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1 Introduction

In this paper, I will outline the basics of graph theory in an attempt to explore
Cayley’s Formula. Cayley’s Formula is one of the most simple and elegant
results in graph theory, and as a result, it lends itself to many beautiful
proofs. I will examine a couple of these proofs and show how they exemplify
different methods that are often used for all types of mathematics problems.

2 Basics and Definitions

Not surprisingly, graph theory is the study of things called graphs. So what is
a graph? A graph can be thought of as a finite set of vertices {v1, v2, . . . , vn}
and a set of relations between each pair of vertices. Each of the

(
n
2

)
pairs of

vertices is either adjacent or not adjacent. If a pair of vertices is adjacent,
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we say there is an edge connecting the two vertices, and they are called
neighbors.

The above definition lends itself to a convenient visualization. The n
vertices can be considered as n distinct points in a plane, such as R2, and
edges can be considered as lines between adjacent vertices. An example of a
graph can be seen below.
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A graph with 7 vertices and 10 edges

It is this visualized version of a graph that will be used from here on.
(Note: what is being defined here is formally called a simple graph; other
types of graphs may have edges with arrows, multiple edges between vertices,
or loops from a vertex to itself.)

Let’s define some features of graphs:

• A walk of length k is a sequence of vertices v0, v1, . . . vk such that vi is
adjacent to vi+1 for each i (for this we shall write: vi ∼ vi+1 ∀ i ).

• A closed walk is a walk of length k such that v0 = vk.

• A cycle is a closed walk where none of the vertices repeat except for
the first and the last (i.e. i 6= j ⇒ vi 6= vj except when (i, j) = (0, k)).
Example: in the above graph, the sequence b, f, g, b forms a cycle of
length 3, denoted C3.
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• A complete graph on n vertices is a graph such that vi ∼ vj ∀ i 6= j. In
other words, every vertex is adjacent to every other vertex.
Example: in the above graph, the vertices b, e, f, g and the edges be-
tween them form the complete graph on 4 vertices, denoted K4.

• A graph is said to be connected if for all pairs of vertices (vi, vj) there
exists a walk that begins at vi and ends at vj. (Note: the above graph
is connected.)

• A tree on n vertices is a connected graph that contains no cycles. Below
is an example of a tree with 8 vertices.
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• The degree of a vertex is defined as the number of vertices it is adjacent
to (i.e. the number edges attached to it).
Example: in the above tree, the point x has degree 4, denoted d(x) = 4.

Proposition: Every finite tree has at least two vertices of degree 1.

Proof. Notice that any tree must have at least one vertex with degree 1
because if every vertex had degree of at least 2, then one would always be
able to continue any walk until a cycle is formed. Now let us assume that we
have a tree with exactly one vertex of degree 1. If one removes this vertex
of degree 1, the resulting graph must also be a tree since a cycle cannot be
added by removing a vertex. In the resulting tree, either the first vertex’s
neighbor is now of degree 1 or the resulting graph is not a tree and we have
a contradiction. If the latter, our proof is done. If the former, we must be
able to remove vertices until a contradiction occurs, and there is no vertex of
degree 1. We must be able to do this because if we could continue to remove
vertices in this way, our graph must be something equivalent to a straight
path, and a straight path has two vertices of degree 1, namely the endpoints.
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We have shown that a tree must have at least one vertex of degree 1 and
that it cannot have exactly one, so it must have at least two.

3 Cayley’s Formula

Using the above definitions, we can now begin to discuss Cayley’s formula
and its proofs. Cayley’s Formula tells us how many different trees we can
construct on n vertices. We can think about this process as beginning with n
vertices and then placing edges to make a tree. Another way to think about
it involves beginning with the complete graph on n vertices, Kn, and then
removing edges in order to make a tree. Cayley’s formula tells us how many
different ways we can do this. These are called spanning trees on n vertices,
and we will denote the set of these spanning trees by Tn.

The following is a diagram of all of elements of T4:

v v v v v v v v
v v v v v v v v
v v v v v v v v
v v v v v v v v
v v v v v v v v
v v v v v v v v
v v v v v v v v
v v v v v v v v
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Notice that the figures in each row are just rotations of the first one. Each
of these graphs is distinct because each has a different set of adjacencies.
For example, a ∼ c in the first graph above, but a � c in the second graph.
Again, these graphs can be obtained by adding edges to 4 vertices or from
taking edges away from K4.
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In its simplest form, Cayley’s Formula says:

|Tn| = nn−2 (1)

From our above example, we can see that |T4| = 16 = 42. It is trivial that
there is only one tree on 2 vertices (so |T2| = 1 = 20). Also, the only possible
tree type on 3 vertices is a ’V’ and the 2 other trees are just rotations of that
(so |T3| = 3 = 31). We can see that Cayley’s Formula holds for small n, but
how can we prove that it is true for all n? We shall see how we can do this
in different ways in the following sections.

4 Prüfer Encoding

The most straight forward method of showing that a set has a certain number
of elements is to find a bijection between that set and some other set with
a known number of elements. In this case, we are going to find a bijection
between the set of Prüfer sequences and the set of spanning trees.

A Prüfer sequence is a sequence of n − 2 numbers, each being one of the
numbers 1 through n. We should initially note that indeed there are nn−2

Prüfer sequences for any given n. The following is an algorithm that can be
used to encode any tree into a Prüfer sequence:

1. Take any tree, T ∈ Tn, whose vertices are labeled from 1 to n in any
manner.

2. Take the vertex with the smallest label whose degree is equal to 1,
delete it from the tree and write down the value of its only neighbor.
(Note: above we showed that any tree must have at least two vertices
of degree 1.)

3. Repeat this process with the new, smaller tree. Continue until only
one vertex remains.

This algorithm will give us a sequence of n − 1 terms, but we know that
the last term will always be the number n because even if initially d(n) = 1,
there will always be another vertex of degree 1 with a smaller label. Since
we already know the number of vertices on our graph by the length of our
sequence, we can drop the last term as it is redundant. So now we have a
sequence of n − 2 elements encoded from our tree. Below is an example of
encoding a tree on 6 vertices:
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After encoding our tree, we end up with the sequence: 5, 1, 1, 5, 6; then
we can drop the ending 6 and end with our Prüfer Sequence and denote it
by P . P = 5, 1, 1, 5. So what should make us think that this is the only tree
that gives us this sequence? First, we must notice that all of the vertices of
degree 1 do not occur in P . With a little thought we can see that this is
true for any tree, as the vertices of degree 1 will never be written down as
the neighbors of other degree 1 vertices (except when vertex n is of degree
1, but this will never end up in our sequence). In fact, it follows from this
that every vertex has degree equal to 1 + a, where a is the number of times
that vertex appears in our sequence.

This way of analyzing a Prüfer Sequence provides us with a way of recon-
structing an encoded tree. The algorithm goes as follows:

1. Find the smallest number from 1 to n that is not in the sequence P and
attach the vertex with that number to the vertex with the first number
in P . (We know that n = 2 + number of elements in P .)

2. Remove the first number of P from the sequence. Repeat this process
considering only the numbers whose vertices have not yet attained their
correct degree.

3. Do this until there are no numbers left in P . Remember to attach the
last number in P to vertex n.
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Let’s reconstruct our original tree from our sequence, P = 5, 1, 1, 5:
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Following the above steps, we have now reconstructed our original tree on
6 vertices. It may be oriented differently, but all of the vertices are adjacent
to their correct neighbors, and so we have the correct tree back. Since there
were no ambiguities on how to encode the tree or decode the sequence, we can
see that for every tree there is exactly one corresponding Prüfer Sequence,
and for each Prüfer Sequence there is exactly one corresponding tree. More
formally, the encoding function can be thought of as taking a member of the
set of spanning trees on n vertices, Tn, to the set of Prüfer Sequences with
n−2 terms, Pn. Decoding would then be the inverse of the encoding function,
and we have seen that composing these two functions results in the identity
map. If we let f be the encoding function, then the above statements can be
summarized as follows:

f : Tn −→ Pn, f−1 : Pn −→ Tn, and f−1◦ f = Id.

Since we have found a bijective function between Tn and Pn, we know that
they must have the same number of elements. We know that |Pn| = nn−2,
and so |Tn| = nn−2.

5 A Forest of Trees

Another common way of proving something in mathematics is to prove some-
thing more general of which what you want to prove is a specific case. We
can use this method to prove Cayley’s formula as well. First, we must define
what a forest is. A forest on n vertices is a graph that contains no cycles, but
does not need to be connected like a tree. In fact, a forest can be thought of
as a group of smaller trees, hence the name forest.
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Now, we are going to define a specific family of forests that we will denote
Tn,k. Let A be an arbitrary set of k vertices chosen from the vertices 1, 2, ..., n.
We are going to define Tn,k to be the set of all forests on n vertices that have
k trees such that each element of A is in a different tree. The following is
the set T4,2 where A = {1, 2}.
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There are a couple things that we should note before we move on. First, we
should notice that a point by itself is a tree on 1 vertex. Second, we should
notice that if we are counting the number of elements in Tn,k, it does not
matter what elements are in A; only the number of elements in A matters,
which we have defined as k. Let’s take a look at Tn,k, specifically vertex 1:

t t t t
t t t . . . t
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In this picture, we are just looking at vertex 1; each vertex, 1 through k,
is part of its own tree. Vertex 1 can be adjacent to i of the remaining n− k
vertices, and i can range from 0 to n − k. If we delete vertex 1 from our
graph, we get (k−1)+(i) vertices that must be in separate trees. (Note that
none of the i vertices can be adjacent to each other because that would form
a cycle.) If we now sum up the number of trees we get from deleting vertex
1 across all possible values of i, we can obtain a value for Tn,k. Formally we
have:

Tn,k =
n−k∑
i=0

(
n− k

i

)
Tn−1,(k−1)+i (2)

We obtain the binomial coefficient because the i vertices can be chosen in
that many ways from the n − k vertices. In certain cases where the above
summation may not be defined, we define those values. We set T0,0 = 1 and
Tn,0 = 0 for n > 0. Note that T0,0 = 1 is necessary so that Tn,n = 1.
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Proposition:

Tn,k = knn−k−1

Proof. We want to prove our proposition using equation (2) and induction:

Tn,k =
n−k∑
i=0

(
n− k

i

)
Tn−1,(k−1)+i Equation (2)

=
n−k∑
i=0

(
n− k

i

)
(k − 1 + i)(n− 1)(n−1)−(k−1+i)−1 Proposition

Switch the order of the summation letting i = (n− k)− i

Tn,k =
n−k∑
i=0

(
n− k

i

)
(n− 1− i)(n− 1)i−1

=
n−k∑
i=0

(
n− k

i

)
(n− 1)i −

n−k∑
i=1

(
n− k

i

)
i(n− 1)i−1

=
n−k∑
i=0

(
n− k

i

)
(n− 1)i(1)n−k−i−

n−k∑
i=1

(n− k)! · i
(i)!(n− k − i)!

· (n− 1)i−1

=
n−k∑
i=0

(
n− k

i

)
(n− 1)i(1)n−k−i− (n− k)

n−k∑
i=1

(
n− k − 1

i− 1

)
(n− 1)i−1

=
n−k∑
i=0

(
n− k

i

)
(n−1)i(1)n−k−i−(n−k)

n−k−1∑
i=0

(
n− k − 1

i

)
(n−1)i(1)n−k−1−i

= (n− 1 + 1)n−k − (n− k)(n− 1 + 1)n−k−1 Binomial Theorem

Tn,k = nn−k − nn−k + knn−k−1 = knn−k−1

Now that we have proven the more general case, we can look at how it
proves Cayley’s Formula. Cayley’s Formula describes cases where there is
exactly 1 tree on n vertices, so Tn = Tn,1. Plugging n and 1 into the formula
we proved gives us Tn = Tn,1 = nn−2 proving Cayley’s Formula.
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