Input for derived algebraic geometry: equivariant multiplicative infinite loop space theory

Peter May

Joint work with Bertrand Guillou, Mona Merling, and Angelica Osorno

> February 18, 2016 Banff

Behind the scenes support from Steve Lack, John Power, Nick Gurski, and Mike Shulman

2-category theory **ROCKS**

especially

Codescent objects and the formal theory of 2-monads

May 9, 2015: Midwest topology seminar talk: http://www.math.uchicago.edu/ may/TALKS/Chicago2015.pdf Most slides: Equivariant May and Segal machines on *G*-spaces. All of that is fine and I will not repeat much of it here. Today's talk is also online: http://www.math.uchicago.edu/ may/TALKS/Chicago2016.pdf

The subject is infinite loop *G*-category theory.

OUTLINE

Brief summary: S_G from \mathscr{F} -G-spaces to orthogonal G-spectra

A triviality: B from \mathscr{F} -G-categories to \mathscr{F} -G-spaces

The rest: from sensible categorical input to \mathscr{F} -G-categories

- (1) \mathscr{F} -categories in $\mathbf{Cat}(\mathscr{V})$ for general \mathscr{V} , such as G-spaces
- (2) The additive input: symmetric monoidal \mathscr{V} -categories
- (3) From additive input to \mathscr{F} -algebras (\mathscr{F} - \mathscr{V} -categories)
- (4) The multiplicative input: the relevant multicategories
- (5) From multiplicative input to $Mult(\mathscr{F}-Alg)$ Start
- (6) The formal theory of 2-monads
- (7) Codescent objects (2-categorical coequalizers)
- (8) From multiplicative input to $Mult(\mathscr{F}-Alg)$ Finish
- (9) Controlling the equivariant homotopy theory
- (10) Input to the multiplicative input

From \mathscr{F} -G-spaces to orthogonal G-spectra

 \mathscr{F} is the category of finite based sets $\mathbf{n} = \{0, 1, \cdots, n\}$, basepoint 0. (Alias Γ^{op})

An \mathscr{F} -G-space is a functor $X: \mathscr{F} \longrightarrow G$ -Spaces, notation $\mathbf{n} \mapsto X_n$; We assume X is reduced: $X_0 = *$.

 $\phi: \mathbf{n} \to \mathbf{1}, \ \phi(i) = 1, \ 1 \leq i \leq n$: induces "product" $\phi: X_n \longrightarrow X_1$ Segal maps $\delta: X_n \longrightarrow X_1^n$; coordinates $\delta_j: \mathbf{n} \to \mathbf{1}, \ \delta_j(i) = \delta_{i,j}$. X is special if $\delta: X_n^{\Lambda} \longrightarrow (X_1^n)^{\Lambda}$ is a homotopy equivalence for all $\Lambda \subset G \times \Sigma_n$ such that $\Lambda \cap \Sigma_n = \{e\}$. (e.g. $\Lambda = H \subset G$.)

$$X_1^n \stackrel{\delta}{\leadsto} X_n \stackrel{\phi}{\longrightarrow} X_1$$

Theorem (M, Merling, Osorno)

There is a lax symmetric monoidal functor \mathbb{S}_G from \mathscr{F} -G-spaces to orthogonal Ω -G-spectra. If X is special, then $\Omega^{\infty}\mathbb{S}_G X$ is an equivariant group completion of X_1 .

Group Completion: group completion on *H*-fixed points, $H \subset G$.

From (topological) \mathscr{F} -G-categories to \mathscr{F} -G-spaces

Topological *G*-category: Object and morphism *G*-spaces such that Source, Target, Identity, and Composition are maps of *G*-spaces.

Notation: $G\mathscr{U} = G$ -spaces; $Cat(G\mathscr{U}) =$ topological G-categories.

An \mathscr{F} -G-category is a functor $\mathscr{X}: \mathscr{F} \longrightarrow Cat(G\mathscr{U})$.

Special is defined just as for \mathscr{F} -G-spaces, via $(-)^{\Lambda}$.

Theorem (easy)

The classifying space functor B from topological \mathscr{F} -G-categories to \mathscr{F} -G-spaces is symmetric monoidal, and it takes special \mathscr{F} -G-categories to special \mathscr{F} -G-spaces.

Generalize: do equivariant theory without working equivariantly.

Separate formal arguments from context specific arguments

 \mathscr{V} any bicomplete closed symmetric monoidal category, not just the case $\mathscr{V} = G\mathscr{U}$ of immediate interest.

For derived algebraic geometry, maybe Voevodsky's motivic spaces.

Cat(\mathscr{V}) = categories internal to \mathscr{V} : object and morphism objects in \mathscr{V} ; Source, Target, Identity, and Composition maps in \mathscr{V} .

Notation \mathscr{F} -Alg \equiv Cat $(\mathscr{V})^{\mathscr{F}}$

This is a 2-category: \mathscr{V} -functors $\mathscr{X}: \mathscr{F} \longrightarrow \mathbf{Cat}(\mathscr{V}), \mathscr{V}$ -natural transformations, \mathscr{V} -modifications are 0-cells, 1-cells, and 2-cells.

It is symmetric monoidal via Day convolution (left Kan extension)

Let $G\mathscr{S} =$ orthogonal G-spectra, symmetric monoidal under \land .

$$\mathbb{S}_{G} \circ B \colon \operatorname{Cat}(G\mathscr{U})^{\mathscr{F}} \longrightarrow G\mathscr{S}$$

is lax symmetric monoidal.

Goal: categorical machine with additive and multiplicative input (for any \mathscr{V}) and additive and multiplicative output in \mathscr{F} -Alg.

THE ADDITIVE INPUT

Permutativity Operad $\mathscr{P} = \{\mathscr{E}\Sigma_j\}$ in **Cat**.

 \mathscr{E} is the chaotic categorification functor from Sets to contractible categories, left adjoint to the object functor.

Permutative categories \mathscr{A} : action of \mathscr{P}

given by functors $\mathscr{P}(k) \times \mathscr{A}^k \longrightarrow \mathscr{A}$.

Symmetric monoidal categories: pseudoaction of \mathscr{P} given by pseudofunctors $\mathscr{P}(k) \times \mathscr{A}^k \longrightarrow \mathscr{A}$.

"pseudo" means "up to invertible 2-cells", not strict structure.

(Corner-Gurski define operadic pseudoactions carefully)

Permutativity *G*-Operad $\mathscr{P}_G = \{ Cat(\mathscr{E}G, \mathscr{E}\Sigma_j) \}$ in *G*Cat $\mathscr{G} = Cat(\mathscr{E}G, -)$ is the *G*-ification functor: Cat \longrightarrow G-Cat. $\mathscr{G}(-)^G$ is Thomason's homotopy fixed point functor.

permutative G-categories \mathscr{A} : action of \mathscr{P}_{G} .

Symmetric monoidal *G*-categories: pseudoaction of \mathcal{P}_G .

"Unbiased" structure: defined using all \mathscr{A}^k , not just the first few.

Operadic formulation is vital:

no "biased" definitions are known equivariantly.

(Sick Sic: not the same as G-symmetric monoidal category!)

Processing the additive input

 \mathscr{P}_G -**PsAlg**: \mathscr{P}_G -pseudoalgebras and pseudomorphisms. $\mathscr{D} = \mathscr{D}(\mathscr{P}_G)$: Category of operators generated by \mathscr{P}_G

$$\Pi \xrightarrow{\iota} \mathscr{D} \xrightarrow{\xi} \mathscr{F}$$

 $\Pi \subset \mathscr{F}$: permutations, projections, injections $|\phi^{-1}(j)| \leq 1$ if $j \geq 1$.

$$\mathscr{D}(\mathbf{m},\mathbf{n}) = \prod_{\phi: \mathbf{m} \longrightarrow \mathbf{n}} \prod_{j=1}^{n} \mathscr{P}_{G}(|\phi^{-1}(j)|)$$

D-PsAlg: D-pseudoalgebras and pseudomorphisms.
 D-AlgPs: D-algebras (functors) and pseudomorphisms.
 D-AlgSt: D-algebras and morphisms (transformations)

 $\mathbb{R}: \ (\mathbb{R}X)(n) = X^n \ (\text{right adjoint to } \mathbb{L}, \ \mathbb{L}(\mathscr{Y}) = \mathscr{Y}(1))$

St: St = strictification (Power-Lack) (left adjoint to inclusion \mathbb{J})

 ξ_* : $\xi_*(\mathscr{Y}) = \mathscr{F} \otimes_{\mathscr{D}} \mathscr{Y}$ (left adjoint to pull back of action ξ^*)

(I'll come back to the triangle after describing multiplicative input.)

Multicategories = operads with many objects = colored operads Understood to be symmetric.

For a symmetric monoidal category (\mathscr{C}, \otimes) , the multicategory **Mult**(\mathscr{C}) has *k*-morphisms the maps $X_1 \otimes \cdots \otimes X_k \longrightarrow Y$ in \mathscr{C} . Since $\mathbb{S}_G \circ B$ is lax symmetric monoidal, it gives a multifunctor

$\mathbb{S}_{G} \circ B \colon \mathsf{Mult}(\mathsf{Cat}(\mathsf{G}\mathscr{U})^{\mathscr{F}}) \longrightarrow \mathsf{Mult}(\mathsf{G}\mathscr{S}).$

For any \mathscr{V} , the target of our categorical machine is $Mult(\mathscr{F}-Alg)$. Can form $Mult(\mathscr{C})$ for some categories that are NOT symmetric monoidal. Same formal structure, data complicated by 2-cells: $Mult(\mathscr{O}) \equiv Mult(\mathscr{O}-PsAlg) \qquad Mult(\mathscr{D}) \equiv Mult(\mathscr{D}-PsAlg)$ for suitable operads \mathscr{O} and categories of operators $\mathscr{D} = \mathscr{D}(\mathscr{O})$.

THE MULTIPLICATIVE INPUT

Mult(\mathscr{O}), \mathscr{O} a "pseudocommutative" operad such as \mathscr{P} or \mathscr{P}_G *k*-morphisms (F, δ_i): ($\mathscr{A}_1, \dots, \mathscr{A}_k; \mathscr{B}$) between \mathscr{O} -pseudoalgebras:

1-cell
$$F: \mathscr{A}_1 \times \cdots \times \mathscr{A}_k \longrightarrow \mathscr{B}$$

Invertible distributivity 2-cells $\delta_i = {\delta_i(n)}, 1 \le i \le k$:

 t_i from $\Delta : \mathscr{A}_j \longrightarrow \mathscr{A}_j^n$, $j \neq i$, and transpositions.

Complicated looking but straightforward coherence data

Mult(\mathscr{D}), \mathscr{D} a "pseudocommutative" 2-category of operators *k*-morphisms (F, δ): ($\mathscr{X}_1, \dots, \mathscr{X}_k; \mathscr{Y}$) between \mathscr{D} -pseudoalgebras: 1-cells $F: \mathscr{X}_1(n_1) \times \dots \times \mathscr{X}_k(n_k) \longrightarrow \mathscr{Y}(n_1 \dots n_k)$

Invertible distributivity 2-cells δ :

Here $\underline{m} = m_1 \cdots m_k$, $\underline{n} = n_1 \cdots n_k$, and $1 \le j \le k$.

Complicated looking but straightforward coherence data

Processing the multiplicative input

Theorem

If \mathcal{O} is a pseudocommutative operad, then $\mathcal{D} = \mathcal{D}(\mathcal{O})$ is a pseudocommutative category of operators and \mathbb{R} extends to a multifunctor $\text{Mult}(\mathcal{O}) \longrightarrow \text{Mult}(\mathcal{D})$.

Proof.

Horrible but straightforward checks of coherence. Essential point is that the δ_i in the operadic context work iteratively to construct the single δ in the category of operators context.

So far this is as in May, 2015, Midwest. The rest is all changed!

(Digression: Frank Adams wrote out the jokes in his talks.)

I once asked Frank Adams for a copy of some work in progress, and his delightful response went as follows:

It is perfectly true that when I last wrote to you I had drafts of sections one and three which I was willing to let people see.

Today I still have the same pieces of paper, but like Mr. Brown, I discern the Capability of Improvement.¹

The chief rogue (a definition, needless to say) has been marched off to the condemned cell, where he lodges till I determine whether his rival is likely to serve the crown more usefully; he took with him a handful of perfectly valid theorems (humming sadly "we shall not all die, but we shall all be changed")

¹Refers to Capability Brown, a famous 18th century landscape architect

The formal theory of 2-monads

Translate problem to monadic avatar:

$$\mathsf{Mult}(\mathscr{D}) \cong \mathsf{Mult}(\mathbb{D}) \xrightarrow{\xi_{\#}} \mathsf{Mult}(\mathbb{F}\text{-}\mathsf{Alg}) \cong \mathsf{Mult}(\mathscr{F}\text{-}\mathsf{Alg}).$$

 \mathbb{D} and \mathbb{F} are 2-monads in the 2-category $\mathscr{K} \equiv \mathbf{Cat}(\mathscr{V})^{\mathsf{\Pi}}$.

$$(\mathbb{D}\mathscr{Y})_n = \mathscr{D}(-,\mathbf{n}) \otimes_{\Pi} \mathscr{Y}.$$

(As in May-Thomason on the level of spaces.) Danger? Colimits don't commute with *B*. We don't give a damn! A graded monoid of monads

Monads \mathbb{D}_k on $\mathsf{Cat}(\mathscr{V})^{\mathbf{\Pi}^k}$, $\mathbb{D}_0 = *$,

$$\mathbb{D}_k \mathscr{W} = \mathscr{D}^k \otimes_{\Pi^k} \mathscr{W}$$

Suitably associative and commutative system of pairings

$$\mathbb{D}_j \times \mathbb{D}_k \longrightarrow \mathbb{D}_{j+k}.$$

Have $\wedge_{\Pi}^{k} \colon \Pi^{k} \longrightarrow \Pi$; $L_{k}\mathscr{Y} = \mathscr{Y} \circ \wedge_{\Pi}^{k}$ for $\mathscr{Y} \colon \Pi \longrightarrow \mathbf{Cat}(\mathscr{Y})$.

If $\mathscr{X}_i, 1 \leq i \leq k$ and \mathscr{Y} are \mathbb{D} -pseudoalgebras, then $\mathscr{X}_1 \times \cdots \times \mathscr{X}_k$ and $L_k \mathscr{Y}$ are \mathbb{D}_k -pseudoalgebras, and a k-morphism $(\mathscr{X}_1, \cdots, \mathscr{X}_k; \mathscr{Y})$ in $\mathbf{Mult}(\mathbb{D})$ is exactly a pseudomorphism of \mathbb{D}_k -pseudoalgebras

$$\mathscr{X}_1 \times \cdots \times \mathscr{X}_k \longrightarrow L_k \mathscr{Y}.$$
 (1)

The previous slide, a perfectly valid diagram, was smuggled out of the condemned cell. Ignore it. We head towards ξ_* , $\mathbb{S}t$, and $\xi_{\#}$.

Coequalizer and reflexive coequalizer data:

Monadic example: Let $\xi \colon \mathbb{D} \longrightarrow \mathbb{E}$ be a map of 2-monads in \mathscr{K} ,

$$\nu = \mu \circ \mathbb{E}\xi \colon \mathbb{E}\mathbb{D} \longrightarrow \mathbb{E}\mathbb{E} \longrightarrow \mathbb{E}.$$

Codescent and reflexive codescent data:

The identities for compositions of face and degeneracy operators for the 2-skeleton of a simplicial object are replaced by prescribed invertible 2-cells, which are part of the data. A codescent object for such codescent data is a pair (k, ζ) consisting of a 1-cell k and an invertible 2-cell ζ

$$\begin{array}{ll}
\mathcal{K}_{0} & \zeta \colon k \circ d_{0} \Longrightarrow k \circ d_{1} \\
\downarrow^{k} \\
\mathcal{K}
\end{array}$$

such that certain equalities of pasting diagrams hold, and (k, ζ) is universal with this coherence property.

The universal property is the natural 2-categorical generalization of the existence and uniqueness universal property of coequalizers. Displaying the diagrams² would only make simple things look hard.

²They are displayed in the Appendix at the end.

Monadic example: Let $\xi \colon \mathbb{D} \longrightarrow \mathbb{E}$ be a map of 2-monads in \mathscr{K} ,

$$\nu = \mu \circ \mathbb{E}\xi \colon \mathbb{E}\mathbb{D} \longrightarrow \mathbb{E}\mathbb{E} \longrightarrow \mathbb{E}.$$

(The resulting codescent object is a 2-truncation of an ∞ -categorical 2-sided monadic bar construction.)

With suppressed conventions (all unit data is strict), all but one of the required simplicial identities hold strictly; the only non-identity invertible 2-cell required $(d_1 \circ d_2 \cong d_1 \circ d_1)$ comes from the pseudoaction 2-cell ϕ of \mathscr{Y} :

$$\mathbb{E}\phi\colon\mathbb{E}(\theta\circ\mathbb{D}\theta)\Longrightarrow\mathbb{E}(\theta\circ\mu).$$

If $\mathscr Y$ is a $\mathbb D\text{-algebra},\,\phi=\mathrm{id}$ and we require no non-identity 2-cells. Write

 $\xi_{\#}\mathscr{Y} = \mathbb{E} \boxtimes_{\mathbb{D}} \mathscr{Y}$

for the resulting codescent object, writing

$$\begin{array}{ccc} \mathbb{E}\mathscr{Y} & \zeta \colon \pi \circ \nu \Longrightarrow \pi \circ \mathbb{E}\theta \\ & & \downarrow \\ & & \\ \xi_{\#}\mathscr{Y} \end{array}$$

for the 1-cells and 2-cells witnessing the universality.

The codescent object $\xi_{\#}\mathscr{Y}$ is a strict \mathbb{E} -algebra since our codescent data are in \mathbb{E} -AlgSt and our codescent objects are constructed there; similarly for morphisms.

Back to processing multiplicative input

Can apply general construction to id: $\mathbb{D}\longrightarrow\mathbb{D};$ strictification is

$$\mathsf{id}_{\#} \cong \mathbb{S}t \colon \mathbb{D}\text{-}\mathsf{PsAlg} \longrightarrow \mathbb{D}\text{-}\mathsf{AlgSt}.$$

The multicategory associated to the target 2-category is in the condemned cell because the distributivity constraints there would still be unstrictified 2-cells.

Can also apply the general construction to $\xi^k \colon \mathbb{D}_k \longrightarrow \mathbb{F}_k$ to get

$$\xi_{\#}^{k} \colon \mathbb{D}_{k}\text{-}\mathsf{PsAlg} \longrightarrow \mathbb{F}_{k}\text{-}\mathsf{Alg}, \ k \geq 1.$$

Let $F: \mathscr{X}_1 \times \cdots \times \mathscr{X}_k \longrightarrow L_k \mathscr{Y}$ be a pseudomorphism of \mathbb{D}_k -pseudoalgebras. We get a natural transformation of functors $\mathscr{F}^k \longrightarrow \mathbf{Cat}(\mathscr{V}), \psi$ coming via the universal property of $\xi^k_{\#} L_k \mathscr{Y}$:

$$\begin{array}{c} \xi_{\#} \mathscr{X}_{1} \times \cdots \times \xi_{\#} \mathscr{X}_{k} \\ & \downarrow^{\cong} \\ \xi_{\#}^{k} (\mathscr{X}_{1} \times \cdots \times \mathscr{X}_{k}) \\ & \downarrow^{\xi_{\#}^{k} F} \\ \xi_{\#}^{k} L_{k} \mathscr{Y} \\ & \downarrow^{\psi} \\ \xi_{\#} \mathscr{Y} \circ \wedge_{\mathscr{F}}^{k} \end{array}$$

By left Kan extension, this is this is the same as a natural transformation of functors $\mathscr{F} \longrightarrow \operatorname{Cat}(\mathscr{V})$

$$\xi_{\#}\mathscr{X}_1 \otimes \cdots \otimes \xi_{\#}\mathscr{X}_k \longrightarrow \xi_{\#}\mathscr{Y}$$

that is a *k*-morphism in $Mult(\mathscr{F}-Alg)$. This gives

 $\xi_{\#} \colon \mathsf{Mult}(\mathscr{D}) \longrightarrow \mathsf{Mult}(\mathscr{F}\operatorname{\mathsf{-Alg}})$

Controlling the equivariant homotopy theory

NO equivariant considerations used in this formal theory, BUT how do we know that $\xi_{\#}$ takes equivalences to equivalences and takes special \mathbb{D} -pseudoalgebras to special \mathscr{F} -G-categories? That is a question about the underlying additive theory. The nonequivariant specialization is easier.

Equivalence $\mathscr{Y} \longrightarrow \mathscr{Z}$: equivalences $\mathscr{Y}_n^{\Lambda} \longrightarrow \mathscr{Z}_n^{\Lambda}$ for $\Lambda \subset G \times \Sigma_n$ such that $\Lambda \cap \Sigma_n = \{e\}$, as in "special". Formal theory would see $G \times \Sigma_n$ -equivalences, which is too strong. Such a strong notion of specialness would lead only to products of Eilenberg-MacLane *G*-spectra.

 $\xi_{\#}$ cannot give an equivalence in the 2-category $Cat(G\mathscr{U})^{\Pi}$.

 \mathscr{F}_G : finite *G*-sets; Π_G accordingly.

Categories of operators \mathscr{D} and \mathscr{D}_{G} from a *G*-operad \mathscr{O} .

Prolongation \mathbb{P} from \mathbb{D} -pseudoalgebras to \mathbb{D}_{G} -pseudoalgebras.

Concrete inspection: $B \circ \mathbb{P} \cong \mathbb{P} \circ B$ on strict \mathbb{D} -algebras.

Topologically, an \mathscr{F} -G-map $X \longrightarrow Y$ is an equivalence if and only

if $\mathbb{P}X \longrightarrow \mathbb{P}Y$ is a level *G*-equivalence. Transports to $Cat(G\mathscr{U})$.

Work in ground 2-category $Cat(G\mathscr{U})^{\mathscr{O}(\Pi_G)}$, which sees only levelwise *G*-information.

Section $s: \mathscr{F}_G \longrightarrow \mathscr{D}_G$, levelwise G-map (ignore Σ_n). Induces s in diagram such that $\xi \circ s = id$.

Universal property gives invertible 2-cell id $\longrightarrow s \circ \xi$, a homotopy on application of *B*.

Implies $\xi: \mathscr{Y} \simeq \mathbb{S}t\mathscr{Y} \longrightarrow \xi_{\#}\mathscr{Y}$ is an equivalence.

Input to the multiplicative input

Little multicategories \mathscr{Q} parametrize algebraic structures One object = operads: **Ass**, **Com**: monoids, comm. monoids Two objects: multicategory for monoids acting on objects. (Think of rings and modules). Many others. Categorify via \mathscr{EQ} . **Big multicategories** \mathscr{M} , like Mult(\mathscr{C}, \otimes), are the home for multiplicative structures given by morphisms of multicategories

 $X: \mathcal{Q} \longrightarrow \mathcal{M}.$

Objects X(q) of \mathscr{C} ; k-morphisms $\mathscr{Q}(q_1, \cdots, q_k; r)$ induce

 $X(q_1)\otimes\cdots\otimes X(q_k)\longrightarrow X(r).$

SUMMARY

Multiplicative equivariant infinite loop space theory transports a \mathscr{Q} -structure on \mathscr{P}_G -categories $\mathscr{A}(q)$ to a \mathscr{Q} -structure on the *G*-spectra $\mathbb{S}_G B\xi_{\#} \mathbb{R} \mathscr{A}(q)$,

converts G-categorical input to G-spectrum output.

(Elmendorf-Mandell idea when G = e, developed with very different methods)

Free functors give an important class of examples

- but the serious theory is not needed for that.

ALL such nonequivariant structures $X: \mathscr{Q} \longrightarrow Mult(\mathscr{P})$ extend equivariantly by *G*-ification $\mathscr{G}X: \mathscr{G}Q \longrightarrow Mult(\mathscr{P}_G)$.

Conjecture $\mathscr{G}X$ is a global *G*-structure "of type \mathscr{Q} ".

Symmetric bimonoidal G-categories (\oplus, \otimes)

For $\mathscr{Q} = \mathscr{P}, X : \mathscr{P} \longrightarrow \text{Mult}(\mathscr{P})$ gives a naive commutative ring structure to a genuine *G*-spectrum.

For $\mathscr{Q} = \mathscr{P}_G$, $X : \mathscr{P}_G \longrightarrow \text{Mult}(\mathscr{P})$ gives a genuine commutative ring structure to a genuine *G*-spectrum.

There are intermediate kinds of operadic commutative ring structures on genuine *G*-spectra.

(Kervaire invariant one; Blumberg and Hill)

Similarly ring, module, and algebra structures admit variants on genuine *G*-spectra.

We now know how to recognize such structures on the level of structured *G*-categories.

They are there. Let's find them and see what they tell us!

I'll end (again) at this beginning.

Appendix: Pasting diagrams for codescent objects

The universality means two things

First, given a pair (ℓ, χ) , where $\ell \colon K_0 \longrightarrow L$ is a 1-cell and $\chi \colon \ell \circ d_0 \Longrightarrow \ell \circ d_1$ is an invertible 2-cell which make the evident analogs of the diagrams above commute, there is a unique 1-cell $z \colon K \longrightarrow L$ such that $z \circ k = \ell$ and $z \circ \zeta = \chi$.

Second, given 1-cells $z_1, z_2 \colon K \longrightarrow L$ together with an invertible 2-cell $\alpha \colon z_1 \circ k \Longrightarrow z_2 \circ k$ such that

there is a unique 2-cell $\beta: z_1 \Longrightarrow z_2$ such that $\beta \circ k = \alpha$.

The monadic universal property

First, let $\psi \colon \mathbb{E}\mathscr{Y} \longrightarrow \mathscr{Z}$ be a 1-cell in \mathscr{K} and $\chi \colon \psi \circ \nu \Longrightarrow \psi \circ \mathbb{E}\theta$ be an invertible 2-cell such that

(The other coherence condition holds tautologically in our context).

Then there is a unique 1-cell $\gamma \colon \xi_{\#}\mathscr{Y} \longrightarrow \mathscr{Z}$ such that

$$\gamma \circ \zeta = \psi$$
 and $\gamma \circ \pi = \chi$.

Second, let $\gamma_1, \gamma_2 \colon \xi_{\#} \mathscr{Y} \longrightarrow \mathscr{Z}$ be 1-cells together with an invertible 2-cell $\alpha \colon \gamma_1 \circ \pi \Longrightarrow \gamma_2 \circ \pi$ such that

Then there is a unique 2-cell $\beta: \gamma_1 \Longrightarrow \gamma_2$ such that $\beta \circ \pi = \alpha$.