
FROM THE BEGINNING (ROSENDAL TALK)

J.P. MAY

First let me thank John for the opportunity to give a jet-lagged first talk.
He wrote “I think it would be very nice if you could start it off with a talk
about where this all began, plus whatever else you prefer to cover”. I’ll
give a four part talk, starting with where it began, probably ending before
getting to the interesting part.

The real beginning is the Freudenthal suspension theorem, but we can
jump ahead to Boardman’s definitive definition of the stable homotopy cat-
egory in 1964. All people doing foundational work back then thought in
terms of CW complexes, especially finite ones. That precluded taking a
point-set category too seriously.

I first became convinced that spectra should be well-behaved point-set
level objects for very naive reasons connected with homology operations on
infinite loop spaces. I wanted the infinite little cubes operad to act naturally
on the zeroth spaces of spectra. To make this true, I defined a spectrum to
be a sequence of spaces Ei and homeomorphisms σ̃ : Ei −→ ΩEi+1. That
was in 1968. I did have in mind a redevelopment of the stable homotopy
category from that starting point, but nothing serious was done for some
years. I was into calculations and not foundations back then.

In September of 1972, Frank Quinn posed the question of defining operad
actions on that kind of point-set level spectrum. I will come back to his
original motivation. In November of 1972, Nigel Ray gave a talk about
Thom spectra in Chicago’s topology seminar, and we talked about how to
get a good construction of them. Something clicked, and by the end of the
following week I had defined E∞ ring spectra. They didn’t look like they
do now, because I only defined twisted half-smash products and extended
powers a few years later, but the definition was precisely equivalent to the
one that is now standard.

The crucial idea was to model the definition on Thom spectra as they
come in nature, starting from the Grassmannians of inner product spaces.
In particular, they are coordinate-free spectra, given by spaces TV and
structure maps σ : ΣWTV −→ T (V ⊕ W ) for inner products V and W .
Actually, in retrospect, Thom spectra as we understood them in 1972 were
FSP’s, functors with smash product, in a form that is the external smash
product version of an orthogonal ring spectra with its internalized smash
product.

Spectrifying to make the adjoint structure maps σ̃ into homeomorphisms,
the result is an E∞ ring spectra. Up to language, I asked myself then
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whether or not every E∞ ring spectrum arose as the spectrification of an
orthogonal ring spectrum. I thought that the answer was, surely not, but
Mandell, Schwede, Shipley, and I proved in 1999 that the answer is yes.
Technology had moved on, and we proved that the two definitions, and their
symmetric ring spectrum variant, are equivalent via Quillen equivalences of
model categories. That is, any good definition of highly structured ring
spectra gives a Quillen model category that is Quillen equivalent to the
original category of E∞ ring spectra.

There was a conference at Northwestern in 1974 at which I proposed 18
problems and 3 conjectures in this area. Let me list a few of them to give
the flavor of where we were then, compared with where we are now. Many
of them, such as the very first one, are still open.

Problem 1. Does the Brown-Peterson spectrum admit a model as an E∞
ring spectrum?

We will hear two talks about that still open question this afternoon.
Problem 2. Are localizations and completions of E∞ ring spectra again

E∞ ring spectra?
EKMM proves that Bousfield localization of an R-algebra A at an R-

module E is a again an R-algebra, and similarly in the commutative case.
For example, with R = ko, this gives a one line proof that KO is a ko-
algebra, hence an E∞-ring spectrum by neglect of structure.

Conjecture 1. The complex Adams onjecture holds on the infinite loop
space level.

There were two proofs announced in a joint paper of Seymour and Fried-
lander. Seymour’s is wrong and Friedlander’s is right.

Conjecture 2. The Atiyah-Bott-Shapiro orientation g : BSpin −→ B(Spin; ko)
is an infinite loop map.

Conjecture 3. The Sullivan orientation ḡ : BSTop −→ B(STop; ko[1/2])
is an infinite loop map.

It was questions like the last one that motivated Quinn.
Problem 4. Is ψr : ko[1/r] −→ ko[1/r] a map of E∞ ring spectra?
Problem 5. Is Brauer lift λ̂ : koδ −→ k̂o[1/q] a map of E∞ ring spectra?
I will say more about these last two problems shortly. For this conference,

the most relevant of these 1974 problems is
Problem 10. Develop a theory of E∞ pairings of E∞ modules over an E∞

ring spectrum.
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Ancient history; a book; Thom Thom spectra

1968-73: ∞ LOOP SPACE THEORY

1968: Spectra: E = {Ei |Ei
∼= ΩEi+1}.

1972-73: E∞ ring spaces and ring spectra.

Coordinate-free spectra:

{EV |EV ∼= ΩWEV⊕W}

I = category of fin dim inner product spaces.

T = category of based spaces

I -functor: continuous functor

T : I −→ T

with commutative and associative nat. trans.

ω : T × T −→ T ◦ ⊕.

Inclusions on restriction to basepoints.

I -functors =⇒ L -spaces,

L the linear isometries operad.
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I -monoid G: values in monoids.

G = O, U , Spin, String, Top, F ,
special variants SG.

Orthogonal spectrum T :
(I∗-prespectrum in 1980)

ΣWT (V ) −→ T (V ⊕W )

I -FSP (I∗-prefunctors in 1973):

T (V )⊕ T (W ) −→ T (V ⊕W )

Thom spectra the original examples.

I -FSP’s =⇒ E∞-ring spectra

Modern route: Left Kan extension shows
I -FSP’s are the same as orthogonal ring
spectra, and they are (Quillen) equivalent
to E∞ ring spectra, EKMM S-algebras, and
symmetric ring spectra. ALL NECESSARY.
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Motivation: calculations, e.g. π∗(MSTOP ).

Formalization of work of Sullivan;
localize at some prime p 6= 2.

SF //F/Top
'

��

//BSTop
'

��

//BSF

SF //BO⊗ //B(SF ; kO) //BSF.

Here B(SF ; kO) is the classifying space for
kO-oriented stable spherical fibrations, and

BO⊗ = SL1(kO) = SF (kO).

Theorem 1. The diagram is a commu-
tative diagram of infinite loop spaces and
infinite loop maps.

∞ loop spaces J and J⊗:

J //BO
ψr−id

//BO

and

J⊗ //BO⊗
ψr/ id

//BO⊗,

(r mod p2 generates the group of units).
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∞ loop space BCokerJ :

BCokerJ //B(SF ; kO)
c(ψr)

//BO⊗.

c(ψr) is the “universal cannibalistic class”.

CokerJ = ΩBCokerJ.

Theorem 2. There is an equivalence of
infinite loop spaces

SF ' J × CokerJ.

Theorem 3. There is an equivalence of
infinite loop spaces

B(SF ; kO) ' BCokerJ ×BO.

These three theorems distill a huge amount of work by

many people: Boardman and Vogt; Adams; Peterson; Adams

and Priddy; Madsen, Snaith, and Tornehave; Friedlander;

Hodgkin and Snaith.

This reduces calculation of H∗(BSTop)
to calculation of H∗(BCokerJ).

Why is BCokerJ an ∞ loop space?
Is ψr a map of E∞ ring spectra?

Discrete models from algebraic K-theory.



FROM THE BEGINNING (ROSENDAL TALK) 7

MULTIPLICATIVE INFINITE LOOP
SPACE THEORY

0th space of an E∞ ring spectrum is an
E∞ ring space. Converse up to completion
of semi-ring to ring. (1975, 1983).

E∞ ring space: (K ,L ) an operad pair.
K : Steiner’s version of infinite little cubes
operad. Monad K associated to K restricts
to a monad on the category of L -spaces
with zero. An E∞ ring space is an algebra
over this monad. Has two operad actions.

A bipermutative category C is a category
with products ⊕ and ⊗; strictest version of
symmetric bimonoidal. BC is equivalent to
an E∞ ring space and so gives rise to an E∞
ring spectrum RC .

Example 4. kO from O(n; R), n ≥ 0.
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Let r = qa, q prime, where r mod p2

generates the group of units. Allow p = 2.

Let Fr be the field with r elements, F̄q its
algebraic closure. Bipermutative category
O(R) of orthogonal groups O(n,R) of a
commutative ringR givesE∞ ring spectrum
kO(R). ∞ loop commutative diagram:

SF e //BO(F̄q)⊗
λ⊗'

��

//B(SF ; kO(F̄q))
ω'

��

π //BSF

SF e
//BO⊗ //B(SF ; kO) π

//BSF.

λ⊗ is Brauer lift. Why an ∞ loop map?
Key: machine built property of SL1(RC ).

R an E∞ ring spectrum. Unit components
and component of identity (1973 notations)

GL1(R) = FR and SL1(R) = SFR.

Infinite loop spaces; spectra now denoted

gl1(R) and sl1(R).

∞ loop maps X −→ GL1R

←→
E∞ ring maps Σ∞X+ −→ R.
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X an E∞ space with π0(X) = {n|n ≥ 0},
associated E∞ ring spectrum R. Given a
multiplicative set M ⊂ {n|n ≥ 0},
let XM = qXm. It is an E∞ space.

Theorem 5. As an ∞ loop space, the
localization of SL1(R) at M is the base-
point component of the 0th space of the
spectrum associated to XM .

SL1(R) comes from the additive structure,
and is then given a multiplicative structure,
but its localizations can be computed just
from space level multiplicative structure.

Example of how this is used.

Example 6. Regard elements of O(n,Fr)
as permutations of the set of rn elements.
Get a map of permutative categories

O(Fr,⊕) −→ (E ,×),

E =finite sets, hence ∞ loop map

J ' kO(Fr)0 −→ SF [1/q].

SF [1/q] computed from E under ×, not q.
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Frobenius automorphisms

φr : O(n, F̄q) −→ O(n, F̄q),

with fixed points O(n,Fr). These give a
map of bipermutative categories and so give
an E∞ ring map

φr : kO(F̄q) −→ kO(F̄q).

φr corresponds to ψr under Brauer lift, and
c(φr) corresponds to c(ψr):

BCokerJ //B(SF ; kO(F̄q)
c(φr)

//SL1(kO(F̄q))

c(φr) is an ∞ loop map, and

BCokerJ ' B(SF ; kO(Fr)).

Question 7. Does the chromatic level 2
picture tell us anything about BCokerJ?
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Coming soon to your local book seller:
Parametrized Homotopy Theory
by J.P. May and J. Sigurdsson

Everything to follow works equivariantly
for any compact Lie group G of equivari-
ance. Spaces and spectra can meanG-spaces
and G-spectra. Will describe things model
theoretically, although model structures are
insufficient for the proofs.

BASIC STRUCTURE

Theorem 8. For any space B, there is
a proper stable topological model category
SB of spectra over B. For b ∈ B and
X ∈ SB, the fiber Xb is an orthogonal
spectrum. X is fibrant if each projection
X(V ) −→ B is a fibration and each ad-
joint structure map

σ̃ : Xb(V ) −→ ΩWXb(V ⊕W )

is a weak equivalence.
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Theorem 9. The stable homotopy cate-
gory HoSB is closed symmetric monoidal
under the internal smash product and func-
tion spectrum functors ∧B and FB.

BASE CHANGE FUNCTORS

Theorem 10. For f : A −→ B, there is
a pullback functor f ∗ : SB −→ SA with
left and right adjoints f! and f ∗.

Theorem 11. (f!, f
∗) is a Quillen pair,

and it is a Quillen equivalence if f is an
equivalence.

Theorem 12. (f ∗, f∗) is a Quillen pair if
f is a bundle with CW fibers, but not in
general otherwise.
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Example 13. f : A→ B an inclusion.

f ∗Y = Y |A

(f!X)(V ) = X(V ) ∪sA B

f∗(X) = “skyscraper” over A.

Example 14. r : B → ∗. X a based space,

E = (E, p, s) an ex-space over B.

r∗X = B ×X

r!E = E/s(B) = Thom space

r∗E = Sec(B,E).

Example 15.H ⊂ G. HS ∼= GSG/H .
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Thom Thom spectra

Let G be an I -monoid. Bar construction

EG(V ) = B(∗, G(V ), SV )

Bundle (or quasifibration) over

BG(V ) = B(∗, G(V ), ∗)

with section s at∞. Classical Thom spectra

TG(V ) = EG(V )/sBG(V ) = r!EG(V ).

Reinterpretation. BG = colimBG(V ).

i(V ) : BG(V ) −→ BG

i(V )!EG(V ) = EG(V ) ∪sBG(V ) BG

These give a spectrum UG over BG, and

TG = r!UG.

B(∗, G(V ), SV⊕W ) −→ B(∗, G(V⊕W ), SV⊕W )

induces required structural maps

σ : ΣW
BGU(V ) −→ U(V ⊕W )
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Definition 16. For f : B −→ BG,

Tf = r!f
∗UG.

Here r : B −→ ∗ is r ◦ f , so get

Tf = r!f!f
∗UG −→ r!UG = TG.

Reinterpretation of Mahowald and Gaunce
Lewis construction. Properties easily proven.

UG = U(G;S), S the sphere spectrum. Let
X be an I -G orthogonal spectrum: maps

ξ : G(V )+ ∧X(V ) −→ X(V )

compatible with σ and G(V )→ G(W ).

Definition 17. For an I -G spectrum X ,

U(G;X)(V ) = i(V )!B(∗, G(V ), X(V ))

gives a spectrum over BG, and

T (G;X) = r!U(G;X).

If X is an I -FSP with product compatible
with its G-action, called an I -G-FSP, then
T (G;X) is an I -FSP.
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Example 18. If G is group-valued, then
TG is an I -G-FSP. Action induced by

G(V )×G(V )q × SV −→ G(V )q × SV

(h, g1, . . . , gq, v) 7→ (hg1h
−1, . . . , hgqh

−1, hv)

Definition 19. T (G;TG) is the Thom Thom
spectrum of G. Since it is an I -FSP, it is
an orthogonal ring spectrum.

Two-sided variant starting fromB(Y,G,X).

The classifying spaceB(SF ;R) forR-oriented
spherical fibrations discussed earlier is

B(SF ;R) = B(SL1(R), SF, ∗).

SF acts on SL1(R) since R is a coordinate-
free spectrum, not an orthogonal spectrum.
Need precise 0th space functor.



FROM THE BEGINNING (ROSENDAL TALK) 17

HOMOLOGY and COHOMOLOGY

Definition 20. Let E and X be spectra
over B. For integers n, define the nth E-
homology and E-cohomology groups of X
by

En(X) = πn(r!(E ∧B X))

and

En(X) = π−n(r∗FB(X,E)).

Then

EnX ∼= [S−nB , FB(X,E)]B.

Applied to Σ∞BK, gives theories on ex-spaces
K over B. Axiomatization, representability
as usual, although Adams’ variant of Brown
representability does not apply.

• Twisted theories
• Bundle construction
• Twisted K -theory
• Fundamental groupoids visible
• Twisted K -theory
• Eilenberg-Moore spectral sequence
is a parametrized Künneth theorem
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Proposition 21. Fix f : A −→ B.
For E ∈ SA and X ∈ SB,

(f!E)n(X) ∼= En(f
∗X)

and

(f∗E)n(X) ∼= En(f ∗X).

For X ∈ SA and E ∈ SB,

(f ∗E)n(X) ∼= En(f!X)

and

(f ∗E)n(X) ∼= En(f!X).

Corollary 22. Let E = r∗k, where k is a
spectrum. Let X be a spectrum over B.
Then

En(X) ∼= kn(r!X)

and

En(X) ∼= kn(r!X).

Parametrized Spanier-Whitehead duality?
New Costenoble-Waner duality needed!
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BACK TO BASICS: COMPATIBILITIES

Theorem 23. f ∗ : SB → SA is
“closed symmetric monoidal”:
f ∗SB ∼= SA and

(1) f ∗(Y ∧B Z) ∼= f ∗Y ∧A f ∗Z

(2) f!(f
∗Y ∧A X) ∼= Y ∧B f!X

(3) FB(Y, f∗X) ∼= f∗FA(f ∗Y,X)

(4) f ∗FB(Y, Z) ∼= FA(f ∗Y, f ∗Z)

(5) FB(f!X,Y ) ∼= f∗FA(X, f ∗Y )

Theorem 24. Given a pullback

C
g

//

i
��

D
j

��

A f
//B

with f or j a fibration,

j∗f!
∼= g!i

∗ f ∗j∗ ∼= i∗g
∗

f ∗j! ∼= i!g
∗ j∗f∗ ∼= g∗i

∗.

Not true without fibration hypothesis.
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EXTERNAL OPERATIONS

X , Y , Z spectra over A, B, A×B.

Get X Z Y over A×B, F̄ (Y, Z) over A:

SA×B(X Z Y, Z) ∼= SA(X, F̄ (Y, Z))

X Z Y ∼= π∗AX ∧A×B π∗BY

F̄ (Y, Z) ∼= πA ∗FA×B(π∗BY, Z)

X , Y ex-spectra over B, ∆ : B → B ×B

X ∧B Y ∼= ∆∗(X Z Y )

FB(X,Y ) ∼= F̄ (X,∆∗Y )

Quillen pairs

(− Z Y, F̄ (Y,−))

Compatibilities with base change, e.g.

(f ∗Y Z g∗Z) ∼= (f × g)∗(Y Z Z)
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KB category of ex-spaces over B. Adjoints

Σ∞B : KB → SB and Ω∞B : SB → KB

Case V = 0 of adjoints

FV : KB → SB and evV : SB → KB

where evV = X(V ).

Generating cofibrations are FV i, where

i : Sn−1
+ −→ Dn

+

is a fiberwise cofibration over B.

Nota bene: SB = Σ∞BB × S0 is not among
the generating cofibrations.

Theorem 25. HoGSB is triangulated with
compatible symmetric monoidal structure.
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FIBERWISE DUALITY

Theorem 26 (Fiberwise duality theorem).
(X fibrant). X is dualizable or invertible
if and only if each fiber Xb is dualizable
or invertible.

Dualizable in symmetric monoidal category:

η : SB −→ X ∧B Y, ε : Y ∧B X −→ SB

such that

(id∧ε)(η∧id) = IdX, (ε∧id)(id∧η) = IdY .

DB(X) ≡ FB(X,SB), Y ' DB(X)

Alternatively, X is dualizable if

ν : DBX ∧B X → FB(X,X)

is an isomorphism. Fiberwise, the map is

ν : D(Xb) ∧Xb → F (Xb, Xb),

which gives the proof of the theorem.
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Identifies dualizable and invertible guys.

Theorem 27 (Lewis–May, Greenlees). A
G-spectrum is dualizable if and only if it
is isomorphic in HoGS to a homotopy
retract of a finite G-CW spectrum.

Theorem 28 (Fausk, Lewis, May). A
G-spectrum is invertible if and only if it
is isomorphic in HoGS to a “stable ho-
motopy representation” Σ−VΣ∞T , where
V is a representation of G and T is a
finitely dominated based G-CW complex
such that TH ' Sn(H) for H ⊂ G.
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TRACE and TRANSFER

Definition 29. ∆X : X → X ∧B CX for
some CX . The trace τ (f ) of f : X → X is

SB
η

//

τ(f)
��

X ∧B DBX
γ

//DBX ∧X
DBf∧∆X��

CX SB ∧ CX∼=
oo DBX ∧B X ∧B CXε∧1

oo

CX = SB, ∆X = id:

τ (f ) is the Lefschetz constant χ(f );
f = id: Euler characteristic χ(X).

CX = X , ∆X a diagonal map:

τX = τ (id) is the transfer map of X .

Compatible triangulation implies additivity:

X
f

//Y
g

//Z h // ΣX

χ(Y ) = χ(X) + χ(Z).
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Nonparametrized transfers by applying r!.

Definition 30 (TRANSFER MAPS). Let
p : E → B be a G-fibration over B such
that each fiber Eb is a homotopy retract of
a finite Gb-CW-complex. Then Σ∞B (EqB)
is dualizable, and we have a transfer

τEqB : SB → Σ∞B (E qB)

of G-spectra over B. The usual transfer is

τE = r!τEqB : Σ∞B+ → Σ∞E+.

“Bundle construction” leads to a fiberwise
variant: insert pretransfer maps of spectra
fiberwise into bundles. The two agree where
both are defined.
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SYMMETRIC BICATEGORIES

Bicategory C :
monoidal category with many objects.

0-cells = objects
Category C (A,B) for each pair of 0-cells.
1-cell X : A −→ B is an object of C (A,B).
2-cell X −→ Y is a morphism of C (A,B).

� : C (B,C)× C (A,B) −→ C (A,C)

for each triple of 0-cells, unit functor

UA : ∗ −→ C (A,A)

for each 0-cell, written A = UA by abuse.

Associative and left and right unital up to
coherent natural isomorphism. That’s all.

C is closed if it has left and right internal
hom functors:

/ : C (A,C)× C (B,C)op −→ C (A,B)

. : C (A,B)op × C (A,C) −→ C (B,C)

C (X,Z/Y ) ∼= C (Y�X,Z) ∼= C (Y,X.Z).
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Definition 31. C is symmetric if it has
• A bijection t on the 0-cells of C such that

ttA = A.

• Equivalences of categories

t : C (A,B) −→ C (tB, tA)

• Natural isomorphism 2-cells

ι : tUA −→ UtA

γ : tX � tY −→ t(Y �X)

for 1-cells X : A −→ B and Y : B −→ C
such that appropriate coherence laws hold.

If C is closed and symmetric, then

X . Z ' t(tZ / tX) : B −→ C

for X : A −→ B and Z : A −→ C



28 J.P. MAY

Example 32. BR, R a commutative ring:
• 0-cells are R-algebras.
•BR(A,B) is the category of (B,A)-bimodules.
• ⊗B defines the composition

� : BR(B,C)×BR(A,B) −→ BR(A,C)

• The left and right homs are

Z / Y = HomC(Y, Z)

X . Z = HomA(X,Z).

• tA is the opposite R-algebra of A
• For a (B,A)-bimodule M , tM is M
regarded as a (tA, tB)-bimodule.
• γ is the usual interchange isomorphism.

Example 33. DGA variant, using derived
categories of bimodules.

Example 34. Structured ring spectrum
variant, using stable homotopy categories.

Right home for Morita theory and variants.
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DUALITY IN SYMMETRIC BICATEGORIES

Definition 35. Let

X : B −→ A and Y : A −→ B

be 1-cells. (X,Y ) is a dual pair if there are
2-cells

η : A −→ X � Y

ε : Y �X −→ B

such that the following diagrams commute
in C (B,A) and C (A,B).

X
id

��

A�X
∼=oo

η�id
// (X � Y )�X

∼=
��

X X �B∼=
oo X � (Y �X)

id�ε
oo

Y
id

��

Y � A
∼=oo

id�η
//Y � (X � Y )

∼=
��

Y B � Y∼=
oo (Y �X)� Y

ε�id
oo

We say that X is left dual to Y and Y is
right dual to X . Right dualizability is not
equivalent to left dualizability.
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Definition 36. For a 1-cell X : B −→ A,

DrX = X . B : A −→ B.

For a 1-cell Y : A −→ B,

D`Y = B / Y : B −→ A.

ε : Y �X −→ B has left and right adjoints

ε̃ : X −→ D`Y and ε̃ : Y −→ DrX

such that the following diagram commutes:

Y �D`Y

ε
((PPPPPPPPPPPPPPP

Y �Xε̃�idoo

ε
��

id�ε̃//DrX �X
ε

vvmmmmmmmmmmmmmmm

B

Proposition 37. If ε : Y � X −→ B is
the evaluation map of a dual pair (X,Y ),

ε̃ : X −→ D`Y and ε̃ : Y −→ DrX

are isomorphisms.
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Example 38. Let A be a commutative
R-algebra: tA = A. Write

UA : A −→ A; A as an (A,A)-bimodule

SA : A −→ R; A as a left A-module

tSA : R −→ A; A as a right A-module

tSA � SA = A⊗A A ∼= A

and

SA � tSA = A⊗R A.
Let

η : UR = R −→ A ∼= tSA � SA
and

ε : tSA � SA ∼= A⊗R A −→ A = UA

be the unit and product on A. Left and
right unit laws say (tSA, SA) is a dual pair.

For (SA, tSA) to be a dual pair, need maps

η : A −→ A⊗R A and ε : A −→ R

of (A,A) and (R,R)-bimodules such that
left and right counit laws hold.
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We have natural maps

µ : Z �DrX −→ X . Z

and
ν : D`Y �W −→ W / Y

Proposition 39. A 1-cell X : B −→ A is
right dualizable iff µ is an isomorphism
when Z = X, and then µ is an isomor-
phism for all Z and X ∼= D`DrX.

Proposition 40. A 1-cell Y : A −→ B
is left dualizable iff ν is an isomorphism
when W = Y , and then ν is an isomor-
phim for all W and Y ∼= DrD`Y .
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THE BICATEGORY E x

• 0-cells are spaces, with tB = B.
• E x(A,B) = HoSB×A with t = t∗,

t : B × A ∼= A×B.

• Composition

� : HoSC×B × HoSB×A −→ HoSC×A

Y �X = θB(Y ZX)

Y ZX is a spectrum over C ×B ×B ×A.

θB : HoSC×B×B×A −→ HoSC×A

is

πC×A!(id×∆B × id)∗.

• The unit UB is ∆!SB.
• θB has right adjoint θ∗B = (id×∆B × id)∗π

∗
C×A.

Z / Y = F̄ (Y, θ∗BZ) : A −→ B

X . Z = F̄ (X, θ∗BZ) : B −→ C

X : A −→ B, Y : B −→ C, Z : A −→ C.
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TILTING SPECTRA

Theorem 41. For f : B −→ A, there are

Sf : B −→ A and tSf : A −→ B

such that (tSf , Sf) is a dual pair and:

f!Y ' Y � tSf

f!tY ' Sf � tY

X � Sf ' f ∗X ' tSf . X

tSf � tX ' f ∗tX ' X / Sf

f∗Y ' Sf . tY

f∗tX ' X / Sf .

For r : B −→ ∗,

Sr ∼= SB ∼= tSr.
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Theorem 42. Let (X,Y ) be a dual pair,
X : B −→ A and Y : A −→ B, and let
f : B −→ C be a map. Then

((id×f )!X, (f × id)!Y )

is a dual pair. With C = ∗ and f = r,

(r!X, r!Y )

is a dual pair. (A = ∗: duality in S ).

Proof. This says that

(X � tSf , Sf � Y )

is a dual pair. Since (tSf , Sf) is a dual pair,
this is formal. �
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Have two copies E x(∗, B) and E x(B, ∗) of
HoGSB in E x and the copy E x(∗, ∗) of
HoGS . Also have E x(B,B) in play.

Notations 43. View a spectrumX over B
as a 1-cell B −→ ∗. Write tX for X viewed
as a 1-cell ∗ −→ B. For X and Y over B,

X � tY : ∗ −→ ∗
is a spectrum, but

tY �X : B −→ B

is a spectrum over B ×B.

Proposition 44. Let X and E be spectra
over B. As spectra,

E � tX ' r!(E ∧B X)

and
tE / tX ' r∗FB(X,E) ' X . E.

Therefore

E∗(X) ∼= π∗(E � tX)

and

E∗(X) ∼= π−∗(X . E).
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Duals with respect to ∗:
D`X = S / X : ∗ −→ B

DrtX = tX . S : B −→ ∗,
Both are the spectrum DB(X) over B.

Proposition 45. A spectrum X over B
is fiberwise dualizable with dual Y if and
only if (tX, Y ) is a dual pair in E x.

Duals with respect to B; write B for ∆!SB.

D`tX = B / tX : B −→ ∗

DrX = X . B : ∗ −→ B.

They are the same spectrum over B.

Definition 46. The Costenoble-Waner dual
of X in HoGSB is

DCW
B X = F̄ (X,B).

Viewed as a 1-cell in E x,

DCW
B X ' B / tX = D`X : B −→ ∗

and

tDCW
B X ' X . B = DrX : ∗ −→ B.
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Definition 47. X is Costenoble-Waner
[CW] dualizable with dual Y if (X, tY ) is
a dual pair in E x. Then Y ' DCW

B X .

Proposition 48.X is CW dualizable with
dual Y if and only if Y is CW dualizable
with dual X, and then

X ' DCW
B DCW

B X.

Proposition 49. If X is CW dualizable
and E is any spectrum over B, then

r!(E ∧B DCW
B X) ' E � tDCW

B X
µ

��

r∗FB(X,E) ' X . E

is an equivalence of spectra. Therefore

E∗(D
CW
B X) ∼= E−∗(X).



FROM THE BEGINNING (ROSENDAL TALK) 39

When A = B = ∗, duality theory in E x
reduces to Spanier-Whitehead [SW] duality
theory in HoS .

Corollary 50. If SB is CW dualizable,
then Σ∞(B+) is SW dualizable.

Proof. r!SB ' Σ∞(B+). �

In general SB is fiberwise but not CW
dualizable, whereas finite cell spectra are
CW but not fiberwise dualizable.

Theorem 51. If a spectrum X over B
is a retract in HoGSB of a finite cell
spectrum, then X is CW dualizable.

Will state steps of proof. Say that a space
T is CW dualizable if ST is CW dualizable.

Theorem 52 (Parametrized Atiyah dual-
ity). Any smooth compact G-manifold M
is CW dualizable.

Applying r!, this reproves Atiyah duality.
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Corollary 53. Any G-space G/H × Sn

is CW dualizable.

Lemma 54. (K, p) a space over B. Then
(K, p)+ = K qB is isomorphic to p!S

0
K.

Proposition 55. If K is CW dualizable
and (K, p) is a space over B, then
Σ∞B (K, p)+ is CW dualizable.

Proof. p!SK = Σ∞B (K, p)+, so done. �

Implies one cell case. Induction:

Lemma 56. The cofiber of a map between
CW dualizable spectra is CW dualizable.

Lemma 57. A retract of a CW dualizable
spectrum is CW dualizable.

Converse? Don’t know.

Question 58. Is SM equivalent in HoGSM

to a retract of a finite cell spectrum overM?
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Let (F,CF ) be a dual pair, so that F is CW
dualizable with right dual CF . Then

µ : X � CF −→ SF . X

is an equivalence for X over F . This is

r!(X ∧F CF ) ' r∗X.

F = G/H : the Wirthmüller isomorphism.

Fiberwise generalization:

LetG = Γ/Π, where Π/Γ. Let p : E −→ B
be a (Π; Γ)-bundle. Fiber a CW dualizable
Γ-space F with right dual CF . Associated
principal (Π; Γ)-bundle P −→ B.

Theorem 59. Set

Cp = P ×Π CF .

Then
(Sp,∆!Cp � tSp)

is a dual pair and, via a duality map µ,

p!(X ∧E Cp) ' p∗X

for all spectra X over E.

The Adams isomorphism is a special case.


