Equivariant cohomology

Peter May

Department of Mathematics University of Chicago

May 3, 2012 Brandeis University May 5, 2012 Cornell University (collated slides)

OUTLINE

- Two classical definitions: Borel and Bredon
- P.A. Smith theory on fixed point spaces
- The Conner conjecture on orbit spaces
- The Oliver transfer and RO(G)-graded cohomology
- Mackey functors for finite and compact Lie groups
- Extending Bredon cohomology to RO(G)-grading
- ullet A glimpse of the modern world of spectra and G-spectra

Borel's definition (1958):

G a topological group, X a (left) G-space, action $G \times X \longrightarrow X$

$$g(hx) = (gh)x, ex = x$$

EG a contractible (right) G-space with free action

$$yg = y$$
 implies $g = e$

$$EG \times_G X = EG \times X / \sim (yg, x) \sim (y, gx)$$

"homotopy orbit space of X"

A an abelian group

$$H_{Bor}^*(X;A) = H^*(EG \times_G X;A)$$

Characteristic classes in Borel cohomology

 $B(G,\Pi)$: classifying G-space for principal (G,Π) -bundles, principal Π -bundles with G-acting through bundle maps.

Theorem

 $EG \times_G B(G,\Pi) \simeq BG \times B\Pi$ over BG.

Therefore, with field coefficients,

$$H^*_{Bor}(B(G,\Pi)) = H^*(EG \times_G B(G,\Pi)) \cong H^*(BG) \otimes H^*(B\Pi)$$
 as an $H^*(BG)$ -module.

Not very interesting theory of equivariant characteristic classes.

Bredon's definition (1967):

Slogan: "orbits are equivariant points" since (G/H)/G = *.

A coefficient system $\mathscr A$ is a contravariant functor

$$\mathscr{A}: h\mathscr{O}_G \longrightarrow \mathscr{A}b$$

 \mathscr{O}_G is the category of orbits G/H and G-maps, $h\mathscr{O}_G$ is its homotopy category (= \mathscr{O}_G if G is discrete)

$$H_G^*(X; \mathscr{A})$$

satisfies the Eilenberg-Steenrod axioms plus

"the equivariant dimension axiom":

$$H_G^0(G/H; \mathscr{A}) = \mathscr{A}(G/H), \quad H_G^n(G/H; \mathscr{A}) = 0 \text{ if } n \neq 0$$

Axioms for reduced cohomology theories

Cohomology theory \widetilde{E}^* on based *G*-spaces (*G*-CW \simeq types):

Contravariant homotopy functors \widetilde{E}^n to Abelian groups, $n \in \mathbb{Z}$.

Natural suspension isomorphisms

$$\widetilde{E}^n(X) \longrightarrow \widetilde{E}^{n+1}(\Sigma X)$$

For $A \subset X$, the following sequence is exact:

$$\widetilde{E}^n(X/A) \longrightarrow \widetilde{E}^n(X) \longrightarrow \widetilde{E}^n(A)$$

The following natural map is an isomorphism:

$$\widetilde{E}^n(\bigvee_{i\in I}X_i)\longrightarrow \prod_{i\in I}\widetilde{E}^n(X_i)$$

$$E^n(X) = \widetilde{E}^n(X_+), \quad X_+ = X \coprod \{*\}; \quad E^n(X,A) = \widetilde{E}^n(X/A)$$

Borel vs Bredon:

$$\underline{A}$$
 = the constant coefficient system, $\underline{A}(G/H) = A$

$$H^*(X/G; A) \cong H_G^*(X; \underline{A})$$

since both satisfy the dimension axiom and Bredon is unique. Therefore

$$H^*_{Bor}(X;A) \equiv H^*(EG \times_G X;A) \cong H^*_G(EG \times X;\underline{A})$$

On "equivariant points", $EG \times_G (G/H) \cong EG/H = BH$, hence

$$H^*(EG \times_G (G/H); A) = H^*(BH; A).$$

Cellular (or singular) cochain construction:

G-CW complex X, cells of the form $G/H \times D^n$:

 $X = \bigcup X^n$, $X^0 =$ disjoint union of orbits, pushouts

$$\coprod_{i} G/H_{i} \times S^{n} \longrightarrow X^{n}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\coprod_{i} G/H_{i} \times D^{n+1} \longrightarrow X^{n+1}$$

$$X^{\bullet} : \mathscr{O}_{G}^{op} \longrightarrow Spaces, X^{\bullet}(G/H) = X^{H}$$

Chain complex $C_*(X)$ of coefficient systems:

$$C_n(X)(G/H) = C_n((X^n/X^{n-1})^H; \mathbb{Z})$$

Cochain complex of abelian groups:

$$C^*(X; \mathscr{A}) = \operatorname{\mathsf{Hom}}_{\operatorname{\mathsf{Coeff}}}(C_*(X), \mathscr{A})$$

P.A. Smith theory (1938):

G a finite p-group, X a finite dimensional G-CW complex. Consider mod p cohomology. Assume that $H^*(X)$ is finite.

Theorem

If $H^*(X) \cong H^*(S^n)$, then X^G is empty or $H^*(X^G) \cong H^*(S^m)$ for some $m \leq n$.

If p > 2, then n - m is even and $X^G \neq \emptyset$ if n is even.

If H is a normal subgroup of G, then $X^G = (X^H)^{G/H}$.

Finite *p*-groups are nilpotent.

By induction on the order of G,

we may assume that G is cyclic of order p.

The Bockstein exact sequence

A short exact sequence

$$0 \longrightarrow \mathscr{A} \longrightarrow \mathscr{B} \longrightarrow \mathscr{C} \longrightarrow 0$$

of coefficient systems implies a short exact sequence

$$0 \longrightarrow C^*(X; \mathscr{A}) \longrightarrow C^*(X; \mathscr{B}) \longrightarrow C^*(X; \mathscr{C}) \longrightarrow 0$$

of cochain complexes, which implies a long exact sequence

$$\cdots \longrightarrow H_G^q(X; \mathscr{A}) \longrightarrow H_G^q(X; \mathscr{B}) \longrightarrow H_G^q(X; \mathscr{C}) \longrightarrow \cdots$$

Connecting homomorphism

$$\beta \colon H^q_G(X;\mathscr{C}) \longrightarrow H^{q+1}_G(X;\mathscr{A})$$

is called a "Bockstein operation".

Smith theory

Let $FX = X/X^G$. Define \mathscr{A} , \mathscr{B} , \mathscr{C} so that

$$H_G^*(X;\mathscr{A}) \cong \widetilde{H}^*(FX/G),$$

 $H_G^*(X;\mathscr{B}) \cong H^*(X),$
 $H_G^*(X;\mathscr{C}) \cong H^*(X^G)$

On orbits G = G/e and * = G/G,

$$\mathscr{A}(G) = \mathbb{F}_p, \quad \mathscr{A}(*) = 0$$
 $\mathscr{B}(G) = \mathbb{F}_p[G], \quad \mathscr{B}(*) = \mathbb{F}_p$ $\mathscr{C}(G) = 0, \quad \mathscr{C}(*) = \mathbb{F}_p$

Let

$$a_q = \dim \widetilde{H}^q(FX/G), \quad b_q = \dim H^q(X), \quad c_q = \dim H^q(X^G)$$

Beginning of proof of Smith theorem for p = 2

$$0 \longrightarrow \mathscr{A} \longrightarrow \mathscr{B} \longrightarrow \mathscr{A} \oplus \mathscr{C} \longrightarrow 0$$

On
$$G$$
, $0 \longrightarrow \mathbb{F}_2 \longrightarrow \mathbb{F}_2[G] \longrightarrow \mathbb{F}_2 \oplus 0 \longrightarrow 0$.

$$On \, *, \quad 0 \longrightarrow 0 \longrightarrow \mathbb{F}_2 \longrightarrow 0 \oplus \mathbb{F}_2 \longrightarrow 0.$$

$$H^*(X; \mathscr{A} \oplus \mathscr{C}) \cong H^*(X; \mathscr{A}) \oplus H^*(X; \mathscr{C})$$

Bockstein LES implies

$$\chi(X) = \chi(X^G) + 2\widetilde{\chi}(FX/G)$$

and

$$a_q + c_q \leq b_q + a_{q+1}$$

Beginning of proof of Smith theorem for p > 2

Let $I = \operatorname{Ker}(\varepsilon), \ \varepsilon \colon \mathbb{F}_p[G] \longrightarrow \mathbb{F}_p$, where $\varepsilon(g) = 1$.

Define \mathscr{I}^n by $\mathscr{I}^n(G) = I^n$ and $\mathscr{I}^n(*) = 0$. Then $\mathscr{I}^{p-1} = \mathscr{A}$.

$$0 \longrightarrow \mathscr{I} \longrightarrow \mathscr{B} \longrightarrow \mathscr{A} \oplus \mathscr{C} \longrightarrow 0$$
$$0 \longrightarrow \mathscr{A} \longrightarrow \mathscr{B} \longrightarrow \mathscr{I} \oplus \mathscr{C} \longrightarrow 0$$
$$0 \longrightarrow \mathscr{I}^{n+1} \longrightarrow \mathscr{I}^{n} \longrightarrow \mathscr{A} \longrightarrow 0. \quad 1 \le n \le p$$

Let

$$\bar{a}_q = \dim H^q_G(X; \mathscr{I})$$

Bockstein LES implies

$$\chi(X) = \chi(X^G) + p\widetilde{\chi}(FX/G)$$

and

$$a_q + c_q \le b_q + \overline{a}_{q+1}, \quad \overline{a}_q + c_q \le b_q + a_{q+1}$$

Completion of proof for any p

Inductively, for $q \ge 0$ and $r \ge 0$, with r odd if p > 2,

$$a_q + c_q + \cdots + c_{q+r} \le b_q + b_{q+1} + \cdots + b_{q+r} + a_{q+r+1}.$$

Let n = dim(X). With q = n + 1 and r > n, get $c_i = 0$ for i > n. With q = 0 and r > n, get

$$\sum c_q \leq \sum b_q.$$

So far, all has been general. If $H^*(X)\cong H^*(S^n)$, then $\sum b_q=2$.

$$\chi(X) \equiv \chi(X^G) \mod p \text{ implies } \sum c_q = 0 \ (X^G = \emptyset) \text{ or } \sum c_q = 2.$$

If p > 2, it also implies n - m is even and, if n is even, $X^G \neq \emptyset$.

The Conner conjecture (1960); first proven by Oliver (1976)

G a compact Lie group, X a finite dimensional G-CW complex with finitely many orbit types, A an abelian group.

Theorem

If
$$\widetilde{H}^*(X; A) = 0$$
, then $\widetilde{H}^*(X/G; A) = 0$.

Conner (implicitly): True if G is a finite extension of a torus.

If H is a normal subgroup of G, then X/G = (X/H)/(G/H).

Reduces to $G = S^1$ and G finite. Standard methods apply.

General case: let N be the normalizer of a maximal torus T in G.

Then $\chi(G/N) = 1$ and $\widetilde{H}^n(X/N; A) = 0$.

The Oliver transfer

Theorem

Let $H \subset G$, $\pi: X/H \longrightarrow X/G$. For $n \ge 0$, there is a transfer map

$$\tau \colon \widetilde{H}^n(X/H;A) \longrightarrow \widetilde{H}^n(X/G;A)$$

such that $\tau \circ \pi^*$ is multiplication by $\chi(G/H)$.

Proof of the Conner conjecture.

Take H = N. The composite

$$\widetilde{H}^n(X/G;A) \xrightarrow{\pi^*} \widetilde{H}^n(X/N;A) \xrightarrow{\tau} \widetilde{H}^n(X/G;A)$$

is the identity and $\widetilde{H}^n(X/N;A) = 0$.

How do we get the Oliver transfer?

RO(G)-graded cohomology

$$X \wedge Y = X \times Y/X \vee Y$$

V a representation of G, S^V its 1-point compactification.

$$\Sigma^{V}X = X \wedge S^{V}, \quad \Omega^{V}X = \mathsf{Map}_{*}(S^{V}, X)$$

Suspension axiom on an "RO(G)-graded cohomology theory E^* ":

$$\widetilde{E}^{\alpha}(X) \cong \widetilde{E}^{\alpha+V}(\Sigma^{V}X)$$

for all $\alpha \in RO(G)$ and all representations V.

Theorem

If $\mathscr{A} = \underline{\mathbb{Z}}$ (hence if $\mathscr{A} = \underline{A} = \underline{\mathbb{Z}} \otimes A$), then $H_G^*(-; \mathscr{A})$ extends to an RO(G)-graded cohomology theory.

Construction of the Oliver transfer

Let
$$X_+ = X \coprod \{*\}$$
. Consider $\varepsilon : (G/H)_+ \longrightarrow S^0$.

Theorem

For large enough V, there is a map

$$t: S^V = \Sigma^V S^0 \longrightarrow \Sigma^V G/H_+$$

such that $\Sigma^V \varepsilon \circ t$ has (nonequivariant) degree $\chi(G/H)$.

The definition of $\tau \colon \widetilde{H}^n(X/H;A) \longrightarrow \widetilde{H}^n(X/G;A)$.

$$\widetilde{H}^n(X/H;A) \cong \widetilde{H}^n_H(X;\underline{A}) \cong \widetilde{H}^n_G(X \wedge G/H_+;\underline{A}) \cong \widetilde{H}^{n+V}_G(X \wedge \Sigma^V G/H_+;\underline{A})$$

$$\widetilde{H}^n(X/G;A) \cong \widetilde{H}^n_G(X;\underline{A}) \cong \widetilde{H}^{n+V}_G(\Sigma^V X;\underline{A}) = \widetilde{H}^{n+V}_G(X \wedge S^V;\underline{A})$$

Smashing with X, t induces τ .

How do we get the map t?

Generalizing, let M be a smooth G-manifold.

Embed M in a large V. The embedding has a normal bundle ν .

The embedding extends to an embedding of the total space of ν as a tubular neighborhood in V.

The Pontryagin Thom construction gives a map $S^V \longrightarrow T\nu$, where $T\nu$ is the Thom space of the normal bundle.

Compose with
$$T\nu \longrightarrow T(\tau \oplus \nu) \cong T\varepsilon = M_+ \wedge S^V$$
.

The composite is the transfer $t: S^V \longrightarrow \Sigma^V M_+$.

Atiyah duality: M_+ and $T\nu$ are Spanier-Whitehead dual. This is the starting point for equivariant Poincaré duality, for which RO(G)-grading is essential.

RO(G)-graded Bredon cohomology

Theorem

 $H_G^*(-;\mathscr{A})$ extends to an RO(G)-graded theory if and only if the coefficient system \mathscr{A} extends to a Mackey functor.

Theorem

 $\underline{\mathbb{Z}}$, hence \underline{A} , extends to a Mackey functor.

What is a Mackey functor?

First definition, for finite G

Let $G\mathscr{S}$ be the category of finite G-sets. A Mackey functor \mathscr{M} consists of covariant and contravariant functors

$$\mathcal{M}^*, \mathcal{M}_* \colon \mathcal{GS} \longrightarrow \mathcal{A}b,$$

which are the same on objects (written M) and satisfy:

$$M(A \coprod B) \cong M(A) \oplus M(B)$$

and a pullback of finite sets gives a commutative diagram:

$$P \xrightarrow{g} T \qquad M(P) \xrightarrow{g*} M(T)$$

$$\downarrow i \qquad \downarrow j \qquad \downarrow j^{*} \qquad \uparrow j^{*}$$

$$S \xrightarrow{f} B \qquad M(S) \xrightarrow{f_{*}} M(B)$$

Suffices to define on orbits.

Pullback condition gives the "double coset formula".

Example: $\mathcal{M}(G/H) = R(H)$ (representation ring of H).

Restriction and induction give \mathcal{M}^* and \mathcal{M}_* .

Second definition, G finite

Category *G-Span* of "spans" of finite *G*-sets.

Objects are finite G-sets. Morphisms $A \longrightarrow B$ are diagrams

$$A \leftarrow S \rightarrow B$$

Really equivalence classes: $S \sim S'$ if $S \cong S'$ over A and B.

Composition by pullbacks:

A Mackey functor \mathcal{M} is a (contravariant) functor

$$\mathcal{M}: G\operatorname{-Span} \longrightarrow \mathcal{A}b$$
,

written M on objects and satisfying $M(A \coprod B) \cong M(A) \oplus M(B)$.

Lemma

A Mackey functor is a Mackey functor.

Given \mathcal{M} .

$$A \stackrel{=}{\longleftarrow} A \longrightarrow B, \quad A \stackrel{=}{\longrightarrow} B$$

give \mathcal{M}^* and \mathcal{M}_* . Given \mathcal{M}^* and \mathcal{M}_* , composites give \mathcal{M} .

Topological reinterpretation

For based G-spaces X and Y with X a finite G-CW complex,

$$\{X,Y\}_G \equiv \operatorname{colim}_V[\Sigma^V X, \Sigma^V Y]_G$$

"Stable orbit category" or "Burnside category" \mathcal{B}_G : objects G/H, abelian groups of morphisms

$$\mathscr{B}_G(G/H,G/K)=\{G/H_+,G/K_+\}_G$$

Theorem

If G is finite, \mathcal{B}_G is isomorphic to the full subcategory of orbits G/H in G-Span.

Mackey functors are contravariant additive functors $\mathscr{B}_G \longrightarrow \mathscr{A}b$.

Theorem if G is finite. Definition if G is a compact Lie group.

The Mackey functor \mathbb{Z}

Define

$$\mathscr{A}_G(G/H) = \mathscr{B}_G(G/H, *) \cong \{S^0, S^0\}_H = A(H).$$

This gives the Burnside ring Mackey functor \mathscr{A}_G .

Augmentation ideal sub Mackey functor $\mathscr{I}_G(G/H) = IA(H)$.

The quotient Mackey functor $\mathscr{A}_G/\mathscr{I}_G$ is $\underline{\mathbb{Z}}$.

How can we extend \mathbb{Z} -grading to RO(G)-grading?

Represent ordinary \mathbb{Z} -graded theories on G-spectra by Eilenberg-MacLane G-spectra, which then represent RO(G)-graded theories!

What are spectra?

- Prespectra (naively, spectra): sequences of spaces T_n and maps $\Sigma T_n \longrightarrow T_{n+1}$
- Ω -(pre)spectra: Adjoints are equivalences $T_n \xrightarrow{\simeq} \Omega T_{n+1}$
- Spectra: Spaces E_n and homeomorphisms $E_n \longrightarrow \Omega E_{n+1}$
- Spaces to prespectra: $\{\Sigma^n X\}$ and $\Sigma(\Sigma^n X) \xrightarrow{\cong} \Sigma^{n+1} X$
- Prespectra to spectra, when $T_n \xrightarrow{\subset} \Omega T_{n+1}$:

$$(LT)_n = \operatorname{colim} \Omega^q T_{n+q}$$

- Spaces to spectra: $\Sigma^{\infty}X = L\{\Sigma^nX\}$
- Spectra to spaces: $\Omega^{\infty}E = E_0$
- ullet Coordinate-free: spaces T_V and maps $\Sigma^W T_V \longrightarrow T_{V \oplus W}$

What are spectra good for?

- First use: Spanier-Whitehead duality [1958]
- Cobordism theory [1959] (Milnor; MSO has no odd torsion)
- Stable homotopy theory [1959] (Adams; ASS for spectra)
- Generalized cohomology theories [1960] (Atiyah-Hirzebruch; K-theory, AHSS)
- Generalized homology theories [1962] (G.W. Whitehead)
- Stable homotopy category [1964] (Boardman's thesis)

Representing cohomology theories

Fix Y. If $Y \simeq \Omega^2 Z$, then [X, Y] is an abelian group.

For $A \subset X$, the following sequence is exact:

$$[X/A, Y] \longrightarrow [X, Y] \longrightarrow [A, Y]$$

The following natural map is an isomorphism:

$$[\bigvee_{i\in I}X_i,Y]\longrightarrow \prod_{i\in I}[X_i,Y]$$

For an Ω -spectrum $E = \{E_n\}$,

$$\widetilde{E}^n(X) = \begin{cases} [X, E_n] & \text{if } n \ge 0 \\ [X, \Omega^{-n} E_0] & \text{if } n < 0 \end{cases}$$

Suspension:

$$\widetilde{E}^n(X) = [X, E_n] \cong [X, \Omega E_{n+1}] \cong [\Sigma X, E_{n+1}] = \widetilde{E}^{n+1}(\Sigma X)$$

What are naive G-spectra (any G)?

- Naive G-spectra: spectra with G-action
- G-spaces T_n and G-maps $\Sigma T_n \longrightarrow T_{n+1}$
- Naive Ω -G-spectra: $T_n \xrightarrow{\simeq} \Omega T_{n+1}$

Naive Ω -G-spectra $E = \{E_n\}$ represent \mathbb{Z} -graded cohomology.

$$\widetilde{E}_{G}^{n}(X) = \begin{cases} [X, E_{n}]_{G} & \text{if } n \geq 0 \\ [X, \Omega^{-n} E_{0}]_{G} & \text{if } n < 0 \end{cases}$$

Ordinary theories

Eilenberg-Mac Lane spaces:

$$\pi_n K(A, n) = A$$
, $\pi_q K(A, n) = 0$ if $q \neq n$.

$$\widetilde{H}^n(X;A) = [X,K(A,n)]$$

For based G-spaces X,

$$\underline{\pi}_n(X) = \pi_n(X^{\bullet}); \quad \underline{\pi}_n(X)(G/H) = \pi_n(X^H).$$

Eilenberg-Mac Lane *G*-spaces:

$$\underline{\pi}_n K(\mathscr{A}, n) = \mathscr{A}, \ \underline{\pi}_q K(\mathscr{A}, n) = 0 \ \text{if} \ q \neq n.$$

$$\widetilde{H}_{G}^{n}(X;\mathscr{A}) = [X,K(\mathscr{A},n)]_{G}$$

What are genuine G-spectra (G compact Lie)?

- G-spaces T_V , G-maps $\Sigma^W T_V \longrightarrow T_{V \oplus W}$ where V, W are real representations of G
- Ω -G-spectra: G-equivalences $T_V \xrightarrow{\simeq} \Omega^W T_{V \oplus W}$

Genuine Ω -G-spectra E represent RO(G)-graded theories. Imprecisely,

$$E_G^{V-W}(X) = [\Sigma^W X, E_V].$$

Ordinary? Need genuine Eilenberg-Mac Lane G-spectra.

A quick and dirty construction (1981)

Build a good "equivariant stable homotopy category" of G-spectra. Use sphere G-spectra $G/H_+ \wedge S^n$ to get a theory of G-CW spectra.

Mimic Bredon's construction of ordinary \mathbb{Z} -graded cohomology, but in the category of G-spectra, using Mackey functors instead of coefficient systems.

Apply Brown's representability theorem to represent the 0th term by a G-spectrum $H\mathcal{M}$: for G-spectra X,

$$H^0_G(X; \mathcal{M}) \cong \{X, H\mathcal{M}\}_G.$$

Then HM is the required Eilenberg-Mac Lane G-spectrum.

What are *G*-spectra good for?

- Equivariant K-theory [1968] (Atiyah, Segal)
- Equivariant cobordism [1964] (Conner and Floyd)
- RO(G)-graded homology and cohomology theories
- Equivariant Spanier-Whitehead and Poincaré duality
- Equivariant stable homotopy category (Lewis-May)
- Completion theorems (KU_G , π_G^* , MU_G -modules): (Atiyah-Segal, Segal conjecture, Greenlees-May)
- Nonequivariant applications!!!

Kervaire invariant one problem

Framed manifold M: trivialization of its (stable) normal bundle.

 Ω_n^{fr} : Cobordism classes of (smooth closed) framed *n*-manifolds.

Is every framed *n*-manifold M, n=4k+2, framed cobordant to a homotopy sphere (a topological sphere by Poincaré conjecture)?

$$\kappa \colon \Omega_{4k+2}^{fr} \longrightarrow \mathbb{F}_2$$

 $\kappa[M]$ is the Kervaire invariant, the Arf invariant of a quadratic refinement of the cup product form on $H^{2k+1}(M; \mathbb{F}_2)$ that is determined by the given framing.

 $\kappa[M] = 0$ if and only if $[M] = [\Sigma]$ for some homotopy sphere Σ .

History

n=2,6,14: $S^1\times S^1$, $S^3\times S^3$, $S^7\times S^7$ have $\kappa=1$ framings.

Kervaire (1960): PL, non-smoothable, 10-manifold M with $\kappa=1$.

Kervaire and Milnor (1963): maybe $\kappa = 0$ for $n \neq 2, 6, 14$?

Browder (1969): $\kappa = 0$ unless $n = 2^{j+1} - 2$ for some j, and then $\kappa = 0$ if and only if h_i^2 does not survive in the ASS, $h_j \leftrightarrow Sq^{2^j}$.

Calculation/construction (Barratt, Jones, Mahowald, Tangora (using May SS)):

 h_4^2 and h_5^2 survive the ASS. (h_6^2 doable??)

Hill, Hopkins, Ravenel

Theorem (2009)

 $\kappa=0$ unless n is 2, 6, 14, 30, 62, or maybe 126: h_j^2 has a non-zero differential in the ASS, $j\geq 7$.

Calculations of RO(G)-graded groups $H_G^*(*; \mathbb{Z})$ are critical!

Haynes Miller quote (Bourbaki Séminaire survey):

Hill, Hopkins, and Ravenel marshall three major developments in stable homotopy theory in their attack on the Kervaire invariant problem:

- The chromatic perspective based on work of Novikov and Quillen and pioneered by Landweber, Morava, Miller, Ravenel, Wilson, and many more recent workers.
- The theory of structured ring spectra, implemented by May and many others; and
- Equivariant stable homotopy theory, as developed by May and collaborators.

Structured ring spectra and structured ring *G*-spectra

 E_{∞} ring spectra (May-Quinn-Ray [1972])

 E_{∞} ring *G*-spectra (Lewis-May [1986])

Recent paradigm shift in stable homotopy theory.

Symmetric monoidal category of spectra \mathscr{S} under \wedge ;

 E_{∞} ring spectra are just commutative monoids in \mathscr{S} .

Elmendorf-Kriz-Mandell-May [1997]: S-modules, operadic \land Hovey-Shipley-Smith [2000]: Symmetric spectra, categorical \land Mandell-May-Shipley-Schwede [2001]: Orthogonal, comparisons Mandell-May [2002]: Orthogonal G-spectra and S_G -modules

New subjects:

"Brave new algebra" (Waldhausen's name, now apt)

"Derived algebraic geometry" (Toen-Vezzosi, Lurie)

Revitalized areas

Equivariant ∞ loop space theory

Equivariant algebraic K-theory (Guillou-Merling-May, [2011-2012]).

Prospective applications to algebraic K-theory of number rings?

Theorem

Let L be a Galois extension of a field F with Galois group G.

There is an E_{∞} ring G-spectrum $K_G(L)$ such that

$$(K_G(L))^H = K(L^H)$$
 for $H \subset G$

where $\pi_*K(R) = Quillen's$ algebraic K-groups of R.