Input for derived algebraic geometry: equivariant multiplicative infinite loop space theory

Peter May

Joint work with
Bertrand Guillou, Mona Merling, and Angelica Osorno
February 18, 2016
Banff

Behind the scenes support from Steve Lack, John Power, Nick Gurski, and Mike Shulman

2-category theory ROCKS

especially
Codescent objects and the formal theory of 2-monads

May 9, 2015: Midwest topology seminar talk:
http://www.math.uchicago.edu/ may/TALKS/Chicago2015.pdf
Most slides: Equivariant May and Segal machines on G-spaces.
All of that is fine and I will not repeat much of it here.
Today's talk is also online:
http://www.math.uchicago.edu/ may/TALKS/Chicago2016.pdf
The subject is infinite loop G-category theory.

OUTLINE

Brief summary: \mathbb{S}_{G} from \mathscr{F} - G-spaces to orthogonal G-spectra

$$
\text { A triviality: } B \text { from } \mathscr{F}-G \text {-categories to } \mathscr{F}-G \text {-spaces }
$$

The rest: from sensible categorical input to \mathscr{F} - G-categories
(1) \mathscr{F}-categories in $\operatorname{Cat}(\mathscr{V})$ for general \mathscr{V}, such as G-spaces
(2) The additive input: symmetric monoidal \mathscr{V}-categories
(3) From additive input to \mathscr{F}-algebras (\mathscr{F} - \mathscr{V}-categories)
(4) The multiplicative input: the relevant multicategories
(5) From multiplicative input to Mult(\mathscr{F}-Alg) - Start
(6) The formal theory of 2-monads
(7) Codescent objects (2-categorical coequalizers)
(8) From multiplicative input to Mult(\mathscr{F}-Alg) - Finish
(9) Controlling the equivariant homotopy theory
(10) Input to the multiplicative input

From \mathscr{F} - G-spaces to orthogonal G-spectra

\mathscr{F} is the category of finite based sets $\mathbf{n}=\{0,1, \cdots, n\}$, basepoint 0. (Alias $\Gamma^{\circ p}$)

An \mathscr{F} - G-space is a functor $X: \mathcal{F} \longrightarrow G-$ Spaces, notation $\mathbf{n} \mapsto X_{n}$; We assume X is reduced: $X_{0}=*$.
$\phi: \mathbf{n} \rightarrow \mathbf{1}, \phi(i)=1,1 \leq i \leq n:$ induces "product" $\phi: X_{n} \longrightarrow X_{1}$
Segal maps $\delta: X_{n} \longrightarrow X_{1}^{n}$; coordinates $\delta_{j}: \mathbf{n} \rightarrow \mathbf{1}, \delta_{j}(i)=\delta_{i, j}$. X is special if $\delta: X_{n}^{\wedge} \longrightarrow\left(X_{1}^{n}\right)^{\wedge}$ is a homotopy equivalence for all $\Lambda \subset G \times \Sigma_{n}$ such that $\Lambda \cap \Sigma_{n}=\{e\}$. (e.g. $\Lambda=H \subset G$.)

$$
X_{1}^{n} \stackrel{\delta}{\simeq} X_{n} \xrightarrow{\phi} X_{1}
$$

Theorem (M, Merling, Osorno)

There is a lax symmetric monoidal functor \mathbb{S}_{G} from \mathscr{F} - G-spaces to orthogonal Ω-G-spectra. If X is special, then $\Omega^{\infty} \mathbb{S}_{G} X$ is an equivariant group completion of X_{1}.

Group Completion: group completion on H-fixed points, $H \subset G$.

From (topological) \mathscr{F} - G-categories to \mathscr{F} - - -spaces
Topological G-category: Object and morphism G-spaces such that Source, Target, Identity, and Composition are maps of G-spaces.

Notation: $G \mathscr{U}=G$-spaces; $\boldsymbol{C a t}(\mathbf{G} \mathscr{U})=$ topological G-categories.
An \mathscr{F}-G-category is a functor $\mathscr{X}: \mathscr{F} \longrightarrow \mathbf{C a t}(\mathbf{G} \mathscr{U})$.
Special is defined just as for $\mathscr{F}-G$-spaces, via $(-)^{\wedge}$.

Theorem (easy)
The classifying space functor B from topological \mathscr{F}-G-categories to \mathscr{F}-G-spaces is symmetric monoidal, and it takes special
\mathscr{F}-G-categories to special \mathscr{F}-G-spaces.

Generalize: do equivariant theory without working equivariantly.
Separate formal arguments from context specific arguments
\mathscr{V} any bicomplete closed symmetric monoidal category, not just the case $\mathscr{V}=G \mathscr{U}$ of immediate interest.

For derived algebraic geometry, maybe Voevodsky's motivic spaces.
Cat $(\mathscr{V})=$ categories internal to \mathscr{V} : object and morphism objects in \mathscr{V}; Source, Target, Identity, and Composition maps in \mathscr{V}.

Notation $\mathscr{F}-\mathbf{A l g} \equiv \operatorname{Cat}(\mathscr{V})^{\mathscr{F}}$

This is a 2-category: \mathscr{V}-functors $\mathscr{X}: \mathscr{F} \longrightarrow \boldsymbol{C a t}(\mathscr{V}), \mathscr{V}$-natural transformations, \mathscr{V}-modifications are 0 -cells, 1 -cells, and 2-cells.

It is symmetric monoidal via Day convolution (left Kan extension)

Let $G \mathscr{S}=$ orthogonal G-spectra, symmetric monoidal under \wedge.

$$
\mathbb{S}_{G} \circ B: \operatorname{Cat}(\mathbf{G} \mathscr{U})^{\mathscr{F}} \longrightarrow \mathbf{G} \mathscr{S}
$$

is lax symmetric monoidal.
Goal: categorical machine with additive and multiplicative input (for any \mathscr{V}) and additive and multiplicative output in \mathscr{F}-Alg.

THE ADDITIVE INPUT

Permutativity Operad $\mathscr{P}=\left\{\mathscr{E} \Sigma_{j}\right\}$ in Cat.
\mathscr{E} is the chaotic categorification functor from Sets to contractible categories, left adjoint to the object functor.

Permutative categories \mathscr{A} : action of \mathscr{P} given by functors $\mathscr{P}(k) \times \mathscr{A}^{k} \longrightarrow \mathscr{A}$.

Symmetric monoidal categories: pseudoaction of \mathscr{P} given by pseudofunctors $\mathscr{P}(k) \times \mathscr{A}^{k} \longrightarrow \mathscr{A}$.
"pseudo" means "up to invertible 2-cells", not strict structure.
(Corner-Gurski define operadic pseudoactions carefully)

Permutativity G-Operad $\mathscr{P}_{G}=\left\{\mathbf{C a t}\left(\mathscr{E} \mathbf{G}, \mathscr{E} \boldsymbol{\Sigma}_{\mathbf{j}}\right)\right\}$ in GCat $\mathscr{G}=\mathbf{C a t}(\mathscr{E} \mathbf{G},-)$ is the G-ification functor: Cat $\longrightarrow \mathbf{G}$-Cat.
$\mathscr{G}(-)^{G}$ is Thomason's homotopy fixed point functor.
permutative G-categories \mathscr{A} : action of \mathscr{P}_{G}.
Symmetric monoidal G-categories: pseudoaction of \mathscr{P}_{G}.
"Unbiased" structure: defined using all \mathscr{A}^{k}, not just the first few.
Operadic formulation is vital:
no "biased" definitions are known equivariantly.
(Sick Sic: not the same as G-symmetric monoidal category!)

Processing the additive input

\mathscr{P}_{G}-PsAlg: \mathscr{P}_{G}-pseudoalgebras and pseudomorphisms.
$\mathscr{D}=\mathscr{D}\left(\mathscr{P}_{G}\right):$ Category of operators generated by \mathscr{P}_{G}

$$
\Pi \xrightarrow{\iota} \mathscr{D} \xrightarrow{\xi} \mathscr{F}
$$

$\Pi \subset \mathscr{F}:$ permutations, projections, injections $\left|\phi^{-1}(j)\right| \leq 1$ if $j \geq 1$.

$$
\mathscr{D}(\mathbf{m}, \mathbf{n})=\coprod_{\phi: \mathbf{m} \longrightarrow \mathbf{n}} \prod_{j=1}^{n} \mathscr{P}_{G}\left(\left|\phi^{-1}(j)\right|\right)
$$

\mathscr{D}-PsAlg: \mathscr{D}-pseudoalgebras and pseudomorphisms.
\mathscr{D}-AlgPs: \mathscr{D}-algebras (functors) and pseudomorphisms.
\mathscr{D}-AlgSt: \mathscr{D}-algebras and morphisms (transformations)

$\mathbb{R}:(\mathbb{R} X)(n)=X^{n}($ right adjoint to $\mathbb{L}, \mathbb{L}(\mathscr{Y})=\mathscr{Y}(1))$
$\mathbb{S} t: \mathbb{S} t=$ strictification (Power-Lack) (left adjoint to inclusion $\mathbb{J})$
$\xi_{*}: \xi_{*}(\mathscr{Y})=\mathscr{F} \otimes_{\mathscr{D}} \mathscr{Y}$ (left adjoint to pull back of action $\left.\xi^{*}\right)$
(I'll come back to the triangle after describing multiplicative input.)

Multicategories $=$ operads with many objects $=$ colored operads Understood to be symmetric.

For a symmetric monoidal category (\mathscr{C}, \otimes), the multicategory $\operatorname{Mult}(\mathscr{C})$ has k-morphisms the maps $X_{1} \otimes \cdots \otimes X_{k} \longrightarrow Y$ in \mathscr{C}. Since $\mathbb{S}_{G} \circ B$ is lax symmetric monoidal, it gives a multifunctor

$$
\mathbb{S}_{G} \circ B: \operatorname{Mult}\left(\operatorname{Cat}(\mathbf{G} \mathscr{U})^{\mathscr{F}}\right) \longrightarrow \operatorname{Mult}(\mathbf{G} \mathscr{S}) .
$$

For any \mathscr{V}, the target of our categorical machine is Mult($\mathscr{F}-\mathrm{Alg})$.
Can form Mult (\mathscr{C}) for some categories that are NOT symmetric monoidal. Same formal structure, data complicated by 2-cells:
$\operatorname{Mult}(\mathscr{O}) \equiv \operatorname{Mult}(\mathscr{O}$-PsAlg $) \quad \operatorname{Mult}(\mathscr{D}) \equiv \operatorname{Mult}(\mathscr{D}$-PsAlg $)$
for suitable operads \mathscr{O} and categories of operators $\mathscr{D}=\mathscr{D}(\mathscr{O})$.

THE MULTIPLICATIVE INPUT

Mult($(\mathscr{O}), \mathscr{O}$ a "pseudocommutative" operad such as \mathscr{P} or \mathscr{P}_{G}
k-morphisms $\left(F, \delta_{i}\right):\left(\mathscr{A}_{1}, \cdots, \mathscr{A}_{k} ; \mathscr{B}\right)$ between \mathscr{O}-pseudoalgebras:

$$
\text { 1-cell } F: \mathscr{A}_{1} \times \cdots \times \mathscr{A}_{k} \longrightarrow \mathscr{B}
$$

Invertible distributivity 2-cells $\delta_{i}=\left\{\delta_{i}(n)\right\}, 1 \leq i \leq k$:

t_{i} from $\Delta: \mathscr{A}_{j} \longrightarrow \mathscr{A}_{j}^{n}, j \neq i$, and transpositions.
Complicated looking but straightforward coherence data

Mult($\mathscr{D}), \mathscr{D}$ a "pseudocommutative" 2-category of operators k-morphisms $(F, \delta):\left(\mathscr{X}_{1}, \cdots, \mathscr{X}_{k} ; \mathscr{Y}\right)$ between \mathscr{D}-pseudoalgebras:

$$
\text { 1-cells } F: \mathscr{X}_{1}\left(n_{1}\right) \times \cdots \times \mathscr{X}_{k}\left(n_{k}\right) \longrightarrow \mathscr{Y}\left(n_{1} \cdots n_{k}\right)
$$

Invertible distributivity 2-cells δ :

Here $\underline{m}=m_{1} \cdots m_{k}, \underline{n}=n_{1} \cdots n_{k}$, and $1 \leq j \leq k$.
Complicated looking but straightforward coherence data

Processing the multiplicative input

Theorem
If \mathscr{O} is a pseudocommutative operad, then $\mathscr{D}=\mathscr{D}(\mathscr{O})$ is a pseudocommutative category of operators and \mathbb{R} extends to a multifunctor $\operatorname{Mult}(\mathscr{O}) \longrightarrow \operatorname{Mult}(\mathscr{D})$.

Proof.
Horrible but straightforward checks of coherence. Essential point is that the δ_{i} in the operadic context work iteratively to construct the single δ in the category of operators context.

So far this is as in May, 2015, Midwest. The rest is all changed!
(Digression: Frank Adams wrote out the jokes in his talks.)
I once asked Frank Adams for a copy of some work in progress, and his delightful response went as follows:

It is perfectly true that when I last wrote to you I had drafts of sections one and three which I was willing to let people see.

Today I still have the same pieces of paper, but like Mr. Brown, I discern the Capability of Improvement. ${ }^{1}$

The chief rogue (a definition, needless to say) has been marched off to the condemned cell, where he lodges till I determine whether his rival is likely to serve the crown more usefully; he took with him a handful of perfectly valid theorems (humming sadly "we shall not all die, but we shall all be changed"

[^0]

> The formal theory of 2-monads

Translate problem to monadic avatar:

$$
\operatorname{Mult}(\mathscr{D}) \cong \operatorname{Mult}(\mathbb{D}) \xrightarrow{\xi_{\#}} \operatorname{Mult}(\mathbb{F}-\mathbf{A l g}) \cong \operatorname{Mult}(\mathscr{F}-\mathbf{A l g}) .
$$

\mathbb{D} and \mathbb{F} are 2-monads in the 2-category $\mathscr{K} \equiv \mathbf{C a t}(\mathscr{V})^{\Pi}$.

$$
(\mathbb{D} \mathscr{Y})_{n}=\mathscr{D}(-, \mathbf{n}) \otimes_{\boldsymbol{n}} \mathscr{Y} .
$$

(As in May-Thomason on the level of spaces.) Danger?
Colimits don't commute with B. We don't give a damn!

A graded monoid of monads

Monads \mathbb{D}_{k} on $\operatorname{Cat}(\mathscr{V})^{\boldsymbol{\Pi}^{\mathbf{k}}}, \mathbb{D}_{0}=*$,

$$
\mathbb{D}_{k} \mathscr{W}=\mathscr{D}^{k} \otimes_{\Pi^{k}} \mathscr{W}
$$

Suitably associative and commutative system of pairings

$$
\mathbb{D}_{j} \times \mathbb{D}_{k} \longrightarrow \mathbb{D}_{j+k}
$$

Have $\wedge_{\Pi}^{k}: \Pi^{k} \longrightarrow \Pi ; L_{k} \mathscr{Y}=\mathscr{Y} \circ \wedge_{\Pi}^{k}$ for $\mathscr{Y}: \Pi \longrightarrow \mathbf{C a t}(\mathscr{V})$.
If $\mathscr{X}_{i}, 1 \leq i \leq k$ and \mathscr{Y} are \mathbb{D}-pseudoalgebras, then $\mathscr{X}_{1} \times \cdots \times \mathscr{X}_{k}$ and $L_{k} \mathscr{Y}$ are \mathbb{D}_{k}-pseudoalgebras, and a k-morphism $\left(\mathscr{X}_{1}, \cdots, \mathscr{X}_{k} ; \mathscr{Y}\right)$ in $\operatorname{Mult}(\mathbb{D})$ is exactly a pseudomorphism of \mathbb{D}_{k}-pseudoalgebras

$$
\begin{equation*}
\mathscr{X}_{1} \times \cdots \times \mathscr{X}_{k} \longrightarrow L_{k} \mathscr{Y} . \tag{1}
\end{equation*}
$$

The previous slide, a perfectly valid diagram, was smuggled out of the condemned cell. Ignore it. We head towards $\xi_{*}, \mathbb{S} t$, and $\xi_{\#}$.

Coequalizer and reflexive coequalizer data:

Monadic example: Let $\xi: \mathbb{D} \longrightarrow \mathbb{E}$ be a map of 2 -monads in \mathscr{K},

$$
\nu=\mu \circ \mathbb{E} \xi: \mathbb{E} \mathbb{D} \longrightarrow \mathbb{E} \mathbb{E} \longrightarrow \mathbb{E}
$$

$$
\begin{aligned}
& \mathbb{E D} \mathscr{Y} \\
& \nu \downarrow \underset{\mathbb{E} \mathscr{Y}}{ } \prod_{\mathbb{E} \eta} \downarrow \theta \\
& \pi \\
& \xi_{*} \mathscr{Y}=\mathbb{E} \otimes_{\mathbb{D}} \mathscr{Y}
\end{aligned}
$$

Codescent and reflexive codescent data:

The identities for compositions of face and degeneracy operators for the 2-skeleton of a simplicial object are replaced by prescribed invertible 2-cells, which are part of the data.

A codescent object for such codescent data is a pair (k, ζ) consisting of a 1 -cell k and an invertible 2 -cell ζ

$$
\underset{\substack{\downarrow \\ K}}{K_{0}} \quad \zeta: k \circ d_{0} \Longrightarrow k \circ d_{1}
$$

such that certain equalities of pasting diagrams hold, and (k, ζ) is universal with this coherence property.

The universal property is the natural 2-categorical generalization of the existence and uniqueness universal property of coequalizers. Displaying the diagrams ${ }^{2}$ would only make simple things look hard.
${ }^{2}$ They are displayed in the Appendix at the end.

Monadic example: Let $\xi: \mathbb{D} \longrightarrow \mathbb{E}$ be a map of 2 -monads in \mathscr{K},

$$
\nu=\mu \circ \mathbb{E} \xi: \mathbb{E D} \longrightarrow \mathbb{E} \mathbb{E} \longrightarrow \mathbb{E}
$$

$$
\begin{aligned}
& \mathbb{E D D} \mathscr{Y}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{E} \mathscr{Y}
\end{aligned}
$$

(The resulting codescent object is a 2-truncation of an ∞-categorical 2 -sided monadic bar construction.)

With suppressed conventions (all unit data is strict), all but one of the required simplicial identities hold strictly; the only non-identity invertible 2-cell required $\left(d_{1} \circ d_{2} \cong d_{1} \circ d_{1}\right)$ comes from the pseudoaction 2-cell ϕ of \mathscr{Y} :

$$
\mathbb{E} \phi: \mathbb{E}(\theta \circ \mathbb{D} \theta) \Longrightarrow \mathbb{E}(\theta \circ \mu)
$$

If \mathscr{Y} is a \mathbb{D}-algebra, $\phi=$ id and we require no non-identity 2 -cells. Write

$$
\xi_{\#} \mathscr{Y}=\mathbb{E} \boxtimes_{\mathbb{D}} \mathscr{Y}
$$

for the resulting codescent object, writing

for the 1-cells and 2-cells witnessing the universality.

The codescent object $\xi_{\#} \mathscr{Y}$ is a strict \mathbb{E}-algebra since our codescent data are in \mathbb{E}-AlgSt and our codescent objects are constructed there; similarly for morphisms.

Back to processing multiplicative input

Can apply general construction to id: $\mathbb{D} \longrightarrow \mathbb{D}$; strictification is

$$
\mathrm{id}_{\#} \cong \mathbb{S} t: \mathbb{D}-\mathbf{P s A l g} \longrightarrow \mathbb{D}-\mathbf{A l g S t} .
$$

The multicategory associated to the target 2-category is in the condemned cell because the distributivity constraints there would still be unstrictified 2-cells.
Can also apply the general construction to $\xi^{k}: \mathbb{D}_{k} \longrightarrow \mathbb{F}_{k}$ to get

$$
\xi_{\#}^{k}: \mathbb{D}_{k} \text {-PsAlg } \longrightarrow \mathbb{F}_{k} \text {-Alg, } \quad k \geq 1
$$

Let $F: \mathscr{X}_{1} \times \cdots \times \mathscr{X}_{k} \longrightarrow L_{k} \mathscr{Y}$ be a pseudomorphism of \mathbb{D}_{k}-pseudoalgebras. We get a natural transformation of functors $\mathscr{F}^{k} \longrightarrow \mathbf{C a t}(\mathscr{V}), \psi$ coming via the universal property of $\xi_{\#}^{k} L_{k} \mathscr{Y}:$

By left Kan extension, this is this is the same as a natural transformation of functors $\mathscr{F} \longrightarrow \mathbf{C a t}(\mathscr{V})$

$$
\xi_{\#} \mathscr{X}_{1} \otimes \cdots \otimes \xi_{\#} \mathscr{X}_{k} \longrightarrow \xi_{\#} \mathscr{Y}
$$

that is a k-morphism in Mult(\mathscr{F} - $\mathbf{A l g}$). This gives

$$
\xi_{\#}: \operatorname{Mult}(\mathscr{D}) \longrightarrow \operatorname{Mult}(\mathscr{F}-\mathbf{A l g})
$$

Controlling the equivariant homotopy theory

NO equivariant considerations used in this formal theory,
BUT how do we know that $\xi_{\#}$ takes equivalences to equivalences and takes special \mathbb{D}-pseudoalgebras to special \mathscr{F}-G-categories? That is a question about the underlying additive theory. The nonequivariant specialization is easier.

Equivalence $\mathscr{Y} \longrightarrow \mathscr{Z}:$ equivalences $\mathscr{Y}_{n}^{\wedge} \longrightarrow \mathscr{Z}_{n}^{\Lambda}$ for $\Lambda \subset G \times \Sigma_{n}$ such that $\Lambda \cap \Sigma_{n}=\{e\}$, as in "special".

Formal theory would see $G \times \Sigma_{n}$-equivalences, which is too strong.
Such a strong notion of specialness would lead only to products of
Eilenberg-Mac Lane G-spectra.
$\xi_{\#}$ cannot give an equivalence in the 2-category $\mathbf{C a t}(G \mathscr{U})^{\Pi}$.
\mathscr{F}_{G} : finite G-sets; Π_{G} accordingly.
Categories of operators \mathscr{D} and \mathscr{D}_{G} from a G-operad \mathscr{O}.
Prolongation \mathbb{P} from \mathbb{D}-pseudoalgebras to \mathbb{D}_{G}-pseudoalgebras.
Concrete inspection: $B \circ \mathbb{P} \cong \mathbb{P} \circ B$ on strict \mathbb{D}-algebras.
Topologically, an \mathscr{F}-G-map $X \longrightarrow Y$ is an equivalence if and only
if $\mathbb{P} X \longrightarrow \mathbb{P} Y$ is a level G-equivalence. Transports to $\operatorname{Cat}(G \mathscr{U})$.

$$
\begin{aligned}
& \mathbb{D}_{G} \boxtimes_{\mathbb{D}_{G}} \mathbb{P} \mathscr{Y} \underset{s}{\stackrel{\xi}{\rightleftarrows}} \mathbb{F}_{G} \boxtimes_{\mathbb{D}_{G}} \mathbb{P} \mathscr{Y} \\
& \cong \\
& \mathbb{P}\left(\mathbb{D} \boxtimes_{\mathbb{D}} \mathscr{Y}\right) \underset{\mathbb{P} \xi}{ } \quad \mathbb{P}\left(\mathbb{F} \boxtimes_{\mathbb{D}} \mathscr{Y}\right)
\end{aligned}
$$

Work in ground 2-category $\operatorname{Cat}(\mathbf{G} \mathscr{U})^{\mathscr{O}\left(\boldsymbol{\Pi}_{\mathbf{G}}\right)}$, which sees only levelwise G-information.

Section $s: \mathscr{F}_{G} \longrightarrow \mathscr{D}_{G}$, levelwise G-map (ignore Σ_{n}). Induces s in diagram such that $\xi \circ s=\mathrm{id}$.

Universal property gives invertible 2-cell id $\longrightarrow s \circ \xi$, a homotopy on application of B. Implies $\xi: \mathscr{Y} \simeq \mathbb{S t} \mathscr{Y} \longrightarrow \xi_{\#} \mathscr{Y}$ is an equivalence.

Input to the multiplicative input

Little multicategories \mathscr{Q} parametrize algebraic structures
One object $=$ operads: Ass, Com: monoids, comm. monoids
Two objects: multicategory for monoids acting on objects.
(Think of rings and modules). Many others. Categorify via $\mathscr{E} \mathscr{Q}$.

Big multicategories \mathscr{M}, like $\operatorname{Mult}(\mathscr{C}, \otimes)$, are the home for multiplicative structures given by morphisms of multicategories

$$
X: \mathscr{Q} \longrightarrow \mathscr{M}
$$

Objects $X(q)$ of $\mathscr{C} ; k$-morphisms $\mathscr{Q}\left(q_{1}, \cdots, q_{k} ; r\right)$ induce

$$
X\left(q_{1}\right) \otimes \cdots \otimes X\left(q_{k}\right) \longrightarrow X(r)
$$

SUMMARY

Multiplicative equivariant infinite loop space theory transports a \mathscr{Q}-structure on \mathscr{P}_{G}-categories $\mathscr{A}(q)$
to a \mathscr{Q}-structure on the G-spectra $\mathbb{S}_{G} B \xi_{\#} \mathbb{R} \mathscr{A}(q)$,
converts G-categorical input to G-spectrum output.
(Elmendorf-Mandell idea when $G=e$, developed with very different methods)

Free functors give an important class of examples

- but the serious theory is not needed for that.

ALL such nonequivariant structures $X: \mathscr{Q} \longrightarrow \operatorname{Mult}(\mathscr{P})$ extend equivariantly by G-ification $\mathscr{G} X: \mathscr{G} \mathscr{Q} \longrightarrow \operatorname{Mult}\left(\mathscr{P}_{G}\right)$.

Conjecture
$\mathscr{G} X$ is a global G-structure "of type \mathscr{Q}^{\prime}.

$$
\text { Symmetric bimonoidal G-categories }(\oplus, \otimes)
$$

For $\mathscr{Q}=\mathscr{P}, X: \mathscr{P} \longrightarrow \operatorname{Mult}(\mathscr{P})$ gives a naive commutative ring structure to a genuine G-spectrum.

For $\mathscr{Q}=\mathscr{P}_{G}, X: \mathscr{P}_{G} \longrightarrow \operatorname{Mult}(\mathscr{P})$ gives a genuine commutative ring structure to a genuine G-spectrum.

There are intermediate kinds of operadic commutative ring structures on genuine G-spectra.
(Kervaire invariant one; Blumberg and Hill)
Similarly ring, module, and algebra structures admit variants on genuine G-spectra.

We now know how to recognize such structures on the level of structured G-categories.

They are there. Let's find them and see what they tell us!
I'll end (again) at this beginning.

Appendix: Pasting diagrams for codescent objects

The universality means two things

First, given a pair (ℓ, χ), where $\ell: K_{0} \longrightarrow L$ is a 1 -cell and $\chi: \ell \circ d_{0} \Longrightarrow \ell \circ d_{1}$ is an invertible 2 -cell which make the evident analogs of the diagrams above commute, there is a unique 1 -cell $z: K \longrightarrow L$ such that $z \circ k=\ell$ and $z \circ \zeta=\chi$.

Second, given 1-cells $z_{1}, z_{2}: K \longrightarrow L$ together with an invertible 2-cell $\alpha: z_{1} \circ k \Longrightarrow z_{2} \circ k$ such that

there is a unique 2-cell $\beta: z_{1} \Longrightarrow z_{2}$ such that $\beta \circ k=\alpha$.

The monadic universal property

First, let $\psi: \mathbb{E} \mathscr{Y} \longrightarrow \mathscr{Z}$ be a 1 -cell in \mathscr{K} and $\chi: \psi \circ \nu \Longrightarrow \psi \circ \mathbb{E} \theta$ be an invertible 2-cell such that

(The other coherence condition holds tautologically in our context).
Then there is a unique 1 -cell $\gamma: \xi_{\#} \mathscr{Y} \longrightarrow \mathscr{Z}$ such that

$$
\gamma \circ \zeta=\psi \text { and } \gamma \circ \pi=\chi
$$

Second, let $\gamma_{1}, \gamma_{2}: \xi_{\#} \mathscr{Y} \longrightarrow \mathscr{Z}$ be 1-cells together with an invertible 2-cell $\alpha: \gamma_{1} \circ \pi \Longrightarrow \gamma_{2} \circ \pi$ such that

Then there is a unique 2-cell $\beta: \gamma_{1} \Longrightarrow \gamma_{2}$ such that $\beta \circ \pi=\alpha$.

[^0]: ${ }^{1}$ Refers to Capability Brown, a famous 18 th century landscape architect

