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Simplicial sets and subdivision

(Any new results are due to Rina Foygel)

∆ ≡ standard simplicial category.

∆[n] is represented on ∆ by n.

It is Nn, where n is the poset {0,1, · · · , n}.

Sd∆[n] ≡ ∆[n]′ ≡ Nsdn, where

sdn ≡ n′ ≡ monos/n.

SdK ≡ K ⊗∆ ∆′.

Lemma 1 SdK ∼= SdL does not imply K ∼= L

but does imply Kn
∼= Ln as sets, with corre-

sponding simplices having corresponding faces.



Regular simplicial complexes

A nondegenerate x ∈ Kn is regular if the

subcomplex [x] it generates is the pushout of

∆[n] ∆[n− 1]δnoo dnx //[dnx].

K is regular if all x are so.

Theorem 1 For any K, SdK is regular.

Theorem 2 If K is regular, then |K| is a

regular CW complex: (en, ∂en) ∼= (Dn, Sn−1)

for all closed n-cells e.

Theorem 3 If X is a regular CW complex,

then X is triangulable; that is X is homeo-

morphic to some |i(K)|.



Properties of simplicial sets K

Let x ∈ Kn be a nondegenerate simplex of K.

A: For all x, all faces of x are nondegenerate.

B: For all x, x has n+ 1 distinct vertices.

C: Any n+ 1 distinct vertices are the vertices

of at most one x.

Lemma 2 K has B iff for all x and all monos

α, β:m −→ n, α∗x = β∗x implies α = β.

Lemma 3 If K has B, then K has A.

No other general implications among A, B, C.



Properties A, B, C and subdivision

Lemma 4 K has A iff SdK has A.

Lemma 5 K has A iff SdK has B.

Lemma 6 K has B iff SdK has C.

Characterization of simplicial complexes

Lemma 7 K has A iff Sd2K has C,

and then Sd2K also has B.

Lemma 8 K has B and C iff K ∈ Im(i).

Theorem 4 K has A iff Sd2K ∈ Im(i).



Subdivision and horn-filling

Lemma 9 If SdK is a Kan complex, then

K is discrete.

Lemma 10 If K does not have A, then SdK

cannot be a quasicategory.

Relationship of the properties to categories

Theorem 5 If K has A, then SdK ∈ Im(N).

Proof: Check the Segal maps criterion.



Definition 1 A category C satisfies A, B, or

C if NC satisfies A, B, or C.

Lemma 11 C has A iff for any i:C −→ D and

r:D −→ C such that r ◦ i = id, C = D and

i = r = id. (Retracts are identities.)

Lemma 12 C has B iff for any i:C −→ D and

r:D −→ C, C = D and i = r = id.

Lemma 13 C has B and C iff C is a poset.



Definition 2 Define a category TC :

Objects: nondegenerate simplices of NC . e.g.

C = C0 −→ C1 −→ · · · −→ Cq

D = D0 −→ C1 −→ · · · −→ Dr

Morphisms: maps C −→ D are maps α:q −→ r

in ∆ such that α∗D = C (implying α is mono).

Quotient category sdC with the same objects:

α ◦ β1 ∼ α ◦ β2:C −→ D

if σ ◦ β1 = σ ◦ β2 for a surjection σ:p −→ q

such that α∗D = σ∗C (α:p −→ r, βi:q −→ p).

(β∗i α
∗D = β∗i σ

∗C = C, i = 1,2)

(Anderson, Thomason, Fritsch-Latch, del Hoyo)



Lemma 14 For any C , TC has B.

Corollary 1 For any C , sdC has B.

Lemma 15 C has B iff sdC is a poset.

Theorem 6 For any C , sd2C is a poset.

Compare with K has A iff Sd2K ∈ Im(i).

Del Hoyo: Equivalence ε: sdC −→ C .

(Relate to equivalence ε:SdK −→ K?)



Left adjoint τ1 to N (Gabriel–Zisman).

Objects of τ1K are the vertices.

Think of 1-simplices y as maps

d1y −→ d0y,

form the free category they generate,

and impose the relations

s0x = idx for x ∈ K0

d1z = d0z ◦ d2z for z ∈ K2.

The counit ε: τ1NA −→ A is an isomorphism.

τ1K depends only on the 2-skeleton of K. When

K = ∂∆[n] for n > 2, the unit η:K −→ Nτ1K

is the inclusion ∂∆[n] −→ ∆[n].



Direct combinatorial proof:

Theorem 7 For any C , sdC
∼= τ1 SdNC .

Corollary 2 ε = τ1ε: sdC −→ τ1NC
∼= C .

Corollary 3 C has A iff SdNC
∼= N sdC .

Remark 1 Even for posets P and Q,

sdP ∼= sdQ does not imply P ∼= Q.

In the development above, there is a

counterexample to the converse of each

implication that is not stated to be iff.

Sheds light on Thomason model structure.



Alexandrov and finite spaces

Alexandrov space, abbreviated A-space:

ANY intersection of open sets is open.

Finite spaces are A-spaces.

T0-space: topology distinguishes points.

Kolmogorov quotient K(A). McCord:

A −→ K(A) is a homotopy equivalence.

Space = T0-A-space from now on

T1 finite spaces are discrete,

but any finite X has a closed point.



Define

Ux ≡ ∩{U |x ∈ U}

{Ux} is unique minimal basis for the topology.

x ≤ y ≡ x ∈ Uy; that is, Ux ⊂ Uy

Transitive and reflexive; T0 =⇒ antisymmetric.

For a poset X, define Ux ≡ {y|x ≤ y}: basis for

a T0-A-space topology on the set X.

f :X −→ Y is continuous ⇐⇒ f preserves order.

Theorem 8 The category P of posets is

isomorphic to the category A of T0-A-spaces.



Finite spaces: f :X −→ X is a homeomorphism

iff f is one-to-one or onto.

Can describe n-point topologies by restricted

kind of n× n-matrix and enumerate them.

Combinatorics: count the isomorphism classes

of posets with n points; equivalently count

the homeomorphism classes of spaces with n

points. HARD! For n = 4, X = {a, b, c, d}, 33

topologies, with bases as follows:



1 all
2 a, b, c, (a,b), (a,c), (b,c), (a,b,c)
3 a, b, c, (a,b), (a,c), (b,c), (a,b,c), (a,b,d)
4 a, b, c, (a,b), (a,c), (b,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
5 a, b, (a,b)
6 a, b, (a,b), (a,b,c)
7 a, b, (a,b), (a,c,d)
8 a, b, (a,b), (a,b,c), (a,b,d)
9 a, b, (a,b), (a,c), (a,b,c)
10 a, b, (a,b), (a,c), (a,b,c), (a,c,d)
11 a, b, (a,b), (a,c), (a,b,c), (a,b,d)
12 a, b, (a,b), (c,d), (a,c,d), (b,c,d)
13 a, b, (a,b), (a,c), (a,d), (a,b,c), (a,b,d)
14 a, b, (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
15 a
16 a, (a,b)
17 a, (a,b), (a,b,c)
18 a, (b,c), (a,b,c)
19 a, (a,b), (a,c,d)
20 a, (a,b), (a,b,c), (a,b,d)
21 a, (b,c), (a,b,c), (b,c,d)
22 a, (a,b), (a,c), (a,b,c)
23 a, (a,b), (a,c), (a,b,c), (a,b,d)
24 a, (c,d), (a,b), (a,c,d)
25 a, (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
26 a, (a,b,c)
27 a, (b,c,d)
28 (a,b)
29 (a,b), (c,d)
30 (a,b), (a,b,c)
31 (a,b), (a,b,c), (a,b,d)
32 (a,b,c)
33 none



Homotopies and homotopy equivalence

f, g:X −→ Y : f ≤ g if f(x) ≤ g(x) ∀ x ∈ X.

Proposition 1 X,Y finite. f ≤ g implies f ≃ g.

Proposition 2 If y ∈ U ⊂ X with U open (or

closed) implies U = X, then X is contractible.

If X has a unique maximum or minimal point,

X is contractible. Each Ux is contractible.

Definition 3 Let X be finite.

(a) x ∈ X is upbeat if there is a y > x such

that z > x implies z ≥ y.

(b) x ∈ X is downbeat if there is a y < x such

that z < x implies z ≤ y.
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Downbeat: upside down.

X is minimal if it has no upbeat or downbeat

points. A core of X is a subspace Y that is

minimal and a deformation retract of X.

Stong:

Theorem 9 Any finite X has a core.

Theorem 10 If f ≃ id:X −→ X, then f = id.

Corollary 4 Minimal homotopy equivalent

finite spaces are homeomorphic.



REU results of Alex Fix and Stephen Patrias

Can now count homotopy types with n points.

Hasse diagram Gr(X) of a poset X: directed

graph with vertices x ∈ X and an edge x → y

if y < x but there is no other z with x ≤ z ≤ y.

Translate minimality of X to a property of

Gr(X) and count the number of such graphs.

Find a fast enumeration algorithm.

Run it on a computer.

Get number of homotopy types with n points.

Compare with number of homeomorphism types.



n ≃ ∼=
1 1 1
2 2 2
3 3 5
4 5 16
5 9 63
6 20 318
7 56 2,045
8 216 16,999
9 1,170 183,231
10 9,099 2,567,284
11 101,191 46,749,427
12 1,594,293 1,104,891,746

Exploit known results from combinatorics.

Astonishing conclusion:

Theorem 11 (Fix and Patrias) The number

of homotopy types of finite T0-spaces is asymp-

totically equivalent to the number of homeo-

morphism types of finite T0-spaces.



T0-A-spaces and simplicial complexes

Category A of T0-A-spaces (= posets);

Category B of simplicial complexes.

McCord:

Theorem 12 There is a functor K :A −→ B

and a natural weak equivalence

ψ: |K (X)| −→ X.

The n-simplices of K (X) are

{x0, · · · , xn|x0 < · · · < xn},

and ψ(u) = x0 if u is an interior point of the

simplex spanned by {x0, · · · , xn}.



Let SdK be the barycentric subdivision of a

simplicial complex K; let bσ be the barycenter

of a simplex σ.

Theorem 13 There is a functor X :B −→ A

and a natural weak equivalence

φ: |K| −→ X (K).

The points of X (K) are the barycenters bσ of

simplices of K and bσ < bτ if σ ⊂ τ .

K (X (K)) = SdK and

φK = ψX (K): |K| ∼= |SdK| −→ X (K).



Problem: not many maps between finite spaces!

Solution: subdivision: SdX ≡ X (K (X)).

Theorem 14 There is a natural weak equiv.

ξ:SdX −→ X.

Classical result and an implied analogue:

Theorem 15 Let f : |K| −→ |L| be continuous,

where K and L are simplicial complexes, K

finite. For some large n, there is a simplicial

map g:K(n) −→ L such that f ≃ |g|.

Theorem 16 Let f : |K (X)| −→ |K (Y )| be con-

tinuous, where X and Y are T0-A-spaces, X

finite. For some large n there is a continuous

map g:X(n) −→ Y such that f ≃ |K (g)|.



Definition 4 Let X be a space. Define the

non-Hausdorff cone CX by adjoining a new

point + and letting the proper open subsets

of CX be the non-empty open subsets of X.

Define the non-Hausdorff suspension SX by

adjoining two points + and − such that SX

is the union under X of two copies of CX.

Let SX be the unreduced suspension of X.

Definition 5 Define a natural map

γ = γX:SX −→ SX

by γ(x, t) = x if −1 < t < 1 and γ(±1) = ±.

Theorem 17 γ is a weak equivalence.

Corollary 5 SnS0 is a minimal finite space with

2n+2 points, and it is weak equivalent to Sn.



The height h(X) of a poset X is the maximal

length h of a chain x1 < · · · < xh in X.

h(X) = dim |K (X)| + 1.

Barmak and Minian:

Proposition 3 Let X 6= ∗ be a minimal finite

space. Then X has at least 2h(X) points. It

has exactly 2h(X) points if and only if it is

homeomorphic to Sh(X)−1S0.

Corollary 6 If |K (X)| is homotopy equivalent

to a sphere Sn, then X has at least 2n + 2

points, and if it has exactly 2n+ 2 points it is

homeomorphic to SnS0.

Remark 2 If X has six elements, then h(X) is

2 or 3. There is a six point finite space that

is weak homotopy equivalent to S1 but is not

homotopy equivalent to SS0.



Really finite H-spaces

Let X be a finite space and an H-space with

unit e: x→ ex and x→ xe are each homotopic

to the identity. Stong:

Theorem 18 If X is minimal, these maps are

homeomorphisms and e is both a maximal and

a minimal point of X, so {e} is a component.

Theorem 19 X is an H-space with unit e iff e
is a deformation retract of its component in X.

Therefore X is an H-space iff a component of

X is contractible. If X is a connected H-space,

X is contractible.

Hardie, Vermeulen, Witbooi:

Let T = SS0, T′ = SdT.

Brute force write it down proof (8× 8 matrix)

Example 1 There is product T′×T′ −→ T that

realizes the product on S1 after realization.



Finite groups and finite spaces

X, Y finite T0-spaces and G-spaces. Stong:

Theorem 20 X has an equivariant core, namely

a sub G-space that is a core and a G-deformation

retract of X.

Corollary 7 Let Xbe contractible. Then X is

G-contractible and has a point fixed by every

self-homeomorphism.

Corollary 8 If f :X −→ Y is a G-map and a

homotopy equivalence, then it is a G-homotopy

equivalence.



Quillen’s conjecture

G finite, p prime.

Sp(G): poset of non-trivial p-subgroups of G,

ordered by inclusion.

G acts on Sp(G) by conjugation.

Ap(G): Sub G-poset of p-tori.

p-torus ≡ elementary Abelian p-group.

rp(G) is the rank of a maximal p-torus in G.

|K Ap(G)|
|K (i)|

//

ψ

��

|K Sp(G)|

ψ

��

Ap(G)
i

// Sp(G)

Vertical maps ψ are weak equivalences.



Proposition 4 If G is a p-group, Ap(G) and

Sp(G) are contractible.

Note: genuinely contractible, not just weakly.

Proposition 5 i:Ap(G) −→ Sp(G) is a weak

equivalence.

Example 2 If G = Σ5, Ap(G) and Sp(G) are

not homotopy equivalent.

P ∈ Sp(G) is normal iff P is a G-fixed point.

Theorem 21 If Sp(G) or Ap(G) is contractible,

then G has a non-trivial normal p-subgroup.

Conversely, if G has a non-trivial normal

p-subgroup, then Sp(G) is contractible, hence

Ap(G) is weakly contractible.

Conjecture 1 (Quillen) If Ap(G) is weakly con-

tractible, then G contains a non-trivial normal

p-subgroup.



Easy: True if rP (G) ≤ 2.

Quillen: True if G is solvable.

Aschbacker and Smith: True if p > 5 and G

has no component Un(q) with q ≡ −1 (mod p)

and q odd.

(Component of G: normal subgroup that is

simple modulo its center).

Horrors: proof from the classification theorem.

Their 1993 article summarizes earlier results.

And as far as Jon Alperin and I know, that is

where the problem stands. Finite space version

may not help with the proof, but is intriquing.


