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Borel's definition (1958):
G a topological group, X a (left) G-space, action G x X — X

g(hx) = (gh)x,ex = x

EG a contractible (right) G-space with free action
yg =y implies g=e
EG xg X =EGx X/~ (yg,x) ~(y,8x)
“homotopy orbit space of X"

A an abelian group

Hz, (X; A) = H*(EG x¢ X; A)



Characteristic classes in Borel cohomology
B(G,N): classifying G-space for principal (G, IN)-bundles,
principal lN-bundles with G-acting through bundle maps.

Theorem
EG x¢ B(G,M) ~ BG x BN over BG.

Therefore, with field coefficients,
Hior(B(G, M) = H*(EG x 6 B(G,M)) = H*(BG) @ H*(BN)

as an H*(BG)-module.

Not very interesting theory of equivariant characteristic classes.



Bredon'’s definition (1967):
Slogan: “orbits are equivariant points” since (G/H)/G = .

A coefficient system 7 is a contravariant functor

A hOg — /b

O is the category of orbits G/H and G-maps,
hO is its homotopy category (= O¢ if G is discrete)

HE (X o)

satisfies the Eilenberg-Steenrod axioms plus

“the equivariant dimension axiom”:

HY(G/H; o) = o/(G/H), HZ(G/H;/)=0 if n#0



Axioms for reduced cohomology theories
Cohomology theory E* on based G-spaces (G-CW ~ types):
Contravariant homotopy functors E" to Abelian groups, n € Z.

Natural suspension isomorphisms
E"(X) — E"(EX)

For A C X, the following sequence is exact:
E"(X/A) — E"(X) — E"(A)

The following natural map is an isomorphism:

E"(\/ x;) — [ E"(X)

iel icl

E"(X)=E"(X}), Xy=XI{x}; E"(X,A)=E"(X/A)



Borel vs Bredon:
A = the constant coefficient system, A(G/H) = A

H*(X/G: A) = HL:(X; A)

since both satisfy the dimension axiom and Bredon is unique.
Therefore

Hgo (X; A) = H*(EG x ¢ X; A) = HE(EG x X; A)

On “equivariant points”, EG x¢ (G/H) = EG/H = BH, hence

H*(EG x ¢ (G/H); A) = H*(BH; A).



Cellular (or singular) cochain construction:
G-CW complex X, cells of the form G/H x D™
X =UX" X0 = disjoint union of orbits, pushouts

| |

[1, G/H; x D™+ —= xn+1

X*: 0P — Spaces, X°(G/H)=x"

Chain complex C,(X) of coefficient systems:

C(X)(G/H) = Ca((X"/ X" 1) 2)

Cochain complex of abelian groups:

C*(X; ) = Hom coefr (Ci(X), &)



P.A. Smith theory (1938):
G a finite p-group, X a finite dimensional G-CW complex.
Consider mod p cohomology. Assume that H*(X) is finite.

Theorem
If H*(X) = H*(S"), then X© is empty or H*(X®) = H*(S™)
for some m < n.

If p> 2, then n — m is even and X¢ # () if n is even.

If H is a normal subgroup of G, then X& = (X")¢/H,
Finite p-groups are nilpotent.
By induction on the order of G,

we may assume that G is cyclic of order p.



The Bockstein exact sequence
A short exact sequence

00— — AB—%F€ —0
of coefficient systems implies a short exact sequence
0— C'(X; ) — C(X; B) — C(X;¢) — 0

of cochain complexes, which implies a long exact sequence

oo ——HL(X; o) ——=HL(X; B)——=HL(X; €)— - -

Connecting homomorphism
B: HYX; €) — HIN(X; )

is called a “Bockstein operation”.



Smith theory
Let FX = X/XC. Define o/, &, € so that

HE(X; o) = H*(FX/G),
HE(X; 2) = H'(X),
HE(X: %) = H'(XC)
On orbits G = G/eand *= G/G,
A(G)=TF,, o(x)=0
B(G) = F,[6], #(x)=F,
¢(G)=0, €(x)=TF,
Let

ag = dimHI(FX/G), by =dimHI(X), c¢;=dimHI(XC®)



Beginning of proof of Smith theorem for p = 2
0—od — B —ADE —0

On G, 0—>]F2—>]F2[G]—>]F2@0—>0.
On%x, 0—0—F, —04F, — 0.

H*(X; o @ €)= H (X, o) ® H*(X;F)
Bockstein LES implies
X(X) = x(X©) +2X(FX/G)

and
ag+ Cq < bg + ag+1



Beginning of proof of Smith theorem for p > 2
Let | = Ker(e), e: Fp[G] — Fp, where ¢(g) =1.

Define #" by #"(G) = I" and #"(¥) = 0. Then #P~1 = &.

0— Y —B—AdDPDE — 0
0 —& — B —IDPC — 0
0— F" L 9" o/ —0, 1<n<p

Let
ag = dimHg(X;J)

Bockstein LES implies
X(X) = x(X€) + px(FX/G)

and
3q+Cq < bq+§q+1a 5q"i_cq < bq+3q+1



Completion of proof for any p

Inductively, for ¢ > 0 and r > 0, with r odd if p > 2,
ag+cq+ - Cqrr < bg+ bgy1+ -+ bgtr + agiria-

Let n =dim(X). With g=n+1and r > n, get ¢; =0 for i > n.
With g =0 and r > n, get

Z cq < Z bg.
So far, all has been general. If H*(X) = H*(S"), then > by = 2.
X(X) = x(X®) mod p implies 3> c; =0 (XC =0) or > g = 2.

If p > 2, it also implies n — m is even and, if n is even, X6 # (.



The Conner conjecture (1960); first proven by Oliver (1976)
G a compact Lie group, X a finite dimensional G-CW complex

with finitely many orbit types, A an abelian group.

Theorem N
If H*(X; A) =0, then H*(X/G; A) = 0.
Conner (implicitly): True if G is a finite extension of a torus.

If H is a normal subgroup of G, then X/G = (X/H) /(G/H).
Reduces to G = S! and G finite. Standard methods apply.

General case: let N be the normalizer of a maximal torus T in G.

Then x(G/N) =1 and H"(X/N; A) = 0.



The Oliver transfer

Theorem
Let HC G, m: X/H — X/G. For n > 0, there is a transfer map

7: H'(X/H; A) — H"(X/G; A)
such that T o ™ is multiplication by x(G/H).

Proof of the Conner conjecture.
Take H = N. The composite

H7 (X /G; A)——=H"(X /N; A)——=H"(X /G; A)

is the identity and H"(X/N; A) = 0. O

How do we get the Oliver transfer?



RO(G)-graded cohomology
XANY=XXY/XVY
V a representation of G, SV its 1-point compactification.
YYX=XASY, QYX=Map,(SY,X)
Suspension axiom on an “RO(G)-graded cohomology theory E*":
E*(X) = E“TY(ZVX)

for all &« € RO(G) and all representations V.

Theorem
If o =7 (hence if 7 = A=17Z® A), then H;(—; /) extends to

an RO(G)-graded cohomology theory.



Construction of the Oliver transfer
Let X, = X I1 {*}. Consider e: (G/H); — S°.

Theorem
For large enough V/, there is a map

t: SV =%Vs® yYVG/H,

such that ¥Ve o t has (nonequivariant) degree x(G/H).

The definition of 7: H™(X/H; A) — H"(X/G; A).

H"(X/H; A) = HJ(X; A) = HA(XAG/Hy; A) = HEFV(XAXY G/Hy; A)
H"(X/G; A) = HA(X; A) = HIPV(ZVX; A) = HEFV(X A SV, A)

Smashing with X, t induces 7. O



How do we get the map t?
Generalizing, let M be a smooth G-manifold.
Embed M in a large V. The embedding has a normal bundle v.

The embedding extends to an embedding of the total space of v as
a tubular neighborhood in V.

The Pontryagin Thom construction gives a map SV — Tv,
where Tv is the Thom space of the normal bundle.

Compose with Ty — T(t1@v) = Te= M, ASV.
The composite is the transfer t: SV — YV M, .

Atiyah duality: M, and Tv are Spanier-Whitehead dual.
This is the starting point for equivariant Poincaré duality,
for which RO(G)-grading is essential.



RO(G)-graded Bredon cohomology

Theorem
HE(—; &) extends to an RO(G)-graded theory if and only if the
coefficient system o7 extends to a Mackey functor.

Theorem
Z, hence A, extends to a Mackey functor.

What is a Mackey functor?
First definition, for finite G

Let G.¥ be the category of finite G-sets. A Mackey functor .#
consists of covariant and contravariant functors

M My G — b,

which are the same on objects (written M) and satisfy:



M(ALL B) = M(A) & M(B)

and a pullback of finite sets gives a commutative diagram:

p—E-T M(P) —&~ M(T)
T
S—=B  M(S)—— M(B)

Suffices to define on orbits.

Pullback condition gives the “double coset formula”.
Example: .#Z(G/H) = R(H) (representation ring of H).
Restriction and induction give .Z* and ...



Second definition, G finite
Category G-Span of “spans” of finite G-sets.

Objects are finite G-sets. Morphisms A — B are diagrams
A<—S——=B

Really equivalence classes: S ~ S if S = S’ over A and B.

Composition by pullbacks:



A Mackey functor .# is a (contravariant) functor
M G-Span — /b,
written M on objects and satisfying M(A 1L B) = M(A) & M(B).

Lemma
A Mackey functor is a Mackey functor.

Given A,
A<—A——-B, A<~—B—=B

give A* and . Given .#* and .#,, composites give .# .



Topological reinterpretation

For based G-spaces X and Y with X a finite G-CW complex,
{X,Y}¢ = colimy[ZVX,2VY]¢

“Stable orbit category” or “Burnside category” %g:
objects G/H, abelian groups of morphisms

‘@G(G/Hv G/K) - {G/H+7 G/K-I—}G

Theorem

If G is finite, B¢ is isomorphic to the full subcategory of orbits
G/H in G-Span.

Mackey functors are contravariant additive functors B — <7b.

Theorem if G is finite. Definition if G is a compact Lie group.



The Mackey functor Z
Define

dc(G/H) = Bc(G/H, %) = {S° 5%, = A(H).

This gives the Burnside ring Mackey functor 7.
Augmentation ideal sub Mackey functor .Z6(G/H) = IA(H).

The quotient Mackey functor <7/ ¢ is Z.

How can we extend Z-grading to RO(G)-grading?

Represent ordinary Z-graded theories on G-spectra by
Eilenberg-MacLane G-spectra, which then represent
RO(G)-graded theories!



What are spectra?

Prespectra (naively, spectra): sequences of spaces T, and
maps 2T, — Tphi1

Q-(pre)spectra: Adjoints are equivalences T, = QThit
Spectra: Spaces E, and homeomorphisms E, — QE, 11
Spaces to prespectra: {¥"X} and X(X"X) = yotix

Prespectra to spectra, when T, ASK QThea:

(LT)p = colim Q9T

Spaces to spectra: XX = L{¥"X}
Spectra to spaces: Q°E = Ey

Coordinate-free: spaces Ty and maps W' T, — Tvew



What are spectra good for?

First use: Spanier-Whitehead duality [1958]

Cobordism theory [1959] (Milnor; MSO has no odd torsion)

Stable homotopy theory [1959] (Adams; ASS for spectra)

Generalized cohomology theories [1960] (Atiyah-Hirzebruch;
K-theory, AHSS)

Generalized homology theories [1962] (G.W. Whitehead)

Stable homotopy category [1964] (Boardman's thesis)



Representing cohomology theories
Fix Y. If Y ~ Q?Z, then [X, Y] is an abelian group.

For A C X, the following sequence is exact:
[X/A7 Y] - [X7 Y] - [A7 Y]

The following natural map is an isomorphism:

[V X, Y1 — 111X, Y1

icl icl
For an Q-spectrum E = {E,},

- (X, E,] ifn>0
EP(X) =1 [X,Q "E)] ifn<0

Suspension:

E"(X) = [X, En] 2 [X, QEps1] & [EX, Engi] = EMHH(EX)



What are naive G-spectra (any G)?
e Naive G-spectra: spectra with G-action
e G-spaces T, and G-maps X T, — Ty
e Naive Q-G-spectra: T, = QToi1
Naive Q-G-spectra E = {E,} represent Z-graded cohomology.

. (X, Edl¢ if n>0
Ec(X) =1 [X,Q "] ifn<0



Ordinary theories

Eilenberg-Mac Lane spaces:

maK(A,n)=A, mqK(A,n)=0 if qg#n.

H"(X; A) = [X, K(A, n)]
For based G-spaces X,

mo(X) = 7a(X®); ma(X)(G/H) = ma(X").
Eilenberg-Mac Lane G-spaces:

ﬂnK(d¢n):£{a EqK(%?n):O if g # n.

HE(X; o) = [X, K(«, )]



What are genuine G-spectra (G compact Lie)?
e G-spaces Ty, G-maps TV Ty — Tyaw

where V., W are real representations of G
e Q-G-spectra: G-equivalences Ty — QY Tvew
Genuine Q-G-spectra E represent RO(G)-graded theories.

Imprecisely,

EL (X)) = [ZV X, Ev].

Ordinary? Need genuine Eilenberg-Mac Lane G-spectra.



A quick and dirty construction (1981)

Build a good “equivariant stable homotopy category” of G-spectra.

Use sphere G-spectra G/H A S" to get a theory of G-CW spectra.

Mimic Bredon's construction of ordinary Z-graded cohomology,
but in the category of G-spectra, using Mackey functors instead
of coefficient systems.

Apply Brown's representability theorem to represent the Oth term
by a G-spectrum H.#: for G-spectra X,

H2(X; ) = {X, Htt } 6.

Then H.# is the required Eilenberg-Mac Lane G-spectrum.



What are G-spectra good for?

e Equivariant K-theory [1968] (Atiyah, Segal)

e Equivariant cobordism [1964] (Conner and Floyd)

e RO(G)-graded homology and cohomology theories
e Equivariant Spanier-Whitehead and Poincaré duality

e Equivariant stable homotopy category (Lewis-May)

e Completion theorems (KUg, 7, MUg-modules):
(Atiyah-Segal, Segal conjecture, Greenlees-May)

e Nonequivariant applications!!!



Kervaire invariant one problem

Framed manifold M: trivialization of its (stable) normal bundle.
Qfr: Cobordism classes of (smooth closed) framed n-manifolds.

Is every framed n-manifold M, n = 4k + 2, framed cobordant to

a homotopy sphere (a topological sphere by Poincaré conjecture)?

.. Ofr
ki Q0 —

k[M] is the Kervaire invariant, the Arf invariant of a quadratic
refinement of the cup product form on H2<*1(M;TF,) that is
determined by the given framing.

k[M] = 0 if and only if [M] = [X] for some homotopy sphere ¥.



History
n=2614: S x S1, 53 x S3 S7 x S” have k = 1 framings.

Kervaire (1960): PL, non-smoothable, 10-manifold M with k = 1.
Kervaire and Milnor (1963): maybe x = 0 for n # 2, 6, 147

Browder (1969): x = 0 unless n = 2+ — 2 for some j, and then
x = 0 if and only if h? does not survive in the ASS, h; < Sq°.

Calculation/construction (Barratt, Jones, Mahowald, Tangora
(using May SS)):

h2 and h2 survive the ASS. (h2 doable??)



Hill, Hopkins, Ravenel

Theorem (2009)

k =0 unless nis 2, 6, 14, 30, 62, or maybe 126:
hjg has a non-zero differential in the ASS, j > 7.

Calculations of RO(G)-graded groups Hf(x; Z) are critical!

Haynes Miller quote (Bourbaki Séminaire survey):

Hill, Hopkins, and Ravenel marshall three major developments in stable
homotopy theory in their attack on the Kervaire invariant problem:

e The chromatic perspective based on work of Novikov and Quillen
and pioneered by Landweber, Morava, Miller, Ravenel, Wilson, and
many more recent workers.

e The theory of structured ring spectra, implemented by May and
many others; and

e Equivariant stable homotopy theory, as developed by May and
collaborators.



Structured ring spectra and structured ring G-spectra
E ring spectra (May-Quinn-Ray [1972])

E ring G-spectra (Lewis-May [1986])

Recent paradigm shift in stable homotopy theory.

Symmetric monoidal category of spectra . under A;

E. ring spectra are just commutative monoids in .%.
Elmendorf-Kriz-Mandell-May [1997]: S-modules, operadic A
Hovey-Shipley-Smith [2000]: Symmetric spectra, categorical A

Mandell-May-Shipley-Schwede [2001]: Orthogonal, comparisons
Mandell-May [2002]: Orthogonal G-spectra and Sg-modules

New subjects:
“Brave new algebra” (Waldhausen's name, now apt)

“Derived algebraic geometry” (Toen-Vezzosi, Lurie)



Revitalized areas

Equivariant oo loop space theory

Equivariant algebraic K-theory
(Guillou-Merling-May, [2011-2012]).

Prospective applications to algebraic K-theory of number rings?

Theorem
Let L be a Galois extension of a field F with Galois group G.

There is an E, ring G-spectrum Kg(L) such that
(Ke(L)H = K(L") for HcC G

where 7, K(R) = Quillen’s algebraic K-groups of R.



