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ABSTRACT. There are two general approaches to the construction of symmetric
monoidal categories of spectra, one based on an encoding of operadic structure
in the definition of the smash product and the other based on the categorical
observation that categories of diagrams with symmetric monoidal domain are
symmetric monoidal. The first was worked out by Elmendorf, Kriz, and the
authors in the theory of “S-modules”. The second was worked out in the case
of symmetric spectra by Hovey, Shipley, and Smith and, in a general topo-
logical setting, by Schwede, Shipley, and the authors. A comparison between
symmetric spectra and S-modules was given by Schwede.

Orthogonal spectra are intermediate between symmetric spectra and S-
modules: they are defined in the same diagrammatic fashion as symmetric
spectra, but, as with S-modules, their stable weak equivalences are just the
maps that induce isomorphisms on homotopy groups. We prove that the cat-
egories of orthogonal spectra and S-modules are Quillen equivalent and that
this equivalence induces Quillen equivalences between the respective categories
of ring spectra, of modules over ring spectra, and of commutative ring spec-
tra. The equivalence is given by a functor that is closely related to an older
and more intuitive functor from orthogonal spectra to S-modules, and a com-
parison between the two leads to a precise understanding of the relationship
between the definitions of orthogonal spectra and of S-modules in terms of a
category of Thom spaces.
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There are several symmetric monoidal categories of “spectra” that are model
categories with homotopy categories equivalent to the stable homotopy category.
The most highly developed, and the first to be made rigorous, is the category .# =
Ms of S-modules of [1]. Its objects are quite complicated, but the complication
encodes computationally important information. A second such category is the
category 3. of symmetric spectra, which is due to Jeff Smith and whose rigorous
development is given in [4]. That paper is written simplicially, but a logically
independent topological treatment has since been given [7]. Symmetric spectra are
far simpler objects than S-modules, but the simplicity comes at a price: the weak
equivalences are not just the maps that induce isomorphisms on homotopy groups,
and this makes the homotopy theory of symmetric spectra quite subtle. A third
such category is the category .#.% of orthogonal spectra, which was first defined by
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the second author [8] and was fully developed in [7]. Orthogonal spectra are just as
simple to define as symmetric spectra, yet their weak equivalences are just the maps
that induce isomorphisms on homotopy groups. Thus, philosophically, orthogonal
spectra are intermediate between S-modules and symmetric spectra, enjoying some
of the best features of both.

It is proven in [7] that the categories of symmetric spectra and of orthogonal
spectra are Quillen equivalent. It is proven by Schwede in [11] that the categories
of symmetric spectra and S-modules are Quillen equivalent. However, this does not
give a satisfactory Quillen equivalence between the categories of orthogonal spectra
and S-modules since the resulting functor from orthogonal spectra to S-modules is
the composite of a right adjoint (to symmetric spectra) and a left adjoint.

We shall give a Quillen equivalence between the categories of orthogonal spectra
and S-modules such that the Quillen equivalence of [11] is the composite of the
Quillen equivalence between symmetric spectra and orthogonal spectra of [7] and
our new Quillen equivalence. Thus orthogonal spectra are mathematically as well
as philosophically intermediate between symmetric spectra and S-modules. Our
proofs will give a concrete Thom space level understanding of the relationship be-
tween orthogonal spectra and S-modules. To complete the picture, we also point
out Quillen equivalences relating coordinatized prespectra, coordinate-free prespec-
tra, and spectra to S-modules and orthogonal spectra (in §3).

To separate formalities from substance, we begin in §1 by establishing a formal
framework for constructing symmetric monoidal left adjoint functors whose domain
is a category of diagram spaces. In fact, this elementary category theory sheds new
light on the basic constructions that are studied in all work on diagram spectra.
In §2, we explain in outline how this formal theory combines with model theory to
prove the following comparison theorems. We recall the relevant model structures
and give the homotopical parts of the proofs in §3. We defer the basic construction
that gives substance to the theory to §4.

Theorem 0.1. There is a strong symmetric monoidal functor N : . — A
and a lax symmetric monoidal functor N# : # — 7. such that (N,N#) is a
Quillen equivalence between . and M. The induced equivalence of homotopy
categories preserves smash products.

Theorem 0.2. The pair (N,N#) induces a Quillen equivalence between the cate-
gories of orthogonal ring spectra and of S-algebras.

Theorem 0.3. For a cofibrant orthogonal ring spectrum R, the pair (N,N#) in-
duces a Quillen equivalence between the categories of R-modules and of NR-modules.

By [7, 12.1(iv)], the assumption that R is cofibrant results in no loss of generality.
As in [7, §13], this result implies the following one.

Corollary 0.4. For an S-algebra R, the categories of R-modules and of N# R-
modules are Quillen equivalent.

Theorem 0.5. The pair (N,N#) induces a Quillen equivalence between the cate-
gories of commutative orthogonal ring spectra and of commutative S-algebras.

Theorem 0.6. Let R be a cofibrant commutative orthogonal ring spectrum. The
categories of R-modules, R-algebras, and commutative R-algebras are Quillen equiv-
alent to the categories of NR-modules, NR-algebras, and commutative NR-algebras.
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By [7, 12.1(iv) and 15.2(ii)], the assumption that R is cofibrant results in no loss
of generality. Again, as in [7, §16], this result implies the following one.

Corollary 0.7. Let R be a commutative S-algebra. The categories of R-modules,
R-algebras, and commutative R-algebras are Quillen equivalent to the categories of
N# R-modules, N# R-algebras, and commutative N¥ R-algebras.

These last results are the crucial comparison theorems since most of the deepest
applications of structured ring and module spectra concern E..-ring spectra or,
equivalently by [1], commutative S-algebras. By [7, 22.4], commutative orthogonal
ring spectra are the same objects as commutative orthogonal FSP’s. Under the
name “.,-prespectra’, these were defined and shown to give rise to F, ring spectra
in [9]. Theorem 0.5 shows that, up to equivalence, all E,, ring spectra arise this
way. The second author has wondered since 1973 whether or not that is so.

The analogues of the results above with orthogonal spectra and S-modules re-
placed by symmetric spectra and orthogonal spectra are proven in [7]. This has the
following immediate consequence, which reproves all of the results of [11].

Theorem 0.8. The analogues of the results above with orthogonal spectra replaced
by symmetric spectra are also true.

The functor N that occurs in the results above has all of the formal and homotopi-
cal properties that one might desire. However, a quite different and considerably
more intuitive functor M from orthogonal spectra to S-modules is implicit in [9].
The functor M gives the most natural way to construct Thom spectra as commu-
tative S-algebras, and its equivariant version was used in an essential way in the
proof of the localization and completion theorem for complex cobordism given in
[2]. We define M and compare it with N in §5.

Since orthogonal spectra, like S-modules, are intrinsically coordinate-free, they
are well adapted to equivariant generalization. That is studied in [6].

It is a pleasure to thank our collaborators Brooke Shipley and Stefan Schwede.
Like Schwede’s paper [11], which gives a blueprint for some of §2 here, this paper
is an outgrowth of our joint work in [7].

1. RIGHT EXACT FUNCTORS ON CATEGORIES OF DIAGRAM SPACES

To clarify our arguments, we first give the formal structure of our construction
of the adjoint pair (N, N#) in a suitably general framework. We consider categories
2.9 of P-shaped diagrams of based spaces for some domain category 2, and we
show that, to construct left adjoint functors from 2.7 to suitable categories €, we
need only construct contravariant functors 2 — %. The proof is an exercise in
the use of representable functors and must be standard category theory, but we do
not know a convenient reference.

Let .7 be the category of based spaces and 2 be any based topological category
with a small skeleton sk2. A P-space is a continuous based functor ¥ — 7.
Let 2. be the category of P-spaces. As observed in [7, §1], the evident levelwise
constructions define limits, colimits, smash products with spaces, and function
9-spaces that give 2.7 a structure of complete and cocomplete, tensored and
cotensored, topological category. We call such a category topologically bicomplete.
We fix a topologically bicomplete category € for the rest of this section. We write
C A A for the tensor of an object C' of ¥ and a based space A. All functors are
assumed to be continuous.
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Definition 1.1. A functor between topologically cocomplete categories is right ex-
act if it commutes with colimits and tensors. For example, any functor that is a
left adjoint is right exact.

For a contravariant functor E : 2 — ¥ and a Z-space X, we have the coend

d
(1.2) E®y X :/ E(d) A X(d)
in €. Explicitly, E ®4 X is the coequalizer in € of the diagram
eNid
Va.E(e)AN2(d,e) A X(d)*; V. E(d) A X (d),
id Ae

where the wedges run over pairs of objects and objects of skZ and the parallel
arrows are wedges of smash products of identity and evaluation maps of E and X.

For an object d € 2, we have a left adjoint Fy : F — 2.7 to the functor given
by evaluation at d. If d* is defined by d*(e) = Z(d,e), then FjA = d* AN A. In
particular, F;S° = d*.

Definition 1.3. Let D = Dy : 9 — 2.7 be the evident contravariant functor
that sends d to d*.

The following observation is [7, 1.6].

Lemma 1.4. The evaluation maps Z(d,e) AN X(d) — X(e) of D-spaces X induce
a natural isomorphism of P-spaces D ®y X — X.

Together with elementary categorical observations, this has the following imme-
diate implication. It shows that (covariant) right exact functors F : 29 — €
determine and are determined by contravariant functors E : 9 — %.

Theorem 1.5. IfF: 29 — € is a right exact functor, then (FoD)®y X X FX.
Conversely, if E: 9 — € is a contravariant functor, then the functor ¥ : 9 — €
specified by FX = E ®qy X is right exact and FoD 2 [E.

Notation 1.6. Write F < F* for the correspondence between right exact functors
F: 29 — % and contravariant functors F* : 2 — €. Thus, given F, F* = FoD,
and, given F*, F = F*®4 (—). In particular, on representable Z-spaces, Fd* = F*d.

Corollary 1.7. Natural transformations between right exact functors 7 — €
determine and are determined by natural transformations between the corresponding
contravariant functors 9 — €.

Proposition 1.8. Any right ezact functor F : 2.7 — € has the right adjoint F#
specified by
(F#C)(d) = € (F*d,C)
for C €€ andd e 2. The evaluation maps
2(d,e) NE€(F*d,C) — € (F*e, C)
of the functor F# are the adjoints of the composites

enid

F*e A 2(d,e) AE(F*d,C) <% Fra A ¢(F*d, C) S C,

where € is an evaluation map of the functor F* and ( is an evaluation map of the
category € .
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Proof. We must show that
(1.9) ¢(FX,C) = 97 (X,FFC).

The description of FX as a coend implies a description of € (FX,C) as an end
constructed out of the spaces € (F*dAX (d),C). Under the adjunction isomorphisms
CFdNX(d),C)= T (X(d),¢[F"d,C)),
this end transforms to the end that specifies 2.7 (X, F#C). O

As an illustration of the definitions, we show how the prolongation and forgetful
functors studied in [7] fit into the present framework.

Example 1.10. A (covariant) functor ¢ : 2 — 2’ induces the forgetful functor
U:92' 7 — 97 that sends Y to Y o.. It also induces the contravariant functor
Dgrot: D — D'T. Let PX = (Dg 01) ®5 X. Then P is the prolongation functor
left adjoint to U.

Now let & be symmetric monoidal with product @ and unit ug. By [7, §21],
27 is symmetric monoidal with unit u¥,. We denote the smash product of 2.7
by Ag. Actually, the construction of the smash product is another simple direct
application of the present framework.

Example 1.11. We have the external smash product A : .9 X9 — (9x9)T
specified by (X AY)(d,e) = X(d) AY (e) [7, 21.1]. We also have the contravariant
functor Dg o ® : P x 9 — 9.7 . The internal smash product is given by

(1.12) XNAgY =Dgo®) ®gxg (XAY).

It is an exercise to rederive the universal property

(1.13) DT XN Y, 2) 2 (DX D)VT(XANY,Zod)
that characterizes Ay from this definition.

Proposition 1.14. Let F* : 9 — € be a strong symmetric monoidal contravari-
ant functor. Then F : 99 — € is a strong symmetric monoidal functor and
F# : € — 9.7 is a lax symmetric monoidal functor.

Proof. We are given an isomorphism A : F*uy — ug and a natural isomorphism
¢:FdAg F'e — F*(dDe).

Since F*ug = Fuy,, we may view X as an isomorphism Fuy, — ug. By (1.9) and
(1.13), we have

CEX N Y),C)2 (2T x DT)(X AY,F#C o d).
Commuting coends past smash products and using isomorphisms
(FdAX(@)NFenY(e) 2F (dde) NX(d)ANY(e)

induced by ¢, we obtain the first of the following two isomorphisms. We obtain
the second by using the tensor adjunction of ¥ and applying the defining universal
property of coends.

1%

%(/(d’e) F#(d @ e) A X(d) AY(e),C)

IR

(2T x 2T)(X NY,F#C o).
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There results a natural isomorphism FX Ay FY = F(X Ag Y), and coherence is
easily checked.

For F#. the adjoint uy — F#uy of X\ gives the unit map. Taking the smash
products of maps in € and applying isomorphisms ¢, we obtain maps

€ (F*(d),C) NE(F*(e),C") — €(F*(d D e),C Ag C')
that together define a map
F#C AF#C' — F#(C Ay C') 0 .
Using (1.13), there results a natural map
F#C Ay F#C' — F#(C Ng C7),

and coherence is again easily checked. O

2. THE PROOFS OF THE COMPARISON THEOREMS

We refer to [7] for details of the category .#.% of orthogonal spectra and to [1]
for details of the category .# = .#s of S-modules. Much of our work depends only
on basic formal properties. Both of these categories are closed symmetric monoidal
and topologically bicomplete. They are Quillen model categories, and their model
structures are compatible with their smash products. Actually, in [7], the category
of orthogonal spectra is given two model structures with the same (stable) weak
equivalences. In one of them, the sphere spectrum is cofibrant, in the other, the
“positive stable model structure”, it is not. In [7], use of the positive stable model
structure was essential to obtain an induced model structure on the category of
commutative orthogonal ring spectra. It is also essential here, since the sphere
S-module S is not cofibrant. We will review the model structures in §3.

We begin by giving a quick summary of definitions from [7], recalling how orthog-
onal spectra fit into the framework of the previous section. Let .# be the symmetric
monoidal category of finite dimensional real inner product spaces and linear iso-
metric isomorphisms. We call an .#-space an orthogonal space. The category &7
of orthogonal spaces is closed symmetric monoidal under its smash products X A Y
and function objects FI(X,Y).

The sphere orthogonal space S has Vth space the one-point compactification
SV of V; S, is a commutative monoid in .#.7. An orthogonal spectrum, or .# -
spectrum, is a (right) S s-module. The category .#.7 of orthogonal spectra is closed
symmetric monoidal. We denote its smash products and function spectra by XA Y
and F,(X,Y) (although this is not consistent with the previous section).

There is a symmetric monoidal category .#g with the same objects as .# such
that the category of Zg-spaces is isomorphic to the category of & -spectra; s
contains .# as a subcategory. The construction of .#g is given in [7, 2.1]. Its space
of morphisms Zg(V,W) is (V* A Sy)(W), where V(W) = .Z(V,W),. In §4, we
shall give a concrete alternative description of Zg in terms of Thom spaces, and we
shall construct a coherent family of cofibrant (—V)-sphere S-modules N*(V') that
give us a contravariant “negative spheres” functor N* to which we can apply the
constructions of the previous section. Note that the unit of .# is 0, the unit of ..
is S, and, as required for consistency, .#s(0, W) = SW.

Theorem 2.1. There is a strong symmetric monoidal contravariant functor N* :
s — M. If V #0, then N*(V) is a cofibrant S-module and the evaluation map

e N*(V)ASY =N*(V) A Z5(0,V) — N*(0) = S
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of the functor is a weak equivalence.

Here N*(0) = S since N* is strong symmetric monoidal. Propositions 1.8 and
1.14 give the following immediate consequence.

Theorem 2.2. Define functors N : 9.7 — M and N# . 4 —s .7 by letting
N(X) = N*®4, X and (N*M)(V) = .#(N*(V),M). Then (N,N#) is an adjoint
pair such that N is strong symmetric monoidal and N# is lax symmetric monoidal.

This gives the formal properties of N and N#, and we turn to their homotopical
properties. According to [7, A.2], to show that these functors give a Quillen equiv-
alence between .. and .#, it suffices to prove the following three results. Thus,
since its last statement is formal [3, 4.3.3], these results will prove Theorem 0.1.
We give the proofs in the next section. A functor F' : o/ — % between model
categories is said to create the weak equivalences in & if the weak equivalences in
o/ are exactly the maps f such that F'f is a weak equivalence in %, and similarly
for other classes of maps.

Lemma 2.3. The functor N# creates the weak equivalences in A .
Lemma 2.4. The functor N# preserves q-fibrations.

Proposition 2.5. The unit n: X — N#NX of the adjunction is a weak equiva-
lence for all cofibrant orthogonal spectra X .

In Lemma 2.4, we are concerned with g-fibrations of orthogonal spectra in the
positive stable model structure. To prove Theorem 0.1, we only need Proposition
2.5 for orthogonal spectra that are cofibrant in the positive stable model structure,
but we shall prove it more generally for orthogonal spectra that are cofibrant in
the stable model structure. We refer to positive cofibrant and cofibrant orthogonal
spectra to distinguish these classes.

In the rest of this section, we show that these results imply their multiplicatively
enriched versions needed to prove Theorems 0.2, 0.3, 0.5, and 0.6. That is, in all
cases, we have an adjoint pair (N,N#) such that N# creates weak equivalences
and preserves g-fibrations and the unit of the adjunction is a weak equivalence on
cofibrant objects. The one subtlety is that, to apply Proposition 2.5, we must relate
cofibrancy of multiplicatively structured orthogonal spectra with cofibrancy of their
underlying orthogonal spectra.

The proof of Theorem 0.2. The category of orthogonal ring spectra has two model
structures. The respective weak equivalences and ¢-fibrations are created in the
category of orthogonal spectra with its stable model structure or its positive stable
model structure. The category of S-algebras is a model category with weak equiv-
alences and g-fibrations created in the category of S-modules. Our claim is that
(N, N#) restricts to a Quillen equivalence relating the category of orthogonal ring
spectra with its positive stable model structure to the category of S-algebras. It
is clear from Lemmas 2.3 and 2.4 that N# creates weak equivalences and preserves
g-fibrations. We must show that 1 : R — N#NR is a weak equivalence when R
is a positive cofibrant orthogonal ring spectrum. More generally, if R is a cofibrant
orthogonal ring spectrum, then the underlying orthogonal spectrum of R is cofi-
brant (although not positive cofibrant) by [7, 12.1]. The conclusion follows from
Proposition 2.5. O
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The proof of Theorem 0.3. The category of R-modules is a model category with
weak equivalences and g-fibrations created in the category of orthogonal spectra
with its positive stable model structure. The category of NR-modules is a model
category with weak equivalences and g¢-fibrations created in the category of S-
modules. Again, it is clear that N# creates weak equivalences and preserves g-
fibrations. We must show that 1 : ¥ — N#NY is a weak equivalence when Y
is a positive cofibrant R-module. We are assuming that R is positive cofibrant
as an orthogonal ring spectrum, and it follows from [7, 12.1] that the underlying
orthogonal spectrum of a cofibrant R-module is cofibrant (although not necessarily
positive cofibrant). The conclusion follows from Proposition 2.5. O

The proof of Theorem 0.5. The category of commutative orthogonal ring spectra
has a model structure with weak equivalences and ¢-fibrations created in the cat-
egory of orthogonal spectra with its positive stable model structure [7, 15.1]. The
category of commutative S-algebras has a model structure with weak equivalences
and g-fibrations created in the category of S-modules [1, VII.4.8]. Again, it is clear
that N# creates weak equivalences and preserves ¢-fibrations, and we must prove
that n : R — N#NR is a weak equivalence when R is a cofibrant commutative
orthogonal ring spectrum. Since the underlying orthogonal spectrum of R is not
cofibrant, we must work harder here. We use the notations and results of [7, §§15,
16], where the structure of cofibrant commutative orthogonal ring spectra is an-
alyzed and the precisely analogous proof comparing commutative symmetric ring
spectra and commutative orthogonal ring spectrum is given.

We may assume that R is a CF T I-cell complex (see [7, 15.1]), where C is the
free commutative orthogonal ring spectrum functor, and we claim first that 7 is a
weak equivalence when R = CX for a positive cofibrant orthogonal spectrum X.
It suffices to prove that 5 : X /%, — N#N(X® /%) is a weak equivalence for
i > 1. On the right, N(X®) /%) = (NX)®/%;, and NX is a cofibrant S-module.
Consider the commutative diagram

ESiy Ay, X — > N#*N(ES;, Ay, X©) N#(EX;; Ay, (NX)®)

l iN#Nq iN#q

X0 /5 ————= N#*N(X ) /5;) N#(NX) @) /5,).

IR

1R

The g are the evident quotient maps, and the left and right arrows ¢ are weak
equivalences by [7, 15.5] and [1, II1.5.1]. The top map 7 is a weak equivalence by
Proposition 2.5 since an induction up the cellular filtration of EY;, the successive
subquotients of which are wedges of copies of X, A S™, shows that £, As, X @
is positive cofibrant since X (9 is positive cofibrant.

By passage to colimits, as in the analogous proof in [7, §16], the result for
general R follows from the result for a CFTI-cell complex that is constructed in
finitely many stages. We have proven the result when R requires only a single
stage, and we assume the result when R is constructed in n stages. Thus suppose
that R is constructed in n + 1 stages. Then R is a pushout (in the category
of commutative orthogonal ring spectra) of the form R, Acx CY, where R, is
constructed in n-stages and X — Y is a wedge of maps in F*I. As in the proof
of [7,15.9], R~ B(R,,,CX,CT), where T is a suitable wedge of orthogonal spectra
F,.S°. The bar construction here is the geometric realization of a proper simplicial
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orthogonal spectrum and N commutes with geometric realization. Tracing through
the cofibration sequences used in the proof of the invariance of bar constructions
in [1, X.4], we see that it suffices to show that 7 is a weak equivalence on the
commutative orthogonal ring spectrum

RoA(CX)DANCT 2R, AC(XV---VXVT)

of g-simplices for each ¢q. By the definition of CF T I-cell complexes, we see that this
smash product (= pushout) can be constructed in n-stages, hence the conclusion
follows from the induction hypothesis. O

The proof of Theorem 0.6. For a cofibrant commutative orthogonal ring spectrum
R, we must prove that the unit n : X — N#NX of the adjunction is a weak
equivalence when X is a cofibrant R-module, R-algebra, or commutative R-algebra.
For R-modules, this reduces as in [7, §16] to an application of [1, ITL.3.8], which gives
that the functor NR Ag (—) preserves weak equivalences. The case of R-algebras
follows since a cofibrant R-algebra is cofibrant as an R-module [7, 12.1]. The
case of commutative R-algebras follows from the previous proof since a cofibrant
commutative R-algebra is cofibrant as a commutative orthogonal ring spectrum. [

Remark 2.6. Consider the diagram

P
».7 IS M,

U N#

where Y..¥ is the category of symmetric spectra and U and P are the forgetful and
prolongation functors of [7] (see Example 1.10). By (4.8) below, we have

(U o N*)(M)(n) = .#((S5")™, M)

as Y,-spaces, where S;l is the canonical cofibrant (—1)-sphere in the category
of S-modules. This is the right adjoint .# — ¥.# used by Schwede [11], and
NoP is its left adjoint. Thus the adjunction studied in [11] is the composite of the
adjunctions (P, U) and (N, N#).

3. MODEL STRUCTURES AND HOMOTOPICAL PROOFS

To complete the proofs and to place our results in context, we recall the relation-
ship of #.¥ and .# to various other model categories of prespectra and spectra.
We have two categories of prespectra, coordinatized and coordinate-free. In [7],
the former was described as the category of .4 -spectra, where .4 is the discrete
category with objects n, n > 0, and it was given a stable model structure and a
positive stable model structure. We denote this category by A4°#. Then [7] gives
the following result.

Proposition 3.1. The forgetful functor U : £ — N has a left adjoint pro-
longation functor P : N/ — .7, and the pair (P,U) is a Quillen equivalence
with respect to either the stable or the positive stable model structures.

We shall focus on prespectra in the coordinate-free sense of [5, 1]. Thus a prespec-
trum X consists of based spaces X (V) and based maps o : SV =V X (V) — X (W),
where V ranges over the finite dimensional sub inner product spaces of a countably
infinite dimensional real inner product space U, which we may take to be U = R.
Let &2 denote the resulting category of prespectra. Exactly as in [7], & has stable
and positive stable model structures.
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Remark 3.2. We obtain a forgetful functor U : & — A% by restricting to
the subspaces R™ of U. We also have an underlying coordinate-free prespectrum
functor U : .#.¥ — 2. The composite of these two functors is the functor U of
Proposition 3.1. All three functors U have left adjoints P given by Example 1.10,
and Proposition 3.1 remains true with U replaced by either of our new functors U.

A prespectrum X is an Q-spectrum if its adjoint maps & : X (V) — QW =V X (W)
are weak equivalences; it is a positive 2-spectrum if these maps are weak equiva-
lences for V' # 05 it is a spectrum if these maps are homeomorphisms. Let . denote
the category of spectra. It is given a stable model structure in [1, VII§§4, 5]. The
following result is implicit in [1, 7]. We indicate the proof at the end of the section.

Proposition 3.3. The forgetful functor £ : . — P has a left adjoint spectrifica-
tion functor L : &2 — 7, and the pair (L,{) is a Quillen equivalence with respect
to the stable model structures.

Remark 3.4. This result applies to both the coordinatized and coordinate-free set-
tings. The restriction of U: & — A% to the respective subcategories of spectra
is an equivalence of categories [5, 1.2.4]; both U and its restriction to spectra are
the right adjoints of Quillen equivalences of model categories.

There is an evident underlying spectrum functor .# — .%; that is, an S-module
is a spectrum with additional structure. This functor is not the right adjoint of
a Quillen equivalence, but it is weakly equivalent to such a right adjoint. The
following result is implicit in [1], as we explain at the end of the section.

Proposition 3.5. There is a “free functor” F : ¥ — 4 that has a Tight adjoint
V: A — &, and there is a natural weak equivalence of spectra M — VM for
S-modules M. The pair (F,V) is a Quillen equivalence of stable model categories.

Thus, even before constructing N* we have Quillen equivalences relating the cat-
egories N, I, P, .S, and M, so that we know that all of our homotopy
categories are equivalent. Of course, these equivalences are much less highly struc-
tured than the one we are after since 4., &, and . are not symmetric monoidal
under their smash products. To help orient the reader, we display our Quillen
equivalences in the following (noncommutative) diagram:

NS P 57

U 0

P
ul|p VI|F
U

N
IS ————————> 4.

N7

To make our comparisons, we recall the definition of the model structures on all
of our categories. The homotopy groups of a prespectrum, spectrum, orthogonal
spectrum, or S-module are the homotopy groups of its underlying coordinatized
prespectrum. A map in any of these categories is a weak equivalence if it induces
an isomorphism of homotopy groups.

A map of spectra is a g¢-fibration if each of its component maps of spaces is
a Serre fibration, and the functor V creates the g¢-fibrations of S-modules. The
(positive) g-fibrations of prespectra or of orthogonal spectra are the (positive) level
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Serre fibrations such that certain diagrams are homotopy pullbacks [7, 9.5]; all that
we need to know about the latter condition is that it holds automatically for maps
between (positive) Q-spectra.

In all of our categories, the g-cofibrations are the maps that satisfy the LLP with
respect to the acyclic g-fibrations. Equivalently, they are the retracts of relative cell
complexes in the respective categories. These cell complexes are defined as usual in
terms of attaching maps whose domains are appropriate “spheres”. We have nth
space or Vth space evaluation functors from the categories A ., ., &, and .
to the category 7. These have left adjoint shift desuspension functors, denoted

F,.:.9 —NNY Fv:9 —I9 Fy:9 — 2, and 57 : 9 — 7.

We write F;, = Fgn in & and £ and X° = 35, in .. Obvious isomorphisms
between right adjoints imply isomorphisms between left adjoints

PF,~F, and LFy =X,

The domains of attaching maps are the F;,S? in 4.7, ., and & where, for the
positive stable model structures, we restrict to n > 0. The domains of attaching
maps are the 32°57 in . and the FX°S57 in /.

Returning to N*, we will obtain the following description of its values on objects.

Lemma 3.6. For an object V. # 0 of Z, the S-module N*(V') is non-canonically
isomorphic to FX{S°.

The subtlety in the construction of N* lies in its orthogonal functoriality. We
cannot just define N*(V') to be IFE“’/OSO, since that would not give a functor of V.
We begin our proofs with the following observation.

Lemma 3.7. For S-modules M, N#M is a positive Q-spectrum.
Proof. We have (N#M)(V) = .#(N*(V), M). For V.C W,
QV-V(NFM)Y(W) = . (S VN (W), M)
and the adjoint structure map & : N#(V) — QW=VN# (W) is induced from the

evaluation map ¢ : YW-VN*(W) — N*(V). Let V # 0. Then ¢ is a weak
equivalence between cofibrant S-modules and & is thus a weak equivalence. O

Proof of Lemma 2.3. By Lemma 3.6 and Proposition 3.5, for V' C U we have
(N*M)(V) =2 #(FEFS°, M) =2 7 (59 S°, VM) =2 7(S°, (VM)(V)) = (VM)(V),

which is weakly equivalent to M (V). Since a map of orthogonal positive Q-spectra
or of S-modules is a weak equivalence if and only if its map on Vth spaces is a
weak equivalence for V' # 0 in U, this implies that a map f of S-modules is a weak
equivalence if and only if N# f is a weak equivalence of orthogonal spectra. O

Proof of Lemma 2.4. Let f : M — N be a g¢-fibration of S-modules. We must
show that N# f is a positive ¢-fibration of orthogonal spectra. Since N# f is a map
of positive Q-spectra, we need only show that the Vth space map of N# f is a Serre
fibration for V' # 0, and it suffices to show this for V' =R", n > 0. By [1, VII.4.6],
f is a g-fibration if and only if it satisfies the RLP with respect to all maps

io : FE2CST — FR®CSI AL, .
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An easy adjunction argument from the isomorphism N*(R") =2 FX2°S% and the
fact that F and the 32° are right exact shows that

fe: A (N*(R"), M) — #(N*(R"), N)

satisfies the RLP with respect to the maps ig : CS? — C'S? A I} and is therefore
a Serre fibration. O

Remark 3.8. In principle, the specified RLP property states that f, is a based Serre
fibration, whereas what we need is that f, is a classical Serre fibration, that is, a
based map that satisfies the RLP in .7 with respect to the maps ig : Dz_ — DY AT
However, when n > 0, f, is isomorphic to the loop of a based Serre fibration, and
the loop of a based Serre fibration is a classical Serre fibration.

Proof of Proposition 2.5. We first prove that 1 : F,, A — N#*NF, A is a weak equiv-
alence for any based CW complex A; the only case we need is when A is a sphere.
Here F,, = PF,, and it suffices to prove that the adjoint map of prespectra

7: F,A — UN#*NF, A
is a weak equivalence. By a check of definitions and use of Lemma 3.6,
NF, A2 NF,S° NA=N*(R")ANA2FEPSONAZFEA.
Therefore, using Lemma 3.6 and Proposition 3.5, we have weak equivalences
(N#NF, A)(RY) = J/Z(FE(‘;OSO,FE?LOA) = y(ZgoSO,V]FE;'OA)
~ F(B60, 50 A) = (S A)(RY).

Tracing through definitions, we find that, up to homotopy, the structural maps
coincide under these weak equivalences with those of ¥2°A = LF, A and the map
7 induces the same map of homotopy groups as the unit F,,A — ¢LF,, A of the
adjunction of Lemma 3.3. Therefore 7 is a weak equivalence. By standard results
on the homotopy groups of prespectra [7, §7] and their analogues for spectra, we see
that the class of orthogonal spectra for which 7 is a weak equivalence is closed under
wedges, pushouts along h-cofibrations, sequential colimits of h-cofibrations, and
retracts. Therefore 7 is a weak equivalence for all cofibrant orthogonal spectra. [

The proofs of Propositions 3.1, 3.3, and 3.5. In each of these three propositions,
it is immediate that the right adjoint creates weak equivalences and preserves g¢-
fibrations. It remains to show that the units of the adjunctions are weak equiva-
lences when evaluated on cofibrant objects. For Proposition 3.1, this is [7, 10.3].
For Proposition 3.3, Lemma 3.9 below gives the conclusion. For Proposition 3.5,
Lemma 3.11 below gives the conclusion. O

A prespectrum X is an inclusion prespectrum if its adjoint structure maps & :
X(V) — QW=VX(W) are inclusions, and this holds when X is cofibrant. The
following result is immediate from [5, 1.2.2].

Lemma 3.9. Let X be an inclusion prespectrum. Then
LX(V) = colimy~y QY=Y X (W).

The Vth map of the unit n: X — LLX of the (L,{)-adjunction is the map from
the initial term X (V') into the colimit, and n is a weak equivalence of prespectra.



ORTHOGONAL SPECTRA AND S-MODULES 13

Remark 3.10. For later use, we note a variant. We call X a positive inclusion
prespectrum if & is an inclusion when V' # 0. The description of LX (V) is still
valid and 7 is still a weak equivalence.

The notion of a tame spectrum is defined in [1, 1.2.4]; cofibrant spectra are tame.

Lemma 3.11. For tame spectra E, the unit n: E — VFE is a weak equivalence.
For S-modules M, there is a natural weak equivalence A : M — VM.

Proof. With the notations of [1, I.4.1, 1.5.1, 1.7.1]
FE =SAyLE and VM = Fy(S,M).

The unit 7 is the composite of the homotopy equivalence n : E — LLE of [1, 1.4.6],
the weak equivalence A : LE — Fy(S,LE) of [1, 1.8.7], and the isomorphism
Fg(S,LE) = Fy(S,SAgLE) of [1, I1.2.5]. The result [1, 1.8.7] also gives the weak
equivalence A: M — VM. O

4. THE CONSTRUCTION OF THE FUNCTOR N*

We prove Theorem 2.1 here. Implicitly, we shall give two constructions of the
functor N*. The theory of S-modules is based on a functor called the twisted half-
smash product, denoted x, the definitive construction of which is due to Cole [1,
App]. The theory of orthogonal spectra is the theory of diagram spaces with domain
category Zg. Both x and .£s are defined in terms of Thom spaces associated
to spaces of linear isometries. We first define N* in terms of twisted half-smash
products. We then outline the definition of twisted half-smash products in terms of
Thom spaces and redescribe N* in those terms. That will make the connection with
the category .#5 transparent, since the morphism spaces of .5 are Thom spaces
closely related to those used to define the relevant twisted half-smash products.

Here we allow the universe U on which we index our coordinate-free prespectra
and spectra to vary. We write 2V and .#Y for the categories of prespectra and
spectra indexed on U. We have a forgetful functor ¢ : .Y — 2V with a left
adjoint spectrification functor L : 22V — #Y. We have a suspension spectrum
functor XV that is left adjoint to the zeroth space functor QV. Let SY = %V (S9).
The functors £V and QU are usually denoted £°° and Q°°, but we wish to emphasize
the choice of universe rather than its infinite dimensionality. We write ¥°° and
0> when U = R, and we then write SY = S. More generally, for a finite
dimensional sub inner product space V' of U, we have a shift desuspension functor
S0 7 — 2V denoted 5 when U = R*. It is left adjoint to evaluation at V.

For inner product spaces U and U’, let .# (U, U’) be the space of linear isometries
U — U’, not necessarily isomorphisms. It is contractible when U’ is infinite
dimensional [9, 1.3]. We have a twisted half-smash functor

JUU ) x (=) : SV — SV
whose definition we shall recall shortly. It is a “change of universe functor” that
converts spectra indexed on U to spectra indexed on U’ in a well-structured way.
Now fix U = R*® and consider the universes V @ U for V € .#. Identify V with
V®R CV ®U. In the language of [1], we define

(4.1) N*(V) =S Ag (F(VaUU)x S,2Y(8Y).

To make sense of this, we must recall some of the definitional framework of
[1]. We have the linear isometries operad . with nth space £ (n) = #(U™,U).
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The operad structure maps are given by compositions and direct sums of linear
isometries, and they specialize to give a monoid structure on Z(1), a left action
of Z(1) on Z(2), and a right action of .Z(1) x Z(1) on .£(2). For a spectrum
E e ., #(1)x E is denoted LE. The monoid structure on .Z(1) induces a monad
structure on the functor L : ¥ — ..

Definition 4.2. An L-spectrum is an algebra over the monad L. Let .#[L] denote
the category of L-spectra. The functor L takes values in L-spectra and gives the
free L-spectrum functor L : .¥ — Z[L].

By [1, I§5], we have an “operadic smash product”
(43) Eng B = .,2”(2) X 2(1)x.2(1) EAE

between L-spectra E and E’, where EAE’ is the external smash product indexed on
U? [1, 1§2]. The sphere S is an L-spectrum, and the action of .#(1) by composition
on #(V @ U,U) induces a structure of L-spectrum on .#(V ® U,U) x %%V (S°).

An L-spectrum E has a unit map A : S Ay F — FE that is always a weak
equivalence and sometimes an isomorphism [1, I.§8 and II§1]. In particular, X is an
isomorphism when E = S, when F = S Ay E’ for any L-spectrum E’, and when
E is the operadic smash product of two S-modules [1, 1.8.2, I1.1.2].

Definition 4.4. An S-module is an L-spectrum E such that A is an isomorphism.
The smash product Ag in the category .# of S-modules (denoted A earlier) is the
restriction to S-modules of Ag. The functor J: [L] — .# specified by

JE)=SAg E

carries LL-spectra to weakly equivalent S-modules. The functor F : .¥ — # of
Proposition 3.5 is the composite J o L.

We can rewrite (4.1) as
(4.5) N*(V) =J(# (Ve UU) x 2,%Y(8Y).

This makes sense of (4.1). It even makes sense when V' = {0}. Here we interpret
spectra indexed on the universe {0} as based spaces. The space .# ({0}, U) is a point,
namely the inclusion iV : {0} — U. The functor i¥ =iV x (=) : 7 — Y is
left adjoint to the zeroth space functor, hence i¥ = $V. Thus (4.5) specializes to
give N*(0) = JS and, as we have noted, A : JS — S is an isomorphism.

The evident homeomorphisms

SV VAASW W R o n(V=VISW'=W) (4 A B)
forVCV' inV®@Uand WC W in WU, induce an isomorphism
— ~ w(VeW)QU
(4.6) VAV (A) A eV (B) = U S EY (A A B)
upon spectrification, where

A c5/V®U % tyW@U N y(V@W)@U

is the external smash product. Using the formal properties [1, A.6.2 and A.6.3] of
twisted half-smash products, the canonical homeomorphism

3(2) X 2(1)x.2(1) (](V@U,U) Xj(W@U,U))gj((V@W)QQ(LU)
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given by Hopkins’ lemma [1, 1.5.4], and the associative and unital properties of A g
of [1, 1§85,8], we see that the isomorphisms (4.6) induce isomorphisms

(4.7) ¢ N* (V) Ag N* (W) — N*(V & W).

We may identify R” @ U with U™. With the notations of [1, I1.1.7], the canon-
ical cofibrant sphere S-modules are S = FS™, where S™ is the canonical sphere
spectrum. For n >0, S7" = £2°8%. Thus N*(R) = Sg' and, for n > 1,

(4.8) N*(R") = (Sg1) ™ = §gm = Fx S0,

where the middle isomorphism is only canonical up to homotopy. The first isomor-
phism is ¥,,-equivariant, which is the essential point of Remark 2.6. If dimV = n,
n > 0, then N*(V) is isomorphic to N*(R™) and is thus cofibrant. Moreover, X¢° is
isomorphic to X9°, so that Lemma 3.6 holds.

Intuitively, (4.5) gives a coordinate-free generalization of the canonical cofibrant
negative sphere S-modules used in [1]. We must still prove the contravariant func-
toriality in V' of N*(V'), check the naturality of ¢, and prove that the evaluation
maps ¢ : N*(V) A SV — N*(0) are weak equivalences. While this can be done
directly in terms of the definitions on hand, it is more illuminating to review the
definition of the half-smash product and relate it directly to the morphism spaces
of the category Zg. We introduce a category © of Thom spaces for this purpose.
Its objects will be inclusions V' C U, which we secretly think of as symbols 5 since
these objects are closely related to the functors XY used in our definition of N*.

We think of T‘I/J”VU,/ in the following definition as a slightly abbreviated notation for
the morphism space ©(Y, gv:)

Definition 4.9. Let U and U’ be finite or countably infinite dimensional real inner
product spaces. Let V and V' be finite dimensional sub inner product spaces of
U and U’. Let fqu, be the space of linear isometries f : U — U’ such that
f(V)yc V. For V.C W,let W —V denote the orthogonal complement of V' in W.
Let Egg, be the subbundle of the product bundle JVU’ VU, x V' whose points are
the pairs (f,z) such that x € V' — f(V). Let T‘T,{"I/J,, be the Thom space of Egg:, it
is obtained by applying fiberwise one-point compactification and identifying all of

the points at co. The spaces T‘I/J"[/J,/ are the morphism spaces of a based topological
Thom category © whose objects are the inclusions V' C U. Composition

(4.10) o Ty, U AT — T
is defined by (g,y)o(f,x) = (gof, g(x)+y). Points (idy, 0) give identity morphisms.

’

If ﬂg’vU// is empty, T‘I,J‘[/J, is a point. For any U and any object V' C U’,

(4.11) T = 70U, A S

The category © is symmetric monoidal with respect to direct sums of inner product
spaces. On morphism spaces, the map

. UL, Uy Uz,Uj U16U2, Ui U,
(4.12) STy, v/ Ny, vy — Tvavvievy

sends ((f1,21), (f2,22)) to (f1 ® fo,z1 + x2). Note that we have a trivialization
isomorphism of bundles
EYY x v g0 < v
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and thus an “untwisting isomorphism”
(4.13) TI NSV = g A sV

The theory of orthogonal spectra is based on the full sub-category of © whose
objects are the identity inclusions V . C V. If V' C V', then it is easily verified that

Tx‘//\‘/// = O(V')y Nowr—vy SV Y
Comparing with the definitions in [7, 2.1, 4.4], we obtain the following result.

Proposition 4.14. The full subcategory of © whose objects are the identity inclu-
sions V. C V is isomorphic as a based symmetric monoidal category to the category
Fs such that an orthogonal spectrum is a continuous based functor Ss — T .

We regard this isomorphism of categories as an identification.

In contrast, the twisted half-smash product is defined in terms of the full sub
category of © whose objects are the inclusions V' C U in which U is infinite dimen-
sional. The following definition and lemma are taken from [1, A.4.1-A.4.3].

Definition 4.15. Fix V C U and U’. Define a prespectrum T‘l/{,’g/ indexed on U’

by letting its V'th space be T‘l/{’g,l and letting its structure map for V' C W’ be
induced by passage to Thom spaces from the evident bundle map

EVY @ (W' — V') = Eg;fv,u%, — EOY
For V. C W, define a map 7 : EW*VTV[{,’T — T‘[,]’EJ/ of prespectra indexed on U’
by letting its V'th map be induced by passage to Thom spaces from the evident

bundle map
v’ U’ v’
Eyy, & (W-=V)= EVVf|yU,U’ — Eyy.

Observe that TU U is an inclusion prespectrum and define My’ uuU' _ LT (That
is, write M consmtently for Thom spectra associated to Thom prespectra T.)
Lemma 4.16. The spectrified map

Lr:sVVYMpV = oWV Ty — LV = Mgy
is an isomorphism of spectra indexed on U’.

The following is a special case of the definition of the twisted half smash product
given in [1, A.5.1].

Definition 4.17. Let E be a spectrum indexed on U. Define
I (U, U") x E = colimy MUY A EV

where the colimit (in V") is taken over the maps

MUY ANBV 2V VMY A BV = MGV ASYVEY — MY A EW
induced by the structure maps of F.

The following result of Cole [1, A.3.9] is pivotal.
Proposition 4.18. For based spaces A, there is a natural isomorphism

SOV xSYA= MPY A A

of spectra indexed on U’.



ORTHOGONAL SPECTRA AND S-MODULES 17

The proof is simply the observation that, in this case, the defining colimit stabi-
lizes at the Vth stage. Returning to the fixed choice of U = R™ and taking 4 = S°,
this gives the alternative description

(4.19) N*(V) = JMy 297,

We regard this isomorphism as an identification and use it to show the required
functoriality of the N*(V).

Definition 4.20. Tensoring linear isometries V' — W with idy, we obtain a map
W T“//VV“// — T&{?{,U’W®U. The evaluation maps N*(W) A Zg(W, V) — N*(V) of
the contravariant functor N* are defined to be the maps
id
JMxYVV,G_gU’U A T\‘//VVVV id Ap JMVV%@EU,U A T&%@W@U
=~ JL(Ty 20U ATy RTEY)

JL(0) JL(T“//@)U,U) _ JM‘X//EyU,U

—

induced by composition in the category ©.

The naturality of the maps ¢ of (4.7) is now checked by rewriting these maps in
terms of Thom complexes, using (4.12). Finally, we have the following lemma.

Lemma 4.21. The evaluation map ¢ : N*(V) A SV — N*(0) = S of the functor
N* is a weak equivalence. When V =R, ¢ factors as the composite of the canonical
isomorphism N*(R)AS* =2 Sg and the canonical cofibrant approzimation S5 — S.

Proof. Using the untwisting isomorphisms
Tyl ASY = gy 2PY A sV
and applying L, we obtain an isomorphism of L-spectra
MyEPYASY = Z(VRU,U) L AS.
Applying J and using JS = S, we find by (4.19) that
(4.22) N*WVASY 2J(F(VRUU)L AS)= I(VRUU); AS.

Under this isomorphism, the evaluation map corresponds to the homotopy equiva-
lence induced by the evident homotopy equivalence .#(V @ U,U); — S°. When
V=R, LS = #(1)+ A S and the isomorphism just given is the cited canonical
isomorphism N*(R) A St = Sg. O

5. THE FUNCTOR M AND ITS COMPARISON WITH N

We begin with the underlying prespectrum and spectrification functors:

(5.1) TS _u P _L_ 7
The functor M is the composite of the following three functors:
(5.2) g7 Ve gL L gL - .

The categories &[] and [L] are the categories of L-prespectra and L-spectra.
We have already indicated what IL-spectra are, and we shall define LL-prespectra
shortly. The functors U and L in (5.2) are restrictions of those of (5.1), and the
functor J is specified in Definition 4.4. Thus, to construct M, we must define L-
prespectra and show that the functors U and L induce functors from orthogonal
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spectra to L-prespectra and from L-prespectra to L-spectra. The arguments are
already implicit in [9].

Definition 5.3. For a prespectrum X and a linear isometry f : U — U, define a
prespectrum f*X by (f*X)(V) = X(fV), with structure maps

i f o
X(fV) AWV HAS x () A SFW=V) T X(fIV).
Observe that f*X is a spectrum if X is a spectrum.

Definition 5.4. An L-prespectrum is a prespectrum X together with maps £(f) :
X — f*X of prespectra for all linear isometries f : U — U such that £(id) = id,

E(f)o&(f) =&(f o f), and the function
€Ty AX(V) — X(W)

specified by
§((f,w), x)) = o(§(f)(x), w)

is a continuous.

In Definition 4.2, we defined a L-spectrum to be an algebra over the monad
L. Inspection of the construction of twisted half smash products in §4 (compare
[10, XXII.5.3]) gives the following consistency statement. While this equivalence of
definitions is not difficult, we emphasize that it is central to the mathematics: it
converts structures that are defined one isometry at a time into structures that are
defined globally in terms of spaces of isometries.

Lemma 5.5. An LL-spectrum is an LL-prespectrum that is a spectrum.
Lemma 5.6. The functor L : & — . induces a functor Z[L] — Z[L].

Proof. For a linear isometry f : U — U, the functor f* : & — & and its
restriction f* :.¥ — % have left adjoints f,. The functor f, on spectra is defined
in terms of the functor f. on prespectra by f. = Lf.¢ [5, 1I§1]. Let X be an L-
prespectrum. The map £(f) has an adjoint map f.X — X; applying L, we obtain
amap f,LX — LX, and its adjoint gives an induced map &(f) : LX — f*LX.
The properties £(id) = id and &(f' o f) = &(f') o £(f) are inherited from their
prespectrum level analogues. Since the functor L is continuous and commutes with
smash products with spaces, the continuity and equivariance condition on ¢ in
Definition 5.4 are also inherited by LX. O

Lemma 5.7. The functor U: . — P takes values in P[L).

Proof. We obtain £(f) : X — f*X by applying the functoriality of X and the
naturality of o to the restrictions of linear isometries f : U — U to linear isometric
isomorphisms f : V — f(V) for indexing spaces V. It is clear by functoriality that
E(id) =idand &(f'o f) = &(f") o&(f). The continuity and equivariance condition on
¢ in Definition 5.4 follow from the continuity, naturality and equivariance of . [J

Remark 5.8. For general L-prespectra, the map &(f) : X(V) — X (fV) may de-
pend on the linear isometry f : U — U, not just on its restriction V. — f(V). For
those L-prespectra that come from orthogonal spectra, this map does depend solely
on the restriction of f. For this reason, there is no obvious functor Z[L] — #.7.

The following lemmas give the basic formal properties of the functor M.
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Lemma 5.9. The functor M is right exact.

Proof. The functors U, L, and J are each right exact. This is obvious for U from
the spacewise specification of colimits and smash products with based spaces, and
it holds for L and J since these functors are left adjoints. O

Lemma 5.10. There is a canonical isomorphism X : M(S,) — S.

Proof. Clearly U(S.«) is the usual sphere prespectrum and thus S = LU(S ). As
we have already used, JS = S by [1, 1.8.2]. O

Lemma 5.11. The functor M is lax symmetric monoidal.

Proof. We have MlS » = S, and we must construct a natural map
¢ M(X) As M(X') — M(X Ay X7)
for orthogonal spectra X and X’. The functor J is strong symmetric monoidal, so
(JE)As (JE') = J(EAg E')
for L-spectra F and E’. Thus it suffices to construct a map of L-spectra
¢: LU(X) Ay LU(X') — LU(X Ay X'),
and ¢ is obtained by passage to coequalizers from a map
£: 4(2)x LUX)ALU(X') — LUX Ay X7).

To construct £, it suffices to construct maps

&(f) s LU(X)(V) A LUX) (V') — LU(X Ay X')(f(V & V')

for linear isometries f € £ (2) such that the £(f) satisfy analogs of the conditions
in Definition 5.4 [10, XXII.5.3]. The functoriality of X and X’ gives maps

XWV)ANX'(V') — X(f(V)) AX'(F(V)).
The universal property (1.13) that relates the external and internal smash product
of orthogonal spectra gives a map of (Fg x Zg)-spaces

XAX — (X Ay X')od,
and this gives maps
XN AX'(f(V) — (X Ay XDN(f(V V).

We obtain the required maps £(f) from the composites

XWVAX'(V) — (X As X)(f(VEV)

by passing to prespectra and then to spectra, as in the proof of Lemma 5.6. The
coherence properties of the maps ¢ obtained from these maps & are shown by formal
verifications from the properties of the various smash products. O

Turning to homotopical properties, we have the following observation. Recall
Remark 3.10.

Lemma 5.12. If X is a positive inclusion orthogonal spectrum, then there are
natural isomorphisms
7 (X) = 7, (M(X)).

Proof. We have a natural weak equivalence A : M(X) = JLU(X) — LU(X) for
any X, and the unit map 7 : UX — (LU(X) is also a weak equivalence. O



20 M.A. MANDELL AND J.P. MAY

Now the following theorem compares M and N.
Theorem 5.13. There is a symmetric monoidal natural transformation
a:N—M
such that o : NX — MX is a weak equivalence if X is cofibrant.

Proof. Recall the definition M* = Mo Dy, : £ — .# (see Definition 1.3 and
Notation 1.6). By Corollary 1.7, to construct «, it suffices to construct a natural
transformation a* : N* — M*. Thus consider the orthogonal spectra V* specified
by V*(W) = Z5(V,W). By definition, M*V = MV* = JLUV*. By Proposition
4.14, for W C U,

UV (W) = Ty
For V.C W C Z, the structural map agrees under this isomorphism with
@ Ty ANSEW = T NTO 70 — T 7.

We obtain a map of Thom spaces T“/f %,U’U — T“,/VV“,/ by restricting to V' the linear
isometries f : V@ U — U such that f(V) C W. These maps define a map of
prespectra T“//E)U’U — UV*. Applying JL and using (4.19), there results a map of
S-modules

a* :NY(V) = JLTy ®YY — JLUV* = M*(V).

It is an exercise to verify from Proposition 4.14 and the definitions that these maps
specify a natural transformation that is compatible with smash products. Using
Theorem 1.5, define

a=a" @ id: NX=N"®4 X — M ®,, X =MX.

Then « is a symmetric monoidal natural transformation, and it remains to prove
that a : NX — MJX is a weak equivalence if X is cofibrant. It suffices to assume
that X is an Fl-cell complex (see [7, §6]). Since M and N are right exact, it
follows by the usual induction up the cellular filtration of X, using commutations
with suspension, wedges, pushouts, and colimits, that it suffices to prove that «
is a weak equivalence when X = V*. In this case, a reduces to a*. Again by
suspension, it suffices to prove that

»War: ZVYNY(V) — 2VYM*(V)

is a weak equivalence. We have an untwisting isomorphism (4.22) for the source of
YV a* and an analogous isomorphism

M(V)ASY = 7(V,U)L NS

for its target. Under these isomorphisms, ¥V o* is the smash product with S of the
map J(VeU,U) — #(V,U) induced by restriction of linear isometries, and this
map is a homotopy equivalence since its source and target are contractible. O

Remark 5.14. By Proposition 1.8, the functor M has right adjoint M#. However,
M does not appear to preserve cofibrant objects and does not appear to be part of
a Quillen equivalence.
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