
CHAPTER 1

Bialgebras and Hopf algebras

We define bialgebras, Hopf Algebras, and related algebraic structures, largely
following the original paper [?] of Milnor and Moore but incorporating various sim-
plifications and amplifications. The reader is urged to recall our conventions on
grading and commutativity from ??. The theme is the definition of algebraic struc-
tures by use of dual commutative diagrams. Thus the familiar concepts of algebra
and module dualize to concepts of coalgebra and comodule, and the structures of
algebra and coalgebra combine to give the notion of a bialgebra. Incorporating
antipodes (sometimes called conjugations), we obtain the notion of a Hopf algebra.
In the cocommutative case, bialgebras and Hopf algebras can be viewed as monoids
and groups in the symmetric monoidal category of cocommutative coalgebras.

1. Preliminaries

We shall work over a commutative ground ring R. The reader may prefer
to take R to be a field, since that holds in most applications. Unless otherwise
specified, ⊗ = ⊗R and Hom = HomR. Recall that these are defined on graded
R-modules by

(A⊗B)n =
∑
i+j=n

Ai ⊗Bj and Homn(A,B) =
∏
i

Hom(Ai, Bi+n).

We think of R, or any other ungraded R-module, as concentrated in degree 0. We
define the dual A∗ of A by A∗ = Hom(A,R), so that An = Hom(An, R); here we
have implicitly reversed the grading to superscripts (with a sign change).

Of course, ⊗ is associative and unital (with unit R) up to natural isomorphism
and has the natural commutativity isomorphism

γ : A⊗B → B ⊗A
specified by γ(a⊗ b) = (−1)deg a deg bb⊗ a. We introduce such a sign whenever two
entities are permuted. By a harmless standard abuse, we omit the unit and associa-
tivity isomorphisms from diagrams and treat them as if they were identifications.
Use of the commutativity isomorphism is always made explicit. In categorical lan-
guage, the category MR of graded R-modules is symmetric monoidal, and it is
closed in the sense that there is a natural isomorphism

Hom(A⊗B,C) ∼= Hom(A,Hom(B,C));

it sends f to g, where g(a)(b) = f(a⊗ b). There are further natural maps

ν : Hom(A,B)⊗ C → Hom(A,B ⊗ C),

ρ : A→ A∗∗,

and
α : Hom(A,C)⊗Hom(B,D) −→ Hom(A⊗B,C ⊗D),
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which specializes to
α : A∗ ⊗B∗ → (A⊗B)∗.

These maps are specified by

ν(f ⊗ c)(a) = (−1)deg(c)deg(a)f(a)⊗ c,

ρ(a)(f) = (−1)deg(a) deg(f)f(a),
and

α(f ⊗ g)(a⊗ b) = (−1)deg(g) deg(b)f(a)g(b).
We say that A is projective if each Ai is projective (over R), and we say that A

is of finite type if each Ai is finitely generated (over R). We say that A is bounded if
it is non-zero in only finitely many degrees. Thus A is finitely generated if and only
if it is bounded and of finite type. We say that A is bounded below (or above) if
Ai = 0 for i sufficiently small (or large). Then ν is an isomorphism if A is bounded
and either A or C is projective of finite type, ρ is an isomorphism if A is projective
of finite type, and the last map α is an isomorphism if A and B are bounded below
and A or B is projective of finite type. In these assertions, boundedness hypotheses
ensure that the products appearing in our Hom’s are finite, so that they become
sums, and projective of finite type hypotheses allow us to apply the analogous
assertions for ungraded modules. Henceforward, we implicitly restrict attention to
non-negatively graded modules, for which Ai = 0 if i < 0, since that is the case of
greatest interest in algebraic topology.

Virtually all of our substantive results will be proven by use of filtrations and
bigraded modules. We shall usually have Ap,q = 0 for all p < 0 or all p > 0. The
signs occurring in the study of bigraded modules always refer to the total degree
p+ q. The tensor product of bigraded modules is given by

(A⊗B)p,q =
∑

i+j=p,k+l=q

Ai,k ⊗Bj,l.

Similarly, the dual A∗ is given by Ap,q = Hom(Ap,q, R).
A filtration {FpA} of a graded module A is an expanding sequence of submod-

ules FpA. A filtration is said to be complete if

A ∼= colimFpA and A ∼= limA/FpA

In most cases that we shall encounter, we shall have either FpA = A for p ≥ 0 and
∩pFpA = 0 or FpA = 0 for p < 0 and A = ∪pFpA. In such cases, completeness is
clear. We give R the trivial filtration, FpR = 0 for p < 0 and FpR = R for p ≥ 0.
The tensor product of filtered modules is filtered by

Fp(A⊗B) = Im

 ∑
i+j=p

FiA⊗ FjB

 ⊂ A⊗B.
We say that a filtration of A is flat if each A/FpA is a flat R-module; we say that
a filtration is split if each sequence

0→ FpA→ A→ A/FpA→ 0

is split exact over R. Of course, these both hold automatically when R is a field.
The associated bigraded module E0A of a filtered module A is specified by

E0
p,qA = (FpA/Fp−1A)p+q.
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Of course, E0 is a functor from filtered modules to bigraded modules.

Proposition 1.1. Let f : A→ B be a map of complete filtered R-modules. If
E0f : E0A → E0B is a monomorphism, or an epimorphism, or an isomorphism,
then f and all its restrictions Fpf are also monomorphisms, or epimorphisms, or
isomorphisms.

Proof. The commutative diagrams

0 // FpA/Fp−1A //

��

FqA/Fp−1A

��

// FqA/FpA //

��

0

0 // FpB/Fp−1B // FqB/Fp−1B // FqB/FpB // 0

imply inductively that f induces a monomorphism or epimorphism or isomorphism
FqA/FpA → FqB/FpB for all p < q. Passing to colimits over q, we find that the
same is true for A/FpA → B/FpB for all p. Since lim is left exact and preserves
isomorphisms, we obtain the conclusions for the monomorphism and isomorphism
cases by passage to limits. Since lim is not right exact, we must work a little
harder in the epimorphism case. Here we let Cp be the kernel of the epimorphism
A/FpA→ B/FpB and let C = limCp. A chase of the commutative exact diagram

0

��

0

��
Fp+1A/FpA //

��

Fp+1B/FpB //

��

0

0 // Cp //

��

A/FpA //

��

B/FpB //

��

0

0 // Cp+1 // A/Fp+1A //

��

B/Fp+1B //

��

0

0 0

shows that {Cp} is an inverse system of epimorphisms. Therefore lim1Cp = 0 and
each map C → Cp is an epimorphism. The exact sequence of inverse systems

0→ {Cp} → {A/FpA} → {B/FpB} → 0
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gives rise to an exact sequence 0 → C → A → B → 0 and a chase of the commu-
tative exact diagram

0

��

0

��
C //

��

Cp //

��

0

0 // FpA //

��

A //

��

A/FpA //

��

0

0 // FpB // B //

��

B/FpB //

��

0

0 0
shows that FpA→ FpB is an epimorphism. �

Chases of congeries of exact sequences give the following comparison assertion.

Proposition 1.2. Let A and B be filtered R-modules such that A and B are
either both split or both flat. Then the natural map

E0A⊗ E0B → E0(A⊗B)

is an isomorphism of bigraded R-modules.

2. Algebras, coalgebras, and bialgebras

We give the most basic definitions in this section.

Definition 2.1. An R-algebra A = (A, φ, η) is a graded R-module A together
with a product φ : A⊗A→ A and unit η : R→ A such that the following diagrams
commute.

A⊗A⊗A
id⊗φ //

φ⊗id

��

A⊗A

φ

��

and A⊗R
id⊗η //

JJJJJJJJJJ

JJJJJJJJJJ A⊗A

φ

��

R⊗A

tttttttttt

tttttttttt

η⊗idoo

A⊗A
φ

// A A

.

A is commutative if the following diagram also commutes.

A⊗A
γ //

φ ""F
FF

FF
FF

FF
A⊗A

φ||xx
xx

xx
xx

x

A

An augmentation of A is a morphism of algebras ε : A → R. Given ε, ker ε is
denoted IA and called the augmentation ideal of A; since εη = id, A ∼= R⊕ IA. If
A and B are algebras, then so is A⊗B; its unit and product are

R = R⊗R
η⊗η //A⊗B and A⊗B ⊗A⊗B

(φ⊗φ)(id⊗γ⊗id) //A⊗B.
An algebra A is commutative if and only if φ : A⊗A→ A is a map of algebras.
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Definition 2.2. An R-coalgebra C = (C,ψ, ε) is a graded R-module C to-
gether with a coproduct ψ : C → C ⊗ C and counit (or augmentation) ε : C → R
such that the following diagrams commute.

C
ψ //

ψ

��

C ⊗ C

id⊗ψ
��

and C

tttttttttt

tttttttttt

JJJJJJJJJJ

JJJJJJJJJJ

ψ

��
C ⊗ C

ψ⊗id
// C ⊗ C ⊗ C C ⊗R C ⊗ C

ε⊗id
//

id⊗ε
oo R⊗ C

C is cocommutative if the following diagram also commutes.

C
ψ

##G
GG

GG
GG

GG
ψ

{{xx
xx

xx
xx

x

C ⊗ C γ
// C ⊗ C.

A unit (sometimes called coaugmentation) for C is a morphism of coalgebras
η : R→ C; given η, define JC = coker η. Since εη = id, C ∼= R ⊕ JC. If C and D
coalgebras, then so is C ⊗D; its augmentation and coproduct are

C ⊗B
ε⊗ε // R⊗R = R and C ⊗D

(id⊗γ⊗id)(ψ⊗ψ) // C ⊗D ⊗ C ⊗D.
A coalgebra C is cocommutative if and only if ψ is a map of coalgebras.

Definition 2.3. Let A be a flat R-module. A bialgebra (A, φ, ψ, η, ε) is an
algebra (A, φ, η) with augmentation ε and a coalgebra (A,ψ, ε) with unit η such
that the following diagram is commutative.

A⊗A
φ //

ψ⊗ψ
��

A
ψ // A⊗A

A⊗A⊗A⊗A
id⊗γ⊗id

// A⊗A⊗A⊗A

φ⊗φ

OO

That is, φ is a morphism of coalgebras or, equivalently, ψ is a morphism of
algebras. If the associativity of φ and coassociativity of ψ are deleted from the defi-
nition, then A is said to be a quasi bialgebra1. There result notions of coassociative
quasi bialgebra and of associative quasi bialgebra.

The flatness of A is usually not assumed but holds in practice; in its absence,
the notion of bialgebra is perhaps too esoteric to be worthy of contemplation.

Lemma 2.4. Let A be projective of finite type.
(i) (A, φ, η) is an algebra if and only if (A∗, φ∗, η∗) is a coalgebra, ε is an aug-

mentation of A if and only if ε∗ is a unit of A∗, and A is commutative if and
only if A∗ is cocommutative.

(ii) (A, φ, ψ, η, ε) is a bialgebra if and only if (A∗, φ∗, ψ∗, η∗, ε∗) is a bialgebra.

Similar conclusions hold for quasi bialgebras, and so forth.

Definition 2.5. We define indecomposable and primitive elements.

1This use of “quasi” is due to Milnor and Moore [?]; Drinfeld later gave a more precise
meaning to the term quasi-Hopf algebra [?].
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(i) Let A be an augmented algebra. Define the R-module QA of indecomposable
elements of A by the exact sequence

IA⊗ IA
φ // IA // QA // 0.

Note that QA is well-defined even if A is not associative.
(ii) Let C be a unital coalgebra. Define the R-module PC of primitive elements

of C by the exact sequence

0 // PC // JC
ψ // JC ⊗ JC.

Let IC = ker ε. We say that x ∈ IC is primitive if its image in JC lies in
PC. Note that PC is well-defined even if C is not coassociative.

Lemma 2.6. If C is a unital coalgebra and x ∈ IC, then

ψ(x) = x⊗ 1 +
∑

x′ ⊗ x′′ + 1⊗ x,

where
∑
x′ ⊗ x′′ ∈ IC ⊗ IC. If x is primitive, then

ψ(x) = x⊗ 1 + 1⊗ x.

Proof. C⊗C = (R⊗R)⊕ (IC⊗R)⊕ (R⊗IC)⊕ (IC⊗IC), where R = Im η,
and the natural map IC → JC is an isomorphism. The first statement holds since

(ε⊗ id)ψ(x) = x = (id⊗ε)ψ(x),

and the second statement is immediate from the definition. �

When x ∈ IC, we usually write ψ(x) =
∑
x′⊗x′′ generically for the coproduct2,

including the terms x⊗ 1 and 1⊗ x and omitting an index of summation.

Lemma 2.7. If A is an augmented algebra, then P (A∗) = (QA)∗. If, further,
A is projective of finite type, then

IA⊗ IA // IA // QA // 0

is split exact if and only if

0 // P (A∗) // I(A∗) // I(A∗)⊗ I(A∗)

is split exact; when this holds, P (A∗)∗ = QA.

Definition 2.8. Let A be a quasi bialgebra. Define ν : PA → QA to be the
composite

PA // JA ∼= IA // QA

(or, equivalently, the restriction of IA→ QA to PA if PA is regarded as contained
in A). A is said to be primitive, or primitively generated, if ν is an epimorphism;
A is said to be coprimitive if ν is a monomorphism.

A structure A (algebra, coalgebra, bialgebra, etc) is filtered if it has a split
filtration such that all of the structure maps preserve filtration. It follows that
E0A is a structure of the given type. The following definitions give basic tools
for the study of (quasi) bialgebras by passage to associated bigraded primitive or
coprimitive bialgebras. We warn the reader that the filtrations in the following two
definitions are not necessarily complete. In the first case, that is a familiar fact

2In the algebraic literature, the more usual convention is to write ψ(x) =
∑

x(1) ⊗ x(2).
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from classical algebra since the intersection of the powers of a (two-sided) ideal in
a ring can be non-zero [?, p. 110].

Definition 2.9. Let A be an augmented algebra. Define the product filtration
{FpA} by FpA = A if p ≥ 0 and FpA = (IA)−p if p < 0. Observe that

E0
p,∗A = 0 if p > 0, E0

0,∗A = E0
0,0A = R, and E0

−1,∗A = QA.

If A is an associative quasi bialgebra with split product filtration, then E0A is a
primitive bialgebra since the elements of E0

−1,∗A generate E0A and are evidently
primitive, and this implies coassociativity.

Definition 2.10. Let C be a unital coalgebra. Define the coproduct filtration
{FpC} by FpC = 0 if p < 0, F0C = R, and FpC = ker ψ̄p if p > 0, where ψ̄p is the
composite

IC ⊂ C
ψp //C ⊗ . . .⊗ C //JC ⊗ . . .⊗ JC, p factors.

Observe that

E0
p,∗C = 0 if p < 0, E0

0,∗C = E0
0,0C = R, and E0

1,∗C = PC.

If C is a coassociative quasi bialgebra with split coproduct filtration, then E0C is
a coprimitive bialgebra since the elements of E0

−1,∗C are evidently indecomposable
and include all the primitives; Lemma 1.1 below implies that E0C is associative.

3. Antipodes and Hopf algebras

For a monoid G, the monoid ring R[G] is a bialgebra with product, coproduct,
unit and counit induced by the product, diagonal, identity element, and trivial
function G −→ {pt}. If G is a group, its inverse function induces an antipode on
R[G], in the sense of the following definition.

Definition 3.1. An antipode χ on a bialgebra A is a map χ : A → A of
R-modules such that the following diagrams commute.

A⊗A
id⊗χ // A⊗A

φ

��

A⊗A
χ⊗id // A⊗A

φ

��
A

ψ

OO

ε
// R η

// A A

ψ

OO

ε
// R η

// A

A Hopf algebra is a bialgebra with a given antipode.

If A and B have antipodes χ, then A⊗B has the antipode χ⊗ χ.

Remark 3.2. The original definition of an antipode in Milnor and Moore [?]
required only one of these two diagrams to commute, since in the cases of interest
in algebraic topology, if one of them commutes, then so does the other. Actually, in
[?] and most of the topological literature, the term “conjugate” is used instead of
“antipode”. Historically, the concept of Hopf algebra originated in algebraic topol-
ogy, where the term “Hopf algebra” was used for what we are calling a bialgebra.
The term bialgebra was introduced later and is still rarely used in topology. In
fact, as we shall see in §3, the bialgebras that usually appear in algebraic topology
automatically have antipodes, so that it is reasonable to ignore the distinction, and
we do so where no confusion can arise. We have followed the algebraic literature in
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using the name antipode and distinguishing between bialgebras and Hopf algebras
because of the more recent interest in Hopf algebras of a kind that do not seem to
appear in algebraic topology, such as quantum groups.

Remark 3.3. In general, the existence and properties of antipodes is a subtle
question. For example, χ can exist but not satisfy χ2 = id. The order of an
antipode χ is defined to be the minimum n such that χn = id. It can be any even
number or can even be infinite [?, p. 89].

In the cocommutative case, the concepts of bialgebra and Hopf algebra can
be given a pleasant conceptual form. It is a standard and easy observation that
the tensor product is the categorical coproduct in the category of commutative
algebras. The units of A and B induce maps of algebras i : A −→ A⊗B ←− B : j,
and for any algebra maps f : A −→ C ←− B : g, the composite of f ⊗ g and the
product on C gives the unique map of algebras h : A⊗B −→ C such that h ◦ i = f
and h ◦ j = g. We are interested in the dual observation. Recall that, in any
category with products, we have the notion of a monoid, namely an object with an
associative and unital product, and of a group, namely a monoid with an antipode.
The following result is immediate from the definitions.

Proposition 3.4. The tensor product is the categorical product in the category
C of commutative coalgebras. A cocommutative bialgebra is a monoid in C , and a
cocommutative Hopf algebra is a group in C .

There is another conceptual way of thinking about antipodes. It is based on
the following construction.

Construction 3.5. Let C be a coalgebra andA be an algebra. Then Hom(C,A)
is an algebra, called a convolution algebra. Its unit element is the composite
C

ε−→ R
η−→ A and its product is the composite

∗ : Hom(C,A)⊗Hom(C,A) α−→ Hom(C ⊗ C,A⊗A)
Hom(ψ,φ)−−−−−−→ Hom(C,A).

If C is unital with unit η and A is augmented with augmentation ε, then the set
G(C,A) of maps of R-modules f : C −→ A such that fη = η and εf = ε is a
submonoid of Hom(C,A) under the convolution product ∗.

Remark 3.6. Visibly, when A is a bialgebra, an antipode is a (two-sided)
inverse to the identity map A −→ A in the monoid G(A,A). Therefore χ is unique
if it exists. This remark is one reason to prefer the two-sided rather than one-sided
definition of an antipode.

Clearly, a sensible way to prove that a bialgebra A is a Hopf algebra is to prove
more generally that G(A,A) is a group. We return to this point in §3, where we
give an easy general result of this form that applies to the examples of interest in
algebraic topology.

4. Modules, comodules, and related concepts

There are many further basic pairs of dual algebraic definitions.
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Definition 4.1. Let (A, φ, η) be an algebra. A left A-module (N, ξ) is an
R-module N and action ξ : A⊗N → N such that the following diagrams commute.

A⊗A⊗N
id⊗ξ //

φ⊗id

��

A⊗N

ξ

��

and A⊗N

ξ

��

R⊗N
η⊗idoo

ssssssssss

ssssssssss

A⊗N
ξ

// N N

For an R-module N , (A ⊗ N,φ ⊗ id) is an A-module and is said to be an
extended A-module. For an A-module (N, ξ), ξ is a morphism of A-modules. With
kernels and cokernels defined degreewise, the category of left A-modules is abelian.
There is an analogous abelian category of right A-modules. For a right A-module
(M,λ) and left A-module (N, ξ), the tensor product M ⊗A N , which of course is
just an R-module, can be described as the cokernel of

λ⊗ id− id⊗ξ : M ⊗A⊗N →M ⊗N ;

⊗A is a right exact functor of M and of N .

Definition 4.2. Given an augmentation ε : A → R of A, regard R as a (left
and right) A-module via ε and define

QAN = R⊗A N = N/IA ·N ;

QAN is called the module of A-indecomposable elements of N and is abbreviated
QN when there is no danger of confusion. Observe that QA(IA) = QA.

Definition 4.3. Let (C,ψ, ε) be a coalgebra. A left C-comodule (N, ν) is
an R-module N and coaction ν : N → C ⊗ N such that the following diagrams
commute.

N
ν //

ν

��

C ⊗N

ψ⊗id

��

and N

ν

�� KKKKKKKKKK

KKKKKKKKKK

C ⊗N
id⊗ν

// C ⊗ C ⊗N C ⊗N
ε⊗id

// R⊗N

For an R-module N , (C ⊗N,ψ⊗ id) is a C-comodule, said to be a coextended
C-comodule. For a C-comodule (N, ν), ν is a morphism of C-comodules. Since ⊗
is right but not left exact, the category of left C-comodules does not admit kernels
in general; it is abelian if C is a flat R-module. There is an analogous category of
right C-comodules. For a right C-comodule (M,µ) and a left C-comodule (N, ν),
define the cotensor product M�CN to be the kernel of

µ⊗ id− id⊗ν : M ⊗N →M ⊗ C ⊗N.
The functor � is left exact with respect to sequences of left or right C-comodules
which are split exact as sequences of R-modules (in the sense that the kernel at
each position is a direct summand).

Definition 4.4. Given a unit η : R → C, regard R as a (left and right) C-
comodule via η and define

PCN = R�CN = {n|ν(n) = 1⊗ n};
PCN is called the module of C-primitive elements of N and is abbreviated PN
when there is no danger of confusion. Observe that PC(JC) = PC.
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The following definition is fundamental. For a general algebra A, the tensor
product (over R) of A-modules is an A ⊗ A-module, but for bialgebras we can
internalize this structure by pullback along ψ.

Definition 4.5. Let (A, φ, ψ, η, ε) be a bialgebra. For left A-modules (N, ξ)
and (N ′, ξ′), the following composite defines a left A-module structure on N ⊗N ′.

A⊗N ⊗N ′
(id⊗γ⊗id)(ψ⊗id) // A⊗N ⊗A⊗N ′

ξ⊗ξ′ // N ⊗N ′

An A-structure (module, coalgebra, algebra, bialgebra, Hopf algebra, etc) is an
A-module and a structure of the specified type such that all the maps which define
the structure are morphisms of A-modules. Dually, for left A-comodules (N, ν) and
(N ′, ν′), the following composite defines a left A-comodule structure on N ⊗N ′.

N ⊗N ′
ν⊗ν′ // A⊗N ⊗A⊗N ′

(φ⊗id)(id⊗γ⊗id) // A⊗N ⊗N ′

The dual notion of an A-comodule and a structure whose structural maps are
morphisms of A-comodules will be referred to as an A-comodule structure.

Lemma 4.6. Let A be an algebra and N be an R-module, both projective of
finite type.

(i) (N, ξ) is a left A-module if and only if (N∗, ξ∗) is a left A∗-comodule and
then, if QN is also projective of finite type, (QN)∗ = P (N∗).

(ii) If A is a bialgebra, then N is a left A-structure if and only if N∗ is a left
A∗-comodule structure of the dual type.

Lemma 4.7. Let A be a bialgebra and C be a left A-coalgebra. Then QAC admits
a unique structure of coalgebra such that the natural epimorphism π : C → QAC is
a morphism of coalgebras.

Proof. The augmentation of QAC = R⊗A C is the map

id⊗ε : R⊗A C → R⊗A R = R

and the coproduct is the composite of

id⊗ψ : R⊗A C → R⊗A (C ⊗ C)

and the natural map R⊗A (C ⊗ C)→ (R⊗A C)⊗ (R⊗A C). �

Note that any bialgebra C which contains A as a sub bialgebra is certainly a
left A-coalgebra.

Lemma 4.8. Let A be a bialgebra and B be a left A-comodule algebra. Then
PAB admits a unique structure of algebra such that the natural monomorphism
ι : PAB → B is a morphism of algebras.

Definition 4.9. A morphism f : A → B of augmented algebras is said to be
normal if the images of the composites

IA⊗B
f⊗id // B ⊗B

φ // B and B ⊗ IA
id⊗f // B ⊗B

φ // B

are equal and if the quotient map π : B → B//f is a split epimorphism, where
B//f is defined to be the R-module

QAB = R⊗A B = B/IA ·B = B/B · IA = B ⊗A R.
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When f is an inclusion, B//f is generally written B//A. Clearly B//f admits
a unique structure of augmented algebra such that π is a morphism of augmented
algebras, and the following is an exact sequence of R-modules.

QA
Qf // QB

Qπ // Q(B//f) // 0

Definition 4.10. A morphism g : B → C of unital coalgebras is said to be
conormal if the kernels of the composites

B
ψ // B ⊗B

g⊗id // JC ⊗B and B
ψ // B ⊗B

id⊗g // B ⊗ JC
are equal and if the inclusion ι : B\\g → B is a split monomorphism, where B\\g
is defined to be the R-module

PCB = R�CB = ker(g ⊗ id)ψ = ker(id⊗g)ψ = B�CR.

When g is an epimorphism, B\\g is generally written B\\C. Clearly B\\g
admits a unique structure of unital coalgebra such that ι is a morphism of unital
coalgebras, and the following is an exact sequence of R-modules

0 // P (B\\g) Pι // PB
Pg // PC.

When R is a field, any morphism of commutative augmented algebras is normal
and any morphism of cocommutative unital coalgebras is conormal.

Remark 4.11. Let f : A → B be a morphism of bialgebras. If f is normal,
then B//f is a quotient bialgebra of B by Lemma 4.7. If f is conormal, then A\\f
is a sub bialgebra of A by Lemma 4.8. The first assertion generalizes. A two-sided
ideal J ⊂ IB is said to be a Hopf ideal if

ψ(J) ⊂ B ⊗ J + J ⊗B,
and then B/J (if flat) is a quotient bialgebra of B.

We emphasize that the previous few definitions and results work equally well
if bialgebras are replaced by Hopf algebras everywhere.





CHAPTER 2

Connected and component Hopf algebras

An R-module A such that Ai = 0 for i < 0 (as we have tacitly assumed
throughout) and A0 = R is said to be connected. Note that a connected algebra
admits a unique augmentation and a connected coalgebra admits a unique unit.
We shall see in §3 that a connected bialgebra always admits a unique antipode.
Except in §3, we therefore follow the literature of algebraic topology and only use
the term Hopf algebra in this chapter, since there is no real difference between the
notions when A is connected. Connected structures arise ubiquitously in topology
and have many special properties. For example, the homology of a connected
homotopy associative H-space X is a connected Hopf algbra. The homology of
non-connected but grouplike (π0(X) is a group) homotopy associative H-spaces
leads to the more general notion of a component Hopf algebra. When concentrated
in degree zero, these are just the classical group algebras R[G]. These too have
unique antipodes.

We prove basic theorems on the splitting of connected algebras and coalgebras
over a connected Hopf algebra in §2, and we prove the self-duality of free commu-
tative and cocommutative connected Hopf algebras on a single generator in §4. To
illustrate the power of these beautiful but elementary algebraic results, we show
how they can be used to prove Thom’s calculation of unoriented cobordism and
Bott’s periodicity theorem for BU in §5 and §6.

1. Connected algebras, coalgebras, and Hopf algebras

We here prove various special properties that hold in the connected case but
do not hold in general. However, they generally do apply to bigraded objects that
are connected to the eyes of one of the gradings, and such structures can arise from
filtrations of objects that are not connected.

Lemma 1.1. Let A be a connected coprimitive quasi Hopf algebra. Then A is
associative and commutative. If the characteristic of R is a prime p, then the pth

power operation ξ (defined only on even degree elements of A if p > 2) is identically
zero on IA.

Proof. Write a(x, y, z) = x(yz)− (xy)z and [x, y] = xy − (−1)deg x deg yyx. If
x, y, and z are primitive elements of IA, then a(x, y, z), [x, y], and ξ(x) are also
primitive by direct calculation from Lemma 2.6 and the fact that the coproduct is
a map of algebras. Since these elements obviously map to zero in QA, they must be
zero. Now proceed by induction on q = deg x, for fixed q by induction on r = deg y,
and for fixed q and r by induction on s = deg z. By calculation from the induction
hypothesis at each stage, we find that a(x, y, z), [x, y], and ξ(x) are primitive and
therefore zero. Here we prove commutativity before handling pth powers so as to
ensure that (x+ y)p = xp + yp. �

13
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A Prüfer ring is an integral domain all of whose ideals are flat. A Noetherian
Prüfer ring is a Dedekind ring.

Lemma 1.2. A connected Hopf algebra A over a Prufer ring R is the colimit
of its sub Hopf algebras of finite type.

Proof. Since R is Prufer, every submodule of the flat R-module A is flat.
Any element of A lies in a finitely generated sub algebra B, and B is clearly of
finite type. An inductive argument based on the form of ψ(x) given in Lemma 2.6
shows that the smallest sub Hopf algebra of A which contains B is also finitely
generated. �

Proposition 1.3. If f : A → B is a morphism of augmented algebras, where
B is connected, then f is an epimorphism if and only if Qf is an epimorphism.

Proof. Certainly Qf is an epimorphism if f is. Suppose that Qf is an epi-
morphism. By application of the five lemma to the commutative diagram with
exact rows

IA⊗ IA //

f⊗f
��

IA //

f

��

QA //

Qf

��

0

IB ⊗ IB // IB // QB // 0

we see by induction on n that f is an epimorphism in degree n for all n since f is
trivially an epimorphism in degree 0 by the connectivity of B. �

Proposition 1.4. If f : A → B is a morphism of R-flat unital coalgebras,
where A is connected, then f is a monomorphism if and only if Pf : PA→ PB is
a monomorphism.

Proof. The argument is dual to that just given. The flatness hypothesis
ensures that f ⊗ f : JA⊗ JA→ JB ⊗ JB is a monomorphism in degree n if f is a
monomorphism in degrees less than n. �

The following result is a version of “Nakayama’s lemma”. It and its dual are
used constantly in algebraic topology.

Lemma 1.5. If A is a connected algebra and N is a left A-module, then N = 0
if and only if QN = 0.

Proof. Clearly QN = 0 if and only if IA ⊗N → N is an epimorphism, and
this implies that N is zero by induction on degrees. �

Lemma 1.6. If A is a connected algebra and f : N → N ′ is a morphism of
left A-modules, then f is an epimorphism if and only if Qf : QN → QN ′ is an
epimorphism.

Proof. The functor Q is right exact, hence Q coker f = 0 and therefore
coker f = 0 if Qf is an epimorphism. �

The duals of the previous two results read as follows.

Lemma 1.7. If C is a connected coalgebra and N is a left C-comodule, then
N = 0 if and only if PN = 0.
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Lemma 1.8. If C is an R-flat connected coalgehra and f : N → N ′ is a
morphism of left C-comodules, then f is a monomorphism if and only if Pf is
a monomorphism.

2. Splitting theorems

We here prove the basic results of Milnor and Moore on tensor product decom-
positions of connected Hopf algebras. These play a key role in many calculations,
for example in the calculation of the cobordism rings of manifolds.

Theorem 2.1. Let A be a connected Hopf alqebra and B be a connected left
A-coalgebra. Write QB = QAB and assume that the quotient map π : B →
QB is a split epimorphism. Define ι : A → B by ι(a) = aη(1) and assume that
ι ⊗ id : A ⊗ QB → B ⊗ QB is a monomorphism. Then there is an isomorphism
f : B → A⊗QB which is a map of both left A-modules and right QB-comodules.

Proof. Since π is a split epimorphism, we can choose a map of R-modules
σ : QB → B such that πσ = id. Let g : A⊗QB → B be the induced map of left A-
modules. Since Qg : QB = Q(A⊗QB)→ QB is the identity, g is an epimorphism
by Lemma 1.6. We have the following composite of morphisms of A-modules.

h : A⊗QB
g // B

ψ // B ⊗B
id⊗π // B ⊗QB

Here A acts through ε : A→ R on QB and acts diagonally on the tensor products.
We claim that h is a monomorphism, so that g is a monomorphism and therefore
an isomorphism. Filter A⊗QB by the degrees of elements of QB,

Fp(A⊗QB) =
∑
i≤p

A⊗QiB,

The associated bigraded module of A⊗QB satisfies

E0
p,q(A⊗QB) = Aq ⊗QpB.

Filter B⊗QB similarly. Since h is a morphism of A-modules and is clearly filtration-
preserving when restricted to QB, it is filtration-preserving. Since π(an) = 0
unless deg(a) = 0, we see that E0h = ι ⊗ id and thus E0h is a monomorphism by
hypothesis. By Proposition 1.1, it follows that h is a monomorphism, as claimed.
Now observe that g(a⊗ η(1)) = ι(a) for a ∈ A and thus (id⊗ε)g−1ι = id : A→ A,
ε : QB → R. Define f to be the composite

B
ψ // B ⊗B

id⊗π // B ⊗QB g−1⊗id// A⊗QB ⊗QBid⊗ε⊗id// A⊗QB

Clearly f is a morphism of left A-modules and right QB-comodules. Recall the
filtration on A⊗QB. Inspection shows that fg : A⊗QB → A⊗QB is filtration-
preserving and that

E0(fg) = (id⊗ε)g−1ι⊗ πσ = id .
Therefore, by Proposition 1.1, fg and thus also f is an isomorphism. �

Note that, in the hypotheses, ι⊗ id will be a monomorphism if ι is a monomor-
phism and QB is flat. Since a direct summand of a flat module is flat, the as-
sumption on π implies that QB is flat if B is flat. Of course, when R is a field,
as is the case in most applications, the only assumption is that ι : A → B be a
monomorphism.
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The dual result reads as follows. Recall that we require Hopf algebras to be
R-flat.

Theorem 2.2. Let C be a connected Hopf algebra and B be a connected left
C-comodule algebra. Write PB = PCB and assume that the inclusion ι : PB → B
is a split monomorphism. Define π : B → C to be the composite of the coaction
ν : B → C⊗B and id⊗ε : C⊗B → C and assume that π⊗ id : B⊗PB → C⊗PB
is an epimorphism. Then there is an isomorphism g : C⊗PB → B which is a map
of both left C-comodules and right PB-modules.

When R is a field, the only assumption is that π : B → C be an epimorphism.
These results are frequently applied to morphisms of Hopf algebras. Recall

Definitions 4.9 and 4.10.

Theorem 2.3. Let ι : A→ B and π : B → C be morphisms of connected Hopf
algebras. The following are equivalent.

(i) ι is a normal monomorphism, C = B//A, and π is the quotient map.
(ii) π is a conormal epimorphism, A = B\\C, and ι is the inclusion.

(iii) There is an isomorphism f : A ⊗ C → B of left A-modules and right C-
comodules and an isomorphism g : C ⊗ A → B of right A-modules and left
C-comodules.

When (i)–(iii) hold,

f(id⊗η) = ι = g(η ⊗ id), (ε⊗ id)f−1 = π = (id⊗ε)g−1,

and the following is a commutative diagram with exact rows.

0 // PA
Pι //

ν

��

PB
Pπ //

ν

��

PC

ν

��
QA

Qι
// QB

Qπ
// QC // 0

Proof. Clearly (i) implies (iii) by Theorem 2.1 and symmetry while (ii) implies
(iii) by Theorem 2.2 and symmetry. When (iii) holds, the descriptions of ι and π
in terms of f and g follow from the module and comodule morphism properties of
f and g, and (i) and (ii) follow by inspection. The diagram is obvious. �

Corollary 2.4. Let A → B and B → C be normal monomorphisms of con-
nected Hopf algebras. Then B → C induces a normal monomorphism of connected
Hopf algebras B//A→ C//A, and (C//A)//(B//A) is isomorphic to C//B.

Proof. C ∼= B ⊗ C//B, hence C//A ∼= B//A ⊗ C//B. and the conclusions
follow. �

Corollary 2.5. Let A → B and B → C be conormal epimorphisms of con-
nected Hopf algebras. Then A→ B induces a conormal epimorphism of connected
Hopf algebras A\\C → B\\C, and (A\\C)\\(B\\C) is isomorphic to A\\B.

3. Component coalgebras and the existence of antipodes

To prove the existence and develop the properties of χ on a bialgebra A, we
need to make some hypothesis. However, the usual hypothesis in algebraic topol-
ogy, connectivity, is too restrictive for many applications. We give a more general
hypothesis, but still geared towards the applications in algebraic topology.
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Definition 3.1. We define grouplike algebras and component coalgebras.

(i) An augmented algebra A is said to be grouplike if the set ε−1(1) of degree 0
elements is a group under the product of A.

(ii) Let C be a coalgebra such that C0 is R-free and define

πC = {g|ψ(g) = g ⊗ g and g 6= 0} ⊂ C0.

For g ∈ πC, g = ε(g)g by the counit property and thus ε(g) = 1 since C0 is
assumed to be R-free. Define the component Cg of g by letting Cg = Rg⊕ C̄g,
where the R-module C̄g of positive degree elements of Cg is

{x|ψ(x) = x⊗ g +
∑

x′ ⊗ x′′ + g ⊗ x, deg x′ > 0 and deg x′′ > 0}.

(iii) Say that C is a component coalgebra if C0 is R-free, each Cg is a sub coalgebra
of C, and C is the direct sum of the Cg.

If C is unital then it has a privileged component, namely C1. Note that primi-
tivity becomes a less general notion in component coalgebras than intuition might
suggest: elements x with ψ(x) = x⊗ g + g ⊗ x, g 6= 1, are not primitive according
to Definition 2.5.

If X is a based space, then H∗(X;R), if R-flat, is a unital component coalge-
bra. Similarly, H∗(ΩX;R), if R-flat, is a grouplike component Hopf algebra; it is
connected if and only if X is simply connected.

Now recall Construction 3.5. We implement the idea at the end of §3.

Lemma 3.2. If C is a unital component coalgebra and A is a grouplike aug-
mented algebra, then G(C,A) is a group under the convolution product ∗.

Proof. Let f ∈ G(C,A). We must construct f−1. Define f−1(g) = f(g)−1

for g ∈ πC and extend f−1 to all of C0 by R-linearity. Proceeding by induction on
degrees, define f−1(x) for x ∈ C̄g by

f−1(x) = −f(g)−1f(x)f(g)−1 −
∑

f(g)−1f(x′)f−1(x′′),

where ψ(x) = x ⊗ g +
∑
x′ ⊗ x′′ + g ⊗ x, deg x > 0 and deg x′′ > 0. Extend f−1

to C by R-linearity. Then f ∗ f−1 = ηε by direct inductive calculation. Of course,
since every f has a right inverse, f−1 ∗ f = ηε follows formally. �

Proposition 3.3. Let A be a grouplike component bialgebra. Then A admits
a (unique) antipode χ, so that

φ(id⊗χ)ψ = ηε = φ(χ⊗ id)ψ.

Further, the following two diagrams are commutative,

A
ψ //

χ

��

A⊗A
γ // A⊗A

χ⊗χ
��

and A⊗A
γ //

χ⊗χ
��

A⊗A
φ // A

χ

��
A

ψ
// A⊗A A⊗A

φ
// A

Moreover, if A is either commutative or cocommutative, then χ2 ≡ χ ◦ χ = id.
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Proof. The first statement is immediate from Lemma 3.2. For the first dia-
gram, we claim that both ψχ and (χ ⊗ χ)γψ are the inverse of ψ : A → A ⊗ A in
the group G(A,A⊗A). Indeed, we have

ψ ∗ ψχ = (φ⊗ φ)(id⊗γ ⊗ id)(ψ ⊗ ψχ)ψ = ψφ(id⊗χ)ψ = ψηε = ηε

by the very definition of a bialgebra. Since χ is natural and γ : A⊗ A→ A⊗ A is
an automorphism of Hopf algebras, (χ⊗ χ)γ = γ(χ⊗ χ). Thus

ψ ∗ (χ⊗ χ)γψ = (φ⊗ φ)(id⊗γ ⊗ id)(ψ ⊗ γ(χ⊗ χ)ψ)ψ
= (φ⊗ φ)(id⊗γ ⊗ id)(id⊗ id⊗γ)(id⊗ id⊗χ⊗ χ)(ψ ⊗ ψ)ψ
= (φ⊗ id)(id⊗γ)(id⊗φ⊗ id)(id⊗ id⊗χ⊗ χ)(id⊗ψ ⊗ id)(ψ ⊗ id)ψ
= (φ⊗ id)(id⊗γ)(id⊗ηε⊗ χ)(ψ ⊗ id)ψ
= (φ⊗ id)(id⊗χ⊗ ηε)(ψ ⊗ id)ψ
= (ηε⊗ ηε)ψ = ηε.

The proof of the second diagram is dual. Finally, to show that χ2 = id, it suffices
to show that χ2 is the inverse of χ in the group G(A,A). If A commutative, the
second diagram in the statement gives

χ2 ∗ χ = φ(χ2 ∗ χ)ψ = φ(χ⊗ χ)(χ⊗ id)ψ = χφγ(χ⊗ id)ψ = χηε = ηε.

The proof that χ2 = id when A is cocommutative is dual. �

Note that the second diagram of the statement asserts that χ is a graded
involution. In the connected case, the result specializes to give the following simpler
formula for the antipode.

(3.4) χ(x) = −x−
∑

x′χ(x′′)

if deg x > 0 and ψ(x) = x⊗ 1 +
∑
x′ ⊗ x′′ + 1⊗ x, deg x′ > 0 and deg x′′ > 0.

4. Self-dual Hopf algebras

The homology Hopf algebras H∗(BU ; Z) and H∗(BO; F2) enjoy a very special
property: they are self-dual, so that they are isomorphic to the cohomology Hopf
algebras H∗(BU ; Z) and H∗(BO; F2). The proof of this basic result is purely alge-
braic and explicitly determines the homology Hopf algebras from the cohomology
Hopf algebras (or vice versa if one calculates in the opposite order). We assume
that the reader knows that the cohomology Hopf algebras are given by

(4.1) H∗(BU ; Z) = P{ci | i ≥ 1} with ψ(cn) =
∑
i+j=n

ci ⊗ cj

and

(4.2) H∗(BO; F2) = P{wi | i ≥ 1} with ψ(wn) =
∑
i+j=n

wi ⊗ wj .

The calculations of H∗(BU(n); Z) and H∗(BO(n); F2) are summarized in [?, pp
187, 195], and passage to colimits over n gives the stated conclusions. Thus deter-
mination of the homology algebras is a purely algebraic problem in dualization.1

Recall that the dual coalgebra of a polynomial algebra P [x] over R is written
Γ[x]; when P [x] is regarded as a Hopf algebra with x primitive, Γ[x] is called a
divided polynomial Hopf algebra.

1We thank John Rognes, who texed this section from the first author’s notes in 1996.
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Clearly H∗(BU(1); Z) = P [c1] and H∗(BO(1); F2) = P [w1] are quotient al-
gebras of H∗(BU ; Z) and H∗(BO; F2). Write H∗(BU(1); Z) = Γ[γ1]; it has basis
{γi | i ≥ 0} and coproduct ψ(γn) =

∑
i+j=n γi ⊗ γj , where γ0 = 1 and γi is dual

to ci1. Write H∗(BO(1); F2) = Γ[γ1] similarly. The inclusions BU(1) −→ BU and
BO(1) −→ BO induce identifications of these homologies with sub coalgebras of
H∗(BU ; Z) and H∗(BO; F2), and we shall prove that these sub coalgebras freely
generate the respective homology algebras.

Theorem 4.3. H∗(BU ; Z) = P{γi | i ≥ 1}, where γi ∈ H∗(BU(1); Z) is dual
to ci1. The basis {pi} for the primitive elements of H∗(BU ; Z) such that 〈ci, pi〉 = 1
is specified inductively by

p1 = γ1 and pi = (−1)i+1iγi +
i−1∑
j=1

(−1)j+1γjpi−j for i > 0.

This recursion formula is generally ascribed to Newton, of course in a different
but related context, although the following explicit evaluation was known even
earlier (to Girard, in a 1629 paper).

Remark 4.4. An explicit formula for pi is given by

pi =
∑
E

(−1)|E|+i
(|E| − 1)!i
e1! · · · er!

γE .

Here the sum is taken over all sequences E = (e1, . . . , er) with eq ≥ 0 and
∑
qeq = i;

|E| =
∑
eq and γE = γe11 · · · γer

r .

Theorem 4.5. H∗(BO; F2) = P{γi | i ≥ 1}, where γi ∈ H∗(BO(1); F2) is dual
to wi1. The nonzero primitive elements of H∗(BO; F2) are specified inductively by

p1 = γ1 and pi = iγi +
i−1∑
j=1

γjpi−j for i > 0.

Comparison of these theorems to (4.1) and (4.2) shows that H∗(BU ; Z) and
H∗(BO; F2) are self–dual; that is, they are isomorphic as Hopf algebras to their own
duals. Following Moore [?], we shall carry out the proofs by considering self–duality
for certain general types of Hopf algebras.

We work in the category of connected free R-modules X of finite type, so that
Xi = 0 for i < 0 and X0 = R. Throughout the discussion, all algebras are to be
commutative and all coalgebras are to be cocommutative. Thus all Hopf algebras
are to be commutative and cocommutative.

Definition 4.6. We define some universal Hopf algebras.
(i) A universal enveloping Hopf algebra of a coalgebra C is a Hopf algebra LC

together with a morphism i : C −→ LC of coalgebras which is universal with
respect to maps of coalgebras f : C −→ B, where B is a Hopf algebra. That
is, any such f factors uniquely as f̃ ◦ i for a morphism f̃ : LC −→ B of Hopf
algebras.

(ii) A universal covering Hopf algebra of an algebra A is a Hopf algebra MA
together with a morphism p : MA −→ A of algebras which is universal with
respect to maps of algebras f : B −→ A, where B is a Hopf algebra. That is,
any such f factors uniquely as p ◦ f̃ for a morphism f̃ : B −→ MA of Hopf
algebras.
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Lemma 4.7. Universal Hopf algebras exist and are unique. That is,

(i) any coalgebra C admits a universal enveloping Hopf algebra i : C −→ LC;
(ii) any algebra A admits a universal covering Hopf algebra p : MA −→ A.

Proof. Of course, uniqueness up to isomorphism follows from universality.
For (i), we have C = R⊕ JC, where JC is the module of positive degree elements
of C. As an algebra, we take LC = A(JC), the free (graded) commutative algebra
generated by JC. Let i : C −→ LC be the natural inclusion JC −→ LC in positive
degrees and the identity map id of R in degree zero. If ψ is the coproduct of C, the
coproduct of LC is defined to be the unique map of algebras ψ : LC −→ LC ⊗ LC
that makes the following diagram commute:

C
ψ //

i

��

C ⊗ C

i⊗i
��

LC
ψ
// LC ⊗ LC.

That ψ defines a coalgebra and thus a Hopf algebra structure on LC and that
i : C −→ LC is universal follow directly from the universal property of LC as an
algebra. For (ii), since all modules are taken to be free of finite type, p : MA −→ A
can be specified as i∗ : (L(A∗))∗ −→ A∗∗ = A. �

Remark 4.8. Similar constructions may be obtained when we omit some or all
of the commutativity hypotheses. We can define universal enveloping commutative
Hopf algebras for arbitrary coalgebras and universal covering cocommutative Hopf
algebras for arbitrary algebras. These will coincide with our present constructions
under our hypotheses. The universal enveloping non–commutative Hopf algebra is
of course a quite different construction.

We shall shortly require a pair of dual lemmas, for which we need some no-
tations. For an R-module X, let Xn denote the n-fold tensor product of X with
itself. With the usual sign (−1)deg x deg y inserted when x is permuted past y, the
symmetric group Σn acts on Xn. If X is an algebra or coalgebra, then so is Xn,
and Σn acts as a group of automorphisms. Let Σn act trivially on LC and MA.

Lemma 4.9. Let C be a coalgebra. For n > 0, define ιn : Cn −→ LC to be the
composite of in : Cn −→ (LC)n and the iterated product φ : (LC)n −→ LC. Then
ιn is a morphism of both Σn-modules and coalgebras. If Cq = 0 for 0 < q < m,
then ιn is an epimorphism in degrees q ≤ mn.

Proof. The first statement is immediate from the definitions and the second
statement follows from the fact that the image of ιn is the span of the monomials
in C of length at most n. �

Lemma 4.10. Let A be an algebra. For n > 0, define πn : MA −→ An to be the
composite of the iterated coproduct ψ : MA −→ (MA)n and pn : (MA)n −→ An.
Then πn is a morphism of both Σn-modules and algebras. If Aq = 0 for 0 < q < m,
then ιn is a monomorphism in degrees q ≤ mn.

Proof. This follows by dualizing the previous lemma. �
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Definition 4.11. Let X be positively graded R-module, so that Xi = 0 for
i ≤ 0. Define LX = L(R ⊕ X), where R ⊕ X is R in degree zero and has the
trivial coalgebra structure, in which every element of X is primitive. Define MX =
M(R ⊕ X), where R ⊕ X has the trivial algebra structure, in which the product
of any two elements of X is zero. There is a natural morphism of Hopf algebras
λ : LMX −→MLX , which is defined in two equivalent ways. Indeed, consider the
following diagram:

LMX
λ //

µ

**UUUUUUUUUUUUUUUUUUU MLX

p

��
MX

i

OO

ν

44iiiiiiiiiiiiiiiiiii
p
// R⊕X

i
// LX.

Define µ to be A(p) : A(JMX) −→ A(X), which is the unique morphism of algebras
that extends i◦p, and then obtain λ by the universal property of p : MLX −→ LX.
Define ν to be the dual of A(i∗) : A((JLX)∗) −→ A(X∗), so that ν is the unique
morphism of coalgebras that covers i ◦ p, and obtain λ by the universal property
of i : MX −→ LMX. To see that the two definitions coincide, note that if λ is
defined by the first property, then λ ◦ i = ν by uniqueness and so λ also satisfies
the second property.

Observe that (R⊕X)∗ may be identified with R⊕X∗. Since MA = (L(A∗))∗,
it follows that

MX ≡M(R⊕X) = (L(R⊕X∗))∗ ≡ (L(X∗))∗ .

In turn, with A = L(X∗), this implies

ML(X∗) = MA = (L(A∗))∗ = (L(L(X∗))∗)∗ = (LMX)∗ .

If X is R-free on a given basis, then the isomorphism X ∼= X∗ determined by use
of the dual basis induces an isomorphism of Hopf algebras

β : MLX ∼= ML(X∗) = (LMX)∗ .

When λ : LMX −→ MLX is an isomorphism, it follows that LMX is self–dual.
While λ is not always an isomorphism, it is so in the cases of greatest topological
interest. We now regard i : C −→ LC as an inclusion, omitting i from the notation.
Write 〈−,−〉 for the usual pairing between a free R-module and its dual.

Theorem 4.12. Let X be free on one generator x of degree m, where either m
is even or R has characteristic two. Then λ : LMX −→MLX is an isomorphism.
Moreover if

ci = γi(x) ∈ Γ[x] = MX and γi = (β ◦ λ)(ci) ∈ (LMX)∗,

then γi is the basis element dual to ci1 and the basis {pi} for the primitive elements
of (LMX)∗ such that 〈ci, pi〉 = 1 is specified inductively by

p1 = γ1 and pi = (−1)i+1iγi +
i−1∑
j=1

(−1)j+1γjpi−j for i > 0.

Here LMX = P{ci | i ≥ 1} with ψ(cn) =
∑
i+j=n ci ⊗ cj , where c0 = 1. When

R = Z and m = 2, LMX may be identified with H∗(BU ; Z) and (LMX)∗ may
be identified with H∗(BU ; Z). Thus this result immediately implies Theorem 4.3.
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Similarly, with R = F2 and m = 1, it implies Theorem 4.5. The rest of the section
will be devoted to the proof.

Proof. Note that LX = P [x] and write P [x]n = P [x1, . . . , xn], where xi =
1 ⊗ · · · ⊗ 1 ⊗ x ⊗ 1 ⊗ · · · ⊗ 1 with x in the ith position. Let σ1, . . . , σn be the
elementary symmetric functions in the xi. Consider πnλ : LMX −→ P [x]n, where
πn = pnψ : MP [x] −→ P [x]n is as specified in Lemma 4.10. From the diagram
which defines λ, we see that pλ : LMX −→ P [x] is given on generators by

pλcj = ipcj =
{
x if j = 1
0 if j > 1.

Since λ is a morphism of Hopf algebras, it follows that

πnλcj = pnψλcj = pnλnψcj = (pλ)n
( ∑
i1+···+in=j

ci1⊗· · ·⊗cin
)

=
{
σj if j ≤ n
0 if j > n.

Since LMX = P [ci], the map πnλ : P [ci] −→ P [σ1, . . . , σn] is an isomorphism in
degrees q ≤ mn. By Lemma 4.10, πn also takes values in P [σ1, . . . , σn] and is a
monomorphism in degrees q ≤ mn. Therefore πn and λ are both isomorphisms in
degrees q ≤ mn. Since n is arbitrary, this proves that λ is an isomorphism.

To see the duality properties of the γi, consider the map ν : Γ[x] −→ MP [x]
in the diagram defining λ. Here ν is dual to A(i∗) : A(JΓ[x∗]) −→ P [x∗], where
x∗ is the basis element of X∗ dual to x, and i∗ maps γ1(x∗) to x∗ and annihilates
γi(x∗) for i > 1. Since ci = γi(x) is dual to (x∗)i, ν(ci) is dual to γ1(x∗)i and thus
ην(ci) = γi is dual to ci1.

Since the primitive elements of (LMX)∗ are dual to the indecomposable ele-
ments of LMX, they are free on one generator dual to ci in each degree mi. We
shall prove inductively that this generator is pi, the case i = 1 having been handled
above. Consider the term γjpi−j , 1 ≤ j ≤ i − 1, in the iterative expression for pi.
Let cE be a monomial in the ck, so that E = (e1, . . . , er) and cE = ce11 · · · cer

r . Then

〈cE , γjpi−j〉 = 〈ψcE , γj ⊗ pi−j〉 = 〈ψcE , (cj1)∗ ⊗ c∗i−j〉

by the induction hypothesis and the calculation above. Consideration of the form
of ψcE shows that this is zero unless cE is either cj1ci−j or cj−1

1 ci−j+1, when it is
one in all cases except the case 〈ci1, γi−1p1〉 = i. It follows that 〈cE , pi〉 = 0 except
for the case 〈ci, pi〉 = 1. An alternative argument is to verify inductively that each
pi is in fact primitive and then check that 〈ci, pi〉 = 1. �

5. The homotopy groups of MO and other Thom spectra

In [?, Ch. 25], we explained Thom’s classical computation of the real cobor-
dism of smooth manifolds. In fact, the exposition there was something of a cheat.
Knowing the splitting theorems of §2 and the self-duality theorem of §4, the senior
author simply transcribed the first and quoted the second to give the main points
of the calculation. That obscures the conceptual simplicity of the idea and its im-
plementation. We explain in this section how the general theory applies. A punch
line, explained at the end of the section, is that the conceptual argument applies
to much more sophisticated cobordism theories, where the actual calculations are
far more difficult. We take all homology and cohomology with coefficients in F2 in
this section.
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Recall the description of the Hopf algebra H∗(BO) from (4.2). The structure
of the dual Hopf algebra H∗(BO) is given in Theorem 4.5. To conform to the
notation of [?, Ch. 25], write γi = bi. It is the image in H∗(BO) of the non-
zero class xi ∈ H∗(RP∞). Thus H∗(BO) is the polynomial algebra on the bi, and
ψ(bk) =

∑
i+j=k bi ⊗ bj .

The Thom prespectrum TO and its associated Thom spectrum MO are de-
scribed in [?, pp. 216, 229], but we are not much concerned with the foundations
of stable homotopy theory here. The ring structure on TO gives its homology an
algebra structure, and the Thom isomorphism Φ: H∗(TO) −→ H∗(BO) is an iso-
morphism of algebras [?, p. 221]. Write ai = Φ−1(bi). The Thom space TO(1) of
the universal line bundle is equivalent to RP∞ and, with a0 = 1, ai is the image of
xi+1 in H∗(TO).

Let A be the mod 2 Steenrod algebra and A∗ be its dual. Then A acts on
the cohomology of spaces, prespectra, and spectra, and the action of A on the
cohomology of a ring prespectrum T dualizes to give H∗(T ) a structure of left
A-comodule algebra, as in Theorem 2.2. The composite

π = (id⊗ ε)ν : H∗(TO) −→ A∗ ⊗H∗(TO) −→ A∗

is computed on [?, p. 224]. The computation just translates the easy computation of
the action of A on H∗(RP∞) to a formula for the coaction of A∗. As an algebra, A∗
is a polynomial algebra on certain generators ξr of degree 2r−1, and π(a2r−1) = ξr.
Thus π is an epimorphism.

By Theorem 2.2, this implies that there is an isomorphism

A∗ ⊗ PA∗(H∗(TO)) ∼= H∗(TO)

of left A∗-comodules and right PA∗(H∗(TO))-modules. Since we know that A∗ and
H∗(TO) are polynomial algebras such that the generators of A∗ map to some of
the generators of H∗(TO), it is clear that PA∗(H∗(TO)) ≡ N∗ must be a polyno-
mial algebra on (abstract) generators ui of degree i, where i > 1 and i 6= 2r − 1.
Dually H∗(TO) = H∗(MO) is isomorphic as an A-module to A ⊗ N∗. As ex-
plained informally in [?, §25.7], this implies that MO is a product of suspensions
of Eilenberg-Mac Lane spectrum HF2 and that π∗(MO) ∼= N∗ as an algebra. This
gives the now standard way of obtaining Thom’s calculation [?] of π∗(MO).

The theorem applies to unoriented smooth manifolds, but one might consider
less structured manifolds, such as piecewise linear or topological manifolds. Fo-
cusing on PL manifolds for definiteness, which makes sense since the theory of
PL-manifolds was designed to get around the lack of obvious transversality in the
theory of topological manifolds, one can adapt Thom’s theorem to prove geomet-
rically that the PL-cobordism groups are isomorphic to the homotopy groups of
a Thom prespectrum TPL. By neglect of structure, we obtain a map of Thom
prespectra TO −→ TPL. We have the same formal structure on TPL as we have
on TO, and we have a commutative diagram

H∗(TO)

π
##H

HH
HH

HH
HH

// H∗(TPL)

π
zzuuuuuuuuu

A∗

Even without any calculational knowledge of H∗(BPL) and H∗(TPL), we conclude
that π on the right must also be an epimorphism.
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Therefore, as a matter of algebra, Theorem 2.2 gives us an isomorphism

A∗ ⊗ PA∗(H∗(TPL)) ∼= H∗(TPL)

of left A∗-comodules and right PA∗H∗(TPL)-algebras. Here again, the Thom iso-
morphism Φ: H∗(TPL) −→ H∗(BPL) is an isomorphism of algebras. Therefore, if
we can compute H∗(BPL) as an algebra, then we can read off what PA∗(H∗(TPL))
must be as an algebra. The same formal argument as for MO shows that MPL is
a product of suspensions of HF2 and that π∗(MPL) ∼= PA∗(H∗(TPL)) as algebras.
In fact, this argument was understood and explained in [?] well before H∗(BPL)
was determined. The calculation of H∗(BPL; Fp) at all primes p is described in
[?, ?], but that is another story.2 In any case, this sketch should give some idea of
the algebraic power of the splitting theorems in §2.

6. A proof of the Bott periodicity theorem

The self duality of H∗(BU) described in (4.1) and Theorem 4.3 also plays a
central role in a quick proof of (complex) Bott periodicity. We describe how that
works in this section. As discussed briefly in [?, §24.2], the essential point is to prove
the following result. Homology and cohomology are to be taken with coefficients in
Z in this section.

Theorem 6.1. There is a map β : BU −→ ΩSU of H-spaces which induces an
isomorphism on homology.

It follows from the dual Whitehead theorem that β must be an equivalence.
We begin by defining the Bott map β, following Bott [?]. Write U(V ) for the

compact Lie group of unitary transformations V −→ V on a complex vector space V
with a given Hermitian product. If V is of countable dimension, let U(V ) denote the
colimit of the U(W ) where W runs through the finite dimensional subspaces of V
with their induced Hermitian products. Fixing the standard inclusions Cn −→ C∞,
we specify BU = U/U × U to be the colimit of the Grassmannians U(2n)/U(n)×
U(n). We let U be the colimit of the U(2n) and SU be its subgroup colimSU(2n) of
unitary transformations with determinant one. For convenience, we write V = C∞
and let Vn denote the direct sum of n copies of V.

It is also convenient to use paths and loops of length π. Taking 0 ≤ θ ≤ π,
define ν(θ) ∈ U(V2) by

ν(θ)(z′, z′′) = (eiθz′, e−iθz′′).

Note that ν(0) is multiplication by 1, ν(π) is multiplication by −1, and ν(θ)−1 =
ν(−θ). Define

β : U(C∞ ⊕ C∞) −→ ΩSU(C∞ ⊕ C∞)
by letting

β(T )(θ) = [T, ν(θ)] = Tν(θ)T−1ν(−θ)
where T ∈ U(V2). Clearly [T, ν(θ)] has determinant one and β(T ) is a loop at
the identity element e of the group SU(V2). Moreover, since ν(θ) is just a scalar
multiplication on each summand V, if T = T ′×T ′′ ∈ U(V)×U(V), then β(T )(θ) =
e. Therefore β passes to orbits to give a well-defined map

β : BU = U/U × U −→ ΩSU.

2It is part of the 1970’s story of infinite loop space theory and E∞ ring spectra; see [?] for a
1970’s overview and [?] for a modernized perspective.
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To define the H-space structure on BU , choose a linear isometric isomorphism
ξ : V2 −→ V and let the product T1T2 be the composite

V2
(ξ−1)2 //V4 T1⊕T2 //V4

id⊕γ⊕id //V4
ξ2 //V2,

where γ : V2 −→ V2 interchanges the two summands. Up to homotopy, the product
is independent of the choice of ξ. The H-space structure we use on ΩSU is the
pointwise product, (ω1ω2)(θ) = ω1(θ)ω2θ. We leave it as an exercise to verify that
β is an H-map.3

Let {e′i} and {e′′i } denote the standard bases of two copies of V and let Cn1 and
Cn2 be spanned by the first n vectors in each of these bases. Let

j : U(Cn1 ⊕ C1
2) −→ U(Cn1 ⊕ Cn2 )

be the inclusion. Restrictions of β give a commutative diagram

CPn = U(Cn1 ⊕ C1
2)/U(Cn1 )× U(C1

2)
α //

j

��

ΩSU(Cn1 ⊕ C1
2) = ΩSU(n+ 1)

Ωj

��
U(2n)/U(n)× U(n) = U(Cn1 ⊕ Cn2 )/U(Cn1 )× U(Cn2 )

β // ΩSU(Cn1 ⊕ Cn2 ) = ΩSU(2n).

Passing to colimits over n, we obtain the commutative diagram

CP∞ α //

j

��

ΩSU

Ωj'
��

BU
β // ΩSU.

The right arrow is an equivalence, as we see from a quick check of homology or
homotopy groups.

We claim that H∗(ΩSU) is a polynomial algebra on generators δi of degree 2i,
i ≥ 1, and that α∗ : H∗(CP∞) −→ H∗(ΩSU) is a monomorphism onto the free
abelian group spanned by suitably chosen polynomial generators δi. The algebra in
§4 implies the topological statement that j∗ : H∗(CP∞) −→ H∗(BU) is a monomor-
phism onto the free abelian group generated by a set {γi} of polynomial generators
for H∗(BU), hence the claim will complete the proof of Theorem 6.1.

Think of S1 as the quotient of [0, π] obtained by setting 0 = π. Let

i : U(Cn−1
1 ⊕ C1

2) −→ U(Cn1 ⊕ C1
2)

be the inclusion. It induces a map i : CPn−1 −→ CPn that leads to the left diagram
below, and the right diagram is its adjoint.

(6.2) CPn−1 α //

i

��

ΩSU(n)

Ωi

��
CPn α //

ρ

��

ΩSU(n+ 1)

Ωπ

��
S2n

h
// ΩS2n+1

ΣCPn−1 α̂ //

Σi

��

SU(n)

i

��
ΣCPn α̂ //

Σρ

��

SU(n+ 1)

π

��
ΣS2n

ĥ

// S2n+1

3This is also part of the 1970’s infinite loop space story; details generalizing these H-space
structures and maps to the context of actions by an E∞ operad may be found in [?, pp. 9-17].
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Here ρ : CPn −→ CPn/CPn−1 ∼= S2n is the quotient map and π(T ) = T (e′n).

Lemma 6.3. The composite Ωπ ◦ α ◦ i is trivial, so that Ωπ ◦ α factors as the
composite hρ for a map h. Moreover, the adjoint ĥ of h is a homeomorphism.

Proof. Let T ∈ U(Cn1 ⊕C1
2) represent T̄ ∈ CPn and let T−1

1 and T−1
2 denote

the projections of T−1 on Cn1 and on C1
2. We have

(Ωπ)α(T )(θ) = Tν(θ)T−1ν(−θ)(e′n)

= Tν(θ)T−1(e−iθe′n)

= T (T−1
1 (e′n), e−2iθT−1

2 (e′n))

= e′n + (e−2iθ − 1)TT−1
2 (e′n)

as we see by adding and subtracting TT−1
2 (e′n). If T (e′n) = e′n, so that T is in the

image of U(Cn−1
1 ⊕ C1

2) and T̄ is in the image of CPn−1, then T−1
2 (e′n) = 0 and

thus (Ωπ)α(T )(θ) = e′n for all θ. To prove that ĥ is a homeomorphism, it suffices
to check that it is injective. Its image will then be open by invariance of domain
and closed by the compactness of ΣS2n, hence will be all of S2n+1 since S2n+1 is
connected. Denote points of ΣX as [x, θ] for x ∈ X and θ ∈ S1. We have

ĥ(Σρ)[T̄ , θ] = πα̂[T̄ , θ] = (Ωπ)α(T )(θ) = e′n + (e−2iθ − 1)TT−1
2 (e′n).

Since T−1 is the conjugate transpose of T , T−1
2 (e′n) = c̄e′′1 , where c is the coefficient

of e′n in T (e′′1). Here T /∈ CPn−1 if and only if c 6= 0. and then TT−1
2 (e′n) =

e′n + T ′(e′n), where T ′ denotes the projection of T on Cn−1 ⊕ C1
2. Therefore

ĥ[ρ(T̄ ), θ] = e−2iθe′n + T ′(e′n)

when T̄ /∈ CPn−1. The injectivity is clear from this. �

Armed with this elementary geometry, we return to homology. The rightmost
column in the second diagram of (6.2) is a fibration, and we use it to compute
H∗(ΩSU(n+1)) by induction on n. We have SU(2) ∼= S3, and we claim inductively
that the cohomology Serre spectral sequence of this fibration satisfies E2 = E∞.
This leads to a quick proof that

H∗(SU(n+ 1)) = E{y2i+1|1 ≤ i ≤ n}

as a Hopf algebra, where y2i+1 has degree 2i + 1 and π∗(y2n+1) is a generator of
H2n+1(S2n+1). Indeed, assume that we know this for SU(n). Then, since the
cohomology spectral sequence is multiplicative and the exterior algebra generators
of H∗(SU(n)) = E0,∗

2 have degrees less than 2n, they must be permanent cycles.
Therefore E2 = E∞. This implies that H∗(SU(n + 1)) is an exterior algebra.
Moreover, by the edge homomorphisms, i∗ is an isomorphism in degrees less than
2n+1 and the last exterior algebra generator is π∗(i2n+1). Inductively, the exterior
generators in degrees less than 2n are primitive. Since i is a map of topological
groups, i∗ is a map of Hopf algebras. Since i∗π∗ = 0, inspection of the coproduct
shows that the generator in degree 2n+ 1 must also be primitive.

Using the Serre spectral sequence of the path space fibration over SU(n + 1),
we conclude that

H∗(ΩSU(n+ 1)) ∼= P{δi|1 ≤ i ≤ n},
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where δi has degree 2i. The classical way to see this is to construct a test multi-
plicative spectral sequence with

E2
∗,∗ = P{δi|1 ≤ i ≤ n} ⊗ E{y2i+1|1 ≤ i ≤ n}

and with differentials specified by requiring y2i+1 to transgress to δi. This ensures
that E∞ is zero except for Z = E∞0,0. We can map the test spectral sequence to the
homology Serre spectral sequence of the path space fibration by a map that is the
identity on E2

0,∗ and commutes with the transgression. The conclusion follows by
the comparison theorem, ??. The argument shows that the polynomial generators
transgress to the exterior algebra generators and thus that the exterior algebra
generators suspend to the polynomial algebra generators. At the risk of belaboring
the obvious, we spell things out explicitly via the following commutative diagram,
in which the unlabelled isomorphisms are suspension isomorphisms.

H2n(CPn)
α∗ //

∼=

  @
@@

@@
@@

@@
@@

@@
@@

@@
@@

ρ∗ ∼=

��

H2n(ΩSU(n+ 1))

∼=

uujjjjjjjjjjjjjjj

σ

zzuuuuuuuuuuuuuuuuuuuuuu

(Ωπ)∗

��

H2n+1(ΣΩSU(n+ 1))

ε∗

��
H2n+1(ΣCPn)

α̂∗
//

(Σρ)∗ ∼=
��

(Σα)∗

55kkkkkkkkkkkkkk
H2n+1(SU(n+ 1))

π∗

��
H2n+1(ΣS2n)

ĥ∗
∼=

//

(Σh)∗ ))SSSSSSSSSSSSSS H2n+1(S2n+1)

H2n+1(ΣΩS2n+1)

ε∗

OO

H2n(S2n)
h∗

//

∼=

??�������������������
H2n(ΩS2n+1)

∼=

iiTTTTTTTTTTTTTTT

σ

ddHHHHHHHHHHHHHHHHHHHHHH

Here ε denotes the evaluation map of the (Σ,Ω) adjunction, and the suspension σ
is defined to be the composite of ε∗ and the suspension isomorphism. The algebra
generator δn maps to a fundamental class under π∗σ. By the diagram, so does the
basis element x2n ∈ H2n(CPn). Therefore, modulo decomposable elements which
are annihilated by σ, α∗(x2i) = δi as claimed.





CHAPTER 3

Lie algebras and Hopf algebras in characteristic
zero

All of the structure theorems for Hopf algebras in common use in algebraic
topology are best derived by filtration techniques from the Poincaré-Birkhoff-Witt
theorem for graded Lie algebras and restricted Lie algebras. In this chapter, we first
introduce Lie algebras and prove the PBW theorem for their universal enveloping
algebras. We next show that primitive (= primitively generated) Hopf algebras
in characteristic zero are the universal enveloping algebras of their Lie algebras
of primitive elements. We then use this fact to study the algebra structure of
commutative Hopf algebras in characteristic zero.

While some of these results first appeared in Milnor and Moore [?], the most
basic structure theorems go back to earlier work of Hopf, Leray, and Borel.

1. Graded Lie algebras

We continue to work over a fixed commutative ring R. The following witty
definition is due to John Moore and used in [?].

Definition 1.1. A (graded) Lie algebra over R is a (graded) R-module L
together with a morphism of R-modules L ⊗ L → L, denoted [−,−] and called
the bracket operation, such that there exists an associative R-algebra A and a
monomorphism of R-modules j : L → A such that j([x, y]) = [jx, jy] for x, y ∈ L,
where the bracket operation in A is the (graded) commutator,

[a, b] = ab− (−1)deg a deg bba.

A morphism of Lie algebras is a morphism of R-modules which commutes with the
bracket operation.

The following identities are immediate consequences of the definition. It would
be more usual to take them as the defining properties of the bracket operation,
but we shall see that for particular ground rings R the definition can imply more
relations than are listed.

Lemma 1.2. Let L be a Lie algebra and let x ∈ Lp, y ∈ Lq, and z ∈ Lr. Then
the following identities hold.

(i) [x, y] = −(−1)pq[y, x]
(ii) [x, x] = 0 if either charR = 2 or p is even

(iii) (−1)pr[x, [y, z]] + (−1)pq[y, [z, x]] + (−1)rq[z, [x, y]] = 0
(iv) [x, [x, x]] = 0 if p is odd.

Formula (iii) is called the Jacobi identity. When p is even, (i) implies 2[x, x] = 0;
when p is odd, (iii) implies 3[x, [x, x]] = 0. We shall see that, at least if R is a field,

29
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any R-module with a bracket operation satisfying these identities can be embedded
in a bracket-preserving way in an associative algebra and is therefore a Lie algebra.
This is not true for a general R. For instance, [x, 2x] = 0 if charR = 4 is an identity
not implied by those of the lemma (when deg(x) is odd). Of course, for any R, any
associative alegbra is a Lie algebra under the commutator operation.

Definition 1.3. The universal enveloping algebra of a Lie algebra L is an
associative algebra U(L) together with a morphism of Lie algebras i : L → U(L)
such that, for any morphism of Lie algebras f : L → A, where A is an associative
algebra, there exists a unique morphism of algebras f̃ : U(L)→ A such that f̃ i = f .

Clearly U(L) is unique up to canonical isomorphism, if it exists.

Proposition 1.4. Any Lie algebra L has a universal enveloping algebra U(L),
and i : L→ U(L) is a monomorphism whose image generates U(L) as an algebra.
Moreover, U(L) is a primitive Hopf algebra.

Proof. Let T (L) be the tensor algebra, or free associative algebra, generated
by L. Explicitly, T (L) =

∑
n≥0 Tn(L), where T0(L) = R and Tn(L) = L⊗ . . .⊗ L,

n factors L, if n > 0. The product in T (L) is obtained by passage to direct sums
from the evident isomorphisms Tm(L) ⊗ Tn(L) → Tm+n(L). Define i : L → T (L)
to be the identification of L with T1(L). For an associative algebra A, a map of
R-modules f : L→ A extends uniquely to a map of algebras f̃ : T (L)→ A. Let I
be the two-sided ideal in T (L) generated by the elements

xy − (−1)deg x deg yyx− [x, y], x, y ∈ L,

define U(L) = T (L)/I, and let i : L → U(L) be the evident composite. Clearly i
has the required universal property. Of course, the injectivity of i is built into our
definition of a Lie algebra, and i(L) generates U(L) since i(L) generates T (L). By
the universal property, a morphism f : L → L′ of Lie algebras induces a unique
morphism U(f) of associative algebras such that the following diagram commutes.

L
f //

i

��

L′

i′

��
U(L)

U(f) // U(L′)

If we take L′ = {0}, then U(L′) = R and we obtain an an augmentation of U(L).
The product L×L′ of Lie algebras inherits a structure of Lie algebra, and the algebra
U(L)⊗ U(L′) together with the evident morphism i : L× L′ → U(L)⊗ U(L′),

i(x, x′) = x⊗ 1 + 1⊗ x′

is easily checked to satisfy the universal property that defines U(L × L′). The
diagonal 4 : L→ L×L is a map of Lie algebras and therefore induces a morphism
of algebras ψ : U(L)→ U(L)⊗ U(L) such that the following diagram commutes.

L
4 //

i

��

L× L

i

��
U(L)

ψ // U(L)⊗ U(L)



2. THE POINCARÉ-BIRKHOFF-WITT THEOREM 31

Thus U(L) is a bialgebra, and i(L) ⊂ PU(L) by the diagram, so that U(L) is
primitive. For the antipode, we have the opposite Lie algebra Lop with bracket
[−,−]γ, and x −→ −x defines a map of Lie algebras L −→ Lop. We can iden-
tify U(Lop) as U(L)op, and then the universal property gives a map of algebras
χ : U(L) −→ U(L)op, that is, an involution on U(L) itself. Writing the obvious
equalities [x,−x] = 0 = [−x, x] as diagrams and passing to the corresponding di-
agrams induced on the level of universal enveloping algebras, we see that χ is an
antipode on U(L). �

2. The Poincaré-Birkhoff-Witt theorem

The Poincaré-Birkhoff-Witt theorem gives a complete description of the as-
sociated graded Hopf algebra of U(L) with respect to a suitable filtration (under
appropriate hypotheses) and therefore gives a complete description of the additive
structure of U(L). We require a definition.

Definition 2.1. Let L be a Lie algebra. The Lie filtration of U(L) is specified
by FpU(L) = 0 if p < 0, F0U(L) = R, and FpU(L) = (R ⊕ L)p if p ≥ 1. Clearly
U(L) = ∪pFpU(L), so the filtration is complete.

Provided that the Lie filtration is split or flat, so that E0(U(L) ⊗ U(L)) is
isomorphic to E0U(L) ⊗ E0U(L), E0U(L) inherits a structure of primitive Hopf
algebra from U(L). Since the commutator in U(L) of elements in L agrees with
the bracket operation in L and since L generates U(L), we see immediately that
E0U(L) is commutative. Clearly we have

QE0U(L) = E0
1,∗U(L) = L, where E0

1,qU(L) = Lq+1.

Let L] denote the underlying R-module of L regarded as an abelian Lie algebra
and write A(L) = U(L]). Then A(L) is the free commutative algebra generated by
L. Explicitly, A(L) = T (L)/J where J is the commutator ideal.

For a filtered R-module A, write E⊕A for the graded R-module that is obtained
by regrading the associated bigraded R-module E0A by total degree:

E⊕n A =
∑

p+q=n

E0
p,qA.

If E0A is a bigraded algebra, Hopf algebra, etc, then E⊕A is a graded algebra,
Hopf algebra, etc.

By the universal property of A(L), the evident inclusion of L in E⊕U(L) induces
a natural map of commutative algebras f : A(L)→ E⊕U(L).

Notation 2.2. If charR = 2, let L+ = L and L− = {0}. If charR 6= 2, let L+

and L− be the R-submodules of L concentrated in even and in odd degrees.

The hypotheses on the characteristic of R in the next result ensure that the
identities of Lemma 1.2 suffice to characterize our Lie algebras, as we shall see.

Theorem 2.3 (Poincaré-Birkhoff-Witt). Let L be an R-free Lie algebra. As-
sume that charR = 2, or that 2 is invertible in R, or that L = L+ so that L is
concentrated in even degrees. Then f : A(L)→ E⊕U(L) is an isomorphism of Hopf
algebras.
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Proof. It will fall out of the proof that the Lie filtration of U(L) is split, so that
E⊕U(L) is a primitively generated Hopf algebra, and f will preserve coproducts
since it is the identity on the R-module L of primitive generators. Of course, f is
an epimorphism since L generates E⊕U(L). Filter E⊕U(L) by filtration degree,

FpE
⊕U(L) =

∑
i≤p

E0
i,∗U(L).

Obviously E0E⊕U(L) = E0U(L). Give A(L) its Lie filtration. Clearly E0A(L)
is the free commutative bigraded algebra generated by L regarded as a bigraded
R-module via L1,q = Lq+1. The map f is filtration-preserving, and it suffices to
prove that E0f is a monomorphism.

Give T (L) the evident filtration, FpT (L) =
∑
n≤p Tn(L), and observe that

the quotient maps π : T (L) → A(L) and ρ : T (L) → U(L) are both filtration-
preserving. Let I = ker ρ. We shall construct a filtration preserving morphism of
R-modules σ : T (L) → A(L) such that σ(I) = 0 and E0σ = E0π. It will follow
that σ factors as σ̄ρ for a filtration preserving R-map σ̄ : U(L) → A(L). We will
have E0σ̄E0ρ = E0π and, since E0ρ and E0π are epimorphisms of algebras, E0σ̄
will be a morphism of algebras. The composite

E0A(L)
E0f // E0U(L) E0σ̄ // E0A(L)

will be the identity since it will be a morphism of algebras which restricts to the
identity on the R-module L of generators. Thus E0f will be a monomorphism and
the proof will be complete.

To construct σ, let {zk} be an R-basis for L indexed on a totally ordered set.
The set of monomials

(2.4) {zk1 . . . zkn
|k1 ≤ . . . ≤ kn and ki < ki+1 if zki

∈ L−}

is an R-basis for A(L). Let yk denote zk regarded as an element of T (L). Then
yk1 . . . ykn

is a typical basis element of Tn(L). Of course, the sequence {k1, . . . , kn}
will generally not be ordered as in (2.4). When it is so ordered, we require σ to
satisfy the formula

(2.5) σ(yk1 . . . ykn) = zk1 . . . zkn if k1 ≤ . . . ≤ kn and ki < ki+1 if zki ∈ L−;

For a general sequence {k1, . . . , kn} and 1 ≤ i < n, we require

σ(yk1 . . . ykn
) = (−1)deg zki

deg zki+1σ(yki
. . . yki−1yki+1yki

yki+2 . . . ykn
)

+σ(yk1 . . . yki−1 [yki
, yki+1 ]yki+2 . . . ykn

).(2.6)

Clearly, if there is a well-defined map σ : T (L) −→ A(L) of R-modules that satisfies
these formulae, the desired relations I ⊂ kerσ and E0σ = E0π will follow.

We define σ : T (L) → A(L) by induction on the filtration degree n, with
σ(1) = 1 and σ(yk) = zk handling filtration degrees 0 and 1. Assume that σ has
been defined on Fn−1T (L). Define the index q of a sequence {k1, . . . , kn} to be the
number of transpositions required to put it in non-decreasing order. We define σ
by induction on n and, for fixed n, by induction on the index q. We have defined
σ for n ≤ 1, so we assume that n > 1. Define σ by (2.5) for sequences of index 0
unless some ki = ki+1 with zki

∈ L−, in which case define σ by the formula

(2.7) σ(yk1 . . . ykn) =
1
2
σ(yk1 . . . yki−1 [yki

, yki
]yki+2 . . . ykn

).
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Observe that (2.7) is consistent with and in fact forced by (2.6). Assuming that
σ has been defined on sequences of index less than q and that {k1, . . . , kn} has
index q, we define σ(yk1 . . . ykn) by (2.6) if ki > ki+1 and by (2.7) if ki = ki+1 and
zki
∈ L−. To complete the proof, we must show that σ is actually well-defined,

that is, that our definition of σ by (2.6) and (2.7) is independent of the choice of i.
The argument is tedious, but elementary, and we shall not give full details. There
are four cases to be checked, each with two subcases.

Case 1. ki = ki+1 and kj = kj+1, j ≥ i+ 1, with zki ∈ L− and zkj ∈ L−.
Subcase j > i+ 1. We must show that

σ(yk1 . . . [yki , yki ] . . . ykn) = σ(yk1 . . . [ykj , ykj ] . . . ykn).

Here (2.6) and induction on n show that both sides are equal to
1
2
σ(y1 . . . [yki , yki ] . . . [ykj , ykj ] . . . ykn).

Subcase j = i+ 1. Here (2.6), induction on n, and the identity [x, [x, x]] = 0
imply the equality

σ(yk1 . . . yki
[yki

, yki
] . . . ykn

) = σ(yk1 . . . [yki
, yki

]yki
. . . ykn

).
Case 2. ki = ki+1 with zki ∈ L− and kj > kj+1, j ≥ i+ 1.
Subcase j > i + 1. The argument here is similar to (but has more terms

to check than) the argument in the subcase j > i + 1 of Case 1, the induction
hypotheses on both n and q being required.

Subcase j = i + 1. Let u = yki
= yk+1 and v = yki+2 and let deg v = p; of

course, deg u is odd. We must show that
1
2
σ(yk1 . . . [u, u]v . . . ykn) = (−1)pσ(yk1 . . . uvu . . . ykn) + σ(yk1 . . . u[u, v] . . . ykn).

By (2.6) and induction on q and n, we have

σ(yk1 . . . uvu . . . ykn) = (−1)pσ(yk1 . . . vuu . . . ykn) + σ(yk1 . . . [u, v]u . . . ykn)
= 1

2
(−1)pσ(yk1 . . . v[u, u] . . . ykn) + σ(yk1 . . . [u, v]u . . . ykn)

= 1
2
(−1)p(σ(yk1 . . . [u, u]v . . . ykn) + σ(yk1 . . . [v, [u, u]] . . . ykn))
−(−1)pσ(yk1 . . . u[u, v] . . . ykn) + σ(yk1 . . . [[u, v], u] . . . ykn).

The Jacobi and anticommutativity formulas imply

1

2
[v, [u, u]] + (−1)p[[u, v], u] =

1

2
[v, [u, u]] + [u, [u, v]]

=
1

2
([v, [u, u]]− (−1)p[u, [v, u]] + [u, [u, v]]) = 0.

Comparing formulas, we obtain the desired equality.
Case 3. ki > ki+1 and kj = kj+1 with zk ∈ L−, j ≥ i+ 1.
The proof in this case is symmetric to that in case 2.
Case 4. ki > ki+1 and kj > kj+1 with j ≥ i+ 1.
The proof when j > i + 1 is straightforward by induction, as in the subcase

j > i+ 1 of Case 1, and the proof when j = i+ 1 is a calculation similar to that in
the subcase j = i+ 1 of Case 2. �

We retain the hypotheses of the theorem in the following corollary.
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Corollary 2.8. Let {xi} and {yj} be R-bases for L− and L+ indexed on
totally ordered sets. Then U(L) is the free R-module on the basis

{xi1 . . . ximy
r1
j1
. . . yrn

jn
|i1 < . . . < im, j1 < . . . < jn and rk ≥ 1}.

Proof. Since E⊕U(L) is a free R-module, it is isomorphic as an R-module to
U(L). The conclusion follows from the evident analog for U(L]) = A(L). �

Corollary 2.9. Let L be a free R-module together with a bracket operation
satisfying the identities listed in Lemma 1.2. Assume that charR = 2, or 2 is
invertible in R, or L = L+. Then L is a Lie algebra.

Proof. Construct U(L) as in the proof of Proposition 1.4 and give it the Lie
filtration of Definition 2.1. The proof of Theorem 2.3 only used the cited identi-
ties and so gives that A(L) ∼= E⊕U(L). Thus L → U(L) is a bracket-preserving
monomorphism of R-modules. �

3. Primitively generated Hopf algebras in characteristic zero

Throughout this section and the next, R is assumed to be a field of characteristic
zero. However, all of the results remain valid if R is any ring of characteristic zero
in which 2 is invertible and all R-modules in sight are R-free.

A quick calculation shows that the R-module PA of primitive elements of a
Hopf algebra A is a sub Lie algebra. The universal property of U(PA) thus gives a
natural map of Hopf algebras g : U(PA)→ A, and g is clearly an epimorphism if A
is primitive. Let L and PH denote the categories of Lie algebras and of primitive
Hopf algebras over R. We have functors U : L → PH and P : PH → L , a
natural inclusion L ⊂ PU(L), and a natural epimorphism g : U(PA) → A, where
L ∈ L and A ∈ PH . This much would be true over any commutative ring R,
but when R is a field of characteristic zero we have the following result.

Theorem 3.1. The functors U : L → PH and P : PH → L are inverse
equivalences of categories. More explicitly,

(i) PU(L) = L for any Lie algebra L and
(ii) g : U(PA)→ A is an isomorphism for any primitive Hopf algebra A.

Proof. We first prove (i). Consider the Lie filtration of U(L). Let x ∈
FpU(L), x 6∈ Fp−1U(L), and suppose that x ∈ PU(L). It suffices to prove
that p = 1. The image of x in E0

p.∗U(L) is primitive. By the PBW-theorem,
E⊕U(L) ∼= A(L) as a Hopf algebra. Consider the basis for A(L) given in Corol-
lary 2.8. The generators xi and yj there are primitive. Using the notation (i, j) for
the evident binomial coefficient considered as an element of R, we see that

ψ(yn) =
∑
i+j=n

(i, j)yi ⊗ yj if y ∈ L+.

Since charR = 0, we check from this that no decomposable basis element is prim-
itive and that no two basis elements have any summands of their coproducts in
common, so that no linear combination of decomposable elements is primitive.
This implies that p = 1 and proves (i).

To prove (ii), define the primitive filtration of a Hopf algebra A by

FpA = 0 if p < 0, F0A = A, and FpA = (R⊕ PA)p if p > 0.
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This filtration is complete, A = ∪pFpA, if and only if A is primitive. By (i), the
Lie and primitive filtrations coincide on U(L). For A ∈ PH the epimorphism
g : U(PA) → A is filtration-preserving and, since PU(PA) = PA, g is an isomor-
phism on the R-modules of primitive elements. Therefore E0g is a monomorphism
on the primitive elements of E0U(PA), that is, on E0

1,∗U(PA). Since E0U(PA) is
connected with respect to its filtration degree, E0g is a monomorphism by Propo-
sition 1.4 and g is a monomorphism by Proposition 1.1. �

We emphasize that A itself is not assumed to be connected here.

Corollary 3.2. If A is a commutative primitive Hopf algebra, then A is iso-
morphic as a Hopf algebra to the free commutative algebra generated by PA.

Proof. A ∼= U(PA) = A(PA) since PA is an abelian Lie algebra. �

Among other things, our next corollary shows that a connected Hopf algebra
is primitive if and only if it is cocommutative.

Corollary 3.3. Let A be a connected quasi Hopf algebra.
(i) ν : PA→ QA is a monomorphism if and only if A is associative and commu-

tative.
(ii) ν : PA→ QA is an epimorphism if and only if A is coassociative and cocom-

mutative.
(iii) ν : PA → QA is an isomorphism if and only if A is a commutative and

cocommutative Hopf algebra.

Proof. By Lemma 1.1, if ν is a monomorphism then A is associative and
commutative. Conversely, suppose that A is associative and commutative. Give A
its product filtration (see Definition 2.9). Then E0A is a commutative primitive
Hopf algebra, hence E0A ∼= A(PE0A) by the previous corollary. It follows that
PE0A = E0

−1,∗A. If x ∈ PA, x ∈ FpA, and x 6∈ Fp−1A, then the image of x in E0
p,∗A

is primitive and we must have p = −1. This implies that ν is a monomorphism.
When A is of finite type, (ii) follows from (i) by dualization since A ∼= A∗∗ and
(i) holds for A∗. The general case of (i) follows by passage to colimits, using
Lemma 1.2, since the functors P and Q commute with (directed) colimits. Part
(iii) follows from (i) and (ii). �

Corollary 3.4. A sub Hopf algebra of a primitive Hopf algebra is primitive.

Proof. Let A ⊂ B, where B is primitive. Since B is cocommutative, so is
A. If A is connected, the conclusion follows from (ii) of the previous corollary. For
the general case, let A′ = U(PA) and let g : A′ → A be the natural map. Give A′

and B their primitive filtrations and filter A by FpA = A ∩ FpB. These filtrations
are all complete, and g and the inclusion A→ B are filtration-preserving. Clearly
F1A

′ = R⊕PA = F1A. The induced map E0A→ E0B is again a monomorphism.
Since E0A is connected (with respect to its filtration degree) and cocommutative,
it is primitively generated. Since PE0B = E0

1,∗B, we find

PE0A′ = E0
1,∗A

′ ∼= E0
1,∗A = PE0A.

Thus E0g is an isomorphism on primitives and therefore also an epimorphism on
indecomposables. By Propositions 1.3 and 1.4, this implies that E0g is an isomor-
phism and thus g is an isomorphism. �
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Corollary 3.5. A sub Hopf algebra A of a primitive Hopf algebra B is a
normal sub algebra if and only if PA is a Lie ideal of PB. When this holds,
B//A = U(PB/PA) and

0 // PA // PB // P (B//A) // 0

is an exact sequence of Lie algebras.

Proof. Assume PA is a Lie ideal in PB. If x ∈ PA and y ∈ PB, then
[x, y] ∈ PA and, since A is primitive, the equation xy = [x, y] + (−l)deg x deg yyx
therefore implies that IA ·B = B · IA. Conversely, assume that A is a normal sub
algebra of B and let C = B//A. The exact sequence

0→ PA→ PB → PC

implies that PA is a Lie ideal of PB. It is easily checked that C and the inclu-
sion PB/PA → C satisfy the universal property required of U(PB/PA), and the
remaining conclusions follow. �

4. Commutative Hopf algebras in characteristic zero

Again, let R be a field of characteristic zero. We prove the classical structure
theorems for commutative Hopf algebras in characteristic zero. As before, A(X) de-
notes the free commutative algebra generated by an R-module X. If we write E(X)
for the exterior algebra generated by an R-module X concentrated in odd degrees
and P (X) for the polynomial algebra generated by an R-module X concentrated
in even degrees, then, for a general R-module X,

A(X) = E(X−)⊗ P (X+),

where X− and X+ denote the submodules of X concentrated in odd and even
degrees, respectively.

Theorem 4.1 (Leray). Let A be a connected, commutative, and associative
quasi Hopf algebra. Let σ : QA → IA be a morphism of R-modules such that
πσ = id, where π : IA→ QA is the quotient map. Then the morphism of algebras
f : A(QA)→ A induced by σ is an isomorphism.

Proof. Give A(QA) and A their product filtrations. These filtrations are
complete since A is connected, and f is filtration-preserving. Since E0A is a com-
mutative primitive Hopf algebra, A(PE0A) = E0A by Corollary 3.2, and similarly
for A(QA). Now PE0A→ QE0A is just the composite

E0
−1,∗A(QA) = QA

σ // IA
π // QA = E0

−1,∗A

and is thus the identity. Therefore E0f is an isomorphism of Hopf algebras and f
is an isomorphism of algebras. �

The following immediate consequence of the previous theorem was the theorem
of Hopf which initiated the study of Hopf algebras.

Corollary 4.2 (Hopf). Let A be a connected, commutative, and associative
quasi Hopf algebra such that QnA = 0 if n is even. Then A ∼= E(QA) as an algebra.
In particular, the conclusion holds if An = 0 for all sufficiently large n.

Proof. For the last statement, note that an even degree indecomposable would
give rise to a polynomial subalgebra. �
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If the coproduct is coassociative, we can strengthen the conclusion of the pre-
ceding corollary.

Corollary 4.3. Let A be a connected commutative Hopf algebra such that
QnA = 0 if n is even. Then A ∼= E(PA) as a Hopf algebra.

Proof. By Corollary 3.2, it suffices to prove that ν : PA→ QA is an epimor-
phism. By Corollary 3.3, ν is a monomorphism and it suffices to prove that A is
cocommutative. By Lemma 1.2, we may assume that A is of finite type. Then A∗

is a primitive Hopf algebra and PnA∗ = 0 if n is even. Thus [x, y] = 0 if x, y ∈ PA∗
and A∗ is commutative. Therefore A is cocommutative. �

We conclude with the following basic result. By Corollary 3.3, it is just a
restatement of the connected case of Corollary 3.2.

Theorem 4.4. Let A be a connected, commutative, and cocommutative Hopf
algebra. Then A ∼= E((PA)−)⊗ P ((PA)+) as a Hopf algebra.





CHAPTER 4

Restricted Lie algebras and Hopf algebras in
characteristic p

This chapter is precisely parallel to the previous one. We first introduce re-
stricted Lie algebras and prove the PBW theorem for their universal enveloping
algebras. We next show that primitive Hopf algebras in characteristic p are the
universal enveloping algebras of their restricted Lie algebras of primitive elements.
We then use this fact to study the algebra structure of commutative Hopf algebras
in characteristic p.

Most of these results first appeared in Milnor and Moore [?], but with different
proofs, and some go back to earlier work of Borel and Leray and Samelson; §4 is a
corrected version of results in [?].

1. Restricted Lie algebras

In this section and the next, we work over a commutative ring R of prime
characteristic p. Of course, either 2 = 0 or 2 is invertible in R. As before, we
let X+ and X− denote the R-submodules of even and odd degree elements of an
R-module X, with the convention that X+ = X and X− = {0} if charR = 2.

Definition 1.1. A restricted Lie algebra over R is a Lie algebra L together
with a function ξ : L+ → L+ with ξ(Ln) ⊂ Lpn, such that there exists an associative
algebra A and a monomorphism of Lie algebras j : L→ A such that jξ(x) = ξj(x),
where ξ : A+ → A+ is the pth power operation. A morphism of restricted Lie
algebras is a morphism of Lie algebras which commutes with the “restrictions” ξ.

Lemma 1.2. Let L be a restricted Lie algebra. Let x ∈ L, y ∈ L+
n , z ∈ L+

n

and r ∈ R. Define (ady)(x) = [x, y] and, inductively, (ady)i(x) = [(ady)i−1(x), y].
Then the following identities hold.

(i) [x, ξ(y)] = (ady)p(x)
(ii) ξ(ry) = rpξ(y)

(iii) ξ(y+ z) = ξ(y) + ξ(z) +
∑p−1
i=1 si(y, z), where isi(y, z) is the coefficient of ai−1

in the expression ad(ay + z)p−1(y); here a is a degree zero indeterminant.

Proof. Part (ii) is trivial. Consider the polynomial algebra P [b, c] on two
indeterminates b and c of the same degree n, where n is even if charR > 2. We
have the identities

(1) (b− c)p = bp − cp and
(2) (b− c)p−1 =

∑p−1
i=0 b

icp−1−i

Thus the same identities hold for two commuting elements in any R-algebra. Embed
L in an associative algebra A, as in the definition. Left and right multiplication by

39
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y are commuting elements in the algebra HomR(A,A), hence (1) implies (i) and
(2) implies
(3) (ady)p−1(x) =

∑p−1
i=0 y

ixyp−1−i

To prove (iii), consider the polynomial algebra A[a]. Write
(4) (ay + z)p = apyp + zp +

∑p−1
i=1 si(y, z)a

i.

We must evaluate the coefficients si(y, z), which a priori lie in A, as elements of L.
Formal differentiation of (4) with respect to a, using d(ai) = iai−1, gives
(5)

∑p−1
i=0 (ay + z)iy(ay + z)p−1−i =

∑p−1
i=1 isi(y, z)a

i−1.
Replacing x and y by y and ay + z, respectively, in (3) and comparing the result
to (5), we find that isi(y, z) admits the description given in (iii). Setting a = 1 in
(5), we obtain (iii). �

Observe that (iii) shows that ξ(y+ z)− ξ(y)− ξ(z) is in the sub Lie algebra of
L generated by y and z.

We shall see that, at least if R is a field, any Lie algebra L with a restriction
ξ satisfying these identities can be embedded in a restriction-preserving way as a
sub Lie algebra of an associative algebra and is therefore a restricted Lie algebra.
Of course, any associative algebra is a restricted Lie algebra under the commutator
and pth power operations.

Definition 1.3. The universal enveloping algebra of a restricted Lie algebra L
is an associative algebra V (L) together with a morphism of restricted Lie algebras
i : L → V (L) such that, for any morphism of restricted Lie algebras f : L → A,
where A is an associative algebra, there exists a unique morphism of algebras f̃ :
V (L)→ A such that f̃ ◦ i = f .

Clearly V (L) is unique up to canonical isomorphism, if it exists.

Proposition 1.4. Any restricted Lie algebra L has a universal enveloping al-
gebra V (L), and i : L→ V (L) is a monomorphism whose image generates V (L) as
an algebra. Moreover, V (L) is a primitively generated Hopf algebra.

Proof. Let I ⊂ U(L) be the two-sided ideal generated by all elements of the
form xp − ξ(x), x ∈ L+. Define V (L) = U(L)/I and let i : L → V (L) be the
composite of i : L → U(L) and the quotient map U(L) → V (L). The universal
property is easily checked, and it is then clear that i is a monomorphism whose
image generates V (L). The proof of the last statement is exactly the same as for
U(L), the essential point being that V (L × L′) is isomorphic to V (L) ⊗ V (L′) for
restricted Lie algebras L and L′. �

2. The restricted Poincaré-Birkhoff-Witt theorem

We here obtain the Poincaré-Birkhoff-Witt theorem for restricted Lie algebras
L. The Lie filtration of V (L) is defined exactly as was the Lie filtration of U(L);
see Definition 2.1 and the discussion following it. We shall describe the associated
graded algebra E⊕V (L) when L is R-free. In V (L), xp = ξ(x) for x ∈ L+. Since
ξ(x) has filtration one, xp = 0 in the commutative algebra E⊕V (L).

Let L] denote the underlying R-module of L regarded as an abelian restricted
Lie algebra with restriction zero and write B(L) = V (L]). Then B(L) = A(L)/J ,
where J is the ideal generated by {xp|x ∈ L+}. Clearly the inclusion of L in
E⊕V (L) induces a natural map of algebras f : B(L)→ E⊕V (L).
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Theorem 2.1 (Poincaré-Birkhoff-Witt). Let L be an R-free restricted Lie al-
gebra. Then f : B(L)→ E⊕V (L) is an isomorphism of Hopf algebras.

Proof. Give B(L) its Lie filtration and E⊕V (L) its filtration by filtration
degree. Then E0B(L) is obtained by application ofB to L regarded as a bigradedR-
module via L1,q = Lq+1, and E0E⊕(L) = E0V (L). Since f is evidently a filtration-
preserving epimorphism, it suffices to prove that E0f is a monomorphism. Observe
that the quotient maps π : A(L) → B(L) and ρ : U(L) → V (L) are filtration-
preserving. Let I = ker ρ. Recall the map of R-modules σ̄ : U(L) −→ A(L) from
the proof of Theorem 2.3. We shall construct a filtration-preserving morphism of
R-modules τ : A(L) → B(L) such that τ σ̄(I) = 0 and E0τ = E0π. It will follow
that τ σ̄ = τ̄ ρ for a filtration-preserving R-map τ̄ : V (L) → B(L) and that E0τ̄ is
a morphism of algebras. The composite

E0B(L)
E0f // E0V (L) E0τ̄ // E0B(L)

will be the identity morphism of algebras, hence E0f will be a monomorphism and
the proof will be complete.

To construct τ , let {yj} be an R-basis for L+. Clearly L− plays a negligible
role here, and we let x denote an arbitrary basis element of A(L−) = B(L−) and
define τ(x) = x. Let zj denote yj regarded as an element of B(L). We define τ by
induction on the filtration degree. We define τ by the formulas

(2.2) τ(xyr1j1 . . . y
rn
jn

) = xzr1j1 . . . z
rn
jn

for each ri < p.

and

(2.3) τ(xyr1j1 . . . y
rn
jn

) = τ(xyr1j1 . . . y
ri−1
ji−1

ξ(yj1)yri−p

ji
y
ri+1
ji+1

. . . yrn
jn

) if ri ≥ p.

By induction on the filtration degree, these formulas uniquely determine a well-
defined filtration-preserving morphism of R-modules τ : A(L) −→ B(L) such that
E0τ = E0π. It remains to check that τ σ̄(I) = 0. By definition, I is the two sided
ideal in U(L) generated by {yp−ξ(y)|y ∈ L+}. If y is a linear combination

∑
kiyji ,

the identities (ii) and (iii) of Lemma 1.2 and the agreement of commutators and
Lie brackets of elements of L in U(L) imply that

yp − ξ(y) =
∑
i

kpi (ypji − ξ(yji)).

Thus I is the two-sided ideal in U(L) generated by {ypj − ξ(yj)}. Now a calculation
from the identity (i) of Lemma 1.2 and the inductive definitions of σ̄ and τ gives
the conclusion. �

The following corollaries are deduced precisely as in the case of Lie algebras.

Corollary 2.4. Let {xi} and {yj} be R-bases for L− and L+ indexed on
totally ordered sets. Then V (L) is the free R-module on the basis

{xi1 . . . ximy
r1
j1
. . . yrn

jn
|i1 < . . . < im, j1 < . . . < jn and 1 ≤ rk < p}.

Corollary 2.5. Let L be an R-free Lie algebra together with a restriction
operation satisfying the identities listed in Lemma 1.2. Then L is a restricted Lie
algebra.
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3. Primitively generated Hopf algebras in characteristic p

In this section, R is assumed to be a field of characteristic p. Again, all of the
results remain valid if R is any ring of characteristic p and all R-modules in sight
are R-free.

The R-module PA of primitive elements of a Hopf algebra A is a sub restricted
Lie algebra. The universal property of V (PA) thus gives a natural map of Hopf
algebras g : V (PA) → A, and g is an epimorphism if A is primitive. Let RL
and PH denote the categories of restricted Lie algebras and of primitive Hopf
algebras over R. We have functors V : RL → PH and P : PH → RL , a
natural inclusion L ⊂ PV (L), and a natural epimorphism g : V (PA) → A, where
L ∈ RL and A ∈PH .

Theorem 3.1. The functors V : RL → PH and P : PH → RL are
inverse equivalences of categories. More explicitly,

(i) PV (L) = L for any restricted Lie algebra L and
(ii) g : V (PA)→ A is an isomorphism for any primitive Hopf algebra A.

Proof. To prove (i), we consider the Lie filtration of V (L). By the PBW the-
orem, E⊕V (L) ∼= B(L) as a Hopf algebra. Arguing precisely as in the characteristic
zero case, we find that PE0V (L) = E0

1,∗V (L) and conclude that PV (L) ⊂ F1V (L).
This proves (i). To prove (ii), consider the primitive filtration of A, as specified in
the proof of Theorem 3.1. The Lie and primitive filtrations on V (L) coincide and
g is filtration-preserving. It follows just as in the characteristic zero case that E0g
is a monomorphism and that g is therefore an isomorphism. �

Corollary 3.2. If A is a commutative primitive Hopf algebra such that xp = 0
if x ∈ (IA)+, then A is isomorphic as a Hopf algebra to B(PA).

Proof. A ∼= V (PA) ∼= B(PA) since PA is an abelian restricted Lie algebra
with restriction zero. �

Unlike its characteristic zero analog, Corollary 3.2 fails to describe arbitrary
commutative primitive Hopf algebras A over R. We have A ∼= V (PA), and we
shall study V (PA) in more detail in the next section. For similar reasons, the
characteristic p analog of Corollary 3.3 takes the following weaker form. We again
emphasize that A was not assumed to be connected in the results above.

Corollary 3.3. Let A be a connected quasi Hopf algebra.

(i) ν : PA→ QA is a monomorphism if and only if A is associative and commu-
tative and satisfies xp = 0 for x ∈ (IA)+.

(ii) If A is commutative and associative and if ξ(A) is the sub quasi Hopf algebra
of A whose positive degree elements are spanned by {xp|x ∈ (IA)+}, then the
following is an exact sequence of R-modules.

0 // Pξ(A) // PA
ν // QA

(iii) If A is a commutative and cocommutative Hopf algebra, then the following is
an exact sequence of R-modules.

0 // Pξ(A) // PA
ν // QA // Qλ(A) // 0
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Here λ(A) is the quotient Hopf algebra ξ(A∗)∗ of A if A is of finite type and,
in general, λ(A) is the colimit of the λ(B), where B runs over the sub Hopf
algebras of A that are of finite type.

Proof. If ν is a monomorphism, then A is associative and commutative and
xp = 0 for x ∈ (IA)+ by Lemma 1.1. Conversely, give A its product filtration, which
is complete since A is connected. The previous corollary applies to give E0A ∼=
B(PE0A). It follows as in the proof of Corollary 3.3 that ν is a monomorphism. To
prove (ii), let B = A//ξA. Then B satisfies the hypotheses of (i). By Theorem 2.3,
we have the commutative diagram with exact rows

0 // Pξ(A) //

ν

��

PA //

ν

��

PB

ν

��
Qξ(A) // QA // QB // 0

Here ν : PB → QB is a monomorphism and Qξ(A)→ QA is zero. Now (ii) follows
by a simple diagram chase. When A is of finite type, (iii) follows from (ii) by
dualization, and the general case then results by passage to colimits. �

Corollary 3.4. A sub Hopf algebra of a primitive Hopf algebra is itself prim-
itive.

Proof. Let A ⊂ B, where B is primitive. By precisely the same argument
as in the proof of Corollary 3.4, it suffices to prove the result when A and B are
connected. By Lemma 1.2, we may assume that A is of finite type. The proof of
Lemma 1.2 applies to show that B is the colimit of its primitive sub Hopf algebras
of finite type, and A will necessarily be contained in one of them. Thus we may
assume that B is also of finite type. Then A∗ is a quotient hopf algebra of B∗. Since
ν : PB∗ → QB∗ is a monomorphism, part (i) of the previous corollary applies to
show that B∗ is associative and commutative with zero pth powers. Therefore A∗

also has these properties and ν : PA → QA is a monomorphism. Dualizing back,
we have that ν : PA→ QA is an epimorphism. �

Corollary 3.5. A sub Hopf algebra A of a primitive Hopf algebra B is a
normal subalgebra if and only if PA is a restricted Lie ideal of PB. When this
holds, B//A = V (PB/PA) and

0→ PA→ PB → P (B//A)→ 0

is an exact sequence of restricted Lie algebras.

Proof. The argument is the same as for Lemma 4.7, but with the observation
that, since A is a subalgebra of B, PA is automatically closed under the restriction
in B and is thus a restricted Lie ideal if and only if it is a Lie ideal. �

4. Commutative Hopf algebras in characteristic p

In this section, R is assumed to be a perfect field of characteristic p. We need
R to be perfect since relations of the form xp

q

= ryp, where r has no pth root,
would lead to counterexamples to the main results.



44 4. RESTRICTED LIE ALGEBRAS AND HOPF ALGEBRAS IN CHARACTERISTIC p

Theorem 4.1. Let A be a connected, commutative, and associative quasi Hopf
algebra. For a morphism of R-modules σ : QA → IA such that πσ = id, where
π : IA → QA is the quotient map, let R(A;σ) be the sub abelian restricted Lie
algebra of A generated by the image of σ. For a suitable choice of σ, the morphism
of algebras f : V (R(A;σ)) → A induced by the inclusion of R(A;σ) in A is an
isomorphism.

Proof. Clearly f is an epimorphism for any choice of σ. Let F be the family
of pairs (B, σ), where B is a sub quasi Hopf algebra of A and σ : QB → B is a
R-splitting of π : B → QB such that the following properties hold.

(1) The map of algebras f : V (R(B;σ)) → B associated to σ is an isomor-
phism.

(2) The map QB → QA induced by the inclusion of B in A is a monomor-
phism, and (QB)q = 0 for q > n if (QB)n → (QA)n is not an isomorphism.

Partial order F by (C, τ) < (B, σ) if C ⊂ B and σ extends τ . Note that QC → QB
is then a monomorphism such that (QC)q = 0 for q > n if (QC)n → (QB)n is not
an isomorphism. The family F is non-empty since it contains (R, 0), and the
union of a chain in F is an element of F . Therefore F has a maximal element
(C, τ). Assume for a contradiction that C 6= A. Let n be minimal such that
(QC)n 6= (QA)n. Then (QC)q = 0 for q > n. Choose y ∈ An such that π(y) is not
in QC and let B be the sub algebra of A generated by C and y; B is necessarily
a sub quasi Hopf algebra. The quotient B//C is a monogenic Hopf algebra with
primitive generator the image z of y.

A check of coproducts shows that the minimal m such that ym = 0 must be
a power of p. Define the height of y by ht(y) = t if yp

t

= 0 but yp
t−1 6= 0, or

ht(y) = ∞ if there exists no such t. It is possible that y ∈ B has greater height
than z ∈ B//C, but we claim that there exists x ∈ B such that x also has image z
in B//C and ht(x) = ht(z). Granting the claim, we complete the proof as follows.
By Theorem 2.3, the composite map of algebras

C ⊗B//C i⊗σ // B ⊗B
φ // B

is an isomorphism, where i : C → B is the inclusion and σ(z) = x. If we extend
τ : QC → C to σ : QB → B by setting σπ(y) = x, then the associated map of
algebras V (R(B;σ))→ B is an isomorphism and (C, τ) < (B, σ).

Thus it remains to prove the claim. There is nothing to prove if p > 2 and n
is odd or if z has infinite height. Thus let ht(z) = s. Let C ′ = ξs(C). Since R is
perfect, C ′ is a sub quasi Hopf algebra of C. Consider the commutative diagram

C //

γ

��

B //

β

��

B//C

α

��
C//C ′ // B//C ′ // (B//C ′)//(C//C ′)

where the vertical arrows are quotient maps. By Corollary 2.4, α is an isomorphism,
and we regard it as an identification. Let x′ ∈ B//C ′ map to z ∈ B//C. Then x′

has height ps. Indeed, ξs(x′) is primitive since ψ(x′) = x′ ⊗ 1 + u + 1 ⊗ x′, where
u ∈ I(C//C ′) ⊗ I(C//C ′) and thus ξs(u) = 0. However, B//C ′ has no non-zero
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primitive elements of degree psn in view of the exact sequence

0 // P (C//C ′) // P (B//C ′) // P (B//C)

and the fact that all indecomposable elements of C//C ′ have degree ≤ n and
all (ps)th powers of elements of C//C ′ are zero (and similarly for B//C). Now
choose w ∈ B such that β(w) = x′. Then ψ(w) = w ⊗ 1 + v + 1 ⊗ w, where
v ∈ IC ⊗ IC. Since (id⊗β)(v) ∈ IC ⊗ I(C//C ′), ξs(id⊗β)(v) = 0. It follows that
(id⊗β)ψξs(w) = ξs(w)⊗ 1. By Theorem 2.3, this implies that ξs(w) is in C ′. Let
ξs(w) = ξs(w′), where w′ ∈ C. If x = w − w′, then ξs(x) = 0 and x projects to z
in B//C. �

Example 4.2. The theorem fails if σ is not chosen properly. For a counterex-
ample, let p = 2 and take A = P{x}⊗E{y}, where x and y are primitive elements
of degrees one and three. If one foolishly defines σ : QA → A by σπ(x) = x and
σπ(y) = y + x3, then V (R(A;σ)) is a polynomial algebra on two generators.1

We have the following immediate corollary for quasi Hopf algebras having only
odd degree generators. We say that a commutative algebra is strictly commutative
if x2 = 0 for all odd degree elements x; of course, this always holds if charR 6= 2.

Corollary 4.3. Let A be a connected, strictly commutative, and associative
quasi Hopf algebra such that QnA = 0 if n is even. Then A ∼= E(QA) as an algebra.

Again, we obtain a stronger conclusion when the coproduct is coassociative.

Corollary 4.4 (Leray–Samelson). Let A be a connected strictly commutative
Hopf algebra such that QnA = 0 if n is even. Then A ∼= E(PA) as a Hopf algebra.

Proof. This follows from Corollaries 3.2 and 3.3 by the same arguments used
to prove Corollary 4.3. �

Using Corollary 3.5, we can obtain an analog of Theorem 4.4, but this result
gives considerably less complete information than was obtainable in the character-
istic zero case.

Corollary 4.5. Let A be a connected, commutative, and cocommutative Hopf
algebra over R, where charR > 2. Let B = E(PA−) and C = A//B. Then
A ∼= B ⊗ C as a Hopf algebra.

Proof. By (iii) of Corollary 3.3, ν : PA → QA is an isomorphism in odd
degrees. We may assume that A is of finite type. Dualizing, we have that ν :
PA∗ → QA∗ is also an isomorphism in odd degrees, and there results a map of
Hopf algebras π∗ : B∗ → A∗ such that the evident composite B → A → B is the
identity. Let ρ : A→ C be the natural epimorphism and define ω : A→ B ⊗ C to
be the composite

A
ψ // A⊗A

π⊗ρ // B ⊗ C.
Since A is cocommutative, ψ and therefore also ω is a morphism of Hopf algebras.
Since (ε⊗ id)ω = ρ and (id⊗ε)ω = π, ω is clearly an epimorphism. Using the exact
sequence of primitives in Corollary 3.5 and the fact that P (B ⊗ C) = PB ⊕ PC,
we see that ω is an isomorphism on primitives and therefore a monomorphism. �

1This example is due to Paul Goerss.
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To complete our results, we must still determine the structure of V (L), where
L is an abelian restricted Lie algebra. Clearly, it suffices to study L itself.

Theorem 4.6. Let L be an abelian restricted Lie algebra such that L0 is finitely
generated as a restricted Lie algebra. Then L is isomorphic to a direct sum of
monogenic abelian restricted Lie algebras.

Proof. Clearly L = L− × L+ as an abelian restricted Lie algebra. Since L−

is just a vector space, with no additional structure, we may as well assume that
L = L+. Let L(n) be the sub abelian restricted Lie algebra of L generated by the
Li for i ≤ n. Since L is the union of the L(n), it suffices to prove the result when
L = L(n). We proceed by induction on n.

We first consider the case L = L(0) = L0, which is exceptional. Let P [t] denote
the non commutative polynomial algebra in one indeterminate t with tr = rpt
for r ∈ R. If R = Fp, P [t] is the ordinary polynomial algebra. The relation
ξ(rx) = rpξ(x) shows that L is a P [t]-module via tx = ξ(x). Since R is perfect,
r → rp is an automorphism of R, and P [t] is a principal ideal domain by Jacobson
[?, p. 30]. Therefore, by [?, p. 43-44], every finitely generated P [t]-module is a
direct sum of cyclic modules. This says that L is a finite direct sum of monogenic
abelian restricted Lie algebras.

In general, L is the direct sum of L(0) and its sub restricted Lie algebra of
positive degree elements, so we may now assume that L0 = 0. Consider the case L =
L(n), where n > 0 and the conclusion holds for L(n−1). Choose a splitting σ of the
epimorphism L(n)n −→ L(n)n/L(n− 1)n and choose a basis for L(n)n/L(n− 1)n.
The image under σ of the chosen basis gives a set of generators of degree n of L(n).
Since, in contrast with the case L(0), there is no further structure in sight in degree
n, we may apply a passage to colimits argument to see that the conclusion holds
in general if it holds when there are only finitely many generators, q say, of degree
n. We proceed by induction on q, there being nothing to prove if there are no such
generators. Thus assume first that L has q generators of degree n and let L′ be
the sub abelian restricted Lie algebra of L generated by L(n − 1) together with
q − 1 of these generators. Let L′′ = L/L′. By the induction hypothesis, L′ is a
sum of monogenic abelian restricted Lie algebras. By construction, L′′ is an abelian
restricted Lie algebra generated by a single element, x say, of degree n. It suffices
to prove that L is isomorphic to L′ ⊕ L′′. To show this, it suffices to construct a
morphism f : L′′ → L of abelian restricted Lie algebras such that πf = id, where
π : L→ L′′ is the quotient map.

Define the height of an element z ∈ L by ht(z) = s if ξs(z) = 0 but ξs−1(z) 6= 0
and ht(z) = ∞ if ξm(z) 6= 0 for all m. Of course, if π(y) = x, then ht(y) ≥ ht(x).
To construct f , it suffices to find y ∈ L such that π(y) = x and ht(y) = ht(x)
since f(x) = y then determines f . If ht(x) =∞, any y such that π(y) = x will do.
Thus assume that x has finite height s. Since R is perfect, ξs(L′) is a sub abelian
restricted Lie algebra of L′. Let M ′ = L′/ξs(L′) and M = L/ξs(L′). We may
identify L′′ with M/M ′. Choose z ∈M which projects to x ∈ L′′ and w ∈ L which
projects to z. We have Mt = 0 for t ≥ psn by construction and L′′t = 0 for t ≥ psn
since ht(x) = s. Thus Mt = 0 for t ≥ psn and ξs(z) = 0. Therefore ξs(w) = ξs(w′)
for some w′ ∈ L′. Let y = w − w′. Then π(y) = x and ht(y) = s. �

Observe that V (⊕iLi) ∼= ⊗iV (Li). One way to see this formally is to ignore the
coproduct and observe that, as a left adjoint, the functor V from abelian restricted
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Lie algebras to commutative algebras commutes with categorical coproducts, which
are direct sums on the Lie algebra level and tensor products on the algebra level.
The following two theorems are therefore direct consequences of Theorems 3.1 and
4.1. Note that a connected monogenic Hopf algebra is of the form E[x], where
x ∈ (IA)−, or P [x]/(xp

q

) or P [x], where x ∈ (IA)+.

Theorem 4.7. If A is a primitive commutative Hopf algebra and A0 is finitely
generated as an algebra, then A is isomorphic as a Hopf algebra to a tensor product
of monogenic Hopf algebras.

Theorem 4.8 (Borel). If A is a connected, commutative, and associative quasi
Hopf algebra, then A is isomorphic as an algebra to a tensor product of monogenic
Hopf algebras.


