
DUALITY IN BICATEGORIES AND TOPOLOGICAL

APPLICATIONS

J.P. MAY

In October, 1999, I organized a conference here in honor of MacLane’s 90th birth-

day. I’ll repeat how I started my talk then. “A great deal of modern mathematics

would quite literally be unthinkable without the language of categories, functors,

and natural transformations introduced by Eilenberg and MacLane in 1945. It was

perhaps inevitable that some such language would have appeared eventually. It

was certainly not inevitable that such an early systematization would have proven

so remarkably durable and appropriate.

I talked then about another piece of language that Saunders introduced, that

of symmetric monoidal category, which comes from a 1963 paper entitled “Nat-

ural associativity and commutativity”. It gave the first clear articulation of the

general categorical problem of coherence. The necessary isomorphisms are called

“constraints” in the later literature of algebraic geometry. To quote from Mathe-

matical Reviews, “A very pleasant feature of the paper is the skillful, economical

and rigorous manner in which the problem is formulated”.

More precisely, what I talked about then was duality theory in symmetric mon-

oidal categories. As Mac Lane so well understood, category theory turns analogies

into mathematical theory that turns the things being compared into examples. The

category theory then allows one to understand new things about the examples,

and to compare them rigorously. Duality theory gives a strikingly beautiful and

important illustration of this kind of mathematics. The purpose of this talk is to

explain duality theory in symmetric bicategories. This is a new theory whose basic

definitions are less than a year old. It is joint work with Johann Sigurdsson, but its

starting point was a key insight in work of Steven Costenoble and Stefan Waner.

Jean Benabou, who I think was here at the time, already introduced bicategories

in 1967. There is a notion of a symmetric monoidal bicategory, but I only mention

that for the well-informed category theorists. The notion of symmetric bicategories

is different. The new theory is not difficult, and it could well have been developed

immediately after Benabou’s work. However, the need for it only became apparent

with the development of parametrized stable homotopy theory. Niles Johnson is

beginning to verify my belief that it also gives the definitively right framework

for understanding Morita duality in derived categories. Surprisingly, Kate Ponto

discovered that it also gives the definitively right framework for understanding

topological fixed point theory. Here even the analogies are not immediately obvious.
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1. Duality in symmetric monoidal

categories

(C ,⊗, Hom, I, γ) ⊗ : C × C −→ C

Unital, associative, and commutative up to
coherent natural isomorphism; associativity
and unit isomorphisms are implicit, and γ
is the commutativity isomorphism.

I ⊗ X ∼= X X ∼= Hom(I, X)

Hom(X ⊗ Y, Z) ∼= Hom(X, Hom(Y, Z))

Hom(Y ⊗ X,Z) ∼= Hom(X, Hom(Y, Z))

Hom(X, Y ) ⊗ Hom(X ′, Y ′)
⊗

��

Hom(X ⊗ X ′, Y ⊗ Y ′)

ν : Hom(X,Y ) ⊗ Z −→ Hom(X, Y ⊗ Z)

DX ≡ Hom(X, I)

Evaluation map: ε : DX ⊗ X −→ I .
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Definition 1. X is dualizable if

ν : DX ⊗ X −→ Hom(X, X)

is an isomorphism. Coevalutation map:

I
ι

��

η
// X ⊗ DX

Hom(X,X) DX ⊗ Xν
oo

γ
OO

Here ι is adjoint to id : X −→ X .

MR, DR, HoS sh(X)

Finitely projective R-module

Perfect chain complex

Finite CW-spectrum

Theorem 2. Fix X and Y . TFAE.

(i) X is dualizable and Y ∼= DX.

(ii) Triangle identities: There are

η : I −→ X⊗Y and ε : Y ⊗X −→ I s.t.

X ∼= I ⊗ X
η⊗id

// X ⊗ Y ⊗ X
id⊗ε// X ⊗ I ∼= X

Y ∼= Y ⊗ I
id⊗η

// Y ⊗ X ⊗ Y
ε⊗id// I ⊗ Y ∼= Y

are identity maps.



DUALITY IN BICATEGORIES AND TOPOLOGICAL APPLICATIONS 5

(iii) There is a map η : I −→ X ⊗Y such

that the composite

C (W ⊗ X,Z)
(−)⊗Y

��

C (W ⊗ X ⊗ Y, Z ⊗ Y )
C (id⊗η,id)

��

C (W, Z ⊗ Y )

is a bijection for all W and Z.

(iv) There is a map ε : Y ⊗X −→ I such

that the composite

C (W, Z ⊗ Y )
(−)⊗X

��

C (W ⊗ X, Z ⊗ Y ⊗ X)
C (id,id⊗ε)

��

C (W ⊗ X,Z)

is a bijection for all W and Z.
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The adjoint ε̃ : Y −→ DX of ε satisfying
(ii) or (iv) is an isomorphism under which
the given map ε corresponds to the canoni-
cal evaluation map ε : DX ⊗ X −→ I .

Terminology: (X, Y ) is a dual pair.

Proposition 3. If X and Y are dualiz-

able, then DX and X ⊗ Y are dualizable

and the canonical map ρ : X −→ DDX
is an isomorphism.

Proposition 4. If X or Z is dualizable,

then the map ν above is an isomorphism.

Proposition 5. If X and X ′ are dualiz-

able or if X is dualizable and Y = I, then

the map ⊗ above is an isomorphism.

Definition 6. X is invertible if there is a
Y and an isomorphism X ⊗ Y ∼= I . Then
(X,Y ) is a dual pair. Pic(C ) = group of
isomorphism classes of invertible X .
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2. Closed symmetric bicategories

A bicategory C is a monoidal category with
many objects, called 0-cells. For each pair
of 0-cells A, B, it has a category C (A, B) of
object 1-cells A → B and morphism 2-cells
X → Y between 1-cells X, Y : A → B.
There are “horizontal” compositions

� : C (B,C) × C (A, B) −→ C (A, C)

and unit 1-cells IA [abbreviated A by abuse]
such that ⊗ is associative and unital up to
coherent natural isomorphism.

If C has one object ∗, then C (∗, ∗) is a
monoidal category.

C at: categories, functors, nat. trans.

BR: R-algebras, (B,A)-bimodules, maps

E x: spaces, spectra over B × A, maps

Symmetric version? Directionality of 1-cells?
Turns out that symmetric bicategories with
one object are not just symmetric monoidal
categories.
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C op: same 0-cells,

C
op(A, B) = C (B,A).

Definition 7. An involution on C consists
of the following data subject to coherence
diagrams.

(1) A bijection t on 0-cells with ttA = A.
(2) Equivalences of categories

t : C (A, B) −→ C (tB, tA) = C
op(tA, tB),

with isomorphism 2-cells ξ : id ∼= tt.
(3) Isomorphism 2-cells

ι : ItA −→ tIA and

γ : tY �op tX ≡ tX � tY −→ t(Y � X).

A symmetric bicategory C is a bicategory
with an involution. A 0-cell A of C is said
to be commutative if tA = A.

t : C (A, A) −→ C (A, A) need not be the
identity functor, so a one object symmetric
bicategory need not be a symmetric monoidal
category.
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Example 8. BR. tA is the opposite
R-algebra of A. The commutative 0-cells
are the commutative R-algebras.

The 1-cells X : A → B are the (B,A)-
bimodules, and tX : tB → tA is the same
R-module X viewed as a (tA, tB)-bimodule.

The 2-cells α : X → Y are the maps of
(B,A)-bimodules, and t(α) is the same R-
map viewed as a map of (tA, tB)-bimodules.

BR(B,C) × BR(A, B)
�=⊗B

��

BR(A, C).

IA is A regarded as an (A, A)-bimodule,

γ : tX ⊗tB tY −→ t(Y ⊗B X)

is given by γ(x ⊗ y) = y ⊗ x.

BR(A, R) = right A-modules

BR(R, A) = left A-modules
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tA = A ⇒ BR(A, A) = (A, A)-bimodules.

Here t 6= id: BR(A, A) −→ BR(A, A).
The symmetric monoidal full subcategory

MA ⊂ BR(A, A)

consists of the central (A, A)-bimodules X ,
those for which ax = xa for all a and x.

Example 9. Graded version of BR has γ
defined with a sign. Leads to differential
graded version. Topological version in brave
new algebra.

BR and other examples arise from anchored
bicategories by neglect of structure. Maps
R −→ S of commutative rings and maps
A −→ B of algebras have been ignored.

LOGIC: BR is EASY. Use it as a toy model
to understand deeper examples, such as those
above and parametrized spectra.
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Definition 10. A bicategory C is right
and left closed if there are right and left in-
ternal hom functors

. : C (A, B)op × C (A, C) −→ C (B, C)

and

/ : C (A, C) × C (B,C)op −→ C (A, B)

such that

C (Y � X, Z) ∼= C (Y,X . Z)

C (Y � X,Z) ∼= C (X, Z / Y )

for

X : A −→ B, Y : B −→ C, Z : A −→ C.

Can’t write X � Y , not defined!

Unit and counit 2-cells

ε : (X.Z)�X −→ Z, η : Y −→ X.(Y �X)

ε : Y �(Z/Y ) −→ Z, η : X −→ (Y �X)/Y.

Definition 11. A symmetric bicategory is
closed if it is left closed. It is then also right
closed with

X . Z ∼= t(tZ / tX).
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In symmetric monoidal categories, use of γ
collapses / and . into Hom; replaced by in-
volutive relation in symmetric bicategories.

Remark 12. X . Z is the 1-cell of “maps
pointing right from X to Z”; Z / Y is the
1-cell of “maps pointing left from Y to Z”.
X . Z is a 1-cell from the target of X to
the target of Z (with X and Z having the
same source) and Z / Y is a 1-cell from the
source of Z to the source of Y (with Y and
Z having the same target).

Example 13. BR is closed. For a

(B,A)-bimodule X,

(C,B)-bimodule Y,

(C,A)-bimodule Z,

Z / Y = HomC(Y, Z), a (B,A)-bimodule

and

X.Z = HomA(X, Z), a (C, B)-bimodule.

BR(Y ⊗B X, Z) ∼= BR(Y, HomA(X,Z))

BR(Y ⊗B X, Z) ∼= BR(X, HomC(Y, Z))
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Example 14. Base change bimodules. For
an R-algebra map f : A′ −→ A

Af : A′ −→ A, an (A, A′)-bimodule

fA = tAf : A −→ A′ an(A′, A)-bimodule.

For an R-algebra B, pullback action functor

f∗ : BR(A, B) −→ BR(A′, B)

has a left adjoint f! and a right adjoint f∗,
extension and coextension of scalars.

f∗M ∼= M � Af

f!M
′ ∼= M ′ � fA

f∗M
′ ∼= Af . M ′.

For g : B′ −→ B and any A,

g∗ : BR(A, B) −→ BR(A, B′)

has a left adjoint g! and a right adjoint g∗,

g∗N ∼= gB � N,

g!N
′ ∼= Bg � N ′,

g∗N
′ ∼= gB / N ′.
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Formal isomorphisms:

(Y � X) . Z ∼= Y . (X . Z)

Z / (Y � X) ∼= (Z / Y ) / X

(X . Z) / Y ∼= X . (Z / Y )

Formal maps:

µ : Z � (X . Y ) −→ X . (Z � Y )

ν : (Z / Y ) � W −→ (Z � W ) / Y

ω : (Z /Y )�(X .W ) −→ X .(Z�W )/Y

(Two ways of parenthesizing are isomorphic)

DUALITY THEORY:
WHEN ARE THESE ISOMORPHISMS?
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3. Duality in closed symmetric

bicategories

Write B for IB [So B is a 0-cell and 1-cell].

Definition 15. (X, Y ), X : B −→ A and
Y : A −→ B, is a dual pair of 1-cells if
there are 2-cells

η : A −→ X � Y and ε : Y �X −→ B,

coevaluation and evaluation maps, such that
the following diagrams commute in C (B,A)
and C (A, B), respectively.

X
id

��

A � X
∼=oo

η�id
// (X � Y ) � X

∼=
��

X X � B∼=
oo X � (Y � X)

id�ε
oo

Y
id

��

Y � A
∼=oo

id�η
// Y � (X � Y )

∼=
��

Y B � Y∼=
oo (Y � X) � Y

ε�id
oo

X is right dualizable with right dual Y .
Y is left dualizable with left dual X .



16 J.P. MAY

Example 16. Let f : B −→ A be a map
of R-algebras. We have

Af : B −→ A and fA : A −→ B.

fA � Af : B −→ B is A, regarded as a
(B,B)-bimodule. Let

η = f : B −→ fA � Af .

Af � fA = A ⊗B A. Let

ε : Af � fA −→ A

be given by the product on A. Then (η, ε)
display (fA, Af) as a dual pair; the left and
right unit laws for A imply the diagrams.
(Af , fA) is not a dual pair in general.

Example 17. Specialize. Take f to be
the unit ι : R −→ A of an R-algebra with
product φ : A ⊗R A −→ A. (ι, φ) display
(ιA, Aι) as a dual pair. For (Aι, ιA) to be a
dual pair, we need a coproduct and counit

η : A −→ A ⊗R A

ε : A −→ R

such that the left and right counit laws hold.
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In topology, the situation is reversed: spaces
have a coproduct and a counit, but not a
product and a unit.

Proposition 18. If C is symmetric, then

η and ε exhibit (X,Y ) as a dual pair iff

γ−1t(η) : tA −→ tY � tX

and

t(ε)γ : tX � tY −→ tB

exhibit (tY, tX) as a dual pair.

Analogous to symmetric monoidal duality,
given 1-cells X : B −→ A and Y : A −→ B
and a 2-cell ε : Y � X −→ B, we have

ε# : C (W, Z � Y ) −→ C (W � X,Z).

For a 2-cell η : A −→ X � Y , we have

η# : C (W � X,Z) −→ C (W, Z � Y )

(Both for W : A −→ C, Z : B −→ C.)
Duality (η, ε): these are inverse isomorphisms.
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Proposition 19. Let

X : B −→ A and Y : A −→ B

be 1-cells. TFAE for a given 2-cell

ε : Y � X −→ B.

(1) (X, Y ) is a dual pair with evaluation

map ε.
(2) ε# is a bijection for all W and Z.

(3) ε# is a bijection when W = A and

Z = X and when W = Y and Z = B.

Dually, TFAE for a given 2-cell

η : A −→ X � Y.

(1) (X, Y ) is a dual pair with coevalua-

tion map η.
(2) η# is a bijection for all W and Z.

(3) η# is a bijection when W = A and

Z = X and when W = Y and Z = B.
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Proposition 20. Let X, X ′ : B −→ A
and Y, Y ′ : A −→ B be 1-cells such that

(X,Y ) and (X ′, Y ′) are dual pairs and let

α : X −→ X ′ and β : Y −→ Y ′ be 2-cells.

(1) There is a unique 2-cell α∗ : Y ′ −→ Y
that makes either of the following di-

agrams commute, and then the other

diagram also commutes.

A
η

//

η
��

X ′ � Y ′

id�α∗
��

Y ′ � X
id�α//

α∗�id
��

Y ′ � X ′

ε
��

X � Y α�id
// X ′ � Y Y � X ε

// B

(2) There is a unique 2-cell β∗ : X ′ → X
that makes either of the following di-

agrams commute, and then the other

diagram also commutes.

A
η

//

η
��

X ′ � Y ′

β∗�id
��

Y � X ′β�id
//

id�β∗
��

Y ′ � X ′

ε
��

X � Y id�β
// X � Y ′ Y � X ε

// B
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Now assume that C is closed.

Definition 21. For a 1-cell X : B −→ A,
define

DrX = X . B : A −→ B.

For a 1-cell Y : A −→ B, define

D`Y = B / Y : B −→ A.

A 2-cell ε : Y � X −→ B has adjoints

ε̃ : X −→ D`Y and ε̃ : Y −→ DrX.

Y � D`Y

ε
((PPPPPPPPPPPPPPP

Y � X
ε̃�idoo

ε
��

id�ε̃// DrX � X

ε
vvmmmmmmmmmmmmmmm

B

Proposition 22. If ε : Y � X −→ B is

the evaluation map of a dual pair (X,Y ),
then the adjoint 2-cells

ε̃ : X −→ D`Y and ε̃ : Y −→ DrX

are isomorphisms.
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The maps µ and ν specialize to

(1) µ : Z � DrX −→ X . Z

and

(2) ν : D`Y � W −→ W / Y.

Proposition 23. The following are equiv-

alent for a 1-cell X : B −→ A, and then

(X,DrX) is canonically a dual pair.

(1) X is right dualizable.

(2) µ is an isomorphism when Z = X.

(3) µ is an isomorphism for all Z.

When these hold, the adjoint of ε is an

isomorphism X −→ D`DrX.

Dually, the following are equivalent for a

1-cell Y : A −→ B, and then (D`Y, Y ) is

canonically a dual pair.

(1) Y is left dualizable.

(2) ν is an isomorphism when W = Y .

(3) ν is an isomorphism for all W .

When these hold, the adjoint of ε is an

isomorphism Y −→ DrD`Y .
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Left and right analogues of X ∼= DDX .
Other analogues.

Proposition 24. Consider µ, ν, and ω.

(1) If X or Z is right dualizable, then

µ : Z � (X . Y ) −→ X . (Z � Y )

is an isomorphism.

(2) If W or Y is left dualizable, then

ν : (Z / Y ) � W −→ (Z � W ) / Y

is an isomorphism.

(3) If X is right and Y is left dualizable,

then

ω : (Z /Y )�(X .W ) −→ X .(Z�W )/Y

is an isomorphism.
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4. Composites of dualities

Theorem 25. Consider 1-cells W, X, Y, Z
as in the diagram

C
W ++

B
Z

kk

X ++
A.

Y
kk

If (η, ε) exhibits (X, Y ) as a dual pair and

(ζ, σ) exhibits (W, Z) as a dual pair, then

((id�ζ � id) ◦ η, σ ◦ (id�ε � id))

exhibits (X � W, Z � Y ) as a dual pair.

Theorem 26. Let F : B −→ C be a lax

functor between symmetric bicategories.

Let (X, Y ) be a dual pair in B,

X : B −→ A and Y : A −→ B.

Assume that the unit and composition

coherence 2-cells

IFB −→ FIB

and

FX � FY −→ F (X � Y )

are isomorphisms. Then (FX, FY ) is a

dual pair in C . There is a dual result for

oplax functors.
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5. Parametrized spectra

HoSB: The homotopy category of spectra
X parametrized over B. For each b ∈ B,
there is a “fiber spectrum” Xb, and these
are nicely glued together.

Base change functors for f : A −→ B:

f! : HoSA −→ HoSB,

f∗ : HoSB −→ HoSA,

f∗ : HoSA −→ HoSB.

The closed symmetric bicategory E x has as
0-cells spaces B, with tB = B, and it has

E x(A, B) = HoSB×A.

t : B×A ∼= A×B induces involution t = t∗.
For X over B × A and Y over C × B, we
have a fiberwise smash product

Y Z X over C × B × B × A.

Y �X = (idC ×r×idA)!(idC ×∆×idA)∗(Y ZX)

where ∆: B −→ B×B is the diagonal and
r : B −→ ∗ is the unique map to a point.
The unit IB over B ×B is ∆!SB, where SB

is the sphere spectrum over B.
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HoSB is closed symmetric monoidal with
unit SB under the fiberwise smash product

X ∧B Y = ∆∗(X Z Y ).

DUALITY IN HoSB

VERSUS

DUALITY IN E x

Embed HoSB in E x as

HoS∗×B = E x(B, ∗)

and

HoSB×∗ = E x(∗, B)

1-cells X : B −→ ∗ and tX : ∗ −→ B.

E x informs on HoSB by relating it with

HoS = E (∗, ∗)

and

HoSB×B = E x(B,B).
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For f : B −→ A, have base change spectra

Sf : B −→ A and tSf : A −→ B

Theorem 27. (tSf , Sf) is a dual pair.

Ignoring source and target, for r : B −→ ∗,

Sr ' SB ' tSr.

(f × id)!B ' Sf ' (id×f)∗A

(id×f)!B ' tSf ' (f × id)∗A.

Change of source: For f : A −→ A′

Y � Sf ' (id×f)∗Y ' tSf . Y : A −→ B,

X � tSf ' (id×f)!X : A′ −→ B,

Sf . X ' (id×f)∗X : A′ −→ B

for 1-cells X : A −→ B and Y : A′ −→ B.

Change of target: For g : B −→ B′

tSg � Z ' (g × id)∗Z ' Z / Sg : A −→ B,

Sg � X ' (g × id)!X : A −→ B′,

X / tSg ' (g × id)∗X : A −→ B′

for 1-cells X : A −→ B and Z : A −→ B′.
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6. Dictionaries

Let X , Y be spectra over B.
Let Z be a spectrum.
X � tY is a spectrum.
tY � X is a spectrum over B × B.

Translate �, /, . into base change, ∧B,
and the internal hom FB(X,Y ) in HoSB:

As spectra,

Y � tX ' r!(Y ∧B X)

tY / tX ' r∗FB(X, Y ) ' X . Y.

As spectra over B,

tX � Z ' X Z Z

Z � X ' Z Z X

Z / X ' FB(X, r∗Z) ' tX . Z.

As spectra over B × B,

tY � X ' Y Z X.
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Translate ∧B, FB into �, /, ..

∆!X � tY ' X ∧B Y ' X � ∆!Y,

∆!X . Y ' FB(X,Y ) ' ∆∗(X . Y ),

X / ∆!Y ' FB(Y, X) ' ∆∗(X / Y ).

Translate base change into �, /, ..
Let f : B −→ A be a map, X be a spectrum
over A, and Y be a spectrum over B. 1-cells

A −→ ∗ and B −→ ∗.

f!Y ' Y � tSf tf!Y ' Sf � tY

X � Sf ' f∗X ' tSf . X

tSf � tX ' tf∗X ' tX / Sf

f∗Y ' Sf . Y tf∗Y ' tY / tSf .
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7. Parametrized duality theory

Fiberwise duality:
symmetric monoidal duality in HoSB.

S = unit in E (∗, ∗) ∆!SB=unit in E (B, B).

Duals wrt S:

D`X = S / X : ∗ −→ B

DrtX = tX . S : B −→ ∗.

Duals wrt ∆!SB:

D`tX = ∆!SB / tX : B −→ ∗

DrX = X . ∆!SB : ∗ −→ B.

Duality wrt S: tX is right dualizable iff X
is left dualizable, and tD`X ' DrtX . Viewed
in HoSB, these are

DBX = FB(X,SB) = F̄ (X, ∆∗SB).

(F̄ is external hom that goes with Z).
(tX, Y ) is a dual pair iff (tY,X) is a dual
pair, and then Y ' DBX .

η : ∆!SB −→ tX � Y ε : Y � tX −→ S

Proposition 28. (tX, Y ) is a dual pair

iff (X,Y ) is a fiberwise dual pair.
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Duality wrt ∆!SB: X is right dualizable iff
tX is left dualizable, and D`tX ' tDrX .
Viewed in HoSB, these are

DCW
B X = F̄ (X, ∆!SB).

(X, tY ) is a dual pair iff (Y, tX) is a dual
pair, and then Y ' DCW

B X .

η : S −→ X � tY ε : tY � X −→ ∆!SB

Right dualizable ≡ Costenoble-Waner
dualizable, abbreviated CW-dualizable.

Proposition 29. X is CW-dualizable with

dual Y iff Y is CW-dualizable with dual

X, and then X ' DCW
B DCW

B X.

Proposition 30. If X is CW dualizable

and J is any spectrum over B, then

r!(J ∧B DCW
B X) ' J � tDCW

B X
µ

��

r∗FB(X, J) ' X . J

is an equivalence of spectra.
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Definition 31. An ex-space K over B is
CW-dualizable if Σ∞

B K is CW dualizable.

Theorem 32. If M is a smooth compact

n-manifold, then S0
M = M q M over M

is CW-dualizable. Its dual is Σ−q
M Sν.

Sν is the fiberwise one-point compactifica-
tion of the normal bundle ν of M ⊂ R

q.

Proposition 33. If S0
K is CW-dualizable

and (K, p) is a space over B, then

(K, p) q B ∼= p!S
0
K

is CW-dualizable.

Theorem 34. If X is a wedge summand

of a “finite cell spectrum”, then X is

CW-dualizable.

Proof. A cell is (Dn, p)qB; induction. �
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Duality in E x when A = B = ∗ is
SW-duality (Spanier-Whitehead).

Proposition 35. If SB is CW-dualizable,

then r!SB = Σ∞B+ is SW-dualizable, so

B is equivalent to a finite CW-complex.

If B infinite, then SB is not CW-dualizable.
It is invertible, hence fiberwise dualizable.

Let M be a smooth closed manifold. Then
(SM , tΣ−q

M Sν) is a dual pair. Also, Σ−q
M Sν is

invertible in HoSM with inverse Σ∞
MSτ :

Σ∞
MSτ ∧M Σ−q

M Sν ' Σ−q(Sτ ∧M Sν) ' SM

since τ ⊕ ν is trivial and Sτ ∧M Sν ∼= SV
M .

Combining these dualities leads to homo-
topical Poincaré duality.

Theorem 36. For a spectrum k,

k ∧ M+ ' SM . (k ∧ Sτ).
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8. Parametrized homology and

cohomology

For spectra J and X over B, define

Jn(X) = πn(r!(J ∧B X))

Jn(X) = π−n(r∗FB(X, J))
∼= [S−n

B , FB(X, J)]B.

For a spectrum k,

(r∗k)∗(X) ∼= k∗(r!X) ≡ kB
∗ (X)

(r∗k)∗(X) ∼= k∗(r!X) ≡ k∗
B(X).

r!(J ∧B X) ' J � tX

r∗FB(X, J) ' X . J.

J∗(X) = π∗(J � tX)

J∗(X) = π−∗(X . J).

If (X, Y ) is a dual pair,

J � tY ' X . J

Theorem 37 (Costenoble-Waner duality).

J∗(Y ) ∼= J−∗(X).
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Let M be a smooth closed n-manifold. Have

k ∧ M+ ' SM . (k ∧ Sτ).

Take X = SM and J = k ∧ Sτ .

Theorem 38 (Poincaré duality).

k∗(M+) ∼= (k ∧ Sτ)−∗(SM).

Definition 39. The Thom complex of an
n-plane bundle ξ over B is

Tξ = Sξ/s(B) = r!S
ξ.

Let k be a commutative ring spectrum. A k-
orientation of ξ is a class µ ∈ kn(Tξ) whose
fiber restriction

µb ∈ kn(Tξb) ∼= kn(Sn) ∼= k0(S0) = π0(k)

is a unit in the ring π0(k) for each b ∈ B.
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Proposition 40. A k-orientation µ of ξ
induces an equivalence of spectra over B

k∧Sξ ' r∗k∧BSξ −→ r∗k∧BSn
B ' k∧Sn.

“ξ is trivial to the eyes of k”

r!S
0
B = B+ and thus

(k∧Sn
B)−∗(SB) ∼= (r∗Σnk)−∗(S0

B) ∼= kn−∗(B+).

Take B = M . A k-orientation of M is a
k-orientation of its tangent bundle.

Theorem 41 (Poincaré duality). Let k be

a commutative ring spectrum and M be

a k-oriented smooth closed n-manifold.

Then

k∗(M+) ∼= kn−∗(M+).

New result by the same methods.

Theorem 42. Let Ld be a smooth closed

submanifold of a smooth closed manifold

Mn, both k-oriented. Then

kn−d+p(TνM,L) ∼= kd−p(L+) ∼= kp(L+).


