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• Two classical definitions: Borel and Bredon

• P.A. Smith theory on fixed point spaces

• The Conner conjecture on orbit spaces

• The Oliver transfer and RO(G )-graded cohomology

• Mackey functors for finite and compact Lie groups

• Extending Bredon cohomology to RO(G )-grading

• A glimpse of the modern world of spectra and G -spectra



Borel’s definition (1958):

G a topological group, X a (left) G -space, action G × X −→ X

g(hx) = (gh)x , ex = x

EG a contractible (right) G -space with free action

yg = y implies g = e

EG ×G X = EG × X/ ∼ (yg , x) ∼ (y , gx)

“homotopy orbit space of X ”

A an abelian group

H∗Bor (X ; A) = H∗(EG ×G X ; A)



Characteristic classes in Borel cohomology

B(G ,Π): classifying G -space for principal (G ,Π)-bundles,

principal Π-bundles with G -acting through bundle maps.

Theorem
EG ×G B(G ,Π) ' BG × BΠ over BG .

Therefore, with field coefficients,

H∗Bor (B(G ,Π)) = H∗(EG ×G B(G ,Π)) ∼= H∗(BG )⊗ H∗(BΠ)

as an H∗(BG )-module.

Not very interesting theory of equivariant characteristic classes.



Bredon’s definition (1967):
Slogan: “orbits are equivariant points” since (G/H)/G = ∗.

A coefficient system A is a contravariant functor

A : hOG −→ Ab

OG is the category of orbits G/H and G -maps,

hOG is its homotopy category (= OG if G is discrete)

H∗G (X ; A )

satisfies the Eilenberg-Steenrod axioms plus

“the equivariant dimension axiom”:

H0
G (G/H; A ) = A (G/H), Hn

G (G/H; A ) = 0 if n 6= 0



Axioms for reduced cohomology theories

Cohomology theory Ẽ ∗ on based G -spaces (G -CW ' types):

Contravariant homotopy functors Ẽ n to Abelian groups, n ∈ Z.

Natural suspension isomorphisms

Ẽ n(X ) −→ Ẽ n+1(ΣX )

For A ⊂ X , the following sequence is exact:

Ẽ n(X/A) −→ Ẽ n(X ) −→ Ẽ n(A)

The following natural map is an isomorphism:

Ẽ n(
∨
i∈I

Xi ) −→
∏
i∈I

Ẽ n(Xi )

E n(X ) = Ẽ n(X+), X+ = X q {∗}; E n(X ,A) = Ẽ n(X/A)



Borel vs Bredon:
A = the constant coefficient system, A(G/H) = A

H∗(X/G ; A) ∼= H∗G (X ; A)

since both satisfy the dimension axiom and Bredon is unique.
Therefore

H∗Bor (X ; A) ≡ H∗(EG ×G X ; A) ∼= H∗G (EG × X ; A)

On “equivariant points”, EG ×G (G/H) ∼= EG/H = BH, hence

H∗(EG ×G (G/H); A) = H∗(BH; A).



Cellular (or singular) cochain construction:

G -CW complex X , cells of the form G/H × Dn:

X = ∪X n, X 0 = disjoint union of orbits, pushouts∐
i G/Hi × Sn

��

// X n

��∐
i G/Hi × Dn+1 // X n+1

X • : Oop
G −→ Spaces, X •(G/H) = X H

Chain complex C∗(X ) of coefficient systems:

Cn(X )(G/H) = Cn((X n/X n−1)H ; Z)

Cochain complex of abelian groups:

C ∗(X ; A ) = HomCoeff (C∗(X ),A )



P.A. Smith theory (1938):

G a finite p-group, X a finite dimensional G -CW complex.

Consider mod p cohomology. Assume that H∗(X ) is finite.

Theorem
If H∗(X ) ∼= H∗(Sn), then X G is empty or H∗(X G ) ∼= H∗(Sm)
for some m ≤ n.

If p > 2, then n −m is even and X G 6= ∅ if n is even.

If H is a normal subgroup of G , then X G = (X H)G/H .

Finite p-groups are nilpotent.

By induction on the order of G ,

we may assume that G is cyclic of order p.



The Bockstein exact sequence
A short exact sequence

0 −→ A −→ B −→ C −→ 0

of coefficient systems implies a short exact sequence

0 −→ C ∗(X ; A ) −→ C ∗(X ; B) −→ C ∗(X ; C ) −→ 0

of cochain complexes, which implies a long exact sequence

· · · //Hq
G (X ; A ) //Hq

G (X ; B) //Hq
G (X ; C ) // · · ·

Connecting homomorphism

β : Hq
G (X ; C ) −→ Hq+1

G (X ; A )

is called a “Bockstein operation”.



Smith theory
Let FX = X/X G . Define A , B, C so that

H∗G (X ; A ) ∼= H̃∗(FX/G ),

H∗G (X ; B) ∼= H∗(X ),

H∗G (X ; C ) ∼= H∗(X G )

On orbits G = G/e and ∗ = G/G ,

A (G ) = Fp, A (∗) = 0

B(G ) = Fp[G ], B(∗) = Fp

C (G ) = 0, C (∗) = Fp

Let

aq = dimH̃q(FX/G ), bq = dimHq(X ), cq = dimHq(X G )



Beginning of proof of Smith theorem for p = 2

0 −→ A −→ B −→ A ⊕ C −→ 0

On G , 0 −→ F2 −→ F2[G ] −→ F2 ⊕ 0 −→ 0.

On ∗, 0 −→ 0 −→ F2 −→ 0⊕ F2 −→ 0.

H∗(X ; A ⊕ C ) ∼= H∗(X ; A )⊕ H∗(X ; C )

Bockstein LES implies

χ(X ) = χ(X G ) + 2χ̃(FX/G )

and
aq + cq ≤ bq + aq+1



Beginning of proof of Smith theorem for p > 2

Let I = Ker(ε), ε : Fp[G ] −→ Fp, where ε(g) = 1.

Define I n by I n(G ) = I n and I n(∗) = 0. Then I p−1 = A .

0 −→ I −→ B −→ A ⊕ C −→ 0

0 −→ A −→ B −→ I ⊕ C −→ 0

0 −→ I n+1 −→ I n −→ A −→ 0, 1 ≤ n < p

Let
āq = dimHq

G (X ; I )

Bockstein LES implies

χ(X ) = χ(X G ) + pχ̃(FX/G )

and
aq + cq ≤ bq + āq+1, āq + cq ≤ bq + aq+1



Completion of proof for any p

Inductively, for q ≥ 0 and r ≥ 0, with r odd if p > 2,

aq + cq + · · · cq+r ≤ bq + bq+1 + · · ·+ bq+r + aq+r+1.

Let n = dim(X ). With q = n + 1 and r > n, get ci = 0 for i > n.
With q = 0 and r > n, get∑

cq ≤
∑

bq.

So far, all has been general. If H∗(X ) ∼= H∗(Sn), then
∑

bq = 2.

χ(X ) ≡ χ(X G ) mod p implies
∑

cq = 0 (X G = ∅) or
∑

cq = 2.

If p > 2, it also implies n −m is even and, if n is even, X G 6= ∅.



The Conner conjecture (1960); first proven by Oliver (1976)

G a compact Lie group, X a finite dimensional G -CW complex
with finitely many orbit types, A an abelian group.

Theorem
If H̃∗(X ; A) = 0, then H̃∗(X/G ; A) = 0.

Conner (implicitly): True if G is a finite extension of a torus.

If H is a normal subgroup of G , then X/G = (X/H) / (G/H).

Reduces to G = S1 and G finite. Standard methods apply.

General case: let N be the normalizer of a maximal torus T in G .

Then χ(G/N) = 1 and H̃n(X/N; A) = 0.



The Oliver transfer

Theorem
Let H ⊂ G , π : X/H −→ X/G . For n ≥ 0, there is a transfer map

τ : H̃n(X/H; A) −→ H̃n(X/G ; A)

such that τ ◦ π∗ is multiplication by χ(G/H).

Proof of the Conner conjecture.

Take H = N. The composite

H̃n(X/G ; A)
π∗ //H̃n(X/N; A)

τ //H̃n(X/G ; A)

is the identity and H̃n(X/N; A) = 0.

How do we get the Oliver transfer?



RO(G )-graded cohomology

X ∧ Y = X × Y /X ∨ Y

V a representation of G , SV its 1-point compactification.

ΣV X = X ∧ SV , ΩV X = Map∗(SV ,X )

Suspension axiom on an “RO(G )-graded cohomology theory E ∗”:

Ẽα(X ) ∼= Ẽα+V (ΣV X )

for all α ∈ RO(G ) and all representations V .

Theorem
If A = Z (hence if A = A = Z⊗ A), then H∗G (−; A ) extends to

an RO(G )-graded cohomology theory.



Construction of the Oliver transfer

Let X+ = X q {∗}. Consider ε : (G/H)+ −→ S0.

Theorem
For large enough V , there is a map

t : SV = ΣV S0 −→ ΣV G/H+

such that ΣV ε ◦ t has (nonequivariant) degree χ(G/H).

The definition of τ : H̃n(X/H ; A) −→ H̃n(X/G ; A).

H̃n(X/H; A) ∼= H̃n
H (X ; A) ∼= H̃n

G (X ∧G/H+; A) ∼= H̃n+V
G (X ∧ΣV G/H+; A)

H̃n(X/G ; A) ∼= H̃n
G (X ; A) ∼= H̃n+V

G (ΣV X ; A) = H̃n+V
G (X ∧ SV ; A)

Smashing with X , t induces τ .



How do we get the map t?

Generalizing, let M be a smooth G -manifold.

Embed M in a large V . The embedding has a normal bundle ν.

The embedding extends to an embedding of the total space of ν as
a tubular neighborhood in V .

The Pontryagin Thom construction gives a map SV −→ Tν,
where Tν is the Thom space of the normal bundle.

Compose with Tν −→ T (τ ⊕ ν) ∼= Tε = M+ ∧ SV .

The composite is the transfer t : SV −→ ΣV M+.

Atiyah duality: M+ and Tν are Spanier-Whitehead dual.
This is the starting point for equivariant Poincaré duality,
for which RO(G )-grading is essential.



RO(G )-graded Bredon cohomology

Theorem
H∗G (−; A ) extends to an RO(G )-graded theory if and only if the
coefficient system A extends to a Mackey functor.

Theorem
Z, hence A, extends to a Mackey functor.

What is a Mackey functor?

First definition, for finite G

Let GS be the category of finite G -sets. A Mackey functor M
consists of covariant and contravariant functors

M ∗,M∗ : GS −→ Ab,

which are the same on objects (written M) and satisfy:



M(Aq B) ∼= M(A)⊕M(B)

and a pullback of finite sets gives a commutative diagram:

P
g //

i
��

T

j
��

S
f

// B

M(P)
g∗ // M(T )

M(S)
f∗

//

i∗

OO

M(B)

j∗

OO

Suffices to define on orbits.

Pullback condition gives the “double coset formula”.

Example: M (G/H) = R(H) (representation ring of H).

Restriction and induction give M ∗ and M∗.



Second definition, G finite

Category G -Span of “spans” of finite G -sets.

Objects are finite G -sets. Morphisms A −→ B are diagrams

A Soo //B

Really equivalence classes: S ∼ S ′ if S ∼= S ′ over A and B.

Composition by pullbacks:
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@@
@@
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A B C



A Mackey functor M is a (contravariant) functor

M : G -Span −→ Ab,

written M on objects and satisfying M(Aq B) ∼= M(A)⊕M(B).

Lemma
A Mackey functor is a Mackey functor.

Given M ,

A A //=oo B, A Boo = //B

give M ∗ and M∗. Given M ∗ and M∗, composites give M .



Topological reinterpretation

For based G -spaces X and Y with X a finite G -CW complex,

{X ,Y }G ≡ colimV [ΣV X ,ΣV Y ]G

“Stable orbit category” or “Burnside category” BG :
objects G/H, abelian groups of morphisms

BG (G/H,G/K ) = {G/H+,G/K+}G

Theorem
If G is finite, BG is isomorphic to the full subcategory of orbits
G/H in G-Span.

Mackey functors are contravariant additive functors BG −→ Ab.

Theorem if G is finite. Definition if G is a compact Lie group.



The Mackey functor Z

Define

AG (G/H) = BG (G/H, ∗) ∼= {S0, S0}H = A(H).

This gives the Burnside ring Mackey functor AG .

Augmentation ideal sub Mackey functor IG (G/H) = IA(H).

The quotient Mackey functor AG/IG is Z.

How can we extend Z-grading to RO(G )-grading?

Represent ordinary Z-graded theories on G -spectra by
Eilenberg-MacLane G -spectra, which then represent
RO(G )-graded theories!



What are spectra?

• Prespectra (naively, spectra): sequences of spaces Tn and
maps ΣTn −→ Tn+1

• Ω-(pre)spectra: Adjoints are equivalences Tn
'−→ ΩTn+1

• Spectra: Spaces En and homeomorphisms En −→ ΩEn+1

• Spaces to prespectra: {ΣnX} and Σ(ΣnX )
∼=−→ Σn+1X

• Prespectra to spectra, when Tn
⊂−→ ΩTn+1:

(LT )n = colim ΩqTn+q

• Spaces to spectra: Σ∞X = L{ΣnX}

• Spectra to spaces: Ω∞E = E0

• Coordinate-free: spaces TV and maps ΣW TV −→ TV⊕W



What are spectra good for?

• First use: Spanier-Whitehead duality [1958]

• Cobordism theory [1959] (Milnor; MSO has no odd torsion)

• Stable homotopy theory [1959] (Adams; ASS for spectra)

• Generalized cohomology theories [1960] (Atiyah-Hirzebruch;
K-theory, AHSS)

• Generalized homology theories [1962] (G.W. Whitehead)

• Stable homotopy category [1964] (Boardman’s thesis)



Representing cohomology theories

Fix Y . If Y ' Ω2Z , then [X ,Y ] is an abelian group.

For A ⊂ X , the following sequence is exact:

[X/A,Y ] −→ [X ,Y ] −→ [A,Y ]

The following natural map is an isomorphism:

[
∨
i∈I

Xi ,Y ] −→
∏
i∈I

[Xi ,Y ]

For an Ω-spectrum E = {En},

Ẽ n(X ) =

{
[X ,En] if n ≥ 0
[X ,Ω−nE0] if n < 0

Suspension:

Ẽ n(X ) = [X ,En] ∼= [X ,ΩEn+1] ∼= [ΣX ,En+1] = Ẽ n+1(ΣX )



What are naive G -spectra (any G )?

• Naive G -spectra: spectra with G -action

• G -spaces Tn and G -maps ΣTn −→ Tn+1

• Naive Ω-G -spectra: Tn
'−→ ΩTn+1

Naive Ω-G -spectra E = {En} represent Z-graded cohomology.

Ẽ n
G (X ) =

{
[X ,En]G if n ≥ 0
[X ,Ω−nE0]G if n < 0



Ordinary theories

Eilenberg-Mac Lane spaces:

πnK (A, n) = A, πqK (A, n) = 0 if q 6= n.

H̃n(X ; A) = [X ,K (A, n)]

For based G -spaces X ,

πn(X ) = πn(X •); πn(X )(G/H) = πn(X H).

Eilenberg-Mac Lane G -spaces:

πnK (A , n) = A , πqK (A , n) = 0 if q 6= n.

H̃n
G (X ; A ) = [X ,K (A , n)]G



What are genuine G -spectra (G compact Lie)?

• G -spaces TV , G -maps ΣW TV −→ TV⊕W

where V ,W are real representations of G

• Ω-G -spectra: G -equivalences TV
'−→ ΩW TV⊕W

Genuine Ω-G -spectra E represent RO(G )-graded theories.

Imprecisely,

E V−W
G (X ) = [ΣW X ,EV ].

Ordinary? Need genuine Eilenberg-Mac Lane G -spectra.



A quick and dirty construction (1981)

Build a good “equivariant stable homotopy category” of G -spectra.

Use sphere G -spectra G/H+ ∧Sn to get a theory of G -CW spectra.

Mimic Bredon’s construction of ordinary Z-graded cohomology,
but in the category of G -spectra, using Mackey functors instead
of coefficient systems.

Apply Brown’s representability theorem to represent the 0th term
by a G -spectrum HM : for G -spectra X ,

H0
G (X ; M ) ∼= {X ,HM }G .

Then HM is the required Eilenberg-Mac Lane G -spectrum.



What are G -spectra good for?

• Equivariant K -theory [1968] (Atiyah, Segal)

• Equivariant cobordism [1964] (Conner and Floyd)

• RO(G )-graded homology and cohomology theories

• Equivariant Spanier-Whitehead and Poincaré duality

• Equivariant stable homotopy category (Lewis-May)

• Completion theorems (KUG , π∗G , MUG -modules):
(Atiyah-Segal, Segal conjecture, Greenlees-May)

• Nonequivariant applications!!!



Kervaire invariant one problem

Framed manifold M: trivialization of its (stable) normal bundle.

Ωfr
n : Cobordism classes of (smooth closed) framed n-manifolds.

Is every framed n-manifold M, n = 4k + 2, framed cobordant to

a homotopy sphere (a topological sphere by Poincaré conjecture)?

κ : Ωfr
4k+2 −→ F2

κ[M] is the Kervaire invariant, the Arf invariant of a quadratic
refinement of the cup product form on H2k+1(M; F2) that is
determined by the given framing.

κ[M] = 0 if and only if [M] = [Σ] for some homotopy sphere Σ.



History

n = 2, 6, 14: S1 × S1, S3 × S3, S7 × S7 have κ = 1 framings.

Kervaire (1960): PL, non-smoothable, 10-manifold M with κ = 1.

Kervaire and Milnor (1963): maybe κ = 0 for n 6= 2, 6, 14?

Browder (1969): κ = 0 unless n = 2j+1 − 2 for some j , and then

κ = 0 if and only if h2
j does not survive in the ASS, hj ↔ Sq2j

.

Calculation/construction (Barratt, Jones, Mahowald, Tangora
(using May SS)):

h2
4 and h2

5 survive the ASS. (h2
6 doable??)



Hill, Hopkins, Ravenel

Theorem (2009)

κ = 0 unless n is 2, 6, 14, 30, 62, or maybe 126:
h2

j has a non-zero differential in the ASS, j ≥ 7.

Calculations of RO(G )-graded groups H∗G (∗; Z) are critical!

Haynes Miller quote (Bourbaki Séminaire survey):

Hill, Hopkins, and Ravenel marshall three major developments in stable
homotopy theory in their attack on the Kervaire invariant problem:

• The chromatic perspective based on work of Novikov and Quillen
and pioneered by Landweber, Morava, Miller, Ravenel, Wilson, and
many more recent workers.

• The theory of structured ring spectra, implemented by May and
many others; and

• Equivariant stable homotopy theory, as developed by May and
collaborators.



Structured ring spectra and structured ring G -spectra

E∞ ring spectra (May-Quinn-Ray [1972])

E∞ ring G -spectra (Lewis-May [1986])

Recent paradigm shift in stable homotopy theory.

Symmetric monoidal category of spectra S under ∧;

E∞ ring spectra are just commutative monoids in S .

Elmendorf-Kriz-Mandell-May [1997]: S-modules, operadic ∧
Hovey-Shipley-Smith [2000]: Symmetric spectra, categorical ∧
Mandell-May-Shipley-Schwede [2001]: Orthogonal, comparisons

Mandell-May [2002]: Orthogonal G -spectra and SG -modules

New subjects:

“Brave new algebra” (Waldhausen’s name, now apt)

“Derived algebraic geometry” (Toen-Vezzosi, Lurie)



Revitalized areas

Equivariant ∞ loop space theory

Equivariant algebraic K -theory

(Guillou-Merling-May, [2011-2012]).

Prospective applications to algebraic K -theory of number rings?

Theorem
Let L be a Galois extension of a field F with Galois group G.

There is an E∞ ring G -spectrum KG (L) such that

(KG (L))H = K (LH) for H ⊂ G

where π∗K (R) = Quillen’s algebraic K -groups of R.


