
AN OLD-FASHIONED ELEMENTARY TALK (VILLARS)

I have some beautiful brand new mathematics to show you. It is about the
construction of some brave new rings and some new infinite loop spaces that I do
not yet understand.

However, that’s not the talk that I will give. You see, the organizers “are afraid
that it might not be quite appropriate for this workshop”. According to them, “A
good number of the participants are not topologists at all, so probably wouldn’t
benefit much from it.”

I had offered the organizers an alternative talk about operads in algebraic geom-
etry. However, I do know a lot of you, and I can safely say that “A good number
of the participants are not algebraic geometers at all, so probably wouldn’t benefit
much from that.”

The really interesting problem addressed in that work is the one of understanding
Voevodsky’s Steenrod operations in motivic cohomology. Addressed, but not yet
solved, and it couldn’t be crammed into an hour in any case. Most algebraic
geometers don’t understand the algebraic topology behind Voevodsky’s definitions,
and most algebraic topologists don’t understand the relevant algebraic geometry.

So, what should I talk about? Maybe I’ll just start from scratch and describe
a single way that operad actions leading to Steenrod operations arise in algebraic
topology, algebraic geometry, and homological algebra. I will give a general theorem
that includes all three as special cases. The essential point of the talk is to explain
its statement and proof, together with its relevant specializations.

This idea is actually the one that led me to operads in the first place. My 1970
paper “A general algebraic approach to Steenrod operations” would have been
about operads if they had been defined, but it was in fact the immediate precursor
of the definition of operads the next year. Diagrams that lead to the Cartan formula
and Adem relations look as follows. It was because I knew how important they were
that I wrote out the general diagrams that we are all sick of in the definition of an
action of an operad on an object. In algebraic contexts, these special cases of the
associativity diagram are [slide].

In a sense, from the algebraic geometry perspective, this is mathematics that
Godement understood in 1958 and promised to publish in his never to appear
volume 2.

Fix a commutative ring R and take all chains and cochains with coefficients in
R. Let L be the cosimplicial chain complex Ln = C∗(∆n), where C∗ denotes the
normalized simplicial chain complex functor from simplicial sets to chain complexes.
The Eilenberg-Zilber operad is the endomorphism operad Z = End(L).

Theorem 1. Let F be a cosimplicial commutative DGA. Then Hom∆(L, F ) is

naturally a Z -algebra.
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An old-fashioned elementary talk

C an E∞ operad over Fp, structure maps γ.

X a C -algebra, action maps θ.

θ : C (p) ⊗Xp −→ X

Pass to homology (cochains: cohomology).
Get Steenrod operations P i.

1970: Pre-operadic framework in “A general
algebraic approach to Steenrod operations”.

1971: Diagrammatic definition of operads.

1972: “The geometry of iterated loop spaces”.
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CARTAN FORMULA

P k(xy) =
∑

i+j=k

P i(x)P j(y)

C (p) ⊗ (C (2) ⊗X2)p

shuffle
��

id⊗θp // C (p) ⊗Xp

θ

��

C (p) ⊗ C (2)p ⊗X2p

γ⊗id
��

C (2p) ⊗X2p θ //X

C (2) ⊗ C (p)2 ⊗X2p

γ⊗id
OO

C (2) ⊗ (C (p) ⊗Xp)2
shuffle

OO

id⊗θ2
// C (2) ⊗X2

θ

OO
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ADEM RELATIONS

(Cohomological version)

If i < pj, then

P iP j =
∑

k

(−1)i+k(binom coeff)P i+j−kP k

C (p) ⊗ (C (p) ⊗Xp)p id⊗θp //

shuffle

��

C (p) ⊗Xp

θ
��

X

C (p) ⊗ C (p)p ⊗Xp2

γ⊗id
// C (p2) ⊗Xp2

θ
OO

General diagram a small step from there.

Equivariance crucial to Steenrod operations,
non-symmetric operads a simpler notion.
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The classical source of E∞ algebras

Fix a commutative ring R of coefficients.

Let Ch(R) be the category of Z-graded
R-cochain complexes. (Grading: Xq = X−q)

Let L : ∆ −→ Ch(R) be the cosimplicial
chain complex given by the (normalized)
simplicial chains of the standard simplices,

n 7→ Ln = C∗(∆n),

regraded cohomologically.

Definition 2. The Eilenberg-Zilber operad

Z is the endomorphism operad of L.

Theorem 3. Let F be a cosimplicial

commutative DGA. Then the cochain

complex Hom∆(L,F ) is a Z -algebra.
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Hom and the endomorphism operad of L

For cosimplicial objects L,M in Ch(R),
Hom∆(L,M) is the equalizer in Ch(R):

Hom∆(L,M)

��∏
n Hom(Ln,Mn)

����∏
α:m→n Hom(Lm,Mn)

Parallel arrow components on (fn) are

(fn ◦ L(α)) and (L(α) ◦ fm).

Hom∆(L,−) is often denoted “Tot”.

Lj : ∆ −→ Ch(R) is defined by n 7→ L⊗j
n .

Z (j) = End(L)(j) = Hom∆(L,Lj).
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Σj acts by permutations on Lj.

η : R −→ Z (1) sends 1 to (idn).

γ : Z (k)⊗Z (j1)⊗· · ·⊗Z (jk) −→ Z (j),

j = j1 + · · · + jk, is the composite:

Z (k) ⊗ Z (j1) ⊗ · · · ⊗ Z (jk)
id⊗ k-fold ⊗-product

��

Z (k) ⊗ Hom∆(Lk, Lj)
twist

��

Hom∆(Lk, Lj) ⊗ Hom∆(L,Lk)
composition

��

Z (j).

McClure-Smith: this is a ‘functor operad’.
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Proof of Theorem 2

θ : Z (j) ⊗ Hom∆(L,F )j −→ Hom∆(L,F )

Hom∆(L,Lj) ⊗ Hom∆(L,F )j

id⊗ j-fold ⊗-product
��

Hom∆(L,Lj) ⊗ Hom∆(Lj, F j)
twist

��

Hom∆(Lj, F j) ⊗ Hom∆(L,Lj)
composition

��

Hom∆(L,F j)
Hom∆(id,φ)

��

Hom∆(L,F ),

where φ : F j −→ F is the unit map if j = 0
(F 0 = R), the identity if j = 1, and the
iterated product of the DGA’s Fn if j ≥ 2.

Corollary 4. Hom∆(L,F ) is an E∞-algebra.
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The Eilenberg-Zilber theorem

Let Com be the operad Com(j) = R.

C∗(∆0) ∼= R, and restriction to cosimplicial
level 0 gives ε : Z −→ Com.

Theorem 5 (Eilenberg-Zilber). The map

ε is a quasi-isomorphism of operads.

E∞: E (j) is an R[Σj]-free resolution of R.

Z (j)q 6= 0 for q < 0 and Z (j) not Σj-free.

Proposition 6. There is a quasi-isomorphism

E −→ Z , where E is an E∞-operad.

(1) Mandell: truncate, tensor with E .

(2) McClure-Smith: beautiful example.

(3) Tutti: Cofibrant approximation.
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Example: simplicial cochains

DGA’s with terms concentrated in degree
0, so zero differential, are just commutative
R-algebras.

Let X be a simplicial set, R[X ] the free
simplicial R-module generated by X , and

R[X] = HomR(R[X ], R),

the dual cosimplicialR-module. Its nth term
RXn is an R-algebra via the product of R.
Diagonal Xn −→ Xn ×Xn used implicitly.

C∗(X ;R) ∼= Hom∆(L,R[X])

Proof.

C∗(X ;R) ∼= L⊗∆op R[X ]

In degree n, the right side is R-free on
in ⊗Xn, and the differentials agree.

HomR(L⊗∆op R[X ], R) ∼= Hom∆(L,R[X])

�
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Example: Čech cochains of sheaves

Let X be a space, U an open cover indexed
on an ordered set I . Let Un be the set of
ordered (n + 1)-tuples

S = {Ui0, . . . , Uin}

(allowing repeats) of sets in U whose inter-
section US is non-empty. U• is a simplicial
set. The qth face deletes the qth set. The
qth degeneracy repeats the qth set.

Let F be a presheaf of R-modules on X .
Define a cosimplicial R-module F •

U
by

F
n
U =

∏

S∈Un

F (US).

The cofaces and codegeneracies are induced
by restriction maps associated to the faces
and degeneracies of U•. Čech cochains:

Č
∗
(U ,F ) = Hom∆(L,F •

U ).
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Since C∗(∆n) is normalized, the products implicit
on the right have coordinates 0 when S contains
repeats. This agrees with the usual definition of Čech
cochains. Pass to colimits over refinements of covers
to obain a cosimplicial R-module F •. Then

Č
∗
(X,F ) = Hom∆(L,F •).

Proposition 7. If F is a presheaf of

commutative R-algebras, F •
U

and F • are

cosimplicial commutative R-algebras.

Proof. The product on F n
U

is

(
∏

S∈Un
F (US)) ⊗ (

∏
T∈Un

F (UT ))

��∏
S∈Un

(F (US) ⊗ F (US))

��

F (US)

First arrow is projection on diagonal factors.
Pass to colimits for F •. �
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Get Steenrod operations when R = Fp.
Usual properties?
Cartan formula, Adem relations, but:

Remark 8. Cpq−i(∆
q) = 0 if pq − i > q

implies P s = 0 for s < 0 in Ȟ∗(X,F ).
Not true in hypercohomology. P 0 6= Id in
Ȟ∗(X,F ); rather P 0 is the Frobenius op-
erator obtained by applying the pth power
in the algebras F (U ) to the coordinates of
representative cocycles of cohomology classes.
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Example: Hypercohomology

Generalize. For a presheaf F of cochain
complexes on X , get cosimplicial cochain
complexes F •

U
and Čech hypercochains

Č
∗
(U ,F ) = Hom∆(L,F •

U ).

Passing to colimits over covers, get F • and

Č
∗
(X,F ) = Hom∆(L,F •).

Proposition 9. If F is a presheaf of

commutative DGA’s, then F •
U

and F •

are cosimplicial commutative DGA’s.
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Operadic generalization

We may encounter E∞ algebras rather than
commutative DGA’s. For operads O and
P , (O⊗P)(j) = O(j)⊗P(j), with struc-
ture maps determined by those of O and P .

Theorem 10. If F is a cosimplicial

O-algebra with structure maps θ, then

Hom∆(L,F ) is an algebra over O ⊗ Z

with action maps

O(j) ⊗ Z (j) ⊗ Hom∆(L,F )j

id⊗ξ
��

O(j) ⊗ Hom∆(L,F j)
ζ

��

Hom∆(L,O(j) ⊗ F j)
Hom∆(id,θ)

��

Hom∆(L,F ).

ξ: tensor, twist, and compose, as before.
ζ : induced from ζ(x⊗ f)(y) = x⊗ f(y),

ζ : X ⊗ Hom(Y, Z) −→ Hom(Y,X ⊗ Z).
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Theorem 11. If F is a presheaf of

O-algebras, Č
∗
(U ,FU ) and Č

∗
(X,F ) are

O ⊗ Z -algebras.

Proposition 12. If O is acyclic, there is

an E∞ operad E and a quasi-isomorphism

E −→ O ⊗ Z .

Remark 13. Let S be a site. Modifying
the Čech construction to deal with covers U

of objects X in the site, everything adapts
to the Čech cochain complexes of X with
coefficients in sheaves on S of the specified
algebraic types. Just replace intersections
with finite limits and observe, e.g., that
finite limits of O-algebras are O-algebras.
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Example: Cocommutative Hopf algebras A

Bn(A) = An gives n-th term of simplicial
bar construction B•(A) = B•(R,A,R).

ψ : A −→ A⊗ A induces

B•(A) −→ B•(A⊗ A).

Shuffling tensor factors gives

B•(A⊗ A′) −→ B•(A) ⊗B•(A
′).

Composing, B•(A) is a simplicial coalgebra,
cocommutative since A is cocommutative.

Cosimplicial cobar construction

C•(A) = HomR(B•(A), R)

is a cosimplicial commutative R-algebra.

B(A) = L⊗∆op B•(A)

C(A) = Hom∆(L,C•(A))
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Steenrod operations in Ext∗,∗A (Fp,Fp).
Used to study classical Adams spectral
sequence and homotopical ∪i products.

More generally, if A is a cocommutative
DG-Hopf algebra, C•(A) is a cosimplicial
commutative DGA. Hyperext Ext∗,∗A (Fp,Fp)
also has Steenrod operations.
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Characteristic zero

Theorem 14. Let R be a field of charac-

teristic 0. Then E∞ algebras are quasi-

isomorphic to commutative DGA’s.

A B(E,E,A)'oo ' //B(Com,E,A)

This uses the passage from operads E to
monadsE that led to the name “operad”. It
is a portmanteau of “operations” and “monad”.
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Relationship with topological spaces

Consider connected E∞ algebras A;
Aq = 0 if q < 0, A0 = R.

Quillen-Sullivan and Mandell:

R = Q: Homotopy category of nilpotent
rational spaces embeds as a full subcategory
of the homotopy category of DGA’s.

Can apply rational homotopy theory to
algebraic geometry (mixed Hodge structures
Morgan, Hain, Navarro Aznar).

R = F̄p: Homotopy category of nilpotent
p-complete spaces of finite type embeds as
a full subcategory of the homotopy category
of E -algebras, E an E∞ operad.

Applications of p-adic homotopy theory to
algebraic geometry?
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Symmetric sequences

A permutative category P is a category
with an associative and unital product and
a natural commutativity isomorphism τ .

Definition 15. Let Σ be the category with
objects q = {1, . . . , q} and morphisms the
symmetric groups. It is permutative under
concatenation of sets, (q, r) 7→ q + r, and
induced homomorphisms Σq×Σr −→ Σq+r;
0 is the unit and τ is given by the block
transpositions τq,r ∈ Σq+r.

Fix a symmetric monoidal category (C ,⊗, κ).

Symmetric sequence in C : F : Σ −→ C .
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Example: Symmetric spectra

C = based spaces or simplicial sets under
the smash product ∧.

F (q) ∧ Sr −→ F (q + r)

Natural: F ∧ S −→ F ◦ ⊕.

Example: Symmetric monoids in C

φ : F (q) ⊗ F (r) −→ F (q + r),

λ : κ −→ T (0)

Associative, unital, and

F (q) ⊗ F (r)
τ

��

φ
//F (q + r)

F (τq,r)
��

F (r) ⊗ F (q)
φ

//F (q + r).

Symmetric ring spectra are examples.
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Caterads versus PROP’s

Definition 16. A caterad in C is an
enriched permutative category A over C

with a permutative functor ι : Σ −→ A0

that is a bijection on objects.

A0 is the underlying category. Morphism
objects A (p,q) and morphism sets A0(p,q).

Portmanteau of categories and operads.

PROP: Take C to be sets.

Topological PROP: Take C to be spaces.

PACT: Take C to be Ch(R).
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Non-example: presheaf singular chains

Let S = Sm/k be the category of smooth
separated schemes of finite type over a field
k. Let Pre(S ) be the category of presheaves
on S . Let ∆• be the standard cosimplicial
object in S . Its nth scheme is

∆n = Spec(k[t0, . . . , tn]/(Σti − 1)),

with faces and degeneracies like those of the
standard simplices ∆n.

Definition 17. For a presheaf F on S ,
define a simplicial presheaf F• by

Fn(X) = F (X × ∆n)

for X ∈ S , with faces and degeneracies
induced by those of ∆•. If F is Abelian, F•

is a simplicial Abelian presheaf. Applying
the simplicial chain functor to F• then gives
the “singular chains” C∗(F ).
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Now let F = {F (q)} be a sequence of
Abelian presheaves with ‘external’ pairings

F (q)(X)⊗F (r)(Y )
φ
−→ F (q+ r)(X ×Y )

for X, Y ∈ S . These give products

F (q)(X × ∆n) ⊗ F (r)(X × ∆n)

��

F (q + r)(X × ∆n ×X × ∆n).

Pull back along the diagonal of X × ∆n to
get an internal product

φ : F (q)• ⊗ F (r)• −→ F (q + r)•

of simplicial Abelian presheaves.

Symmetric monoid F• in ∆opAbPre(S ).
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Pass to chains and compose with the shuffle
map g to get a product map of presheaves
of chain complexes

C∗(F (q)) ⊗ C∗(F (r))
g

��

C∗(F (q) ⊗ F (r))
φ

��

C∗(F (q + r)).

Choosing F appropriately and reindexing
cohomologically with a shift of grading, this
is how products are defined formally on
motivic cochains. The chain level product
is not commutative because the pairing φ is
not commutative. Symmetric monoids are

not commutative. This has nothing to do
with the Eilenberg-Zilber operad.

Voevodsky’s Steenrod operations are like

Steenrod operations: Eilenberg-MacLane

objects central. But also like Dyer-Lashof

operations: the shuffle chain map rather

than the Eilenberg-Zilber map is used.
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Operad action? Yes and no. One yes answer
(Kriz-May) gives Steenrod operations. The
no answer says they can’t be Voevodsky’s
operations for dimensional reasons.

Theorem 18. Partial commutative DG-

algebras have associated quasi-isomorphic

E∞-algebras.

Theorem 19. Bloch’s higher Chow com-

plexes give a partial commutative DG-al-

gebra under the intersection product.

By a deep theorem of Suslin, the resulting
E∞-algebras usually compute Voevodsky’s
motivic cohomology.

There is a caterad action on Voevodsky’s
cochains, but the caterad known to work is
not acyclic (Guillou-May).


