DUALITY IN BICATEGORIES AND TOPOLOGICAL APPLICATIONS

J.P. MAY

In October, 1999, I organized a conference here in honor of MacLane's 90th birthday. I'll repeat how I started my talk then. "A great deal of modern mathematics would quite literally be unthinkable without the language of categories, functors, and natural transformations introduced by Eilenberg and MacLane in 1945. It was perhaps inevitable that some such language would have appeared eventually. It was certainly not inevitable that such an early systematization would have proven so remarkably durable and appropriate.

I talked then about another piece of language that Saunders introduced, that of symmetric monoidal category, which comes from a 1963 paper entitled "Natural associativity and commutativity". It gave the first clear articulation of the general categorical problem of coherence. The necessary isomorphisms are called "constraints" in the later literature of algebraic geometry. To quote from Mathematical Reviews, "A very pleasant feature of the paper is the skillful, economical and rigorous manner in which the problem is formulated".

More precisely, what I talked about then was duality theory in symmetric monoidal categories. As Mac Lane so well understood, category theory turns analogies into mathematical theory that turns the things being compared into examples. The category theory then allows one to understand new things about the examples, and to compare them rigorously. Duality theory gives a strikingly beautiful and important illustration of this kind of mathematics. The purpose of this talk is to explain duality theory in symmetric bicategories. This is a new theory whose basic definitions are less than a year old. It is joint work with Johann Sigurdsson, but its starting point was a key insight in work of Steven Costenoble and Stefan Waner.

Jean Benabou, who I think was here at the time, already introduced bicategories in 1967. There is a notion of a symmetric monoidal bicategory, but I only mention that for the well-informed category theorists. The notion of symmetric bicategories is different. The new theory is not difficult, and it could well have been developed immediately after Benabou's work. However, the need for it only became apparent with the development of parametrized stable homotopy theory. Niles Johnson is beginning to verify my belief that it also gives the definitively right framework for understanding Morita duality in derived categories. Surprisingly, Kate Ponto discovered that it also gives the definitively right framework for understanding topological fixed point theory. Here even the analogies are not immediately obvious.

OUTLINE

(1) Duality in symmetric monoidal categories
(2) Closed symmetric bicategories
(3) Duality in closed symmetric bicategories
(4) Composites of dualities
(5) Parametrized spectra
(6) Dictionaries
(7) Parametrized duality theory
(8) Parametrized homology \& cohomology

1. DUALITY IN SYMMETRIC MONOIDAL CATEGORIES

$(\mathscr{C}, \otimes, \operatorname{Hom}, I, \gamma) \otimes: \mathscr{C} \times \mathscr{C} \longrightarrow \mathscr{C}$
Unital, associative, and commutative up to coherent natural isomorphism; associativity and unit isomorphisms are implicit, and γ is the commutativity isomorphism.

$$
I \otimes X \cong X \quad X \cong \operatorname{Hom}(I, X)
$$

$\operatorname{Hom}(X \otimes Y, Z) \cong \operatorname{Hom}(X, \operatorname{Hom}(Y, Z))$
$\operatorname{Hom}(Y \otimes X, Z) \cong \operatorname{Hom}(X, \operatorname{Hom}(Y, Z))$
$\operatorname{Hom}(X, Y) \otimes \operatorname{Hom}\left(X^{\prime}, Y^{\prime}\right)$
$\|^{\otimes}$
$\operatorname{Hom}\left(X \otimes X^{\prime}, Y \otimes Y^{\prime}\right)$
$\nu: \operatorname{Hom}(X, Y) \otimes Z \longrightarrow \operatorname{Hom}(X, Y \otimes Z)$

$$
D X \equiv \operatorname{Hom}(X, I)
$$

Evaluation map: $\varepsilon: D X \otimes X \longrightarrow I$.

Definition 1. X is dualizable if

$$
\nu: D X \otimes X \longrightarrow \operatorname{Hom}(X, X)
$$

is an isomorphism. Coevalutation map:

Here ι is adjoint to id: $X \longrightarrow X$.
$\mathscr{M}_{R}, \quad \mathscr{D}_{R}, \quad \operatorname{Ho} \mathscr{S} \operatorname{sh}(X)$
Finitely projective R-module
Perfect chain complex
Finite CW-spectrum
Theorem 2. Fix X and Y. TFAE.
(i) X is dualizable and $Y \cong D X$.
(ii) Triangle identities: There are
$\eta: I \longrightarrow X \otimes Y$ and $\varepsilon: Y \otimes X \longrightarrow I$ s.t.
$X \cong I \otimes X \xrightarrow{\eta \otimes \text { id }} X \otimes Y \otimes X \xrightarrow{\text { id } \otimes \varepsilon} X \otimes I \cong X$
$Y \cong Y \otimes I \xrightarrow{\mathrm{id} \otimes \eta} Y \otimes X \otimes Y \xrightarrow{\varepsilon \otimes \operatorname{did}} I \otimes Y \cong Y$
are identity maps.
(iii) There is a map $\eta: I \longrightarrow X \otimes Y$ such that the composite

$$
\begin{gathered}
\mathscr{C}(W \otimes X, Z) \\
\mathscr{C}(W \otimes X \stackrel{\mid(-) \otimes Y}{\otimes Y, Z \otimes Y)} \\
\mid \mathscr{C}(\mathrm{id} \otimes \eta, \mathrm{id}) \\
\mathscr{C}(W, Z \otimes Y)
\end{gathered}
$$

is a bijection for all W and Z.
(iv) There is a map $\varepsilon: Y \otimes X \longrightarrow I$ such that the composite

$$
\begin{gathered}
\mathscr{C}(W, Z \otimes Y) \\
\mathscr{C}(W \otimes X, Z \otimes Y \otimes X) \\
\mid(-) \otimes X \\
\mathscr{C}(W \otimes, i d \otimes \varepsilon) \\
\mathscr{C}(W, Z)
\end{gathered}
$$

is a bijection for all W and Z.

The adjoint $\tilde{\varepsilon}: Y \longrightarrow D X$ of ε satisfying (ii) or (iv) is an isomorphism under which the given map ε corresponds to the canonical evaluation map $\varepsilon: D X \otimes X \longrightarrow I$. Terminology: (X, Y) is a dual pair.

Proposition 3. If X and Y are dualizable, then $D X$ and $X \otimes Y$ are dualizable and the canonical map $\rho: X \longrightarrow D D X$ is an isomorphism.

Proposition 4. If X or Z is dualizable, then the map ν above is an isomorphism.

Proposition 5. If X and X^{\prime} are dualizable or if X is dualizable and $Y=I$, then the map \otimes above is an isomorphism.

Definition 6. X is invertible if there is a Y and an isomorphism $X \otimes Y \cong I$. Then (X, Y) is a dual pair. $\operatorname{Pic}(\mathscr{C})=$ group of isomorphism classes of invertible X.

2. Closed symmetric bicategories

A bicategory \mathscr{C} is a monoidal category with many objects, called 0-cells. For each pair of 0 -cells A, B, it has a category $\mathscr{C}(A, B)$ of object 1-cells $A \rightarrow B$ and morphism 2-cells $X \rightarrow Y$ between 1-cells $X, Y: A \rightarrow B$. There are "horizontal" compositions

$$
\odot: \mathscr{C}(B, C) \times \mathscr{C}(A, B) \longrightarrow \mathscr{C}(A, C)
$$

and unit 1-cells I_{A} [abbreviated A by abuse] such that \otimes is associative and unital up to coherent natural isomorphism.
If \mathscr{C} has one object $*$, then $\mathscr{C}(*, *)$ is a monoidal category.
\mathscr{C} at: categories, functors, nat. trans. $\mathscr{B}_{R}: R$-algebras, (B, A)-bimodules, maps $\mathscr{E} x$: spaces, spectra over $B \times A$, maps

Symmetric version? Directionality of 1-cells? Turns out that symmetric bicategories with one object are not just symmetric monoidal categories.
$\mathscr{C}^{\text {op. }}$: same 0-cells,

$$
\mathscr{C}^{o p}(A, B)=\mathscr{C}(B, A)
$$

Definition 7. An involution on \mathscr{C} consists of the following data subject to coherence diagrams.
(1) A bijection t on 0 -cells with $t t A=A$.
(2) Equivalences of categories
$t: \mathscr{C}(A, B) \longrightarrow \mathscr{C}(t B, t A)=\mathscr{C}^{\mathrm{op}}(t A, t B)$,
with isomorphism 2 -cells ξ : id $\cong t t$.
(3) Isomorphism 2-cells

$$
\iota: I_{t A} \longrightarrow t I_{A} \quad \text { and }
$$

$$
\gamma: t Y \odot{ }^{\mathrm{op}} t X \equiv t X \odot t Y \longrightarrow t(Y \odot X)
$$

A symmetric bicategory \mathscr{C} is a bicategory with an involution. A 0 -cell A of \mathscr{C} is said to be commutative if $t A=A$.
$t: \mathscr{C}(A, A) \longrightarrow \mathscr{C}(A, A)$ need not be the identity functor, so a one object symmetric bicategory need not be a symmetric monoidal category.

Example 8. $\mathscr{B}_{R} . t A$ is the opposite R-algebra of A. The commutative 0 -cells are the commutative R-algebras.
The 1-cells $X: A \rightarrow B$ are the (B, A) bimodules, and $t X: t B \rightarrow t A$ is the same R-module X viewed as a $(t A, t B)$-bimodule. The 2-cells $\alpha: X \rightarrow Y$ are the maps of (B, A)-bimodules, and $t(\alpha)$ is the same R map viewed as a map of $(t A, t B)$-bimodules.

$$
\begin{gathered}
\mathscr{B}_{R}(B, C) \times \mathscr{B}_{R}(A, B) \\
\mathscr{B}_{R}(A, C) .
\end{gathered}
$$

I_{A} is A regarded as an (A, A)-bimodule,

$$
\gamma: t X \otimes_{t B} t Y \longrightarrow t\left(Y \otimes_{B} X\right)
$$

is given by $\gamma(x \otimes y)=y \otimes x$.

$$
\mathscr{B}_{R}(A, R)=\text { right } A \text {-modules }
$$

$$
\mathscr{B}_{R}(R, A)=\text { left } A \text {-modules }
$$

$t A=A \Rightarrow \mathscr{B}_{R}(A, A)=(A, A)$-bimodules.
Here $t \neq$ id: $\mathscr{B}_{R}(A, A) \longrightarrow \mathscr{B}_{R}(A, A)$.
The symmetric monoidal full subcategory

$$
\mathscr{M}_{A} \subset \mathscr{B}_{R}(A, A)
$$

consists of the central (A, A)-bimodules X, those for which $a x=x a$ for all a and x.

Example 9. Graded version of \mathscr{B}_{R} has γ defined with a sign. Leads to differential graded version. Topological version in brave new algebra.
\mathscr{B}_{R} and other examples arise from anchored bicategories by neglect of structure. Maps $R \longrightarrow S$ of commutative rings and maps $A \longrightarrow B$ of algebras have been ignored. LOGIC: \mathscr{B}_{R} is EASY. Use it as a toy model to understand deeper examples, such as those above and parametrized spectra.

Definition 10. A bicategory \mathscr{C} is right and left closed if there are right and left internal hom functors

$$
\triangleright: \mathscr{C}(A, B)^{\mathrm{op}} \times \mathscr{C}(A, C) \longrightarrow \mathscr{C}(B, C)
$$

and

$$
\triangleleft: \mathscr{C}(A, C) \times \mathscr{C}(B, C)^{\mathrm{op}} \longrightarrow \mathscr{C}(A, B)
$$

such that

$$
\begin{aligned}
& \mathscr{C}(Y \odot X, Z) \cong \mathscr{C}(Y, X \triangleright Z) \\
& \mathscr{C}(Y \odot X, Z) \cong \mathscr{C}(X, Z \triangleleft Y)
\end{aligned}
$$

for
$X: A \longrightarrow B, Y: B \longrightarrow C, Z: A \longrightarrow C$.
Can't write $X \odot Y$, not defined!
Unit and counit 2-cells
$\varepsilon:(X \triangleright Z) \odot X \longrightarrow Z, \quad \eta: Y \longrightarrow X \triangleright(Y \odot X)$
$\varepsilon: Y \odot(Z \triangleleft Y) \longrightarrow Z, \quad \eta: X \longrightarrow(Y \odot X) \triangleleft Y$.
Definition 11. A symmetric bicategory is closed if it is left closed. It is then also right closed with

$$
X \triangleright Z \cong t(t Z \triangleleft t X) .
$$

In symmetric monoidal categories, use of γ collapses \triangleleft and \triangleright into Hom; replaced by involutive relation in symmetric bicategories.

Remark 12. $X \triangleright Z$ is the 1 -cell of "maps pointing right from X to $Z " ; Z \triangleleft Y$ is the 1-cell of "maps pointing left from Y to Z ". $X \triangleright Z$ is a 1 -cell from the target of X to the target of Z (with X and Z having the same source) and $Z \triangleleft Y$ is a 1 -cell from the source of Z to the source of Y (with Y and Z having the same target).

Example 13. \mathscr{B}_{R} is closed. For a (B, A)-bimodule X,
(C, B)-bimodule Y,
(C, A)-bimodule Z,
$Z \triangleleft Y=\operatorname{Hom}_{C}(Y, Z)$, a (B, A)-bimodule and
$X \triangleright Z=\operatorname{Hom}_{A}(X, Z)$, a (C, B)-bimodule.
$\mathscr{B}_{R}\left(Y \otimes_{B} X, Z\right) \cong \mathscr{B}_{R}\left(Y, \operatorname{Hom}_{A}(X, Z)\right)$
$\mathscr{B}_{R}\left(Y \otimes_{B} X, Z\right) \cong \mathscr{B}_{R}\left(X, \operatorname{Hom}_{C}(Y, Z)\right)$

Example 14. Base change bimodules. For an R-algebra map $f: A^{\prime} \longrightarrow A$

$$
\begin{gathered}
A_{f}: A^{\prime} \longrightarrow A, \text { an }\left(A, A^{\prime}\right) \text {-bimodule } \\
{ }_{f} A=t A_{f}: A \longrightarrow A^{\prime} \text { an }\left(A^{\prime}, A\right) \text {-bimodule. }
\end{gathered}
$$

For an R-algebra B, pullback action functor

$$
f^{*}: \mathscr{B}_{R}(A, B) \longrightarrow \mathscr{B}_{R}\left(A^{\prime}, B\right)
$$

has a left adjoint $f_{!}$and a right adjoint f_{*}, extension and coextension of scalars.

$$
\begin{aligned}
& f^{*} M \cong M \odot A_{f} \\
& f_{!} M^{\prime} \cong M^{\prime} \odot_{f} A \\
& f_{*} M^{\prime} \cong A_{f} \triangleright M^{\prime} .
\end{aligned}
$$

For $g: B^{\prime} \longrightarrow B$ and any A,

$$
g^{*}: \mathscr{B}_{R}(A, B) \longrightarrow \mathscr{B}_{R}\left(A, B^{\prime}\right)
$$

has a left adjoint g ! and a right adjoint g_{*},

$$
\begin{aligned}
& g^{*} N \cong{ }_{g} B \odot N, \\
& g!N^{\prime} \cong B_{g} \odot N^{\prime}, \\
& g_{*} N^{\prime} \cong{ }_{g} B \triangleleft N^{\prime} .
\end{aligned}
$$

Formal isomorphisms:

$$
\begin{aligned}
& (Y \odot X) \triangleright Z \cong Y \triangleright(X \triangleright Z) \\
& Z \triangleleft(Y \odot X) \cong(Z \triangleleft Y) \triangleleft X \\
& (X \triangleright Z) \triangleleft Y \cong X \triangleright(Z \triangleleft Y)
\end{aligned}
$$

Formal maps:

$$
\mu: Z \odot(X \triangleright Y) \longrightarrow X \triangleright(Z \odot Y)
$$

$$
\nu:(Z \triangleleft Y) \odot W \longrightarrow(Z \odot W) \triangleleft Y
$$

$\omega:(Z \triangleleft Y) \odot(X \triangleright W) \longrightarrow X \triangleright(Z \odot W) \triangleleft Y$
(Two ways of parenthesizing are isomorphic) DUALITY THEORY:
WHEN ARE THESE ISOMORPHISMS?

3. Duality in closed symmetric BICATEGORIES

Write B for $I_{B}[$ So B is a 0 -cell and 1-cell].
Definition 15. $(X, Y), X: B \longrightarrow A$ and $Y: A \longrightarrow B$, is a dual pair of 1-cells if there are 2-cells
$\eta: A \longrightarrow X \odot Y$ and $\varepsilon: Y \odot X \longrightarrow B$, coevaluation and evaluation maps, such that the following diagrams commute in $\mathscr{C}(B, A)$ and $\mathscr{C}(A, B)$, respectively.

X is right dualizable with right dual Y. Y is left dualizable with left dual X.

Example 16. Let $f: B \longrightarrow A$ be a map of R-algebras. We have
$A_{f}: B \longrightarrow A$ and ${ }_{f} A: A \longrightarrow B$.
${ }_{f} A \odot A_{f}: B \longrightarrow B$ is A, regarded as a (B, B)-bimodule. Let

$$
\eta=f: B \longrightarrow{ }_{f} A \odot A_{f} .
$$

$A_{f} \odot{ }_{f} A=A \otimes_{B} A$. Let

$$
\varepsilon: A_{f} \odot_{f} A \longrightarrow A
$$

be given by the product on A. Then (η, ε) display $\left({ }_{f} A, A_{f}\right)$ as a dual pair; the left and right unit laws for A imply the diagrams. $\left(A_{f},{ }_{f} A\right)$ is not a dual pair in general.

Example 17. Specialize. Take f to be the unit $\iota: R \longrightarrow A$ of an R-algebra with product $\phi: A \otimes_{R} A \longrightarrow A$. (ι, ϕ) display $\left({ }_{\iota} A, A_{\iota}\right)$ as a dual pair. For $\left(A_{\iota},{ }_{\iota} A\right)$ to be a dual pair, we need a coproduct and counit

$$
\begin{aligned}
\eta: & A \longrightarrow A \otimes_{R} A \\
& \varepsilon: A \longrightarrow R
\end{aligned}
$$

such that the left and right counit laws hold.

In topology, the situation is reversed: spaces have a coproduct and a counit, but not a product and a unit.

Proposition 18. If \mathscr{C} is symmetric, then η and ε exhibit (X, Y) as a dual pair iff

$$
\gamma^{-1} t(\eta): t A \longrightarrow t Y \odot t X
$$

and

$$
t(\varepsilon) \gamma: t X \odot t Y \longrightarrow t B
$$

exhibit $(t Y, t X)$ as a dual pair.

Analogous to symmetric monoidal duality, given 1-cells $X: B \longrightarrow A$ and $Y: A \longrightarrow B$ and a 2-cell $\varepsilon: Y \odot X \longrightarrow B$, we have

$$
\varepsilon_{\#}: \mathscr{C}(W, Z \odot Y) \longrightarrow \mathscr{C}(W \odot X, Z)
$$

For a 2-cell $\eta: A \longrightarrow X \odot Y$, we have

$$
\eta_{\#}: \mathscr{C}(W \odot X, Z) \longrightarrow \mathscr{C}(W, Z \odot Y)
$$

(Both for $W: A \longrightarrow C, Z: B \longrightarrow C$.) Duality (η, ε) : these are inverse isomorphisms.

Proposition 19. Let

$$
X: B \longrightarrow A \quad \text { and } \quad Y: A \longrightarrow B
$$

be 1-cells. TFAE for a given 2-cell

$$
\varepsilon: Y \odot X \longrightarrow B .
$$

(1) (X, Y) is a dual pair with evaluation map ε.
(2) $\varepsilon_{\#}$ is a bijection for all W and Z.
(3) $\varepsilon_{\#}$ is a bijection when $W=A$ and $Z=X$ and when $W=Y$ and $Z=B$.

Dually, TFAE for a given 2-cell

$$
\eta: A \longrightarrow X \odot Y .
$$

(1) (X, Y) is a dual pair with coevaluation map η.
(2) $\eta_{\#}$ is a bijection for all W and Z.
(3) $\eta_{\#}$ is a bijection when $W=A$ and $Z=X$ and when $W=Y$ and $Z=B$.

Proposition 20. Let $X, X^{\prime}: B \longrightarrow A$ and $Y, Y^{\prime}: A \longrightarrow B$ be 1-cells such that (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ are dual pairs and let $\alpha: X \longrightarrow X^{\prime}$ and $\beta: Y \longrightarrow Y^{\prime}$ be 2 -cells.
(1) There is a unique 2-cell $\alpha^{*}: Y^{\prime} \longrightarrow Y$ that makes either of the following diagrams commute, and then the other diagram also commutes.

(2) There is a unique 2 -cell $\beta^{*}: X^{\prime} \rightarrow X$ that makes either of the following diagrams commute, and then the other diagram also commutes.

Now assume that \mathscr{C} is closed.
Definition 21. For a 1-cell $X: B \longrightarrow A$, define

$$
D_{r} X=X \triangleright B: A \longrightarrow B .
$$

For a 1-cell $Y: A \longrightarrow B$, define

$$
D_{\ell} Y=B \triangleleft Y: B \longrightarrow A
$$

A 2-cell $\varepsilon: Y \odot X \longrightarrow B$ has adjoints

$$
\begin{gathered}
\tilde{\varepsilon}: X \longrightarrow D_{\ell} Y \text { and } \tilde{\varepsilon}: Y \longrightarrow D_{r} X . \\
Y \odot D_{\ell} \underbrace{\tilde{\varepsilon} \varrho \mathrm{eid}}_{\varepsilon} Y \underset{B}{\odot} X \xrightarrow[\varepsilon]{\mathrm{id} \odot \tilde{\tilde{\varepsilon}}} D_{r} X \odot X
\end{gathered}
$$

Proposition 22. If $\varepsilon: Y \odot X \longrightarrow B$ is the evaluation map of a dual pair (X, Y), then the adjoint 2-cells

$$
\tilde{\varepsilon}: X \longrightarrow D_{\ell} Y \quad \text { and } \quad \tilde{\varepsilon}: Y \longrightarrow D_{r} X
$$

are isomorphisms.

The maps μ and ν specialize to

$$
\begin{equation*}
\mu: Z \odot D_{r} X \longrightarrow X \triangleright Z \tag{1}
\end{equation*}
$$

and
(2) $\quad \nu: D_{\ell} Y \odot W \longrightarrow W \triangleleft Y$.

Proposition 23. The following are equivalent for a 1-cell $X: B \longrightarrow A$, and then $\left(X, D_{r} X\right)$ is canonically a dual pair.
(1) X is right dualizable.
(2) μ is an isomorphism when $Z=X$.
(3) μ is an isomorphism for all Z.

When these hold, the adjoint of ε is an isomorphism $X \longrightarrow D_{\ell} D_{r} X$.
Dually, the following are equivalent for a 1-cell $Y: A \longrightarrow B$, and then $\left(D_{\ell} Y, Y\right)$ is canonically a dual pair.
(1) Y is left dualizable.
(2) ν is an isomorphism when $W=Y$.
(3) ν is an isomorphism for all W.

When these hold, the adjoint of ε is an isomorphism $Y \longrightarrow D_{r} D_{\ell} Y$.

Left and right analogues of $X \cong D D X$.
Other analogues.

Proposition 24. Consider μ, ν, and ω.
(1) If X or Z is right dualizable, then
$\mu: Z \odot(X \triangleright Y) \longrightarrow X \triangleright(Z \odot Y)$
is an isomorphism.
(2) If W or Y is left dualizable, then
$\nu:(Z \triangleleft Y) \odot W \longrightarrow(Z \odot W) \triangleleft Y$
is an isomorphism.
(3) If X is right and Y is left dualizable, then
$\omega:(Z \triangleleft Y) \odot(X \triangleright W) \longrightarrow X \triangleright(Z \odot W) \triangleleft Y$
is an isomorphism.

4. COMPOSITES OF DUALITIES

Theorem 25. Consider 1-cells W, X, Y, Z as in the diagram

$$
C \underset{\bar{Z}}{\frac{W}{Y}} B \stackrel{X}{\stackrel{X}{\bar{Y}}} A .
$$

If (η, ε) exhibits (X, Y) as a dual pair and (ζ, σ) exhibits (W, Z) as a dual pair, then

$$
((\mathrm{id} \odot \zeta \odot \mathrm{id}) \circ \eta, \sigma \circ(\mathrm{id} \odot \epsilon \odot \mathrm{id}))
$$

exhibits $(X \odot W, Z \odot Y)$ as a dual pair.
Theorem 26. Let $F: \mathscr{B} \longrightarrow \mathscr{C}$ be a lax functor between symmetric bicategories. Let (X, Y) be a dual pair in \mathscr{B},

$$
X: B \longrightarrow A \text { and } \quad Y: A \longrightarrow B .
$$

Assume that the unit and composition coherence 2-cells

$$
I_{F B} \longrightarrow F I_{B}
$$

and

$$
F X \odot F Y \longrightarrow F(X \odot Y)
$$

are isomorphisms. Then $(F X, F Y)$ is a dual pair in \mathscr{C}. There is a dual result for oplax functors.

5. Parametrized spectra

Ho \mathscr{S}_{B} : The homotopy category of spectra X parametrized over B. For each $b \in B$, there is a "fiber spectrum" X_{b}, and these are nicely glued together.
Base change functors for $f: A \longrightarrow B$:

$$
\begin{aligned}
& f_{1}: \operatorname{Ho} \mathscr{S}_{A} \longrightarrow \operatorname{Ho} \mathscr{S}_{B}, \\
& f^{*}: \operatorname{Ho} \mathscr{S}_{B} \longrightarrow \operatorname{Ho} \mathscr{S}_{A}, \\
& f_{*}: \operatorname{Ho} \mathscr{S}_{A} \longrightarrow \operatorname{Ho} \mathscr{S}_{B} .
\end{aligned}
$$

The closed symmetric bicategory $\mathscr{E} x$ has as 0 -cells spaces B, with $t B=B$, and it has

$$
\mathscr{E} x(A, B)=\operatorname{Ho} \mathscr{S}_{B \times A} .
$$

$t: B \times A \cong A \times B$ induces involution $t=t^{*}$. For X over $B \times A$ and Y over $C \times B$, we have a fiberwise smash product

$$
Y \bar{\wedge} X \text { over } C \times B \times B \times A .
$$

$Y \odot X=\left(\mathrm{id}_{C} \times r \times \mathrm{id}_{A}\right)!\left(\mathrm{id}_{C} \times \Delta \times \mathrm{id}_{A}\right)^{*}(Y \bar{\wedge} X)$
where $\Delta: B \longrightarrow B \times B$ is the diagonal and $r: B \longrightarrow *$ is the unique map to a point. The unit I_{B} over $B \times B$ is $\Delta_{!} S_{B}$, where S_{B} is the sphere spectrum over B.

Ho \mathscr{S}_{B} is closed symmetric monoidal with unit S_{B} under the fiberwise smash product

$$
\begin{gathered}
X \wedge_{B} Y=\Delta^{*}(X \bar{\wedge} Y) . \\
\text { DUALITY IN Ho } \mathscr{S}_{B} \\
\text { VERSUS } \\
\text { DUALITY IN } \mathscr{E} x
\end{gathered}
$$

Embed $\operatorname{Ho} \mathscr{S}_{B}$ in $\mathscr{E} x$ as

$$
\text { Но } \mathscr{S}_{* \times B}=\mathscr{E} x(B, *)
$$

and

$$
\text { Но } \mathscr{S}_{B \times *}=\mathscr{E} x(*, B)
$$

1-cells $X: B \longrightarrow *$ and $t X: * \longrightarrow B$. $\mathscr{E} x$ informs on Ho \mathscr{S}_{B} by relating it with

$$
\text { Но } \mathscr{S}=\mathscr{E}(*, *)
$$

and
Ho $\mathscr{S}_{B \times B}=\mathscr{E} x(B, B)$.

For $f: B \longrightarrow A$, have base change spectra $S_{f}: B \longrightarrow A$ and $t S_{f}: A \longrightarrow B$

Theorem 27. $\left(t S_{f}, S_{f}\right)$ is a dual pair.

Ignoring source and target, for $r: B \longrightarrow *$,

$$
S_{r} \simeq S_{B} \simeq t S_{r}
$$

$$
(f \times \mathrm{id})!B \simeq S_{f} \simeq(\mathrm{id} \times f)^{*} A
$$

$$
(\mathrm{id} \times f)_{!} B \simeq t S_{f} \simeq(f \times \mathrm{id})^{*} A
$$

Change of source: For $f: A \longrightarrow A^{\prime}$

$$
\begin{gathered}
Y \odot S_{f} \simeq(\mathrm{id} \times f)^{*} Y \simeq t S_{f} \triangleright Y: A \longrightarrow B \\
X \odot t S_{f} \simeq(\mathrm{id} \times f)_{!} X: A^{\prime} \longrightarrow B \\
S_{f} \triangleright X \simeq(\mathrm{id} \times f)_{*} X: A^{\prime} \longrightarrow B
\end{gathered}
$$

for 1-cells $X: A \longrightarrow B$ and $Y: A^{\prime} \longrightarrow B$.
Change of target: For $g: B \longrightarrow B^{\prime}$

$$
\begin{gathered}
t S_{g} \odot Z \simeq(g \times \mathrm{id})^{*} Z \simeq Z \triangleleft S_{g}: A \longrightarrow B \\
S_{g} \odot X \simeq(g \times \mathrm{id})!X: A \longrightarrow B^{\prime} \\
X \triangleleft t S_{g} \simeq(g \times \mathrm{id})_{*} X: A \longrightarrow B^{\prime}
\end{gathered}
$$

for 1-cells $X: A \longrightarrow B$ and $Z: A \longrightarrow B^{\prime}$.

6. Dictionaries

Let X, Y be spectra over B.
Let Z be a spectrum.
$X \odot t Y$ is a spectrum.
$t Y \odot X$ is a spectrum over $B \times B$.
Translate $\odot, \triangleleft, \triangleright$ into base change, \wedge_{B}, and the internal hom $F_{B}(X, Y)$ in Ho \mathscr{S}_{B} :
As spectra,

$$
\begin{gathered}
Y \odot t X \simeq r_{!}\left(Y \wedge_{B} X\right) \\
t Y \triangleleft t X \simeq r_{*} F_{B}(X, Y) \simeq X \triangleright Y .
\end{gathered}
$$

As spectra over B,

$$
\begin{gathered}
t X \odot Z \simeq X \bar{\wedge} \\
Z \odot X \simeq Z \bar{\wedge} X \\
Z \triangleleft X \simeq F_{B}\left(X, r^{*} Z\right) \simeq t X \triangleright Z .
\end{gathered}
$$

As spectra over $B \times B$,

$$
t Y \odot X \simeq Y \bar{\wedge} X .
$$

Translate \wedge_{B}, F_{B} into $\odot, \triangleleft, \triangleright$.

$$
\begin{gathered}
\Delta_{!} X \odot t Y \simeq X \wedge_{B} Y \simeq X \odot \Delta_{!} Y, \\
\Delta_{!} X \triangleright Y \simeq F_{B}(X, Y) \simeq \Delta^{*}(X \triangleright Y), \\
X \triangleleft \Delta_{!} Y \simeq F_{B}(Y, X) \simeq \Delta^{*}(X \triangleleft Y) .
\end{gathered}
$$

Translate base change into $\odot, \triangleleft, \triangleright$.
Let $f: B \longrightarrow A$ be a map, X be a spectrum over A, and Y be a spectrum over B. 1-cells

$$
A \longrightarrow * \text { and } B \longrightarrow * \text {. }
$$

$$
f_{!} Y \simeq Y \odot t S_{f} \quad t f_{!} Y \simeq S_{f} \odot t Y
$$

$$
X \odot S_{f} \simeq f^{*} X \simeq t S_{f} \triangleright X
$$

$$
t S_{f} \odot t X \simeq t f^{*} X \simeq t X \triangleleft S_{f}
$$

$$
f_{*} Y \simeq S_{f} \triangleright Y \quad t f_{*} Y \simeq t Y \triangleleft t S_{f} .
$$

7. Parametrized duality theory

Fiberwise duality:
symmetric monoidal duality in $\operatorname{Ho} \mathscr{S}_{B}$.
$S=$ unit in $\mathscr{E}(*, *) \Delta_{!} S_{B}=$ unit in $\mathscr{E}(B, B)$.
Duals wrt S :

$$
\begin{aligned}
D_{\ell} X & =S \triangleleft X: * \longrightarrow B \\
D_{r} t X & =t X \triangleright S: B \longrightarrow * .
\end{aligned}
$$

Duals wrt $\Delta_{!} S_{B}$:

$$
\begin{aligned}
D_{\ell} t X & =\Delta_{!} S_{B} \triangleleft t X: B \longrightarrow * \\
D_{r} X & =X \triangleright \Delta_{!} S_{B}: * \longrightarrow B .
\end{aligned}
$$

Duality wrt S : $t X$ is right dualizable iff X is left dualizable, and $t D_{\ell} X \simeq D_{r} t X$. Viewed in $\operatorname{Ho} \mathscr{S}_{B}$, these are

$$
D_{B} X=F_{B}\left(X, S_{B}\right)=\bar{F}\left(X, \Delta_{*} S_{B}\right) .
$$

(\bar{F} is external hom that goes with $\bar{\wedge}$).
$(t X, Y)$ is a dual pair iff $(t Y, X)$ is a dual pair, and then $Y \simeq D_{B} X$.
$\eta: \Delta!S_{B} \longrightarrow t X \odot Y \quad \varepsilon: Y \odot t X \longrightarrow S$
Proposition 28. $(t X, Y)$ is a dual pair iff (X, Y) is a fiberwise dual pair.

Duality wrt $\Delta_{!} S_{B}: X$ is right dualizable iff $t X$ is left dualizable, and $D_{\ell} t X \simeq t D_{r} X$. Viewed in Ho \mathscr{S}_{B}, these are

$$
D_{B}^{C W} X=\bar{F}\left(X, \Delta!S_{B}\right) .
$$

($X, t Y$) is a dual pair iff $(Y, t X)$ is a dual pair, and then $Y \simeq D_{B}^{C W} X$.
$\eta: S \longrightarrow X \odot t Y \quad \varepsilon: t Y \odot X \longrightarrow \Delta!S_{B}$
Right dualizable \equiv Costenoble-Waner dualizable, abbreviated CW-dualizable.

Proposition 29. X is $C W$-dualizable with dual Y iff Y is $C W$-dualizable with dual X, and then $X \simeq D_{B}^{C W} D_{B}^{C W} X$.

Proposition 30. If X is $C W$ dualizable and J is any spectrum over B, then

$$
\begin{aligned}
r_{!}\left(J \wedge_{B} D_{B}^{C W} X\right) & \simeq J \odot t D_{B}^{C W} X \\
r_{*} F_{B}(X, J) & \simeq X \triangleright J
\end{aligned}
$$

is an equivalence of spectra.

Definition 31. An ex-space K over B is CW-dualizable if $\Sigma_{B}^{\infty} K$ is CW dualizable.

Theorem 32. If M is a smooth compact n-manifold, then $S_{M}^{0}=M \amalg M$ over M is CW-dualizable. Its dual is $\Sigma_{M}^{-q} S^{\nu}$.
S^{ν} is the fiberwise one-point compactification of the normal bundle ν of $M \subset \mathbb{R}^{q}$.

Proposition 33. If S_{K}^{0} is $C W$-dualizable and (K, p) is a space over B, then

$$
(K, p) \amalg B \cong p_{!} S_{K}^{0}
$$

is CW-dualizable.

Theorem 34. If X is a wedge summand of a "finite cell spectrum", then X is $C W$-dualizable.

Proof. A cell is $\left(D^{n}, p\right) \amalg B$; induction. \square

Duality in $\mathscr{E} x$ when $A=B=*$ is SW-duality (Spanier-Whitehead).

Proposition 35. If S_{B} is $C W$-dualizable, then $r!S_{B}=\Sigma^{\infty} B_{+}$is $S W$-dualizable, so B is equivalent to a finite $C W$-complex.

If B infinite, then S_{B} is not CW-dualizable. It is invertible, hence fiberwise dualizable.
Let M be a smooth closed manifold. Then $\left(S_{M}, t \Sigma_{M}^{-q} S^{\nu}\right)$ is a dual pair. Also, $\Sigma_{M}^{-q} S^{\nu}$ is invertible in Ho \mathscr{S}_{M} with inverse $\Sigma_{M}^{\infty} S^{\tau}$:
$\Sigma_{M}^{\infty} S^{\tau} \wedge_{M} \Sigma_{M}^{-q} S^{\nu} \simeq \Sigma^{-q}\left(S^{\tau} \wedge_{M} S^{\nu}\right) \simeq S_{M}$ since $\tau \oplus \nu$ is trivial and $S^{\tau} \wedge_{M} S^{\nu} \cong S_{M}^{V}$. Combining these dualities leads to homotopical Poincaré duality.

Theorem 36. For a spectrum k,

$$
k \wedge M_{+} \simeq S_{M} \triangleright\left(k \wedge S^{\tau}\right) .
$$

8. Parametrized homology and COHOMOLOGY

For spectra J and X over B, define

$$
\begin{aligned}
J_{n}(X) & =\pi_{n}\left(r_{!}\left(J \wedge_{B} X\right)\right) \\
J^{n}(X) & =\pi_{-n}\left(r_{*} F_{B}(X, J)\right) \\
& \cong\left[S_{B}^{-n}, F_{B}(X, J)\right]_{B} .
\end{aligned}
$$

For a spectrum k,

$$
\begin{aligned}
& \begin{array}{c}
\left(r^{*} k\right)_{*}(X) \cong k_{*}\left(r_{!} X\right) \equiv k_{*}^{B}(X) \\
\left(r^{*} k\right)^{*}(X) \cong k^{*}\left(r_{!} X\right) \equiv k_{B}^{*}(X) . \\
r_{!}\left(J \wedge_{B} X\right) \simeq J \odot t X \\
r_{*} F_{B}(X, J) \simeq X \triangleright J . \\
J_{*}(X)=\pi_{*}(J \odot t X) \\
J^{*}(X)=\pi_{-*}(X \triangleright J) .
\end{array} \\
& \text { If }(X, Y) \text { is a dual pair, }
\end{aligned}
$$

$$
J \odot t Y \simeq X \triangleright J
$$

Theorem 37 (Costenoble-Waner duality).

$$
J_{*}(Y) \cong J^{-*}(X) .
$$

Let M be a smooth closed n-manifold. Have

$$
k \wedge M_{+} \simeq S_{M} \triangleright\left(k \wedge S^{\tau}\right)
$$

Take $X=S_{M}$ and $J=k \wedge S^{\tau}$.

Theorem 38 (Poincaré duality).

$$
k_{*}\left(M_{+}\right) \cong\left(k \wedge S^{\tau}\right)^{-*}\left(S_{M}\right) .
$$

Definition 39. The Thom complex of an n-plane bundle ξ over B is

$$
T \xi=S^{\xi} / s(B)=r_{!} S^{\xi} .
$$

Let k be a commutative ring spectrum. A $k-$ orientation of ξ is a class $\mu \in k^{n}(T \xi)$ whose fiber restriction

$$
\mu_{b} \in k^{n}\left(T \xi_{b}\right) \cong k^{n}\left(S^{n}\right) \cong k^{0}\left(S^{0}\right)=\pi_{0}(k)
$$

is a unit in the ring $\pi_{0}(k)$ for each $b \in B$.

Proposition 40. $A k$-orientation μ of ξ induces an equivalence of spectra over B $k \wedge S^{\xi} \simeq r^{*} k \wedge_{B} S^{\xi} \longrightarrow r^{*} k \wedge_{B} S_{B}^{n} \simeq k \wedge S^{n}$.
" ξ is trivial to the eyes of k "
$r_{!} S_{B}^{0}=B_{+}$and thus
$\left(k \wedge S_{B}^{n}\right)^{-*}\left(S_{B}\right) \cong\left(r^{*} \Sigma^{n} k\right)^{-*}\left(S_{B}^{0}\right) \cong k^{n-*}\left(B_{+}\right)$.
Take $B=M$. A k-orientation of M is a k-orientation of its tangent bundle.

Theorem 41 (Poincaré duality). Let k be a commutative ring spectrum and M be a k-oriented smooth closed n-manifold. Then

$$
k_{*}\left(M_{+}\right) \cong k^{n-*}\left(M_{+}\right) .
$$

New result by the same methods.
Theorem 42. Let L^{d} be a smooth closed submanifold of a smooth closed manifold M^{n}, both k-oriented. Then

$$
k_{n-d+p}\left(T \nu_{M, L}\right) \cong k^{d-p}\left(L_{+}\right) \cong k_{p}\left(L_{+}\right) .
$$

