# Categories, posets, Alexandrov spaces, simplicial complexes, with emphasis on finite spaces

J.P. May

November 10, 2008



#### Simplicial sets and subdivision

(Any new results are due to Rina Foygel)  $\Delta \equiv \text{standard simplicial category.}$   $\Delta[n] \text{ is represented on } \Delta \text{ by } \mathbf{n}.$ It is  $N\underline{\mathbf{n}}$ , where  $\underline{\mathbf{n}}$  is the poset  $\{0, 1, \dots, n\}$ .  $Sd\Delta[n] \equiv \Delta[n]' \equiv Nsd\underline{\mathbf{n}}$ , where

 $\operatorname{sd} \underline{\mathbf{n}} \equiv \underline{\mathbf{n}}' \equiv \operatorname{monos}/\mathbf{n}.$ 

 $SdK \equiv K \otimes_{\Delta} \Delta'.$ 

**Lemma 1**  $SdK \cong SdL$  does not imply  $K \cong L$ but does imply  $K_n \cong L_n$  as sets, with corresponding simplices having corresponding faces.

#### Regular simplicial complexes

A nondegenerate  $x \in K_n$  is regular if the subcomplex [x] it generates is the pushout of

$$\Delta[n] \stackrel{\delta^n}{\longleftarrow} \Delta[n-1] \stackrel{d_nx}{\longrightarrow} [d_nx].$$

K is regular if all x are so.

**Theorem 1** For any K, SdK is regular.

**Theorem 2** If K is regular, then |K| is a regular CW complex:  $(e^n, \partial e^n) \cong (D^n, S^{n-1})$  for all closed *n*-cells *e*.

**Theorem 3** If X is a regular CW complex, then X is triangulable; that is X is homeomorphic to some |i(K)|.

#### Properties of simplicial sets K

- Let  $x \in K_n$  be a nondegenerate simplex of K.
- A: For all x, all faces of x are nondegenerate.
- B: For all x, x has n + 1 distinct vertices.
- C: Any n + 1 distinct vertices are the vertices of at most one x.
- **Lemma 2** *K* has *B* iff for all *x* and all monos  $\alpha, \beta: \mathbf{m} \longrightarrow \mathbf{n}, \ \alpha^* x = \beta^* x$  implies  $\alpha = \beta$ .

Lemma 3 If K has B, then K has A.

No other general implications among A, B, C.

# Properties A, B, C and subdivision

Lemma 4 K has A iff SdK has A.

Lemma 5 K has A iff SdK has B.

Lemma 6 K has B iff SdK has C.

Characterization of simplicial complexes

**Lemma 7** K has A iff  $Sd^2K$  has C, and then  $Sd^2K$  also has B.

**Lemma 8** K has B and C iff  $K \in Im(i)$ .

**Theorem 4** K has A iff  $Sd^2K \in Im(i)$ .

#### Subdivision and horn-filling

# **Lemma 9** If SdK is a Kan complex, then K is discrete.

**Lemma 10** If K does not have A, then SdK cannot be a quasicategory.

Relationship of the properties to categories

**Theorem 5** If K has A, then  $SdK \in Im(N)$ .

Proof: Check the Segal maps criterion.

**Definition 1** A category *C* satisfies A, B, or C if NC satisfies A, B, or C.

**Lemma 11**  $\mathscr{C}$  has A iff for any  $i: C \longrightarrow D$  and  $r: D \longrightarrow C$  such that  $r \circ i = id$ , C = D and i = r = id. (Retracts are identities.)

**Lemma 12**  $\mathscr{C}$  has B iff for any  $i: C \longrightarrow D$  and  $r: D \longrightarrow C$ , C = D and i = r = id.

**Lemma 13**  $\mathscr{C}$  has B and C iff  $\mathscr{C}$  is a poset.

**Definition 2** Define a category  $T\mathscr{C}$ :

Objects: nondegenerate simplices of  $N\mathscr{C}$ . e.g.

 $\underline{C} = C_0 \longrightarrow C_1 \longrightarrow \cdots \longrightarrow C_q$ 

 $\underline{D} = D_0 \longrightarrow C_1 \longrightarrow \cdots \longrightarrow D_r$ 

Morphisms: maps  $\underline{C} \longrightarrow \underline{D}$  are maps  $\alpha$ :  $\mathbf{q} \longrightarrow \mathbf{r}$ in  $\boldsymbol{\Delta}$  such that  $\alpha^* \mathbf{D} = \mathbf{C}$  (implying  $\alpha$  is mono).

Quotient category  $sd\mathscr{C}$  with the same objects:

 $\alpha \circ \beta_1 \sim \alpha \circ \beta_2 : \underline{C} \longrightarrow \underline{D}$ 

if  $\sigma \circ \beta_1 = \sigma \circ \beta_2$  for a surjection  $\sigma: \mathbf{p} \longrightarrow \mathbf{q}$ such that  $\alpha^* \mathbf{D} = \sigma^* \mathbf{C} \ (\alpha: \mathbf{p} \longrightarrow \mathbf{r}, \ \beta_i: \mathbf{q} \longrightarrow \mathbf{p}).$ 

$$(\beta_i^* \alpha^* \underline{D} = \beta_i^* \sigma^* \underline{C} = \underline{C}, \quad i = 1, 2)$$

(Anderson, Thomason, Fritsch-Latch, del Hoyo)

Lemma 14 For any  $\mathscr{C}$ ,  $T\mathscr{C}$  has B. Corollary 1 For any  $\mathscr{C}$ ,  $sd\mathscr{C}$  has B. Lemma 15  $\mathscr{C}$  has B iff  $sd\mathscr{C}$  is a poset. Theorem 6 For any  $\mathscr{C}$ ,  $sd^2\mathscr{C}$  is a poset. Compare with K has A iff  $Sd^2K \in Im(i)$ . Del Hoyo: Equivalence  $\varepsilon$ :  $sd\mathscr{C} \longrightarrow \mathscr{C}$ .

(Relate to equivalence  $\varepsilon: SdK \longrightarrow K?$ )

Left adjoint  $\tau_1$  to N (Gabriel–Zisman).

Objects of  $\tau_1 K$  are the vertices.

Think of 1-simplices y as maps

 $d_1 y \longrightarrow d_0 y,$ 

form the free category they generate, and impose the relations

$$s_0 x = id_x$$
 for  $x \in K_0$ 

$$d_1 z = d_0 z \circ d_2 z \quad \text{for} \quad z \in K_2.$$

The counit  $\varepsilon: \tau_1 N \mathscr{A} \longrightarrow \mathscr{A}$  is an isomorphism.

 $\tau_1 K$  depends only on the 2-skeleton of K. When

 $K = \partial \Delta[n]$  for n > 2, the unit  $\eta: K \longrightarrow N\tau_1 K$ 

is the inclusion  $\partial \Delta[n] \longrightarrow \Delta[n]$ .

Direct combinatorial proof:

**Theorem 7** For any  $\mathscr{C}$ ,  $sd\mathscr{C} \cong \tau_1 SdN\mathscr{C}$ .

**Corollary 2**  $\varepsilon = \tau_1 \varepsilon$ :  $sd \mathscr{C} \longrightarrow \tau_1 N \mathscr{C} \cong \mathscr{C}$ .

**Corollary 3**  $\mathscr{C}$  has A iff  $SdN\mathscr{C} \cong Nsd\mathscr{C}$ .

**Remark 1** Even for posets P and Q,  $sdP \cong sdQ$  does not imply  $P \cong Q$ .

In the development above, there is a counterexample to the converse of each implication that is not stated to be iff.

Sheds light on Thomason model structure.

#### Alexandrov and finite spaces

Alexandrov space, abbreviated A-space:

ANY intersection of open sets is open.

Finite spaces are A-spaces.

 $T_0$ -space: topology distinguishes points.

Kolmogorov quotient K(A). McCord:

 $A \longrightarrow K(A)$  is a homotopy equivalence.

Space =  $T_0$ -A-space from now on

 $T_1$  finite spaces are discrete,

but any finite X has a closed point.

Define

$$U_x \equiv \cap \{U | x \in U\}$$

 $\{U_x\}$  is unique minimal basis for the topology.

$$x \leq y \equiv x \in U_y$$
; that is,  $U_x \subset U_y$ 

Transitive and reflexive;  $T_0 \Longrightarrow$  antisymmetric.

For a poset X, define  $U_x \equiv \{y | x \leq y\}$ : basis for a  $T_0$ -A-space topology on the set X.

 $f: X \longrightarrow Y$  is continuous  $\iff f$  preserves order.

**Theorem 8** The category  $\mathscr{P}$  of posets is isomorphic to the category  $\mathscr{A}$  of  $T_0$ -A-spaces.

Finite spaces:  $f: X \longrightarrow X$  is a homeomorphism iff f is one-to-one or onto.

Can describe *n*-point topologies by restricted kind of  $n \times n$ -matrix and enumerate them.

Combinatorics: count the isomorphism classes of posets with n points; equivalently count the homeomorphism classes of spaces with npoints. HARD! For n = 4,  $X = \{a, b, c, d\}$ , 33 topologies, with bases as follows:

```
all
1
2
     a, b, c, (a,b), (a,c), (b,c), (a,b,c)
3
     a, b, c, (a,b), (a,c), (b,c), (a,b,c), (a,b,d)
4
     a, b, c, (a,b), (a,c), (b,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
5
     a, b, (a,b)
6
     a, b, (a,b), (a,b,c)
7
     a, b, (a,b), (a,c,d)
8
     a, b, (a,b), (a,b,c), (a,b,d)
9
     a, b, (a,b), (a,c), (a,b,c)
     a, b, (a,b), (a,c), (a,b,c), (a,c,d)
10
     a, b, (a,b), (a,c), (a,b,c), (a,b,d)
11
12
     a, b, (a,b), (c,d), (a,c,d), (b,c,d)
     a, b, (a,b), (a,c), (a,d), (a,b,c), (a,b,d)
13
     a, b, (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
14
15
     а
16
     a, (a,b)
     a, (a,b), (a,b,c)
17
     a, (b,c), (a,b,c)
18
19
     a, (a,b), (a,c,d)
20
     a, (a,b), (a,b,c), (a,b,d)
21
     a, (b,c), (a,b,c), (b,c,d)
     a, (a,b), (a,c), (a,b,c)
22
     a, (a,b), (a,c), (a,b,c), (a,b,d)
23
24
     a, (c,d), (a,b), (a,c,d)
     a, (a,b), (a,c), (a,d), (a,b,c), (a,b,d), (a,c,d)
25
26
     a, (a,b,c)
     a, (b,c,d)
27
28
     (a,b)
29
     (a,b), (c,d)
30
     (a,b), (a,b,c)
31
     (a,b), (a,b,c), (a,b,d)
32
     (a,b,c)
33
     none
```

#### Homotopies and homotopy equivalence

 $f, g: X \longrightarrow Y: f \leq g \text{ if } f(x) \leq g(x) \ \forall x \in X.$ 

**Proposition 1** X, Y finite.  $f \leq g$  implies  $f \simeq g$ .

**Proposition 2** If  $y \in U \subset X$  with U open (or closed) implies U = X, then X is contractible.

If X has a unique maximum or minimal point, X is contractible. Each  $U_x$  is contractible.

**Definition 3** Let X be finite.

- (a)  $x \in X$  is upbeat if there is a y > x such that z > x implies  $z \ge y$ .
- (b)  $x \in X$  is downbeat if there is a y < x such that z < x implies  $z \le y$ .

Upbeat:



Downbeat: upside down.

X is minimal if it has no upbeat or downbeat points. A *core* of X is a subspace Y that is minimal and a deformation retract of X.

Stong:

**Theorem 9** Any finite X has a core.

**Theorem 10** If  $f \simeq id: X \longrightarrow X$ , then f = id.

**Corollary 4** *Minimal homotopy equivalent finite spaces are homeomorphic.* 

# **REU** results of Alex Fix and Stephen Patrias

Can now count homotopy types with n points.

Hasse diagram Gr(X) of a poset X: directed graph with vertices  $x \in X$  and an edge  $x \to y$ if y < x but there is no other z with  $x \le z \le y$ .

Translate minimality of X to a property of Gr(X) and count the number of such graphs.

Find a fast enumeration algorithm.

Run it on a computer.

Get number of homotopy types with n points.

Compare with number of homeomorphism types.

| n  | $\simeq$  | 2             |
|----|-----------|---------------|
| 1  | 1         | 1             |
| 2  | 2         | 2             |
| 3  | 3         | 5             |
| 4  | 5         | 16            |
| 5  | 9         | 63            |
| 6  | 20        | 318           |
| 7  | 56        | 2,045         |
| 8  | 216       | 16,999        |
| 9  | 1,170     | 183,231       |
| 10 | 9,099     | 2,567,284     |
| 11 | 101,191   | 46,749,427    |
| 12 | 1,594,293 | 1,104,891,746 |

Exploit known results from combinatorics.

Astonishing conclusion:

**Theorem 11** (Fix and Patrias) The number of homotopy types of finite  $T_0$ -spaces is asymptotically equivalent to the number of homeomorphism types of finite  $T_0$ -spaces.

### $T_0$ -A-spaces and simplicial complexes

Category  $\mathscr{A}$  of  $T_0$ -A-spaces (= posets);

Category  $\mathscr{B}$  of simplicial complexes.

McCord:

**Theorem 12** There is a functor  $\mathscr{K}: \mathscr{A} \longrightarrow \mathscr{B}$ and a natural weak equivalence

 $\psi: |\mathscr{K}(X)| \longrightarrow X.$ 

The *n*-simplices of  $\mathscr{K}(X)$  are

 $\{x_0, \cdots, x_n | x_0 < \cdots < x_n\},\$ 

and  $\psi(u) = x_0$  if u is an interior point of the simplex spanned by  $\{x_0, \dots, x_n\}$ .

Let SdK be the barycentric subdivision of a simplicial complex K; let  $b_{\sigma}$  be the barycenter of a simplex  $\sigma$ .

**Theorem 13** There is a functor  $\mathscr{X}:\mathscr{B} \longrightarrow \mathscr{A}$ and a natural weak equivalence

 $\phi: |K| \longrightarrow \mathscr{X}(K).$ 

The points of  $\mathscr{X}(K)$  are the barycenters  $b_{\sigma}$  of

simplices of K and  $b_{\sigma} < b_{\tau}$  if  $\sigma \subset \tau$ .

 $\mathscr{K}(\mathscr{X}(K)) = \mathsf{Sd}K$  and

 $\phi_K = \psi_{\mathscr{X}(K)} : |K| \cong |\mathsf{Sd}\,\mathsf{K}| \longrightarrow \mathscr{X}(K).$ 

Problem: not many maps between finite spaces! Solution: subdivision:  $SdX \equiv \mathscr{X}(\mathscr{K}(X))$ .

**Theorem 14** There is a natural weak equiv.

 $\xi$ : Sd  $X \longrightarrow X$ .

Classical result and an implied analogue:

**Theorem 15** Let  $f: |K| \longrightarrow |L|$  be continuous, where K and L are simplicial complexes, K finite. For some large n, there is a simplicial map  $g: K^{(n)} \longrightarrow L$  such that  $f \simeq |g|$ .

**Theorem 16** Let  $f: |\mathscr{K}(X)| \longrightarrow |\mathscr{K}(Y)|$  be continuous, where X and Y are  $T_0$ -A-spaces, X finite. For some large n there is a continuous map  $g: X^{(n)} \longrightarrow Y$  such that  $f \simeq |\mathscr{K}(g)|$ . **Definition 4** Let X be a space. Define the non-Hausdorff cone  $\mathbb{C}X$  by adjoining a new point + and letting the proper open subsets of  $\mathbb{C}X$  be the non-empty open subsets of X.

Define the non-Hausdorff suspension SX by adjoining two points + and - such that SX is the union under X of two copies of  $\mathbb{C}X$ .

Let SX be the unreduced suspension of X.

Definition 5 Define a natural map

 $\gamma = \gamma_X : SX \longrightarrow \mathbb{S}X$ by  $\gamma(x, t) = x$  if -1 < t < 1 and  $\gamma(\pm 1) = \pm$ .

**Theorem 17**  $\gamma$  is a weak equivalence.

**Corollary 5**  $\mathbb{S}^n S^0$  is a minimal finite space with 2n+2 points, and it is weak equivalent to  $S^n$ .

The height h(X) of a poset X is the maximal length h of a chain  $x_1 < \cdots < x_h$  in X.

$$h(X) = \dim |\mathscr{K}(X)| + 1.$$

Barmak and Minian:

**Proposition 3** Let  $X \neq *$  be a minimal finite space. Then X has at least 2h(X) points. It has exactly 2h(X) points if and only if it is homeomorphic to  $\mathbb{S}^{h(X)-1}S^0$ .

**Corollary 6** If  $|\mathscr{K}(X)|$  is homotopy equivalent to a sphere  $S^n$ , then X has at least 2n + 2points, and if it has exactly 2n + 2 points it is homeomorphic to  $\mathbb{S}^n S^0$ .

**Remark 2** If X has six elements, then h(X) is 2 or 3. There is a six point finite space that is weak homotopy equivalent to  $S^1$  but is not homotopy equivalent to  $SS^0$ .

# Really finite *H*-spaces

Let X be a finite space and an H-space with unit e:  $x \rightarrow ex$  and  $x \rightarrow xe$  are each homotopic to the identity. Stong:

**Theorem 18** If X is minimal, these maps are homeomorphisms and e is both a maximal and a minimal point of X, so  $\{e\}$  is a component.

**Theorem 19** X is an H-space with unit e iff e is a deformation retract of its component in X. Therefore X is an H-space iff a component of X is contractible. If X is a connected H-space, X is contractible.

Hardie, Vermeulen, Witbooi:

Let  $\mathbb{T} = \mathbb{S}S^0$ ,  $\mathbb{T}' = Sd\mathbb{T}$ .

Brute force write it down proof  $(8 \times 8 \text{ matrix})$ 

**Example 1** There is product  $\mathbb{T}' \times \mathbb{T}' \longrightarrow \mathbb{T}$  that realizes the product on  $S^1$  after realization.

# Finite groups and finite spaces

X, Y finite  $T_0$ -spaces and G-spaces. Stong:

**Theorem 20** *X* has an equivariant core, namely a sub *G*-space that is a core and a *G*-deformation retract of *X*.

**Corollary 7** Let X be contractible. Then X is G-contractible and has a point fixed by every self-homeomorphism.

**Corollary 8** If  $f: X \longrightarrow Y$  is a *G*-map and a homotopy equivalence, then it is a *G*-homotopy equivalence.

#### Quillen's conjecture

G finite, p prime.

 $\mathscr{S}_p(G)$ : poset of non-trivial *p*-subgroups of *G*, ordered by inclusion.

G acts on  $\mathscr{S}_p(G)$  by conjugation.

 $\mathscr{A}_p(G)$ : Sub *G*-poset of *p*-tori.

p-torus  $\equiv$  elementary Abelian p-group.

 $r_p(G)$  is the rank of a maximal *p*-torus in G.



Vertical maps  $\psi$  are weak equivalences.

**Proposition 4** If G is a p-group,  $\mathscr{A}_p(G)$  and  $\mathscr{S}_p(G)$  are contractible.

Note: genuinely contractible, not just weakly.

**Proposition 5**  $i: \mathscr{A}_p(G) \longrightarrow \mathscr{S}_p(G)$  is a weak equivalence.

**Example 2** If  $G = \Sigma_5$ ,  $\mathscr{A}_p(G)$  and  $\mathscr{S}_p(G)$  are not homotopy equivalent.

 $P \in \mathscr{S}_p(G)$  is normal iff P is a G-fixed point.

**Theorem 21** If  $\mathscr{S}_p(G)$  or  $\mathscr{A}_p(G)$  is contractible, then G has a non-trivial normal *p*-subgroup. Conversely, if G has a non-trivial normal *p*-subgroup, then  $\mathscr{S}_p(G)$  is contractible, hence  $\mathscr{A}_p(G)$  is weakly contractible.

**Conjecture 1** (Quillen) If  $\mathscr{A}_p(G)$  is weakly contractible, then G contains a non-trivial normal *p*-subgroup. Easy: True if  $r_P(G) \leq 2$ .

Quillen: True if G is solvable.

Aschbacker and Smith: True if p > 5 and G has no component  $U_n(q)$  with  $q \equiv -1 \pmod{p}$  and q odd.

(Component of G: normal subgroup that is simple modulo its center).

Horrors: proof from the classification theorem.

Their 1993 article summarizes earlier results.

And as far as Jon Alperin and I know, that is where the problem stands. Finite space version may not help with the proof, but is intriquing.