1. Simplicial Spaces

Informally, we can think of simplicial spaces as spaces built out of oriented lines, triangles, tetrahedra...

Let \(K_n \) be the set of \(n+1 \) point simplices. Recall that the free abelian group \(\mathbb{Z}[K_n] \) consists of formal sums of elements of \(K_n \) (i.e. \(\sum_{i=1}^{n} k_i \sigma_i \in \mathbb{Z}[K_n] \) where \(\sigma_i \in K_n \) and \(k_i \in \mathbb{Z} \) for each \(i \)). We also recall that we were given maps \(d_i : K_n \rightarrow K_{n-1} \) and \(s_i : K_n \rightarrow K_{n+1} \) for \(i = 0 \ldots n \), that satisfy certain relations. Using these maps we define \(d : \mathbb{Z}[K_n] \rightarrow \mathbb{Z}[K_{n-1}] \) as \(d(\sigma) = \sum_{i=0}^{n} (-1)^i d_i(\sigma) \).

We compute

\[
(dd)(\sigma) = d \left(\sum_{i=0}^{n} (-1)^i d_i(\sigma) \right)
= \sum_{0 \leq j < n} \sum_{0 \leq i < n} (-1)^{i+j} d_j d_i(\sigma)
= \sum_{0 \leq j < i \leq n} (-1)^{i+j} d_j d_i(\sigma) + \sum_{0 \leq i < j \leq n} (-1)^{i+j} d_j d_i(\sigma)
= - \sum_{0 \leq j < i \leq n} (-1)^{i+j} d_{i-1} d_j(\sigma) + \sum_{0 \leq i < j \leq n} (-1)^{i+j} d_j d_i(\sigma)
= - \sum_{0 \leq j \leq i < n} (-1)^{i+j} d_i d_j(\sigma) + \sum_{0 \leq i < j \leq n} (-1)^{i+j} d_j d_i(\sigma)
= 0
\]

Using this we define \(B_n(K) = d(\mathbb{Z}[K_{n+1}]) \) and \(Z_n(K) = \{ \sigma \in \mathbb{Z}[K_n] \mid d(\sigma) = 0 \} \).

The \(nth \) homology group is defined to be \(H_n(K) = Z_n(K)/B_n(K) \).

Example 2.1. If we let \(K \) be the triangle with ordered points \(a < b < c \) and edges \(f \), connecting \(a \) to \(b \), \(g \) connecting \(b \) to \(c \) and \(h \) connecting \(a \) to \(c \). We can compute \(H_0(K) = H_1(K) = \mathbb{Z} \). Since \(d(\mathbb{Z}[K_0]) \) is by definition 0 we see that \(Z_0(K) = \mathbb{Z}^3 = \mathbb{Z}a \oplus \mathbb{Z}b \oplus \mathbb{Z}c \). We have that \(d(f) = b - a \), \(d(g) = c - b \) and \(d(h) = c - a = d(f) + d(h) \). So \(B_0(K) = d(\mathbb{Z}[K_1]) = \mathbb{Z}(b - a) \oplus \mathbb{Z}(c - b) \). Rewriting \(Z_0(K) \) as \(\mathbb{Z}(b - a) \oplus \mathbb{Z}(c - b) \oplus \mathbb{Z}b \) we see that \(H_0(K) = \mathbb{Z} \). Since there are no 2-simplices we have \(B_1(K) = 0 \) which implies \(H_1(K) = Z_1(K) = \mathbb{Z}(h - (f + g)) = \mathbb{Z} \).
3. The functoriality of homology.

Suppose we have a map of chain complexes \(f : C_\ast \rightarrow C'_\ast \). That is we have that \(df_n = f_n d \). We see that if \(x \in Z_n(C) \) then \(df_n(x) = f_n(dx) = f_n(0) = 0 \) so \(f(x) \in Z_n(C') \). And we see that if \(x \in B_n(C) \), so \(x = dy \) for some \(y \in C_{n+1} \), then \(f(x) = f(dy) = d(f(y)) \) and we have \(f(x) \in B_n(C') \). These two facts imply that we have a well defined map \(H_n(C) \rightarrow H_n(C') \).

4. The homotopy invariance of homology

We return to one of our favorite simplicial complexes \(I \). Recall \(I \) has two 0-simplices, \(I_0 = \{[0],[1]\} \), and one 1-simplex, \(I_1 = \{[I]\} \). Let \(K \) be a simplicial space, we can check that \(\mathbb{Z}([K \times I]) = \mathbb{Z}[K_\ast \times I_\ast] = \mathbb{Z}[K_\ast] \otimes \mathbb{Z}[I_\ast] \). The \(n \)-chains \(C_n(K \times I) \) then are given by \(\mathbb{Z}[K_\ast] \otimes [0] \oplus \mathbb{Z}[K_\ast] \otimes [1] \oplus \mathbb{Z}[K_{n-1}] \otimes [I] \). For \(x \in C_n(K) \) we set

\[
\begin{align*}
 d(x \otimes [0]) &= d(x) \otimes [0] \\
 d(x \otimes [1]) &= d(x) \otimes [1] \\
 d(x \otimes [I]) &= d(x) \otimes [I] + (-1)^n x \otimes [1] - (-1)^n x \otimes [0].
\end{align*}
\]

Now we see two chain maps \(f, g : C \rightarrow C' \) are homotopic if there exists a map \(h : C \otimes I \rightarrow C' \) such that \(h(x \otimes [0]) = f(x \otimes [0]) \) and \(h(x \otimes [1]) = g(x \otimes [1]) \) for all \(x \in C \).

Theorem 4.1. If \(f \) and \(g \) are homotopic then \(f_* = g_* \).