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E∞ ring spaces

OPERAD: Σj-spaces O(j), O(0) = {∗}
(basepts), id ∈ O(1) (identity operation),

γ : O(k)×O(j1)×· · ·×O(jk) −→ O(j1+· · ·+jk).

Associative, unital, equivariant.

O-space X :

θ : O(j) ×Xj −→ X.

OPERAD PAIR: ‘Additive’, ‘multiplicative’
operads C , G ,

λ : G (k)×C (j1)×· · ·×C (jk) −→ C (j1 · · · jk).

Distributive, unital, equivariant, nullary.

(C ,G )-space: C -space and G -space X

G (k) × C (j1) ×Xj1 × · · · × C (jk) ×Xjkid×θk//

ξ
��

G (k) ×Xk

ξ
��

C (j1 · · · jk) ×Xj1···jk
θ

//X

ξ on left induced from λ and ξ on X .
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Monadic reinterpretation

Monad O in T = based spaces
O-spaces ∼= O-algebras.

OX =
∐

O(j) ×Σj X
j/(∼)

∼= basepoint identifications

(C ,G ): G ‘acts’ on C;

C induces a monad on G[T ],

CG becomes a monad on T .

Isomorphic categories:

(C ,G ) − spaces

C − algebras in G[T ]

CG− algebras in T .
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Lewis May spectra; QX

U = R
∞; V ⊂ W ⊂ U fin dim.

Prepectrum T : TV −→ ΩW−V TW

Spectrum E: EV
∼=
−→ ΩW−VEW

Spectrification L, forgetful ℓ:

S (LT,E) ∼= P(T, ℓE)

P({ΣVX}, T ) ∼= T (X, T0)

Σ∞X = L{ΣVX} Ω∞E = E0.

S (Σ∞X,E) ∼= T (X,Ω∞E)

QX = colim ΩVΣVX = Ω∞Σ∞X
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Approximation Theorem

There is a map of monads

α : C −→ Q

on T such that

α : CX −→ QX

is a group completion for all X , hence a
weak equivalence for all connected X .

Canonical operad pair

Linear isometries operad L .

L (j) = I (U j, U )

L acts on the Steiner operad C , a variant
of the infinite little cubes operad.

C acts on Ω∞E; α is the composite

CX
Cη

//CQX Cθ //QX.

L and C are E∞ operads: their jth spaces
are Σj-free and contractible.
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E∞ ring spectra

External smash products T ⊼ T ′, E ⊼ E ′:

(T ⊼ T ′)(V, V ′) = TV ∧ T ′V ′

(E ⊼ E ′) = L(ℓE ⊼ ℓE ′)

T [j]: external j-fold smash power.

f : U −→ U ′ induces f∗ : P(U ′) −→ P(U ).

(f∗T ′)(V ) = T ′(fV )

Restricts to f∗ : S (U ′) −→ S (U ).
Left adjoints f∗ on P , f∗ = Lf∗ℓ on S .

L -prespectrum T : maps of prespectra

ξj(f) : f∗T
[j] −→ T

for all f ∈ L (j); suitably continuous and
compatible with operad structure on L .

L (j) ⋉ T [j] −→ T.

L (j) ⋉ E [j] −→ E.
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Monadic reinterpretation; Ω∞

Monad L+ on T wrt ∧ rather than ×:

L+X = ∨j≥0 L (j)+ ∧Σj X
(j).

Monad L+ on S analogously:

L+E = ∨j≥0 L (j) ⋉Σj E
[j].

L+Σ∞X ∼= Σ∞L+X

S (Σ∞X,E) ∼= T (X,Ω∞E)

induces

L+[S ](Σ∞Y,R) ∼= L+[T ](Y,Ω∞R).
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• The monad Q on T induces a monad Q
on L+[T ]; for an L -spectrum R, Ω∞R is
a Q-algebra, hence a C-algebra, in L+[T ].

• Therefore Ω∞R is an E∞ ring space.

• The 1-component and unit components
SL1R and GL1R of Ω∞R are L -spaces.

• Therefore SL1R and GL1R are the 0th

spaces of spectra sl1R and gl1R.
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Orientation theory

F (X, Y ): based maps X −→ Y

◦ : F (Y, Z) × F (X, Y ) −→ F (X,Z)

E ∈ S , E0
∼= ΩVEV for V ⊂ U = R

∞.

◦ : F (SV , EV )×F (SV , SV ) −→ F (SV , EV )

E0 × ΩVΣVS0 −→ E0

R a ring spectrum. 1970’s notations:

SF = SL1S F = GL1S

SFR = SL1R FR = GL1R
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Think of F as a functor I −→ monoids:

FV = hAut(SV ) ⊂ F (SV , SV )

G an I -monoid (or group) mapping to F :

GV ×GV −→ GV GV −→ FV

SGV ×SGV −→ SGV SGV −→ SFV

B(FR,GV, SV ) → B(FR,GV, ∗) ≡ B(GV ;R)

(or with FR, GV replaced by SFR, SGV )

Classifying spaces for R-oriented V -sphere
bundles, or with preassignedHZ-orientation.

Pass to colimits. Get classifying spaces

B(G;R) B(SG;R)

for stable R-oriented sphere bundles.
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SG //

��

SFR //

��

B(SG;R)

��

//BSG

��

G //FR //

��

B(G;R) //

��

BG

G //π0(R)× //B(G;π0R) //BG

PUNCH LINE: IfR is anE∞ ring spectrum,
this is a diagram of L -spaces, hence has an
associated diagram of connective spectra.

Universal obstruction to R-orientability:

w : BSG −→ BSFR = BSGL1R

E.g: G = O or G = F , R = kO:

w = w2 : BSF −→ BO⊗
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Theorem 1. At p > 2,

BSTOP ≃ B(SF ; kO)

as E∞-spaces: equivalent spectra.

Theorem 2. At p > 2,

MSTOP ≃M(SF ; kO)

as E∞-ring spectra.

BCokerJ , MCokerJ : Can compute!!!
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Algebraic and topological K-theory

KR ≡ EBG LR

G LR =
∐

n≥0

GL(n,R)

E is the BLACK BOX functor

Fix a prime q.

Brauer lift (Quillen, plus May-Tornehave):

Theorem 3. Completed away from q, KF̄q

and kU are equivalent ring spectra. For
r = qa, Frobenius and Adams agree:

KF̄q
φr

//

≃
��

KF̄q

≃
��

kU ψr
//kU

Multiplicative Brauer lift (May-Tornehave):

Theorem 4. Completed away from q, sl1KF̄q

and sl1KU are equivalent spectra.

sl1KUp ≃ K(Zp, 2) × bsup
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Complete at p > 2, p 6= q.
Let r = qa be a unit mod p2.

Write bR for the connected cover of KR.

KFr
//

≃
��

KF̄q
φr−1

//

≃
��

bR
≃

��

j //kU ψr−1
// bU

Theorem 5. There is a composite
“exponential equivalence”

bFr −→ sl1S −→ sl1Fr

So sl1S splits. Infinite loop space splitting

SF ≃ J × CokerJ.

As infinite loop spaces,

B Coker J ≃ B(SF ;KFr)

BO×B Coker J ≃ B(SF ; kO) ≃ B(SF ;KF̄q).
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Additive recognition principle

Theorem 6. For a C -space X, define

EX = B(Σ∞, C,X).

EX is connective. There is a diagram of
maps of C-spaces

X B(C,C,X)εoo Bα //B(Q,C,X)
ζ

//Ω∞EX.

ε is a homotopy equivalence, inverse η;
ζ is a weak equivalence; Bα is a group
completion. Therefore the composite

η : X −→ Ω∞EX

is a group completion. It is a weak equiv-
alence if X is grouplike.
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For a spectrum Y , there is a composite
map of spectra

ε : EΩ∞Y Bα //B(Σ∞, Q,Ω∞Y ) ε //Y.

Apply Ω∞. The maps of C -spaces

Ω∞EΩ∞Y Ω∞Bα //Ω∞B(Σ∞, Q,Ω∞Y )Ω
∞ε//Ω∞Y

are weak equivalences. Therefore ε is a
weak equivalence if Y is connective.

Conclusion: E and Ω∞ induce an equiv-
alence between the homotopy category of
grouplike E∞ spaces and the homotopy
category of connective spectra.

[Can replace by C by C ×L , C ×D , etc.]
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Multiplicative recognition principle

Theorem 7. For a (C ,L )-space X,

EX = B(Σ∞, C,X)

is a connective L -spectrum. All maps in
the diagram

X B(C,C,X)εoo Bα //B(Q,C,X)
ζ

//Ω∞EX

are maps of (C ,L )-spaces. Therefore the
composite

η : X −→ Ω∞EX

is a ring completion.
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For an L -spectrum Y , the maps

ε : EΩ∞Y Bα //B(Σ∞, Q,Ω∞Y ) ε //Y

are maps of L -spectra and the maps

Ω∞EΩ∞Y Ω∞Bα //Ω∞B(Σ∞, Q,Ω∞Y )Ω
∞ε//Ω∞Y

are maps of (C ,L )-spaces.

Conclusion: E and Ω∞ induce an equiv-
alence between the homotopy category of
ringlike E∞ ring spaces and the homotopy
category of connective E∞ ring spectra.
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Localizations of unit spectra

Let X be an E∞ ring space, e.g. Ω∞R.

Let N = {0, 1, 2, · · · } ⊂ π0X .

Let M ⊂ N be a multiplicative subset,
for example {pi} or {n|(n, p) = 1}.

Let XM =
∐
Xm, union of components.

Mild homological convergence condition.

Theorem 8. As an E∞ space, the local-
ization of SL1E = Ω∞

1 E(X, θ) at M is
the basepoint component Ω∞

1 E(XM , ξ).

E(X, θ) is defined using X as a C -space.
The localizations of SL1E(X) depend only
on X as an L -space.

Let X = Ω∞R. E(X, θ) is the connective
cover of R, SL1E(X) is SL1R.

Corollary 9. For an E∞ ring spectrum
R, sl1(R)[M−1] is the connected cover of
E((Ω∞R)M , ξ).
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Lewis conundrum

Everything enriched over based spaces (or
simplicial sets) in the following hypotheses.

Theorem 10 (Lewis). Let S satisfy

(i) S is closed symmetric monoidal.
Have functors ∧ and F such that

S (E ∧ E ′, E ′′) ∼= S (E,F (E ′, E ′′)).

(ii) Have functors Σ∞ and Ω∞ such that

S (Σ∞X,E) ∼= T (X,Ω∞E).

(iii) The unit for ∧ is S ≡ Σ∞S0.

Let E be a commutative monoid in S

(e.g. S). Then SL1(E) is a product of
Eilenberg-MacLane spaces.

Corollary 11. No model structure on S

with S cofibrant can give the right HoS .
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EKMM S-modules

Quillen equivalences:

?> =<
89 :;P

L

��
?> =<
89 :;S

L

��

ℓ

OO

?> =<

89 :;S [L]

S∧L (−)

��

ℓ

OO

?> =<
89 :;MS

FL (S,−)

OO

Monad L: LE = L (1) ⋉E. η : E
≃
−→ LE.

L-spectrum: action LE −→ E; e.g. LE.

E ∧L E ′ ≡ L (2) ⋉L (1)×L (1) E ⊼ E ′

Σ∞(X ∧ Y ) ∼= Σ∞X ∧L Σ∞Y.

Associative and commutative.

τ : E ∧L E ′ ∼= E ′ ∧L E.
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Unit weak equivalence λ : S ∧L E
≃
−→ E.

E is an S-module if λ is an isomorphism.

Examples: Σ∞X , S ∧L E.

S [L] is the category of L-spectra.

MS is the category of S-modules.

Definition 12. A commutative ‘monoid’
in S [L] is an L-spectrum R with a unit
map η : S −→ R and a commutative and
associative product φ : R∧LR −→ R such
that the following diagram commutes.

S ∧L R
η∧id

//

λ
))TTTTTTTTTTTTTTTTTTT

R ∧L R
φ

��

R ∧L S
id∧η

oo

λτ
uujjjjjjjjjjjjjjjjjjj

R

Theorem 13. The category of commu-
tative monoids in S [L] is isomorphic to
the category of E∞ ring spectra.
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E ∧S E
′ = E ∧L E ′

Σ∞(X ∧ Y ) ∼= Σ∞X ∧S Σ∞Y.

MS is closed symmetric monoidal, unit S.

Definition 14. A commutative S-algebra
is a commutative monoid in MS. That
is, it is an E∞ ring spectrum which is an
S-module.

If R is an E∞ ring spectrum, then S∧L R is
a weakly equivalent commutative S-algebra.

S = Σ∞S0 is cofibrant in S ; LS, S∧L LS

are cofibrant approximations in S [L], MS.

Adjunctions in S , S [L], MS:

(Σ∞,Ω∞)

(LΣ∞,Ω∞ℓ)

(S ∧L LΣ∞, FL (S,Ω∞ℓ))
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Diagram spectra

'& %$

 ! "#P

P

��:
::

::
::

::
::

::
::

P

����
��

��
��

��
��

��
�

'& %$

 ! "#ΣS
P //

P

&&LLLLLLLLLLLLLLLLLLLLLL

U

BB��������������� '& %$

 ! "#I S
U

oo

P

��

U

]]:::::::::::::::

'& %$

 ! "#FT
P //'& %$

 ! "#W T
U

oo

U

ffLLLLLLLLLLLLLLLLLLLLLL

U

OO

Lexicon:

• P is the category of N -spectra,
or (coordinatized) prespectra.

• ΣS is the category of Σ-spectra,
or symmetric spectra.

• I S is the category of I -spectra,
or orthogonal spectra.

• FT is the category of F -spaces,
or Γ-spaces.

• W T is the category of W -spaces.
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D -spectra for diagram of domains D :

'& %$

 ! "#N

""EE
EE

EE
EE

||zz
zz

zz
zz

z

'& %$

 ! "#Σ //

((RRRRRRRRRRRRRRRRRRR
'& %$

 ! "#I

��
'& %$

 ! "#F //'& %$

 ! "#W

Start with D -spaces, DT . For a sphere
functor S : D −→ T with smash products,
S-modules are D -spectra. No distinction
when D = F or D = W : DT = DS .

Lexicon:

• N is the category of natural numbers.
• Σ is the category of symmetric groups.
• I is the category of linear isometric iso’s.
• F is the category of finite based sets.
• W is the category of based spaces that are

homeomorphic to finite CW complexes.

Forgetful, prolongation functors U, P.
All (P,U) are Quillen equivalences.
(Connective spectra only for FT ).
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For D -spaces T and T ′, have external smash
product T ⊼ T ′, a D × D -space.

(T ⊼ T ′)(d, e) = Td ∧ T ′e.

Given ⊕ : D×D −→ D , left Kan extension
gives a D -space T ∧ T ′.

((D×D)T )(T⊼T ′, V ◦⊕) ∼= DT (T∧T ′, V )

For S-modules T and T ′, get coequalizer

T ∧S T
′.

All but N S above are symmetric monoidal.
—————————————————-
Quillen equivalence

I S
N //

MS
N

#
oo

from positive model structure on I S .
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Theorem 15. The functors P and N

induce Quillen equivalences from commu-
tative symmetric ring spectra to commu-
tative orthogonal ring spectra and from
the latter to commutative S-algebras.

We have comparison functors

Commutative symmetric ring spectra
P

��

Commutative orthogonal ring spectra
N

��

Commutative S-algebras

E∞ ring spectra
S∧L (−)

OO

Ω∞
��

E∞ ring spaces.

But: no 0th space information in diagram
commutative ring spectra. The E∞ ring
theory relating spaces and spectra is lost.
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Naive E∞ ring spectra

O(j)+ ∧R(j) −→ R.

Proposition 16. For a positive cofibrant
symmetric or orthogonal spectrum or for
a cofibrant S-module E,

π : (EΣj)+ ∧Σj E
(j) −→ E(j)/Σj

is a weak equivalence.

Proposition 17. The homotopy categories
of naive O-spectra and commutative ring
spectra (in any of ΣS , I S , or MS) are
equivalent.


