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E 1ing spaces

OPERAD: X j-spaces O(j), O(0) = {x}
(basepts), id € €(1) (identity operation),

v: O(k)XO(j1)%---xO(ji) — O(jr+ - -+Jr).

Associative, unital, equivariant.

U-space X:

0: 0(j) x X — X.

OPERAD PAIR: ‘Additive’, ‘multiplicative’
operads €, ¥

Distributive, unital, equivariant, nullary.

(€', )-space: €-space and ¥-space X

D) x C(J1) x X7 x - x Cljy) x XL (1) » x*

¢| ig

C (31 Ji) X X It dk ; X

& on left induced from A\ and £ on X.
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Monadic reinterpretation

Monad O in .7 = based spaces
O-spaces = (-algebras.

0X =[] 00) xz, X//(~)
~= basepoint identifications
(¢,9): G ‘acts’ on C;
C' induces a monad on G[.7],
C'G becomes a monad on 7.

[somorphic categories:

(€,9) — spaces
C' — algebras in G|.J]

C'G — algebras in 7.
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Lewis May spectra; QX

U=R>* VCWCU findim.
Prepectrum T7: TV — QV-VTW
Spectrum E: EV = QV-VEW

Spectrification L, forgetful ¢:

S (LT, E) = P(T,(E)
P XVT) = (X, T))
X =L{ZVX} QFFE=E,.
S (E*X,E) = T(X,QFF)

QX =colim Q' YV X = QXy>X
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Approximation Theorem

There is a map of monads

a: C — @
on 7 such that

a: CX — QX

is a group completion for all X, hence a
weak equivalence for all connected X.

Canonical operad pair

Linear isometries operad £ .

Z(j) =7 (U,U)

Z acts on the Steiner operad %, a variant
of the infinite little cubes operad.

€ acts on QQ°FE: « is the composite

CXLoOXClQX.

% and € are E., operads: their j™ spaces
are 2;-free and contractible.
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E . ring spectra

External smash products AT, E A E":
(T ATV, VY =TV ANT'V'
(EAE')= LE A (E)

TU): external j-fold smash power.

f: U — U'induces f*: 2(U") — P2 (U).

(fT)V)=T'(fV)

Restricts to f*: A (U') — L(U).
Left adjoints f, on &2, f, = Lf.£ on .¥.

Z-prespectrum 1': maps of prespectra

&(f): LTV — T

for all f € Z(j); suitably continuous and
compatible with operad structure on .Z.

L) x TV — T,

Z(j)x BV — E.
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Monadic reinterpretation; {2°°

Monad L, on .7 wrt A rather than Xx:
LiX =Vijs0 Z(j)+ Ny, XV,
Monad L, on . analogously:

Ly E = V>0 £L(j) x5, EV.

L.Y°X ¥y, X

S (XX, E) Y T(X,0°F)

induces

L.[Z|(Z®Y, R) = L. [7](Y,QR).
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e The monad @ on .7 induces a monad ()
on L, |7]; for an Z-spectrum R, QR is
a (Q-algebra, hence a C-algebra, in L, [.7].

e Therefore (2R is an F, ring space.

e The I-component and unit components

SLiR and GL1R of Q)*®°R are .Z-spaces.

e Therefore SL1R and GL{R are the 0
spaces of spectra sli R and gl R.
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Orientation theory

F(X,Y): based maps X — Y

o: F(Y,Z)x F(X,Y) — F(X, Z)
FEe.Z Ey=QVEV for VCU=R>.
o: F(SV,EV)xF(SV,8") — F(S",EV)

Eyx QV2V s — E,

R a ring spectrum. 1970’s notations:

SEF=501S F=GL,S

SFR=SILZWR FR=GLR
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Think of F' as a functor .¢ — monoids:

FV = hAut(S") c F(SY,S")
G an .-monoid (or group) mapping to F':

GV xGV — GV GV — FV

SGV xSGV — SGV  SGV — SFV

B(FR,GV,S") — B(FR,GV,*) = B(GV; R)

(or with F'R, GV replaced by SF'R, SGV)

Classifying spaces for R-oriented V-sphere
bundles, or with preassigned H Z-orientation.

Pass to colimits. Get classifying spaces

B(G;R) B(SG;R)

for stable R-oriented sphere bundles.
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SG——SFR—B(SG; R)— BSG

G——FR——B(G; R)—— BG

G—my(R)*— B(G; myR)— BG

PUNCH LINE: If Ris an E ring spectrum,
this is a diagram of .Z-spaces, hence has an
associated diagram of connective spectra.

Universal obstruction to R-orientability:

w: BSG — BSFR=BSGL\R

Eg G=0orG=F, R=FkO:

w=wy: BSF — BOg
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Theorem 1. At p > 2,
BSTOP ~ B(SF;kO)

as E~-spaces: equivalent spectra.

Theorem 2. At p > 2,
MSTOP ~ M(SF; kO)
as FE-ring spectra.

BCokerJ, MCokerJ: Can compute!!!
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Algebraic and topological K-theory

KR=FEBY YR

¢ <R =]]GL(n,R)

n>0
E is the BLACK BOX functor
Fix a prime q.

Brauer lift (Quillen, plus May-Tornehave):

Theorem 3. Completed away from q, KT,
and kU are equivalent ring spectra. For
r = q%, Frobenius and Adams agree:

KF,”-KF,
kU =5 kU
Multiplicative Brauer lift (May-Tornehave):

Theorem 4. Completed away from q, sllKIF‘q
and sli KU are equivalent spectra.

shKU, ~ K(Z,,2) x bsu,
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Complete at p > 2, p # q.
Let 7 = ¢ be a unit mod p?.

Write bR for the connected cover of K R.

KF,——KF,~ "~ R

1 F

J kUWbU

Theorem 5. There s a composite
“exponential equivalence”

bFr — sllS — SllFr

So sl1.S splits. Infinite loop space splitting

SF ~ J x Coker J.

As infinite loop spaces,

B Coker J ~ B(SF; KTF,)

BOx B Coker J ~ B(SF;kO) ~ B(SF; KF,).
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Additive recognition principle

Theorem 6. For a € -space X, define
EX = B(¥X>,C, X).

EX 1s connective. There 1s a diagram of
maps of C'-spaces

X-=B(C,C, X)—8>-B(Q,C, X)-*-OQ®EX.

£ 1S a homotopy equivalence, inverse n;
( 18 a weak equivalence; Ba 1s a group
completion. Therefore the composite

n: X — QFEX

18 a group completion. It is a weak equiv-
alence if X is grouplike.
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For a spectrum Y, there is a composite
map of spectra

e: EQXY P2 B(¥® Q,0%Y)-=-Y.

Apply Q. The maps of € -spaces

O* QXY LEBageop(yice ) QXY O™y

are weak equivalences. Therefore ¢ is a
weak equivalence if Y 1s connective.

Conclusion: E and 2> induce an equiv-
alence between the homotopy category of
grouplike E, spaces and the homotopy
category of connective spectra.

(Can replace by € by € x £, € X 9, etc.]
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Multiplicative recognition principle

Theorem 7. For a (¢,.Z)-space X,
EX = B(X®,0, X)

s a connective L -spectrum. All maps in
the diagram

X-=B(C,0,X)22B(Q,C, X)--Q®EX

are maps of (€, L)-spaces. Therefore the
composite

n: X — QFEX

1S a ming completion.
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For an £ -spectrum Y, the maps

e: EQXY -Be.B(¥> Q,0®Y)-=-Y

are maps of L -spectra and the maps

O* QXY LEBageop(yie ) QXY O™y

are maps of (€¢,-L)-spaces.

Concluston: E and ()*° induce an equiv-
alence between the homotopy category of
ringlike E, ring spaces and the homotopy
category of connective E, ring spectra.
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Localizations of unit spectra

Let X be an E ring space, e.g. Q*R.

Let N ={0,1,2,---} C mpX.

Let M C N be a multiplicative subset,

for example {p'} or {n|(n,p) = 1}.

Let Xy = [ X, union of components.

Mild homological convergence condition.

Theorem 8. As an E., space, the local-
ization of SIWE = QFFE(X,0) at M is
the basepoint component Q°E (X, §).

E(X,0) is defined using X as a %-space.
The localizations of S L FE(X) depend only
on X as an .Z-space.

Let X = Q®R. FE(X,0) is the connective
cover of R, SL1E(X) is SL1R.

Corollary 9. For an E., ring spectrum
R, sli(R)[M™'] is the connected cover of
E((Q2*R)a, ).
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Lewis conundrum

Everything enriched over based spaces (or
simplicial sets) in the following hypotheses.

Theorem 10 (Lewis). Let . satisfy

(i) % is closed symmetric monoidal.
Have functors N\ and F' such that

SENFE,E"~ ¥(E,F(EE").

(ii) Have functors X°° and Q> such that

S (S%X,E) = T(X,0E).

(iit) The unit for A is S = L85V,

Let E be a commutative monoid in &
(e.g. S). Then SLi(F) is a product of
Eilenberg-MacLane spaces.

Corollary 11. No model structure on .
with S cofibrant can give the right Ho.” .



E. RING THEORY 23

EKMM S-modules

Quillen equivalences:

)

L)

Fo(S,—)| |[SAg(-)

Monad L: LE = (1) x E. n: E = LE.
L-spectrum: action LEE — E; eg. LE.

E/\gE/EC,g(Q) Kg(l)xg(DE/_\E/

SOXAY) Y EX Ay DY

Associative and commutative.

T:E/\gE’gE//\gE.
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Unit weak equivalence \: S Ay F — E.

FE is an S-module if A is an isomorphism.
Examples: XX, S Ay E.

S |IL] is the category of L-spectra.
Mg is the category of S-modules.

Definition 12. A commutative ‘monoid’
in L] is an L-spectrum R with a unit
map n: S — R and a commutative and
associative product . RAy R — R such
that the following diagram commutes.

SAyR MU RALRMYM RALS

S P

R

Theorem 13. The category of commu-
tative monoids in L[] is isomorphic to
the category of E. ring spectra.
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EANsE'=FEANg FE

SPXAY) X IPX Ag TPV,

M5 is closed symmetric monoidal, unit S'.

Definition 14. A commutative S-algebra
1s a commutative monoid in M. That
18, it 18 an B ring spectrum which is an
S-module.

If Risan E ring spectrum, then SA ¢ R is
a weakly equivalent commutative S-algebra.

S = 28V is cofibrant in .7; LS, SA»LLS
are cofibrant approximations in .Z[L], .

Adjunctions in ., ||, As:
(X9, Q%)
(ILX3™, 2°°0)

(S Ag LY, Fy(S, Q°0))
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Diagram spectra

Lexicon:

o & is the category of A4 -spectra,
or (coordinatized) prespectra.

e >..7 is the category of Y-spectra,
or symmetric spectra.

e .7.¥ is the category of #-spectra,
or orthogonal spectra.

e 7.7 is the category of .%-spaces,
or I'-spaces.

e W 7 is the category of # -spaces.



E. RING THEORY 27

9D-spectra for diagram of domains Z:

) 84
7 va

Start with P-spaces, 4.7 . For a sphere
functor S: ¥ — 7 with smash products,
S-modules are Y-spectra. No distinction

when 9 =% or 9 =W: 9.9 = 9.7.

Lexicon:

e .V is the category of natural numbers.

e > is the category of symmetric groups.

e .7 is the category of linear isometric iso’s.

e .7 is the category of finite based sets.

e // is the category of based spaces that are
homeomorphic to finite CW complexes.

Forgetful, prolongation functors U, P.
All (P, U) are Quillen equivalences.
(Connective spectra only for # 7).
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For @-spaces T and T”, have external smash
product T AT’ a @ x D-space.

(TAT")(d,e) =TdANTe.

Given ©: I x 9 — ., lett Kan extension
gives a Y-space T NT".

(DX D)TVTAT,Vod) = DT (TAT, V)

For S-modules T" and T”, get coequalizer
T Ng T

All but A% above are symmetric monoidal.

Quillen equivalence

N

IS

Ms

N#

from positive model structure on #.7.
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Theorem 15. The functors P and N
induce Quillen equivalences from commu-
tative symmetric ring spectra to commau-
tative orthogonal ring spectra and from
the latter to commutative S-algebras.

We have comparison functors

Commutative symmetric ring spectra
P

Commutative orthogonal ring spectra
N

Commutative S-algebras

Shg (=)

E ring spectra

o0

E ring spaces.

But: no 0" space information in diagram
commutative ring spectra. The E, ring
theory relating spaces and spectra is lost.
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Naive E ring spectra

0(j). AN RY — R.

Proposition 16. For a positive cofibrant

symmetric or orthogonal spectrum or for
a cofibrant S-module F,

w: (EX); Ay, BV — EV/%,

15 a weak equivalence.

Proposition 17. The homotopy categories
of naive O'-spectra and commutative ring
spectra (in any of .7, I.L, or Ms) are

equivalent.



