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1 Introduction

Ever since people began to write down events in their lives, there has been a need for cryptogra-
phy. Cryptography is the encryption of text in such a manner that outsiders to the code cannot
understand the code, but the desired reader is able to decrypt the encryption so as to understand
the message. For early man, just as for modern man, there has always been a need for secrecy,
because it is usually in the interest of both the decoders and encoders that the information not
be known to the general public. In times of war, it is essential that the enemy not know what
you and your allies are plotting, because winning or losing a war can hinge on the secrecy of the
operations so as to surprise the enemy. However, there was one caveat to all the cryptosystems
before RSA: they were all based on the fact that both the decoding and encoding parties had to
know the method of encryption and the key to decrypting the cipher. In truth, this problem of key
distribution is the same problem people were trying to solve when they invented cryptography:
the keys and the method of decryption need to be relayed to all the desired readers of the message,
but how does one relay the key securely? Why, with encryption, of course. But, then how to you
send the key to the encryption of the key to the encryption of the message? As you can see, this
caveat of cryptography is an infinite loop between encryption and key distribution that cannot be
solved with security ensured for all the desired readers. Indeed, the Germans might have won the
war had it not been for the fact that they had to print out their daily settings for the Enigma
machine and hand them out to all the Nazi leaders. One of the key-books was intercepted by
the English and this led to a crucial defeat for the Germans that crippled their submarine fleet.
Anyways, the problem of key distribution remained a problem until the 20th century.
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The problem was solved by Whitfield Diffie, working in collaboration with Martin Hellman. The
idea came to him in a revelation: “I walked downstairs to get a Coke, and almost forgot about the
idea. I remembered that I’d been thinking about something interesting, but couldn’t quite recall
what it was. Then it came back in a real adrenaline rush of excitement. I was actually aware
for the first time in my work on cryptography of having discovered something really valuable.”
(The source for this quote, and all the other historical material in this section, is [3].) Diffie had
discovered a revolutionary type of cipher: his cipher incorporated an asymmetric key. In all the
other cryptosystems, decryption is simply the opposite of encryption; these systems employ a
symmetric key, because decryption and encryption are symmetrical. In an asymmetrical cipher,
there are two distinct keys: the public and private keys. The private key is the decryption key and
the public key is the encryption key. If a person, Bob, wants to send a message to another person,
Alice, all he has to do is use Alice’s public key to encrypt the message. Now the only person
in the universe that can decrypt that message is Alice, because she has the private decryption
key; Bob encrypts the message using the public key, but he cannot decrypt it: the encryption
technique is a one-way function, which is irreversible unless the decoder has a special piece of
knowledge unknown to the rest of the world (the private key). Although Diffie conceived of a
general concept of an asymmetric cipher, he did not actually have a specific one way function that
met his requirements. However, his paper (published in 1975) showed that there was indeed a
solution to key distribution and he sparked interest among other mathematicians and scientists.
Try as he might, Diffie and his partners Hellman and Merkle could not discover such a cipher.
That discovery was made by another trio of researchers: Rivest, Shamir and Adleman.

Rivest, Shamir, and Adleman were a perfect team. Rivest is a computer scientist with an exem-
plary ability to apply new ideas in new places. He also kept up with the latest scientific papers, so
he always had these zany new ideas for the one way function. Shamir, also a computer scientist,
has a lightning intellect, and an ability to cast aside the technicalities and focus on the core of a
problem. He as well as Rivest generated ideas for the one-way function. Adleman is a mathemati-
cian with extraordinary stamina, rigor and patience. He was largely responsible for spotting the
flaws within the ideas of Rivest and Shamir, and he ensured that they did not follow false leads.
Rivest and Shamir spent a year coming up with ideas, and Adleman spent a year shooting them
down. It was very discouraging, but they knew that each failure steered them away from sterile
math into more fertile mathematical ground. In April 1977, Rivest, Shamir, and Adleman spent
Passover at the house of a student and consumed liberal quantities of Manischewitz wine before
returning to their respective homes sometime around midnight. Rivest was unable to sleep, so he
lay on his couch with a math textbook. He began to mull over the question that had been nagging
him all year: Is it possible to find a one-way function that can be reversed only if the receiver has
some special information? Suddenly, the mists began to clear and he had a revelation. He spent
the rest of the night formalizing his idea, and by daybreak he had effectively written a complete
mathematical paper. Rivest had a breakthrough, but it could not have come without the help of
Shamir and Adleman. The system was later dubbed RSA, for Rivest, Shamir, and Adleman.
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2 The RSA algorithm: an overview

We choose two primes p and q. We define m := p×q, and we also choose a k such that k and φ(m)
are relatively prime, (k, φ(m)) = 1. The numbers p and q are kept private; m and k are public.
Before encrypting a section of plain text, we first convert the text into numbers using ASCII. If
our text is larger than m, we cut it into blocks that are each smaller than m. These blocks are
labeled a1, a2, · · · ar. In theory, it could happen that some ai and m are not relatively prime,
(ai, m) 6= 1, but this probability is so small when m and an are large, that we will ignore it here.

The following theorem may seem irrelevant, but it will tie in with RSA later on. The two para-
graphs following the theorem will show why this theorem makes sense.

Theorem 2.1 Suppose m ∈ N, and (a, m) = 1. If k, k̄ ∈ Z are such that k× k̄ ≡ 1 ( mod φ(m)),
then ak×k̄ ≡ a ( mod m).

Proof: Since k × k̄ ≡ 1 ( mod φ(m)), k × k̄ = 1 + φ(m) × s, where s ∈ Z, s ≥ 0. Now ak×k̄ =
a1+φ(m)×s = a ×

(
aφ(m)

)r
. Since aφ(m) ≡ 1 ( mod m) (by Euler’s congruence), it follows that

ak×k̄ ≡ a× 1r ≡ a ( mod m). �

Since (ai, m) = 1, for each i ∈ {1, 2, · · · , r}, it follows that
(
ak

i , m
)

= 1 , for each i ∈ {1, 2, · · · , r}.
Furthermore, if we set n := φ(m), and a1, a2, · · · , ar is a system of reduced residues ( mod m),
then the numbers ak

1, ak
2, · · · , ak

r are also relatively prime to m. The kth powers ak
1, ak

2, · · ·
ak

r are all distinct, by the following argument: because (k, φ(m)) = 1, there exists k̄ so that
k × k̄ ≡ 1 ( mod φ(m)); then if ak

i ≡ ak
j ( mod m) and i 6= j, Theorem 2.1 implies that

ai ≡ ak×k̄
i ≡

(
ak

i

)k̄ ≡
(
ak

j

)k̄ ≡ ak×k̄
j ≡ aj ( mod m), which is impossible if i 6= j.

How does this relate to RSA? You, being supersmart, take block ai and compute bi such that
bi ≡ ak

i ( mod m). We just proved that the bi are distinct (assuming the ai were distinct to start
with). Send the distinct bi to me. I know p and q, and therefore φ(m), and I compute k̄ using
the Euclidean algorithm. Then I solve the congruence for xi, xi ≡ bk̄

i . By Theorem 2.1, xi ≡ ai (
mod m), and since ai < m , xi = ai.

This cryptosystem is hard to break, because if a person were to intercept the message, all they
would know is the public keys: m and k. Theoretically, you could construct φ(m) from m, but
this would involve factoring m into p and q. This is really hard if m is large, for as of yet there is
no efficient way to factor really large numbers.

The RSA algorithm relies thus on finding large primes p and q. The next section addresses how
this can be done.

3 Primality testing and Carmichael numbers.

By Fermat’s Little Theorem, if, for some number a, we have aM 6≡ a ( mod M), then M is not
a prime. (Note that it is a lot easier, i.e. faster, to raise a number a to a power, even when
that power is large, than to check whether M can be factored.) To check whether a randomly
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picked number M is prime or composite, one could thus imagine doing experiments, trying all
the numbers a between 0 and M − 1 and checking whether aM ≡ a ( mod M); if there is one a
that fails this congruence test, then M is composite. This looks like a nice algorithm to prove
that M is composite, but unfortunately it does not detect all composite M : it hits a snag at
M = 561 = 3× 11× 17:

Theorem 3.1 a561 ≡ a ( mod 561) for all a.

Proof: We shall prove that a561 ≡ a ( mod 3), ( mod 11) and ( mod 17). For each of these we
shall use Euler’s congruence aφ(p) ≡ 1 ( mod p) for prime p.

We have, for arbitrary a,

a561 =
(
a2

)280 × a ≡ 1× a ≡ a ( mod 3) ,

a561 =
(
a10

)56 × a ≡ 1× a ≡ a ( mod 11) ,

a561 =
(
a16

)35 × a ≡ 1× a ≡ a ( mod 17) .

Therefore, by the Chinese remainder theorem, a561 ≡ a ( mod 561). �

Are there other numbers than 561 that have the same property? Being bold, we propose

Theorem 3.2 A composite number M satisfies aM ≡ a ( mod M) for all a if and only if M is
odd, and every prime p dividing M satisfies the following two conditions:

• p2/| M ,

• φ(p)|M − 1.

Proof:

• We start with the “only if” direction. Suppose M is composite such that aM ≡ a ( mod M)
for all a. We have M = p1×p2×· · · pn, where the pi are primes. Choose a such that a ≡ −1 (
mod M). Then, because of the assumption on M , aM ≡ a ≡ −1 ( mod M). If M were even,
this would imply that 1 ≡ −1 ( mod M), which is only possible if M = 1 or M = 2, neither
of which are composite. Since we are given that M is composite, it follows that M cannot
be even, i.e. it must be odd.
Next we prove the first of the two necessary conditions. Suppose pei+1

i |M . We want to
show that then ei = 0. Set a = pei

i . Then, again by our assumption, peiM
i ≡ pei

i ( mod M).
Consequently M |

(
peiM

i − pei
i

)
; since pei+1

i |M , it follows that pei+1
i |

(
peiM

i − pei
i

)
. Therefore

p
eiM
i −p

ei
i

p
ei+1
i

=
p

ei(M−1)
i −1

pi
is an integer, i.e. pi|

(
p

ei(M−1)
i − 1

)
. This is possible only if p

ei(M−1)
i −

1 = 0, which implies ei = 0, since M 6= 1. This proves the first of the two necessary
conditions.
For the second condition, we need to prove that pi − 1|M − 1, ∀i. Suppose this is not
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true. Then there exists q ∈ {1, . . . , pi − 2} and ki ≥ 0 so that M − 1 = ki(pi − 1) + q.
By assumption, we have, for arbitrary a, that M |(aM − a). Since pi|M , it follows that
(substituting ki(pi − 1) + q + 1 for M) pi|

(
aki(pi−1)+q+1 − a

)
, or aki(pi−1)+q+1 ≡ a ( mod pi).

Since api−1 ≡ 1 ( mod pi), it follows that aq+1 ≡ a ( mod pi). Because pi is prime, this
implies, if a is not a multiple of pi, that aq ≡ 1 ( mod pi). To summarize, we have shown
that if the second condition does not hold, then there exists a number q ∈ {1, . . . , pi − 2} so
that ∀a ∈ {1, 2, . . . , pi− 1} : aq ≡ 1 ( mod pi). By Theorem 2.26 in [1], this congruence can
have at most q solutions because it is of degree q; since q < pi − 1 and we derived that the
congruence holds for the pi − 1 elements of {1, 2, . . . , pi − 1}, this is a contradiction. [Too
many pigeons (= solutions) for the number of holes (= maximum number of solutions), or
too few pigeons (= possible labels for the solutions) for the number of holes (= solutions
waiting to be labeled)].

• Next we prove the ”if” direction, that is, we assume that the composite number M is odd,
and that it satisfies the two conditions. We can again factor M into its prime factors,
M = p1 × p2 × · · · × pn, where the pi are all distinct because of the first condition. Because
pi−1|M−1, we also have, for each i, that there exists an integer ki so that M−1 = ki(pi−1).

Take now an arbitrary a. Because api−1 ≡ 1 ( mod pi), we also have (api−1)
ki ≡ 1 ( mod pi),

or aM−1 ≡ 1 ( mod pi). This can be rewritten as aM − a ≡ 0 ( mod pi), which means
that pi|aM − a. Because this is true for each i, and the pi are all distinct, it follows that∏n

i=1 pi

∣∣aM − a , i.e. that M |aM − a, which is again equivalent to saying that aM ≡ a (
mod M). (This direction was a lot simpler!) �

The theorem we just proved is called Korselt’s criterion for Carmichael numbers. “Carmichael
numbers” are the numbers of which we were just speaking: numbers M that are composite but
for which nevertheless aM ≡ a ( mod M) for all a. They are named after R.O. Carmichael who
first noted them in 1910. (561 is the smallest of them.)

If we use only Fermat’s Little Theorem to detect primes, the Carmichael numbers can sneak in as
well. Now that we are well acquainted with the Carmichael numbers, it is time to come up with
a better test to decide whether a number is prime or composite. We have the following theorem:

Theorem 3.3 If p is an odd prime, then (p− 1)! ≡ −1 ( mod p).

Proof: If g is a primitive root, then the numbers g, g2, g3, . . . , gp−1 are distinct ( mod p). On the

other hand, g × g2 × g3 × · · · × gp−1 = g
p(p−1)

2 ≡ 1 × 2 × · · · × (p − 1) = (p − 1)! ( mod p). Since

gp−1 ≡ 1 ( mod p), g
p−1
2 ≡ 1 or −1 ( mod p). However, g

p−1
2 6≡ 1 ( mod p) because g is a primitive

root. Thus g
p−1
2 ≡ −1 ( mod p), and g

p(p−1)
2 ≡ (−1)p ≡ −1( mod p), since p is odd. �

(Note: we could prove this separately for p = 2 but that is highly irrelevant for primality testing.)
This theorem does give a necessary and sufficient condition for primality, because we also have the
following

Theorem 3.4 If M is composite, M > 4, then (M − 1)! ≡ 0 ( mod M).
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Proof: If M is composite, then it can be written as a product of the type M = pe1
1 ×pe2

2 ×· · ·×per
r ,

where the pi are distinct primes. Let’s first do the case where there are at least two different
primes in this product, i.e. r > 1. Because ei × pi ≤ pei

i < M , (M − 1)! contains all the numbers
p1, 2p1, 3p1, . . . , eipi as factors, so that pei

i |(M − 1)! . Since this is true for any i, it follows that
(M − 1)!is divisible by the smallest common multiple of the pe1

1 , · · · , per
r , which is their product

M . So M |(M − 1)!, i.e. (M − 1)! ≡ 0 ( mod M)
Next, consider r = 1, i.e. M = pe, with e > 1. If p > 2, then we still have e × p < pe = M , and
we can use the same argument. If p = 2, then e × 2 < 2e = M if e > 2, and the same argument
still carries through. We thus have to exclude only the case M = 22 = 4. �.

Unfortunately, (p − 1)! is not exactly chump change. If p has, say, a hundred digits (RSA cryp-
tosystems do use primes of this size!), then at least 90% of the factors in (p − 1)! have 99 digits,
so that (p − 1)! will have more than 99 × 90 = 8910 digits ... This theorem (Wilson’s Theorem)
is therefore not of any practical interest for primality testing for RSA. We are thus still in the
market for other primality tests.

Theorem 3.5 Let p be an odd prime, then, for arbitrary a,
(

a
p

)
≡ a

p−1
2 ( mod p).

(The Legendre symbol
(

a
p

)
is defined in [1] in Definition 3.2)

Proof: If
(

a
p

)
= 1, then x2 ≡ a ( mod p) has a solution, say, x0. Then, by Fermat’s congruence,

a
p−1
2 ≡ xp−1

0 ≡ 1 ≡
(

a
p

)
( mod p). If

(
a
p

)
= −1, then x2 ≡ a ( mod p) has no solution. For each

j such that 1 ≤ j < p, choose j′ such that j × j′ ≡ a ( mod p). We know that j 6≡ j′ ( mod p).
The combined contribution of j and j′ to (p− 1)! is congruent to a, ( mod p). Since there are p−1

2

pairs j, j′ , it follows that a
p−1
2 ≡ (p− 1)! ( mod p). Since (see above) (p− 1)! ≡ −1 ( mod p), we

have that a
p−1
2 ≡ −1 ( mod p). �

To use this for primality testing of a random number M , we could imagine again testing numbers
a in Z/MZ; if one of them doesn’t satisfy the condition, then M is composite. For instance, if we

pick a to be a square, and a
p−1
2 6≡ 1 ( mod M), then M is composite. According to the article on

the Solovay-Strassen primality test in[4], this test gives a necessary and sufficient condition: if M

is composite, then for at least half the numbers in Z/MZ,
(

a
p

)
6≡ a

p−1
2 ( mod M).

The following theorem gives yet another primality test:

Theorem 3.6 Let p be an odd prime, and write p− 1 = 2kq, with q odd. Take a arbitrary. Then
either aq ≡ 1 ( mod p), or there is an integer m ∈ {0, 1, 2, . . . , k − 1} so that a2mq ≡ −1 ( mod p).

Proof: If aq ≡ 1 ( mod p), we don’t have to prove anything. So, let’s suppose aq 6≡ 1 ( mod p).
Define E = {`; 1 ≤ ` ≤ k such that a2`q ≡ 1 ( mod p)}. Because k ∈ E, E 6= ∅. E must have
a smallest element `0, which has to be at least 2, since 1 /∈ E by the assumption with which we
started the proof. Set n := `0 − 1 ≥ 1. Since n /∈ E, we have a2nq 6≡ 1 ( mod p); on the other

hand, since n + 1 ∈ E, a2n+1q ≡ 1 ( mod p), i.e.
(
a2nq

)2 ≡ 1 ( mod p). It follows that a2nq ≡ −1 (
mod p). �

By the contrapositive, this gives us a criterion by which we know that a number is composite:
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Corollary 3.7 Let M be an odd integer; write M − 1 = 2kq, with q odd. If for some choice of
a we have both aq 6≡ 1 ( mod M) and a2`q 6≡ −1 ( mod M), ∀` ∈ {0, 1, . . . , k − 1}, then M is
composite.

If M is an odd composite number, then there are at least 75% of the numbers in {1, . . . ,M − 1}
that establish, by the this test, that M is composite [2]. If we randomly choose 100 different a
and none of them indicate that the M is composite, then the chance of M being nevertheless
composite is approximately .75100 ∼= 3−13. In practice, a composite M is usually unmasked within
a few tries.

Let’s try it for a Carmichael number. In [2] the case 561 is discussed in detail, so let’s do another
one here. We take 6601 = 7 × 23 × 41. We have 6600 = 23 × 825, so k = 3, q = 825. Even
the simplest try for a already exposes 6601 for the composite number it is, since 2825 ≡ 2738 (
mod 6601), 22×825 ≡ 4509 ( mod 6601), and 24×825 ≡ 1 ( mod 6601).

Here, it is easy and possible to unmask 6601 as a composite number, unlike with the primality
test using Fermat’s Little Theorem. In fact, this test was most widely used to find out if a large
number was prime until 1999, with the advent of the AKS Test. This test was the first completely
efficient primality test that ran in polynomial time.
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