1 The Fundamental Theorem of Algebra - Proof 2 (Topological)

Theorem 1. The Fundamental Theorem of Algebra

Proof. Suppose that \(f(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 \). We can assume without loss of generality that \(a_n = 1 \). Furthermore, we can assume that \(a_0 \neq 0 \) otherwise \(z = 0 \) would be a root. Now, \(f(x) \) is a continuous complex polynomial, mapping \(\mathbb{C} \to \mathbb{C} \). We also know that

\[
\lim_{z \to \infty} \frac{z^n}{f(x)} = 1
\]

and so for a circle with sufficiently large radius \(r \), we have

\[
|z^n - f(x)| \leq \alpha r^n
\]

with \(0 < \alpha < 1 \) and \(z \) on the circle, \(C \).

For any \(r > 0 \), \(z^n \) winds \(C \) around the origin \(n \) times. Therefore, \(f(z) \) will also wind a sufficiently large \(C \), \(n \) times around the origin. For a sufficiently small radius \(r \), \(f(z) \equiv a_0 \) and will not wind around the origin at all. Since \(f(z) \) is continuous for any given \(r, f(C_r) \) will depend on \(r \) continuously. Since \(f(C_r) \) has winding number of 0 for sufficiently small \(r \), and winding number of \(n \) for sufficiently large \(r \), it follows that there exists a radius, say \(r_1 \), such that \(f(C_{r_1}) \) passes through the origin. Thus, \(\exists z_1 \) on \(C_{r_1} \) such that \(f(z_1) = 0 \). This proves the theorem.

\[\square \]