E_{∞} RING THEORY

J.P. MAY

http://www.math.uchicago.edu/ may/RANT/

Date: March 13, 2008.

E_{∞} ring spaces

OPERAD: Σ_j -spaces $\mathcal{O}(j)$, $\mathcal{O}(0) = \{*\}$ (basepts), id $\in \mathcal{O}(1)$ (identity operation),

$$\gamma \colon \mathscr{O}(k) \times \mathscr{O}(j_1) \times \cdots \times \mathscr{O}(j_k) \longrightarrow \mathscr{O}(j_1 + \cdots + j_k).$$

Associative, unital, equivariant.

\mathscr{O} -space X:

$$\theta \colon \mathscr{O}(j) \times X^j \longrightarrow X.$$

OPERAD PAIR: 'Additive', 'multiplicative' operads \mathscr{C} , \mathscr{G} ,

$$\lambda : \mathscr{G}(k) \times \mathscr{C}(j_1) \times \cdots \times \mathscr{C}(j_k) \longrightarrow \mathscr{C}(j_1 \cdots j_k).$$

Distributive, unital, equivariant, nullary.

 $(\mathscr{C},\mathscr{G})$ -space: \mathscr{C} -space and \mathscr{G} -space X

$$\mathscr{G}(k) \times \mathscr{C}(j_1) \times X^{j_1} \times \cdots \times \mathscr{C}(j_k) \times X^{j_k} \xrightarrow{\mathrm{id} \times \theta^k} \mathscr{G}(k) \times X^k$$

$$\xi \downarrow \qquad \qquad \downarrow \xi$$

$$\mathscr{C}(j_1 \cdots j_k) \times X^{j_1 \cdots j_k} \xrightarrow{\theta} X$$

 ξ on left induced from λ and ξ on X.

Monadic reinterpretation

Monad O in $\mathscr{T} =$ based spaces \mathscr{O} -spaces $\cong O$ -algebras.

$$OX = \coprod \mathscr{O}(j) \times_{\Sigma_j} X^j / (\sim)$$

 \sim basepoint identifications

 $(\mathscr{C},\mathscr{G})$: G 'acts' on C;

C induces a monad on $G[\mathcal{T}]$,

CG becomes a monad on \mathscr{T} .

Isomorphic categories:

$$(\mathscr{C},\mathscr{G})$$
 – spaces

$$C$$
 – algebras in $G[\mathscr{T}]$

$$CG$$
 – algebras in \mathscr{T} .

Lewis May spectra; QX

 $U = \mathbb{R}^{\infty}$; $V \subset W \subset U$ fin dim.

Prepectrum $T: TV \longrightarrow \Omega^{W-V}TW$

Spectrum $E: EV \xrightarrow{\cong} \Omega^{W-V}EW$

Spectrification L, forgetful ℓ :

$$\mathscr{S}(LT, E) \cong \mathscr{P}(T, \ell E)$$

$$\mathscr{P}(\{\Sigma^V X\}, T) \cong \mathscr{T}(X, T_0)$$

$$\Sigma^{\infty} X = L\{\Sigma^V X\} \quad \Omega^{\infty} E = E_0.$$

$$\mathscr{S}(\Sigma^{\infty}X, E) \cong \mathscr{T}(X, \Omega^{\infty}E)$$

$$QX = \operatorname{colim} \Omega^V \Sigma^V X = \Omega^\infty \Sigma^\infty X$$

Approximation Theorem

There is a map of monads

$$\alpha \colon C \longrightarrow Q$$

on \mathcal{T} such that

$$\alpha \colon CX \longrightarrow QX$$

is a group completion for all X, hence a weak equivalence for all connected X.

Canonical operad pair

Linear isometries operad \mathscr{L} .

$$\mathscr{L}(j)=\mathscr{I}(U^j,U)$$

 \mathscr{L} acts on the Steiner operad \mathscr{C} , a variant of the infinite little cubes operad.

 \mathscr{C} acts on $\Omega^{\infty}E$; α is the composite

$$CX \xrightarrow{C\eta} CQX \xrightarrow{C\theta} QX.$$

 \mathscr{L} and \mathscr{C} are E_{∞} operads: their j^{th} spaces are Σ_{j} -free and contractible.

E_{∞} ring spectra

External smash products $T \bar{\wedge} T'$, $E \bar{\wedge} E'$:

$$(T \overline{\wedge} T')(V, V') = TV \wedge T'V'$$

$$(E \overline{\wedge} E') = L(\ell E \overline{\wedge} \ell E')$$

 $T^{[j]}$: external j-fold smash power.

$$f: U \longrightarrow U' \text{ induces } f^*: \mathscr{P}(U') \longrightarrow \mathscr{P}(U).$$

$$(f^*T')(V) = T'(fV)$$

Restricts to $f^* \colon \mathscr{S}(U') \longrightarrow \mathscr{S}(U)$. Left adjoints f_* on \mathscr{P} , $f_* = Lf_*\ell$ on \mathscr{S} .

 \mathscr{L} -prespectrum T: maps of prespectra

$$\xi_j(f) \colon f_* T^{[j]} \longrightarrow T$$

for all $f \in \mathcal{L}(j)$; suitably continuous and compatible with operad structure on \mathcal{L} .

$$\mathscr{L}(j) \ltimes T^{[j]} \longrightarrow T.$$

$$\mathscr{L}(j) \ltimes E^{[j]} \longrightarrow E.$$

Monadic reinterpretation; Ω^{∞}

Monad L_+ on \mathscr{T} wrt \wedge rather than \times :

$$L_+X = \bigvee_{j\geq 0} \mathscr{L}(j)_+ \wedge_{\Sigma_j} X^{(j)}.$$

Monad L_+ on \mathscr{S} analogously:

$$L_+E = \bigvee_{j\geq 0} \mathscr{L}(j) \ltimes_{\Sigma_j} E^{[j]}.$$

$$L_{+}\Sigma^{\infty}X \cong \Sigma^{\infty}L_{+}X$$

$$\mathscr{S}(\Sigma^{\infty}X, E) \cong \mathscr{T}(X, \Omega^{\infty}E)$$

induces

$$L_{+}[\mathscr{S}](\Sigma^{\infty}Y,R) \cong L_{+}[\mathscr{T}](Y,\Omega^{\infty}R).$$

- The monad Q on \mathscr{T} induces a monad Q on $L_+[\mathscr{T}]$; for an \mathscr{L} -spectrum R, $\Omega^{\infty}R$ is a Q-algebra, hence a C-algebra, in $L_+[\mathscr{T}]$.
- Therefore $\Omega^{\infty}R$ is an E_{∞} ring space.
- The 1-component and unit components SL_1R and GL_1R of $\Omega^{\infty}R$ are \mathscr{L} -spaces.
- Therefore SL_1R and GL_1R are the 0^{th} spaces of spectra sl_1R and gl_1R .

Orientation theory

F(X,Y): based maps $X \longrightarrow Y$

$$\circ : F(Y,Z) \times F(X,Y) \longrightarrow F(X,Z)$$

$$E \in \mathscr{S}, E_0 \cong \Omega^V EV \text{ for } V \subset U = \mathbb{R}^{\infty}.$$

$$\circ: F(S^V, EV) \times F(S^V, S^V) \longrightarrow F(S^V, EV)$$

$$E_0 \times \Omega^V \Sigma^V S^0 \longrightarrow E_0$$

R a ring spectrum. 1970's notations:

$$SF = SL_1S$$
 $F = GL_1S$

$$SFR = SL_1R$$
 $FR = GL_1R$

Think of F as a functor $\mathscr{I} \longrightarrow monoids$:

$$FV = hAut(S^V) \subset F(S^V, S^V)$$

G an \mathscr{I} -monoid (or group) mapping to F:

$$GV \times GV \longrightarrow GV \quad GV \longrightarrow FV$$

$$SGV \times SGV \longrightarrow SGV \quad SGV \longrightarrow SFV$$

$$B(FR, GV, S^V) \to B(FR, GV, *) \equiv B(GV; R)$$

(or with FR, GV replaced by SFR, SGV)

Classifying spaces for R-oriented V-sphere bundles, or with preassigned $H\mathbb{Z}$ -orientation.

Pass to colimits. Get classifying spaces

$$B(G;R) \quad B(SG;R)$$

for stable R-oriented sphere bundles.

$$SG \longrightarrow SFR \longrightarrow B(SG;R) \longrightarrow BSG$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$G \longrightarrow FR \longrightarrow B(G;R) \longrightarrow BG$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$G \longrightarrow \pi_0(R)^{\times} \longrightarrow B(G;\pi_0R) \longrightarrow BG$$

PUNCH LINE: If R is an E_{∞} ring spectrum, this is a diagram of \mathscr{L} -spaces, hence has an associated diagram of connective spectra.

Universal obstruction to R-orientability:

$$w: BSG \longrightarrow BSFR = BSGL_1R$$

E.g.
$$G = O$$
 or $G = F$, $R = kO$:

$$w = w_2 \colon BSF \longrightarrow BO_{\infty}$$

Theorem 1. At p > 2, $BSTOP \simeq B(SF; kO)$

as E_{∞} -spaces: equivalent spectra.

Theorem 2. At p > 2, $MSTOP \simeq M(SF; kO)$ as E_{∞} -ring spectra.

BCokerJ, MCokerJ: Can compute!!!

Algebraic and topological K-theory

$$KR \equiv EB\mathcal{G}\mathcal{L}R$$

$$\mathscr{GL}R = \coprod_{n \ge 0} GL(n, R)$$

E is the BLACK BOX functor Fix a prime q.

Brauer lift (Quillen, plus May-Tornehave):

Theorem 3. Completed away from q, $K\overline{\mathbb{F}}_q$ and kU are equivalent ring spectra. For $r = q^a$, Frobenius and Adams agree:

$$K\bar{\mathbb{F}}_q \xrightarrow{\phi^r} K\bar{\mathbb{F}}_q$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$kU \xrightarrow{\psi^r} kU$$

Multiplicative Brauer lift (May-Tornehave):

Theorem 4. Completed away from q, $sl_1K\bar{\mathbb{F}}_q$ and sl_1KU are equivalent spectra.

$$sl_1KU_p \simeq K(\mathbb{Z}_p, 2) \times bsu_p$$

Complete at p > 2, $p \neq q$. Let $r = q^a$ be a unit mod p^2 .

Write bR for the connected cover of KR.

$$K\mathbb{F}_r \longrightarrow K\overline{\mathbb{F}}_q \xrightarrow{\phi^r - 1} bR$$

$$\cong \downarrow \simeq \qquad \qquad \downarrow \simeq$$

$$j \longrightarrow kU \xrightarrow{\psi^r - 1} bU$$

Theorem 5. There is a composite "exponential equivalence"

$$b\mathbb{F}_r \longrightarrow sl_1S \longrightarrow sl_1\mathbb{F}_r$$

So sl_1S splits. Infinite loop space splitting

$$SF \simeq J \times \operatorname{Coker} J$$
.

As infinite loop spaces,

$$B \operatorname{Coker} J \simeq B(SF; K\mathbb{F}_r)$$

$$BO \times B \operatorname{Coker} J \simeq B(SF; kO) \simeq B(SF; K\overline{\mathbb{F}}_q).$$

Additive recognition principle

Theorem 6. For a \mathscr{C} -space X, define

$$EX = B(\Sigma^{\infty}, C, X).$$

EX is connective. There is a diagram of maps of C-spaces

$$X \stackrel{\varepsilon}{\longleftarrow} B(C, C, X) \stackrel{B\alpha}{\longrightarrow} B(Q, C, X) \stackrel{\zeta}{\longrightarrow} \Omega^{\infty} EX.$$

 ε is a homotopy equivalence, inverse η ; ζ is a weak equivalence; $B\alpha$ is a group completion. Therefore the composite

$$\eta \colon X \longrightarrow \Omega^{\infty} EX$$

is a group completion. It is a weak equivalence if X is grouplike.

For a spectrum Y, there is a composite $map\ of\ spectra$

$$\varepsilon \colon E\Omega^{\infty}Y \xrightarrow{B\alpha} B(\Sigma^{\infty}, Q, \Omega^{\infty}Y) \xrightarrow{\varepsilon} Y.$$

Apply Ω^{∞} . The maps of \mathscr{C} -spaces

$$\Omega^{\infty}E\Omega^{\infty}Y \xrightarrow{\Omega^{\infty}B\alpha}\Omega^{\infty}B(\Sigma^{\infty},Q,\Omega^{\infty}Y) \xrightarrow{\Omega^{\infty}\varepsilon}\Omega^{\infty}Y$$

are weak equivalences. Therefore ε is a weak equivalence if Y is connective.

Conclusion: E and Ω^{∞} induce an equivalence between the homotopy category of grouplike E_{∞} spaces and the homotopy category of connective spectra.

[Can replace by \mathscr{C} by $\mathscr{C} \times \mathscr{L}$, $\mathscr{C} \times \mathscr{D}$, etc.]

Multiplicative recognition principle

Theorem 7. For a $(\mathscr{C}, \mathscr{L})$ -space X,

$$EX = B(\Sigma^{\infty}, C, X)$$

is a connective \mathcal{L} -spectrum. All maps in the diagram

$$X \stackrel{\varepsilon}{\longleftarrow} B(C, C, X) \stackrel{B\alpha}{\longrightarrow} B(Q, C, X) \stackrel{\zeta}{\longrightarrow} \Omega^{\infty} EX$$

are maps of $(\mathscr{C},\mathscr{L})$ -spaces. Therefore the composite

$$\eta: X \longrightarrow \Omega^{\infty} EX$$

is a ring completion.

For an \mathcal{L} -spectrum Y, the maps

$$\varepsilon \colon E\Omega^{\infty}Y \xrightarrow{B\alpha} B(\Sigma^{\infty}, Q, \Omega^{\infty}Y) \xrightarrow{\varepsilon} Y$$

are maps of \mathcal{L} -spectra and the maps

$$\Omega^{\infty}E\Omega^{\infty}Y \xrightarrow{\Omega^{\infty}B\alpha} \Omega^{\infty}B(\Sigma^{\infty},Q,\Omega^{\infty}Y) \xrightarrow{\Omega^{\infty}\varepsilon}\Omega^{\infty}Y$$

are maps of $(\mathscr{C}, \mathscr{L})$ -spaces.

Conclusion: E and Ω^{∞} induce an equivalence between the homotopy category of ringlike E_{∞} ring spaces and the homotopy category of connective E_{∞} ring spectra.

Localizations of unit spectra

Let X be an E_{∞} ring space, e.g. $\Omega^{\infty}R$.

Let
$$N = \{0, 1, 2, \dots\} \subset \pi_0 X$$
.

Let $M \subset N$ be a multiplicative subset, for example $\{p^i\}$ or $\{n|(n,p)=1\}$.

Let $X_M = \coprod X_m$, union of components.

Mild homological convergence condition.

Theorem 8. As an E_{∞} space, the localization of $SL_1E = \Omega_1^{\infty}E(X,\theta)$ at M is the basepoint component $\Omega_1^{\infty}E(X_M,\xi)$.

 $E(X, \theta)$ is defined using X as a \mathscr{C} -space. The localizations of $SL_1E(X)$ depend only on X as an \mathscr{L} -space.

Let $X = \Omega^{\infty} R$. $E(X, \theta)$ is the connective cover of R, $SL_1E(X)$ is SL_1R .

Corollary 9. For an E_{∞} ring spectrum R, $sl_1(R)[M^{-1}]$ is the connected cover of $E((\Omega^{\infty}R)_M, \xi)$.

Lewis conundrum

Everything enriched over based spaces (or simplicial sets) in the following hypotheses.

Theorem 10 (Lewis). Let \mathscr{S} satisfy

(i) \mathcal{S} is closed symmetric monoidal. Have functors \wedge and F such that

$$\mathscr{S}(E \wedge E', E'') \cong \mathscr{S}(E, F(E', E'')).$$

(ii) Have functors Σ^{∞} and Ω^{∞} such that

$$\mathscr{S}(\Sigma^{\infty}X, E) \cong \mathscr{T}(X, \Omega^{\infty}E).$$

(iii) The unit for \wedge is $S \equiv \Sigma^{\infty} S^0$.

Let E be a commutative monoid in \mathscr{S} (e.g. S). Then $SL_1(E)$ is a product of Eilenberg-MacLane spaces.

Corollary 11. No model structure on \mathscr{S} with S cofibrant can give the right $Ho\mathscr{S}$.

EKMM S-modules

Quillen equivalences:

Monad L: $\mathbb{L}E = \mathcal{L}(1) \ltimes E$. $\eta : E \xrightarrow{\simeq} \mathbb{L}E$. L-spectrum: action $\mathbb{L}E \longrightarrow E$; e.g. $\mathbb{L}E$.

$$E \wedge_{\mathscr{L}} E' \equiv \mathscr{L}(2) \ltimes_{\mathscr{L}(1) \times \mathscr{L}(1)} E \bar{\wedge} E'$$

$$\Sigma^{\infty}(X \wedge Y) \cong \Sigma^{\infty}X \wedge_{\mathscr{L}} \Sigma^{\infty}Y.$$

Associative and commutative.

$$\tau \colon E \wedge_{\mathscr{L}} E' \cong E' \wedge_{\mathscr{L}} E.$$

Unit weak equivalence $\lambda \colon S \wedge_{\mathscr{L}} E \xrightarrow{\simeq} E$. E is an S-module if λ is an isomorphism. Examples: $\Sigma^{\infty}X$, $S \wedge_{\mathscr{L}}E$.

 $\mathscr{S}[\mathbb{L}]$ is the category of \mathbb{L} -spectra. \mathscr{M}_S is the category of S-modules.

Definition 12. A commutative 'monoid' in $\mathscr{S}[\mathbb{L}]$ is an \mathbb{L} -spectrum R with a unit map $\eta: S \longrightarrow R$ and a commutative and associative product $\phi: R \wedge_{\mathscr{L}} R \longrightarrow R$ such that the following diagram commutes.

$$S \wedge_{\mathscr{L}} R \xrightarrow{\eta \wedge \mathrm{id}} R \wedge_{\mathscr{L}} R \xrightarrow{\mathrm{id} \wedge \eta} R \wedge_{\mathscr{L}} S$$

Theorem 13. The category of commutative monoids in $\mathscr{S}[\mathbb{L}]$ is isomorphic to the category of E_{∞} ring spectra.

$$E \wedge_S E' = E \wedge_{\mathscr{L}} E'$$

$$\Sigma^{\infty}(X \wedge Y) \cong \Sigma^{\infty}X \wedge_S \Sigma^{\infty}Y.$$

 \mathcal{M}_S is closed symmetric monoidal, unit S.

Definition 14. A commutative S-algebra is a commutative monoid in \mathcal{M}_S . That is, it is an E_{∞} ring spectrum which is an S-module.

If R is an E_{∞} ring spectrum, then $S \wedge_{\mathscr{L}} R$ is a weakly equivalent commutative S-algebra.

 $S = \Sigma^{\infty} S^0$ is cofibrant in \mathscr{S} ; $\mathbb{L}S$, $S \wedge_{\mathscr{L}} \mathbb{L}S$ are cofibrant approximations in $\mathscr{S}[\mathbb{L}]$, \mathscr{M}_S .

Adjunctions in \mathscr{S} , $\mathscr{S}[\mathbb{L}]$, \mathscr{M}_S :

$$(\Sigma^{\infty}, \Omega^{\infty})$$

$$(\mathbb{L}\Sigma^{\infty}, \Omega^{\infty}\ell)$$

$$(S \wedge_{\mathscr{L}} \mathbb{L}\Sigma^{\infty}, F_{\mathscr{L}}(S, \Omega^{\infty}\ell))$$

Diagram spectra

Lexicon:

- \mathscr{P} is the category of \mathscr{N} -spectra, or (coordinatized) prespectra.
- $\Sigma \mathscr{S}$ is the category of Σ -spectra, or symmetric spectra.
- ullet $\mathscr{I}\mathscr{S}$ is the category of \mathscr{I} -spectra, or orthogonal spectra.
- $\mathscr{F}\mathscr{T}$ is the category of \mathscr{F} -spaces, or Γ -spaces.
- $\bullet \ \mathcal{W} \mathcal{T}$ is the category of \mathcal{W} -spaces.

 \mathscr{D} -spectra for diagram of domains \mathscr{D} :

Start with \mathscr{D} -spaces, $\mathscr{D}\mathscr{T}$. For a sphere functor $S: \mathscr{D} \longrightarrow \mathscr{T}$ with smash products, S-modules are \mathscr{D} -spectra. No distinction when $\mathscr{D} = \mathscr{F}$ or $\mathscr{D} = \mathscr{W}: \mathscr{D}\mathscr{T} = \mathscr{D}\mathscr{S}$.

Lexicon:

- \bullet \mathcal{N} is the category of natural numbers.
- \bullet Σ is the category of symmetric groups.
- \bullet \mathscr{I} is the category of linear isometric iso's.
- \bullet \mathscr{F} is the category of finite based sets.
- W is the category of based spaces that are homeomorphic to finite CW complexes.

Forgetful, prolongation functors \mathbb{U} , \mathbb{P} . All (\mathbb{P}, \mathbb{U}) are Quillen equivalences. (Connective spectra only for $\mathscr{F}\mathscr{T}$).

For \mathscr{D} -spaces T and T', have external smash product $T \wedge T'$, a $\mathscr{D} \times \mathscr{D}$ -space.

$$(T \overline{\wedge} T')(d, e) = Td \wedge T'e.$$

Given \oplus : $\mathscr{D} \times \mathscr{D} \longrightarrow \mathscr{D}$, left Kan extension gives a \mathscr{D} -space $T \wedge T'$.

$$((\mathscr{D} \times \mathscr{D})\mathscr{T})(T \overline{\wedge} T', V \circ \oplus) \cong \mathscr{D}\mathscr{T}(T \wedge T', V)$$

For S-modules T and T', get coequalizer

$$T \wedge_S T'$$
.

All but $\mathcal{N}\mathcal{S}$ above are symmetric monoidal.

Quillen equivalence

$$\mathscr{I}\mathscr{S} \xrightarrow{\mathbb{N}} \mathscr{M}_S$$

from positive model structure on $\mathscr{I}\mathscr{S}$.

Theorem 15. The functors \mathbb{P} and \mathbb{N} induce Quillen equivalences from commutative symmetric ring spectra to commutative orthogonal ring spectra and from the latter to commutative S-algebras.

We have comparison functors

Commutative symmetric ring spectra
$$\begin{array}{c} \mathbb{P} \\ \text{Commutative orthogonal ring spectra} \\ \mathbb{N} \\ \text{Commutative S-algebras} \\ & \begin{array}{c} S \wedge_{\mathscr{L}}(-) \\ E_{\infty} \end{array} \text{ ring spectra} \\ & \begin{array}{c} \mathbb{N} \\ \mathbb{N} \\ \mathbb{N} \end{array} \end{array}$$

But: no 0^{th} space information in diagram commutative ring spectra. The E_{∞} ring theory relating spaces and spectra is lost.

Naive E_{∞} ring spectra

$$\mathcal{O}(j)_+ \wedge R^{(j)} \longrightarrow R.$$

Proposition 16. For a positive cofibrant symmetric or orthogonal spectrum or for a cofibrant S-module E,

$$\pi: (E\Sigma_j)_+ \wedge_{\Sigma_j} E^{(j)} \longrightarrow E^{(j)}/\Sigma_j$$
 is a weak equivalence.

Proposition 17. The homotopy categories of naive \mathscr{O} -spectra and commutative ring spectra (in any of $\Sigma\mathscr{S}$, $\mathscr{I}\mathscr{S}$, or \mathscr{M}_S) are equivalent.