Equivariant cohomology

Peter May

Department of Mathematics
University of Chicago

May 3, 2012
Brandeis University
May 5, 2012
Cornell University
(collapsed slides)
OUTLINE

- Two classical definitions: Borel and Bredon
- P.A. Smith theory on fixed point spaces
- The Conner conjecture on orbit spaces
- The Oliver transfer and $RO(G)$-graded cohomology
- Mackey functors for finite and compact Lie groups
- Extending Bredon cohomology to $RO(G)$-grading
- A glimpse of the modern world of spectra and G-spectra
Borel’s definition (1958):

G a topological group, X a (left) G-space, action $G \times X \rightarrow X$

$$g(hx) = (gh)x, \ ex = x$$

EG a contractible (right) G-space with free action

$$yg = y \text{ implies } g = e$$

$$EG \times_G X = EG \times X / \sim \quad (yg, x) \sim (y, gx)$$

“homotopy orbit space of X”

A an abelian group

$$H^*_{Bor}(X; A) = H^*(EG \times_G X; A)$$
Characteristic classes in Borel cohomology

\(B(G, \Pi) \): classifying \(G \)-space for principal \((G, \Pi)\)-bundles, principal \(\Pi \)-bundles with \(G \)-acting through bundle maps.

Theorem

\[EG \times_G B(G, \Pi) \simeq BG \times B\Pi \text{ over } BG. \]

Therefore, with field coefficients,

\[H^*_{Bor}(B(G, \Pi)) = H^*(EG \times_G B(G, \Pi)) \cong H^*(BG) \otimes H^*(B\Pi) \]

as an \(H^(BG) \)-module.*

Not very interesting theory of equivariant characteristic classes.
Bredon's definition (1967):
Slogan: “orbits are equivariant points” since \((G/H)/G = \ast\).

A coefficient system \(\mathcal{A}\) is a contravariant functor

\[
\mathcal{A} : h\mathcal{O}_G \longrightarrow \text{Ab}
\]

\(\mathcal{O}_G\) is the category of orbits \(G/H\) and \(G\)-maps,
\(h\mathcal{O}_G\) is its homotopy category \((= \mathcal{O}_G \text{ if } G \text{ is discrete})\)

\[
H^*_G(X; \mathcal{A})
\]

satisfies the Eilenberg-Steenrod axioms plus

“the equivariant dimension axiom”:

\[
H^0_G(G/H; \mathcal{A}) = \mathcal{A}(G/H), \quad H^n_G(G/H; \mathcal{A}) = 0 \text{ if } n \neq 0
\]
Axioms for reduced cohomology theories

Cohomology theory \tilde{E}^* on based G-spaces (G-CW \simeq types):

Contravariant homotopy functors \tilde{E}^n to Abelian groups, $n \in \mathbb{Z}$.

Natural suspension isomorphisms

$$\tilde{E}^n(X) \rightarrow \tilde{E}^{n+1}(\Sigma X)$$

For $A \subset X$, the following sequence is exact:

$$\tilde{E}^n(X/A) \rightarrow \tilde{E}^n(X) \rightarrow \tilde{E}^n(A)$$

The following natural map is an isomorphism:

$$\tilde{E}^n(\bigvee_{i \in I} X_i) \rightarrow \prod_{i \in I} \tilde{E}^n(X_i)$$

$$E^n(X) = \tilde{E}^n(X_+), \quad X_+ = X \amalg \{\ast\}; \quad E^n(X, A) = \tilde{E}^n(X/A)$$
Borel vs Bredon:

\(A = \) the constant coefficient system, \(A(G/H) = A \)

\[H^*(X/G; A) \cong H^*_G(X; A) \]

since both satisfy the dimension axiom and Bredon is unique. Therefore

\[H^*_{Bor}(X; A) \equiv H^*(EG \times_G X; A) \cong H^*_G(EG \times X; A) \]

On “equivariant points”, \(EG \times_G (G/H) \cong EG/H = BH \), hence

\[H^*(EG \times_G (G/H); A) = H^*(BH; A). \]
Cellular (or singular) cochain construction:

G-CW complex X, cells of the form $G/H \times D^n$:

$X = \bigcup X^n$, $X^0 =$ disjoint union of orbits, pushouts

\[
\bigcup_i G/H_i \times S^n \rightarrow X^n \rightarrow \bigcup_i G/H_i \times D^{n+1} \rightarrow X^{n+1}
\]

$X^\bullet: O_G^{op} \rightarrow \text{Spaces}, \quad X^\bullet(G/H) = X^H$

Chain complex $C_*(X)$ of coefficient systems:

$C_n(X)(G/H) = C_n((X^n/X^{n-1})^H; \mathbb{Z})$

Cochain complex of abelian groups:

$C^*(X; \mathcal{A}) = \text{Hom}_{\text{Coeff}}(C_*(X), \mathcal{A})$
P.A. Smith theory (1938):

G a finite p-group, X a finite dimensional G-CW complex. Consider mod p cohomology. Assume that $H^*(X)$ is finite.

Theorem

If $H^*(X) \cong H^*(S^n)$, then X^G is empty or $H^*(X^G) \cong H^*(S^m)$ for some $m \leq n$.

If $p > 2$, then $n - m$ is even and $X^G \neq \emptyset$ if n is even.

If H is a normal subgroup of G, then $X^G = (X^H)^{G/H}$.

Finite p-groups are nilpotent.

By induction on the order of G,
we may assume that G is cyclic of order p.
The Bockstein exact sequence

A short exact sequence

\[0 \longrightarrow \mathcal{A} \longrightarrow \mathcal{B} \longrightarrow \mathcal{C} \longrightarrow 0 \]

of coefficient systems implies a short exact sequence

\[0 \longrightarrow C^*(X; \mathcal{A}) \longrightarrow C^*(X; \mathcal{B}) \longrightarrow C^*(X; \mathcal{C}) \longrightarrow 0 \]

of cochain complexes, which implies a long exact sequence

\[\cdots \longrightarrow H^q_G(X; \mathcal{A}) \longrightarrow H^q_G(X; \mathcal{B}) \longrightarrow H^q_G(X; \mathcal{C}) \longrightarrow \cdots \]

Connecting homomorphism

\[\beta: H^q_G(X; \mathcal{C}) \longrightarrow H^{q+1}_G(X; \mathcal{A}) \]

is called a “Bockstein operation”.
Smith theory
Let \(FX = X / X^G \). Define \(\mathcal{A}, \mathcal{B}, \mathcal{C} \) so that

\[
H^*_G(X; \mathcal{A}) \cong \tilde{H}^*(FX / G),
\]

\[
H^*_G(X; \mathcal{B}) \cong H^*(X),
\]

\[
H^*_G(X; \mathcal{C}) \cong H^*(X^G)
\]

On orbits \(G = G / e \) and \(* = G / G \),

\[
\mathcal{A}(G) = \mathbb{F}_p, \quad \mathcal{A}(*) = 0
\]

\[
\mathcal{B}(G) = \mathbb{F}_p[G], \quad \mathcal{B}(*) = \mathbb{F}_p
\]

\[
\mathcal{C}(G) = 0, \quad \mathcal{C}(*) = \mathbb{F}_p
\]

Let

\[
a_q = \dim \tilde{H}^q(FX / G), \quad b_q = \dim H^q(X), \quad c_q = \dim H^q(X^G)
\]
Beginning of proof of Smith theorem for \(p = 2 \)

\[
0 \rightarrow \mathcal{A} \rightarrow \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{C} \rightarrow 0
\]

On \(G \), \(0 \rightarrow \mathbb{F}_2 \rightarrow \mathbb{F}_2[G] \rightarrow \mathbb{F}_2 \oplus 0 \rightarrow 0 \).

On \(\ast \), \(0 \rightarrow \mathbb{F}_2 \rightarrow 0 \oplus \mathbb{F}_2 \rightarrow 0 \).

\[
H^\ast(X; \mathcal{A} \oplus \mathcal{C}) \cong H^\ast(X; \mathcal{A}) \oplus H^\ast(X; \mathcal{C})
\]

Bockstein LES implies

\[
\chi(X) = \chi(X^G) + 2\tilde{\chi}(FX/G)
\]

and

\[
a_q + c_q \leq b_q + a_{q+1}
\]
Beginning of proof of Smith theorem for \(p > 2 \)

Let \(I = \text{Ker}(\varepsilon) \), \(\varepsilon : \mathbb{F}_p[G] \to \mathbb{F}_p \), where \(\varepsilon(g) = 1 \).

Define \(\mathcal{I}^n \) by \(\mathcal{I}^n(G) = I^n \) and \(\mathcal{I}^n(*) = 0 \). Then \(\mathcal{I}^{p-1} = \mathcal{A} \).

\[
0 \to \mathcal{I} \to \mathcal{B} \to \mathcal{A} \oplus \mathcal{C} \to 0
\]

\[
0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{I} \oplus \mathcal{C} \to 0
\]

\[
0 \to \mathcal{I}^{n+1} \to \mathcal{I}^n \to \mathcal{A} \to 0, \quad 1 \leq n < p
\]

Let

\[
\bar{a}_q = \text{dim}H^q_G(X; \mathcal{I})
\]

Bockstein LES implies

\[
\chi(X) = \chi(X^G) + p\bar{\chi}(FX/G)
\]

and

\[
a_q + c_q \leq b_q + \bar{a}_{q+1}, \quad \bar{a}_q + c_q \leq b_q + a_{q+1}
\]
Completion of proof for any p

Inductively, for $q \geq 0$ and $r \geq 0$, with r odd if $p > 2$,

$$a_q + c_q + \cdots c_{q+r} \leq b_q + b_{q+1} + \cdots + b_{q+r} + a_{q+r+1}.$$

Let $n = \dim(X)$. With $q = n + 1$ and $r > n$, get $c_i = 0$ for $i > n$. With $q = 0$ and $r > n$, get

$$\sum c_q \leq \sum b_q.$$

So far, all has been general. If $H^*(X) \cong H^*(S^n)$, then $\sum b_q = 2$. $\chi(X) \equiv \chi(X^G) \mod p$ implies $\sum c_q = 0 (X^G = \emptyset)$ or $\sum c_q = 2$. If $p > 2$, it also implies $n - m$ is even and, if n is even, $X^G \neq \emptyset$.
The Conner conjecture (1960); first proven by Oliver (1976)

G a compact Lie group, X a finite dimensional G-CW complex with finitely many orbit types, A an abelian group.

Theorem

If $\tilde{H}^(X; A) = 0$, then $\tilde{H}^*(X/G; A) = 0$.*

Conner (implicitly): True if G is a finite extension of a torus.

If H is a normal subgroup of G, then $X/G = (X/H) / (G/H)$.

Reduces to $G = S^1$ and G finite. Standard methods apply.

General case: let N be the normalizer of a maximal torus T in G.

Then $\chi(G/N) = 1$ and $\tilde{H}^n(X/N; A) = 0$.
The Oliver transfer

Theorem
Let \(H \subset G \), \(\pi: X/H \longrightarrow X/G \). For \(n \geq 0 \), there is a transfer map

\[
\tau: \tilde{H}^n(X/H; A) \longrightarrow \tilde{H}^n(X/G; A)
\]

such that \(\tau \circ \pi^* \) is multiplication by \(\chi(G/H) \).

Proof of the Conner conjecture.
Take \(H = N \). The composite

\[
\tilde{H}^n(X/G; A) \xrightarrow{\pi^*} \tilde{H}^n(X/N; A) \xrightarrow{\tau} \tilde{H}^n(X/G; A)
\]

is the identity and \(\tilde{H}^n(X/N; A) = 0 \).

How do we get the Oliver transfer?
$RO(G)$-graded cohomology

\[X \wedge Y = X \times Y / X \lor Y \]

V a representation of G, S^V its 1-point compactification.

\[\Sigma^V X = X \wedge S^V, \quad \Omega^V X = \text{Map}_*(S^V, X) \]

Suspension axiom on an “$RO(G)$-graded cohomology theory E^*”:

\[\tilde{E}^\alpha(X) \cong \tilde{E}^{\alpha+V}(\Sigma^V X) \]

for all $\alpha \in RO(G)$ and all representations V.

Theorem

If $\mathcal{A} = \mathbb{Z}$ (hence if $\mathcal{A} = A = \mathbb{Z} \otimes A$), then $H^*_G(-; \mathcal{A})$ extends to an $RO(G)$-graded cohomology theory.
Construction of the Oliver transfer

Let \(X_+ = X \amalg \{\ast\} \). Consider \(\varepsilon: (G/H)_+ \to S^0 \).

Theorem

For large enough \(V \), there is a map

\[
t: S^V = \Sigma^V S^0 \to \Sigma^V G/H_+
\]

such that \(\Sigma^V \varepsilon \circ t \) has (nonequivariant) degree \(\chi(G/H) \).

The definition of \(\tau: \tilde{H}^n(X/H; A) \to \tilde{H}^n(X/G; A) \).

\[
\tilde{H}^n(X/H; A) \cong \tilde{H}^n_H(X; A) \cong \tilde{H}^n_G(X \land G/H_+; A) \cong \tilde{H}^{n+V}_G(X \land \Sigma^V G/H_+; A)
\]

\[
\tilde{H}^n(X/G; A) \cong \tilde{H}^n_G(X; A) \cong \tilde{H}^{n+V}_G(\Sigma^V X; A) = \tilde{H}^{n+V}_G(X \land S^V; A)
\]

Smashing with \(X \), \(t \) induces \(\tau \).
How do we get the map t?

Generalizing, let M be a smooth G-manifold.

Embed M in a large V. The embedding has a normal bundle ν.

The embedding extends to an embedding of the total space of ν as a tubular neighborhood in V.

The Pontryagin Thom construction gives a map $S^V \longrightarrow T\nu$, where $T\nu$ is the Thom space of the normal bundle.

Compose with $T\nu \longrightarrow T(\tau \oplus \nu) \cong T\varepsilon = M_+ \wedge S^V$.

The composite is the transfer $t: S^V \longrightarrow \Sigma^V M_+$.

Atiyah duality: M_+ and $T\nu$ are Spanier-Whitehead dual. This is the starting point for equivariant Poincaré duality, for which $RO(G)$-grading is essential.
RO(G)-graded Bredon cohomology

Theorem

$H^*_G(-; \mathcal{A})$ extends to an RO(G)-graded theory if and only if the coefficient system \mathcal{A} extends to a Mackey functor.

Theorem

\mathbb{Z}, hence A, extends to a Mackey functor.

What is a Mackey functor?

First definition, for finite G

Let $G\mathcal{I}$ be the category of finite G-sets. A Mackey functor \mathcal{M} consists of covariant and contravariant functors

$$\mathcal{M}^*, \mathcal{M}^*: G\mathcal{I} \longrightarrow Ab,$$

which are the same on objects (written M) and satisfy:
\[M(A \amalg B) \cong M(A) \oplus M(B) \]

and a pullback of finite sets gives a commutative diagram:

\[
\begin{array}{ccc}
P & \xrightarrow{g} & T \\
\downarrow{i} & & \downarrow{j} \\
S & \xrightarrow{f} & B
\end{array}
\quad
\begin{array}{ccc}
M(P) & \xrightarrow{g^*} & M(T) \\
\downarrow{i^*} & & \downarrow{j^*} \\
M(S) & \xrightarrow{f^*} & M(B)
\end{array}
\]

Suffices to define on orbits.

Pullback condition gives the “double coset formula”.

Example: \(M(G/H) = R(H) \) (representation ring of \(H \)).

Restriction and induction give \(M^* \) and \(M_* \).
Second definition, G finite

Category G-$Span$ of “spans” of finite G-sets.

Objects are finite G-sets. Morphisms $A \rightarrow B$ are diagrams

$$A \leftarrow S \rightarrow B$$

Really equivalence classes: $S \sim S'$ if $S \cong S'$ over A and B.

Composition by pullbacks:

```
\begin{tikzcd}
& P \\
S & & T \\
& A & B & C
\end{tikzcd}
```
A Mackey functor \mathcal{M} is a (contravariant) functor

$$\mathcal{M} : G\text{-Span} \longrightarrow Ab,$$

written M on objects and satisfying $M(A \amalg B) \cong M(A) \oplus M(B)$.

Lemma

A Mackey functor is a Mackey functor.

Given \mathcal{M},

$$A \leftarrow \cong A \rightarrow B, \quad A \leftarrow \cong B \rightarrow B$$

give \mathcal{M}^* and \mathcal{M}_*. Given \mathcal{M}^* and \mathcal{M}_*, composites give \mathcal{M}.
Topological reinterpretation

For based G-spaces X and Y with X a finite G-CW complex,

$$\{X, Y\}_G \equiv \colim_V [\Sigma^V X, \Sigma^V Y]_G$$

“Stable orbit category” or “Burnside category” \mathcal{B}_G: objects G/H, abelian groups of morphisms

$$\mathcal{B}_G(G/H, G/K) = \{G/H_+, G/K_+\}_G$$

Theorem

If G is finite, \mathcal{B}_G is isomorphic to the full subcategory of orbits G/H in G-Span.

Mackey functors are contravariant additive functors $\mathcal{B}_G \to \text{Ab}$.

Theorem if G is finite. Definition if G is a compact Lie group.
The Mackey functor \mathbb{Z}

Define

\[A_G(G/H) = B_G(G/H, \ast) \cong \{S^0, S^0\}_H = A(H). \]

This gives the Burnside ring Mackey functor A_G.

Augmentation ideal sub Mackey functor $I_G(G/H) = IA(H)$.

The quotient Mackey functor A_G/I_G is \mathbb{Z}.

How can we extend \mathbb{Z}-grading to $RO(G)$-grading?

Represent ordinary \mathbb{Z}-graded theories on G-spectra by Eilenberg-MacLane G-spectra, which then represent $RO(G)$-graded theories!
What are spectra?

- Prespectra (naively, spectra): sequences of spaces T_n and maps $\Sigma T_n \to T_{n+1}$

- Ω-(pre)spectra: Adjoints are equivalences $T_n \xrightarrow{\sim} \Omega T_{n+1}$

- Spectra: Spaces E_n and homeomorphisms $E_n \to \Omega E_{n+1}$

- Spaces to prespectra: $\{\Sigma^n X\}$ and $\Sigma(\Sigma^n X) \xrightarrow{\sim} \Sigma^{n+1} X$

- Prespectra to spectra, when $T_n \xrightarrow{\subset} \Omega T_{n+1}$:
 \[
 (LT)_n = \text{colim} \Omega^q T_{n+q}
 \]

- Spaces to spectra: $\Sigma^\infty X = L\{\Sigma^n X\}$

- Spectra to spaces: $\Omega^\infty E = E_0$

- Coordinate-free: spaces T_V and maps $\Sigma^W T_V \to T_{V \oplus W}$
What are spectra good for?

- First use: Spanier-Whitehead duality [1958]
- Cobordism theory [1959] (Milnor; MSO has no odd torsion)
- Stable homotopy theory [1959] (Adams; ASS for spectra)
- Generalized homology theories [1962] (G.W. Whitehead)
- Stable homotopy category [1964] (Boardman’s thesis)
Representing cohomology theories

Fix Y. If $Y \simeq \Omega^2 \mathbb{Z}$, then $[X, Y]$ is an abelian group.

For $A \subset X$, the following sequence is exact:

$$[X/A, Y] \longrightarrow [X, Y] \longrightarrow [A, Y]$$

The following natural map is an isomorphism:

$$\bigvee_{i \in I} [X_i, Y] \longrightarrow \prod_{i \in I} [X_i, Y]$$

For an Ω-spectrum $E = \{E_n\}$,

$$\tilde{E}^n(X) = \begin{cases} [X, E_n] & \text{if } n \geq 0 \\ [X, \Omega^{-n}E_0] & \text{if } n < 0 \end{cases}$$

Suspension:

$$\tilde{E}^n(X) = [X, E_n] \cong [X, \Omega E_{n+1}] \cong [\Sigma X, E_{n+1}] = \tilde{E}^{n+1}(\Sigma X)$$
What are naive G-spectra (any G)?

- Naive G-spectra: spectra with G-action
- G-spaces T_n and G-maps $\Sigma T_n \longrightarrow T_{n+1}$
- Naive Ω-G-spectra: $T_n \xrightarrow{\sim} \Omega T_{n+1}$

Naive Ω-G-spectra $E = \{E_n\}$ represent \mathbb{Z}-graded cohomology.

$$\tilde{E}^n_G(X) = \begin{cases}
[X, E_n]_G & \text{if } n \geq 0 \\
[X, \Omega^{-n}E_0]_G & \text{if } n < 0
\end{cases}$$
Ordinary theories

Eilenberg-Mac Lane spaces:

\[\pi_n K(A, n) = A, \quad \pi_q K(A, n) = 0 \text{ if } q \neq n. \]

\[\tilde{H}^n(X; A) = [X, K(A, n)] \]

For based \(G\)-spaces \(X\),

\[\underline{\pi}_n(X) = \pi_n(X^\bullet); \quad \underline{\pi}_n(X)(G/H) = \pi_n(X^H). \]

Eilenberg-Mac Lane \(G\)-spaces:

\[\underline{\pi}_n K(\mathcal{A}, n) = \mathcal{A}, \quad \underline{\pi}_q K(\mathcal{A}, n) = 0 \text{ if } q \neq n. \]

\[\tilde{H}_G^n(X; \mathcal{A}) = [X, K(\mathcal{A}, n)]_G \]
What are genuine G-spectra (G compact Lie)?

- G-spaces T_V, G-maps $\Sigma^W T_V \longrightarrow T_V \oplus W$
 where V, W are real representations of G

- Ω-G-spectra: G-equivalences $T_V \xrightarrow{\sim} \Omega^W T_V \oplus W$

Genuine Ω-G-spectra E represent $RO(G)$-graded theories.

Imprecisely,

$$E_G^{V-W}(X) = [\Sigma^W X, E_V].$$

Ordinary? Need genuine Eilenberg-Mac Lane G-spectra.
A quick and dirty construction (1981)

Build a good “equivariant stable homotopy category” of G-spectra.

Use sphere G-spectra $G/H_+ \wedge S^n$ to get a theory of G-CW spectra.

Mimic Bredon’s construction of ordinary \mathbb{Z}-graded cohomology, but in the category of G-spectra, using Mackey functors instead of coefficient systems.

Apply Brown’s representability theorem to represent the 0th term by a G-spectrum $H\mathcal{M}$: for G-spectra X,

$$H^0_G(X; \mathcal{M}) \cong \{X, H\mathcal{M}\}_G.$$

Then $H\mathcal{M}$ is the required Eilenberg-Mac Lane G-spectrum.
What are G-spectra good for?

- Equivariant K-theory [1968] (Atiyah, Segal)
- Equivariant cobordism [1964] (Conner and Floyd)
- $RO(G)$-graded homology and cohomology theories
- Equivariant Spanier-Whitehead and Poincaré duality
- Equivariant stable homotopy category (Lewis-May)
- Completion theorems (KU_G, π_G^*, MU_G-modules): (Atiyah-Segal, Segal conjecture, Greenlees-May)
- Nonequivariant applications!!!
Kervaire invariant one problem

Framed manifold M: trivialization of its (stable) normal bundle.

Ω_{n}^{fr}: Cobordism classes of (smooth closed) framed n-manifolds.

Is every framed n-manifold M, $n = 4k + 2$, framed cobordant to a homotopy sphere (a topological sphere by Poincaré conjecture)?

$$\kappa: \Omega_{4k+2}^{fr} \rightarrow \mathbb{F}_2$$

$\kappa[M]$ is the Kervaire invariant, the Arf invariant of a quadratic refinement of the cup product form on $H^{2k+1}(M; \mathbb{F}_2)$ that is determined by the given framing.

$\kappa[M] = 0$ if and only if $[M] = [\Sigma]$ for some homotopy sphere Σ.
History

\(n = 2, 6, 14: \ S^1 \times S^1, \ S^3 \times S^3, \ S^7 \times S^7 \) have \(\kappa = 1 \) framings.

Kervaire (1960): PL, non-smoothable, 10-manifold \(M \) with \(\kappa = 1 \).

Kervaire and Milnor (1963): maybe \(\kappa = 0 \) for \(n \neq 2, 6, 14 \)?

Browder (1969): \(\kappa = 0 \) unless \(n = 2^{j+1} - 2 \) for some \(j \), and then \(\kappa = 0 \) if and only if \(h^2_j \) does not survive in the ASS, \(h_j \leftrightarrow Sq^{2j} \).

Calculation/construction (Barratt, Jones, Mahowald, Tangora (using May SS)):

\(h^2_4 \) and \(h^2_5 \) survive the ASS. (\(h^2_6 \) doable??)
Theorem (2009)
\[\kappa = 0 \text{ unless } n \text{ is } 2, 6, 14, 30, 62, \text{ or maybe } 126: \]
\[h_j^2 \text{ has a non-zero differential in the ASS, } j \geq 7. \]

Calculations of \(RO(G) \)-graded groups \(H_G^*(\ast; \mathbb{Z}) \) are critical!

Haynes Miller quote (Bourbaki Séminaire survey):
Hill, Hopkins, and Ravenel marshall three major developments in stable homotopy theory in their attack on the Kervaire invariant problem:

- The chromatic perspective based on work of Novikov and Quillen and pioneered by Landweber, Morava, Miller, Ravenel, Wilson, and many more recent workers.
- The theory of structured ring spectra, implemented by May and many others; and
- Equivariant stable homotopy theory, as developed by May and collaborators.
Structured ring spectra and structured ring \(G \)-spectra

\(E_\infty \) ring spectra (May-Quinn-Ray [1972])

\(E_\infty \) ring \(G \)-spectra (Lewis-May [1986])

Recent paradigm shift in stable homotopy theory.

Symmetric monoidal category of spectra \(\mathcal{S} \) under \(\wedge \);
\(E_\infty \) ring spectra are just commutative monoids in \(\mathcal{S} \).

Elmendorf-Kriz-Mandell-May [1997]: \(S \)-modules, operadic \(\wedge \)

Hovey-Shipley-Smith [2000]: Symmetric spectra, categorical \(\wedge \)

Mandell-May-Shipley-Schwede [2001]: Orthogonal, comparisons

Mandell-May [2002]: Orthogonal \(G \)-spectra and \(S_G \)-modules

New subjects:

“Brave new algebra” (Waldhausen’s name, now apt)

“Derived algebraic geometry” (Toen-Vezzosi, Lurie)
Revitalized areas
Equivariant ∞ loop space theory
Equivariant algebraic K-theory
(Guillou-Merling-May, [2011-2012]).

Prospective applications to algebraic K-theory of number rings?

Theorem
Let L be a Galois extension of a field F with Galois group G. There is an E_∞ ring G-spectrum $K_G(L)$ such that

$$(K_G(L))^H = K(L^H) \text{ for } H \subset G$$

where $\pi_* K(R) =$ Quillen’s algebraic K-groups of R.