LECTURE 2

NOTES BY SHAWN HENRY IN 2007, REVISED BY PETER MAY IN 2011

1. FINITELY GENERATED ABELIAN GROUPS

We discuss the fundamental theorem of abelian groups to give a concrete illustration of when something that seems natural is not.

Definition 1.1. An abelian group A is said to be finitely generated if there are finitely many elements $a_1, ..., a_q \in A$ such that, for any $x \in A$, there are integers $k_1, ..., k_q$ such that $x = \sum_{i=1}^q k_i a_i$. The finitely generated group A is said to be free of rank q if the a_i can be so chosen that $x = \sum_{i=1}^q k_i' a_i$ implies $k_i = k_i'$ for $1 \le i \le q$. That is, x can be expressed uniquely as a linear combination of the a_i ; the set $\{a_i\}$ is then said to be a basis for A.

Let \mathbb{N} denote the positive integers (natural numbers).

Definition 1.2. Let A be an abelian group. The torsion subgroup of A, denoted T(A), is the set $T(A) = \{a \in A \mid \exists n \in \mathbb{N} \text{ such that } na = 0\}.$

Definition 1.3. An abelian group A is said to be torsion-free if $T(A) = \{0\}$.

Lemma 1.4. Let A be an abelian group. Then A/T(A) is torsion-free.

Proof. We leave this as an exercise for the reader.

Theorem 1.5. If A is a finitely generated torsion-free abelian group that has a minimal set of generators with q elements, then A is isomorphic to the free abelian group of rank q.

Proof. By induction on the minimal number of generators of A. If A is cyclic (that is, generated by one non-zero element), the conclusion is clear. Suppose that the result holds for all finitely generated torsion-free abelian groups with a minimal set of generators having less than q elements. Suppose A is torsion-free and has a minimal set of q generators, say a_1, \cdots, a_q . If $mb = a_i$ for any i and some $m \in \mathbb{N}$, we may replace a_i by b and still have a set of generators, so we may as well assume that $mb = a_i$ implies m = 1. We claim that $\{a_i\}$ is a basis for A. Let $a = a_1$. We claim that the quotient $A/\mathbb{Z}a$ is torsion free. Suppose not, say $m\bar{c} = 0$ where \bar{c} is the image of $c \in A$ in $A/\mathbb{Z}a$. Then mc = na for some $n \in \mathbb{Z}$. We can assume that $n \geq 1$ and that m and n are relatively prime, say rm + sn = 1 for integers r and s. Let b = ra + sc. Then

$$mb = mra + msc = rma + sna = a$$
,

hence m=1 and $\bar{c}=0$. Now $A/\mathbf{Z}a_1$ is torsion-free, and the set of q-1 elements $\bar{a}_i, i \geq 2$, is a minimal set of generators and hence a basis for $A/\mathbf{Z}a$. To check our first claim, it suffices to show that $\sum k_i a_k = 0$ implies $k_i = 0$ for each i, and this is now an immediate verification.

1

Definition 1.6. Let A be an abelian group, and let B and C be subgroups of A. We say that A is the internal direct sum of B and C, denoted $A = B \oplus C$, if A = B + C and $B \cap C = \{0\}$ where $B + C = \{b + c | b \in B \text{ and } c \in C\}$.

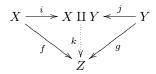
Example: A free abelian group of rank q is the internal direct sum of q cyclic subgroups, each isomorphic to \mathbf{Z} .

Definition 1.7. Let \mathfrak{C} be a category and let X and Y be objects of \mathfrak{C} . A morphism $f: X \to Y$ is said to be a monomorphism when, for any object Z of \mathfrak{C} and any pair of morphisms $i, j: Z \to X$, if $f \circ i = f \circ j$ then i = j.

Definition 1.8. Let \mathfrak{C} be a category and let X and Y be objects of \mathfrak{C} . A morphism $f: X \to Y$ is said to be an epimorphism when, for any object Z of \mathfrak{C} and any pair of morphisms $i, j: Y \to Z$, if $i \circ f = j \circ f$ then i = j.

Exercise: Show that monomorphisms and epimorphisms of abelian groups are what you think they are: homomorphisms that are one to one or onto.

Definition 1.9. Let X and Y be objects of a category \mathfrak{C} . The coproduct of X and Y, is an object $X \coprod Y$ together with homomorphisms $i \colon X \to X \coprod Y$ and $j \colon Y \to X \coprod Y$ with the universal property that for any object Z and morphisms $f \colon X \to Z$ and $g \colon Y \to Z$, there is a unique homomorphism $k \colon X \coprod Y \to Z$ making the following diagram commute:



It follows that i and j are monomorphisms.

Remark: This is an example of a definition by a universal property. Anything defined in such a fashion is unique up to isomorphism if it exists, but such an object need not exist in a given category; one must give a construction of such an object and prove that it satisfies the universal property.

Definition 1.10. Let A and B be abelian groups. The coproduct of A and B is called the (external) direct sum of A and B and again written $A \oplus B$. It is constructed explicitly so that if we identify A and B with their images under i and j, then $A \oplus B$ is the internal direct sum of A and B.

Theorem 1.11. Let A be a finitely generated abelian group. Then there is an isomorphism $f: T(A) \oplus A/T(A) \to A$.

Proof. We have what is called an exact sequence

$$0 \longrightarrow T(A) \xrightarrow{i} A \xrightarrow{q} A/T(A) \longrightarrow 0,$$

where i is the inclusion (a monomorphism) and q is the quotient homomorphism (an epimorphism). Since A/T(A) is torsion free and finitely generated, it is free on a finite set of generators $q(a_i)$. Mapping $q(a_i)$ to a_i specifies a homomorphism $j \colon A/T(A) \to A$. Then A is the internal direct sum of the image T(A) of i and the image B of j. Indeed, $T(A) \cap B = 0$ since B is torsion free. For $a \in A$, $q(a) = \sum_i k_i q(a_i)$ and $a - \sum_i k_i a_i$ is in T(A), hence A = T(A) + B.

LECTURE 2 3

Corollary 1.12. Every finitely generated abelian group is the direct sum of a finite group and a free abelian group of rank q for some $q \ge 0$.

Proof. Since A is finitely generated, T(A) is a finite group.

Exercise: Let A be a finite abelian group. Then $T(A) = \bigoplus_{p \text{ prime}} T_p(A)$ where $T_p(A) = \{a \in A | p^q a = 0 \text{ for some } q \in \mathbb{Z}\}.$

The description of a finitely generated abelian group as the direct sum of a free abelian subgroup and the finite subgroups $T_p(A)$ is a version of the fundamental theorem of abelian groups. In fact, one can go further and prove that each $T_p(A)$ is a finite direct sum of cyclic groups of order a power of p.

2. Naturality

The short exact sequence above is a functor of A. If $f: A \to B$ is a homomorphism of abelian groups, we have an induced map of short exact sequences

$$0 \longrightarrow T(A) \xrightarrow{i} A \xrightarrow{q} A/T(A) \longrightarrow 0$$

$$\downarrow^{f} \qquad \downarrow^{\bar{f}} \qquad \downarrow^{\bar{f}}$$

$$0 \longrightarrow T(B) \xrightarrow{i} B \xrightarrow{q} B/T(B) \longrightarrow 0$$

In more detail T(A), A, and A/T(A) are functors of A and i and q are natural transformations. However, the splitting of A as a direct sum is *not* natural. To explain this, we shall use the following result about the identity functor on the category of abelian groups or of finitely generated abelian groups.

Lemma 2.1. Every natural transformation $\mu: Id \to Id$ is multiplication by some $n \in \mathbf{Z}$.

Proof. Let A be an abelian group and $a \in A$. Let $f: \mathbf{Z} \to A$ be the homomorphism given by f(1) = a. Naturality gives the commutative diagram

$$\begin{array}{c|c}
\mathbf{Z} & \xrightarrow{f} & A \\
\mu_{\mathbf{Z}} & & \downarrow \mu_{A} \\
\mathbf{Z} & \xrightarrow{f} & A
\end{array}$$

Applied to $1 \in \mathbf{Z}$, this gives

$$\mu_A(a) = \mu_A(f(1)) = f(\mu_{\mathbf{Z}}(1)) = \mu_{\mathbf{Z}}(1)f(1) = \mu_{\mathbf{Z}}(1) \cdot a.$$

The promised integer n is $\mu_{\mathbf{Z}}(1)$.

Theorem 2.2. There is no non-zero natural homomorphism $\nu \colon A/T(A) \to A$, let alone a natural monomorphism.

Proof. Assume ν is a natural homomorphism. The composite $\mu = \eta \circ q \colon Id \to Id$ is also natural. By the lemma, there exists n such that ν is multiplication by n. We claim that n=0. If not, consider $A=\mathbf{Z}/2n\mathbf{Z}$. Multiplication by n is a nonzero homomorphism $A\to A$, but A/T(A)=0 and therefore $\nu\colon A\to A$ is zero. This is a contradiction.

Naturality is not as obvious a notion as it might appear at first sight!