hs* M = &,i"HM.

By Proposition 1.1 and Lemma 0.1, both this map and the natural mape : t.,* HM — HM

induce G-equivalences of bottom rows in Diagram (D).




§8. Products in the theories associated to Eilenberg-MacLane G-spectra

We need a multiplicative elaboration of Theorem 6.3 to introduce product pairings
in all of the theories of Definition 6.5 and, later, to étudy prodﬁcts in our generalized
Atiyah-Hirzebruch spectral sequences. The categories of coefficient systems and of Mackey
functors, in common with all such categories of additive functors, have their own internal
tensor products; see e.g. [30], [40], [48]. In view of the invariance properties of the theories
of interest to us here, we do not need an algebraic understanding of these products, and

we therefore simply define them topologically by

(8.1) M®M =mny(HMAHM'),

By killing the higher hoﬁotopy groups of HM A HM’, we obtain a canonical mé,p
¢t HMANHM' — HM ® M').

Since ¢ induces an isomorphism on HY{(?"; M") = [?,HM")g, pairings of G-spectra
HM AHM' — HM" are in bijective correspondence with pairings M ® M’ — M".
These tensor products of coefficient systems and of Mackey functors extend the tensor

product of G-modules in the sense that
UMeM)=UMaUM'.

To see this, just observe that we are here computing the zeroth homotopy group of the
smash product of two ordinary Eiienberg-MacLane specﬁra and then remembering the
actions. Thus a f)airing HM A HM' — HM" of G-spectra or, equivalently, a pairing
M® M — M" of Mackey functors induces a pairing UM ®@ UM’ — UM" of G-modules;
we say that the former pairing realizes the latter one. Such a pairing gives rise to the
following special case of the norm pairing diagram of (3.4):

FEHMYA FEM') —mr (M) A (HM') ~—— t(H M) A H(HM")

o | | |

FOHM") s e(HM") ‘  t(HM").
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This gives compatible pairings in the theories of Definition 6.5, and these are well-
defined by the following elaboration of Theorem 6.3.
THEOREM 8.3. Leta: V@V’ — V" be a pairing of G-modules. Then there are canonically
induced 'pairings of G-spectra .
LVALV' - LV" and HFVAHFV' — H FV.’_’
that realize a on mg, and their induced norm pairing diagrams are canonically equivalent.
IfFHMAHM' — HM" also realizes «, then its norm pairing diagram is canonically equiv-

alent to these norm pairing diagrams, hence any two realizations give rise to canonically

equivalent diagrams.
PRrooF: Clearly we have my(HV A HV') @ V @ V7, so that a induces a map
HV ARV — H(V ® V') —>.HV".
Applying 7, aﬂd using that it commutes with smash products, we obtain
LV ALY’ =.i*HV AN HV' = i, HV" = LV".
Killing higher homotopy groups and using obstruction theory, this gives
HFV AHFV' — HFV".

Given any other realization HM A HM' — HM", we obtain the following commutative
diagram. Its horizontal arrows are those used to prove Theorem 6.3.
Hs, V AHs, V' +— i, HV A, HV' —> i, i* HM N4, *HM' —> HM AN HM'
Hs V" e i, HV" — i i*HM" s HM"",
To see that the right rectangle commutes, pass to adjoints and note that the following

diagram commutes by inspection on the zeroth homotopy group coefficient system level:

HVAHV —— Hs*M AHs*M'

| |

HV > Hs*M",




Similarly, an elaboration of the proof of Proposition 6.6 shows that these topologically
defined pairings agree with the usual algebraic pairings when G is finite. This is particularly
important to us since, in contrast with Proposition 6.6, we do not have an alternative chain

level proof in the case of Tate cohomology.

PROPOSITION 8.4. If G is finite, then the equivalences
HO(V) = To2O(2, V), HL(V) = Ext}ey(Z,V), and HH(V) = H(G, V)

carry the pairings just introduced on the left sides to the usual algebraic pairings on the

right sides.

PROOF: Since the smash product of a cofiber sequence with a G-spectrum is a cofiber
sequence, easy diagram chases show that the pairings on the left commute appropria’tely'
with connecting homomorphisms. As a matter of algebra, an elaboration of [12, XTI§5]
' shows that it suffices to check the conclusions on H§ (V).® H§ (V') and HY(V) @ HY(V')
when V = Z[G]® A and V' = Z[G] ® A’ and on HiL(V) ®ﬁé(V’) for any one pair (4, 7).
In all three cases, it suffices to check on the identity pairings to V ® V'. The first two
cases are easily checked by diagram chases from the calculation in degree zero given in the
proof of Theor_em 6.2. As in the probf of Proposition 6.6, the third case follows directly

from the second.



§9. Chain level cal.culation of the coefficient gfo_ups

In this section and the next, we shall be concerned with chain complexes that come
from filiered G-spectra with free subquotients, and we must first explain precisely how to
pass from the topology to algebra.

Let ‘W = UW?, p € Z, where each W? — W?*1 and W? — W is a cofibration, and
let W' = We/WP—1, If we were just given a sequence of G-spectra and maps, we could
use the telescope construction to arrange to have coﬁbré,tions as specified. Assume that
W is equivalent to G4 A KP, where K? is the wedge of copies _of the sphere spectrum SP.

As usunal, we have the geometric boundary map
8 : TP = QWP — WP) = SWP—1 — (WPl wr=2) = s>,

Let kg be a G-spectrum with underlying nonequivariant spectrum k. Taking the
induced filtrations of kg A W and of F(W,kg) and passing to G-homotopy groups, we

obtain exact couples and spectral sequences. (See Appendix B for details.) They satisfy

By o= kg W) and EP?=kE(W),

and d* and d; are induced by 8.

We can compute d* and d; in terms of ordinary integral homology and cohomology.
To see this, let G have dimension d and recall that D(G4) = G4 A S™%. By [33, IL4.7,
11.4.8, and 11.6.5), we have

(9.1) k(G4 AKP) &k, (2?KP) and  kL(G4 A KP) 22 k*(KP).

As written, these isomorphisms are natural in K% but not in G4 /\ K?, However, a G-map
G4 ANJ? — Gy A KP, where J? and K? are both wedges of p-spheres, is determined by
its nonequivariant restriction J? — G A K?, which is given by a collection of elements in
the homotopy group m,(G4 A K?). Remembering that our homology groups are reduced,

we see that the Hurewicz and Kiinneth theorems give isomorphisms
mp(Gy AKP) & Hy(Gy NKP) & Hy(G4) ® Hy(K?) = Z[G] ® Hy(K?),
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where G = wo(G). The action of G on kg induces an action of G on k., and 7(9.1) can be

rewritten in the following forms:

(9.2) kS (G ANKP) 2 kg @z Hy(Gy AKP)

(9.3) KEH(Gy A KP) = Homg(Ho (G4 A KP), k9).

These descriptions correctly encode the naturality in G A K? and thus tell us how to
compute d* = §, and d; = 0" in terms of integral homology and cohomology. Note that
the right sides depend only on G actions,

These isomorphisms suggest the following algebraic definition. We write _Iﬂ for a

G-spectrum W with a given filtration as specified above.

DEFINITION 9.4, Define a chain complex C,(W) of G-modules by letting
Cp(W) = Hy(W') = Hy(G+ A K?) 2 Z[G| ® Hy(K?),

with differential 9,. For a G-module V, define H,(W; V') and H*(W; V) to be the homology
of C,(W) ®z V and Homg(Cy (W), V), respectively.

The reader is warned thai, in this generality, these homology and cohomology- groupé
need not calculate anything of topological interest. The underline on W is meant to
emphasize that they may depend on the given filtration and not just on the homotopy
type of W. | |

While the theories displayed in Definition 6.5 often have chain level descriptions of this
general sort, we have not succeeded in proving that théy Ialways do. The problem arises.in
filtering the variable X. Taking X = 59, we can give such a chain level calculation of the
coefficient groups in all cases. We describe how to do this in the rest of this section.

Choose a model for EG as a- free G-CW complex with ﬁnité skeleta, EGP?. When
G is finite, the bar construction B(G, G, *) is a suitable model, but the natural filtra-

tion on B(G, G, *) is not the skeletal filtration of a G-CW structure in general. We can
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embed any G in a unitary group U(n) and take EG to be the infinite Stiefel variety
U(C® @ C®)/e x U(C*®), regarded as a G-space via the inclugion of ¢ = G X e in
U(n) x U(C>®). Since U(2k)/e x U(k) is a smooth compact G-manifold, it is triangulable
as a finite G-CW cofnplex. It is convenient to let EGP be empty forr p < 0 and to filter
EG. by the EG,.

We also need a suitable filtration of EG. We have EG = $° U C(EG.,), and we give

it, or rather its suspension G-spectrum, the “filtration”

SYUCEGY) itp>0
(9.5) EGP={. 8" if —d<p<0

DEG™PY  ifp<—d
We use the telescope construction to convert this to an actual filiration of a G-spectrum
equivalent to EG without change of notation. Replacing EGr by 59 for p > 0, we obtain
a compatible filtration of the zZero sphere spectrum S°. Note that SEG, = EG /8% the
quotient filtration of ZEG, is that specified explicitly by (BEG )P = E(EGﬂ—l). |

This strange looking filtration is afra,nged so as to ensure that, for all integers p,

EGP /EG’P“1 = G4+ A K? where KP is equivalent to a wedge of finitely many p-spheres.
For p > 1 this quotient is clearly equivalent to ZEGP~1/EGP~2. If p = 1, it is equivalent to
TEGY. If ~d < p <0, it is trivial. For p < —d, the implicit maps are duals of inclusions,

th

and the p** subquotient is equivalent to

ED(Ede_ﬂH‘I/EG_p_d) = 2D(G+A K*p—d+1) v EG+ A S—d A D(Kmp-d+l).

Of course, D{K ~P~%+1) is a finite wedge of spheres SP+9-1,

The following explicit examples will be central to our study of the circle and unit
quaternion groups.
EXAMPLE 9.6: Let T be the group of unit complex numbers and let ¥V = C regarded as

the canonical representation of T. The union S(coV) of the unit spheres S(qV) is a model

for ET and the union SV of the $9 is a model for ET. We give ET the filtration

ET? = ET? ' = 8"V for all integers p.
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Here the successive odd filtration quotients are
ET2H /BT 22 (SV /8P A SPY = (BT4) A S7Y 2 2T,

Analogously, let U be the group of unit quaternions. Let V = H regarded as the canonical

representation of U and define
EUP = Butr-! = FU%2 = EU%~3 = SPY for all integers p.

Then
BUtrt Ut & 8V /80 A 5PV = XU, A SPY = iy,

REMARK 9.7: We emphasize that the filtration on EG is not the skeletal filtration of a
structure of free G-CW spectrum. A free G-CW spectrum X is equivalent to EG’+ AKX,
but EG4 A EG is tri{rial. However, each pair (EG, EGP) is equivalent relative to EGP? to
a relati*;fe free G-CW spectrum, as is proven by an inductive argument from the form of
the filtration subquotients. The po-int is just the obvious distinction between relative and

absolute free G-CW spectra.

Now return to the context of Definition 6.5, with X = §° Of course, there are orﬂy
three distinct sequences of invariants of groups here since, as with the coefficient groups

of any G-spectra, we have
FHM)n = FOUIM)™, o(HM), = (HM)™, and t(HM), = t(HM)™™.

Nevertheless, we shall give six chain level prescriptions.

. THEOREM 9.8. Let V be any G-modulé and let M be any Mackey functor such that

UM = V. Then there are canonical isomorphisms
HG (V) = f(HM), & Ho-o(BG,;V) and HYH(V) = (HM)" = H"(EG ;V);

HE (V)= c(HM)n & H, 4(8%V) and HL(V)= fHM)" = H$%,V);

BE V) = {HM)n = Ho—o(BG;V)  and  HH(V) = t(HM)" = H™YEG; V).
e
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- The proof of the theorem will be immediate once we set up and prove the convergence
of our spectral sequences in the next 3,e;:tioﬁ. To see its consistency, note that C,(EEG, ) =

Cp—1{E£G ). We have a short exact sequence of chain complexes
(9.9) 0 - Cu(S°) — C.(EQ) — C.(SEG,) — 0,

and it gives rise to the norm sequences of Proposition 2.3 for kg = HM and X = §°.
Of course, since we started with a free G-CW comblex EG and any two choices of EG
are cellularly homotopy equivalent, the evident homotopy invariance of the conelusion was
only to be expected. |

The essentialul point is that these are eminentlsr computable algebraic invariants of
compact Lie groups. Since EG/G = BG is a CW—complex with the obvious quotient cells,
we have the folloWiﬁg immediate corollary, which gives complete information when G is

connected. It could also be derived from Propositions 2.1 and 2.3.

COROLLARY 9.10. Suppose that d > 0 and G acts trivially on V. Then
HE(V) = f(HM)asa ® Ha(BG4; V), HA(V) = c(HM)" & HBG,,; V),

and
HMBGL; V) ifo<n

(V) =t(HM)" = { 0 if —d<n<0
H_po1-g(BGu; V) ifn<—d—1.

Of course, the analog when d = 0 and thus G is finite is familiar: the same conclusions

hold except that FI;}(V) and H(V) are now the kernel and cokernel of |G[:V = V.

REMARK 9.11: We do not know how to compute products in fIE‘;(V) in general. However,
if G is connected and V is a field, then the methods of Benson and Carlson [6] can be
adapted to give complete information, The essential point is that {(HFV) is a ¢(HFV)-
module spectrum. Let & and y be elements of degrees m and n. If m > 0 and n > 0, zy is
the usual cup product. Restricting to skeleta and using a comparison between equivariant

and nonequivariant duality [33, 111.2.12], we find that xy is the usual cap product if m > 0




and 1 < —m. If G has p-rank at least 2, where chaxrV = p, then zy = 0 in the remaining
cases. The p-rank 1 cases are U(1), SU(2), and SO(3) at p # 2 (where it is equivalent to

SU(2)). Here we havé the evident periodic products; see Section 14.



§10. The f, ¢, and ¢t Atiyah-Hirzebruch spectral sequences

We will have two variants of oﬁr spectral sequences which will coincide when both are
defined and well—behaved. One is based on a filiration of the variable X and the other is
based on the Postnikov filtration of kg. The general theory is explained in Appendix B,
which includes a discussion of convergence. With the language there, we are only interested
in our spectral sequences when they are both releva;lt and conditionally convergent; we
then say that they are potentially convergent. Theorem B.6 explains in terms of the
behavior of higher differentials what more is needed to ensure strong convergehce to the
specified target groups. |

The following somewhat ad hoc definition describes what is needed to set up our first
spectral sequences. Recall the filtrations of EG, S, and EG described in the previous

section.

DEerFmNITION 10.1. Let X be a G-CW spectrum with skeleta X™. We say that X is

calculable if, for W any of EG, 8°, and EG, W A X can be given a filtration {(W A X)? |

p € L}, arranged as an increasing sequence of G-cofibrations, such that the following

properties are satisfied.

(i) Each subguotient (W A X)? /(W A X)P~! is equivalent to a G-spectrum G A KP,

where K? is a wedge of p-sphere G-spectra. |

(ii) The maps EGLAX - S°AX — EG A X are filtration-preserving.

(iii) If X is bounded below, then the filtrations of EGy+ A X is bounded below in the sense
that (EGL AX)F = « for p sufficiently small.

(iv) If X is finite, then, for each p, there exist non-negative integers r and s such that

WPAXC(WAXWPH and WAX)P CcWPH A X,

These seern to be the minimal conditions needed to set up spectral sequences with
both calculable Eo-terms and reasonable convergence properties. Here (i) will be used to

identify Ep-terms, (ii) will ensure the cornpatibility of the f, ¢, and ¢ spectral sequences,
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and (iii) and (iv) will be used in convergence arguments, The obvious product filtrations
on BG4 A X,8° A X, and EG A X show that any X is calculable when G is finite. More
generally, the product filtrations show that X is calculable if all of its cells have orbit type
of the form G/H where H has finite index in G. In Section 14, we shall construct different
filtrations which show that any X is calculable when G is §*. Unfortunately, for general

positive dimensional groups, calculability seems to be a stringent condition on X

ProBrLEM 10.2: For general G - CW spectra X, non-trivial positive dimensional orbit
types G/H give rise to smash products of spheres with (G x G/H)4 in the subquotients
of the product ﬁltré,tion. While the diagonal action can be replaced by the left action
on G and then G/H can be triangulated as a nonequivatiant CW-complex, the resulting
description of subquotients is inconvenient for calculation. Is there a sensible way to refine
these observations to show that X is calculable?

Via the definitions and Propositions 1.2 and 2.6, we may view our homology and

cohomology theories as

Flha)n(X) 2 EC(EGLAX)  and  clke)"(X) = k3(BG+ A X);
c(ka)n(X) 2 clke)n(S°AX)  and  f(ke)"(X) 2 fka)"(S° A X);

t(kg)n(X) E C(kg)n(EG A X) and t(kg)n(X) =4 f(kg)n(EFIEG A X)

When X is calculable, we use the given filtrations of EG4 A X, S A X, and EG A X (or
the desuspension of the filtration of EGAX ) to obtain three homology spectral sequences
from (B.0) and three cdhomology spectral sequences from (B.2). We can read off all six Eo-
terms from the discussion m the previoﬁs section, in particular formulas (9.2) and (93)
Remember that G = mo(G) and that f(kg), c(kg), and kg have the same underlying

nonequivariant spectrum k. Recall Definitions 6.5 and 9.4.

THEOREM 10.3. Let k, = k™9 denote w4(k) regarded as a G-module and let

M, = m,(kg) = M™% Assume that X is calculable. Then the given filtrations give



TATE COHOMOLOGY 63

rise to spectral sequences with Fy-terms and targets:

E} = Hy(BGq4 AXikg-2) = flke)a(X);  BP? = HY(EG, AX; k%) = clka)"(X);
B2 = Hy(S"AXikg-a) = clbe)n(X);  Bp? = HYSCAX; k%) = f(ke)™(X);

B2 = Hy(EGAX;ky—g) = t{k)n(X); EPY = HPEGAX; k) = t(ke)"(X).

If X is bounded below, the top two speciral sequences are potentially convergent and their

EZ , and B} terms are isomorphic to
HE (X5kg-a) = F(HMy_g)p+a(X) and HE(X;k7) = (HM?P(X).

If X is finite, the remaining four sj)ectral sequences are potentially convergent and their

E2  and E5 terms are isomorphic to

HE (X3 kg-a) = o(HMy-a)p+a(X) and HE(X k%) = fF(HMYP(X);

HS (X3 hg-g) = HHMy—a)p+a(X) and HE(X;k9) = t{HMYP(X).

When kg = HM, all six spectral sequences collapse at Fy for any calculable X,
hence they converge strongly when they are potentially convergent. Therefore the state- 7
ments about potential convergence will imply_ the second descriptions of the Eg-terﬁs.
We emphasize that this works independently of any particular choice or construction of
the filtrations we start with. Since X = 8¢ is obviously finite and calculable, this. case
of Theorem 10.3 implies Theorem 9.8, The following lemma will be proven at the end
of the section and will complete the proof of Theorem 10.3. In it, the given filtrations
need only satisfy (iii) and (iv) of Definition 10.1, not (i) and (ii). We point this out since
there are many variant spectral sequences that fit into the framework above except for the

identifications of Ez-terms, and some of them might well prove useful,

LEMMA 10.4. If X is bounded below, then the spectral sequences obtained from the

filtration EG A X are potentially convergent. If X is finite, then the spectral sequences

obtained from the filtrations S° A X and EG A X are potentially convergent.
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In general, since we have not assumed that kg is bounded below, the Tate theory
spectral sequences can be non-zero throughout the whole plane even when X js finite,
although the f and ¢ homology and cohomology spectral sequences are then restricted
to half planes. Theorem B.6 specifies two conditions, (w) and (p), on higher differentials
which together suffice to ensure the strong convergence of a potentially convergent spectral
sequence; (w) holds if the spectral sequence lies in any half plane, and (p) holds if only
finitely many differentials are non-zero on any given bidegree, for example if ea,ch‘ EDY s
finite. |

" We don’t have calculable filtrations in general, and even when we do have them we
don’t know how to use them to study products. Moieover, we used f(kg), which is not a
ring G-spectrum, to set up the Tate cohomology spectral sequence above. We gé,t'aroﬁnd
these problems by filtering f(ka), c(kg), and t{kg), leaving the X variable alone.

By Proposition 3.3 and the discussion above it, application of the functors f, ¢, and
t to the Postnikov tower of kg gives us compatible “f, ¢, and ¢t Postnikov towers”. That
is, t(kg) =~ Mict((kg)?), and similarly for f and c¢. By (B.4), these Postnikov fltrations
give rise to spectral sequences for the calculation of t{kg)*(X), etc. We emphasize that,
. a priori, this construction has nothing to do with any possible filtration on X. The cited

results immediately imply the first statement of the following theorem.
THEOREM 10.5. Let k™9 denote m (k) regarded as a G-module and let M™% = &t (k).
Then the Postnikov tower of kg gives rise to conditionally convergent spectral sequences
with respective Eq-terms and targets:

Bt = HE(X;k7) = F(HMOP(X) = f(ke)"(X)

BP9 = HE(X;K9) = o(HMYP(X) = c(ka)™(X)

EPT = HE(X; k%) = t(HMYP(X) = t(ke)"(X).

Moreover, there are natural external pairings of spectral sequences in each case. If kg is a

ring G-spectrum and X is a G-space, the ¢ and t spectral sequences are spectral sequences



TATE COHOMOLOGY 65
of differential algebras.
PROOF: A pairing kg A kg — kf: induces a map HM" AHM'T — HM"% to which f, ¢,
and ¢ can be applied, giving canonical induced pairings
Hka)"(X) A (k)" (X') = 1(k5) (X A X')
HHMY (X) A (HM")* (X') — t(HM" ) (X A X7),
and similarly for f and ¢. Compare (3.4) and (B.9). The latter makes clear that these

pairings induce pairings of exact couples with all of the expected properties. .The last
_ statément follows by naturality,
On the Ey-level, for Tate theory, the products
HE(X; k%) @ HE (X;59) — BEY (X k949
are induced from the diagonal map of X. Here the ordinary Tate theories are viewed as
represented. by the t(HM?), and these are paired by maps induced by the product on kq.
Compare Proposition 8.3 and the diagram (8.2).

When kg is bounded below, these spectral sequences are certainly réleva,nt. They are
then lower half-plane spectral seqﬁences, 80 that (w) of Theorem B.6 is satisfied and the
spectral sequences converge strongly if (p) holds. When k¢ = .k for a noneguivariant -
spectrum &, the Borel cohomology spectral sequence agrees under the isomorphisms of
Proposition 2.1 with the classical Atiyah-Hirzebruch spectral sequence for FGL Ag X, We
have the following comparison between the two triples of cohomology spectral seqﬁences

given in Theorems 10.3 and 10.5.

Ti{EOREM 10.6. Let kg be any G-spectrum and let X be a calculable G — CW spectrum.
If X is bounded below, then the two spectral sequences for the calculation of c(kg)*(X) are
isomorphic. X is finite, then the two spectral sequences for the calculation of f(ka)*(X)
and of t(kg)* (X) are isomorphic. Under the specified bo_un&ed below or finiteness hypoth-
esis, if the isomorphic spectral sequences satisfy condition {w), then the spectral sequence

derived from the Postnikov tower is relevant.
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Proor: By Proposition 2.6 and its proof, we have natural isomorphisms
Hka)* (X) — tka)* (BG A X) — (2f(ke))*(EG A X) 2 f(ka)* (T EG A X)..

In view of Proposition 3.3, these induce isomorphisrﬁs of Postnikov tower speciral se-
quences, and we use the rightmost version in our comparison for ¢. We deal with the three
cases simul_taneously in the rest of the proof. We need only check the hypotheses (i)-(iii) of
Theorem B.8 below, and (i) is part of Lemma‘iOA. The underlying nonequivariant spectra,
of the f.((kg)‘l) and ¢{(kg)?) both give Postnikov towers for the underlying nonequivariant

spectrum k of k. For any G-spectrum kg, we have
c(ke)*(G4) & flka)*(G4) = kg(Gy) 2k,

and (il) and (iii) are now clear by standard properties of Postnikov towers,

REMARK 10.7: Let X be finite and calculable. We have a cohomology spectral sequence for
thé computation of t(kg)*(X), described .in the two equivalent ways of Theorem 10.6, and
a homology spectral sequence for the computation of the isomorphic groups t(kg)«(DX).
In fact, as one would expect, these spectral sequences are isomorphic. However, this is
not obvious from the constructions. A proof can be obtained by the same method in the‘

previous argument, but also using a homological variant of Theorem B.8.

PROOF OF LEMMA 10.4: As observed in Appendix B, the homology spectral sequences
are relevant and the cohomology spectral sequences are conditionally convergent for any
X. It X is bounded below, then so is BG4 A X. As also observed in Appendix B, this
implies that the spectral sequence for f(kg)x is conditionally convergent and the spectral
sequence for c(kg)" is relevant. The next lemma says that the other two homology Spéctra,l
sequences are conditionally convergent and the other two cohomology spectral sequences

are relevant when X is finite.

LEMMA 10.8. Let X be finite. Then, for W = EGAX or W = S°A X,

p—+—00

lim¢ c(kg)«(WP) =0, e=0ande =1, and colity.,—oof(ke)'(W¥) =0,
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PROOF: Since EGP = (§°) for p < 0, the statements are the same for the two choices of
W. For the first statement, it is equivalent to show that Mic c{kg) A W? is trivial. For
any finite G-CW spectra J and K,

[, holimy,—,_sot(ka) A BGP A K| = [J, holimy oo F(EG ., kg) A D(EG?) A Klg
= [J A EG4 Ahocolimy..eo BGP kg A Kl 2 [J ABGy A EG kg A K]g =0
and
colimy—,_o[EG? A K, kg A BG..]g = colimp..oo[D(EGP) A K, kg A EG.)c
& colimyoo[K, kg A EG4 A EGPlg & [K, kg A EGy NEG)g =0

by standard duality isomorphisms and the fact that EG.,. ANEG ~x. A cofinality argument

- from Definition 10.1 (iv) completes the proof.




Part IIi: Specializations and calculations

§11. Tate-Swan cohomology and the spectral sequences for finite groups

Let G be a finite group throughout this section. Let X be a CW complex with a
cellular a,ction- by G, such as a G-CW complex viewed as a CW complex with |G : HY cells
for each G-cell of orbit type G/H. (We could work more generally with suitable G-spectra
X, but we prefer to leave that generalization to the reader.) Via product filtrations, X
is calculable in the sense of Definition 10.1, and it is easy to interpret the ordinary f, c,
and t homology and cohomology groups of X in classical algebraic terms. In fact, except
that not all of our grading conventions are standard, the answer ié dictated notationally
by Definition 6.5 and the descriptions of the Eg-ter;ns in Theorem 10.3 (with d = .0). The
following theorem will be proven after we recall the classical chain level definitions of the
groups that appear on the left. For trivial G-modules, the result is originally due to the
first author [19] and an equivalent version of the homology half, for finite X, was later

proven by Adem, Cohen, and Dwyer [4]; Section 5 explains the equivalence.

THEOREM 11.1. Let V be a G-module and let M be any Mackey functor such that

UM = M(G/e) = V. Then there are natural isomorphisms
HZ(Cy(X); V) & Hy(EG4 A X; V) 2 f(HM)4(X) = HE(X;V)
HY(CL(X);V) = Hy(S° A X; V) = e(HM), (X) = HE(X; V)

HE(CUX)V) = HAEGAX; V) = t(HM),(X) = BO(X; V)

and
HE(C.(X);V) = HEG, AX;V) = o(HMY(X) = HL(X; V)
HE(CL(X); V) = HY(SO A X;V) & f(HM)M(X) = HL(X; V)
HE(CL(X);V) & BN EGAX; V) & t(HM)"(X) = A%(X; V).

In fact, it will suffice to prove t_hé left-hand isomorphisms. The middle isomorphisms

come from the collapsed spectral sequences of Theorem 10.3, except that in four of the

68
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six cases we only know that the spectral sequences converge when X is finite. Two of
these cases occur in homology, and here the isomorphisms for general X follow by passage
to colimits. In the two éohomology cases, the isomorphisms for general X follow by a
standard application of Brown’s representability theorem and the wedge axiom: the left
hand side theories can be represented on all X by some naive G-spectra f(V) and £{(V),
and the uniqueness élause 0f Brown's representability theorem on finite coﬁlplexes implies
that f(V) and 3(V') must be equivalent to i* f(HM) and i*t{(HM).

Let PT be a resolution of Z by finitely generated free left Z|G)-modules. Recall from
[12, XT1§3] that a complete‘resolutioh P is a Z-graded exact complex of finitely generated
free left Z[G)-modules P; such that d{; Py — P, factors through a surjection Py — Z
and an injection Z — P_;. The standard way to construct such a P is to splice P+ with
its dual. Conversely, letting P~ be obtained from P by replacing F; by 0 for i > 0, we can
identify P+ with P/P~, |

DEFINITION 11.2. For a Z{G)-chain complex C and a Z{G]-module V, define the following

homology and cohomology groups:

HE(C;V)=H,(P*®C)®cV) and &(C; V) = H™(Home(P* ® C,V));
HHC;V) =Hoa(P"©C)®6 V) and  HE(C;V) = H™(Homa(P~ & C,V));

HI(C;V) = Hoi((PRC) 96 V) and  HA(C;V) = HHome(P & C, V)

Note that the short exact sequence 0 — P~ — P — P+ — ( gives rise to long exact

sequernces connecting these groups.

The classical Tate cohomoiogy groups are obtained by taking C = Z. The genéral-
ization to G-complexes and G-spa,cés is due to Swan [45]. If Q_; = Hom(P;_1,Z), then,
with the induced differential, @ is another complete resolution, and TP is isomorphic to
Hom(Q,Z). This accounts for a standard shift of degrees in the comparison of Tate ho-

mology and cohomology. We have chosen to regrade Tate homology so as to eliminate
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this shift. That is, with our definitions we have ﬁf (V) & FI&“(V) Our justification is
that the shift is incompatible with our topological point of view, which clearly suggests a
grading of these homology and cohomology theories in which Spanier-Whitehead duality

takes the usual form.

ProoF OoF THEOREM 11.1: For W any of EG, 9% or EQ, Definition 9.4 gives
C.(WAX) & C‘*(Hf_) ® Cu(X). (We drop the underline when we are looking at the
chains of a CW-complex but we keep it when we are looking at intrinsically spectrum level
filtrations.) Of course, C4(FG+) is a resolution P* of Z. Looking at the filtration (9.5)
of EG, we see that C, (E_G) is the suspension of the complete resolution P obtained by
splicing Pt with its dual resolution and that Ci(§°) = ZP~. The left-hand isomorphisms
of the rtheorem follow directly. For consistency, note that the exact sequence (9.9) is the
suspension of 0 = P~ — P — P+ — (.

Theorem 11.1 gives us a good algebraic hold on the Es-terms of the Atiyah-Hirzebruch
spectral sequences of Theoremé 10.3 and 10.5. In particular, we have the fo_llowing general-

ization of a standard observation about the classical Tate cohomology groups [12, XI1.2.5].

ProrPOSITION 11.3. Let G be finite of order n. Then multiplication by n -annihilates
HO(C; V) and H5(C; V). If C and V are finitely generated Abelian groups (so that each
C; is finitely generated and only finitely many C; are non-zero), then each ﬁ’f (C; V) and
Hs,(C; V) is finite.

ProoF: Asin {12, XI1.2.4 and 2.5), it suffices to observe that HS(C;V) and ﬁ&(C’; V) are
both zero when V = Z[G] @ A for an Abelian group A. The verification uses elementary
isomorphisms and change of rings to reduce to the obvious acyclicity of P® C @ A and

Hom(P ® C, A).

COROLLARY 11.4. Let kg be a G-spectrum with underlying nonequivariant spectrum k
such that k* is of finite type and let X be finite. Then the Tate homology and cohomology

spectral sequences for k¢ are annihilated by n and are finite in each bidegree. If k is
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bounded below, they are strongly convergent.

COROLLARY 11.5. if ¢ is prime to the order of G, then q acts invertibly on t(kg) for any

G-spectrum ke.

PROOF: Since t(kg) is a 1(Sg)-module G-spectrum, by Proposition 3.5, it suffices to prove
the result for Sg. Here the conclusion is immediate from the strong: convergence of the

spectral sequence.

We illustrate the form of the spectral sequences by recording the Tate E?-terms in
some cases of groups ﬁrith periodic Tate cohomology [12, X11§7]. In fact, the p-groups in
the follow'ing examples are exactly those which contain a unique subgroup of order p, and
these are the only p-groups with periodic Tate cohomology [12, XIL.11.6]. For an Abelian
group A, let '

(A)p =A/n4d and n(A) =Ker(n: A —~ A).

Of course, when X = §9, {4} = {E,Z‘ =2} and this is a rnult'ipli.cative spectral sequence
if kg is a ring G-spectrum.
ExampPLES 11.6: Take X = 5 and assume that G acts trivially on k*.
(i) Let G be cyclic of order n. Then
R - { (k). %fp %s even
(k7)) if pis odd.
If k¢ is a ring spectrum, the product on E, is induced from the product of the ring
k*, éxcept that the product of two elements of odd filtration degree is multiplied by
n/2 if n is even and is 0 if n is odd.
(i) Let G be the generalized quaternion group of order 4n with generators 2 and y such
that " = ¢* and zyz = y. Then, if n is even or odd, respectively

(k%) an if p=0mod 4
2(k?) ® 2(k?) or 4(k7) ifp=1mod4
(k)2 ® (k)2 or (k%)y ifp=2mod4
4n (K7) if p = 3 mod 4.

D4
Byt =




In fact, these examples are extremely special and highly misleading. For general finite
groups @, the E2-terms cannot display i)eriodicity. Moreover, as was proven by Benson
and Carlson [6], all products between negative degree elements of Tate cohomology are
zero for “most” finite groups. Precisely, taking coefﬁcieﬁt groups in a field A, this holds
in ﬁa(A) whenever H}(A) contains a regular sequence of length two. We illustrate this

with the simplest possible example.

ExXAMPLE 11.7: Let G = Gy, x C,, where C,, is the cyclic group of order n. Le_t d be the

- least commmon divisor of m and n. Let A be an Abelian group with trivial action by G.

Then, with
Amn=Ker(—n+m:A® A — A)/Im((m,n): A - A® A),
[ mAD (A (A oA ifp=-28—1,8>1
Am & (Amp)t @ A, ifp=—2s8>1
CHE(A)=¢ ™
6(A) =1 A ifp=0
mA® (Amn) ®ad fp=2s+1,5>0
LA @ (JAY O (Ag)* 1@ A, ifp=2ss5>1

The lack of periodicity is obvious: the number of surmmands increases as p either increases
from 0 or decreases from —1. Products are difficult to describe in general but, if m and
n are divisible by the same primes and A is a field, then all products of negative degree

classes are zero.

PRrOBLEM 11.8: Products are computed in the Tate cohomology of finite groups by use
of suitable maps ¢ : P, — P; ® P,_; [12, XII§4]. Except that a given element p € P,
will generally map non-trivially to infinitely many P; ® P,—;, we may regard ¢ as a chain
map P — P ® P. Although we know by Proposition 8.4 that our topologically defined
products agree with those computed in this algebraic fashion, it would still be interesting to
determine if such a chain map P — P®P can be realized by a comparison EG - EGAEG
of filtered G-spectra . If so, the products that we obtained on the ﬁa(X ; V') by naturality
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from external pairings should agree with the products obtained by chain level use of cellular

approximations of diagonal maps.




§12. Some remarks on nonequivariant stable homotopy theory

Still assuming that G is finite, we next consider stable homotopy theory. We have
73 (X) = (S¢)e(X) = P m(BWH, Awn XT)

for any G-space X, where WH = NH/H and the sum runs over one H in each conjugacy
class of subgroups of G-(e.g. [16] or [33, V.9.1]). With X replaced by BG4 A X, only the
trivial subgroup contributes and we get the summand m,(EG; Ag X); with X replaced
by EGAX , only the nontrivial subgroups contribute. In view of Section 4, the Segal

conjecture has the following immediate consequence.

THEOREM 12.1. Let (¢ be finite and let X have finite skeleta. Then

Se)(X) % ( € m(EWH,. Awn X))},
(H)#(e)
If G is a p-group, then

t(Se)(X) 2 €D m(BEWH, Awn XT),.
(H)#(e)

The following immediate corollary of Theorems 10.5, 11.1, and 12.1 seems fascinating'

to us. For simplicity, we state it only for X = S°.

THEOREM 12.2. Let G be a finite p-group. Then there is an upper half-plane spectral
sequence such that Ef,* = H¢ (m.) and which converges strongly to the sum over (H) # (e)
of the groups m, (BWH.,.)Q, the (G)th summand being (. );} Thought of cohomologically,

this is spectral sequence of differential algebras.

PROBLEM 12.3: How can one compute the products on the target groups? Nothing at il
is known about this question. The sp}itﬁing used to identify the target groups bears no
obvious relation to the Tate theoretic source of the multiplicative structure. The question
is interesting from -both the equivariant and the nonequivariant points of view. For the

former, note that, by Proposition 3.4, #(Sg)* acts on t(kg)*(X) for all kg and X.
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The restriction to p-groups is made only to simplify the form of I-adic completion. We
actually have such spectral Sequences for all finite groups G. In Sectﬁon 23, we shall obtain
a great many more such spectral sequences, some of which seem even. more interesting to
us than those just described. For example, for a finite p-group G we will obtain a spectral
seque-nce which .converges to (w-*);,‘ itgelf, with no additional summands, at the price of
requiring a less familiar algebraic cohomdlogy theory for the Ej-term.

The spectral sequence of Theorem 12.2 is constructed in various equivalent ways., With
the cohomological construction of Theorerﬁ 10.3, (B.2) makes clear that it is obtained by

passage to homotopy groups from-the inverse sequence of spectra
W* = F(EG/EG*™,SEG,)°.

Here

W /Wt ~ F(G, AK*,BEG,)C ~ F(K?,5Y),

where K*® is a wedge of s-spheres and thus F(K“,Sl) ~ LIHK?®) is a wedge of
{1 - s)-spheres; see (9.5).. The spectral sequence gives rise to a version of Mahowald’s
root invariant. For a given element o : $% — S° of , - T.(BWG,), one takes the
smallest s such that o maps nontrivially to W*+! and defines Rg(a) to be the set of all
lifts of o to a map S9 — D(K?), where D(K?) is viewed as the fiber of W*t1 — W3,
Thus Rg(a) is a finite set of elements of"frq+3 associated to the given element o € .
(Technically, to avoid dependence on the choice of cells, Rg(a). should be interpreted as
an element of E?.)

In negative total degrees, all elements in E? must be wiped out by higher differentials.
In total degfee zero, there are ¢ copies of the p-adic integers in the target group of the
spectral sequence, where ¢ is the number of conjugacy classes of non-trivial subgroups |
of G. Since |G| annihilates B2 and therefore E°°, each of these copies is built up from

E® by infinitely many non-trivial extensions involving infinitely many of the higher stable




homotopy groups of spheres. In particular, the root invariants of the elements 2’ are highly
non-trivial. Even these root invariants are different for different choices of G.

If G is cyclic of order n = ., the E%term is given explicitly in Examples 11.6.
It depends simply and explicitly on the p-torsion structure of the stable stems, and yet
convergence is to the sum of the j)-completed stable homotopy groups of the classifying
spaces of the cyclic groups of order p*, 0 < i < j. When n = 2, this is precisely the
suspension of the spectral sequénce of Mahowald discussed by Adams in [1], namely the
inverse limit of the stable homotopy Atiyah-Hirzebruch spectral sequences of the spectra
RP2. For general n, such a spectral sequence is implicit in the work of Ravenel [42].
Even in these cases, the fact that the spectral sequences are multiplicative is new. The
Mahowald speétral sequence is already a miracle, and this collection of spectral sequences
more of one. The E2-terms build up only in that more and more of each torsion tower
in m, becomes visible as j increases. It is remarkable that this is sufficient to allow the
building up of the full stable homotopy groups of more and more classifying spaces.

The generalized quaternion gro.ups give more of a glimpse iﬁto how extraordinary
these spectral sequences are. As seen in Examples 11.6, the E2-terms are scarcely more
complicated than for eyclic groups, but the following tabulation of subgroups shows that
the target of the spectral sequence involves classifying spaces of dihedral groups and many
copies of RP°. The existence of a consistent pattern of differentials must imply constraints

on both the stable stems and the stable homotopy groups that appear in the target.

EXAMPLE 12.4: Let Q(j) have generators  and y and relations 2% = y? and TYT = 7.
Let D(4) have generators w and z and relations w? =1, 22 = 1, and wzw = z. These have
order 27*2 and 2911, respectively; Q(0) and D{(0) are cyt;lic. Let C(j) be cyclic of order
27. The distinct conjugacy classes of proper non-trivial subgroups of Q(j) are represented
by the cyclic subgroups C(4) generated by z2"" ™ for 0 < i < j +1 and the two copies of
Q(i) generated by 22~ and y and-by 2" and zy, respectively, for 0 < ¢ < j. The C(4)
are normal in Q(§) and have WC(i) & D(j + 1 — 5). The normalizer of each copy of Q1)
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is the corresponding copy of Qi+ 1) and therefore satisfies WQ(i) & G(1). According to
Mitchell and Priddy [41], there are 2-local stable splittings '

BD(n) ~ BPSL,F, Vv 2(5~25p*S/Sp2S) V 2RP™,

where ¢ is so chosen that D(n) is a 2-Sylow subgroup of PSL,F,.




§18, The Tate K-theory of finite groups and related calculations

Turning to periodic K-theory, we have the following identification. Our original proof
was quite convoluted.r A simpler proof of a much more general result will be given in Section
19. Let J" be the Mackey functor whose value at G/H is the J(H)-adic completion of
J(H), where J(H) is the augmentation ideal of the complex representation ring R(H).
For the real case, let JO®, @A, MQA , and R_/E@A be the Mackey functors whose
values at G/H are the JO(H)-adic completions of JO(H), JSp(H), RU(H)/RO(H),
and RU(H)/RSp(H), respectively, where JO(H) is the augmentation idcal of the real
representation ring RO(H) and JSp(H) is the augmentation group in RSp(H). Where
RO(G) acts through R(G), the completions at J(G) and JO(G) are isomorphic. Since G
is finite, these completions are also isomorphic to completions at the augmenté,tion ideal

I of A(G), by [25, 1.5].

THEOREM 13.1. With wedges taken over all integers 1,
H(KUg) = t(i.KU) = \| K(J" ® Q,2)
and
(K Og) = t(i K0) = \/ (K(JO" ® Q,8) V K(RU/RSp" ® Q,8i +2)
Vv K(JSp" ® Q,8i +4) V K(RU/RO" ® Q,8i + 6)).

Moreover, the completions of t{KUgq) and t(KOg) at I are trivial.

We will explain the multiplicative structure in Section 18. In the real case, we have
expressed the answer in a form that will look plausible to the reader familiar with K OZ (pt).

However, we have
JO*®Q JSp" ®Q and RU/RSp"©Q= RU/RO"®Q,

hence the displayed 8-fold periodicity reduces to 4-fold periodicity. -
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We have already noted that (KUg) = (i, KU) and t(KOg) = (i, K 0). However,

even if we are only interested in 4, KU we must work with KUg since equivariant Bott
periodicity plays a role in the proof. The essential point is that t{KUg) is rational, in
sharp contrast to Théorem 4.1 and Proposition 11.3. By Corollary 11.5, only the behavior
of primes dividing |G| is at issue.
REMARK 13.2: If G is cyclic of order n and kg is any G-spectrum sﬁch’ that k* is torsion
free and concentrated in even degrees, then the Tate cohomology spectral sequence of
Theorem 10.2 is concentrated in even degrees when X = $°, by Example 11.6(i). Therefore
E3 = E,, and the spectral seqﬁencé converges strongly to #(kg)*. That is, t(kg)* is
filtered with associated graded group isomorphic to ﬁg“;(k*). In particular, this applies to
KUg. Since n annihilates ﬁ’&(K U*) and t(KUg)* is rational, this may seem incredible
at first glance, but there is no contradiction. To see what is going on, it helps to observe
that Z[1/n] is rational and can be filtered by the subgroups nPZ) for integers k. The
compatibility of Theorem 13.1 with the existence of the Tate cohomology spectral sequences
for general finite groups G is much more mysterious.

Since KUn(BG4) = f(KUg)™™, by Proposition 2.1, and we know c(KUg)* by
the Atiyah-Segal completion theorem and #(KUg)* by Theorem 13.1, we can read off
KU.(BG.) from the norm sequence, and similarly for KO, (BG). {More details will be

given in Section 19.) Let Tor(A4) denote the torsion subgroup of an Abelian group A.

COROLLARY 13.3. Ko(BG,) = Z and K1(BG ) J(G)ﬁ(a) ®Q/Z. As q runs from 0 to
7, the groups KOy(BG.) take the following values:

Z (RU/RSp)jo ® Q/Z® (RO/RUYy,  Tor((RU/RSp)}o) JSilo® Q/z
Z (RU/ROY;o ® Q/Z & (RSp/RU)}q Tor((RU/RO)30) 1050 ® Q/%
We conjecture that the connective versions kUG and kOG of equivariant K-theory

satisfy the following analog of Theorem 13.1. Note that the J-adic completion of J is

certainly local at |G|, since |G| annihilates J#/J7+1,




CoNJECTURE 13.4. With wedges taken over all integers i,
t(kUq) = 1(i.kU) =~ \[ K (J", 2)
and

t(kOg) = t(i.k0) =~ \[ (K (JO",8i} V K (((RU/RSp)/torsion)", 8 + 2)

V K(JSp”,8i +4) V K(((RU/RO)/torsion)", 8 + 6))

This is correct if G is cyclic of order p for any prime p. In the real case of the conjecture,

we have quotiented out the torsion from our Mackey functors, which is 2-t0rs';on dnly, on

the perhaps flimsy evidence that this is what happens when @ is cyclic of order 2. When '

G is cyclic of prime order, only calculations on fixed point spectra are required since both
sides are trivial as nonequivariant spectra, and I-adic and p-adic completion agree on J
and JO. In view of (R) and (L), the following version of the conjecture in these cases is
essentially just a restatement of the main results of Davis and Mahowald [14, 1.4 and 1.5}

and their odd primary analogs.

THEOREM 13.5 (DAVIS AND MAHOWALD). Let @ be cyclic of order p. Then
t(kUa)® = t(i.hU) = \/ K((Zp)P~, 2i)

and _ N 7
o wtaor {120
Actually, the direct odd primary analog of the results of [14] concerns BP(1) and gives
that '

t(6x BP(1))€ = \[ K(Z,, 2i).

To deduce the theorem, it suffices to work p-locally, where kU is the 'wedge of ¥.24 BP(1),
0<j<p=—2, and kO is the wedge of L¥BP(1),0 < j < (p — 3)/2. Since the functor

t(i,7)% commutes with finite wedges, the conclusions of the theorem follow. Note that the
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number of factors Z}’J‘ in each Eilenberg-MacLane spectrum is predicted equivariantly by
the structure of the relevant representation rings, but appears for seemingly quite different
reasons in the nonequivariant calculations. Note too that the 2-torsion in real K-theory
makes no contri_bﬁtion in the case p = 2.

. Conjecture 13.4 seems to be the appropriate substitute for the (false) connective analog
of the Atiyah-Segal éompletion theorem. The known cases put us in 4 situation analogous
to rknowing. only the theorems of Lin and Gunawardena en route to a proof of the Segal
conjecturé.' .The critical step towards a general proof should be a good construction of

-Chern and Pontryagin classes in the Tate theories of connective K-theories. The construc-
tion of such classes is just one of many problems and questions about such classes in these
and related theories. -

The following remark describes the differentials in the spectral sequence of Theorem

10.1 which allow the calculation of Theorem 13.5 to work in the real case when p=2.

REMARK 13.6: The ring kO, has generators 5 of degree 1, a of degree 4 and § of degree
8, with 2 = 0, 7® = 0, na = 0, and o® = 48. Write elements of E? in the form i, with
p € Z and v € kO, using Example 11.6(i). Then the following are all of the non-zero

differentials:

d*(BMip) = nfiy_y ifp=2 mod 4
d?'(ﬁ"'m'p) =7?f%,.3 fp=1or2 mod 4

d3(ﬂ“n2ip) = aip_3 ifp=1 mod 4.

The survivors to E* are i4p, aigy, Niap—1, n2i4p..2, and their products with 87 for all n.
In fact, with n= 0, the d®’s are forced by naturality from the case of the sphere spectrum,
where they were already known to Adams and Mahowald {1}, and the d*'s are forced by

the requirement that E°° be concentrated in total degrees divisible by 4.

In view of (R) and (L), the main results of [15] can be written in the following form,
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where G = Z/p and the products run over all integers k.
16, BP@2))C ~ [[S*BP(1)) and i(i,BP)¢ > [[2*BPF,.

The proof in [15] is not complete, since {15, 2.3(iii)] is based on the incorrect assertion that
completion converts wedges to products, but it seems likely that this hole can be patched.

More generally, the authors of [14] and {15] conjecture that
t(ix BP(n))® ~ [[Z*BP(n— 1)) for all n.

Remark 13.2 can be used to recheck that the homotopy groups are right, and the ring
structure imi)lied by our work may well be helpful, but we don’t see an equivariant strategy
of proof.

REMARK 13.7: Since p & t(4.p) : #{s.KU) — (i, KU), Theorem 13.1 implies that p is an
equivalence and thus that t(i+ KU /[p) = + for any prime p, where K U/ p denotes mod p K-
theory. More generally, Sadofsky and the first author.[51) have proven that t(i.K(n)) ~ *

for all finite g'roups @ and all n > 1, where K(n) is the nt Morava K -theory spectrum.




§14. Cyeclic cohomology and the spectral sequences for the circle group

Let T be the group of unit complex numbers. As explained below, there are precise
analogs 6f the results to follow for the group of unit quaternions. Give T its standard
CW-structure with identity element as the unique vertex and a single 1-cell. Let X be
a CW-complex.with a cellular action by T, so that TX? ¢ X731, The following lemma,
which will be proven at the end of the section, shows that any T[‘-CW complex can be

replaced by an equivalent CW-complex with a cellular T-action.

LeMMA 14.1. Let Y be a T-CW complex. Then there is a T-CW complex X which is
T-homotopy equivalent to Y and has a decomposition as an ordinary CW-complex with a

cellular action by T.

We shall see that X is calculable in the sense of Definition 10.1, and we. shall interpret
the ordinary f, ¢ and ¢ homology and cohomology groups of X in terms of cyclic theory.
Again, except that not all of our grading conventions are standard, the answer is dictated
notationally by Definition 6.5 and the descriptions of the Ey-terms in Theorem 10.3 (with
d = 1}). The following exact analog of Theorem 11.1 will be proven after we recall the
chain level definitions of the algebraic cyclic homology groups that appear on the left. For
finite X, an equivalent version of the homology half of the result was first proven by Adem,

Cohen, and Dwyer [4]; Section 5 explains the equivalence.

THEOREM 14.2. Let V' be an Abelian group and let M be any Mackey functor such that
UM = M(T/e) = V. Then there are natural isororphisms

Hy ((CaX)iV) S Hyor (BT AX; V) 2 f(HM)o(X) = HY_(X;V)
HY ((CoX)V) 2 Ho'y (SUAX; V) & c(HM)o(X) = B (X;V)
HY ((Cu(X);V) & Hy (BT AX; V) 2 t(HM)(X) = BY (X, V)
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and

HR(CA(X); V)2 HYET+ A X, V) 2 e(HM)™(X) = Hp(X; V)
OR(C(X);V) = HMS A X; V) & f(HMY(X) = HR(X; V)

HRC,(X); V) & HYWYETAX; V) 2 t(HM)*(X) = HYX; V).

' Again, by precisely the same arguments ag in the paragraph after Theorem 11.1, it will
suffice to prove the léft; hand isomorphisms. The left hand groups are variants of the eyclic
homology and cohomology groups that were defined by Jones in [29]. Let P = Zlu, v,
deg(u) = —2. Let P~ be the negative degree part of P and let PT = Z[4~1]; thus
Pt=p/p-,

DEFINITIONS 14.3. Let V be an abelian group. Let C be a chain complex toget,:her with a
degree one operator J such that dJ = —Jd and J* = 0 and define a differential on P ® C |
by the formula |

dp®c) = up® J(e) +p & dlc).

Observe that P~ ® C is a subcomplex, and regard P*'® C as a quotient complex. Define

the following horology and cohomology groups:

HYC;V)=H,(P*®C)®V) and HR(C;V)=H"(Hom(P*®C,V));
HNC; VY= Hoct (P~ RC)RV) and HE(C, V)= H" (Hom(P~ ® C,V));
BYNC;VY=H, 1(PRC)®V) and HE(C;V)=H"(Hom(P & C,V)).

Note that the short exact sequence 0 — P~ — P — Pt — 0 gives rise to long exact

sequences connecting these groups.

The product of T is obviously 5 cellular map which, on thé chain level, carries z ® #
to zero, where z.is the 1-cell. Since TX? ¢ X3+, we can deﬁne'J 1 C5(X) = Cj41(X) by
Jz)= filz®@ X )l, where f: T x X — X is the action. (Reduced chains are understood.)
Then dJ = —Jd and J? = 0. Thus the left hand groups in Theorem 14.2 are now defined.
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These definitions vary in two substantive ways (beyond differing signs and grading)
from those of Jones [29, §5]. First, he .uses singular rather than cellular chains, with the
intervenﬁon of the shuffle map to pass from the tensor product of chains to the chains of
Cartesian product.s. It is technical, but not difficult, to use the techniques of (36, §13] to
obtain an 1som0rphlsm between the cellular and singular versions of these cyclic homology
and cohomology groups

Second, he uses Hom(C, V) ® P with the differential
6 ®p)=d®p+ pJ ® up

rrather than Hom(P ® C,V) in his deﬁnition.of cohomology. These two complexes are
isomorphic if C is a free and finite dimensional chain complex, such as the chains on a
finite CW-complex. Our variant yields a cohomology théory that satisfies the wedge axiom,
and there are analogous variants of many of Jones’ other definitions and theorers.
Actually; Jones is only concerned with V = Z, so that there is no coefficient; slot in

his notation. We offer the following reconciliation of grading conventions.

NoOTATIONS 14.4: Jones’ grading on HY(X), Hi(X), and fI{.(X ) agrees with ours. How-
ever, his HI(X) is our 7 (X), his GT(X) is our AT _,(X), and his n(X) is our
HE(X).

Jones proves in [29,3.3] that the three sequences of homology groups are isomorphic
to the corresponding sequences of cyclic homology giroups derived from the cyclic structure
on the singular chains of X. Similar identifications can be proven in cohomo.logy, and these
apply to all spaces with our modified definitions. Closely related earlier results, due to
Goodwillie [18] and Burghelea and Fiedorowicz [10] and also proven in {29], calculate the
homology of free loop spaces in terms of cyclic homology.

Turning to the proof of Theorem 14.2, notice first that, by a glé.nce at the explicit

filtration of ET in Example 9.6, the exact sequence

0 — C4(8°) — Cu(ET) — C(ZET,) — 0




of (9.9) can be identified with the suspension of the exact sequence
0 =P — P PT 0.

Roughly speaking, we will construct a filbration on ET A X (or rather its suspension
spectrum) that behaves algebraically as if it were the skeletal filtration of a {ree T-CW
spectrum with chains isomorphic to LP ® Cy{X). The filtration twists the nouequifiariant
skeletal filtration of X with the filtration of ET specified in Exampie 9.6. We explain the
idea in a more general context.

Intuitively, the idea is to construct a twisted G-CW structure on EGAX using cell

by cell application of the standard G—homeombrphism from G4 A X with G acting on
the left of G (and not on X) to G4 A X with G acting diagonally. Note that [35, 11.4.8]
gives a spectrum level version of this G-homeomorphism. In fact, this G-homeomorphism
was used in the identification of the subquotients ET?/ET?~* in Example 9.6. Working
- concretely on the space.level, wé have the following observation, in which &' can be any

topological group.

PROPOSITION 14.5. Let W be a free G-CW complex and let X be a CW complex with
an action by G (not assumed to be related to the cell decomposition). Then W x X
is a free G-cell complex with an n-cell w* x for each i-cell w : G X et — W and j-cell
x:el > X, i+j=n;aamapG xe xel - WxX, (wrx)g,ab)= (gw(a), gx(b)),
where w(a) = w(e,a). If, for some fixed positive integer d, GX* C X k+d for all k and W
has cells only in dimensions at least d+ 1 apart, then W.x X is a free G-CW complex with

this cell structure.

PROOF: It is elementary to check that, with the specified cells, W x X has all the prop-
erties required of a G-CW complex ezcept that n-cells may be attached to cells of higher
dimension. To determine the boundary of a cell w* x of W x X ,- it suffices fo determine

the restriction of w * y to the boundary of ¢! x e’. If b € 8¢ and x(b) = X'(¥'), where &'
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is in the interior of a cell ¥’ of X, dimx' < j, then

(146) (% 3)(8:0,8) = (g(a), 9 ) = (@ s %) (9,0, ¥).

More interestingly, if @ € 8¢¢, if w(a) = w'(g’, a'), where o' is in the interior of a cell W’ of

W, dim o’ <4, and if (¢")~1x(b) = x'(b'), where ¥’ is in the interior of a cell ' of X, then

(14.7) (w *.X)(.G’ a,b) = (g9g'w'(a), gg'x' (V') = (Q’ *x")gg',d, V).

If GX* ¢ X%+ for all k, then dimy’ < j + d. If W has cells at least d + 1 dimensions

apart, then dimw’ <i—d.

‘There is a relative generalization in which W is obtained from a sub G-space W' by
attaching free G-cells. It is a pleasant fact that the cases of immediate interest to us are
among the very few in which cells are attached only to cells of lower dimension.

When G is a compact Lie group, it is technical, but not difficult, to exteﬁd Proposition
14.5 and its relative generalization to the spectrum level, with W a free G-CW spectrum
and X a based CW-complex and a G-space with a G-fixed basepoint.

We apply this to W = ET,, ET, or §°. In view of Remark 9.7, we raust apply the
relative spectrum level version in the latter two cases. The two parts (14.6) and (14.7)
of the geometric boundary give rise to the two summands of the differential displayed in
Definition 14.3. The verification of this boils down to a check of signs and can be seen
most clearly by mapping in cells and so using twisted pairs of cells and their boundaries
as universal éxamples. Thus the cellular chain groups used to compute the second column
of homology and cohomology groups in Theorem 14.2 are isomorphic to the chain groups
specified in Definition 14.3 that compute fhe first column, |
ProBLEM 14.8: Let C be a differential coalgebra with coproduct 7 such that
YpJ = (J® 1+ 1@ J)h, for example C,(X) with the coproduct induced by any T-
equivariant cellular approximation to the diagonal map. Let V be a commutative ring.

Define ¢ : P_3, — Pog; ® Py_2p by sending u” to uf ® w™%. If C is finitely generated,




Hom(P ® C,V) is a differential algebra with respect to the evident cup product. This
raises the obvious analog of Problem 11.8. Can one prove that the products that we have

defined topologically agree with these algebraically defined products?

Let U be the group of unit quaternions. Nearly everything done above works equally
well for U. We quickly run through the ana,logoﬁs definitions and results. Give U its usual
CW-structure, with identity element as the unique vertex and a single 3-cell. The product
of U is a cellular map which, on the chain ievel, carries z‘® z to zero, .where 2 is the 3-cell.
Let X be a CW complex with a cellular action by U, so that UX? C X3+3 and define
J 1 C(X) = Cy43(X) by J(z) = fulz ® 2), where f : Ux X — X is the action. Then
dJ=—Jdand J? = 0.

Let P = Z[u,u"", deg(u) = —4, let P~ be its negative degree elements, and let
Pt = Z[u™1). For an abelian group V and a chain complex C-together with a degree
three operator J such that dJ = —Jd and J* = 0, we define six homology and cohofnology

groups precisely as in Definition 14.3; even the gradings work identically.

THEOREM 14.9. Let V be an Abelian gfoup and let M be any Mackey functor such that

LM = M(U/e) = V. Then there are natural isomorphisms
HY_4(Cu(X); V) & Hyo(BU4 A X;V) & f(HM)n(X) = Hys(X; V)
HY_(Ca(X); V) & Hpoa(S° A X; V) & o(HM)a(X) = Hy_5(X;V)

AY4(CL(X);V) & Hooa(BUAX; V) @ ((HM)n(X) = Y _5(X;V)

and

HE(CL(X); V) & HMBU, A X;V) & c(HM)™(X) = HE(X;V)

TH(C(X);V) 2 HN SO AX; V) & fIHM)M(X) = Hj(X;V)

B(C.(X); V) = B EUAK; V) 2 ((HM)"(X) = BHXGV).

Proposition 14.5 and its relative generalization apply to prove the result. Of course,

we use the filtration on EU speciﬁed in Example 9.6. The one thing that does not work for
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U (except under restrictive isotropy type hypotheses) is the proof of the analog of Lemma
14.1. ' '

PROOF OF LEMMA 14.1: We shall construct X So as to have T-cells in bijective corre-
spondence with fhose of our given T-CW complex Y. Since any proper closed subgroup
H C T is finite, we can give T/H = S* a CW-structure with eH as vertex and a single
1-cell. The action of T on T/H is cellular. Take the 0-skeleton of X to be the O-skeleton
of Y (as a T-complex) with its CW structure as a disjoint union of orbits.

Assume inductively that the (n-1)-skeleton of X as a T-CW complex has been con-
structed together with a T—hom(;tqpy equivalence £, : Y1 — X?~! where X* 1iga
CW-complex of dimension n with cellular action by T. Note that (X*1)H ig the union
of the T-cells of X" ! of type T/K with H C K and is a CW-complex. For an n-cell
of Y with domain T/H X e®, choose a cellular approximation « to the composite of 5,
and the restriction $"~1 — (Y»=1)H of the attaching map, where S™~! has its usual cell
structure. The extension of v to a T-map T/H x §7~1 — X1 is cellular, and we take it
as a typical attaching map for the construction of X®. We give X™ the evident structure
of a CW—compiex, and the action of T is clearly cellular. Compa,risons of cofiber sequences
show that £,_; extends cell by cell to a T-map £, : Y™ — X™ and that a homotopy inverse

of &,..1 extends cell by cell to a homotopy inverse of &,.




§15. Calculations in homotopy and K-theory for the circle groujp

We first consider the Tate theory spectral sequence of Section 10 in the case of the
circle group T. Here, since we no longer have the finiteness assertion of Proposition 11.3,
-we must assume (p) as well as (w) of Theorem B.6 to deduce strong convergence from
potential cohvergence. However, both conditions hold automatically when' the spectral
sequences collapse, and this often happens for dimensional reasons. Let kt be g '][‘~Spectru1ﬁ

with underlyng nonequivariant spectrum k.

ProposITION 15.1. Let X = 8°. Then E2, = Zfu,u™"|® k, Ifk, is concentrated in even
degrees, then E2, = EX. If, further, kv = i,k for-a ring spectrum k, then
t(kp)" = holim( \/ %),
t j}—i

If k is connective, then this homotopy limit reduces to a product, so that
t(k’[]‘)T o~ H Ezjk.
7

PROOF: The first two statements are clear. There are truncated vefsion of the spectral
sequence for which they remain true. When ky = i,k for a ring spectrum &, these truncated
spectfal sequences converge to the homotbpy groups of the k-module spectra, CP2 A X2k
that appear as the terms of the homotbpy limit on the right side of (C) of the introduction.
The collapse shows that these homotopy groups are k.-free. Therefore the cited terms must
be equivalent as k-module spectra to wedges of suspensions of k. If k is connective, then
the composite

N-2%E _ CP%

—_—

L ASH~ \ B¥E - 8%
izt

of the map induced by the inclusion of the bottom cell of CP23_,, the constructed equiv-
alence, and the projection to the wedge summand is a map. of k-mpdule spectra which
induces an isomorphism on 73 and s therefore an equivalence. This implies that the
maps of the inverse system {CP% A £%k} are equivalent to the obvious projections on

wedge summands,
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REMARK 15.2: The previous result has an obvious analog for U-spectra. Rather amaz-
ingly, by Corollary 9.10, we actually have that E? = E for dimensional reasons when
kx is concentrated in even degrees for any compact connected Lie group G of odd dimen-
sion whose cla.ssifying space has homology concentrated in even degrees. It is possible

dimensionally to have nontrivial higher differentials if G has even dimension.

From the nonequivariant point of view, Proposition 15.1 says that the spectra on the
right side of (C) are too simple to be of much interest. From the equivariant point of view,
however, the simplicity is welcome.

For a general compact Lie group G and any G-space X, we have
7 (X) = (S6)u(X) = ED 7 (BW H.y. Ay gy BASWVE) X H Y

where WH = NH/H and the sum runs over one H in each conjugacy class of (closed)
subgroups of G ([33, V.9.1]). The summand corresponding to fhe trivial group comes from
(Sc A BG4 ).(X) and the other summands map isomorphically to (Sg A EG)*(X ). When
G= T, WH 2T for évery proper subgroup H. Thié compares plausibly with the following
result, which, in view of (C), is just a reinterpretation of part of Ravenel’s result [42, Cor

1.15).

TurorEM 15.3 (RAVENEL). Complete all spectra at p. Then t(Sr)T is equivalent to the
wedge of § with the product of countably many copies of the suspension spectrum of
LCPP, where the copies of CP* are thought of as the classifying spaces B(T/H) for H

of p-power order,

As Ravenel noted [42, 1.16], this implies another variant, Ry say, of Mahewald’s root
invariant. The first author has recently obtained a more precise result [24] which gives a
global rather than just a p-adic description of t(St)T.

Of course, Proposition 15.1 includes a computation of t(kUr)T for connective complex

K-theory. The following companion computation for connective real K-theory is due to




Hal Sadofsky. It may be illuminating to see two sketch proofs, Sadofsky's using the Adams

spectral sequence and another based on the present theory.
PROPOSITION 15.4 (SADOFSKY). #(kO7)T =~ #(i,kO)F ~ [[ S¥kU.
J

FIRST SKETCH PROOF: Modulo putting things together to get a global answer,‘it is mainly
behavior at the prime 2 that is at issue. Since H*(kO) = A® (1) Zz and H*(CP*>) breaks
up as an A(1)-module into a sum of suspensions of the A(1)-module A which is Z, in

dégrees 0 and 2, connected by S¢?, change of rings gives the isomorphisms

Ext g (H*(CP41 A £2k0), Zp) & Extt 401y (H*(B*CP%; 1), Za)

=z @ Ext 401y (5% M, Z).
J> i

This is the same as E; for the wedge of copies of Z¥kU, and Ey = Eo, since Fy lies in
even bidegrees. Thus m,(CP%, ., A £2k0) & @X%x,(kU). Since there are no homotopy
groups in odd degrees, the generator in degree 45 extends over the cofiber X4 -2CP? of

7t 8%+ 5 84 There results a composite map
LN U ~ B4 2CP2 A kO — CP%; 1 A L2kO A kO - CP%; 1 A S2k0

that induces an inclusion on m,. The wedge of these maps is an equivalence. The conclusion

follows via (C) and passage to limits, as in the last part of the proof of Proposition 15.1.

SECOND SKETCH PROOF: By naturality (compare Remarks 13.6) or otherwise,
dz(ﬁ”'qut) — ﬁnn2ut+1

in the spectral sequence of Theorem 10.1, and E® = E® since it is concentrated i in even
degrees. Therefore, n € m(kO) maps trivially to w1(¢(3.50)T). It follows by use of
Proposition 3.4 that the map t(ixn)T is trivial. The functor t(z* )T preserves cofiber

sequences, and we conclude that the ev1dent cofiber sequence

t(ixkOYF = t(i,kU)T — (3, 2260)T
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splits. We deduce the conclusion from its already knoﬁn analog for kU,

Finally, let us consider periodic X-theory. By Proposition 15.1 we know that

HEUR)" 2 #(3, KU)T > holim \/ SH¥KU.
T j>""i
We have the following explicit computation of the homotopy groups of this ring spectrum.
PROPOSITION 15.5. Let p € R(T) be the standard irreducible‘feprese‘ntation and let
x =1~ p. Then
HEUr)" = Z([x]l[x ] ® Zlu,u™].

PROOF: In a more general context, Proposition 19.12 below gives that t(KUr)* is the
localization ¢(KUt)*[x~!]. By the Atiyah-Segal completion theorem, ¢(KUp)* = R(TY) ®

Z[u,u™]. As a matter of algebra, the inclusion

Z{x] C Z[x, p~Y = Z[p, p™] = R(T)

induces an isomorphism when we complete at J = (), and the conclusion follows.

The ring R(T)}[x~}] is also isomorphic to
lim(R(T)[x ]/ R(T)),

where the inverse system is taken over multiplication by . This can be seen algebraically,
where it is analogous to (Zp)[1/p] & im(Z[1/p]/Z), and it also follows by inspection of
F(ET,ZKUg A EG.) via Proposition 2.6.

We owe the following analog of Proposition 15.1 for KO to Sadofsky.

PROPOSITION 15.6 (SADOFSKY). #{(KOr)T ~ (i, KO)T ~ holim \ L% KU.
Poge—i

Proor: Writing KO as the telescope of iterates of 8 : k0 — —8k0 and noting that, after
smashing with £—2CP2, the real Bott map becomes the fourth power of the complex Bott
map [ kU — $72kU, we easily deduce the required splitting of the terms CP%3, +1ANKO
in (C).




§16. ¥ree G-spheres and periodicity phenomena _

After proving a generalization of the identifications (R), (I}, and (C) stated in the
introduction, we shall use the RO(G) grading of our theories to discuss periodicity phe-
nomena in generalized Tate cohomology.

Assume given a representation V .of G whose unit sphere S(V) is a free G-space.
Necessary and sufficient conditions on G for there to exist such a V' are well known (49].
Thé union S{ooV) of the spheres S(¢V')} is a model for EG, the union D(ooV') of the unit
discs D(qV') is G-contractible, and the quotient space D(coV)/5(coV) 2 5°°V is a model
for EG. Thus we may view EG as equipped with a filiration by the subspheres §9¥. This
leads to the following result. Let BG® denote the Thom spectrum associated to a virtual

representation a (e.g., [33], [37]).

THEOREM 16.1. Suppose that G acts freely on the unit sphere of a representation V.

Then, for any nonequivariant spectrum k, t(i,k)€ is equivalent to Mic(BGANG)I—V A Tk).
ProOF: Propositions 2.6 and 1.2 and the equivalence EG ~ 5V give
t{kg) ~ F(EG, Se(ke)) ~ F(8°Y,Bke A EGL))

~ F(Tel S, B(kg A EG4)) ~ Mic(BEG4 A S™% A Skg)
for any G-spectrum kg. Now let kg = i,.k. By [33, VL1.17],

i(EGx 5V > EGy A7,

where EG'x? is a twisted half smash functor from G-spectra to free naive G-spectra . Since

4. commutes with smash producﬁs, we have
EGL AS™V ATke ~ i, (BG x 7V ATE).

Applying the equivalence (5.5} to Y = EG x 8%V A Bk and using that smash products
commute appropriately with twisted half smash products and Thom spectra [33, VL1.5
and X.3.9], we find that

(BG4 A S~ A Tke)C ~ (BG g §2E) VY ATk,
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By [33, X.6.3] and [37, pp 362--363), BG x ¢ SAUE)~V jg equivalent to BGAN~IV  Thege
equivalences are natural, and the conclusion follows on passage to homotopy limits.

With the usual choices of V, this gives (R), (I) and (C); Ad(5') = R introduces the
second suspension coordinate that appears in (C).

In homology and echomology, the description of EG ag SV implies the following
canonical isomorphisms for a G-spectrum me, an integer n (or more general element of

RO(G)), and a G-space X, where X is finite in the case of.cohomology:
(mg A EG)n(X) 2 colim(meg A S7Y),(X) & colim(meg )n—qv (X)

and

(mg A BG)™(X) = colim(mg A qu)"."(X) & colim{mg)" 7V (X).

To interpret the .co]imits algebraically, assume that mg is 2 module G-spectrum over
& ring G—si)ectrum kg. Let V' be any representation of @, let e : §° ~ SV send the
non-basepoint to 0, and let ay € kg(SO) be the image of the identity element of k%{S9)
under the map

e* 1KY () & BY(SV) — KL ().

Equivalently, av is represented by e An : S A Sg — SV Akg. The theories mg and

mi

are module-valued over k% (S®), where everything is interpreted in the RO(@)-graded
sense, and the colimits above are both taken over iterated action by the element ay. The
algebraic theory of localization works perfectly well for general types of gradings, and the

observations above imply the following conclusion.

PROPOSITION 16.2. Let mg be a module G-spectrum over a ring G—spectrum kg. For
any representatioﬁ V of G, (ma A 8°°V),(X) and, if X is finite, (mg A 8§°VY*( XY are the
localizations of mZ (X) and m¥(X) away from ay. Thus multiplication by ay provides a

periodicity isomorphism with period V on (mg A $°°V),(X) and (mg A S®V)*(X).

By Proposition 3.5, the proposition has the following implication.




COROLLARY 16.3. Let kg be a ring G-spectrum. If G acts freely on the upit sphere
S(V), then t(ke)«(X) and, if X is finite, t(kg)*(X) are the localizations of c(ka)«(X)
and c(ke)*(X) away from ay. Therefore, multiplication by ay provides a periodicity

isomorphism with period V' on t(kg).(X) and tke)*(X).

In the presence of a suitable Thom isomorphism, we can sometimes deduce an integral
period. We say that kg is a split ring G-spectrum if it has a splitting ¢ : k — (kg) which
is a map of ring spectra. This holds if kG = i,k for a nonequivariant ring spectrum k. The
isomorphism c(kg)*(X) & k*(EGy Ag X ) of Proposition 2.1 is then an isomorphism of Z-
graded rings and of modules over (k¢ )* (89) = k*(BG,). Moreover, for any representation

V of G, we also have isomorphisms
(16.4) o(ka)” (8°) & k(BG4 AS™V) 2 °(BG™Y).

The first follows from the definitions. The second follows from (0.7) and the rela;tibnship
beﬁween the Thom spectrum BG‘V_ and the G-spectrum EG.,. A S~V (as recorded in the
proof ﬁf Proposition 16.2).

Now let v = dimV. In favorable cases, we will have a Thom isomorphism

1 E*(BG..) — k*“(BG-V). In particular, we will have
(16.5) p:k*(BG,) = E(BG™V),

Combining (16.4) and (16.5), applied both to V and to the trivial representation R of

dimension u, we obtain
(16.6) c(ka)¥ (S%) & k“(BG..) & e(ka)(SY).

If k& is an Eilenberg-MacLane spectrum H A for a comxﬁutative ring A, then we have a
Thom jsomorphism (16.5) if H~*(BG~V; 4) contains a Thom class, for example if V is
a complex representation or if A has characteristic two ([37, Thm B]). In these casesr, a
check of definitions shows that the image in H*(BG;A) of ay € b(kg)V(SO) is just the

classical Euler class yy of V. This gives the following result.
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COROLLARY 16.7. Let G act freely on the unit sphere S(V) where dimV = u. If
H~*(BG-"; A) contains a Thom class and X is finite, then, in integer gradings, H%(X; A) i i
is isomorphic to the localization H*{EG 4 Aa X; A)[xl;l] and is therefore periodic with pe- o
riod u. | | | _ . d




jl

Part IV: The generalization to families

§17. Families and their f, ¢, and ¢ G-spectra

Many of our results directly generalize to families of subgroups of G, namely collections
of subgroups closed under subconjugacy. We give a recapitulation of the relevant portions
of part I in this section, and we let F be a fixed given family, We agree to exclude the
empty family from consideration. Some of the many important examples to i{eep in mind

are the following:

e The family F (p) of p-subgroups of a finite group G.

o The family F of finite subgroups of G (wheh G is not itself finite).

e The family C of (topologically) cyclic subgroups-of G.

e The famﬂy F(H) of subconjugates of a given subgroup H.

¢ The family F[N] of subgroups of G which do not contain a given normal subgroup N.

o The family F(N,G) of subgroups whose intersection with a given normal subgroup
N is the trivial subgroup.

¢ The family P of proper subgroups of G.

e The family F(V) of subgroups H of G such that V¥ # 0 for a given representation
Vof G.

There is a universal F-space EF characterized up to homotopy by the requirement

that EFH be contractible if H € F and empty if H ¢ F. We shall give an explicit model in
Section 20. It F = {e}, then EF = EG. If F = F(N,G), then EF is the universal N-free
G-space. Let EF be the cofiber of the projection EF,. — S§°. We have the cofibering

(A) EFy — 8 — EF.

Let kg be a G’-spectrum and let F(EF,,kg) be the function G-spectrum of maps

EF, — kg The projection EF+ ~+ 80 induces a G-map

(B) e: kg =F(5% kq) = F(EF,, kq).
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By taking the smash product of the cofibering (A) with the map (B), we obtain the

following map of cofiberings of G-spectra :

ke AEFy —— s ke — sk ABF
(C) g A ll € eAl
| F(BEFy,kg) AEFy — F(EF,, kg) ——— F(EFy kc) A EF.
Roughly, szﬁashing a G-spectrum with the coﬁbei'ing (A) has the effect of breaking
the represented homology and cohomology theories into parts that see orbit types in F

and not in F. We introduce abbreviated notations for these spectra.

Define the F-free G-spectrum-associated to k(; to be
fr(ke) = ka A BF.

We refer to the homology theories represented by G-spectra fr(kqg) as F-Borel homology
theories. We refer to the cohomology theories they represent as fr-cohomology theories.
Define
felke) = F(EF,, kg) NEF,.

It will turn out that e Al: fr(kg) — fr(kg) is always an equivalence. After proving this,

we will drop the notation fi and just use fz. Define
fFke) =ka NEF.

Define
crlka) = F(EF,, ka).

We call cr(kg) the geometric F-completion of kg. The map € : kg — cx(kg) of (B) is
the object of study of such resulté as the generalized Atiyah-Segal completion theorem and
the generalized Segal conjecture of [2,3,38]. The general JF -homotbpy limit pfoblem can
be interpreted as the problem of comparing the geometric F-completion cx(kg) with the

algebraic completion (kg )7 of kg at a certain ideal of the Burnside ring. We refer to the




cohomology theories represented by G-spectra cx(kg) as F-Borel cohomology theories.
We refer to the homology theories they represent as cx-homology theories.
Define
tr(ke) = F(EFy,ka) NEF = fer(he).
- We call tx(kg) the F-Tate G-spectrum associated to kg. These G-spectra represent -
Tate homology and cohomology theories.”
With this cast, and with the abbreviation of e A1 to £, Diagr_am (C) can be rewritten

in the form

frke) kg - f7(kg)

(D) | el le Ja
f_gp(k(;) m—— Y o (kg) ———— tj.‘(kg).

We call the bottom row the “F-norm sequence”.
A map ¢ : kg — ki of G-spectra is said to be an F-equivalence if ¢ is an equivalence
for H € F, or, equivalently by the Whitehead theorem, if ¢ is an H -equivalence for HeF.

The proof of Proposition 1.1 applies verbatim to give the following F-invariance statement.
~ PROPOSITION 17.1. Let ¢ : kg — kg bean F —equivalence. Then the maps
| ¢'/\1 kg ANEF, — ké;./\ ET+ and F(l1,¢): F(EF,, k) - F(EF,, k};-) |
| are G-equivalences. Therefore the cofibration sequences |
frlka) = er(ka) = tr(ke) and  fr(ky) — crky) — t2(k)
are (-equivalent. |

Since the middle vertical arrow e : kg — cxr(ka) of Diagram (D) is an F-equivalence,

the first statement of the proposition implies the following promised result.
PROPOSITION 17.2. For any G-spectrum kg,
¢: fr(kg) = kg AEFy. — F(EFy,ke) A EF, = fr(kq)

is an equivalence of G-spectra, .
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The relationship between the three kinds of theories is immediate from the bottom

cofiber sequence of (1), which gives F-norm sequences.

PROPOSITION 17.3. For G-spectra X, there are long exact sequences

co = frke)™(X) = ex(ka)™(X) = tr(ke)™(X) = fr(ke) TH(X) = -

and

w0 = fr(he)n(X) = er(ke)a(X) = tr(ka)n(X) = frke)n-1(X) — .

- Under appropriate hypotheses, these collapse to give isomorphisms. A G-space is said
to be an F-space if all of its isotrbpy groups away from its G-fixed basepoint are in F.
A (naive or genuine) G-spectrum is said to be an F-spectrum if it is equivalent to a G-
CW spectrum built up from cells of orbit type G/H with H € F. In all three cases, an
object X is equivalent-to an F-object if and only if the natural map EF, AX - X is a
G-equivalence. A (-space or G-spectrum X is said to be F-trivial or F-contractible if X H
is cont_réct.ible for all H € F. The proofs of the next three results are identical to those of

Propositions 2.4-2.6.

PROPOSITION 17.4. Let X be an F-space or an F-gpectrum. Then
tr(ka)*(X) =0 and tr(ka)«(X)=0.
Thexfeforg
fr(ks)*(X) gCsf("i‘:c:)"‘(}i’) and  fr(ke)(X) = crlka)s(X).
PROPOSITION 17.5. If X is an F-contractible G-space or G-spectrum, then
cr(kg){(X) =0 and fr(ka)(X)=0.
Therefore

tr(ka)"(X) & fr(kc)" (X} and cr(bc)n(X) & tr(ka)n(X).




By definition, Tate homology is a special case of c-homology,
tr(ke)n(X) = crlka)n(EF A X).
Analogously, Tate cohomology is a special case of f-cohomology.

PROPOSITION 17.6. The Tate spectrum tr(ke) is equivalent to F(EF, Fr(ka)). There-

fore, for any G-space or G-spectrum X,
tr(ka)™(X) 2 f2(ke)"(EF A X).

Formally, the functor fr preserves wedges, cofibers, and colimits whiie the functor
¢r preserves products, fibers, and lmits. Therefore the functor £ preserves ﬁnlte wedges
and cofibration sequences. The proofs of the following results are identical with those of
Pr0p0s1t10ns 3.2 and 3.3, but the hypothesis on EF can only be expected to be satisfied

when the family F contains only finitely many maximal conjugacy classes (H).

PROPOSITION 17.7. The functor ¢r preserves microscopes. If EF hag a model as an
F-CW complex with finite skeleta, then the functors fr and tx preserve microscopes of

inverse sequences of uniformly bounded below G-spectra.

PROPOSITION 17.8. If {Y4} is the Postnikov tower of a G- -spectrum Y, Y9 = Y(—oco, ],
and EF has a model as an F-CW complex with finite skeleta, then the following diagram
displays a G-equivalence between cofiber sequences:

fr(Mic YY) ——s cp(Mic Y) —— tz(Mic Y7

Mic f7(Y?) ———s Mic ex (YY) —-——— Mic tz(Y9).

Since EF, has a diagonal map and since there are equivalences
EFy NEF, ~EF, and EFAEFxEF,

unique up to homotopy, we obtain a commutative diagram of associative and commutative

pairings exactly as in (3.4); we shall call it the F-norm pairing diagram,
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PROPOSITION 17.9. If kg is a ring G-spectrum, then cx(kq) and tx(kg) are ring G-
spectra, commutative if kg is, and the right square of (D) is a diagram of ring G-spectra.
If mg 18 a kg-module G-spectrum, then cr(mg) is a cr(kg)-module G-spectrum and

tr(mga) is a tr{kqg)-module G-spectrum.

The change of groups results of Propositions 3.7 and 3.8 also generalize to the present

context,

PROPOSITION 17.10. Regarded as an H-spectrum, tr(kg) is equivalent to ¢ zy(ky),

where FIH ={K|KCH and K € f}, and similarly for f and c.

PROPOSITION 17.11. Let ky be an H-spectrum. Then tx(G Xy kg) is equivalent to
G ® gty u(ky) and tx(Fy(G, ky)) is equivalent to FylG,t 7 u(ky)), and similarly for f

and c.




§18. Cohomological and homological completion phenomena
Let I7 C A(G) be the intersection of the kernels of the restrictions A(G) = A(H)

for H € 7. The following result generalizes Theorem 4.1.

THEOREM 18.1. Let @ be finite. Then cr(kg) is IF- ~complete for any G- ~spectrum kg. If

ke is bounded below, then fr (k) and therefore tr{ka) are also IF-complete,

Exactly as in Section 4, this is a consequence of the following more general result,

which is valid for any compact Lie group G.

ProrosiTION 18.2. Let J be any finitely generated ideal contained in {F. Then the

following conclusions hold.

(i) er(kg) is J-complete,

(ii) Any bounded below ¥ -spectrum Y is J-complete.

We take G to be finite in the rest of this section. As explained in (25,84], the generalized
Atiyah-Segal completion theorem of [2] and the generalized Segal conjecture of [3] imply
that the map ¢ : ke ~ cr(kg) is a completion af IF when kg is KUq, K Og, or Sg. In
the last case, f#Sc — tx(Sg) is also a completion at IF,

In general, e : kg — cr(ka) is a completion at IF if and only if the cohomology theory
represented by (ke )} 2 carries F-equivalences to isomorphisms. By (4.2), this holds if and
only if the left derived functors L{* and L{% of IF-adic completion vanish op (ka)*(X)
whenever X is an F-trivial G’-spéctrum.. ' _

As in Section 4, there is another way to think ébout this. Defining A7 (IF) as in
(4.4), we see that the canonical map M(IF) — Sg is an F-equivalence. Therefore, by the
Whitehead theorem, there is a unique map & : E°EF, — M(I F) over Sg. By (4.5), we

conclude that e is a completion at IF if and only if the “completlon conjecture map”

(18.3) £ (k)T = F(M(IF), ke) — F(BFy ke) = cz(ka)
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is an equivalence. We can also ask when the “cocompletion conjecture map”
(18.4) E=1AL kg NEFy — kg ANM{ITF)

is an equivalence. By Lemma 4.9, if kg is a ring G-spectrum and ¢, is an equivalence,

then so is
(18.5) & =1AE eplkg) N BEFy — cr(kg) A M(IF).

Exactly as in Proposition 4.11, we have the following formal comparison.

PROPOSITION 18.6. The map &, of (18.4) js an equivalence if and only if the maps &* of

(18.3) and &, of (18.5) are both equivalences.

Let M (IF) be the cofiber of M (I.?f) — Sg. We have a map of cofibrations

EF, > 59 »EF
(18.7) é“l‘ ‘ F’
M(IF) > 50 » M{IF).

Therefore the map £, of (18.4) is an equivalence if and only if the map

(18.8) | Ec=1AE: kg AEF — kg A M(IF)

is an equivalence and the map ¢, of (18.5) is an equivalence if and only if'ther map :
(18.9) & = 1AL tr(ka) = cr(kc) ABF — cr(kg) A M(IF)

is an equivalence. The easier implication of Proposition 4.15 generalizes readily to the

present context.

PRrOPOSITION 18.10. Let kg be a ring G-spectrum. If tx(kg) is rational, the'n the map

£, of (18.9) is an equivalence.
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We do not see how to generalize the transfer theoretic proof of the converse given
in Lemmas 4.16 through 4.18. However, the first author has recently obtained a quite
different proof. It involves aring theoretic analog of Tate cohomology and will be presented

elsewhere [50]. Lemma 4.19 generalizes directly to give the following result.

LemMa 18.11. If X is a G-spectrum such that LAE : X A BF — X A 117(1’.?7) is an

equivalence, then (X A EF)}y is trivial .

We combine the previous results and the cited result from [50] to obtain the following

generalization of Theorem 4.8,

THEOREM 18.12. Let kg be a ring G-spectrum. Then the map &, of (18.4) is an equiv-
alence if and only if tr(kg) is a rational G-spectram and the map {* of (18.3) is an
equivalence. When these equivalent conditions hold, f#(ke)}y and tx(kg)fy are trivial,

hence cr{kg) is the completion at IF of both k¢ and frlke).

In the case of KUg and KOg, the map £* of (18.3) was proven to be an equivalence
in [21, the map £, of (18.4) was recently proven to be an equivalence by the first author in
[22}, and the ra,tiohality of the Tate specira will be proven in the next section. Thus the
- fesults of [2} and [22] are in fact equiva;lent. This is not surprising since all three proofs

proceed by direct inductive reduction to quotations of equivariant Bott periodicii:y.
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§19. The generalized Tate G-specira of periodic K-theory
Let G be finite in this section. We shall formulate and prove a generalization of
Theorem 13.1. In fact, for an arbitrary family F in G, we shall give a complete analysis

of the cofiber sequence

fr(KUg) — cr(KUg) — t#(KUg).

‘Although we shall not work out full details, we shall also explain the corresponding analysis

for KQOg.

Let JF C R(G) be the intersection over H € F of the kernels of the restriction
homomorphisms R(G)r—-> R(H). Define JOF C RO(G) similerly. The completions of
an R(G’)-moduie at IF and‘a,t JF are isomorphic, by [25,4.5], and similarly in the real
case. By the generalized Atiyah-Segal completion theorem cited in the previous section,

er(KUg) and ex(KOg) are the completions of KUg and KOg at IF. Therefore
cr(KUg)z % R(G)jr and  cxr(KUg)ait1 =0;

similarly, cz(KOg) & ((KOg)+))o(q)- The following theorem is the key to our analysis.

THEOREM 19.1. t7(KUgq) and tx(KOg) are rational G-spectra .

We explain the implications before giving the proof. We shall fixst determine the
rationalization of f#z{KUg)., next use the rationalization of the F-norm sequence to com-
pute tx(KUg)., and then go back to the unrationalized F-norm sequence to détermine
fr(KUg)«. In principle, this procedure applies equally well to KOg. The analysis will
simultaneously deal with subgroups in view of Proposition 17.10. In Appendix A, we shall
prove the folklore fact that rational G-spectra split as products of Eilenberg-MacLane
G-spectra (since G is finite). Therefore the rationaiizations of thé homotopy groups of
G-spectra determine their rational homotopy types.

Let {g) denote the subgréuin of @ generated by the element g. It is clear by character
theory that

JF ={x|x(g) = 0if {g) € F} C R(G).
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Define the “complementary ideal” J/ by

JF={xIx(g) = 0 () ¢ F} ¢ R(G).
Since JF - J'F = 0, 'ty = J'F and (R(G)]J'F))p & RGYN, | J'F.
LEMMA 19.2. fr(KUg)u® Q= J'F® Q and fr(KUg)aig1 ® Q = 0.

PROOF: Rationalize everythmg in this proof w1th0ut change of notation. As explained in
Appendix A, the ratlonal equivariant stable ca,tegory decomposes in terms of idempotents
eq of the rationalized Burnside A(G). By Remark A.13, if ex is the sum over H € F of
the idempotents ey and 87 = 1 —eg, then IF = €7 A(G), es8° ~ EFy, and €x5° ~ EF.
Let fr and f;: be the i 1ma,ges of ex and €7 in the rationalized representation rmg R(G’)
Let H and £ denote the sets of conjugacy cla,sses of subgroups of G and of elements of
G, respectively., . Passage from elements g to cyelic groups (g} gives a functlon & — M.
Let Q% and C? be the rings of functions H — Qeand £ — C, and let 7: Q™ —, C€ and |
p : A(G) — R(G) be the evident maps of rings. Then the following diagram commutes,

where ¢ is the isomorbhism described in Appendix A and X is the trace map.

QH . T CE

This easily implies that, rationally,

(19.3) JF=frR(G), J'F=frR(G), and JF+J'F = R(G).
Therefore
(19.4) fr(KUg) @ Q2 J'F. KUS ¢ Q.

As a matter of algebra, the proof-just given implies the following result, which is
needed to reconcile the statements of Theorem 13.1 and Corollary 13.3 with the corollaries

which follow.
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LEMMA 19.5. The map JFjy ® Q — R(Q)}z/J'F ® Q induced by the inclusion
JF — R(Q) is an isomorphism. '

COROLLARY 19.6, tj-‘(KUG = (R(Q)/J'F)}r @ Q and tz(KUg)2i41 =

PROOEF: We deduce this from the rationalized F-norm sequence, noting that the map

fr(KUg) — er(KUG) factors as the composite
fr(KUg) = KUg AEF, — KUg — cx(KUg).

In homotopy, the observation (19;4) identifies the rationalization of the first map, and
the generalized Atiyah-Segal completion theorem idemntifies the second. We see that

Jr(KUg)a ® Q@ — cx(KUg)2 @ Q is the evident inclusion.

COROLLARY 19.7. Let R/J’}'f; - be the Mackey functor whose value on G/H is
(R(H)/J'F|H)) £y Then tr(KUg) is the product over integers i of the Eilenberg-
MacLane G-spectra K(R/J'F .7-' »® Q,21). As a ring,

(tr(KUG)H ). & (R(H)/J'FIH)) )y ® Qlo,v™Y], degw =2,

PrOOF: Only the multiplicative structure requires comment. We know the ring structure
of ((KUg)H), from Bott periodicity, and the map of the generalized Atiyah-Segal comple-
tion theorem induces a completion of graded rings. This determines the ring structure on
(cr(KUg)¥). ® Q and, by Corollary 19.6 (together with the remark above Lemma 19.2),
we see that (t7(K Ug)H )x is the specified quotient ring of (cx(KUg)¥), ® Q

COROLLARY 19.8. fr(KUg)s = J'F and f(KUg)a11 = (R(G)/J' F)) 5 ® (Q/2).

Proor: The map cx(KUg)a — t#(KUg)s; is induced by R(G) — R(G)/J'F.

As explained in [22], the equivalence KUg A BEFy — KUg A M(IF) implies an
alternative algebraic description of f(KUg). in terms of Grothendieck’s local cohomology

groups.
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Now consider the real case. The groups K Of are periodic of period 8 with the

following values as ¢ runs from-0 to 7:

( RO(G)  RO(G)/rRU(G)  RU(GY/{RSHG) 0
19.9)
RSp(G)  RSp(G)/qRU(G)  RU(G)/cRO@G) 0

Here r,¢,¢,¢' are the evident homomorphisms. They and conjugation ¢ on RU(G) are

related by the equations

re=2, er=1+4%, ¢ =2, dg=1+1,

te=e, rt=r, te'=¢c, qgt=¢q, and t*=1.

For well chosen sets {U;}, {V;}, and {Wi} of irreducible real, complex, and quater-
nionic représentations, RO(G) is spanned by {Ui, rVj, Wi}, RU(G) is spanned by
{CUi,I/j,tV},C’.Wk}, and RSp(G) is spanned by {qeU;,qV;, Wi }. This completely deter-
mines 7, ¢,q, and ¢’. We see in particular that RO(G)/rRU(G) and RSp(G)/qRU(G) are
2-torsion and that, modulo their 2-torsion, RU(G)/c’ RSp(G) and RU(G}/cRO(G) are
isomorphic. We also see that gc : RO(G) — RSp(G) is a monomorphism with cokernel of
exponent 4. 7 _

We can define a “complementary ideal” J'OF C RO(G) such that JOF . JOF = 0.
With fz and f}.— replaced by the images of ex and € in RO(G) ® Q, the proof of Lemma
19.2 gives the evidént real analogs of (19.3), (19.4), and (19.5). However, the computation
of JOF - KOZ ® Q from (19.9) is not immediate. These groups are zero for o‘dd q and
are isomorphic to JJOF @ Q for ¢ =0 mod 4. They are isomorphic for all ¢ =2 mod 4,
but whether or not they are zero in thesg degrees depends on F. They are zero in these
degrees when F = {e}. One can deduce this algebraically from the fact that J'O{e} is
one dimensional with basis the regular representation. Alternatively, one can note that

the rational splitting KU ~ KO V 2K 0 induces a rational splitting

FOBU) = fi, KOV f(i. 22K 0),
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g0 that f{KOg)i+s ® Q must be zero by a comparison of dimensions. In principle, we
can now read off the real analogs of Corollaries 19.6-19.8. We have recorded the answers
in the case F == {e} in Theorem 13.1 and Corollary 13.3. In the latter result, the non-zero
grbups in ddd degrees are direct sums because the kernels in the eitensions that appear

in the norm sequence are divisible and hence injective Abelian groups.

PRrOOF OF THEOREM 19.1: Assume inductively that the conclusion is true for all families
in any proper subgroup of G. The induction starts since Tate spectra for the trivial group
are trivial. If F is-the family of all subgroups of G, then {r(kq) is trivial for any ke.
Thus we fnay as well assume th.ai;.f C P, whete P is the family of proper .subgroups of
G. Taking the smash product of the cofibering EP, — 80 — EP vﬁth tr(KUgq), we see
that it suffices to prove that tx(KUg) A E'P4 and tx(KUg) A EP are both rational. It is
clear by insﬁection of fixed-point subspaces that EF A EP ~ EP. Therefore the following

two lemmas complete the proof.
LEMMA 19.10. tr(KUg) A X is rational for any family F and any P-spectrum X.

Proor: The éolimit of rational G-spectra is rational, and if two terms in a cofibering are
rational, then so is the third term. Thus it suffices to prove the result when X = G/H,
for a proper subgroup H. Here the conclusion is immediate from the induction hypothesis

and Propositions 17.10 and 17.11.
- LEMMA 19.11. tx(KUg) A EP is rational for any family F.

We deduce this from the following consequence of Proposition 16.2, in which G need
‘not be finite. For a complex representation V, let Ay € KUZ(SY) be the Bott class. By

equivariant Bott periodicity, multiplication by Ay gives an isomorphism
KUE (8% — KUY (SY) 2 KUS(SY) = R(G).

Recall from Section 16 that ay = e*(1) € KUE (), e : 8° — SV The image of oy under

the displayed isomorphism is the K-theory Euler class, which we denote by xv; explicitly,
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it is just the alternating sum of the exterior powers.of V. Recall that F(V) is the family
{H|VE #0}.

PROPOSITION 19.12. If mg is a KUg-module spectrum, such as F(Y,KUg) for any Y,
then (mg A BF(V))(X) and, if X is finite, (mg ANEF (V)) (X) are the localizations of

mé(X ) and mG(X ) away from Xv-

Proor oF LEMMA 19. 11 Let V be the reduced regular representation of G. Then V& = ()
but VH £ 0 for all proper subgroups H. Thus F(V) = P. It also follows that e is M-
trivial and xy restricts to zero in R(H) for any proper subgroup H. That is, yy € J P(G).
Since the product over eyclic subgroups C of the restrictions R(G) — R(C)is an injection,
JP(G) = 0 unless G is cyclic. Since localization away from zero is zero, the conclusion
holds trivially unless @ is cyclic. Thus let B be cyclic of order n. The primes that do not
diﬁde 7 act invertibly on tg:(kg) for any G-spectrum k¢ and any family F by Corollary
22.10 below, which generalizes Corollary 11.5. Let p divide . It suffices to show that p
acts invertibly on mg A EP for any KUg-module spectrum me, and this certainly holds
if p divides some power of xy in R(@). Choose an epimorphism G — Z, and a nontrivial
one-dimensional irreducible representation W of Zyp. Regard W as a representation of G,
by pullback. Then_ W is a summand of V and yw divides xy. Thus it suffices just to
observe that (xw )? is divisible by p in R(Z,) since xw =1 — W and WP =

Applying real equivariant Bott periodicity to Spin representations of dimension di-
visible by 8, and using 8 times the reduced real regular representation to model EP, we
find that a slight modification of the argument ]ust given works to prove the real case of

Theorem 19.1.




§20. Theories associated to Mackey and coMackey functors

We ﬁrst recall some general categorical algebra that was implicitly used earlier but
must now be made e:;plicit for intelligibility. Let C be any small additive category and let
C* and C, be the categories of additive contravariant and covériant functors € — Ab. We
think of C as a “ring with many Objécts”, and we think of objects of C* and C. as right
and left C-modules (coﬁlpare Mitchell {40]). For an object C' of C, define the represented
contravariant functor C* by C*(?) = Hom¢(?,C). It is then a categorical triviality called

the Yoneda lemma that

(Zb.l) | H_omc‘.(O*,':M) > M(C) ..for any M € C*.

We have a tensor product over C. For M € C* and N € C*,

(20.2) M®cN=EM(C)®N(C)/(m_go*®n—m®qa*n),

where ¢, m, and n run over the maps ¢ : C — C’ in C and the elements m ‘e M(C"} and
n € N(C). This is just an Abelian group, and this tensor product over ¢ must not be
confused with the more sophisticated tensor product ® : C* x C* — C* that we defined
topologically in certain specia.l cé,ses in Section 8. For an Abelian group A, we Bave the

adjunction isomorphisms

Homg, (N, Hom(M, A)) = Hom(M ®¢ N, A) % Home. (M, Hom(N, 4)).
Another manifestation of the Yoneda lemma gives the isomorphism
.(20.3) C"®c N 2 N(C) for any N € C,.

We define a free object of C* to be any sum of objects of the form C*.
The categories C{G] and M[G] of coefficient systems and Mackey functors are examples
of such generalized categories of modules. In the context of families, one might be tempted

to define an F-module to be a coeflicient system R such that R(G/H) =0 for H ¢ F and
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Lo try to prove that {x(H M) depends only on the undexlying Fmodule of M, generalizing
what we did in the case F = {e} in Part IL While much of the analysis does go through,
the program fails because s*s.R # R, as we observed in Remark 7.4. ¥or this reason, we
shall make little use of coefficient systems in this part.

The theory for families in positive dimensional compact Lie groups diverges from the
theory for F = {e} in a still more fundamental way: we cannot use Eilenberg-Maclane
G-spectra, HM to study homology theories. Define a “coMackey funétor-” to be a covariant
functor O8 - Ab. Let k¢ be a G-spectrum . The Mackey functor 7_,(kg) may be viewed

as the restriction kg of the cohomology functor k% to orbit G-spectra,
KL (G/H) = K5 (S°G/H,) = [G/Hy, kol
Dually, we have the homology coMackey functors _]gf specified by
KS(G/H) = kS (E°G/H,) = [8° ke AG/HL]S.

As was pointed out in [32, p.211], for a coMackey functor N, there is a G-spectrum JN
such that JN§ = N and JN! S = 0 for n # 0. This homological Eilenberg-MacLane
" G-spectrum represents the ordinary homology theory on C’—spectra characterizéd by the
dimension axiom specified by N, and JN is uniquely determined up to homotopy.

The price of arra,nging the dimension axiom in homology is that JN is not connective
and does not have obvious hoxﬁotopy groups, Quite generally, the homotopy groups of a

(-spectrum X are
rH(X) = [E"G[/H4, X] = [S", D(G/H) A X]e.

Here D(G/H) =G xg S§—LH) where L(H) is the tangent H-representation of G'/H at
the identity ¢oset eH. This representation contains a trivial representation of dimension
dim W H, and the complementary representation can be tfiangulated as an H-CW com-

plex. We see in particular that 7 (JIV) can be non-zero for —dimG/H <n < — dimWH.
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The ordinary homology theory represented by JV and the ordinary cohomology theory
represented by HM have chain level descriptions precisely similar to those used in the
definition of Bredon homology and cohomology [8]. For a G-CW spectrum X, we have the
chain complex C,(X) in the Abelian category .M[G'] given by C, (X)) = 7, (X"/X™1);
dn is the connecting homomorphism of the triple (X™, X7~1, X*2), Here C (X) is free
with one generator for each n-cell of X. For a coMackey functor N and a Mackey functor

M, we define
(20.4) CE(X;N)=C,(X)®ps N and C4(X; M) = Homos(C,(X), M).

These are ordinary chain and cochain complexes of Abelian groups, and we obtain
homology and cohomology theories HE(X;N) and H}(X;M) on passage to homology
and cohomology groups. The Eilenberg-MacLane G-spectra JN and HM are obtained
by application of Brown’s representability theorem to these theories [32], and there result

isomorphisms '
(20.5) HEQOGN) = (JNS(X) and HAH(X; M) = (HM)5(X).

REMARK 20.6: We can make precigely analogous chain level definitions of HE(X; $) and -
HE(X; R) for naive G-CW spectra X and covariant and contravariant coefficient systerms
S and R; these are the spectrum level versions of Bredon homology and cohomology [8].
Using freeness and (20.1) and (20.3), we see that, for a coMackey functor N and a Mackey
functor M, 7

HE(GX;NY 2 HE(X;8*N)Y and  HA(inX; M) = HA(X; s* M)

since these are computed from isomorphic chain and cochain complexes. There is a naive
Eilenberg-MacLane G-spectrum H R such that H&(X; R) & [X, HR]% and, in coilomology,
the isomorphism above also follows from the relation i* HM = Hs* M. However, the naive
level homology theory is not represented in any usual sense since, in the world of naive

G-spectra, (jo AGJHL)® = x whenever H # G.
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We relate these theories to families in the following definition. The theories of (20.5)
correspond to the family “A£8" of all subgroups of G, for which EAL and E.A42¢ can cach

be taken to be a single point.

DEFINTTION 20.7. For G-spectra X, a family F, and integers n, define
HI(X;N) = fr(IN)(X)  and  HE(X;N) = cr(HM)"(X);
Hf(X;N)=Cy:(JN)n(X) and ﬂ}"-(X;M)=f;;:(HM)n(X);
HBI(X;Ny=tz(JN)(X)  and HRX;M)= t}-(HM)n(X).

When X = 89, WGI" delete it from the notation, writing ﬁ%(M ), etc.

There are no dimension shifts here. The dimension shifts that occur in-homology in

Definition 6.5 are entirely an artifact of the fact that we were there using cohomological

Eilenberg-MacLane G-spectra to study homology theories, which is an entirely unnatural

thing ‘to do. Of course, since EF only has cells in non-negative dimensions,
HI(N)=0 and HAM)=0 for n<Q0.
More interestingly, if d(F) is the minimum dimension of WH for H € F, then
HI(N)=0 and HEM)=0 for n>—d(F)

This also follows from the cell decomposition of EF, but now it is the duals of cells that -
are relevant, as in our discussion of the homotopy groups of JN. The F-norm sequences
give consequences for the Tate theories.

The following complement to Theorem 6.3 wiil imply that the case F = {e} of the
new definition is consistent with the old definition. For a coMackey functor N, let UN =
N(G/e). The opposite group of mo(G) = G embeds in [G/es,G/eL]e via right action
by its elements. Therefore, for'a Mackey functor M, UM = M (G/e) is aleft G-module
whereas, for a coMackey functor N, UN = N(G/e) is a right G-module. Write V°P for a

left G-module V regarded as a right G-module via vg = g~ 4.
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ProposITION 20.8. Let N be any coMackey functor such that UN = V°, Then there
is a Mackey functor M with UM =V and a canonical G-map $£¢JN — HM which is a

nonequivariant equivalence. Therefore the cbﬁber sequences
FELIN) = o(SUIN) — ((S9IN) and  F(HM) - o(HM) - t{(HM)

are canonically G-equivalent and, if N and N are coMackey functors such that UN & UN’ ,

then the norm cofibration sequences of HN and HN' are canonically G-equivalent.

Proo¥: By the discussion above, we find that 7, (JN) = 0if n # —d and 7_g(JN) = V2,
Define M = 7_q4(JN), note that JN is (u—d. ~ 1)-connected, and construct a G-map
JN — S¢H M that induces an isomorphismonz_. 4 by'killing the highér homotopy groups
of JN. This map is a nonequivariant equivalence, and the rest follows from Proposition
1.1 and Theorem 6.3.

Now a comparison of Definitions 6.5 and 20.7 gives the following consistency state-

ment.

COROLLARY 20.9. If N is a coMackey functor such that UN = V°P, then
HIH(X,N) 2 HE(X; V), HIHX,N) = HS(X;V), and HIH(X, Ny = BS(X;V).
If M.is a Mackey functor such that UM =V, then
er}(X.; M) = HAX,; Vj, I?f‘e}tX;M) &~ HE(X; V), and ﬁ?e}(X;M) o ﬁg(X;V).

REMARK 20.10: When @ is finite, Spanier-Whitehead duality specifies an equivalence of
categories D) : OS8°° — S8 that is the identity on objects and satisfies D o D = Id.
Here a Mackey functor M determines a coMackey functor M°? = M o D and a coMackey
functor N determines a Mackey functor N°° = N o D. This bijective correspondence
between Mackey functors and coMackey functors is realized topologically as a bijective

correspondence between the two kinds of Eilenberg-MacLane G-spectra : JN = HN°P and
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HM = JN°P. That is, there is really only one kind of Bilenberg-MacLane G-spectrum,
but it should be thought of diffei‘ently when considered as representing a homology or a

coho-mology theory.

Just as we defined the chains of suitably filtered G-spectra, not necessarilj-_G..CW
spectra, in Section 9, so we can generalize the definition of cellular chains giveﬁ in (20.4).
As in Section 10, this generalization wili lead via “F-calculable” filirations to generalized
Atiyah-Hirzebruch speciral sequences. Let W = UW?, p E_Z, be a filtered G’-spectrum
such that each map WP — W7+l and WP — W is a cofibration. Let Wp = W?/Wr1
and assume that each W7 is equivalent to a wedge of G-spectra of the form G/H, A 5P
for varying H in F. Write W for a G-spectrum W with a given filtration of this sort.
Define a chain complex C, (W) of Mackey functors by letting C,(W) = j_ptwp), with
differential 8, induced by the evident geometric boundary map. For a coMackey functor
N and a Mackey functor M, define HE (W; N') and H}(W; M) t0 be the homology of the

respective chain and cochain complexes of Abelian groups.

(2011)  CF(W;N)=C,(W)®ps N and C4(W; M) = Homos(C,(W), M).

Given such a filtered G-spectrum W and a G-spectrum kg, we obtain exaet couples
by giving kg A W and F(W,kg) the filtrations induced by that of W and passing to ‘
G-homotopy groups; see Appendix B. |
LEMMA 20.12. In the resulting spectral sequences,

By, = kph (W') & CF (W3 k7)
and |
B = KGH (W) = CH(W; ),

and these are isomorphisms of chain and cochain complexes.

PRroOF: Observe that €', (W) is a free Mackey functor, with one summand for each wedge

summand of each W and apply {20.1) and (20.3) cellwise.
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We begin by constructing an explicit model for EF. For this, G can be any topological
group and J can be any faroily of closed subgroups.

There is a prodﬁct--preserving functor I, from spaces to simplicial spaces. The space
E.X of g-simplices is X9+ the ¢tR face map is the projection away from the (i+1)5*
coordinate, the #th degéneracy map is the diagonal map af)plied to the (i-i—.l)St coordinate,
and E,X has a functorial simplicial contracting homotopy. Let EX be the geometric
realization of K, X. Since realization preserves products and homotopies, £ is a product-
preserving functor from spaces to contractible spaces. (See [35, pp 97-99], where E, is
denoted D,.) |

If X is a G space, then E,X is a simplicial G-space under diagonal actions, and
(E.X)¥ = E.(X"). Therefore E restricts to a functor from G-spaces to G-spaces such
that (EX)# = E(X¥). Obviously (EX)¥ is contractible if X ¥ is non-empty and is empty
if X# is empty. Thus, if #(X) is the family of subconjugates of isotropy groups of points
of X, fhen EX is a model for EF(X). If X = G, then EG is G-homeomorphic to the
usual bar construction model, by {35, 10.3]. If we start with a family 7 and define X (F)
to be the disjoint union of orbits G/H, one for each maximal conjugacy class (H) C F,
then F(X(F)) = F. Any larger disjoint union of orbits G/H with H € F would serve
equally well.

Now assume that G is finite and restrict attention to finite G-sets X. Recall that,
viewed purely algebraically, a Mackey functor M consists of a contravariant functor M*
and a covariant functor M, from finite G-sets to Abelian groups. These functors have the
same object function, denoted M, and M converts disjoint unions to direct sums. It is

required that ot o By = by o y* for pullback diagrams of finite G-sets
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A Mackey functor in our original sense of a contravariant functor M : 08 — Ab
extends by additivity to the full subcategory of the stable homotopy category consisting
of the G-spectra of the form £%X,. Maps of G-sets and the corresponding transfer maps
of G-spectra determine the contravariant and covariant parts of the associated algebraic
Mackey functor. We shall use these two ways of looking at Mackey functors interchange-
ably. While our notations and framework are different, the following definitions agree with
some of those used by Dress [17] in his homological study of induction theory. (Our no-
tations partly duplicate those in Definition 20.7, in anticipation of consistency statements

to be proven in the next section.)

DEFINITION 21.1. Let M be a Mackey functor, let X be a finite G-set, and let F = F (X).
Define the Amitsur-Dress homology, cbhomology, and Tate cohomology of F with coeffi-
cients in M as follows. For homology, denoted HF (M), apply M, fo the simplicial G-set
E.(X), and take the homology of the resulting simplicial Abelian group. For cohomology,
denoted H3 (M), apply M* to E.(X), regard the result as a cochain complex of Abelian
groups, and take ifs cohomology. For Tate cohomology, denoted H #(M), splice the desus-
pension of the homology complex, graded negatively, to the cohomology complex by use

of the composite

T omy : M(X) — M(x) » M(X);

then take the cohomology of the resulting Z-graded cochain complex

s M(XT) = M(X™Y) = s o M(X)
S M) o o MO o MO
(The zeroﬂ1 group of this cochain complex is the secoﬂd, target, copy of M(X).)
This is precisely analogous to defining the homology, cdhomology and Tate cohomol-
ogy of the finite group G explicitly in terms of the canonical fesolution_ of Z. It is routine

homological algebra to interpret the result in terms of more general resolutions and to

axiomatize these functors on Mackey functors. The homology groups are the left derived
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functors of the right exact functor HJ and the cohomology groups are the right derived
functors of the left exact functor HY: (both relative to the class of X (F)-projective func-
tors). The groups H}(M) and H (M) have interpretations as suitable invariants and

. coinvariants, the displayed composite 7* o m, induces a norm map
HY (M) ~ H}(M),
and
H;Y(M) =Ker(N) and HY(M) = Coker(N).
The Tate cohomology functors domprise the complete derived sequence of the natural
transformation N; corhpare [12, V§710‘ and XI1§2].

The following generalization of part of Proposition 11.3 is due to Dress [17, p. 204].

We explain the proof since its implications are as imporfant to our work as the result itself,

PROPOSITION 21.3. Let G have order n. Then multiplication by n annihilates I?;,-(M )

for all Mackey_functors M.

Proor: Let A be the Burnside Mackey functor. For a finite G-set Y, A(Y) is the
Grothendieck ring of the set of finite G-sets over Y. We have a pairing Ax M - M
given by the maps A(Y) x M(Y) > M(Y') that send a pair (8: Z — Y, m) to B.(0*(m)).
By [17, Prop. 2.3}, this pairing induces pairings fI}(A) ®H (M) - g #(M) that satisfy
all of the formal properties familiar from the classical case. In particular,' I?}(M )is a
module over the ring I?}.(A). It suffices to show that n-1 = 0, where 1 € ﬁ}(é) is the
identity element. Here 1 € H 2(A) is the image of 1 € A(G) under
T A(G) = A(x) - AX) = @D A(H),
HeF

and the kernel of 7* is the ideal IF. We see from the definitions that ¢-1 =0 in B 2(4)
if and only if ¢ € IF + I'F in A(G), where

F=Tm(r. : @5 AH) ~ A(Q)),

HeF
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In terms of the homomorphisms @y : A(G) — Z given by the cardinality of H-fixed point
sets, we have -

IF = {a|pg(e) =0 for all H € F}

and

I'F={a|pix(c)=0fral K ¢ F}.

For the last equality, {33, V.2.15 and 2.16(ii)] immediately give that, in terms of the
standard basis {[G/H]} for A(G), I' F is the span of the [G/H] for H € F and is contained
in the right side. For the opposite inclusion, let @ = %in;[G/J) and suppose that px{a) = 0
for K ¢ F. If (H) is maximal such that ny # 0, then wrle) = ng|WH| # 0 and thus
H € F. Therefore ng = 0 for K ¢ F. o

Let C(G) be the product over conjugacy classes (H) of copies of Z. As is well known
(.£[16,17, or 33, V.2.11]), the product of the @ is an inclusion ¢ : A(G) — C(G) such
that nC(G) C A(G). In C(G), let er be the idempotent whose H™ coordinate is 1 if
HeFand0if H¢ F and let € =1~ er. Then n=nex +nep isin IF + I'F for any
F.

COROLLARY 21.4. Define n{F) to be the smallest positive integer such thét- mﬁltipﬂcation
by n{F) annihilates H (M) for all Mackey functors M. Then n(F} is the smallest positive
integer such that n(Fler € A(G), or equivalently, the smallest positive integer such that
n(F)exr € A(G). '

In principle, n(F) is computable from the standard congruences that characterize the

image of i, namely (ng) € Im(p) if and only if
S OINH : NHNNKp(lK/H|)nx =0 mod [WH]

for all H, where the sum runs over the NH-conjugacy classes of groups K such that

H c K ¢ NH and K/H is cyclic and where u(|[K/H|) is the number of genecrators of
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K/H (eg. [17 or 33, V.2.11]). Note that the M&bius function ¢ has the properties that
p(p"*) is not divisi‘ble by p* and p(rs) = p(r)p(s) if (r,5) = 1. We display a few examples.
EXAMPLES 21.5: (i) If G is a p-group and F C P, then p divides n{F).

(ii) If F(p) is the family of p-groups in a group which is not a p-group, then p need not
divide n(F(p}). _

(iti) Let P be the family of proper subgroups of . Thén gep € A(G) if and only if
w(|G/H|)g = 0 mod |G/H| for all normal subgroups H such that G/H is cylic. Tt
follows that a prime p divides n(P) if and only if the cyclic group of ofder pisa
guotient of G. If G is cyclic, tﬁe;a p divides n(P) if and only if p divides |G|. In
contrast, if ¢ is perfect, then no primes divide n(P); that is, n(P) = 1 If G is the
symmetric group on three letters then n(P) = 2. More generally, if G is a non-Abelian

group of order pg with p < g, then n(P) = p.




§22. The generalized Tate Atiyah-Hirzebruch spectral sequences

We begin by explaining how to realize topologically the chain level algebraic descrip-
tion of Amitsur-Dress-Tate cohomology theories that we gave in the previous section. We
then ﬁbtain generalized Tate, Borel, and free Atiyah-Hirzebruch spectral sequences. The
discussion is precisely parallel to that in Sections 9, 10, and 11. Unless otherwise speciﬁed,
we assume that G is finite. |

Fix a model for EF as an F-CW complex with finite skeleta EFP, such as that
specified in the previous section. Let EF? be empty for p < 0 and filker EF, by the
EF%. Recall that EF = S°U C(EF,) and, as in (9.5), give it, or rather its suspension
G-spectrum , the “filtration”

SCUC(BFE™YY ifp>0
(22.1) EF?={ §° ifp=0

D(EF—r) ifp <.
For p < 0, the implicit maps are duals of inclusions. We use the telescope construction to
convert this to an actual filtration of a G-spectrum equivalent to EF without change of
notation. Replacing EFP by $9 for p > 0, we obtain a compatible filbration of the sphere
spectrum S9.

For each integer p, EFP/EFP~1 is a wedge of G-spectra of the form G/H. A SP. This
would fail if we attempted to generalize to inﬁnit‘e compact Lie groups as in (9.5), and
for this reason it seems unreasonable to seck chain level descriptions of the Tate theories
of Definition 20.7 in that generality. For p > 1, this quotient is TEFP-1/EFP-2, For
p=1,it is SEFY, For p < 0, it is D(EFI-P/EF7). When interpreting chains as in
Definition 21.1, it is important to notice that applying x, in non-positive degrees is the

same as applying 7, o D in positive degrees.

REMARK 22.2: Exactly as in Remark 9.7, the filtration on EF is not the skeletal filtration
of a structure of F-CW spectrum. An F-CW spectrum X is equivalent to EF, A X, but
EFy A EF is trivial.
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Of course, the filtration is cooked up 50 as to realize the Z -graded cooham complex
dlsplayed in Definitions 21.1. Formally, if we define chain complexes of Mackey functors
by

(23 PHA)=CUEE,), P(F) = 370, and PF) = 5, (BE),
then we have a geometrically realized short exact sequence
60— P (F) - P(F) P"’(f) — 0.

Application of (20.1) and (20.3) to (20.4) and (20.11) shows that the complexes used
in Definitions 21,1 are realized in terms of the complexes in {22.3). Think of M, as Mo D
and recall Remarks 20.6 and 20.10.

PRrROPOSITION 22.4. Let M be a Mackey functor. Then the Amitsur-Dress homology,

cohomology, and Tate groups are given by
HT (M) & H,(P*(F) 80s M) = HE (EFy; M),

Hz(M) = H*(Homos (P (F), M)) = HG(EF; M),
and
Hi(M) H*(Homos(P(F), M)).

In turn, the following analog of Theorem 9.8 shows that the right-hand groups in
the proposition are among the represented groups that we specified in Definition 20.7.
(The duplicative notations there anticipated this consistency result.) The proof will be

immediate from the spectral sequences helow.

THEOREM 22.5. Let G be finite and let M be a Mackey functor and N be a coMackey

functor. Then there are canonical Isomorphisms
H](N) = jr(HN), 2 H,(EF ,;N) and HYM)= cr(HM)" = H™(EF ; M);
HY(N) = cx(HN), = H, (8% N) and  HR(M)= fr(HM)" & H*(S%; M),

HE(N) = tz(IIN),, & H,(EF; N) and  HYE(M) = tz(HM)* & H"Y(EF; M).
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For chain complexes C' of Mackey functors, we can define F-Tate-Swan homology
theories with coefficients in coMackey functors and F-Tate-Swan cohomology theories with
coeflicients in Mackey functors exactly as in Definition 11.2. The tensor products P* @ ¢
with diagonal G-action used there must here be replaced by (graded) tensor products of
Mackey functors P* @ C, as specified in (8.1). The functors ®¢ and Home used there
must he repla,ced by the functors ®ogs and Homeas. Wé prefer not to go into detail. In
order to tie this to the purely cellular approach discussed below, one need only verify
the equivariant Kiinneth isomorphism theorem showing that the chain complex Mackey
functor of the smash product of suitably filtered G-spectra is isomorphic to the tensor
product of their chain complexes, as specified in (8.1).

Recall the discussion at the start of Section 10. When filtering X, we continue to re-
strict to finite groups G. Here the skeletal filtration of a G-CW structure is “F-calculable”
in the sense that the product ﬁltraﬂons on BEF,. AX, S°A X, and EFAX satisfy the
conditions specified on W' at the end of Section 20. The spectral sequences of the following
result are constructed from these filtrations. The dimension shift for t(ka)* comes from

Proposition 17.6.

THEOREM 22.6. Let G be finite and let X be a G-CW spectrum. Then there are spectral

sequences with E,-terms and targets:

B}y = Hy(BEFy NXGES) = fr(ka)n(X); BYY = HY(EFy A X; kL) = exlba)™(X);
Bl = Hp(SYAXGES) = cr(ba)n(X);  ES?= HP(S° AKX EL) == fr(ke)™(X);

B}y = Hy(EF AXE]) = tr(ka)n(X ) EpY = HPPHEF A X; k) == tr(ka)™(X).

If X is bounded beélow, the top two spectral sequences are potentially convergent and

their B2  and EY'? terms are isomorphic to

HE(X:k8) = fr(HES),(X) and HEL(X; k) = cr(HEGP(X).
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If X is finite, the remaining four spectral sequences are potentially convergent and their

E? , and E? terms are isomorphic to

HI (X;k )Mcf(HkG)p(X) and  HY(X;k%) = fr(HELP(X);

HT(X;5S) = t7(HES),(X)  and HE(X; kL) = t7 (HEL)P(X).

The proof is identical to that of Theorem 10.3.  In particular, the evident generaliza~
tions of Lemmas 10.4 and 10.8 are valid. In view of Proposition 17.7, we also have the

following analog of Theorem 10.5, in which G can be any compact Lie group.

THEOREM. 22.7. In the cases of fr and i, assume that F contains only finitely many
maximal conjugacy classes (H). Then the Postnikov tower of ka gives rise to conditionally

convergent spectral sequences. with respective Eo-terms and targets:

EP? = HY(X; kY ) Fr(HEEP(X) = frka)"(X)
EYY = HE(X; kY, ).._Cg:(Hkq) (X) == er(ke)*(X)

EPA H;L(Xk ) =tr(HEGP(X) = tr(ke)"(X)

Moreover, there are natural external pairings of spectral sequences in each cage. Ifkg is a
ring G-spectrum and X is a G-space, then the cx and tr spectral sequences are spectral

sequences of differential algebras.

When k¢ is bounded below, these spectral sequences are certainly relevant. They are
then lower half-plane spectral sequences and thus converge strongly if only finitely many
higher differentials defined on any given bidegree are non-zero. The proof of Theorem
10.6 applies to give the following comparison of our two triples of cohomology spectral

sequences.

THEOREM 22.8. Let G be finite and let X be a G-CW spectrum. If X is bounded
below, then the two spectral sequences for the calculation of cx(ke)*(X) are isomorphic.

If X is finite, then the two spectral sequences for the caleulation of fr(ka)*(X) and of




tr(kg)*(X) are isomorphic. Under the specified bounded below or finiteness hypothesis, if
the isomorphic spectral sequences satisfy condition (w), then the spectral sequence derived

from the Postnikov tower is relevant,
“Finally, we have analogs of Proposition 11.3 and its corollaries.

PROPOSITION 22.9. Let G be finite. Then multiplication by n{(F) annihilates the E.-
terms of the F-Tate homology and cohomology spectral sequences. If X is finite and kg is
of finite type, then these E; terms are finite in each bidegree, hence the speciral sequences

converge strongly if ke Is also bounded below.

PROOF: One can do enough algebra to mimic the proof of Proposition 11.3, using the
Kiinneth theorem that we cited above. Note that Corollary 21.4 gives t.he result directly
when X = S0 and, at least when kg is bounded below, the result follows in general by

pairing the spectral sequence for kg and X with the specﬁral sequence for Sg and S°.

COROLLARY 22.10. If G is finite and g is prime to n(F), then ¢ acts invertibly on trika)

for any G-spectrum kq.



§23. Some calculational methods and examples: groups of order pg -
Let G be finite until otherwme specified, By Proposition 22. 4, the Amitsur-Dress
homology and cohomology groups of a family F with coefficients in a Mackey functor M

can be described as follows in terms of Bredon homology and cohomology:
(231) . - HI(M)=HE(EFu;M) and HE(M) 2 HA(EF.; M).

Of course, Bredon homology and cohomology are themselves quite difficult to compute in
general. However, calculations can sometimes be reduced to calculatlons in the classxcal
homology and cohomology of groups,

~ As a first example, let N be a normal subgroup of G, let J = G/N , and let F(N) be
the family of subgroups of N. Regarded as a G-space by pullback along the quotient map
G — J, EJ is a mode] for EF{N).

PROPOSITION 23.2. For any Mackejf functor M
H(BJ; M) = HI(M(G/N)), HS(EJy; M) & Hy(M(G/N)),

and

HJ’-‘(N)(M) H3(M(G/N)),

where the right sides are the classical homology, cohomology, and Tate cohomology groups

of the J-module M(G/N).

Proor: This is immediate by inspection on the chain and cochain level, starting from
(20.4). The point is that, because the restriction maps relating the C, ((EJ, YYfor HC N
are identity maps,

C.(EJy) ®os M, = C,(EJ,) ®; M(G/N)

and

Homos(C,(EJ.), M*) & Hom,(C.(EJ..), M(G/N)).
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For the Tate isomorphism, we simply check that these chain and cochain isomorphisms
splice together properly.

This observation can sometimes serve as the starting point for an induction up orbit
types. For families 7/ C F, write B(F, F! ) = EF, A EF'. Then the fixed point space
(E(F,FN¥ is equivalent to §° if H € F — F' and is contractible otherwise. Moreover,
E(F,F') is characterized up to G-homotopy type by this behavior on fixed boint spaces.
Smashing the space BEF, with the cofibration sequence EF, — S — EF and noting
that EF, AEF, ~ EFY., we obtain a cofiber sequence

. EF, — EFy - E(F,F).

- Of course, the displayed cofibration sequence gives rise to Iorig exact sequences of Bredon

homology and cohomology groups. In view of (23.1), these sequences relate the Amitsur-
Dress homology and cohomology groups of F'and F. (We will record some general dia-
grams relating the norm sequences for * and F' at the end of the section.)

In order to exploit these sequences; we need a method for computing the Bredon
homology and cohomology of E(F, '), and this is provided by special cases of our AHSS.
In cohomology, Theorem 22.6 gives an AHSS converging from Hx(kg) = H5(EF,; ke
to ex(ka)*, and we apply it to kg = F(Ef "\ HM). The target of the resulting spectral
sequence is

er(ka)" & HG(B(F,F'); M),
and the Mackey functor k¢, used to compute its Es-term is given by

ko(G/H) = ki = Hy(E(F|H); M|H),

where (M|H)(H/K) = M(G/K) for K C H. Clearly k% = 0 if H € 7/, since E(F|H) is
then contractible, hence E3 depends only on the value of M on G [Hfor Hin F— F. It
is natural to apply this with — F' = (H) for some conjugacy class (H ) in F, necessarily
maximal. Here F'|H is the family of proper subgroups of H, and we have the following

result.
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PROPOSITION 23.3. Let F —F " = (H) and let P be the family of proper subgroups of H.
Assume that WH = e. Then, for any Mackey functor M, . '

HE(B(F,F'); M) & HE (BP; M|H) and Hy(E(F, 7'); M) & Hy(EP; M|H).

‘ProoF: Let X = [[G/K, where the union is taken over one K from each maximal
conjugacy class (K) C F; we may as well choose H as our representé,tive in (H). Since
WH = e, X# is a point. This implies that (EX)¥ = E(XH) is also a point. For any
Mackey functor L such that L(K ) =0for K € F', we see by inspection on the chain level |
that '

HE(EF,; L) = HS(EF,; L) = L(G/H) and HY(EF,.; L) = HYBEF,,L) = L(G/H).

The conclusion in cohomology follows immediately from the collapse of the AHSS just dis-
cussed, and the conclusion in homology follows similarly from the AHSS_ for the calculation
of fr(ka)«, where kg = EF' ANHM.

To calculate the right-hand homology and cohomology groups in Proposition 23.3, we
can apply HE (7, M|H) and H}(?; M|H) to the cofibration sequence EP, — S° — EP.
By the dimension axiom in Bredon theory, these homology and cohomology groups on S°
are M(G/H) in degree 0 and zero in other degrees. By (23.1), these groups on EP, are
Amitsur-Dress homology and cohormology groups for H. Were it not for the very resﬁictive
assumption W H = e in the last proposition, these methods would in principle give a general
procedure for computing the Amitsur-Dress homology and cohomology groups of families
by a double induction on the order of groups and on orbit types.

We collate these results to describe the Amitsur-Dress homology and cohomology
groups of the family P of proper subgroups in a non-Abelian group @G of order pq, where p
and g are primes with p < q. Let N be the unique (hence normal) subgroup of G of order
g, let J = G/N, and let H be one of the ¢ conjugate subgroups of order p. Let M be any

Mackey functor. We take ' = F(N) and F = P in the discussion above. Proposition
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23.2 applies to the family F(N). Certainly W H = e, hence Proposition 23.3 applies to the
space E(P,F(N)). Moreover,rsince the only proper subgroup of H is the trivial group, the
Bredon homoiogy and cohomology groups of E(P,F(N)) reduce to classical H-homology
and cohomology groups. Therefore we can calculate the Amitsur-Dress groups HF (1)
and H3 (M) in terms of the classical homology and cohomology groups of the J-module

M(G/N) and of the H-module M(G/e).
PROPOSITION 23.4. Retain the notations of the previous paragraph and define A1, Ay, A°
and Al by the exact sequences
0~ Ay — HF (M(G/e)) — M(G/H) — Ay — 0
and
0 — A" — M(G/H) — H%(M(G/e)) — A — 0.

Here the middle arrows are factors of the homomorphisms |
px t M(Gfe) — M(G/H) and p* : M(G/H) — M(G/e),
where p is the quotient G-map G /e — G/H. Then there are long exact sequences

v HY o (M) — HI (M(GJe)) — Hy (M(G/N)) — HY (M) — - -
— HY (M) — Ay — H{ (M(G/N)) — H (M) — Ag — 0

and

0 A9 — HY(M) — HYM(G/N)) — A — HS(M) - ---
— H(M) ~ HY(M(G/N)) — HE(M(G/e)) = HF* (M) = -
Of course, for n > 0, H;" (M) = Hf(M) and ﬁ%(M) = HEF(M). Because the
groups H{ (M) vafy covariantly with 7 while the groups H(M) vary contravariantly, it
is not obvious how to describe the groups I?;;(M ) for n = =1 and n = 0 in terms of other

groups, but of course they are easily computed when M is given explicitly. It is relevant
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that the norm map for the J-theory of M(G/N) factors as follows through the norm map
for the P-theory of M :

HJ (M(G/N)) — H (M) — HR(M) ~ HY(M(G/N)).

In fact, it is clear from Definition 21.1 that there is a similarrfactoriza,tion of the norm map
of 7' through the norm map of F for any inclusion #' C F of families in any finite group
G.

We end this section with some general change of families diagrams. Here G can be
any compact Lie group, and we assume given families 7/ C F in (. Recall (A)-(D} in
Section 17. We have a canonicé,l map EF} — EF, over §°, where S° should be thought
of as F.4¢¢,, and this gives a factorization kg — cx(ka) — ex(kg) of the F'-completion

map. This implies the foll(_)Wing factorization of Diagram (D) for 7

fri(ka) > ke — f3(ke)

frler(ka)) —— crlke) —— fri(cr(ka))

frlkg) ————s cr (ka) w3 bt (kz ).
The map EF’ — EF also induces a map from the cofibering (A) for F' to the cofibering
(A) for F. In turn, this induces a map from the entire diagram just displayed to the

diagram
frika) > kg — » f7 (k)

frlke) ———— cr(kg) ————— tr(kg)

frler (ke)) — cri{ka) —— fr(cr (ka)).
These diagrams substitute for the evident lack of functoriality of tr(ke) in F that is caused

by its simultaneous covariant and contravariant dependence on F.




These diagrams are particularly interesting when F' = {e} and thus cfp(ké) =
F(EG4,kg). The first diagram then shows that every family F gives rise to a factor-
ization of our original Diagram (D). The bottom row of .the second diagram suggests the
use of particular farnilies as a to.ol for the analysis of F(EG.., kg). For example, with F

taken to be the family of finite subgroups of @, this was the starting point of [24].




§24. Bquivariant root invariants of stable homotopy groups of spheres
We specialize to consideration of tx(Sg), where G is finite. As in Section 12, the
generalized Segal conjecture and the results of the previous section give the following

conclusion,

THEOREM 24.1. Let G be finite and let X be a CW-complex with finite skeleta. Then

A

tr(Sg)e (X) & @ 7o (EW Hy Awpr XT)
(EeF i

If X is finite, then there is an upper halt-plane spectral sequence which converges strongly
from B, = HE(X;71,(8)) to t7(Sq)+(X) and a lower half-plane spectral sequence of

differential algebras which converges strongly from E3* = H2.(X;7*(S¢)) to t£(Se)*(X).

We focus attention 6n the family F = P of all proper subgroups of G since that
seems the most interesting to us. Here, by Corollary 21.4, Ef* is annihilated by n(P).
By Examples 21.5(iii), the prime divisors of n(P) are those primes p such that the cyclic
group of order p is a quotient of G. We have tp(Sq).(X) = m.(X)}p, and the following
observation shows that this completion is the product of the integral completions at the

cited primes.

LEMMA 24.2. Let M be a Mackey functor such that M(G/H) = 0 for all proper subgroups
H. Then M(G/G)}p & M(G/G)}py-

PROOF: A(G) acts on M(G/G) through g and the proof of Proposition 21.3 shows that

the ideal of Z generated by the image of p¢ is (n{P)).

Now restrict attention to the case X = §°. Here the cohomology spectral sequence
is a reindexing of the homology spectral sequence. We shall use homological indexing to
conform with the literature. Thus, in the spectral sequence converging from HP (n,(5¢))
to tp(Sg)s, E? is annihilated by n(P) and the target is (w*),’:(p). In comparison with the

spectral sequences of Section 12, the homotopy groups of the classifying spaces BWH for
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non-trivial proper subgroups H have been shifted from the target to ingredients in the
computation of the E%-term. The previous section describes algebraic methods for the
calculation of 52,

However, what seems most interesting about the family P is the periodicity that is
implicit in the structure of EP. We have already exploited this in our study of K-theory.
Let V be the reduced régular representation of G. As noted in the proof of Lemma 19.11,
F(V) = P. Much of what we will say applies to the family F(V) associated to any

representation V', but we prefer to be specific. The cofibration sequence
S(coV)y — D{ooV )y — 8%V

is 2 model for EP, — 8% — EP. Let dimV =d and let n = d + 1 = |G].

In analogy with Example 9.6, we give EP the filtration
(24.3) SV = Epsd = Epsitt = ... = EPYHE-D) for all integers s.

We call this the “V-filtration” of EP. The subquotients are trivial except in degrees

congruent to 0 mod d, where
(24.4) EPLtNd ppstld-1 o (gV g0y A g5V o 53(§(V),) A SV

The filiration (24.3) gives rise to another spectral sequence, quite different from that
of Theorem 24.1, that converges to (m);}(,,). We shall say something about the comparison
between the two at the end of the section. By Propositions 17.2 and 17.6 and duality, we

have
tp(Sq) ~ F(EP,SEPL) 3 holim F(S*Y,SEP,) ~ holim SEP, A §79.
Note that EP, may be thought of as £=1(5%°V /5%). Define

(24.5) Y sa=EPLAS™Y
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Cand let K ~sd be the fiber of the evident map V_,4 — Y_(;-1a that is,
(24.6) K_ g =EPL AS*V ARV /8% o &2V =1 (Y /59,

The last equivalence holds because 5V /5% is a P-space. Both Y..,q and K..og are (—sd— 1)-
connected. The tower of £Ys gives rise to our new spectral sequence, and E},t = (} unless

s=0 modd when
(24.7) Bl =7l y(BK_.).
For brevity of notation, write #, for
(ﬂ*);:“,) o tr(sg)s & lim wf(Z‘Yusdj.

It is important to kéep in mind that this isomorphism relates ordinary nonequivariant
homotopy groups on the left with equivariant homotopy groups on the right. Similarly,
write X for the completion of a spectrum X at n(P).

Define the Mahowald V-filtration on #, by letting
(24.8) M(#y) = Ker(ty — 4(SY_4q)).

We let My*H () = M{(#,) for 0 < i < d, in line with the fltration (24.3). By conver-

gence, for any a € Ty, there is a unique s such that

(24.9) w € MIP(R,) - METVR).

We define the root invariant Ry (a) of o to be the set of all maps 8: §9-1 - (K_(S,H)d)G.

such that the following diagram commutes:

(K—(s+1)d)

(24.10) G

) —"’*_>(Y sd)

N
N T

S-vl)/\

L P LA N SO LIPS
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Here Ry {a) should be regarded as a subset of B (s 1)d,qt (s 1) WWE WribE | By (a)] = sd
when (24.9) holds. We have the following estimate on s, which is a generalized analog of

a theorem of Jones [28] and Miller [39].

THEOREM 24.11. For every o € fiq, |Rv(a)| is at least gd. That Is, M (#g) = #, for

s < q.Therefore B, =0 unless s 2 q. -
. sd,g+sd

Thus the g-stem is generatmg equivariant homotopy classes of dimensions at least gd
as its root invariants. It follows that E®° is concentrated in the wedge in the third octant
of the (z,y)-plane specified by -z < y < —x — (1/d)z; this wedge is on or above the
anti-diagonal —z = y and to the left of the line through the origin with slope —(d + 1)/d.
Calculational exploration should be interesting .but will be difficult. The root invariants
lie in groups wf (EK _sq)- ‘In view of the cofibration SV — S§Y /8% — S, these groups lie
in exact sequences whose other terms are of the form G(87V) for integers 7 and £. These
* are part of the RO(G)-graded stable homotopy groups of the zero sphere. Unfortunately,
| we-have few calculations and little understanding of these groups.

We next relate the V-ﬁltratibn spectral sequence that we have been discussing to
the skeletal filtration Atiyah-Hirzebruch spectral sequence of Theorem 24.1. Of course,
generalizing (22.1) and using the cellular approximation theorem, we can check that the
skeletal filtrations of any two G-CW complexes that are G-homotopy equivalent to gV
give rise to the same spectral sequence, from E, on, for the computation of (w*)Q(P).

Starting from a triangulation of S(V) as a G- CW complex, we can obtain a tnangula—
tion of 8V as a G-CW complex with two vertices and with its remaining cells of the form
G/H x ¢ with H proper and 1 <1< d (think of et as e~ x e!). Inductively, we can
triangulate S°V as a G-CW complex that contains 61V as a subcoﬁlplex. Then 5% is
contained in thé sd-skeleton of the resulting skeletal filtration of gV,

Clearly dim(VH) =[G : H)—1. Let ¢ +1 be the minimum over H € P of the indices
[G : H). Since ($V/S°) is connected for all H and is a point for H = G while SEVT g
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at least (k¢ — 1)-connected for H € P,
8(k+1)V/5kV.= SlcV A (SV/SO)

is kc-connected in the sense that all of its fixed point spaces are ke-connected. Therefore
we can start from 7'(0) = §° and inductively construct.a G-CW complex T'(oo) = UT(k)
and compatible G-homotopy equivalences T'(k) — S*¥V such that T'(k -+ 1) is obtained from
T (k) by attaching equivariant cells of dimension greater than ke. The resulting equivalence
T(c0) ~» 5%V maps the kc-skeleton of T(o0) to SV,

Thus we have two models, S°°V.aﬁd T(00), for Ep with its skeletal filtration, together

with maps

T(Oo)kcm_éskv__}(sooV)kd

that are compatible as k varies. We also have inverse cellular G-homotopy equivalences

between S®V and T'(00).

Starting from any model of EP as a G-CW ‘complex, we obtain analogs of the defini-
tions in (24.8)—(24.10). (Indeed, we can obtain such analogs for any family F.) Explicitly,
let W_, = EP, AEP~* and define the Mahowald P-filtration on 7s by
(24.12) M5(7,) = Ker(7y — 7g(EW_,)).

By convergence, for any « € T, there is a unique s such that

(24.13) @ € MB(R,) — MEYL(R,).

Let J_, be the fiber of the evident map W_, — W..,_1. Then B!, =« (LJ_,) in the

spectral sequence of Theorem 24.1. Define the root invariant Rp(a) of @ to be the set of



all maps 8 891 — (J_,-1)% such that the following diagram commutes:

(Jmsule

N
N

S—I)A

(24.14) ga-! Ay e A

Here, to ensure independence of the choice of the skeletal filtration, Rp(e) should be
regarded as a subset of B2, ..., (rather than E}. Of course, as discussed at the
beginning of the sectibn, this B term is an algebraically computable Amitsur-Dress-Tate
cohomology group. Write |Rp{c)| = s when (24.13) holds. Then Theorem 24.11 and our

comparison of filirations gives the following result.

COROLLARY 24.15. If|Rp(a)| = s, thenrd < |Ry{a)| < td, where r is maximal such that
rd < s and t is minimal such that s < te. If |Ry ()| = sd, then sc < [Rp(a)| < (s + 1)d.
Therefore, for every o € Ty, |Ry(a)| 2 ge. That is, M3(7,) = 7y for s < qc. Thus, in the

skeletal filtration spectr@l sequence, EZ, 4+s = 0 unless s 2 gc.

Here E*° is concentrated in the wedge in the third octant of the (z, y)-plane specified

by —& <y £ —z —(1/c)z; that is, the wedge is on or above the anti-diagonal ~z = y and
to the left of the line through the origin with slope —(c+1)/e.
ExAMPLES 24.16: Obviously ¢ = d if and only if P = {e}, that is, if and only if G = Z/pZ
for somé prime p. Heree=d =p—1, If G = Z[2Z, then we have only one filkration in
sight (since S(V) = G) and we recover ‘exactly the root invariant theorem of Jones and
Miller. However, our proof is technically different since we shall not use the quadratic
construction. (We have not explored the version of cup squares that is implicit in our
argument.) If G = Z/pZ, p odd, then we have four filtrations and concomitant spectral
sequences in sight, namely:

(a) The V-filtration of (24.3), withd =p —~ 1.
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(b) The analogous V'-filtration, with d = 2, where V' is any nontrivial irreducible real
representation of G; the evident analog of Theorem 24.11 is valid, by essentially the
same proof. " |

{c) The skeletal filtration of (22.1), or any of its equivalents.

{d) The L filtration studied by Miller [39] and Sadofsky [43].

By construction and by (I} in the introduction, the L-filtration is a p-local wedge summand
of the G-fixed points of the skeletal filtration, The estimate of Corollary 24.15 is in essential
agreement with that of Miller, although his refers a priori to a different filtration. We
verified above that the V-filtration is equivalent to the restriction of the skeletal filtration
to levels congfueht to zero mod p — 1, and the same argument shows that the V/-filtration
is equivalent to the restriction of the skeletal filtration to levels congruent to zero mod 2.
The V/-filtration refines the V-filtration since V is the direct sum of the (p—1)/2 distinct
nontrivial irreducible real representations V' and SV’ is p-locally G-homotopy equivalent
to SV for any.two such representations V' and V" (by 2 standard consideration of 'rth

power maps relating distinct irreducible 1-dimensional complex representations).

ExaMpPLEs 24.17: (i) For any p-group G of order p*, d = p" — 1 and ¢ = p— 1. The
sequences Gy = Z/p"Z and H, = (Z/pZ)" give rise to two sequences of spectral sequences
all of which converge to (ﬂ'*);} Perhaps a sharper version of Corollary 24.15 holds. If
not, it would seem that the V-filtration and skeletal filtration divefge more and more .as r
increases. _

(ii) For a non-abelian group G of order pq, where pandg are primes withp < ¢, d =pg-1
and ¢ = p.—- 1. We again obtain two spectral sequences that converge to (ﬂ*j;’,‘. The Ea-térm
of the skeletal filtration spectral sequence was studied in thé previous'section.l Both spectral
sequences seem to retain some dependence on ¢g. This raises the possibility that the -
primary stable homotopy groups of spheres may be influenced calculationally by interaction

with other primes through information encoded in the structure of finite groups.



§25. Proof of the root invariant theorem
The proof of Theorem 24.11 uses duality and an elementary smash power construction.

To set up the duality, define
(25.1) ARAEEES Wl CUET DU i

for any integers n and s; this is a G-spectrum that is triangulable as a finite G-CW
spectrum with cells in dimensions from ~sd to (n — 8)d — 1. For n > 0, the G-spectrum

18"V /5°) can be replaced by the G-space S(nV)4. C EP4, and the canonical map
8° — tp(Sa) = F(S°V,REPL) —» BY_y

factors through EYEZ;SM_I for n sufficiently large.
LemMA 25.2. The Spanier-Whitehead dual of Y717 is mY24 ) .

ProOF: This is an exercise from the facts that the dual of a cofibration sequence is a
cofibration sequence, the dual of a smash product is the smash product of the duals, and

the dual of SW is S~% for any W.

The following definition sets up the smash power construction.

DEFINITION 25.3. Define an injection 7 : G — I, where n = |G|, by fixing an ordering
of the elements of G. Define A, = (1 x7)A : G — G X X,,. Let X be a naive G-spectrum.
Thern-fold external smash power X () is a (G x T,)-spectrum indexed on (R°°)", where
(Ro)™ is regarded as a G-trivial G x $,-universe (33, p.344). By pullback along A, we
regard X(®) as a genuine G-spectrum indexed on the complete G-universe W, where

W =V @R is the regular representation of G

LEMMA 25.4. Let K be a based G-space and X be a naive G-spectrum.
(i) .(E?;"K )(m) (K M), where £% denotes the naive suspension G-spectrum functor
on the left and the genuine suspension G-gpectrum functor on the right and where G

acts through A, on K™,

142
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(ii) (S7)(®) 2 §"W = 575"V for any integer r.
(iil) KO A X™ & (K A X)),
(iv) Via (iii), the reduced diagonal A : K — K® induces a G-map

$: KAX® o (KA XY™,

ProoF: All but (ii) are easy to check from the explicit prespectrum.level definitions and
the general procedures described in Section 0. The case r > 0 of (i) follows from (i) and

the cage --r, r > 0, follows:
ETW( qr)(n) _ S?W A (S—-'r)(n) (Sr)(n) A (Sﬂr)(n) o g0

Now we have the following analog of Miller’s version [39] of a key observation of
Jones [28]. Our version is actually simpler than theirs since the construction just given is
congiderably simpler than the extended power (;onstfuction of [33] The reader is asked to
. beé,r with bﬁr unwillingness to introduce diﬁerént notations for space level, spectrum level
(= né,ive G-spectrum level), and genuine G-spectrum level spheres 57; we let the names

of maps dictate the intended sense of the notation.

LEMMA 25.5. Let o : §7 — S° be a map of nonequivariant spectra and let & : S¢ — §9 be
the map of genuine G-spectra that it induces. Then for any integer s and for r suﬂimenﬂy
large (dependmg on « and s), there is a commutative diagram of G-spectra

Eqnsf"- Equ(;‘+8+q)d—- 1‘

(A

o , Qb
59 > 5",

in which 6 is the (g — 1)** suspension of the dual of the canonical map S7! — YI‘:&” 1

Proo¥r: Choose r such that » + s > 0 and there is a map @ : ST — §7 of spaces which

represents c. We can take & to be the map

TAL: ST ST AT 5 8" A G 22 GO




where §~" is the genuine (—r)-sphere G-spectrurn. More conceptually, and equivalently,
@& = i, By (ii) of the previous lemmma, the'apex of the following naturality diagram is

equivalent to £45~"Y and its middle right term is equivalent to 9577,

gatr A (S-—r)(n)

0 T
SUA (ST A ST ann (etT A ST

=3

12

g ST A (ST

ahl

(89)(=)

(a)(ﬂ)

o]
<

G0 Z s (ST A ST« E(g0)(m)

Take the smash product of this diagram with S((r + s}V').. The apex then becomes
EqY_“’g:i'l and the middle right term becomes Equ(£+B+Q)d_l. The map from the resulting
diagram into the displayed diagfqm that is induced by ¢ : S({r + s)Vj+ — 89 gives the
diagram we want. The identification of 6 is a diagram chasé (and is a special case of a

precise form of equivariant Atiyah duality [33, IIL5.1]).

Proor OF THEOREM 24.11': Let s < q. We must show that the composite of o : §771 —
5-1 and the canonical map S™! — (Y_,¢)¢ is null homotopic. Let & : S9! — §~1 bhe
the map of sphere G-spectra induced by «. It is equivalent to show that the composite of
& and the canonical map of G-spectra §—1 — Y_,4 is null homotopic, and this will hold if
and only if the composite

§171 oy g1 o ylhoekdmd

is null homotopic for n sufficiently large. Since maps between spheres are self-dual, we
see by dualizing and applying Lemma 24.2 that it is equivelent to show that the dual
composite |

DI AP LR
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is null homotopie. .In turn, Lemma 24.5 (desuspended by_ g — 1) shows that this composite

is equal to the composite

L= B

Recalling (24.1), we see that the first of these maps is just
SnV/SO A S(s—n)V —_ SnV/SO A qu.

We may replace SV /5 by £S(nV),. Smashing with S~ A S(=)V  weé find that it
suffices to prove that l

[S(nV)+, 8(nV)L A S®F-aV]. 0 for s < g,

This follows trivially from the exact sequence obtained by use of the following cofibration

in the domain variabl_e:

nignv S(nV)4 — 5°.



Appendix A: Splittings of ratiomal G-gpectra for finite groups &
We here give an algebraic analysis of the rational equivariant stable category for
finite groups G, including the following analog of ‘a standard nonequivariant fact. Write

K(M,n)=X"HM for a Mackey functor M.

THEOREM A.1l. Let G be finite. Then, for rational G-spectra X, there is a natural equiv-

alence X — [[ K (x,,(X),n).

There is something to prove here. Counterexamples of Triantafillou [46] show that,
unless G is cyclic of prime power order, the conclusion is false for naive G-spectra . A coun-
terexample of Haeberly [27] shows that the conclusion is also false for genuine G-spectra
when G is the circle group, with the rationalization of KUy furnishing a counterexample.

The proof depends on two facts, one purely algebraic and the other topological. The
first is implicit in Slominska [44] and will be proven shorﬂy. We tacitly assume that G is

finite in the rest of this appendix.

ProrosiTioN A.2. In the Abelian category of rational Mackey functors, all objects are

projective and injective.

In contrast, the global projective dimension of rational coefficient systems is one if
G is cyclic of prime power order and at least two otherwise [46]. A COuntereiample of
Haeberly [27] shows that the cbnclﬁsion is also false when G is the circle group, but the
first author has shown that in this case all Mackey functors have injective dimension either

zero or one. The following result is also false for general compact Lie groups.
PROPOSITION A.3. For H C G and n #0, 1, (G/Hy) ® Q= 0.

Proor: Working rationally, we have the following standard isomorphisins:

1,(G/H:)(G/K) = (5 G/H:))
& @, (BWL xwr (G/H)F),
& o I, (WL Z{(G/H)),

146
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where the sum runs over the conjugacy classes of subgroups I of K. For the first, see
e.g. [16] or [33, V.9.1]. The second holds since G/H is discrete and the evident spectral
sequences. collapse. For n > 0, these groups are annihilated by the orders of the WL =

NL/L, and the conclusion follows.

Let M[G] denote the Abelian category of Mackey functors over G. For G-spectra X

and Y, there is an evident natural map
(4 :_[X:Y]G - H_I:IomM[G](-En(X)’En(Y))'

Since a Mackey functor is an additive contravariant functor OS — Ab, the previous result
and the Yoneda lemma give that 4 is an isomorphism when X = LFG/H, for any H.

Throwing in suspensions, we can extend 9 to a graded map
9 YY(X) = [X,Y]§ = [279X, Y]o — [T Home) (2, (E9X),,,(¥)-

It is still an isomorphism when X is an orbit. Now let ¥ be rational. We obtain the same
groups if we replace X and the x,(X£79X) by their rationalizations. Since the Mackey
functors m, (Y") are injective, the right-hand side is a cohomology theory on G-spectra X.

Clearly ¥ is a map of cohomology theories, and this already proves the following result.
THEOREM A.4. IfY is rational, then 9 is a natural isomorphism.

PrOOF OF THEOREM A.1: Take Y = [] K(z,(X),n). The inverse image under 9 of the
identity maps on the homotopy group Mackey functors of X give the required natural

equivalence X — Y.
Applied to Eilenberg-MacLane G-spectra, Theorem A.4 has the following immediate

conseguence.

COROLLARY A.5. For a Mackey functor M and a rational Mackey functor N, H, G(HM; N)
is zero if n # 0, and is Hom pq (M, N) if n = 0.
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Let A & 1o(Sc) be the Burnside Mackey functor; its value on the orbit G/H is A(H).
It plays the same role equivariantly that Z plays nonequivariantly, and Proposition A.3

gives the following result.
COROLLARY A.6. The rationalization of S¢ is H(A ® Q).

Therefore 7,(X) ® Q = I %(X; A® Q). In particular, rationa] Moore G-spectra and
rational Eilenberg-Maclane G-spectra are the same things.

In the rest of this appendix, we abbreviate A(G) = A(G)®Q. Thus A(G) is the ratio-
naliiation of fhe Grothendieck ring of finite G-sets. We have amap of rings ¢ A(Gy — Q
which sends a G-set S to |ST|. The pn .are the components of an isomorphism of rings
from A(G) to the product of copies of ¥, one for each conjugacy class of subgroups H (e.g.
[16] or [33, V§2]). This gives the complete set of orthogonal idempotents-eqy = e in A(G)
specified by g (eg) =1 and @s(eg) = 0 if J is not conjugate to H. Multiplication by the
e H induces compatible natural splittings of A(G)-modules, rational Mackey functors, and
rational G-spectra. (For the spectrum level, see [33, p:267).) In all three settings, there
are no ﬁon—zero maps eg X — e;jY unless H is conjugate to J. This gives. the following

refinements of Theorems A.1 a,pd A4
THEOREM A.7. For rational é-spectra X, there are natural equivalences
X =VgmenX = VinIl.K(enm,(X),n).
THEOREM A.8. For rational G-séectra X and Y, there are natural isomorphisms
[X,Y)o = @unlenX,enYle & @I, Homuqaylenm, (X ), enma(Y)).
Moreover, if Vo z(X) = (exm,(X))(G/H) C mp(XH), then
HomM[G}(eHEH(X),eHiﬂ(Y)) & Homy g (Vo 5a(X), Vo, 1 (¥)).

Thus the computation of maps between rational G-spectra reduces to the computa~
tion of maps between functorially associated modules over subquotient groups. The last

statement of the theorem is a special case of the following purely algebraic result.
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THEOREM A.9. For rational Mackey functors M and N, there are natural isomorphisims
HomM[G](eHM, ex N) & Homy g (Ve (M), Vi (N)),

where Vir (M) is the Q[W H)-module (e M)(G/H) C M(G/H).
Our proof of Proposition A.2 is based on the following observation.

LemMA A.10. For a given M and H, egM is projective if the conclusion of Theorem
A.9 holds for all N. Similarly, for a given N and H, ey N j's'jnjectjve if the conclusion of
Theorem A.9 holds for all M.

PROOF:_ Vu(N)isa projective and injective Q[W H]-module, by Maschke’s theorem.

We shall prove Theorem A.9 by using certain adjunctions that were constructed in
(26] and sharpened in [23, §53,6]. Henceforward, let M[G] be the category of rational
Mackey functors-over G and let Q[G] be the category of Q|G]-modules. Fix H and let
t: NH — G and ¢ : NH ~ WH be the inclusion and quotient homomorphisms. Then

there are functors

MIG] > MINE] = mpwa) s Qw

and

MIG] <= MINH] & MWH)] & Qiw H),

(The functors U7 and F were denoted L and R in [26} and e and H® in (23].) The functors
t« and ¢* are both left and right adjoint to each other. The functors U and F are also
both left and right adjoint to each other; here F' would be right but not left adjoint to
U if we were working integrally, but coincides with the left adjoint since we are working
rationally. The functors €* and e, are left and right adjoint to each other if we replace
M[NH] by its full subcategory consisting of those Mackey functors M whose transfer
méps a.: M(NH[J) - M(NH/K) are zero for all maps o:: NH/J = NH/K such that
J P H and K 5 H. They are right and left adjoint to each other if we replace M[NH]

by its full subcategory of Mackey functors M such that a* = 0 for these maps .
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Write Uy and Fg for the displayed composites Ue®s, and ¢*e,F'. By [23,3.9 and
6.3), these functors are left and right adjoint if we replace M[G] by its full subcategory
of Mackey functors M such that . = 0 for all maps a : G/J — G/H such that J is a
proper subconjugate of H; they are right and left adjoint if we replace M[G] by its full
subcategory of those Mackey functors M such that o* = 0 for these maps «. In particular,
they are both left and right adjoint to each other if we réplace MIG] by its full subcategory
M|G/H of those Mackey functors M such that M(G/J) = 0 for all proper subconjugates
J of H. These conditions are less restrictive than would be predicted from the previous
paragraph. (This sharpening is implicitly used in the proof of [26, Thm. 12], which we
shall recall shortly.) Explicitly, for a G-Mackey functor M and a WH-representation V,

UseM = M(G/H) and (FeV)(G/K) = (QUG/K)")o V)VH.

Since (FgV}(G/K) = 0 unless H is subconjugate to K, FgV is in M[G]/H.

PROOFS OF PROPOSITION A.2 AND THEOREM A.9: For a proper subconjuga,te J of H,
the idempotent ey restricts to zero in A{(J) and (eg M} (G/J) = 0. Thus ey M is in
M[G]/H . Since Ug{eg M) = Vi(M), one of the adjunctions of the previous paragraph

specializes to give
Homuqq)(FerUnen M, e N) = Homy g (Vi (M), Var (V).
Thus Theorem A.9 will hold for H and M provided that the counit
€ FHUHeHM — eg M

of the adjunction is an isomorphism, and this will also imply that eg M is projective.
For V ¢ QIWH|, UgFyV =V aid € : FgV = FygUyFgV — FgV is an isomorphism.
Therefore the following observation cdmpletes the proof for Mackey functors of the form

M=FyV.
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LEMMA A.11. Let M = FyV for a Q[W H]-module V. Then egM = M, hence ey M =0

for J not conjugate to H.
PrOOF: By {26, Prop.8], A(G) acts through g on FyV.
Now the following result completes the proofs for general M.

PROPOSITION A.12. Any rational Mackey functor M is a finite direct sum of Mackey

functors of the form FyV for varying H and V..

"Proor: By {26, Thm. 12], every M is built up by su.ccessive extensions from the FyV,
and the conclusion follows. We run through the details. Partition the set of subgroups
of G as follows. Let Sy = {e}. Inductively, let 5; consist of those subgroups which are
not in S;_; but each of whose subgroups is in S; for some 1 < j. Each Sj is closed under
conjugation, say with n; conjugacy classes. Choose one Hjy in each conjugacy class,
1 £ k < mn;. Say that M is of type (4, k) if M(G/H;z) # 0 but M{G/H; 1) = 0 for
7' < j and for § = j and k' < k. Of course, if M(G/H) =0 -.for all proper subgroups H,
then M = FgM(G/G). Inductively, fix (5, k) and assume that all Mackey functors of type
(', k") with 3/ > jor §' =j and k' > k are finite direct sums of Mackey functors F;vy,

where Vy is a WJ-module and
J € {Hjmpnli" > §' or §"=j and k" > k'}.

Let M be a Mackey functor of type (j,k) and write H = H; ;. We have a map of Mackey
functors 7 : M — FgM(G/H) which is the identity on M{(G/H); this is where we use
the sharpened adjunction cited above. The induction hypothesis applies to Coker{n) and

Ker(7), hence these are both annihilated by ez. Therefore
CHM = _(;‘HFHM(G/H) = FHM(G/H)
and 7 is an epimorphism. It is split since Fy M(G/H) is projective.

REMARK A.13: Let F be a family in . Define ex to be the sum over H € F of the

idempotents ey and let €x = 1 — ex. Since IF is the intersection over H € F of the



kernels of the pg, €xA(G) = IF. For any F-spectrum X, the map ér : X ~ X is trivial
and thus 8 X is trivial. In particular, ex8° ~ EF,, 8r80 o EF, and the cofibration
sequence EFy — S® — EF rationalizes to §° ~ ez9° Vv &£5°.

REMARK A.14: Recall from (4.4) and Section 1‘8 that we have a G-spectrum M (IF), an
F-equivalence M(IF) — Sz, and a G-map § : XF¥EF, — M(IF) over Sg. It is clear by -
ingpection that the rationalization of M (I F)is equiva,leﬁt to the construction M applied
to the rationalization of IJF. Since IF is generated ratiqna,lly By the idempotent €x, it

foliows. that the rationalization of £ is an equivalence.

There is an eari;ler, and more difﬁcult,'topolﬁgical analysis leading to some of the
conclusions that we have obtained. There is & functor ¥ from G-spectra to. W H-spectra
that generalizes the fixed point functor on G-spaces, in the sense that @ TP X ~ ‘Eﬁ a X
for based G-spaces X. On G-spectra X, one regards X as an NH-spectrum and then
deﬁnes '

o X = (EF[H| AX)H,

where F[H] is the family of subgroups of NH which do not contain H. (See {33, 11.9.8
and 9.9].) By [5] or [33, V.6.4 and 6.5], there are natural isomorphisms

(A.15) (X,efV]e = [X, e} Y|ng 2 ¥ X, el O YWy

' o ([ @H X, i oHy )W H

for G-spectra X and fatio’nal G-specira Y. In the last group, we are passing to underlying
naive W H-spectra, computing noneguivariant homotopy classes of maps, and then taking
W H-fixed points. Of course, we can replace the domain G-spectré, in the first three groups
with €§ X, e X, and eV HOH X respéctively, without changing their values,

In view of Theorem A.1 and the splitting of Y by idempotents, this implies the fol-

lowing topological analog of the algebraic analysis above.

THEOREM A.16. For rational G-spectra X and Y, there are natural isomorphisms

[X,Y]g - @(H) {[i*@HX: é*@HY]}WH
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and

X, V) = @ ) 1 {7 Hr, (X), 807 Hr ()W A,

- We leave it as an exercise for the interested reader to reconcile this result with the

more intelligible algebraic description given by Theorem A.8.



Appendix B: Generalized Atiyah-Hirzebruch speciral sequiences

We need s better understanding of the Atiyah-Hirzebruch spectral sequence than
exists in the literature. It is félklore that the AHSS for the calculation of [X, Y] can
be constructed by use of either the cellular filtration of X or the cocellular (Postnikov)
Fltration of Y. However, we know of no proof in the literature that the two resulting
spectral sequences agree. Moreover there are two different ways of constructing an exact
couple from either the filtration of X or the filtration of Y, both of which yields the same
spectral sequence but only one of which is convenient for the analysis of multiplicative
structure. More important, in our applications the relevant filirations are more complicated
than ‘the .usual cellular and cocellular ones, and various groups which vanish in the classical
situation do not vanish in our new sﬂua,tlons

In view of this, we shall here give a general discussion of spectral sequences of AHSS
type We shall use a nonequivariant notation for brevity, but all of our arguments and
results wiil apply verbatlm in the equivariant context. We fix spectra X and Y throughout
_ the discussion. We obtain spectral sequences by filtering X as a colimit or by filtering ¥~
as a limit.

We agsume given spectra X¥ together with maps ¢ : X? s Xrtland of : XP - X

guch that o1 o i? = oF for all integers p. We form
Tel X? = hocolimy—,.c X* = V(X? Alp,p + 1]4)/ (=),

where zA(p+1) & 1P(z)A(p+1) for € XP. More precisely, this point-set level description
prescfibes the prespectrum level construction spacewise, and we apply the spectrification
functor I to the result (as in §0). Wé assume that the evident induced map Tel X? — X is
an equivalence. Replacing X by Tel X? and X? by the equivalent subspectrum of Tel XP
consisting of points with real coordinate < p, we may assume without Joss of generality that
we are given an increasing sequience {X? | p € Z} of subspectra of X such that X = JXx?

and each map X? — XP*1 and X? — X is a cofibration.

154
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We are interested in only one homological speciral sequence, and we describe it first.
Let X* = X?/X*~1, We then have the following sequence of cofiberings and associated
exact couple.
(B.0) Xty XP X nxrt,

Exact couple: Dil,,q = MTprq(XPAY) and E;,q = ﬁrp+q(X_p AY).

The resulting spectral sequence is relevant to the caleulation of To(X AY) since the

natural map colim m,(X? AY) — m,(X AY) is an isomorphism by our assumption that
X = X", Itis conditionally convergent if holimy,, _oo (X AY) is trivial. This obviously
holds if X7 = x for p sufficiently srria,ll, but the special argument of Lemma 10.8 was
required to handle the equivariant situation encountered in the text. It is then strongly
convergent to m,(XAY) if certain obstruction groups W and RE® both vanish, by [7, 10.1].
The precise meaning of the italicized convergence statements, together with conditions
sufficient to ensure the vanishing of the cited obstruct_ion groups, will be recalled shortly
(in a cohomologically graded context, to which we can convert by setting ER9 = Bl
as usual).

We consider cohomology type spectral sequences in the rest of the appendix. In
addition to our filtration of X, we assume given a sequence of spectra {¥Y1]¢q € Z}

together with maps 79 : Y2 — Y9+ and 9 : Y — Y4 such that 79 o pe =~ Y for all

integers ¢. We form
Mic Y9 = holimg—, oo Y? C [TF([g, ¢ + 1], Y9),

namely the subspectrum of those tuples of maps (f9) such that n2f%(g+1) = fYq+1)
for all ¢; this_makes perfect sense with the explicit definition of function spectra J;,given in
Section 0. We have an induced map Y — Mic Y, and we assume that this miap is an
equivalence. -

In the classical situation, X? is the p-skeleton of a CW-spectrum X with its skeletal

filiration and Y7 = Y({—o0, —qg] is the (——q)th term in the Postnikov tower of a spectrum
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Y; thus Y9 = * for ¢ large if ¥ is bounded below. The unusual indexing of the Y7 is
* chosen for convenience in our present- cohomological framework.

We let Y7 be the fiber of 77 : Y9 — Y9+ and Y\Y'Y be the fiber of §7:Y - Y7, We
need no further agsumptions on the filtrations of X and Y to s;et up four spectral sequences
related to the computation of [X,YT*. All result in a standard fashion from sequences of
cofiber or fiber sequences and their associated exact couples. In each case, the three arrows,
in the order written, will be denoted i,k, and j. They induce the structure maps of the

specified exact couples.

‘(B-l)' | XP o XP 5 X o BXPTY
| Exact couple: D7 ={X 1’-_1,Y]”+‘1“1 and EPT = [X7, Y]t
(B2) X/XP™' = X/XP — X" - 5X/XP7
Exact couple: DPY = [X/X?~1 Y|Pt and BEP? = [X7, Y+
(B.3) | Y e Ve 77 e 241Yq+1;
Exact couple: DPY = [X, YIPra-1 and EDY = [X,V7je+e.
(B.4) | Y\Yq-l'l — Y\V? e 7177 « 5y \YOH,

Exact couple: D5? = [X,Y\Y9)Pt? and E5? = | X,?q]ﬁq.

The maps D — I) induced by maps i all have bidegree (—1,1), the maps B - D
induced by maps k all have bidegree (1, 0), and the maps D — F induced by maps j have
bidegree (0,0) in cases (B.1) and (B.2) and bidegree (1, ~1} in cases (B.3) and (B.4). The
reader should convince himself that this is correct: the Sp_ectrai sequences really do- begin
with their Fa-terms in cases (B.3) and (B.4).

The cofiber sequence (B.2) maps naturally to the suspension of the cofiber sequence
(B.1), with the map X7 — X being the identity and the other three maps being
boundary maps. There results a map on exact couples which is the identity on E-terms

and thus induces the identity map of spectral sequences. The reader should convince him-
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self that this too s correct: the spectral sequences really are identical despite their different
D;-terms (as Boardman fivst noted [7, Example in §9]). When studying convergence, one
looks at the maps ”

[X/XP, Y] = [X, Y] = [XP, Y]~

In favorable cases, the first induces an isomorphism on passage to colimits as p — —oo
and the sec.oﬁd induces an isomorphism on passaée to limits as p — <4-0o. The usual
construction of the AHSS fits into the context of (B.2), and we agree to write this spectral
sequence as {E,(X,Y)}; the underline is meant to indicate that the filtration of X is used
in the construction, -

Dually, the fiber sequence (B.3) maps naturally to the suspension of the fiber sequence
(B.4), with the map ¥¥ — ¥ being the identity and the other three maps being boundary
maps. There results a map of exact couples which is the identity on Ea-terms and thus
induces the identity map of spectral sequences. Here, when studying convergence, one
looks at the maps

(X, Y\Y" = [X,Y]" — [X, VO],

In favorable cases, the first induces an isomorphism on passage to colimits as ¢ — 400 and

the second induces an isomorphism on passage to limits as g — —00. The spectral sequence
of (B.4) is the one of greatest interest to us, and we agree to denote it by {E.(X,Y)}.

Boardman’s discussion of convergence [7] concentrates on the context applicable to
(B.2) and (B.4), but [7,§9] indicates how one can handle (Bl) and (B.3) compatibly. We
have introduced (B.1) and (B.3) because we shall find it convenient to use them to compare
our two genuinely different spectral sequences. That is, we shall use the exact couples of
{B.1) and (B.3) to compare spectral sequences, and we shall interpret this as a comparison
of the spectral sequences {E,(X,Y)} and {E,(X,Y)} of (B.2) and (B.4).

To be precise about convergence, we set

Dy, = limp_ooDP"? and D = colim,, _, .o, DP™P

I TN BT T S



for any given cohomologically graded exact couple (D, F). These groups are decreasingly
filtered by A
FPDo = ker(Dyo — D?) and FPD_q, = Im(D? — D_g).

DeFINITIONS B.5 (BoaRDMAN [7]). The derived spectral sequence is said to be condi-
tionally convergent if D, and lim‘;:‘,_,oo DP"=P are hoth zero for all n. It is said to be
strongly convergent if the evident natural map from the associated graded E°D_, to Eo,

is an isomorphism.,

We recall the main features of Boardman’s general study of convergence before re-

turning to our homotopical context.

THEOREM B.6 (BoOARDMAN [7, 10.1]). Consider a conditionally convergent spectral se-
quence derived from a cohomologically graded exact couple (D,E). Assume that the

following condition (w) holds and define
RERS = lim_, o, 700 & lim_, (20 BE).

Then {E,} is strongly convergent if and only if RE, = 0. Moreover, the following condi-
tion (p) is sufficient to ensure that REy, = 0.

(w) For each fixed n, there exist numbers u(k) and v(k) such that

. peuyndu v, —v+1
du.‘.v . E.u_l_.;, - Eu+'u

is zero for all u > u(k) and v > v(k).

(p) For each pair of integers (p,q), only finitely many differentials
d, : BP9 — Epima-T+l

are non-zero.

Condition (p) holds if each EP9 is finite, or if B, = Ey, for any r, or if the spectral

sequehce lies in a left or upper half plane. Condition (w) holds if {E,} lies in any half plane
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(left, right, upper, or lower); it ensures that Boardman’s whole plane obstruction groups Y&
vanish. We shall also have occasion to use the following remarkable comparison theorem
of Boardman, Its point is that a conditionally convergent spectral sequence determines

D_ even though it may fail to caleulate it.

THEOREM B.7 (BOARDMAN [7, 10.2]). Let f : (D,E) — (D',E') be a map of exact
couples, where both spectral sequences are conditi'onaﬂy convergent and satisfy condition
(w). Suppose that f : E — E., and f : REx, — RE, are isomorphisms, for example if
f: B, — B, is an isomorphism for some v. Then f: D_., — D’ 0o I8 an isomorphism of

ﬁltered graded groups.

Returning to homotopy theory, we next consider the convergence properties of the
spectral sequences {E,(X,Y)} and {E,(X,Y)} of (B2) and (B.4).-In either case, we say
that the spectral sequence is relevant if the natural map D*  — [X,Y]* is an isomorphism.

Clearly {E,(X,Y)} is relevant if and only if colimp.....oo[X?,Y]* = 0. This holds
triﬁally if X? = for p sufficiently small, but the special argument of Lemma 10.8 wag
required to handle the equivariant situation encountered in the text. By our standing
aésumption that X = UXP, we have Tel(X/X?) ~ x, and this is easily seen to imply that
{E-(X,Y)} is conditionally convergent.

Dually, {E,(X,Y)} is relevant if and only if colim,_o,[X,Y9]* = 0, and this holds
trivially if Y9 = « for q sufficiently large. It is conditionally convergent if Mic(Y\Y?) ~ x,
and this holds by our assumption that ¥ — Mic Y9 is an equivalence. The assumption
obviously holds for Postnikov towers, and Proposition 3.3 verifies it in our applications,

So far, everything has been so general that it applies to a plethora of spectral sequences
in stable homotopy theory. To identify Ep-terms and compare spectral sequences, we must
specialize. In the classical situation, X is a CW-spectrum with skeleta {X?} and X7 is a
| wedge of p-sphere spectra, while Y is a spec{;rum with Postnikov tower {Y?} and Y%is an

_ Bilenberg-MacLane spectrum K(r_y(Y), —¢). The hypotheses of the following theorem



abstract the key features of this classical situation.

THEOREM B.8. In addition to our standing hypotheses X = UX? and ¥ =~ Mic(Y'9),
assume that the foHoiw'ng three conditions hold.
(i) The spectral sequence {E.(X,Y)} is relevant, and similarly with Y replaced by Y9
or Y for any q.
(if) [?,?q]" = 0 ifn # p+q and the map Y? — YY induces an isomorphism on
[fp,?]pﬂ'_
(iii) [X7,Y9)" = 0 ifn < p + ¢ and the map Y — Y7 induces an isomorphism on x*, 7"

forn>p+gq.

Then there is a map from the derived exact couple of (B.2) to the exact couple of (B.4)

which is an isomorphism on Fy-terms and therefore induces an isomorphism of spectral se-
quences {E,.(X,Y)} — {E.(X,Y)}. Moreover, if these spectral sequences satisfy condition
(w), then the spectral sequence {E,(X,Y)} is relevant.

PROOF: Since (i) asserts that colim,,_oo[X?, Y]* = 0, it also holds with X replaced by
any of its filtered subspectra X?. By (ii) and (iil), {£-(X,Y?)} is an upper half plane
spectral sequence and {E,(X,¥")} has a single row. Therefore these spectral sequences
are strongly convefgent, and similarly with X replaced by any X?. Of course (i) and (iii)
also give that the maps ¥ — Y7 and Y* — Y7 induce isomorphisms on E}"%terms and

therefore on E,'%-terms.

In the classical case, the proof that Ex(X,Y) & E,(X,Y) is just the standard concrete
proof of the representability of ordinary cellular cohomolbgy, and an elaboration of that
proof gives a comparison of exact coubles and thus of spectral sequences. We run through
the details in order to show that our hypotheses give sufficient information.

We deduce from {E.(X?,¥")} that [X?, Y =0 forn > p +¢. This implies that

the two maps k in the following diagram are epimorphisms, and by (ii) the map i is clearly
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a monomorphism.

0
(X7, ppracs s, e
T f
X VIt L B2, Pk oy
| N
0 ' | X7, pipran,

An easy diagram chase shows that' we obtain inverse isomorphisms k=1 and i~k be-
tween [X?+L, ¥ip+e gand EPUX, 7Y, and the latter is isomorphic to E}Y(X,Y9) and

EPY(X,Y). By inspection of the map of spectral sequences
{B:(X, V7)) — {E,(X7+1,7%),
we see that
EPUXY) = [X,VIPre - [xP4] Pt

is an isomerphism. Thus we have an isomorphism E3'4(X,Y) = EDY(X,Y).

To compare D;-terms in (B.1) and (B.3), consider the following commutative diagram:

-0

[a¥)

DYFHT = X7, Yt [x7, yeptel & [y papta-t  pea

b T

Djl”q = [XP'-I, Y]p+q~1 -~ [Xp—l, Yq]p+q—1

The right map 7 is a monomorphism since [_"X“?, Y4p+a—1 = 0, by (iii). By inspection of the
map of spectral sequences {E, (X, Y9} — {E.(X?,Y9)}, we see that the arrow labeled

& is an isomorphism. Therefore the diagram displays a map f from D)? = WDy



LU S ——— e —— e

of (B.1) to D7 of (B.3). Explicitly, for x ¢ [X?,Y]pte-l, fi(z) is the unique element
of [X,Y9Pte~1 with the same image as i(z) in [X?~1,V9Pte~t, Diagram chases verify
the compatibility of these maps with the structural maps 1, j, and k of the (D3, E5) exact
couples of (B.1) and (B.3).
| We have observed that there is & map from the exact couple of (B.2) to the exact
couple of (B.1) which is an isomorphism on £y and a map from the exact couple of (B.3)
to the exact couple of (B.4) which is an isomorphism on Ep. Thus, on the (Dg, F3) level,
we have maps of exact couples from (B.2) to (B.1) to (B.3) to (B.4), all of which are
isomorphisms on Ez. This gives the desired isomorphism {ET(_}Q Y)Y} - {B(X,Y)}.
Since our standing hypotheses give that the spectral sequences of (B.2) and (B.4) are
conditionally convergent, Theorem B.7 gives that the induced map from D%, of (B.2) to
D2 of (B.4) is an isomorphism when condition (w) holds. Another diagram chase shows
that this map is compatible with the maps to [X,Y]*, hence the relevance of {E.(X,Y)}
follows from the relevance of {E,(X,Y)}. |
We must still consider multiplicative structures. The gtandard procedure is to compose

external maps with maps induced by a given diagonal map A : X — X A X and product
@:YAY =Y. If we use {E,(X,Y)}, then we must first approximate A by a map that
respects filtrations. We don’t know how to do this in our equivariant context. We get
around this by using {E,(X,Y)} instead. Here we need ¢ to be appropriately filtration
preserving, but we can just apply naturality in the unfiltered X variable.

In the study of [X,Y]* for a ring spectrum Y, the essential point is that if {Y7} is
a Postnikov tower for Y, then Y\Y+! is the connected cover Y[—g,00) of ¥ and, by
the connectivity of smash products of such covers and obstruction theory, we find that a

pairing Y AY’ — Y lifts uniquely to give a compatible system of diagrams

Y\yi+1 A YI_\yfj-]»«l' YH\Y-H'i+j~_1-1

o

=5t g

Y A?'j »Y




TATE COHOMOLOGY 163

From here, the introduction of products into the exact. couple of (B.4} is routine. Of

course, like everything else above, this applieé equally well equivariantly,
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¢ Standard notational conventions.

Homology and Cohomology are reduced,
Underlines indicate either a Mackey functor or a
filtered object.

Subscript + indicates the addition of a disjoint
basepoint.

-Superscript G denotes either G-equivariance or
G-fixed points in some senge.

Subscript G denotes either G-equivariance or quo-
tient by (7 in some sense.

Alphabetical index of definitions.

Reference is given to the last number preceding
the definition; the section titls is deemed to be
numbeéred 0. An entry “I” refers to the introduc-
tion; “A”and “B”refer to the appendices.

(E)

Eilenberg-MacLane spectrum

(F)

f-cohomology
family

fixed point spectrum
free

free spectrum
functional dual
F-calculable
F-norm sequence
F-norm pairing diagram
F-contractible
F-space

F-spectrum
F-trivial

(G-prespectrum
G-gpectrum
geometric completion spectrum

(A) 1,17.0
Amitsur-Dress cohomology 21.1 idex
Amitsur-Dress-Tate cohomology 21.1 Indexing space
Atiyah-Hirzebruch spectral sequences 10.3, 10.5, 1)
226,227
(B) 117.0 Mackey functor
) . . -
Borel cohomology 1 mmceroscope
Borel homology - I o
Burnside ringgy 4.0 naive (G-spectrum
norm sequence
(©) L.17.0 norim pairing diagram
(©) 1
¢-homology (w)
calculable 10.1 o dicit
change of universe 0.0 perloaicity )
coMackey functor . 20.3 Postm!cov filtration
cocompletion conjecture map 417,184 .potentlz:lly convergent
coefficient system 7.0 presdpetl Tum
completion at I 4.5 products
completion eonjecture map 4.6, 183 (R
complete G-universe 0.0 l)v .
conditionally convergent B.5 re et ant ¢
cyclic cohomology 14.3. root mvarian

(»)

168

1,17.0
6.0, 20.3

117.0

17.0
0.1, A.14

0.7

20.9
17.3
17.8
17.3
17.3
17.3
17.3

0.0
0.0

0.0

6.0, 21.0
34

0.0
2.3
34

Bé

16

10.4, B.O
16.0

0.0

8, 10.5

1

B.7

24.9, 24,14
B.6
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spectrum 0.0

. split : 0.2
strongly convergent B.5
suspension spectrum 0.1
Tate cohomology ' B
Tate spectrum I
Tate-Swan cohomology , 11.2
telescope 3.1
transfer : 5.3
trivial G-universe 0.0

unjverse 0.0



o Alphabetical index of notation.

An entry “® indicates that no specific reference
is appropriate.

AL family of all subgroups

Ab category of abelian groups
Ad(G) adjoint representation of &
A(G) Burnside ring

ay Buler class of V in kY

B(X,G,Y) bar construction

BP Brown-Peterson spectrum
BP<n> Johnson-Wilson spectrum with coefficients Zgpylvr, vz, , vn}
e{kg) geometric completion spectrum for kg
c(G) continuous functions from space of conjugacy classes
of closed subgroups to Z
Cl{q] category of coefficient systems
C.(X) reduced cellulax chain complex of X
C.(W) chain complex of the. “skeletally” filtered spectrum W
C. (W) Mackey functor version of Cu(W)
CS(W; N) equivariant chain complex of the filtered spectrum W
C4(W; M)  equivariant cochain complex of the filtered spectrum W
Xv (i) elassical Euler class of an orientable representation
(ii) K-theory Euler class shifted into degree zero by Bott periodicity
X " special case of (ii) in which G = T and V is the natural representation
x * 1 twisted G-cell formed from a free G-cell x and a non-equivariant cell
d - dimension of G
D(V) The unit ball in the orthogonal representation V
DX functional dual F(X, Sg) of a G-spectrum X
€ (1) neutral element of a group
(ii) inclusion §° ~-—+ SV
(iii) an iderpotent
ex idempotent in A(G) @ Q (or C(G)) with support H
ex . idempotent in A(G) ® Q (or C(G)) with support F
Ex idempotent in A(G) @ Q (or C(G)) with support complementary to 7
EX geometric realisation of the Amitsur complex for the G-set X
EF universal space for the family F
EF unreduced suspension of EF
Ef(n) term in the complete filtration
E(F,F) isotropy segment space EF . A EF
EG universal free G-space _
EG, universal free G-space with a disjoint basepoint
EG unreduced suspension of BG

21.3
7.0

9.4,20.11
20.11
20.11
20.11

16.6

19.11

15.5

14.5

0.7

*.

16.1
*

AS

21.3, A.13
213, A.13
21.0
17.0,21.0
17.0

92.1

23.2

I

1

I




(@)
IF(G)
I'F(G)

je

)
TF(@)
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term in the complete filtration
counit of an adjunction

unit of an adjunction

conjugacy classes of elements of &

image of ex in R(G) @ Q

image of éx in R(G) Q@ Q

free spectrum of kg

Z[G] — MIG] right adjoint to the forgetful functor; F'V = _U(LV)
coinduced G-gpectrum of an H-spectrum Y -

9.5

*
*

19.2

19.2
19.2

I
6.1,6.2
3.7

a family of subgroups (i.e. closed under conjugacy and passage to subgroups).

family generated by the isotropy groups of X
family of subconjugates of { in G
family of subgroups not containing a conjugate of H

family of subgroups intersecting the normal subgroup N trivially

femily of p-subgroups

family of subgroups fixing a nonzero vector in the representation V

a compact Lie group of dimension d .

the group of path components mo(@) of G

the path component of the identity element

induced G-spectrum of an H-spectrum ¥

category of G-prespectra indexed on U/

category of G-spectra indexed on U

category of naive G-spectra (= G-spectra indexed on UY)

Eilenberg-MacLane G-spectrum representing ordmary cohomology
with- coefficients in the Mackey functor M

homology of the “skeletally” filtered spectrum W

cchomology of the “skeletally” filtered spectrum W

coMackey coefficients version of H,(W;V)

Mackey coefficients version of H*(W; V)

conjugacy classes of subgroups of &

The inclusion US —s U

forgetful functor GSU — GSUC

functor GSUF — GSU building in nontrivial representations;
left adjoint to *

augmentation ideal ker{res : A(G) — A(1)}
Neex ker{res : A(G) — A(H)}
Lier imlind : A(H) — A(G)}

generic notation for a naive G-spectrum

chain map of degree d + 1 like that induced by action of @ = T or U
augmentation ideal ker{res : R(G) — R(1)}

Nuer ker{res : R(G) — R(H)}

21.0
17.0
17.0
17.0
17.0
17.0

*
*
%®

08
0.0
0.0
0.0

6.0
9.4
9.4
20.11
20.11
19.2

0.0

0.0

4.0
18.0
21.3

14.3
13.0
19.0

171



172

J'F(G)
JO(G)
JOF(G)
JOF(G)
I Sp(G)
JN

ke
&(X)

¥o(x)

K

Ka

kUq

KOg

kOg

K(n)

K(M,n)
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characters vanishing off the family F
augmentation ideal ker{res : RO(G) — RO(1)} -
Nuer ker{res : RO(G) — RO(H}}

characters vanishing off the family F
augmentation ideal ker{res : RSp(G) — RSp(l)}

191
13.0
19.1
19.9
13.0

Homological Eilenberg-MacLane G-spectrum representing ordinary homology

with coefficients in the coMackey functor N

generic notation for a G-spectrum
kg cohomology in degree n, [X A 57", kgla

k¢ homology in degree n, [S*, X Akgla

nonequivariant periodic complex K-theory

equivariant periodic complex K-theory

eqmivariant connective complex K-theory

equivariant periodic real K-theory

equivariant connective real K-theory

periodic mod p Morava K-theory

Yilenberg-MacLane spectrum for the Mackey functor M in dimension n

forgetful functor GSU — GPU

(i) spectrification functor GPU — GSU ; left adjoint to £
(ii) functor Z[G) — GSU

the tangent space at H in G/H as a representation of H
the left derived functors of I-completion

20.3

*

0.5
0.6

Thom spectrum of —a times the standard bundle on the infinite lens space

Bott class in K&(SY)

generic letter for a Mackey functor |

local cohomology spectrum for the ideal I of the Burnmde ring
cofiber of M(I) — 50

mapping microscope: holim of a sequence

mod p Moore spectrum 5° U, e!

Mahowald V-filtration

Mahowald P-filtration

mumber of generators of the cyclic group of order n

category of Mackey functors

order of the identity in F Amitsur-Dress-Tate cohomology
(i) norm element Lyeq g

(i1) generic letter for a coMackey functor

full subcategory of G-orbits G'//H in GSU®

full subcategory of G-orbits G/H, in GSU
Vth loop space functor F(SV,.) -

complete resolution of a finite group; analog for 5* or 5%
positively graded quotient of P

19.11

*

4.4
4.11
3.1

e

248

24.12
21.4
6.0

- 214
*

*

7.0

6.0
0.0

11.1,14.2
11.1,14.2
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negatively graded subcomplex of P

complete complex of F-projective Mackey functors
positively graded quotient of P(F) ' '
negatively graded subcomplex of P(F)

family of proper subgroups

mark-homomorphism A(G) — Z defined on G-sets by ¢5(X) = |X¥|

3-fixed point spectrum of a G-spectrum X
equivariant (-construction

complex representation ring

real representation ring

symplectic representation group .
alternative notation for complex representation ring
V-root invariant of o

P-r00t mvariant of ¢

zero-sphere G-spectrum .

one peint compactification of the representation V'

unit sphere of the orthogonal representation

forgetful functor M[G] ~— C[G)

functor C[G] — M[G] ; left adjoint of s*

suspension spectrum functor GT — GSU or GT — GSUC

Tate spectrum of kg

mapping telescope: hocolim of a sequence
unit circle group

category of based topological spaces

generator of HH1(BG) for G=Tor U
(i) a complete G-universe

(i) the underlying module functor M[G] — Z[G] or C[G) — 2[@)

group of unit quaternions

generic letter for a representation of @
(e M)(G/H) for a rational Mackey functor M

filtered G-spectrum whose pth subquotient is a wedge of G — p-cells

pth subquotient of J
Weyl group Ng(H)/H

- Gset [yer G/H

(1) set of G-fixed points of a G-space X

(ii) fixed point spectrum of ‘a G-spectrum X

homotopy fixed points F(£G4, X )9 of a space or spectram
quotient of a G-space or spectrum

homotopy quotient (BG4 A X)/G of a G-space or spectrum

173

11.1,14.2
22.3

22.3

22.3

17.0

Ab

Ald

0.1

F* oK %

24.13

14.2
0.0
6.0
*

*
A8

9.3
9.3,20.10
*

21.0
*

0.1
5.7
0.6
5.7
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x(n)
Y-(r;;a)d—l

Y {00, k]

2(G]
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smash power G-spectrum of a naive G-spectrum X

£-1(SY /SO) A 5~V for the reduced reguler representation V
Y with homotopy groups killed above dimension &
abbreviation or analog of Y (—oc0, —g}

category of G-modules

25.3
25.1
E3

B.O



1. Associated to a G-spectrum
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£y ¢, and t theories,

kg.

Representing spectrum (I)

175

free

| geometric completion | Tate

flkg) = ka A EG

elke) = F(EGy, ke)

{kg) 1= clke) A BG

Representing spectrum relative

to F (17)

f}'(k(;) =ka A EF,

crlkg) = P(EF,, kg)

i}'(k(;-) = c;.r(k(;) ANEF

Notes: (i) f(kg) = f'(kg) := c(ke) A EGy and fr{ke) = fr(ke) 1= cr(ke) A EF,.
(i) The columns in all subsequent tables are arranged by representing spectrum.

2. Algebraic versions.

Finite groups (11.2)

[ f-cohomology /Borel homology

Borel cohomology/c-homology

[ Tate cohomology and homology ]

AE(C; V) = H¥{Homg(£P~ @ G, V))

HE(C;V) = HA(P* @ C)@g V)

HH(C; V) = H (Homg(PY @ C, V)

HECV) = H((EP~ @ C)®¢ V)

HL(C;V) = B (Homg(P ® C, V)

BE(CV)=H((BP®C) @6 V)

Finite groups relative to F (22.4)

H3(D; M) = H*(Homos(EP; ® D, M))

HI (D M)y = H{{(P{ @ D) @05 M)

H3(D; M) = H* (Homos (Pt ® D, M))

HE(D; M) = H.((SPF © D) ®os M)

H3(D; M) = H*(Homog(Pr ® D, M))

HE(D; M) = H.((EPF ® D) ®os M)
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Circle and unit quaternion groups (14.3)

4O W) = H*(Hom(SP~ © C,W),8) | H4(C; W) = H*(Hom(P* ® C, W), 8}| H5(GiW) = H* (Hom(P & C, W), )

HZ(C;W) = H (P ® CY® W, 4) AS(C;W) = H((BP~ 8 C) o W),6) | HE([CiW) = H.(ZP @ C) o W, 6)

Notes: (i) For finite groups, V is a ZG module and C' is a complex of ZG-modules; P is a Z-graded
complex of: free ZG -modules where Py — P_; factors through Z. Then P_ is the subcomplex of P which
is concentrated in negative degrees and P+ is the quotient of P which is concentrated in non-negative degrees.
(i)  Similarly, for.a family 7, M is a Mackey functor and D is a complex of Mackey functors; Pr =
'P(F) is the complex of Mackey functors obtained by applying the Burnside funcior to the Amitsur complex
‘for the G-set X (F) = Uger G/H. The positive and negative parts are defined as before.

{iii) For the circle and quaternion groups W is a Z-module and C' is a chain complex equipped with a chain
map J of degree d so that J2 = 0 and P is the graded group Z[u,u"] with u of degree —(d + 1). The
‘differential 6 on P® C isthen defined by d=u @ J +1@4d.

3. Filtered versions (calculable X).

| (9.4, 9.5, 14.5)
[ f-cohomology /Borel homology | Borel cohomology /e-homology | Tate cohomology and homology |
H*(S°AX; V) H*(EG4 AX;V) HY(2LEG AX; V)
H(ZPEGL A X, V) HL(B4SP A X; V) H.(Z2EG AX;V)

- Relative to F (finite groups only) (9.4, 22.1)

H*(SYAX; V) HEF AX;V) | HYEZEFAX;V)

H,(S*PEF, AX; V) | H(Z S A X, V) | H(ZPEEAX; V)
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4. Theories for ordinary cohomology.

Represented theory (6.5)
[ f-cohomology /Borel homology | Borel cohomology /e-homology | Tate cohomology and homology

HYX;V) (S ~d) | By V) (2 0) S V)

HE(X;V) (2 0) HI(X;V) (< -a) | B8 (x;v)

Represented theory relative to F 207

HE(X; M) (< —d(F)) | HE(X; M) (> 0) HE(X; M)

HIGGN) (200 [ BZ(X;8) (< ~d(F)) a7 (x;N)

Remarks: (i) These are the represented theories for kg = HM in all cases with cohomology and for kg =
JN in all cases with homology. For the hornology theories with F = {e} and kG = HM there is a shift in
dimension by d as recorded in (9.8) and proved in (20.8).

(ii) The entries following the notation summarise the degrees in which the coefficients of the theories are
typically nonzero. The integer d(F) is the minimum of dimWg(H) over H € F. The picture for the Tate
theoties is easily deduced from the norm sequence.

(iil} In the case of the circle group the notation of J.D.S.Jones [29)] agrees with ours except that his-f}.',n‘ (X

is our ﬁ,?l:_l (X), his G,PI,I‘(X) is our I?Zr,l(X) and his GT(X) is our E’.’ﬁ,‘l(X) (see (14.4)),

5. Concordance.,

‘The equivalence of the various definitions 1.-4. for ordinary cohomology is proved. in the following results,
Recall that 1. and 4. are alternative notations for the represented theory, 2. is the algebraic version and 3,
is the version obtained from a topological filtration.
Finite groups
1=4123g1L

Circle group

1=4 233142,

Unit guaternion group

10.3 4.9
1l=4"= ]:
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Finite groups relative to F
WP LIE P
 Note: In all cases the complex C is the complex of cellular chains of X. If G is finite it acts on this, and
for T and U we assume that the action is cellular so that it provides the operator J.

The.equivalence of the f, ¢, and ¢ theories for TOIN and HM with M(G/e) = N(G[e}°? is proved in
(20.8). The equivalence of the theories of Part II and the theories relative to the family {e} is then clear;
further discussion surrounds (20.9). :

6. Historical Dictionary

At the prompting of the referee and almost all other readers we have adopted notation and terminology
different from that used in the first author’s earlier work and preprint versions of the present volume. We
include a dictionary for the use of those who wish to read this earlier work.

Present Ol ]
Notation | Name ' Notation | Name
elke) "geomnetric completion of k¢ || b(ka) Borel spectrum
e(kg)*(") | Borel cohomology b(ka) () | Borel cohomology
c(ka).(-) | e-homology b(k)e () | Borel homology
Fke) free spectrum of kg | clka) coBorel spectrum
F(kaY () | f-cohomology ¢(kg)* (-} | coBorel cohomology
f(kg)s(") | Borel homology ¢(kg )+ () | coBorel homology

Notes: (i) There is no change in notation for Tate spectra or their associated theories.
(i1} Familiar theories now have familiar names, and the representing spectra have descriptive names.
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