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The Thom spectrum MU was the motivating

example that led to the definition of an E∞ ring

spectrum in 1972 [MQR]. The definition pro-

ceeded by analogy with a description of BU as

an E∞ space. It was immediately apparent that

BU and MU really ought to be part of a single

mathematical structure. It has taken 35 years

and the serious development of parametrized

spectra to understand what that structure is.

My goal today is to describe that structure

and to show how common it is. I will start by

describing what we understood in 1972, but

recasting these structures in modern language.

[This is a report on work in progress with

Andrew Blumberg and Johann Sigurdsson]



Let I be the category of finite dimensional real

inner product spaces and linear isometric iso-

morphisms. (We can complexify.) Note that

I is symmetric monoidal under direct sums.

For now, those who know and love symmetric

spectra may replace I by the category Σ of

finite sets and isomorphisms.

Codify structure (commutative case only today):

I -FCP

[Functor with Cartesian Product]

A symmetric monoidal functor B under ∗ from

I to the cartesian monoidal category of spaces:

∗ −→ B(V ), B(V ) × B(W ) −→ B(V ⊕ W ).



The category of I -FCP’s has products, and

we can define group and monoid I -FCP’s G.

Monoid homomorphisms

G(V ) × G(W ) −→ G(V ⊕ W ).

Examples:

O, U, SO, SU, Sp, Spin

String, Top, STop, F, SF.

The classifying space functor B takes a monoid

I -FCP to an ordinary I -FCP:

BO, BU, BSO, BSU, BSp, BSpin

BString, BTop, BSTop, BF, BSF.



The maps

BG(V ) × BG(W ) −→ BG(V ⊕ W )

classify Whitney sum. Bundle level: let

Sph(G)(V ) = B(∗, G(V ), SV ).

SV is the one-point compactification of V (or

its complexification, etc, as needed). These

give sectioned universal sphere bundles:

BG(V ) s //Sph(G)(V )
p

//BG(V ).

Fiberwise smash product of total spaces

Sph(G)(V ) ⊼ Sph(G)(W ) −→ Sph(G)(V ⊕ W ),

gives a map of sectioned bundles with fiber

SV ⊕W over

BG(V ) × BG(W ) −→ BG(V ⊕ W ).



Codify structure (again, commutative case only):

I − PFSP

[Parametrized Functor with Smash Product]

I -FCP B and a symmetric monoidal functor

E under S = {SV } from I to the symmetric

monoidal category of retracts:

SV −→ E(V )

and

E(V ) ⊼ E(W ) −→ E(V ⊕ W )

over and under

B(V ) × B(W ) −→ B(V ⊕ W ).

I − FSP

[Functor with Smash Product]

An I -PFSP over B = ∗, such as S = {SV }.



Thom space functor:

TG(V ) = Sph(G)(V )/s(BG(V )) = r!Sph(G)(V ).

Here r:BG(V ) −→ ∗, and r! is a base change

functor from parametrized spaces to spaces.

Induced products

TG(V ) ∧ TG(W ) −→ TG(V ⊕ W ).

In general, r! takes I -PFSP’s to I -FSP’s.

First Key Diagram:

I -FSP

I -PFSP

Fiber

OO

Base //

r!

��

I -FCP

I -FSP

For a PFSP E, let R = Fiber(E): then E is an

“R-PFSP”. Have a map R −→ r!(E) of FSP’s.



Orthogonal spectra:

Functors T from I to based spaces with

structure maps

σ:ΣWT(V ) = T(V ) ∧ SW −→ T(V ⊕ W ).

TG is an example:

TG(V )∧SW −→ TG(V )∧TG(W ) −→ TG(V ⊕W ).

External smash product of orthogonal spectra:

(T ⊼ T ′)(V, W ) = TV ∧ T ′W,

a functor on I × I .

Left Kan extension along ⊕:I ×I −→ I gives

the internal smash product T ∧ T ′.



The category of orthogonal spectra is symmet-

ric monoidal with unit S = {SV }. Its monoids

are the orthogonal ring spectra. The TG are

examples.

Using Σ instead of I , the symmetric monoidal

category of topological symmetric spectra is

defined similarly. Σ embeds in I via n 7→ Rn.

The TG restrict to symmetric ring spectra.

Model category yoga: restriction along Σ ⊂ I

gives Quillen equivalences relating all types of

structured orthogonal spectra to the analogous

structured symmetric spectra. [HSS, MMSS].



Extend I to finite or countably infinite inner

product spaces and linear isometries that are

not necessarily isomorphisms. We can extend

I -FCP’s and I -PFSP’s to functors defined on

the extended I , uniquely up to isomorphism.

Fix U
∼= R∞. Define L (j) = I (Uj, U). With

evident permutations and structure maps given

by ⊕ and ◦, L has the structure of an operad.

It is an E∞ operad, meaning that the spaces

L (j) are Σj-free and contractible.

For an I -FCP B, also write B for colimB(V ),

where the colimit runs over the inclusions of

the finite dimensional V ⊂ U (not over the

whole category I ). There are action maps

L (j) ×Σj
B × · · · × B −→ B

that make B an “L -space” (or E∞ space).



Digression: An infinite loop space machine is

a “group completion” functor from E∞-spaces

to spectra. There is an essentially unique one,

and it gives an equivalence between grouplike

E∞-spaces and connective spectra.

Ignoring isometries, a prespectrum T indexed

on V ⊂ U gives a spectrum E = LT [LMS].

When the adjoint structure maps

T(V ) −→ ΩW−V T(W )

are inclusions,

E(V ) = colimV ⊂WΩW−V T(W ).

For V ⊂ W , E(V ) ∼= ΩW−V E(W ). No non-

trivial symmetric or orthogonal spectrum can

be such an “honest” spectrum.

Ω∞E = E0 is an E∞-space. (The relevant

E∞ operad is the infinite little cubes operad).

Symmetric and orthogonal spectra cannot have

such highly structured zeroth spaces.



Each f :U j −→ U in L (j) defines a choice

E1 ∧ · · · ∧ Ej = f∗(E1 ⊼ · · · ⊼ Ej)

of internalization of an external smash product

E1 ⊼ · · · ⊼ Ej = L(ℓE1 ⊼ · · · ⊼ ℓEj),

where ℓ views spectra as prespectra. These

choices glue to a twisted half smash product

L (j) ⋉ E1 ⊼ · · · ⊼ Ej,

a canonical j-fold internal smash product.

BG = colimBG(V ). Analogously, MG = LTG.

The Thom spectra MG were the first examples

of E∞ ring spectra.

An E∞ ring spectrum E has an action by L

given by action maps

L (j) ⋉Σj
E ⊼ · · · ⊼ E −→ E.



Digression Starting point of [EKMM].

Parametrize the identity map of E: L-spectra

are spectra with an action L (1) ⋉ E −→ E by

the monoid L (1). Hide the operad L in a

smash product on L-spectra:

E1 ∧ · · · ∧ Ej ≡ L (j) ⋉
L (1)j E1 ⊼ · · · ⊼ Ej.

This is associative [Mike Hopkins observation

about L ] and commutative. Not quite unital,

but there is a weak equivalence λ:S ∧E −→ E.

EKMM S-modules are L-spectra such that λ is

an isomorphism, and all S ∧ E are S-modules.

S-modules, L-spectra, and spectra give Quillen

equivalent model categories.

EKMM ring spectra are S-algebras, that is,

monoids in the category of S-modules.



For an MQR E∞ ring spectrum E, S ∧ E is

a (commutative) S-algebra and λ:S ∧ E −→ E

is a weak equivalence of E∞ ring spectra. Thus

modern S-algebras are essentially the same thing

as E∞ ring spectra.

Miracle [MM,S] There are Quillen equivalences

relating all types of structured symmetric and

orthogonal spectra to the analogous structured

S-modules.

The calculational information explicit on the

zeroth “E∞ ring spaces” of E∞ ring spectra

is implicit in symmetric and orthogonal ring

spectra, which do not have such zeroth spaces.



Second Key Diagram:

E∞ ring spectra

parametrized E∞ ring spectra

Fiber

OO

Base //

r!

��

E∞ spaces

E∞ ring spectra

E∞ ring map R = FiberE −→ r!(E).

Functor L from first key diagram to second:

L = colim:I -FCP −→ E∞ spaces

L:I -FSP −→ E∞ ring spectra

L:I -PFSP −→ parametrized E∞ ring spectra



Theorem 1 For an R-PFSP E, r!LE is an E∞

ring spectrum under LR and therefore gives a

commutative LR-algebra in the sense of EKMM.

Theorem 2 For an E∞ map f :X −→ B and

a parametrized E∞ ring spectrum E over B,

f∗E is a parametrized E∞ ring spectrum over

X and r!f
∗E is an E∞ ring spectrum.

Theorem 1 creates examples that feed into

Theorem 2. Theorem 2 generalizes the gener-

alized E∞ ring Thom spectra of Gaunce Lewis.

Example: Let φ ∈ k2(X) for a spectrum X.

Then φ is a map of spectra X −→ Σ2k and has

zeroth map f :X0 −→ BU = k2, which is an E∞

map. For any E over BU , we have an E∞ ring

spectrum r!f
∗E.



Orthogonal spectra over spaces B as in [MS]?

No good theory of E∞ ring spectra over B:

E ∧B E′ = ∆∗(E ⊼B E′)

is not well-behaved. [LMS] type parametrized

spectra! Model theory problems, but they do

give an equivalent homotopy category.

For an [LMS] spectrum E indexed on U and

parametrized over B, there is a twisted half-

smash product [ELM, BMS]

I (U, U
′) ⋉ E

indexed on U′ and parametrized over

I (U, U
′) × B.

The fiber over (f, b) is f∗(Eb). Parametrized

E∞ ring spectra E have action maps

L (j) ⋉Σj
E ⊼ · · · ⊼ E −→ E

over

L (j) ×Σj
B × · · · × B −→ B.



Bar construction I -FCP’s [MQR]

A monoid I -FCP G can act termwise from

the left on an I -FCP X and on the right on

an I -FCP Y . We then have a two-sided bar

construction I -FCP [MQR]

B(Y, G, X)(V ) = B(Y (V ), G(V ), X(V )).

B(Y, G, X) = |B∗(Y, G, X)|

Bq(Y, G, X) = Y × Gq × X

Nota bene: When G is a group I -FCP, it acts

on B(Y, G, X) via action on Y × Gq × X:

g(y, g1, · · · , gq, x) = (yg−1, gg1g−1, · · · , ggqg
−1, gx)



Examples of R-PFSP’s [MS]

When G maps to F , F(V ) = F(SV , SV ), we

can replace X by an I -FSP R with G-action

to obtain an R-PFSP

B(Y, G, R)(V ) = B(Y (V ), G(V ), R(V ))

over B(Y, G, ∗) and an R-FSP r!B(Y, G, R).

(R-FSP’s are essentially orthogonal R-algebras).

When Y = ∗ and R = S, this gave

Sph(G) = B(∗, G, S)

and the Thom FSP (MG =)TG = r!Sph(G).

Generalized Thom spectra r!B(Y, G, S).



Example: Let Y = GL1(E) for a ring spectrum

E. This is the space of unit components of E0.

Any G mapping to F acts on Y , and B(Y, G, ∗)

classifies E-oriented G-bundles. When E is an

E∞ ring spectrum, Y and B(Y, G, ∗) are E∞

spaces, and B(Y, G, ∗) −→ BG is an E∞-map.

Example: Away from 2,

M Top = r!Sph(Top) ≃ r!(BO⊗, F, S)

as FSP’s, or equivalently as S-algebras.



Iterated examples: Thom Thom spectra

Let G be a group FCP that maps to F , Y be

a right G-FCP, and R be a left G-FSP.

Theorem 3 Q = r!B(Y, G, R) is both a left

G-FSP and an R-FSP.

Can plug in Q instead of R to get r!B(Y, G, Q),

and can iterate. Specialize to Y = ∗. Define

M(G;R) = r!B(∗, G, R).



M(G;R) is an MG∧R-FSP (=MG∧R-algebra).

Unit η:S −→ R induces

α:MG = M(G;S) −→ M(G;R).

Inclusion of fiber gives

ι:R = M(e;R) −→ M(G;R).

Via product φ, these give a map S-algebras

ξ:MG ∧ R α∧ι //M(G;R) ∧ M(G;R)
φ

//M(G;R).

Often ξ is an equivalence:

“M(G;S) ∧S R ≃ M(G;R)′′



Define M0G = S, M1G = MG,

MnG = M(G;Mn−1G).

MnG is an MG ∧ Mn−1G-algebra.

Iterated geometric Thom spectra.

Iterates of ξ give equivalences

Theorem 4 MnU ≃ (MU)∧n.

For an E∞ map f :X −→ BU ,

Mnf ≡ r!f
∗MnU ≃ (Mf)∧n.



Post talk addendum:

Let B be an FCP (such as BG), T be an FSP

(such as TG). Get a new FSP B+ ∧ T by

(B+ ∧ T)(V ) = B(V )+ ∧ T(V ).

Idea: “FSP’s are tensored over FCP’s.”

For a group FCP G, the Thom diagonal

TG −→ BG+ ∧ TG

is a map of FSP’s. Pass to spectra:

∆ : MG −→ Σ∞BG+ ∧ MG

is a map of (commutative) S-algebras.



Let µ : MG −→ E be a map of S-algebras, e.g.

id, MU → kU, MSpin → kO, MString → tmf.

Let φ:E ∧ E −→ E be the product.

The composite Thom isomorphism map

MG ∧ E
∆∧id��

Σ∞BG+ ∧ MG ∧ E

id∧µ∧id
��

Σ∞BG+ ∧ E ∧ E

id∧φ
��

Σ∞BG+ ∧ E

is an equivalence of S-algebras.
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