Colimits and Homological Algebra

Andy Kiersz

August 11, 2006

1 Colimits

We begin our discussion by defining the notion of a diagram. Let \mathcal{A} be a category, and let \mathcal{B} be a small category. A *diagram* in \mathcal{A} , based on \mathcal{B} is a functor $F : \mathcal{B} \to \mathcal{A}$.

If C is an object of \mathcal{A} and $F : \mathcal{B} \to \mathcal{A}$ is a diagram, we define a *morphism* $\psi : F \to C$ to be a collection $\{\psi_B\}$ of morphisms $\psi_B : B \to C$ for each object B of \mathcal{B} , such that if $\varphi : B \to B'$ is any morphism in \mathcal{B} , the following diagram commutes:

The *colimit* $\lim_{\to} F$ of F is an object A of \mathcal{A} and a morphism $\psi: F \to A$ which satisfies the universal property that, given any morphism ψ' from F to an object A', there exists a unique morphism $\gamma: A \to A'$ making the following diagram commute:

Two common and useful examples of colimits are the *coproduct* and *co-equalizer*. We define the coproduct of a collection of objects $\{B_i\}$ of \mathcal{A} , written as $\coprod_i B_i$, to be the colimit of the diagram consisting of the objects B_i with no morphisms other than the identity morphisms. The coproduct thus satisfies, in the case of two objects, the familiar universal diagram:

Examples of the coproduct are the disjoint union of sets or spaces, and the direct sum of abelian groups or, more generally, modules over a commutative ring.

The *coequalizer* of two morphisms $\psi, \psi' : C_1 \to C_2$ is the colimit of the diagram consisting of C_1, C_2 , their identity morphisms, and the morphisms ψ and ψ' , resulting in the again familiar universal diagram:

An example of a coequalizer is the cokernel of the difference of two homomorphisms in the category of abelian groups or modules over a commutative ring: If $f, g : A \to B$ are homomorphisms from the abelian group A to the abelian group B, the coequalizer of f and g will be the group B/im(f-g).

If $F, G : \mathcal{B} \to \mathcal{A}$ are two functors, and $\alpha : F \to G$ is a natural transformation between these functors, then the following diagram commutes:

and we define $\lim_{\to} \alpha : \lim_{\to} F \to \lim_{\to} G$ to be the map induced by the vertical maps $FB \to \lim_{\to} G$, indicated by the dotted line in the above diagram. In this way, we see that $\lim_{\to} acts$ as a functor from the functor category $Fun(\mathcal{B}, \mathcal{A}) \to \mathcal{A}$.

2 Colimits and Exactness

One of the basic concepts of homological algebra is that of the short exact sequence. Let A be a commutative ring. We define a *complex* to be a set of A-modules M_i with homomorphisms $d_i : M_i \to M_{i-1}$ such that $\operatorname{im}(d_i) \subseteq \operatorname{ker}(d_{i-1})$. Complexes are often represented by a diagram:

$$\cdots \longrightarrow M_{i+1} \xrightarrow{d_{i+1}} M_i \xrightarrow{d_i} M_{i-1} \longrightarrow \cdots$$

A complex is said to be *exact* if $\forall i, im(d_i) = ker(d_{i-1})$. A short exact sequence is thus an exact complex of the form

$$0 \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow 0$$

We can get much knowledge out of the fact that this sequence is exact. The kernel of α is the image of the zero homomorphism, hence ker $(\alpha) = 0$, and so α is injective. Similarly, $\operatorname{im}(\beta) = \operatorname{ker}(0) = C$, so β is surjective. Finally, we see that $\operatorname{ker}(\beta) = \operatorname{im}(\alpha) \cong A$, so that $C \cong B/A$.

We want to see when a colimit in the category of A-modules preserves exactness. We say that a functor F from the category of A-modules to itself is *right-exact* if it takes short exact sequences of modules to sequences that are exact only at the right end, so that for the short exact sequence above we would have

$$FA \xrightarrow{F\alpha} FB \xrightarrow{F\beta} FC \longrightarrow 0$$

and we define a *left-exact* functor similarly. An *exact* functor is one that is both left- and right-exact.

Proposition 1 \lim_{\to} is a right-exact functor. In other words, let \mathcal{A} be the category of A-modules, and let \mathcal{B} be some small category. Let $F, G, H : \mathcal{B} \to \mathcal{A}$ be functors and let $\alpha : F \to G$ and $\beta : G \to H$ be natural transformations such that, $\forall B \in \mathcal{B}$,

$$0 \longrightarrow FB \xrightarrow{\alpha} GB \xrightarrow{\beta} HB \longrightarrow 0$$

is exact. Then,

$$\lim_{\to} F \xrightarrow{\lim_{\to} \alpha} \lim_{\to} G \xrightarrow{\lim_{\to} \beta} \lim_{\to} H \longrightarrow 0$$

is a right exact sequence.

Proof: We will show that $\lim_{\to} \beta$ is an *epimorphism*. An epimorphism is a morphism $\gamma : A \to B$ such that, if $\eta_1, \eta_2 : B \to C$ are morphisms with $\eta_1 \gamma = \eta_2 \gamma$ then $\eta_1 = \eta_2$. In the category of modules over a commutative ring, epimorphisms are surjective functions and vice versa. Let $f, g : \lim_{\to} H \to C$ so that $f \lim_{\to} \beta = g \lim_{\to} \beta$. f and g thus induce maps $HB \to C$ as we see in the following diagram:

Because everything in this diagram commutes, we have $f\psi\beta = f(\lim_{\to}\beta)\phi = g(\lim_{\to}\beta)\phi = g\psi\beta$. Since β is surjective, we have $f\psi = g\psi$. But then this

forces f = g, since the definition of the colimit states that the morphism between $\lim_{\to} H$ and C that makes the diagram commute is unique, and so $\lim_{\to} \beta$ is an epimorphism, and thus surjective, making this part of the sequence exact.

We now check exactness at $\lim_{\to} G$. Consider $\lim_{\to} \beta \circ \lim_{\to} \alpha$. Because the following diagram commutes for all $B \in \mathcal{B}$,

we have $\psi'' \circ \beta \circ \alpha = \lim_{\longrightarrow} \beta \circ \lim_{\longrightarrow} \alpha \circ \psi$. But we know that this must equal 0, since $\beta \circ \alpha = 0$ because that sequence is exact. Since 0 satisfies $0 \circ \psi = 0$ for all ψ , and because maps from the colimit are unique, we have $\lim_{\longrightarrow} \beta \circ \lim_{\longrightarrow} \alpha$, so that im $\lim_{\longrightarrow} \alpha \subset \ker \lim_{\longrightarrow} \beta$. Let $x \in \lim_{\longrightarrow} G$.

Suppose we have $x \in \ker \lim_{\to} \beta$. We can take some $b \in GB$ such that $\beta(b) = 0$. Since the lower square on the above diagram commutes, this gives us $\psi'(b) = x$. Because α is surjective, we have some $a \in FB$ with $\alpha(a) = b$. So, because the top square commutes, we have $x = \lim_{\to} \alpha(\psi(a))$, and so $x \in \lim_{\to} \alpha$, giving exactness. \Box

We can see, by example, that not all colimits are left-exact. Recall that the coequalizer of two morphisms $f, g : A \to B$ in the category of abelian groups is $\operatorname{coker}(f - g)$. Consider the following diagram:

$$0 \longrightarrow 4\mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow 0$$
$$i \downarrow 0 \qquad \cong \downarrow 0 \qquad \phi \downarrow 0$$
$$0 \longrightarrow 2\mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

The horizontal rows are clearly exact. For the vertical columns, representing the two morphisms we will find the coequalizer of, 0 is the zero homomorphism, i is the inclusion map, \cong is the natural isomorphism, and π represents a map for which 0 and 2 are mapped to 0, and 1 and 3 are mapped to 1. We see that each of the squares in the diagram is natural very straightforwardly. Taking the coequalizer of the sequence, we get the following:

$$0 \longrightarrow 2\mathbb{Z}/4\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

The map from $\mathbb{Z}/2\mathbb{Z}$ to 0 cannot be injective, and so this sequence is not left-exact.

To examine when colimits are left-exact, we introduce the concept of a filtered limit. A category \mathcal{B} is *filtered* if it satisfies the following two conditions:

- 1. For any two objects B_1 and B_2 of \mathcal{B} there exists an object B of \mathcal{B} with morphisms $B_1 \to B$ and $B_2 \to B$, and
- 2. For every two morphisms with the same source $f : B' \to B_1$ and $g : B' \to B_2$, there exists an object B and morphisms $f' : B_1 \to B$ and $g' : B_2 \to B$ such that the following diagram commutes:

Proposition 2 If \mathcal{B} is a filtered small subcategory of the category of A-modules, then $\lim_{\to} \mathcal{B}$ is the disjoint union $\bigcup_{B \in \mathcal{B}} B / \sim$ where $b_1 \sim b_2$ for $b_1 \in B_1$ and $b_2 \in B_2$ iff there exist morphisms $f_i : B_i \to B$ such that $f_1(b_1) = f_2(b_2)$

Proof: Let $X = \bigcup_{B \in \mathcal{B}} B/ \sim$. We first see that X is in fact an A-module. First note that, for $x \in B_1, f : B_1 \to B, x \sim f(x)$, since $f(x) = 1_B(f(x))$, and so f and 1_B are the morphisms satisfying the equivalence relation. It follows immediately that scalar multiplication, defined by r[x] = [rx], since for a commutative ring, scalar multiplication is a morphism in the category of that ring's modules. Finally, for $x \in B_1$ and $y \in B_2$, we define [x] + [y] = [f(x) + g(y)], where $f : B_1 \to B$ and $g : B_2 \to B$ are morphisms to a common module, which exist since \mathcal{B} is filtered. We check to see that this addition is well defined. Say $x' \in B'_1$ with $x \sim x'$. Since they are equivalent, we have some $C \in \mathcal{B}$ and $\phi : B_1 \to C, \psi : B'_1 \to C$ with $\phi(x) = \psi(x')$. From the first part of the definition of the filtered category, we have $f': C \to C'$ and $g': B_2 \to C'$ for some $C' \in \mathcal{B}$ so that $f'(\psi(x')) \in C'$ and $g'(y) \in C'$, allowing us to add these two quantities. But we see that, by the second part of the definition of a filtered category, that there exists $D \in \mathcal{B}$ and morphisms $\delta: B \to D$ and $\delta': C' \to D$ with the following diagram commuting:

Since this diagram commutes, $\delta(f(x) + g(y)) = \delta'(f'(\psi(x')) + g'(y))$, so these two are equivalent and this addition is well defined. Hence X is an object of the category A-mod.

We use the universal property to show X is the colimit. Given an A-module C and maps $\psi_i : B_i \to C$, we clearly have an induced map $\psi : \bigcup_{B \in \mathcal{B}} B \to C$. If the ψ_i commute with all the morphisms in \mathcal{B} , making the ψ_i a morphism from the diagram $\mathcal{B} \to C$ as described above, then we see that ψ respects the equivalence relation \sim , so that ψ descends to a unique map $X \to C$, satisfying the colimit universal property. \Box Using this, we get a useful way to look at A-modules in terms of their submodules:

Proposition 3 An A-module M can be expressed as the filtered colimit of the subcategory \mathcal{B} of A-Mod, consisting of finitely generated submodules of M as objects and inclusion maps as morphisms.

Proof: We first see that \mathcal{B} is filtered. Let M_1 , M_2 be finitely generated submodules of M. We see that $M_1 \subseteq M_1 + M_2$ and $M_2 \subseteq M_1 + M_2$, satisfying the first criterion. Say $M' \subseteq M_1 \cap M_2$, so that we have morphisms from M' to M_1 and M' to M_2 . Then the following diagram, with arrows being inclusion maps, commutes:

thus satisfying the second criterion for being a filtered subcategory. Let $X = \bigcup_{N \in \mathcal{B}} N/\sim$, with \sim being the equivalence relation described in the last theorem. Let $\phi : M \to X$ be given by $\phi(m) = [m]$. ϕ is surjective, since any $[m] \in X$ has preimage $m \in M$. Let $a \in \ker(\phi)$. Since [a] = [0], there are some finitely generated submodules M_1, M_2 , and M' of M and injections $i : M_1 \to M'$ and $j : M_2 \to M'$ with $a \in M_1$ and i(a) = j(0) = 0. Since i is injective, this means a = 0, so ϕ is injective. Thus, $X \cong M$ and by the uniqueness of the colimit, X = M. \Box

We now finish our discussion of filtered colimits by exploring our original motivation of finding exact colimits:

Proposition 4 Filtered colimits are exact. That is, let \mathcal{A} be the category of A-modules; let \mathcal{B} be a filtered category; let $F, G, H : \mathcal{B} \to \mathcal{A}$ be functors; and let $\alpha : F \to G$ and $\beta : G \to H$ be natural transformations such that, for every object $B \in \mathcal{B}$

$$0 \longrightarrow FB \xrightarrow{\alpha} GB \xrightarrow{\beta} HB \longrightarrow 0$$

is exact. Then,

$$0 \longrightarrow \lim_{\to} FB \xrightarrow{\lim_{\to} \alpha} \lim_{\to} GB \xrightarrow{\lim_{\to} \beta} \lim_{\to} HB \longrightarrow 0$$

is also an exact sequence.

Proof: Since we showed above that any colimit is right-exact, all we need to show is that $\lim_{\to} \alpha$ is injective. Let $x \in \bigcup_{B \in \mathcal{B}} FB / \sim$ such that x goes to zero in $\bigcup_{B \in \mathcal{B}} GB / \sim$ under $\lim_{\to} \alpha$. We can lift x to some representative element $b \in FB$ for some $B \in \mathcal{B}$. So, since $\lim_{\to} \alpha(x) = 0$, we have $\alpha(b) \sim 0$. This gives us a morphisms $f : B \to B'$ and g : B''toB' such that $Gf(\alpha(b)) = Gg(0)$. But since Gg(0) = 0, we see that $Gf(\alpha(b)) = 0$. Since the diagram

commutes, and since α is injective, Ff(b) = 0, so we have $b \sim 0$, so that [b] = [0] in $\bigcup_{B \in \mathcal{B}} FB / \sim$, so $\lim_{\to} \alpha$ is injective. \Box