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1 Colimits

We begin our discussion by defining the notion of a diagram. Let A be a
category, and let B be a small category. A diagram in A, based on B is a
functor F : B → A.

If C is an object of A and F : B → A is a diagram, we define a morphism
ψ : F → C to be a collection {ψB} of morphisms ψB : B → C for each object
B of B, such that if ϕ : B → B′ is any morphism in B, the following diagram
commutes:

FB
Fϕ //

ψB !!C
CC

CC
CC

C FB′

ψB′}}zz
zz

zz
zz

C

The colimit lim→ F of F is an object A of A and a morphism ψ : F → A
which satisfies the universal property that, given any morphism ψ′ from F
to an object A′, there exists a unique morphism γ : A → A′ making the
following diagram commute:

FB
ψB

!!D
DD

DD
DD

D

ψ′B

��2
22

22
22

22
22

22
22

Fϕ // FB′

ψB′

||yyyyyyyy

ψ′B′

����
��
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��
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A

γ

��
A′
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Two common and useful examples of colimits are the coproduct and co-
equalizer. We define the coproduct of a collection of objects {Bi} of A,
written as

∐
iBi, to be the colimit of the diagram consisting of the objects

Bi with no morphisms other than the identity morphisms. The coproduct
thus satisfies, in the case of two objects, the familiar universal diagram:

Bi

##G
GGGGGGGG

��5
55

55
55

55
55

55
55

55
Bj

{{wwwwwwwww

��		
		

		
		

		
		

		
		

	

Bi

∐
Bj

��
C

Examples of the coproduct are the disjoint union of sets or spaces, and the
direct sum of abelian groups or, more generally, modules over a commutative
ring.

The coequalizer of two morphisms ψ, ψ′ : C1 → C2 is the colimit of the
diagram consisting of C1, C2, their identity morphisms, and the morphisms
ψ and ψ′, resulting in the again familiar universal diagram:

C1
ψ

ψ′
+3 C2

//

  @
@@

@@
@@

@ Q

��
Q′

An example of a coequalizer is the cokernel of the difference of two homo-
morphisms in the category of abelian groups or modules over a commutative
ring: If f, g : A → B are homomorphisms from the abelian group A to the
abelian group B, the coequalizer of f and g will be the group B/im(f − g).

If F,G : B → A are two functors, and α : F → G is a natural transfor-
mation between these functors, then the following diagram commutes:
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FB
Fϕ //

α

��

$$I
IIIIIIII FB′

α

��

zzttttttttt

lim→ F

��

GB
Gϕ

//

$$I
IIIIIIII GB′

zzttttttttt

lim→G

and we define lim→ α : lim→ F → lim→G to be the map induced by the
vertical maps FB → lim→G, indicated by the dotted line in the above
diagram. In this way, we see that lim→ acts as a functor from the functor
category Fun(B,A) → A.

2 Colimits and Exactness

One of the basic concepts of homological algebra is that of the short exact
sequence. Let A be a commutative ring. We define a complex to be a set
of A-modules Mi with homomorphisms di : Mi → Mi−1 such that im(di) ⊆
ker(di−1). Complexes are often represented by a diagram:

· · · //Mi+1
di+1 //Mi

di //Mi−1
// · · ·

A complex is said to be exact if ∀i, im(di) = ker(di−1). A short exact
sequence is thus an exact complex of the form

0 // A
α // B

β // C // 0

We can get much knowledge out of the fact that this sequence is exact.
The kernel of α is the image of the zero homomorphism, hence ker(α) = 0,
and so α is injective. Similarly, im(β) = ker(0) = C, so β is surjective.
Finally, we see that ker(β) =im(α) ∼= A, so that C ∼= B/A.

We want to see when a colimit in the category of A-modules preserves
exactness. We say that a functor F from the category of A-modules to itself
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is right-exact if it takes short exact sequences of modules to sequences that
are exact only at the right end, so that for the short exact sequence above
we would have

FA
Fα // FB

Fβ // FC // 0

and we define a left-exact functor similarly. An exact functor is one that is
both left- and right-exact.

Proposition 1 lim→ is a right-exact functor. In other words, let A be the
category of A-modules, and let B be some small category. Let F,G,H : B →
A be functors and let α : F → G and β : G→ H be natural transformations
such that, ∀B ∈ B,

0 // FB
α // GB

β // HB // 0

is exact. Then,

lim→ F
lim→ α// lim→G

lim→ β// lim→H // 0

is a right exact sequence.

Proof: We will show that lim→ β is an epimorphism. An epimorphism is
a morphism γ : A → B such that, if η1, η2 : B → C are morphisms with
η1γ = η2γ then η1 = η2. In the category of modules over a commutative ring,
epimorphisms are surjective functions and vice versa. Let f, g : limH → C
so that f lim→ β = g lim→ β. f and g thus induce maps HB → C as we see
in the following diagram:

GB
φ //

β

��

lim→G

lim→ β
��

HB
ψ //

fψ

gψ
 (JJJJJJJJJJ

JJJJJJJJJJ lim→H

fg

��
C

Because everything in this diagram commutes, we have fψβ = f(lim→ β)φ =
g(lim→β)φ = gψβ. Since β is surjective, we have fψ = gψ. But then this

4



forces f = g, since the definition of the colimit states that the morphism
between lim→H and C that makes the diagram commute is unique, and
so lim→ β is an epimorphism, and thus surjective, making this part of the
sequence exact.

We now check exactness at lim→G. Consider lim→ β ◦ lim→ α. Because
the following diagram commutes for all B ∈ B,

FB
ψ //

α

��

lim→ F

lim→ α
��

GB
ψ′ //

β

��

lim→G

lim→ β

��
HB

ψ′′ // lim→H

we have ψ′′ ◦ β ◦ α = lim→ β ◦ lim→ α ◦ ψ. But we know that this must
equal 0, since β ◦ α = 0 because that sequence is exact. Since 0 satisfies
0 ◦ ψ = 0 for all ψ, and because maps from the colimit are unique, we have
lim→ β ◦ lim→ α, so that im lim→ α ⊂ ker lim→ β. Let x ∈ lim→G.

Suppose we have x ∈ ker lim→ β. We can take some b ∈ GB such that
β(b) = 0. Since the lower square on the above diagram commutes, this gives
us ψ′(b) = x. Because α is surjective, we have some a ∈ FB with α(a) = b.
So, because the top square commutes, we have x = lim→ α(ψ(a)), and so x ∈
im lim→ α, giving exactness. 2

We can see, by example, that not all colimits are left-exact. Recall that
the coequalizer of two morphisms f, g : A → B in the category of abelian
groups is coker(f − g). Consider the following diagram:

0 // 4Z
i 0

��

// Z
∼= 0

��

// Z/4Z
φ 0
��

// 0

0 // 2Z // Z // Z/2Z // 0

The horizontal rows are clearly exact. For the vertical columns, representing
the two morphisms we will find the coequalizer of, 0 is the zero homomor-
phism, i is the inclusion map, ∼= is the natural isomorphism, and π represents
a map for which 0 and 2 are mapped to 0, and 1 and 3 are mapped to 1. We
see that each of the squares in the diagram is natural very straightforwardly.
Taking the coequalizer of the sequence, we get the following:
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0 // 2Z/4Z ∼= Z/2Z // 0 // 0 // 0

The map from Z/2Z to 0 cannot be injective, and so this sequence is not
left-exact.

To examine when colimits are left-exact, we introduce the concept of a
filtered limit. A category B is filtered if it satisfies the following two condi-
tions:

1. For any two objects B1 and B2 of B there exists an object B of B
with morphisms B1 → B and B2 → B, and

2. For every two morphisms with the same source f : B′ → B1 and
g : B′ → B2, there exists an object B and morphisms f ′ : B1 → B and
g′ : B2 → B such that the following diagram commutes:

B1

f ′

  A
AA

AA
AA

A

B′

f
>>||||||||

g   B
BB

BB
BB

B B

B2

g′

>>}}}}}}}}

Proposition 2 If B is a filtered small subcategory of the category of
A-modules, then lim→ B is the disjoint union

⋃
B∈B B/ ∼ where b1 ∼ b2 for

b1 ∈ B1 and b2 ∈ B2 iff there exist morphisms fi : Bi → B such that
f1(b1) = f2(b2)

Proof: Let X =
⋃
B∈B B/ ∼. We first see that X is in fact an A-module.

First note that, for x ∈ B1, f : B1 → B, x ∼ f(x), since f(x) = 1B(f(x)),
and so f and 1B are the morphisms satisfying the equivalence relation. It
follows immediately that scalar multiplication, defined by r[x] = [rx], since
for a commutative ring, scalar multiplication is a morphism in the category
of that ring’s modules. Finally, for x ∈ B1 and y ∈ B2, we define
[x] + [y] = [f(x) + g(y)], where f : B1 → B and g : B2 → B are morphisms
to a common module, which exist since B is filtered. We check to see that
this addition is well defined. Say x′ ∈ B′

1 with x ∼ x′. Since they are
equivalent, we have some C ∈ B and φ : B1 → C,ψ : B′

1 → C with
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φ(x) = ψ(x′). From the first part of the definition of the filtered category,
we have f ′ : C → C ′ and g′ : B2 → C ′ for some C ′ ∈ B so that
f ′(ψ(x′)) ∈ C ′ and g′(y) ∈ C ′, allowing us to add these two quantities. But
we see that, by the second part of the definition of a filtered category, that
there exists D ∈ B and morphisms δ : B → D and δ′ : C ′ → D with the
following diagram commuting:

B
δ

  A
AA

AA
AA

A

B2

g
>>||||||||

g′   B
BB

BB
BB

B D

C ′
δ′

>>~~~~~~~~

Since this diagram commutes, δ(f(x) + g(y)) = δ′(f ′(ψ(x′)) + g′(y)), so
these two are equivalent and this addition is well defined. Hence X is an
object of the category A-mod.
We use the universal property to show X is the colimit. Given an
A-module C and maps ψi : Bi → C, we clearly have an induced map
ψ :

⋃
B∈B B → C. If the ψi commute with all the morphisms in B, making

the ψi a morphism from the diagram B → C as described above, then we
see that ψ respects the equivalence relation ∼, so that ψ descends to a
unique map X → C, satisfying the colimit universal property. 2

Using this, we get a useful way to look at A-modules in terms of their
submodules:

Proposition 3 An A-module M can be expressed as the filtered colimit of
the subcategory B of A-Mod, consisting of finitely generated submodules of
M as objects and inclusion maps as morphisms.

Proof: We first see that B is filtered. Let M1, M2 be finitely generated
submodules of M . We see that M1 ⊆M1 +M2 and M2 ⊆M1 +M2,
satisfying the first criterion. Say M ′ ⊆M1 ∩M2, so that we have
morphisms from M ′ to M1 and M ′ to M2. Then the following diagram,
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with arrows being inclusion maps, commutes:

M1

%%JJJJJJJJJJ

M ′

=={{{{{{{{

!!C
CC

CC
CC

C M1 +M2

M2

99tttttttttt

thus satisfying the second criterion for being a filtered subcategory.
Let X =

⋃
N∈BN/ ∼, with ∼ being the equivalence relation described in

the last theorem. Let φ : M → X be given by φ(m) = [m]. φ is surjective,
since any [m] ∈ X has preimage m ∈M . Let a ∈ ker(φ). Since [a] = [0],
there are some finitely generated submodules M1,M2, and M ′ of M and
injections i : M1 →M ′ and j : M2 →M ′ with a ∈M1 and i(a) = j(0) = 0.
Since i is injective, this means a = 0, so φ is injective. Thus, X ∼= M and
by the uniqueness of the colimit, X = M . 2

We now finish our discussion of filtered colimits by exploring our original
motivation of finding exact colimits:

Proposition 4 Filtered colimits are exact. That is, let A be the category of
A-modules; let B be a filtered category; let F,G,H : B → A be functors; and
let α : F → G and β : G→ H be natural transformations such that, for
every object B ∈ B

0 // FB
α // GB

β // HB // 0

is exact. Then,

0 // lim→ FB
lim→ α// lim→GB

lim→ β// lim→HB // 0

is also an exact sequence.

Proof: Since we showed above that any colimit is right-exact, all we need to
show is that lim→ α is injective. Let x ∈

⋃
B∈B FB/ ∼ such that x goes to

zero in
⋃
B∈BGB/ ∼ under lim→ α. We can lift x to some representative

element b ∈ FB for some B ∈ B. So, since lim→ α(x) = 0, we have
α(b) ∼ 0. This gives us a morphisms f : B → B′ and g : B′′toB′ such that
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Gf(α(b)) = Gg(0). But since Gg(0) = 0, we see that Gf(α(b)) = 0. Since
the diagram

FB
α //

Ff
��

GB

Gf
��

FB′
α
// GB′

commutes, and since α is injective, Ff(b) = 0, so we have b ∼ 0, so that
[b] = [0] in

⋃
B∈B FB/ ∼, so lim→ α is injective. 2
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